WO2010023827A1 - 導波管、導波管接続構造および導波管接続方法 - Google Patents

導波管、導波管接続構造および導波管接続方法 Download PDF

Info

Publication number
WO2010023827A1
WO2010023827A1 PCT/JP2009/003759 JP2009003759W WO2010023827A1 WO 2010023827 A1 WO2010023827 A1 WO 2010023827A1 JP 2009003759 W JP2009003759 W JP 2009003759W WO 2010023827 A1 WO2010023827 A1 WO 2010023827A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
stub
predetermined wavelength
resin substrate
connection structure
Prior art date
Application number
PCT/JP2009/003759
Other languages
English (en)
French (fr)
Inventor
若林良昌
大平理覚
鳥屋尾博
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010526514A priority Critical patent/JP5531960B2/ja
Priority to US13/060,570 priority patent/US8680954B2/en
Publication of WO2010023827A1 publication Critical patent/WO2010023827A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/042Hollow waveguide joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a waveguide, a waveguide connection structure, and a waveguide connection method.
  • the millimeter wave band is used, for example, for high-speed transmission of digital signals and automotive radar applications. Consumer devices are required to be small, thin, and low cost. For this reason, in recent digital signal transmission and automobile radar, a transmission path and an antenna are made on a resin substrate. As a result, we are trying to meet the demands for small size, thinness and low cost.
  • a high-frequency line 102 formed on the upper surface of the dielectric substrate 101 and a portion immediately below one end of the high-frequency line 102 on the lower surface of the dielectric substrate 101 are formed.
  • a high frequency module including 100B and a conversion unit 103 that converts a transmission mode for transmitting the high frequency line 102 into a waveguide mode for transmitting the waveguide unit 107 is described (see FIG. 18).
  • the high-frequency module described in Patent Document 1 converts a transmission mode of a signal transmitted through the high-frequency line 102 in the high-frequency substrate 100A to a waveguide mode, and is connected to the high-frequency substrate 100A via the waveguide portion 107.
  • a signal is transmitted to the wiring board 100B.
  • solder or the like is used to ensure the connection at the waveguide portion.
  • the reason for using solder or the like is to prevent a signal from leaking out of the waveguide and increasing insertion loss if a gap is formed in the connection portion of the waveguide and electrical connection is incomplete.
  • the electrical connection is incomplete.
  • solder or the like leaks in addition to the desired connection portion, and the waveguide shape at the connection portion differs from the design. In either case, the insertion loss increases.
  • the material cost, the assembly cost, etc. increase by using solder or the like.
  • the present invention has been made in view of the circumstances described above, and its purpose is to connect a waveguide without using solder such as solder when connecting the waveguide and the resin substrate, and
  • An object of the present invention is to provide a waveguide, a waveguide connection structure, and a waveguide connection method that can suppress an increase in insertion loss even when the connection is incomplete.
  • a waveguide according to an aspect of the present invention includes a cylindrical first waveguide that transmits an electromagnetic wave having a predetermined wavelength, and a quarter of the predetermined wavelength from an inner wall portion of one end of the first waveguide. And a stub that is formed so that the opening end is inscribed in a contour line that is spaced outward in the radial direction and the depth is 1 ⁇ 4 of the predetermined wavelength.
  • a waveguide connection structure includes a cylindrical first waveguide that transmits an electromagnetic wave having a predetermined wavelength, and an inner wall portion at one end of the first waveguide.
  • a connected part having an electrically conductive frame part electrically connected to the second waveguide.
  • the predetermined stub wavelength of 1 is formed by integrating the second stub and the stub generated by connecting the waveguide and the frame portion.
  • the choke groove has a length of / 2.
  • the frame portion has a closed ring shape made of metal.
  • the waveguide connection structure includes a plurality of metal bumps arranged so that the frame portion is electrically continuous.
  • the frame portion is circumscribed at a position separated from the wall surface of the second waveguide by 1 ⁇ 4 of the predetermined wavelength and electrically.
  • a plurality of vias arranged in a continuous manner and extending inward of the connected portion, and a plurality or surfaces for connecting the wall surface of the second waveguide to the via so as to be electrically equivalent to a metal plane
  • an inner layer wiring is provided.
  • the waveguide connection structure includes a fitting groove in which the waveguide is fitted into the frame portion.
  • the waveguide connection structure according to an aspect of the present invention is a resin substrate in which the connected portion includes a resin layer and a metal layer.
  • the radial direction is 1 ⁇ 4 of the predetermined wavelength from the inner wall portion of one end of the waveguide having the first waveguide that transmits the electromagnetic wave of the predetermined wavelength.
  • a first step of forming a stub that is inscribed in a contour line that is spaced outward and has a depth that is 1 ⁇ 4 of the predetermined wavelength; and a second waveguide that transmits an electromagnetic wave of the predetermined wavelength Forming an electrically conductive frame portion that is electrically connected to the first waveguide so as to circumscribe a portion of the second waveguide separated from the wall surface of the second waveguide by 1/4 of the predetermined wavelength.
  • the first waveguide and the second waveguide by pressing and fixing the waveguide and the connected portion after the second step and the opening end of the stub are aligned with the position inscribed in the frame portion And a third step of connecting the two.
  • the waveguide connection structure of the present invention when connecting the waveguide and the resin substrate, the waveguide connection can be made without using solder such as solder, and the connection is incomplete. Even in this state, an increase in insertion loss can be suppressed.
  • FIG. 1 is a plan view of the waveguide housing 1.
  • FIG. 2 is a perspective view of the waveguide housing 1.
  • 3 is a cross-sectional view taken along the line AA ′ of the waveguide housing 1 of FIG.
  • FIG. 4 is a plan view showing a resin substrate 11 (connected portion) to which the waveguide housing 1 is connected.
  • FIG. 5 is a BB ′ cross-sectional view of the resin substrate 11 shown in FIG.
  • FIG. 6 is a cross-sectional view showing a connection state between the waveguide housing 1 and the resin substrate 11.
  • the waveguide housing 1 is a housing that realizes a waveguide transmission path.
  • the waveguide housing 1 of the present embodiment is obtained by cutting copper and gold plating thereon.
  • a first waveguide 2 is formed inside the waveguide housing 1.
  • the first waveguide 2 is rectangular.
  • the waveguide housing 1 has a wavelength 1 / ⁇ of the wavelength ⁇ from the wall surface of the first waveguide 2 on the basis of the wavelength ⁇ of the electromagnetic wave R transmitted through the first waveguide 2.
  • the stub 3 is formed by digging the waveguide housing 1 at a position separated by four. The digging depth of the stub 3 is 1/4 of the wavelength ⁇ . The digging position of the stub 3 is such that the outer circumference is a distance of 1 ⁇ 4 of the wavelength ⁇ from the wall surface of the first waveguide 2. Further, the stub 3 is inscribed in a contour line separated from the inner wall portion of the first waveguide 2 radially outward by 1 ⁇ 4 of the wavelength ⁇ .
  • the wall surface and bottom surface of the stub 3 are all gold-plated.
  • the internal space of the stub 3 is a cavity and is filled with air. Further, as shown in FIG. 3, in the present embodiment, the stub 3 is dug in the axial direction of the first waveguide 2.
  • FIG. 4 is a plan view of the resin substrate 11 to which the waveguide housing 1 is connected.
  • FIG. 5 is a cross-sectional view of the resin substrate 11 to which the waveguide housing 1 is connected.
  • the resin substrate 11 is provided with a second waveguide 12 having a waveguide structure whose internal structure is not shown.
  • the resin substrate 11 is connected to the waveguide housing 1. Therefore, it is desirable that the dimension of the second waveguide 12 formed inside the resin substrate 11 is the same as that of the first waveguide 2 of the waveguide housing 1.
  • a metal wall 14 serving as a frame portion is formed at a position that is 1/4 of the wavelength ⁇ from the second waveguide 12 on the connection surface of the resin substrate 11 with the waveguide housing 1. Yes.
  • the metal wall 14 is electrically connected to the second waveguide 12. 4 and 5, the metal wall 14 and the second waveguide 12 are electrically connected via the copper foil 15 on the surface of the resin substrate 11. However, in FIG. 4, the connection between the second waveguide 12 and the copper foil 15 is not shown.
  • the metal wall 14 is preferably formed by copper plating. Further, the metal wall 14 is disposed so that the inner wall thereof is located at a position 1/4 of the wavelength ⁇ from the second waveguide 12. When the metal wall 14 is formed by thick plating, there arises a problem that the production cost is increased. Therefore, the thickness of the metal wall 14 is desirably about 50 microns.
  • FIG. 6 is a cross-sectional view of the waveguide housing 1 and the resin substrate 11 connected to each other.
  • the waveguide housing 1 and the resin substrate 11 are connected, since the metal wall 14 is formed on the connection surface of the resin substrate 11, the waveguide housing 1 and the metal wall 14 are in contact with each other.
  • the waveguide housing 1 and the metal wall 14 are in contact with each other. Thereby, from the wall surface of the 1st waveguide 2 and the 2nd waveguide 12 to the metal wall 14, the copper foil 15 and the metal wall 14 of the connection surface of the waveguide housing
  • the second stub 5 is 1 ⁇ 4 of the wavelength ⁇ .
  • the waveguide housing 1 and the resin substrate 11 are screwed by a screwing mechanism (not shown).
  • the metal wall 14 of the resin substrate 11 is pressed and fixed at a position that circumscribes the stub 3 of the waveguide housing 1.
  • the inner wall of the metal wall 14 and the outer periphery of the stub 3 are located at a quarter of the wavelength ⁇ from the first waveguide 2 and the second waveguide 12. Therefore, as shown in FIG. 6, the second stub 5 having a quarter of the wavelength ⁇ is connected to the stub 3 having a quarter of the wavelength ⁇ . Then, a choke groove 20 having a length 1 ⁇ 2 of the wavelength ⁇ is generated from the wall surfaces of the first waveguide 2 and the second waveguide 12.
  • an electromagnetic wave R (not shown) having a wavelength ⁇ enters the first waveguide 2 from the distal end 1 a side of the waveguide housing 1. Thereby, the electromagnetic wave R is transmitted to the base end 1b side while reflecting the gold-plated surface inside the first waveguide 2.
  • the electromagnetic wave R reaches the proximal end 1 b of the first waveguide 2. A part of the electromagnetic wave R travels into the choke groove 20. Thereby, the incident wave to the choke groove 20 enters the stub 3 via the second stub 5 and is reflected by the bottom surface 3 a of the stub 3. Thereafter, the electromagnetic wave R reaches the joint between the first waveguide 2 and the second waveguide 12 from the stub 3 through the second stub 5.
  • the tip of the choke groove 20 with a wavelength ⁇ formed by the second stub 5 and the stub 3 is the tip of the groove of the stub 3. Since the stub 3 is formed by digging into the metal waveguide housing 1, its tip is electrically short-circuited. When one end of the choke groove 20 having a wavelength ⁇ is short-circuited, the other end is short-circuited. Therefore, when the waveguide housing 1 and the resin substrate 11 are connected, the first waveguide 2 in the waveguide housing 1 and the second waveguide 12 in the resin substrate 11 are electrically short-circuited. It is equivalent to being connected in an ideal state that realizes. Thereby, the electromagnetic wave R is transmitted from the first waveguide 2 to the second waveguide 12 via the choke groove 20.
  • the waveguide housing 1 and the resin substrate 11 are connected, the waveguide housing 1 and the resin are not connected due to a screwing failure of a connection screw (not shown) or warping of the resin substrate 11.
  • the electrical connection with the metal wall 14 on the substrate 11 may be incomplete.
  • the connection portion between the waveguide housing 1 and the resin substrate 11 is a metal wall 14. Further, the metal wall 14 is disposed at a position of 1 ⁇ 4 of the wavelength ⁇ from the first waveguide 2 and the second waveguide 12. Further, the metal wall 14 is located at a quarter of the wavelength ⁇ from the short-circuited end of the stub 3. When one end of the stub 3 is short-circuited, the other end is opened, and the bottom of the stub 3 is a short-circuited end. Therefore, regardless of whether the connection between the waveguide housing 1 and the metal wall 14 is complete or incomplete, the connection portion between the waveguide housing 1 and the metal wall 14 that is the opening end of the stub 3 is electrically connected. It becomes open.
  • the length of the second stub 5 including the waveguide housing 1, the resin substrate 11, and the metal wall 14 is 1 ⁇ 4 of the wavelength ⁇ .
  • the other end is short-circuited.
  • the connection portion between the waveguide housing 1 and the metal wall 14 is electrically opened regardless of whether the connection is complete or incomplete.
  • the other end of the second stub 5, that is, the wall surface portion between the first waveguide 2 and the second waveguide 12 is electrically short-circuited.
  • the first waveguide 2 in the waveguide housing 1 and the second waveguide 12 in the resin substrate 11 Is equivalent to being connected in an ideal state in which an electrical short circuit is realized.
  • FIG. 7 shows three-dimensional insertion loss from the waveguide housing 1 to the resin substrate 11 when the connection between the waveguide housing 1 and the resin substrate 11 shown in FIG. It is obtained by electromagnetic field analysis.
  • the waveguide housing 1 and the resin substrate 11 of the present embodiment are designed with 72 GHz as the center frequency.
  • the analysis is performed with the frequency of the electromagnetic wave R being 72 GHz.
  • the horizontal axis of the graph is frequency, and the vertical axis is insertion loss.
  • the graph g11 shows the analysis result when the distance between the waveguide housing 1 and the resin substrate 11 is 0, that is, when the waveguide housing 1 and the resin substrate 11 are connected as shown in FIG. Yes.
  • Graphs g12, g13, g14, g15, and g16 are analysis when the waveguide housing 1 and the resin substrate 11 are not connected and the distance is 100 microns, 200 microns, 300 microns, 400 microns, and 500 microns. The results are shown respectively.
  • FIG. 9 shows characteristics when the conventional waveguide housing 21 without stub and the resin substrate 31 without metal wall as shown in FIG. 8 are connected.
  • the horizontal axis of the graph is frequency, and the vertical axis is insertion loss.
  • Graphs g21, g22, g23, g24, g25, and g26 show the insertion loss of the electromagnetic wave R from the first waveguide 22 to the second waveguide 32 when the connection is complete and when the connection is incomplete.
  • the analysis results when the distance between the housing 1 and the resin substrate 11 are 0 microns, 100 microns, 200 microns, 300 microns, 400 microns, and 500 microns are shown.
  • the insertion loss increases as the gap between the waveguide housing 1 and the resin substrate 31 widens. This indicates that the electromagnetic wave R is leaking from the gap between the waveguide housing 21 and the resin substrate 31.
  • the insertion loss increases as the gap between the waveguide housing 1 and the resin substrate 11 widens.
  • the degree of increase in insertion loss is clearly small compared to FIG. In particular, in the vicinity of the central frequency of 72 GHz, the insertion loss caused by the gap between the waveguide housing 1 and the resin substrate 11 is remarkably suppressed. That is, the amount of electromagnetic wave R leaking from the gap between the waveguide housing 1 and the resin substrate 11 can be reduced by the waveguide connection structure of this embodiment.
  • the amount of warping of the resin substrate 11 is 50 microns or less, the connection between the metal wall 14 on the resin substrate 11 and the waveguide housing 1 is maintained. Therefore, even when the metal wall 14 and the waveguide housing 1 are separated as described above, an increase in insertion loss near the center frequency of the electromagnetic wave R can be suppressed. Therefore, in this embodiment, even when the resin substrate 11 is slightly warped, transmission from the waveguide housing 1 to the resin substrate 11 can be performed without insertion loss.
  • the waveguide housing 1 and the resin substrate 11 are connected via the metal wall 14.
  • the A choke groove 20 is formed by the stub 3 that is a gap between the metal wall 14, the waveguide housing 1, and the resin substrate 11 and the second stub 5 formed in the waveguide housing 1. Therefore, when the waveguide housing 1 having the first waveguide 2 and the resin substrate 11 having the second waveguide 12 are joined, screwing failure between the waveguide housing 1 and the resin substrate 11 and the resin substrate Even when the bonding between the waveguide housing 1 and the resin substrate 11 is incomplete due to the warp of the 11 or the like, an increase in the insertion loss of the electromagnetic wave R can be suppressed.
  • the waveguide housing 1 and the metal wall 14 of the resin substrate 11 come into contact with each other.
  • the first waveguide 2 and the second waveguide 12 from the wall surface to the metal wall 14 have a quarter wavelength ⁇ of the waveguide housing 1, the resin substrate 11, and the metal wall 14 as the ground plane.
  • Two stubs 5 are obtained.
  • the stub 3 inscribed in the metal wall 14 becomes a groove having a quarter wavelength ⁇ .
  • the first waveguide is formed by combining the second stub 5 having a quarter wavelength ⁇ and the stub 3 inscribed in the metal wall 14 with the waveguide housing 1, the resin substrate 11, and the metal wall 14 as the ground plane.
  • a stub having a wavelength of ⁇ is formed from the wall surface of 2 and the second waveguide 12.
  • the tip of the stub having the wavelength ⁇ formed by the second stub 5 and the stub 3 is the tip of the groove of the stub 3.
  • the stub 3 is formed in the metal waveguide housing 1. Therefore, the tip of the waveguide housing 1 is electrically short-circuited. It is known that when one end of a stub having a wavelength ⁇ is short-circuited, the other end is short-circuited. Therefore, when the waveguide housing 1 and the resin substrate 11 are connected, the first waveguide 2 in the waveguide housing 1 and the second waveguide 12 in the resin substrate 11 are electrically short-circuited. Connected in an ideal state.
  • the present embodiment is different from the first embodiment in that a waveguide housing 41 in which a fitting groove 46 is formed instead of the waveguide housing 1 is provided.
  • the depth of the fitting groove 46 is preferably equal to or less than the thickness of the metal wall 14.
  • the fitting groove 46 is formed at a position that circumscribes the opening end of the stub 43 and contacts the metal wall 14. Thereby, when connecting the waveguide housing
  • the presence of the fitting groove 46 allows the waveguide housing 41 and the resin substrate 11 to be interposed between the waveguide housing 41 and the resin substrate 11 even when the waveguide housing 41 and the resin substrate 11 cannot be completely connected. It is possible to prevent gaps from being formed. And leakage of the electromagnetic wave R from the connection part of the 1st waveguide 42 and the 2nd waveguide 12 can be prevented.
  • the first embodiment is provided with a metal bump 56 on the resin substrate 51 instead of the metal wall 14 as a frame portion at a position separated from the second waveguide 52 by 1 ⁇ 4 of the wavelength ⁇ .
  • the metal bump 56 is optimally a protruding electrode made of solder or gold, but may be an electrode made of another conductor.
  • the metal bump 56 is electrically connected to the copper foil 55.
  • the copper foil 55 is electrically connected to the second waveguide 52.
  • a plurality of metal bumps 56 are optimally arranged at intervals of about 1/10 of the wavelength ⁇ .
  • the metal bumps 56 are not physically continuous but are arranged with an interval that is regarded as an electrically continuous metal. Thus, even if the metal bumps 56 that are not physically continuous are employed as the frame portion, the metal bumps 56 can be regarded as being electrically continuous. Therefore, the metal bump 56 has an effect equivalent to that of the metal wall 14 of the first embodiment.
  • the metal bumps 56 are widely used for flip chip connection of semiconductor chips.
  • the metal bump forming process for flip chip connection and the frame forming process of the present embodiment can be shared. Therefore, the man-hour and cost for forming a frame part can be reduced.
  • FIG. 15 is a diagram for explaining the configuration of the waveguide connection structure according to the fourth embodiment of the present invention.
  • FIG. 16 is a plan view showing the copper foil 65 and the via 68 of the resin substrate according to the fourth embodiment of the present invention.
  • FIG. 17 is a plan view showing an inner layer pattern 67 and a via 68 of the resin substrate according to the fourth embodiment of the present invention.
  • a second waveguide 62 (not shown in detail) is provided in the resin substrate 61, and a copper foil 65 is provided on the joint surface with the waveguide housing 1. .
  • a via 68 is provided at a position 1/4 of the wavelength ⁇ from the second waveguide 62.
  • the via 68 has a blind via structure that electrically connects the layers of the resin substrate 11.
  • the via 68 is formed from the second waveguide 62 to a copper foil 65 without a copper foil from the waveguide to a position of 1/4 of the wavelength ⁇ , and from the waveguide to a position of 1/4 of the wavelength ⁇ from the waveguide. Also connected to the inner layer pattern 67.
  • a plurality of vias 68 are arranged at intervals that can be regarded as being electrically continuous.
  • the second stub 69 is formed in the resin substrate 61.
  • the second stub 69 is filled with the dielectric material of the resin substrate 51.
  • the electrical length of the second stub 69 is 1 ⁇ 4 of the wavelength ⁇
  • the actual length is shorter than the second stub 5 of the first embodiment filled with air.
  • the second stub 69 realizes 1 ⁇ 4 of the wavelength ⁇ with a shorter dimension than the second stub 5 of FIG. 6. Therefore, the position of the stub 3 formed in the waveguide housing needs to be matched with the length of the second stub 5.
  • the end surface of the via 68 on the second waveguide 62 side and the end surface far from the waveguide of the stub 3 are set to be the same distance from the first waveguide 2.
  • the choke groove that surrounds the stub 3 by the frame portion and forms an electrical length of 1 ⁇ 2 of the wavelength ⁇ is formed.
  • the inner layer pattern 67, the via 68, and the waveguide housing 1 have a length that is 1 ⁇ 4 of the wavelength ⁇ .
  • Two stubs 69 are configured. Further, the second stub 69 and the stub 3 constitute a choke groove 70. Even in such a configuration, the first waveguide 2 and the second waveguide 62 can be electrically short-circuited and connected as in the first embodiment.
  • the second stub 69 is filled with a dielectric. Therefore, the 2nd stub 69 can be reduced in size compared with other embodiment.
  • the waveguide and the waveguide connection structure of each embodiment described above when the waveguide having the waveguide structure and the connected portion are joined, screwing failure between the waveguide and the connected portion, Even when the connection between the waveguide and the connected portion becomes incomplete due to warpage of the connected portion, an increase in insertion loss can be suppressed. Furthermore, an increase in insertion loss can be suppressed even when the connection between the waveguide and the connected portion is incomplete. Therefore, it is not necessary to use solder such as solder that has been used in the past in order to achieve reliable bonding. As a result, it is possible to provide a waveguide and a waveguide connection structure capable of reducing material costs and assembly costs.
  • the waveguide housing 1 has a structure in which copper is used as a base and is plated with gold.
  • the substrate need not be limited to copper, and may be another metal or metal alloy, or may be a cast or other method made by cutting rather than cutting.
  • the waveguide housing 1 does not need to be configured by plating the base with gold, and other configurations may be employed.
  • the waveguide housing may be formed by plating a metal on the surface of an insulator. Even in this case, the effects of the above-described embodiment can be achieved.
  • the cross-sectional shape of the waveguide of the embodiment of the present invention is not limited to the square shape shown in FIG.
  • the dimension of a waveguide is prescribed
  • the stub 3 employs a configuration in which the same gold plating as that of the waveguide housing 1 is applied.
  • the configuration is not limited thereto, and the stub 3 has an appropriate configuration having electrical conductivity. be able to.
  • an additional step of imparting electrical conductivity other than digging out the stub 3 can be omitted, so that an additional cost for forming the stub 3 can be reduced. Can be suppressed.
  • a configuration in which air is filled in the stub 3 is adopted, but not limited thereto, for example, a dielectric may be filled.
  • the stub is formed at a depth such that the electrical length calculated from the relative dielectric constant of the filled dielectric is 1 ⁇ 4 of the wavelength ⁇ . Even in this case, the effects of the above-described embodiment can be achieved.
  • the resin substrate 11 is shown as the connection destination of the waveguide housing 1, but the connection destination is not limited to the resin substrate, and an appropriate connected portion having a waveguide structure. May be used. Even in this case, the effects of the above-described embodiment can be achieved.
  • the stub 3 having a length 1 ⁇ 4 of the wavelength ⁇ and the second stub 5 are combined to form a choke groove having a length 1 ⁇ 2 of the wavelength ⁇ . It is not limited. For example, an appropriate combination in which the sum of the lengths of the stub 3 and the second stub 5 is 1 ⁇ 2 of the wavelength ⁇ can be employed. Furthermore, in the embodiment of the present invention, the stub 3 is formed along the axial direction of the first waveguide, and the second stub 5 is formed along the radial direction of the first waveguide. It is not a thing.
  • the stub 3 and the second stub 5 do not have to be orthogonal to each other, and even if the stub 3 has a plurality of bends, a stub having a wavelength ⁇ of 1/2 may be realized as a result of the combination. Even in this case, the effects of the above-described embodiment can be achieved.
  • the metal wall 14 is plated with copper on the resin substrate. This is because a general resin multilayer substrate is generally plated with copper in order to form the wiring, and can be easily formed by using this process. Even if it is a method other than copper plating, for example, a metal wall may be formed by bonding a conductor other than copper, or a metal wall may be formed by a method such as plating the surface after bonding an insulator. good.
  • the height of the metal wall is 50 microns.
  • the height is not limited to this and may be any height.
  • it can be set to an appropriate height such that the second stub 5 is formed in the gap between the resin substrate 11 and the waveguide housing 1.
  • the inner layer pattern 67 and the via 68 formed in the resin substrate 61 adopt the configuration formed of copper widely used as the resin multilayer substrate. It is not limited.
  • the inner layer pattern 67 and the via 68 may be made of other metal materials. Even in this case, the same effects as those of the above-described embodiment can be obtained.
  • Examples of applications of the present invention include, for example, a digital signal transmission module that wirelessly transmits a high-definition signal from a tuner or recorder to a flat-screen television such as a wall-mounted television using the millimeter wave band, or the front of an automobile using the millimeter wave band.
  • a digital signal transmission module that wirelessly transmits a high-definition signal from a tuner or recorder to a flat-screen television such as a wall-mounted television using the millimeter wave band, or the front of an automobile using the millimeter wave band.
  • Devices such as automobile radar modules that monitor the surroundings are required to be compact, thin, and low-cost, and use multilayer boards in the millimeter wave band.

Landscapes

  • Waveguide Connection Structure (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

 導波管は、所定の波長の電磁波を伝達させる筒状の第一導波路と、第一導波路の一端の内壁部から所定の波長の1/4だけ径方向外方に離れた輪郭線に開口端部が内接するとともに深さが所定の波長の1/4をなすように形成されたスタブとを有する。

Description

導波管、導波管接続構造および導波管接続方法
 本発明は、導波管、導波管接続構造および導波管接続方法に関する。
 本願は、2008年8月29日に、日本に出願された特願2008-221873号に基づき優先権を主張し、その内容をここに援用する。
 近年の情報通信技術の発展に伴い、ミリ波帯の民生用の装置への応用が期待されている。ミリ波帯は、例えばデジタル信号の高速伝送や自動車レーダ用途に用いられる。民生用の装置では、小型・薄型・低コストが要求される。そのため、昨今のデジタル信号伝送や自動車レーダでは、伝送路やアンテナを樹脂基板上に作るなどしている。これにより、小型・薄型・低コストの要求を達成しようとしている。
 このような装置の例として、特許文献1には、誘電体基板101の上面に形成された高周波線路102と、誘電体基板101の下面の高周波線路102の一端部の直下の部位に形成された枠状の接続電極104と、貫通孔105の内面に導体層106が形成されるとともに導体層106の上端が接続電極104に全周にわたって電気的に接続された導波管部107を有する配線基板100Bと、高周波線路102を伝送する伝送モードを、導波管部107を伝送する導波管モードに変換する変換部103とを具備する高周波モジュールが記載されている(図18参照)。
 この特許文献1に記載の高周波モジュールは、高周波基板100A内の高周波線路102を伝送される信号の伝送モードを導波管モードに変換し、導波管部107を介して高周波基板100Aに接続された配線基板100Bに信号を伝送する。
 しかしながら、この特許文献1に開示された技術にはいくつかの問題がある。
 問題の一つは、導波管部での接続を確実にするために半田等を使用していることである。半田等を使用するのは、導波管の接続部に隙間が出来て電気接続が不完全だと信号が導波管外に漏れだして挿入損失が大きくなることを防止するためである。しかし、接続面の半田量が必要量よりも少ない場合には、電気接続が不完全になる。また、接続面の半田量が必要量よりも多い場合には、所望の接続部以外に半田等が漏れだし、接続部での導波管形状が設計と異なってしまう。いずれの場合にも挿入損失が増加する。
 さらに、半田等を使用することで材料費や組立費などが増加するという問題もある。
特開2006-041966号公報(図1)
 本発明は、上述した事情に鑑みてなされたものであって、その目的は、導波管と樹脂基板とを接続する際に、半田等のソルダを使用することなく導波路接続が出来、かつ接続が不完全な状態でも挿入損失の増加を抑えることが出来る導波管、導波管接続構造および導波管接続方法を提供することにある。
(1) 本発明の一態様による導波管は、所定の波長の電磁波を伝達させる筒状の第一導波路と、前記第一導波路の一端の内壁部から前記所定の波長の1/4だけ径方向外方に離れた輪郭線に開口端部が内接するとともに深さが前記所定の波長の1/4をなすように形成されたスタブと、を有する。
(2) 本発明の一態様による導波管接続構造は、所定の波長の電磁波を伝達させる筒状の第一導波路と、前記第一導波路の一端の内壁部から前記所定の波長の1/4だけ径方向外方に離れた輪郭線に開口端部が内接するとともに深さが前記所定の波長の1/4をなすように形成されたスタブと、を有する導波管と、前記第一導波路の径方向の断面と同形同大の表面をなし前記所定の波長の電磁波を伝達させる第二導波路と、前記第二導波路の外側において前記スタブの開口端部外周に外接可能で前記第二導波路に電気的に接続された電気伝導性の枠部と、を有する被接続部と、を備える。
(3) 本発明の一態様による導波管接続構造は、前記導波管と前記枠部とが接続されることで生じる第二スタブと前記スタブとが一体化してなる前記所定の波長の1/2の長さのチョーク溝を有する。
(4) 本発明の一態様による導波管接続構造は、前記枠部が金属からなる閉鎖環状をなす。
(5) 本発明の一態様による導波管接続構造は、前記枠部が電気的に連続するように複数配置された金属バンプからなる。
(6) 本発明の一態様による導波管接続構造では、前記枠部は、前記第二導波路の壁面から前記所定の波長の1/4だけ外側に離れた位置に外接するとともに電気的に連続するように複数配置されて前記被接続部の内方へ延在するビアと、前記第二導波路の壁面から前記ビアまでを電気的に金属平面と等価となるように接続する複数または面状の内層配線と、を有する。
(7) 本発明の一態様による導波管接続構造は、前記導波管が前記枠部に嵌合する嵌合溝を有する。
(8) 本発明の一態様による導波管接続構造は、前記被接続部が樹脂層と金属層とを有する樹脂基板である。
(9) 本発明の一態様による導波管接続方法は、所定の波長の電磁波を伝達させる第一導波路を有する導波管の一端の内壁部から前記所定の波長の1/4だけ径方向外側に離れた輪郭線に内接するとともに深さが前記所定の波長の1/4をなすスタブを形成する第1の工程と、前記所定の波長の電磁波を伝達させる第二導波路を有する被接続部においてこの第二導波路の壁面から前記所定の波長の1/4だけ外側に離れた位置に外接するように前記第一導波路に電気的に接続された電気伝導性の枠部を形成する第2の工程と、前記スタブの開口端部が前記枠部に内接する位置に合わせた後に前記導波管と前記被接続部とを押圧固定して前記第一導波路と前記第二導波路とを接続するする第3の工程と、を有する。
 本発明の導波管及び導波管接続構造によれば、導波管と樹脂基板とを接続する際に、半田等のソルダを使用することなく導波路接続が出来、かつ接続が不完全な状態でも挿入損失の増加を抑えることが出来る。
本発明の第1の実施形態の導波管を示す平面図である。 本発明の第1の実施形態の導波管を示す斜視図である。 本発明の第1の実施形態の導波管を示す断面図である。 本発明の第1の実施形態の樹脂基板を示す平面図である。 本発明の第1の実施形態の樹脂基板を示す断面図である。 本発明の第1の実施形態の導波管と樹脂基板の接続状態を示す断面図である。 本発明の第1の実施形態の効果を示す挿入損失のグラフである。 従来構造の導波管と樹脂基板の接続状態を示す断面図である。 従来構造の挿入損失のグラフである。 本発明の第1の実施形態の樹脂基板が反った場合を示す断面図である。 従来構造の樹脂基板が反った場合の接続状態を示す断面図である。 本発明の第2の実施形態を示す断面図である。 本発明の第3の実施形態の樹脂基板を示す平面図である。 本発明の第3の実施形態を示す断面図である。 本発明の第4の実施形態を示す断面図である。 本発明の第4の実施形態の樹脂基板の内層パターンを示す平面図である。 本発明の第4の実施形態の樹脂基板の内層パターンを示す平面図である。 背景技術の高周波モジュールの構造を示す断面図である。
(第1の実施形態)
 以下、本発明の第1の実施形態の導波管及び導波管接続構造について図1から図6を参照して説明する。図1は、導波管筐体1の平面図である。図2は、導波管筐体1の斜視図である。図3は、図1の導波管筐体1のA-A’断面図である。図4は、導波管筐体1が接続される樹脂基板11(被接続部)を示す平面図である。図5は、図4に示す樹脂基板11のB-B’断面図である。図6は、導波管筐体1と樹脂基板11との接続状態を示す断面図である。
 図1に示すように、導波管筐体1は、導波管伝送路を実現する筐体である。本実施形態の導波管筐体1は、銅を切削加工し、その上に金メッキしている。導波管筐体1の内部には、第一導波路2が形成されている。本実施形態では、第一導波路2は、方形になっている。
 図1~図3に示すように、導波管筐体1は、第一導波路2の内部を伝送させる電磁波Rの波長λを基準に、第一導波路2の壁面から波長λの1/4だけ離れた位置において導波管筐体1を掘りこんで形成したスタブ3を有する。スタブ3の掘りこみ深さは、波長λの1/4である。スタブ3の掘りこみ位置は、その外周が第一導波路2の壁面から波長λの1/4の距離である。また、スタブ3は、第一導波路2の内壁部から波長λの1/4だけ径方向外方に離れた輪郭線に内接する。また、本実施形態では、スタブ3の壁面及び底面は全て金メッキされている。スタブ3の内部空間は空洞であり、空気が充填されている。また、図3に示すように、本実施形態ではスタブ3は、第一導波路2の軸線方向に掘り込まれている。
 図4は、導波管筐体1が接続される樹脂基板11の平面図である。図5は、導波管筐体1が接続される樹脂基板11の断面図である。樹脂基板11には、内部構造を図示していない導波管構造の第二導波路12が形成されている。
 樹脂基板11は、導波管筐体1に接続される。そのため、樹脂基板11の内部に形成される第二導波路12の寸法は、導波管筐体1の第一導波路2と同じであることが望ましい。
 図5に示すように、樹脂基板11の導波管筐体1との接続面の第二導波路12から波長λの1/4離れた位置に、枠部となる金属壁14が形成されている。金属壁14は、第二導波路12と電気的に接続する。図4、図5では、金属壁14と第二導波路12とが、樹脂基板11の表面の銅箔15を介して電気的に接続されている。ただし、図4では、第二導波路12と銅箔15との接続は図示していない。
 金属壁14は、銅のメッキで形成することが好ましい。また、金属壁14は、その内壁が第二導波路12から波長λの1/4離れた位置となるように配置する。金属壁14を厚いメッキで形成すると、作成コストがかさむなどの問題が生じる。そのため、金属壁14の厚さは、50ミクロン程度とすることが望ましい。
 図6は、導波管筐体1と樹脂基板11を接続した状態での断面図である。導波管筐体1と樹脂基板11を接続する場合、樹脂基板11の接続面には金属壁14が形成されているので、導波管筐体1と金属壁14とが接触する。導波管筐体1と金属壁14とが接触する。これにより、第一導波路2及び第二導波路12の壁面から金属壁14までが、導波管筐体1と樹脂基板11の接続面の銅箔15と金属壁14とを接地面とした波長λの1/4の第二スタブ5となる。
 導波管筐体1と樹脂基板11とは、図示しないねじ止め機構によってねじ止めされる。樹脂基板11の金属壁14は、導波管筐体1のスタブ3に外接する位置で押圧固定される。
 第一導波路2及び第二導波路12から波長λの1/4の位置には、金属壁14の内壁とスタブ3の外周が位置する。そのため、図6に示すように、波長λの1/4の第二スタブ5と、波長λの1/4のスタブ3とが繋がる。そして、第一導波路2及び第二導波路12の壁面から波長λの1/2の長さをなすチョーク溝20が生じる。
 以上に説明する構成の、本実施形態の導波管及び導波管接続構造の作用について、図6から図11を参照しながら説明する。
 図6に示すように、導波管筐体1の先端1a側から波長λの電磁波R(不図示)が第一導波路2へ進入する。これにより、電磁波Rは、第一導波路2の内部の金メッキされた面を反射しながら基端1b側へ伝達される。
 電磁波Rは、第一導波路2の基端1bに到達する。電磁波Rの一部は、チョーク溝20の内部へ進行する。これにより、チョーク溝20への入射波は、第二スタブ5を介してスタブ3へ入射し、スタブ3の底面3aで反射する。その後、電磁波Rは、スタブ3から第二スタブ5を介して第一導波路2と第二導波路12とのつなぎ目に到達する。
 第二スタブ5とスタブ3とで形成される波長λの1/2のチョーク溝20の先端は、スタブ3の溝の先端である。スタブ3は、金属の導波管筐体1に掘りこんで形成されているので、その先端は電気的に短絡となる。波長λの1/2のチョーク溝20の片端が短絡の場合、その他端は短絡となる。よって、導波管筐体1と樹脂基板11とが接続される場合、導波管筐体1内の第一導波路2と樹脂基板11内の第二導波路12とは、電気的な短絡を実現した理想的な状態で接続されることと等価となる。これにより、電磁波Rは、第一導波路2からチョーク溝20を介して第二導波路12へと伝送される。
 なお、導波管筐体1と樹脂基板11とが接続される際に、図示していない接続ネジのネジ止め不良や、樹脂基板11の反りなどの理由で、導波管筐体1と樹脂基板11上の金属壁14との電気的接続が不完全となることがある。
 本実施形態では、導波管筐体1と樹脂基板11との接続部は金属壁14である。また、金属壁14は、第一導波路2や第二導波路12から波長λの1/4の位置に配置されている。また、金属壁14は、スタブ3の短絡端からも波長λの1/4のところに位置している。
 スタブ3の片端が短絡の場合、その他端は開放となり、スタブ3の底が短絡端となる。そのため、導波管筐体1と金属壁14との接続が完全、不完全に関わらず、スタブ3の開口端部である導波管筐体1と金属壁14との接続部は電気的に開放となる。
 前述の通り、導波管筐体1と樹脂基板11と金属壁14とからなる第二スタブ5の長さは、波長λの1/4である。波長λの1/4の第二スタブ5の片端が開放の場合、その他端は短絡となる。導波管筐体1と金属壁14との接続部は、その接続が完全であるか不完全であるかにかかわらず電気的に開放となる。その結果、第二スタブ5の他端、つまり第一導波路2と第二導波路12との壁面部は、電気的に短絡となる。つまり、本実施形態では、導波管筐体1と樹脂基板11との接続が不完全でも、導波管筐体1内の第一導波路2と樹脂基板11内の第二導波路12とは、電気的な短絡を実現した理想的な状態で接続されることと等価となる。
 次に、実施例を示して本発明をさらに詳細に説明する。ただし、本発明は本実施例に限定されるものではない。
 図7は、図6に示した導波管筐体1と樹脂基板11の接続が完全な場合と不完全な場合での、導波管筐体1から樹脂基板11への挿入損失を3次元電磁界解析にて求めたものである。
 本実施例の導波管筐体1及び樹脂基板11は、72GHzを中心周波数として設計されている。また、本実施例では、電磁波Rの周波数を72GHzにして解析している。グラフの横軸は周波数であり、縦軸は挿入損失である。グラフg11は、導波管筐体1と樹脂基板11との距離が0、つまり、図6のように導波管筐体1と樹脂基板11とが接続されている場合の解析結果を示している。
 グラフg12、g13、g14、g15、g16は、導波管筐体1と樹脂基板11とが接続されず、その距離を100ミクロン、200ミクロン、300ミクロン、400ミクロン、500ミクロンとした場合の解析結果を、それぞれ示している。
 図9は、図8に示すようなスタブのない従来の導波管筐体21と金属壁のない樹脂基板31とが接続された場合の特性を示している。グラフの横軸は周波数であり、縦軸は挿入損失である。グラフg21、g22、g23、g24、g25、g26は、接続が完全な場合と不完全な場合とでの第一導波路22から第二導波路32への電磁波Rの挿入損失を、導波管筐体1と樹脂基板11との距離を、0ミクロン、100ミクロン、200ミクロン、300ミクロン、400ミクロン、500ミクロンとした場合の解析結果を、それぞれ示している。
 図9で示すように、図8に示すスタブのない従来の導波管接続構造では、導波管筐体1と樹脂基板31との隙間が広がるに従って挿入損失が増加している。これは、導波管筐体21と樹脂基板31との隙間から電磁波Rが漏れだしていることを示している。
 一方、図7に示した本実施形態の場合、導波管筐体1と樹脂基板11との隙間が広がるにつれて挿入損失は増す。しかし、挿入損失の増加の程度は、図9と比較して明らかに小さい。特に中心周波数である72GHzの近傍では、導波管筐体1と樹脂基板11との隙間によって生じる挿入損失が顕著に抑制されている。
 すなわち、本実施例の導波管接続構造によって導波管筐体1と樹脂基板11との隙間から漏れ出す電磁波Rの量を減少させることができる。
 以下では、樹脂基板11の反りが微小である場合の本実施形態の導波管接続構造の作用について詳述する。
 図8に示す従来の導波管接続構造では、50ミクロン以下の微小な反りが樹脂基板31に生じた場合には、図11の様に導波管筐体21と樹脂基板31との接続が不完全になり隙間があく。その結果、導波管筐体21と樹脂基板31との間の挿入損失が増えてしまう。
 一方、図10に示すように、本実施形態の導波管接続構造では、樹脂基板11には厚さ50ミクロン程度の金属壁14が形成されている。そのため、樹脂基板11の反り量が50ミクロン以下の場合には、樹脂基板11上の金属壁14と導波管筐体1との接続はその完全性が保たれる。よって、上述のように金属壁14と導波管筐体1とが離間した場合でも電磁波Rの中心周波数付近での挿入損失の増加を抑制することができる。したがって、本実施形態では、樹脂基板11が微小に反った場合でも挿入損失無く導波管筐体1から樹脂基板11へ伝送が出来る。
 以上説明したように、本実施形態に係る導波管、導波管接続構造及び導波管接続方法によれば、導波管筐体1と樹脂基板11とが金属壁14を介して接続される。また、金属壁14と導波管筐体1と樹脂基板11との隙間であるスタブ3及び導波管筐体1に形成された第二スタブ5によってチョーク溝20が形成されている。そのため、第一導波路2を持つ導波管筐体1と第二導波路12を持つ樹脂基板11とを接合する際、導波管筐体1と樹脂基板11とのネジ止め不良や樹脂基板11の反りなどの理由で導波管筐体1と樹脂基板11との接合が不完全になった場合でも電磁波Rの挿入損失の増加を抑えることができる。
 さらに、本実施形態では金属壁14において導波管筐体1と樹脂基板11との接合が不完全になった場合でも挿入損失の増加を抑えることが出来る。そのため、確実な接合を実現するために従来使用してきた半田等のソルダを使用する必要が無くなる。その結果、材料費や組立費の低減を実現出来る導波管及び導波管接続構造を提供することが出来る。
 また、本実施形態では、導波管筐体1が樹脂基板11に接続された際には、導波管筐体1と樹脂基板11の金属壁14とが接触する。これにより、第一導波路2および第二導波路12の壁面から金属壁14までが導波管筐体1と樹脂基板11と金属壁14とを接地面とした波長λの1/4の第二スタブ5となる。また、金属壁14に内接するスタブ3が、波長λの1/4の溝となる。そして、導波管筐体1と樹脂基板11と金属壁14とを接地面とした波長λの1/4の第二スタブ5と金属壁14に内接するスタブ3とを合わせて第一導波路2および第二導波路12の壁面から波長λの1/2のスタブを形成する。
 第二スタブ5とスタブ3とで形成される波長λの1/2のスタブの先端は、スタブ3の溝の先端となる。また、スタブ3は、金属の導波管筐体1に形成されている。そのため、導波管筐体1の先端は、電気的に短絡となる。波長λの1/2のスタブの片端が短絡の場合、その他端は短絡となることが知られている。よって、導波管筐体1と樹脂基板11が接続される場合、導波管筐体1内の第一導波路2と樹脂基板11内の第二導波路12とは電気的な短絡を実現した理想的な状態で接続される。
(第2の実施形態)
 次に、本発明の第2の実施形態の導波管、導波管接続構造及び導波管接続方法について図12を参照して説明する。なお、以下に説明する各実施形態において、上述した第1の実施形態の導波管、導波管接続構造及び導波管接続方法と構成を共通とする箇所には同一符号を付けて、説明を省略する。
 本実施形態では、導波管筐体1に代えて嵌合溝46が形成された導波管筐体41を備える点で第1の実施形態と構成が異なっている。
 この嵌合溝46の深さは金属壁14の厚さ以下であることが望ましい。この嵌合溝46は、スタブ43の開口端部に外接すると共に金属壁14を接触する位置に形成される。これにより、導波管筐体41と樹脂基板11上とを接続する際に高い位置精度で容易に接続することが出来る。
 加えて、この嵌合溝46があることで、導波管筐体41と樹脂基板11が反りなどの理由で完全に接続出来ない場合でも、導波管筐体41と樹脂基板11の間に隙間が空くことを防ぐことが出来る。そして、第一導波路42と第二導波路12との接続部分からの電磁波Rの漏れ出しを防ぐことができる。
(第3の実施形態)
 次に、本発明の第3の実施形態の導波管、導波管接続構造及び導波管接続方法について図13、図14を参照して説明する。
 第3の実施形態では第二導波路52から波長λの1/4だけ離れた位置に、枠部として金属壁14に代えて金属バンプ56を樹脂基板51上に備える点で第1の実施形態と構成が異なっている。金属バンプ56は、半田あるいは金などからなる突起電極であることが最適であるが、他の導体からなる電極であってもよい。金属バンプ56は、銅箔55に電気的に接続されている。銅箔55は、第二導波路52と電気的に接続されている。金属バンプ56は、波長λの1/10程度の間隔で複数配置されることが最適である。すなわち、金属バンプ56は、物理的には連続しておらず、電気的に連続する金属とみなされる間隔をもって配置されている。このように、物理的に連続しない金属バンプ56を枠部として採用しても、金属バンプ56が電気的に連続と見なすことが出来る。よって、金属バンプ56は、第1の実施形態の金属壁14と同等の効果を有する。
 金属バンプ56は、半導体チップのフリップチップ接続に広く使われる。本実施形態のような構成にすることで、導波管導波路接続の片方が半導体チップであるときなどに、フリップチップ接続のための金属バンプ形成工程と、本実施形態の枠部の形成工程とを共有できる。よって、枠部を形成するための工数及びコストを削減することができる。
(第4の実施形態)
 次に、本発明の第4の実施形態の導波管、導波管接続構造及び導波管接続方法について図15~図17を参照して説明する。図15は、本発明の第4の実施形態の導波管接続構造の構成を説明するための図である。図16は、本発明の第4の実施形態の樹脂基板の銅箔65およびビア68を示した平面図である。図17は、本発明の第4の実施形態の樹脂基板の内層パターン67およびビア68を示した平面図である。
 図15に示すように、樹脂基板61内には詳細を図示していない第二導波路62が設けられており、導波管筐体1との接合面には銅箔65が設けられている。第二導波路62から波長λの1/4の位置には、ビア68が設けられている。ビア68は、樹脂基板11の層間を電気的に接続するブラインドビア構造である。ビア68は、第二導波路62から電気長で波長λの1/4の位置までの銅箔が無い銅箔65と、導波路から電気長で波長λの1/4の位置までに形成された内層パターン67に接続されている。また、ビア68は、電気的に連続とみなすことができる間隔をあけて複数配置されている。
 さらに、本実施形態では、第二スタブ69は樹脂基板61内に形成されている。また、第二スタブ69内が樹脂基板51の誘電体にて充填されている。第二スタブ69の電気長を波長λの1/4とした場合には、空気が充填された第1の実施形態の第二スタブ5よりも実際の長さは短くなる。
 この際、第二スタブ69は、図6の第二スタブ5よりも短い寸法にて波長λの1/4を実現する。よって、導波管筐体に形成されるスタブ3の位置も、この第二スタブ5の長さに合わせる必要がある。すなわち、ビア68の第二導波路62側の端面とスタブ3の導波路に対して遠い端面とが、第一導波路2から同じ距離になるようにする。これにより、第1の実施形態と同様に、枠部によってスタブ3を囲繞して電気長として波長λの1/2をなすチョーク溝を形成する。
 本実施形態では、導波管筐体1と樹脂基板61とが接触した際に、内層パターン67と、ビア68と、導波管筐体1とによって波長λの1/4の長さとなる第二スタブ69が構成される。また、第二スタブ69とスタブ3とによってチョーク溝70が構成される。このような構成でも、第1の実施形態と同様に、第一導波路2と第二導波路62とを電気的に短絡状態として接続することができる。
 また、本実施形態では、第二スタブ69には誘電体が充填されている。そのため、他の実施形態と比べて第二スタブ69を小型化することができる。
 上述した各実施形態の導波管及び導波管接続構造によれば、導波路構造を持つ導波管と被接続部とを接合する際、導波管と被接続部とのネジ止め不良や被接続部の反りなどの理由で導波管と被接続部との接合が不完全になった場合でも挿入損失の増加を抑えることができる。
 さらに、導波管と被接続部との接合が不完全になった場合でも挿入損失の増加を抑えることが出来る。そのため、確実な接合を実現するために従来使用してきた半田等のソルダを使用する必要が無くなる。その結果、材料費や組立費の低減を実現出来る導波管及び導波管接続構造を提供することが出来る。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、本発明の実施形態では、導波管筐体1は銅を基体として金でめっきされた構成としたが、これに限定されるものではない。例えば、基体は、銅に限る必要はなく他の金属でも金属合金でも良いし、切削加工ではなく鋳物でも他の工法で作られたものでも良い。
 さらに導波管筐体1において基体を金でめっきして構成する必要はなく、他の構成を採用してもよい。また、導波管筐体は、絶縁体の表面に金属をメッキなどしたものを用いてもよい。この場合でも、上述した実施形態の効果を奏することができる。
 また、本発明の実施形態の導波路の断面形状は図1に示した方形のみならず、円形などでも良い。なお、導波路の寸法は、日本工業規格(JIS)等にも規定されているため、ここでは詳細な説明を省略する。
 また、本発明の実施形態のスタブ3は、導波管筐体1と同様の金メッキが施された構成を採用したが、これに限らず、スタブ3が電気伝導性を有する適宜の構成とすることができる。特に電気伝導性の基体によって導波管筐体を構成すると、スタブ3を掘りこむ以外に電気伝導性を付与する追加の工程を省略することができるため、スタブ3を形成するための追加コストを抑えることができる。
 また、本発明の実施形態では、スタブ3内部には空気が充填されている構成を採用したが、これに限らず例えば誘電体を充填してもよい。誘電体が充填される場合には、充填される誘電体の比誘電率から算出される電気長が波長λの1/4となるような深さにスタブを構成する。この場合でも、上述した実施形態の効果を奏することができる。
 また、本発明の実施形態では、導波管筐体1の接続先として樹脂基板11が示されているが、接続先は樹脂基板に限ることなく、導波管構造を持つ適宜の被接続部を用いてもよい。この場合でも、上述した実施形態の効果を奏することができる。
 また、本発明の実施形態では、波長λの1/4の長さのスタブ3及び第二スタブ5を組み合わせて波長λの1/2の長さのチョーク溝を構成しているが、これに限られるものではない。例えば、スタブ3と第二スタブ5との長さの和が波長λの1/2の長さとなる適宜の組み合わせを採用することができる。
 さらに本発明の実施形態ではスタブ3は第一導波路の軸線方向に沿うように形成され、第二スタブ5は第一導波路の径方向に沿うように形成されているが、これに限られるものではない。例えば、スタブ3と第二スタブ5とが直交していなくてもよいし、複数の折れ曲がりを有する構造であっても、組み合わせた結果波長λの1/2のスタブを実現してもよい。この場合でも、上述した実施形態の効果を奏することができる。
 また、本発明の実施形態では、金属壁14は樹脂基板上に銅メッキを施している。これは、一般の樹脂多層基板では、その配線を形成するために銅メッキをすることが一般的であり、このプロセスを用いることで容易に形成が可能だからである。銅メッキ以外の方法であっても、例えば銅以外の導体を接着して金属壁を構成してもよいし、絶縁物を接着した後に表面をメッキするなどの方法で金属壁を形成しても良い。
 また、本発明の第1の実施形態では、金属壁の高さを50ミクロンとする構成としたが、これに限らずどのような高さであってもよい。例えば、樹脂基板11と導波管筐体1との隙間に第二スタブ5が形成されるような適宜の高さとすることができる。
 また、本発明の第4の実施形態では、樹脂基板61内に形成する内層パターン67とビア68は、樹脂多層基板として広く使われている銅にて形成される構成を採用したが、これに限られるものではない。内層パターン67とビア68を、他の金属材料によって構成してもよい。この場合でも、上述した実施形態と同様の効果を奏することができる。
 本発明の活用例として、例えばミリ波帯を使用してハイビジョン信号をチューナやレコーダから壁掛けテレビなどの薄型テレビに無線伝送するデジタル信号伝送モジュールや、ミリ波帯を使用して自動車の前方などの周囲を監視する自動車レーダモジュールなど、小型・薄型・低コストの実現が要求され多層基板をミリ波帯に使用するような装置が挙げられる。
1、21、41・・・導波管筐体、
2、22、42・・・第一導波路、
3、43・・・スタブ、
5、69・・・第二スタブ、
11、31、51、61・・・樹脂基板(被接続部)、
12、32、52、62・・・第二導波路、
14・・・金属壁(枠部)、
15・・・銅箔、
46・・・嵌合溝、
55・・・銅箔、
56・・・金属バンプ(枠部)、
65・・・銅箔、
67・・・内層パターン(内層配線)、
68・・・ビア(枠部)、
R・・・電磁波

Claims (9)

  1.  所定の波長の電磁波を伝達させる筒状の第一導波路と、
     前記第一導波路の一端の内壁部から前記所定の波長の1/4だけ径方向外方に離れた輪郭線に開口端部が内接するとともに深さが前記所定の波長の1/4をなすように形成されたスタブと、
     を有する導波管。
  2.  所定の波長の電磁波を伝達させる筒状の第一導波路と、前記第一導波路の一端の内壁部から前記所定の波長の1/4だけ径方向外方に離れた輪郭線に開口端部が内接するとともに深さが前記所定の波長の1/4をなすように形成されたスタブと、を有する導波管と、
     前記第一導波路の径方向の断面と同形同大の表面をなし前記所定の波長の電磁波を伝達させる第二導波路と、前記第二導波路の外側において前記スタブの開口端部外周に外接可能で前記第二導波路に電気的に接続された電気伝導性の枠部と、を有する被接続部と、
     を備える導波管接続構造。
  3.  前記導波管と前記枠部とが接続されることで生じる第二スタブと前記スタブとが一体化してなる前記所定の波長の1/2の長さのチョーク溝を有する請求項2に記載の導波管接続構造。
  4.  前記枠部が金属からなる閉鎖環状をなす請求項2に記載の導波管接続構造。
  5.  前記枠部が電気的に連続するように複数配置された金属バンプからなる請求項2に記載の導波管接続構造。
  6.  前記枠部は、
     前記第二導波路の壁面から前記所定の波長の1/4だけ外側に離れた位置に外接するとともに電気的に連続するように複数配置されて前記被接続部の内方へ延在するビアと、
     前記第二導波路の壁面から前記ビアまでを電気的に金属平面と等価となるように接続する複数または面状の内層配線と、
     を有する請求項2に記載の導波管接続構造。
  7.  前記導波管が前記枠部に嵌合する嵌合溝を有する請求項2に記載の導波管接続構造。
  8.  前記被接続部が樹脂層と金属層とを有する樹脂基板である請求項2に記載の導波管接続構造。
  9.  所定の波長の電磁波を伝達させる第一導波路を有する導波管の一端の内壁部から前記所定の波長の1/4だけ径方向外側に離れた輪郭線に内接するとともに深さが前記所定の波長の1/4をなすスタブを形成する第1の工程と、
     前記所定の波長の電磁波を伝達させる第二導波路を有する被接続部においてこの第二導波路の壁面から前記所定の波長の1/4だけ外側に離れた位置に外接するように前記第一導波路に電気的に接続された電気伝導性の枠部を形成する第2の工程と、
     前記スタブの開口端部が前記枠部に内接する位置に合わせた後に前記導波管と前記被接続部とを押圧固定して前記第一導波路と前記第二導波路とを接続するする第3の工程と、
     を有する導波管接続方法。
PCT/JP2009/003759 2008-08-29 2009-08-05 導波管、導波管接続構造および導波管接続方法 WO2010023827A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010526514A JP5531960B2 (ja) 2008-08-29 2009-08-05 導波管接続構造および導波管接続方法
US13/060,570 US8680954B2 (en) 2008-08-29 2009-08-05 Waveguide, waveguide connection structure and waveguide connection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008221873 2008-08-29
JP2008-221873 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023827A1 true WO2010023827A1 (ja) 2010-03-04

Family

ID=41721012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003759 WO2010023827A1 (ja) 2008-08-29 2009-08-05 導波管、導波管接続構造および導波管接続方法

Country Status (3)

Country Link
US (1) US8680954B2 (ja)
JP (1) JP5531960B2 (ja)
WO (1) WO2010023827A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130433A (ja) * 2008-11-28 2010-06-10 Nippon Pillar Packing Co Ltd 導波管・ストリップ線路変換器
WO2011118544A1 (ja) * 2010-03-24 2011-09-29 日本電気株式会社 無線モジュール及びその製造方法
JP2012238948A (ja) * 2011-05-10 2012-12-06 Nec Corp 導波管接続構造
JP2016012771A (ja) * 2014-06-27 2016-01-21 三菱電機株式会社 導波管接続構造およびその製造方法
JP2019525689A (ja) * 2016-10-09 2019-09-05 華為技術有限公司Huawei Technologies Co.,Ltd. ホーン・アンテナ
CN114784474A (zh) * 2022-05-18 2022-07-22 电子科技大学 一种基于扼流环的可拆卸小型化发射前端

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254945B (zh) * 2012-04-25 2016-08-24 日本电气株式会社 连接高频电路和波导管的连接结构及其制造方法
US9520635B2 (en) * 2013-03-22 2016-12-13 Peraso Technologies Inc. RF system-in-package with microstrip-to-waveguide transition
JP2014204349A (ja) * 2013-04-08 2014-10-27 三菱電機株式会社 導波管構造
EP3012903B1 (en) * 2013-06-19 2021-03-31 Japan Aerospace Exploration Agency System for feeding high-frequency waves to deployment structure
BR112019004003A2 (pt) 2016-09-06 2019-06-04 Parker Hannifin Corp conjunto polarizador
US10938153B2 (en) * 2018-11-06 2021-03-02 Optim Microwave Inc. Waveguide quick-connect mechanism, waveguide window/seal, and portable antenna
JP2022125444A (ja) * 2021-02-17 2022-08-29 古野電気株式会社 導波管接続構造
EP4287393A1 (en) * 2022-06-02 2023-12-06 Furuno Electric Co., Ltd. Waveguide tube connecting member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193642U (ja) * 1975-01-23 1976-07-27
JPH09148808A (ja) * 1995-11-20 1997-06-06 Fujitsu General Ltd Lnbの入力構造
JPH10224101A (ja) * 1997-02-12 1998-08-21 Nippon Koshuha Kk 導波管のチョークフランジ
JP2003078310A (ja) * 2001-09-04 2003-03-14 Murata Mfg Co Ltd 高周波用線路変換器、部品、モジュールおよび通信装置
JP2003188601A (ja) * 2001-12-19 2003-07-04 Mitsubishi Electric Corp 導波管プレート及び高周波装置
JP2008113318A (ja) * 2006-10-31 2008-05-15 Mitsubishi Electric Corp 導波管の接続構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826524A (en) * 1955-02-08 1958-03-11 Textron Inc Method of forming wave guides
JPS5193642A (ja) 1975-02-14 1976-08-17
JP4658535B2 (ja) 2004-07-28 2011-03-23 京セラ株式会社 高周波モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193642U (ja) * 1975-01-23 1976-07-27
JPH09148808A (ja) * 1995-11-20 1997-06-06 Fujitsu General Ltd Lnbの入力構造
JPH10224101A (ja) * 1997-02-12 1998-08-21 Nippon Koshuha Kk 導波管のチョークフランジ
JP2003078310A (ja) * 2001-09-04 2003-03-14 Murata Mfg Co Ltd 高周波用線路変換器、部品、モジュールおよび通信装置
JP2003188601A (ja) * 2001-12-19 2003-07-04 Mitsubishi Electric Corp 導波管プレート及び高周波装置
JP2008113318A (ja) * 2006-10-31 2008-05-15 Mitsubishi Electric Corp 導波管の接続構造

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130433A (ja) * 2008-11-28 2010-06-10 Nippon Pillar Packing Co Ltd 導波管・ストリップ線路変換器
WO2011118544A1 (ja) * 2010-03-24 2011-09-29 日本電気株式会社 無線モジュール及びその製造方法
JPWO2011118544A1 (ja) * 2010-03-24 2013-07-04 日本電気株式会社 無線モジュール及びその製造方法
JP2012238948A (ja) * 2011-05-10 2012-12-06 Nec Corp 導波管接続構造
JP2016012771A (ja) * 2014-06-27 2016-01-21 三菱電機株式会社 導波管接続構造およびその製造方法
JP2019525689A (ja) * 2016-10-09 2019-09-05 華為技術有限公司Huawei Technologies Co.,Ltd. ホーン・アンテナ
US10727607B2 (en) 2016-10-09 2020-07-28 Huawei Technologies Co., Ltd. Horn antenna
CN114784474A (zh) * 2022-05-18 2022-07-22 电子科技大学 一种基于扼流环的可拆卸小型化发射前端

Also Published As

Publication number Publication date
US20110156844A1 (en) 2011-06-30
US8680954B2 (en) 2014-03-25
JP5531960B2 (ja) 2014-06-25
JPWO2010023827A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5531960B2 (ja) 導波管接続構造および導波管接続方法
JP6712765B2 (ja) 高周波基板
TWI811264B (zh) 用於具有波導耦合裝置之雷達物位量測裝置的電路板
JP5216848B2 (ja) 高周波モジュールおよびその製造方法ならびに該高周波モジュールを備えた送信器、受信器、送受信器およびレーダ装置
JP2006191077A (ja) 導波管‐プリント基板(pwb)相互接続
JP2012526429A (ja) チップから導波管ポートへの変換器
WO2016186128A1 (ja) 半導体素子パッケージ、半導体装置および実装構造体
WO2013080560A1 (ja) 無線モジュール
JP6643714B2 (ja) 電子装置及び電子機器
JP2008244289A (ja) 電磁シールド構造
JP6182422B2 (ja) 導波管との接続構造
WO2013161279A1 (ja) 高周波回路と導波管との接続構造およびその製造方法
US8227707B2 (en) Coaxial connector mounted circuit board
JP3631667B2 (ja) 配線基板およびその導波管との接続構造
JP4503476B2 (ja) 高周波線路−導波管変換器
US10992015B2 (en) Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide
JP4199796B2 (ja) 高周波線路−導波管変換器
JP6311822B2 (ja) 高周波モジュール
JP5720667B2 (ja) 導波管・平面線路変換器
JP5279424B2 (ja) 高周波伝送装置
JP6135485B2 (ja) 高周波モジュール
JP2010098609A (ja) 導波管−マイクロストリップ線路変換器、及び、その製造方法
JP4247999B2 (ja) 高周波線路−導波管変換器
JP2005130406A (ja) 導波管部材および導波管ならびに高周波モジュール
US11818833B2 (en) Circuit board structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526514

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13060570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809484

Country of ref document: EP

Kind code of ref document: A1