WO2011118544A1 - 無線モジュール及びその製造方法 - Google Patents

無線モジュール及びその製造方法 Download PDF

Info

Publication number
WO2011118544A1
WO2011118544A1 PCT/JP2011/056689 JP2011056689W WO2011118544A1 WO 2011118544 A1 WO2011118544 A1 WO 2011118544A1 JP 2011056689 W JP2011056689 W JP 2011056689W WO 2011118544 A1 WO2011118544 A1 WO 2011118544A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
conductor
wireless module
hollow
electrode
Prior art date
Application number
PCT/JP2011/056689
Other languages
English (en)
French (fr)
Inventor
渋谷 明信
明 大内
明 宮田
亮 宮嵜
若林 良昌
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/636,576 priority Critical patent/US20130012145A1/en
Priority to JP2012506992A priority patent/JPWO2011118544A1/ja
Publication of WO2011118544A1 publication Critical patent/WO2011118544A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/024Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0239Signal transmission by AC coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09981Metallised walls

Definitions

  • the present invention relates to a wireless module and a manufacturing method thereof.
  • Patent Document 1 the high frequency package is leadless.
  • the semiconductor is electrically connected to the line of the multilayer dielectric substrate via a metal wire, and is covered with an airtight metal frame.
  • the high frequency package is connected to the resin substrate by solder bumps.
  • the high-frequency signal of the high-frequency package is input / output from the multilayer dielectric substrate to the waveguide of the waveguide circuit provided under the resin substrate via the space between the solder bumps and the resin substrate.
  • the high frequency signal of the high frequency package is connected to the antenna through the waveguide.
  • the other signal, ground, and bias terminals are connected to the resin substrate via solder bumps.
  • the advantage of this structure is that the throughput of the connection process is higher than that of lead connection.
  • alignment of the waveguide is also performed by self-alignment of the solder bumps, so that the assembly cost can be reduced.
  • Patent Document 2 a waveguide pad is provided on a surface opposite to a surface on which a high frequency component is mounted in a dielectric substrate on which a high frequency component is mounted. Yes.
  • the waveguide pad on the dielectric substrate and the waveguide pad provided on the waveguide on the dielectric board are connected by a brazing material.
  • Patent Document 1 by appropriately arranging the solder bumps, the insertion loss of high-frequency radio signals passing through the connecting portion (that is, between the solder bumps) between the high-frequency package multilayer dielectric substrate and the resin substrate is reduced. It was. However, since a high-frequency radio signal spreads in the gap between the multilayer dielectric substrate and the resin substrate (the gap corresponding to the thickness of the solder), there is a problem that the loss increases. Further, in the structure in which the brazing material of Patent Document 2 is used to connect the waveguide pad of the dielectric substrate and the waveguide pad of the dielectric board, the insertion loss of high-frequency radio signals is small.
  • the brazed high-frequency signal connection portion has a problem of low reliability because stress is generated due to a difference in thermal expansion coefficient between the dielectric substrate or the dielectric board and the brazing material.
  • An object of the present invention is to solve the above-described problems, and to provide a wireless module and a method for manufacturing the same, in which the insertion loss of the wireless signal connection portion is small and the reliability is high.
  • the wireless module of the present invention includes a first wiring board, a second wiring board disposed to face the first surface of the first wiring board, the second wiring board, and an inner wall. Corresponding to the through hole formed on at least one of the first surface or the second surface of the second wiring board facing the first surface, and a through hole having a conductor formed on the first surface.
  • a hollow column made of a conductor, and the axial height of the column is lower than the gap between the first surface and the second surface, and one of the columns The end surface of the column is not fixed, and the radio signal passes through the hollow portion of the column.
  • a method of manufacturing a wireless module including a conductor on at least one of a first surface of a first wiring substrate or a second surface of the second wiring substrate facing the first surface. Forming a hollow pillar, and forming a through hole in the second wiring substrate and forming a conductor on the inner wall of the through hole.
  • the insertion loss of the wireless signal connection portion can be reduced, and the reliability can be increased.
  • FIG. 1 is a cross-sectional view of a wireless module showing an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the wireless module showing the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the wireless module showing the embodiment of the present invention.
  • FIG. 4 is a plan view of the first surface 1a of the first wiring board showing the embodiment of the present invention.
  • FIG. 5 is a plan view of the first surface 1a of the first wiring board showing the embodiment of the present invention.
  • FIG. 6 is a plan view of the first surface 1a of the first wiring board showing the embodiment of the present invention.
  • FIG. 7 is a plan view of the second surface 2a of the second wiring board showing the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for explaining the method for manufacturing the wireless module showing the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the wireless module showing the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the wireless module showing the embodiment of the present invention.
  • FIG. 11 is a plan view of a solder connection surface of a waveguide connection model showing an embodiment of the present invention.
  • FIG. 12 is a cross-sectional perspective view of a waveguide connection model showing an embodiment of the present invention.
  • FIG. 13 is a graph of the insertion loss calculation result of the waveguide connection model showing the example of the present invention and the comparative example.
  • FIG. 1 are cross-sectional views of a wireless module showing a first embodiment of the present invention.
  • the wireless module shown in FIG. 1 includes a first wiring board 1 and a second wiring board 2 disposed to face the first surface 1a of the first wiring board 1. Further, the second wiring board 2 is provided with a through hole 3 in which a conductor is formed on the inner wall. Then, the hollow pillar 4 made of a conductor is connected to the first surface 1a of the first wiring substrate 1 or the second surface 2a of the second wiring substrate 2 (the second surface 2a faces the first surface). Is provided on a position corresponding to the through hole 3 on at least one surface.
  • the height in the axial direction of the hollow column 4 made of a conductor is lower than the gap between the first surface 1a and the second surface 2a. Further, one end face of the hollow pillar 4 made of a conductor is not fixed, and the radio signal passes through the hollow portion of the pillar.
  • the “hollow column 4 made of a conductor” is omitted and described as “hollow column 4”. However, the “hollow pillar 4” is still made of a conductor.
  • the through hole 3 in which the conductor is formed on the inner wall is omitted and described as “the through hole 3”. However, the conductor is still formed on the inner wall of the “through hole 3”. In FIG.
  • the hollow pillar 4 is provided on the first surface 1 a of the first wiring board 1.
  • the hollow pillar 4 is provided on the second surface 2 a of the second wiring board 2.
  • hollow pillars 4 are provided on the first wiring board 1 and the second wiring board 2.
  • the height obtained by adding the heights of both hollow columns 4 is lower than the gap between the first surface 1a and the second surface 2a.
  • the first wiring board 1 and the second wiring board 2 are fixed by a fixing portion (not shown).
  • the fixing part and the wiring board may be electrically connected or may not be connected.
  • 4 to 6 show plan views of the first surface 1a when the hollow column 4 is provided on the first surface 1a. As shown in FIGS.
  • the shape and size of the opening of the hollow pillar 4 are not limited. For example, a square as shown in FIG. 4 and an oval or circle as shown in FIGS. 5 and 6 are preferably used.
  • FIG. 7 the top view of the 2nd surface 2a in case the hollow pillar 4 is provided in the 2nd surface 2a of the 2nd wiring board 2 is shown.
  • FIG. 7 the case where the hollow pillar 4 is a square is shown. 4 to 7, there are 1 transmission channel and 3 reception channels, but the number of each channel is not limited.
  • a high-frequency signal output from an electronic component (not shown) mounted on the first wiring board 1 passes through the hollow portion of the hollow column 4 and is output to the through hole 3 of the second wiring board 2, and then The antenna is output to the outside not shown.
  • a high-frequency signal that is input to the through hole 3 from the outside (not shown) is input to the first wiring board 1 through the hollow portion of the hollow column 4.
  • An electronic component that inputs and outputs a high-frequency signal may be provided on the first wiring board 1 or may be provided inside the first wiring board 1. It is only necessary that the electronic component is mounted at a position where the high-frequency signal input / output from the electronic component passes through the hollow column 4. As shown in FIG. 1, when the hollow pillar 4 is provided on the first wiring board 1, a high-frequency signal output from an electronic component (not shown) mounted on the first wiring board 1 is hollow. It propagates through the hollow part of the pillar 4. Therefore, the cross-sectional area of the high-frequency signal cannot be larger than the hollow portion of the hollow column 4.
  • the cross-sectional area of the high-frequency signal is widened at the gap between the end of the hollow pillar 4 on the second wiring board 2 side and the through hole 3.
  • the gap is narrow, the spread is slight. Accordingly, a large proportion of the high frequency signals output from the hollow pillar 4 are coupled to the through hole 3. That is, the effect that the loss is reduced is obtained.
  • the cross-sectional area of the high-frequency signal increases. However, since the through holes 3 and the hollow pillars 4 are provided at a narrow interval, the spread is slight.
  • the hollow pillar 4 shown in FIG. 1 is fixed only to the first wiring board 1 and is not fixed to the second wiring board 2. Therefore, even if a difference in coefficient of thermal expansion occurs between the hollow pillar 4 and the second wiring board 2, no stress is produced between the hollow pillar 4 and the second wiring board 2, and high reliability is achieved. can get.
  • the wiring board shown in FIG. 3 of Patent Document 2 since the two boards are fixed by brazing, the stress due to the thermal expansion difference between the dielectric board and the dielectric board and the brazing material is Since it occurs in a fixed part, the reliability is lowered.
  • the hollow pillar 4 is formed on the first surface 1 a of the first wiring board 1.
  • a metal foil is affixed to the first wiring board 1 and is etched leaving a portion that becomes the hollow pillar 4.
  • the hollow pillar 4 is formed by applying a conductive resin through a mask having the shape of the hollow pillar 4 and performing heat treatment.
  • a hole is formed so as to penetrate the second wiring board 2.
  • a hole is made in the first wiring board 1 by drilling and laser processing, and a conductor is formed in the hole by plating, sputtering, and vapor deposition.
  • FIG. 8A the first wiring board 1 in which the hollow pillars 4 are formed and the second wiring board 2 in which the through holes 3 are formed are connected to the hollow pillars 4 and the through holes 3.
  • the hollow pillar 4 and the through hole 3 are arranged and fixed so as to have a predetermined interval.
  • a wireless module capable of electrical connection and high-frequency signal connection can be manufactured by a simple process.
  • the hollow column opening 6 is formed in the second embodiment of the present invention.
  • the configuration including the opening 5 of the through hole is adopted.
  • the configuration in which the hollow pillar 4 in FIG. 2 is provided on the second wiring board 2 is shown, but the hollow pillar 4 may be arranged in any one of FIG. 1 or FIG.
  • FIG. 9 is a cross-sectional view of the wireless module. Description of the portions described above with reference to FIG. 1 is omitted.
  • the wireless module has a first electrode 7 on the first surface 1a of FIG. 1 and a second electrode 8 corresponding to the first electrode 2 on the second surface 2a.
  • the wireless module includes a waveguide 10 on the surface of the first wiring board 1 opposite to the surface electrically connected by the conductor 9.
  • the semiconductor element 12 is electrically connected to the first wiring board 1 via the bonding material 11 on the waveguide 10. In the waveguide 10, nothing may be electrically connected to the end opposite to the end connected to the semiconductor element 12. Further, a via may be connected to the end of the waveguide 10 opposite to the end connected to the semiconductor element 12.
  • the antenna electrode is provided on the first surface 1a of the first wiring board 1 so as to correspond to the position of the end of the waveguide 10 opposite to the end connected to the semiconductor element 12. It may be done.
  • a lid 13 is provided so as to cover the semiconductor element 12 and seals the semiconductor element 12. 2 and 3, the waveguide 10, the bonding material 11, the semiconductor element 12, and the lid 13 can be provided.
  • a plurality of electric signals such as a power source and a bias signal are connected. Is possible.
  • the distance between the first wiring board 1 and the second wiring board 2 can be fixed and fixed.
  • a coplanar line is suitable for the form of the waveguide 10 of the first wiring board 1. Thereby, the effect that a high frequency signal propagation loss is small and heat dissipation is good can be acquired.
  • the transmission loss of the connection portion can be reduced by flip-chip connection.
  • the material of the bonding material 11 when the semiconductor element 12 is flip-chip connected is not limited, but gold stud bumps or solder bumps are suitable. Further, the type, size and number of the semiconductor elements 12 and the size and pitch of the bonding material 11 are not limited. It is also possible to provide a lid 13 on the mounting surface of the semiconductor element 12 and seal it. By sealing, EMI (Electromagnetic Interference) and spurious (unnecessary radio waves) can be suppressed.
  • EMI Electromagnetic Interference
  • spurious unnecessary radio waves
  • the high-frequency signal output from the semiconductor element 12 is transmitted through the waveguide 10 through the bonding material 11.
  • the traveling direction of the high-frequency signal is converted to the direction of the first surface 1 a of the first wiring board 1 at the end of the waveguide 10.
  • the high-frequency signal passes through the hollow column 4 and the through hole 3 and is output as an antenna to the outside (not shown).
  • a high frequency signal input from the outside to the through hole 3 through the antenna passes through the hollow column 4, the waveguide 10, and the bonding material 11 and is input to the semiconductor element 12.
  • the hollow pillar 4 is formed on the first wiring board 1. Further, the first electrode 7 and the waveguide 10 are formed. Next, as in FIG. 8B, a hole penetrating the second wiring board 2 is formed. A conductor such as copper, nickel, or gold is formed on the inner wall of the through hole 3. Further, the second electrode 8 is formed. The first electrode 7, the waveguide 10, and the second electrode 8 can be formed by etching a metal foil or the like or plating. Next, the semiconductor element 12 is mounted on the waveguide 10 of the first wiring board 1 with the bonding material 11, and the lid 13 is bonded to the first wiring board 1.
  • a conductor 9 is formed on the first electrode 7 of the first wiring board 1.
  • the conductor 9 is a ball
  • the ball is supplied onto the first electrode 7 by a ball supply device.
  • the conductor 9 is a conductive resin
  • the conductive resin may be applied through a mask.
  • the first electrode 7 of the first wiring board 1 and the second electrode 8 of the second wiring board 2 are connected by the conductor 9.
  • the position of the conductor 9 of the first wiring board 1 and the second electrode 8 of the second wiring board 2 can be aligned using a flip chip mounter.
  • the conductor 9 may be formed on the second electrode 8 of the second wiring board 2.
  • the hollow pillar 4 is formed first and then the through hole 3 is formed in the step shown in FIG. 8B.
  • the same process can be used also when forming the hollow pillar 4 of FIG.
  • a wireless module capable of electrical connection and high-frequency signal connection can be manufactured by a simple process.
  • a material suitable for the hollow column 4 will be described.
  • the material of the hollow pillar 4 is preferably the same as the electrode material of the first wiring board 1.
  • the hollow pillar 4 is also preferably used. The same applies when the hollow pillar 4 is formed on the second wiring board 2.
  • the electrode and the hollow column 4 can be collectively formed in the step of forming the electrode.
  • the copper foil 15 having the thickness of the target hollow pillar 4 is laminated on the surface on which the hollow pillar 4 is formed in FIG.
  • the thickness of the copper foil 15 is usually larger than that in the case of forming an electrode.
  • the hollow pillar 4 can be easily formed. Further, in the step of forming the hollow pillar 4, this can be protected by covering the hollow pillar 4 with a mask or the like, and the etching amount can be increased only for the electrode portion.
  • the electrode can be made a predetermined thickness, so that the hollow column 4 and the first electrode 7 can be formed in the same step. Even when the copper hollow pillar 4 is formed on the second wiring board 2, the same manufacturing method as that of the first wiring board 1 can be employed. It is also preferable to form the hollow column 4 with a conductive resin. By printing and curing the conductive resin paste through a mask, the hollow pillar 4 can be formed by a simple process. Furthermore, the hollow pillar 4 can be formed by bonding or adhesion. [Fifth Embodiment] In the fifth embodiment of the present invention, a case where the first wiring board 1 is an organic wiring board and a case where the conductor 9 is solder will be described.
  • the first wiring board 1 is preferably an organic wiring board.
  • a printed circuit board mainly composed of polyphenylene ether (PPE), which is a material having low dielectric loss at high frequencies, and a liquid crystal polymer (LCP) substrate are desirable.
  • a low temperature co-fired ceramic (LTCC) substrate is also used. Since the hollow pillar 4 can connect a high-frequency signal with low loss, an organic wiring substrate can be used for the first wiring substrate 1, and it is not always necessary to use a low-loss ceramic substrate.
  • both the first wiring board 1 and the second wiring board 2 are organic wiring boards such as printed boards, the thermal expansion coefficients of the first wiring board 1 and the second wiring board 2 are approximately Are the same. Therefore, since the stress generated in the conductor 8 is small, the reliability is high.
  • a solder 14 is preferable, and a lead-free solder made of an Sn-Ag-Cu alloy is preferably used.
  • a solder 14 connection portion With the configuration having the hollow pillars 4, it is possible to increase the reliability of the solder 14 connection portion by increasing the solder 14 while connecting high-frequency signals with low loss.
  • the gap between the two substrates is increased. When this gap becomes large, there arises a problem that the loss of high-frequency signals becomes large.
  • the size of the solder is reduced in order to reduce the loss of the high frequency signal, there arises a problem that the reliability of the solder connection portion is lowered.
  • the effect of the presence or absence of the hollow pillar 4 made of the conductor of the present invention is confirmed.
  • an electromagnetic field analysis was performed when the two waveguides 17 were connected to each other with the solder 14 and the metal ring 18 was formed as the hollow column 4 in one of the waveguides 17.
  • the waveguide 17 was used as an example of a structure that functions as the through hole 3 having a conductor formed on the inner wall.
  • the model is shown in the plan view of FIG. 11 and the cross-sectional perspective view of FIG.
  • the outer size of one metal 16 is 12 mm ⁇ 12 mm and the thickness is 5 mm.
  • the size of the through hole 3 is 2.54 mm ⁇ 1.27 mm.
  • the metal ring 18 has an inner diameter of 3.14 mm ⁇ 1.87 mm and a width of 0.3 mm.
  • the height of the metal ring 18 was analyzed from 0 mm to 0.5 mm at intervals of 0.1 mm, and the results were compared.
  • One solder 14 was provided for each side of the waveguide 17 in a cylindrical shape having a diameter of 0.5 mm and a height of 0.5 mm. Moreover, the solder 14 was provided in the position where the distance from each side to the solder 14 becomes 0.8 mm.
  • the millimeter wave band from 65 GHz to 85 GHz was analyzed, and the insertion loss between the input surface 19 and the output surface 20 shown in FIG. 12 was calculated.
  • the result is shown in the graph of FIG. Table 1 shows the property that the insertion loss at 76 GHz depends on the height of the hollow column 4.
  • the insertion loss can be greatly reduced by forming the hollow column 4 as compared with the case where there is no hollow column 4 (the height of the hollow column 4 is 0 mm). I understand.
  • the effect is so large that the height of the hollow pillar 4 is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

 無線信号接続部が低挿入損失、かつ高信頼性である無線モジュールを提供する。 無線モジュールは、第1の配線基板1と、第1の配線基板1の第1の面1aに対向して配置された第2の配線基板2を有する。さらに、第2の配線基板2には、内壁に導電体が形成された貫通穴3が設けられている。そして、第1の面1a、または、第1の面に対向する第2の配線基板2の第2の面2aの少なくとも一方に、貫通穴3に対応する位置に導電体からなる中空の柱4が設けられている。ここで、導電体3からなる中空の柱4の軸方向の高さは、第1の面1aと第2の面2aとの隙間より低い。また、導電体からなる中空の柱4の一方の端面は、固定されておらず、柱の中空部を無線信号が通過する。

Description

無線モジュール及びその製造方法
 本発明は、無線モジュール及びその製造方法に関する。
 近年、工程短縮あるいはコスト削減の観点から、高周波パッケージをマザーボードに実装して機器を組み立てる試みが行われている。特許第3969321号公報(特許文献1)では、高周波パッケージをリードレス化している。特許文献1の高周波パッケージの構成では、半導体は、金属ワイヤを介して多層誘電体基板の線路と電気接続され、気密用金属枠体がかぶせられている。その高周波パッケージが、はんだバンプにより樹脂基板に接続している。高周波パッケージの高周波信号は、多層誘電体基板から、はんだバンプ間の空間及び樹脂基板を介して、樹脂基板の下部に設けられた導波管回路の導波管に入出力される。その後、高周波パッケージの高周波信号は、導波管を介してアンテナに接続されている。また、その他の信号、接地、およびバイアス端子は、はんだバンプを介して樹脂基板に接続されている。この構造の利点は、リード接続に比べて接続工程のスループットが高いことである。加えて、導波管の位置あわせも、はんだバンプのセルフアライメントによって行われるため、組立コストを低くできることにある。
 また、特開2002−164465号公報(特許文献2)では、高周波部品が搭載された誘電体基板のうち、高周波部品が搭載された面とは反対の面に、導波管用パッドが設けられている。この誘電体基板の導波管用パッドと誘電体ボードの導波管に設けた導波管用パッドがロウ材により接続されている。
特許第3969321号公報 特開2002−164465号公報
 特許文献1では、はんだバンプの配置を適切にすることによって、高周波パッケージ多層誘電体基板と樹脂基板との接続部(すなわち、はんだバンプの間)を通過する高周波の無線信号の挿入損失を低減していた。
 しかし、多層誘電体基板と樹脂基板の間隙(はんだ厚み分の間隙)に高周波の無線信号が広がるため、損失が大きくなるという課題があった。また、特許文献2のロウ材を用いて、誘電体基板の導波管用パッドと誘電体ボードの導波管パッドを接続する構造では、高周波の無線信号の挿入損失が小さい。しかし、ロウ付けした高周波信号接続部には、誘電体基板や誘電体ボードと、ロウ材との間の熱膨張率の差から応力が生じるために信頼性が低いという課題があった。
 本発明の目的は、上述した課題を解決し、無線信号接続部の挿入損失が小さく信頼性が高い、無線モジュール及びその製造方法を提供する事にある。
 本発明の無線モジュールは、第1の配線基板と、前記第1の配線基板の第1の面に対向して配置された第2の配線基板と、前記第2の配線基板に設けられ、内壁に導電体が形成された貫通穴と、前記第1の面、又は、前記第1の面に対向する前記第2の配線基板の第2の面の少なくとも一方の上に、前記貫通穴に対応する位置に設けられ、導電体からなる中空の柱と、を備え、前記柱の軸方向の高さは、前記第1の面と前記第2の面との隙間よりも低く、前記柱の一方の端面が固定されておらず、前記柱の中空部を無線信号が通過する。
 本発明の無線モジュールの製造方法は、第1の配線基板の第1の面、又は、前記第1の面に対向する前記第2の配線基板の第2の面の少なくとも一方に、導電体からなる中空の柱を形成する工程と、前記第2の配線基板に貫通穴を形成し、前記貫通穴の内壁に導電体を形成する工程と、を備える。
 本発明によれば、無線信号接続部の挿入損失を小さくでき、信頼性を高くすることができる。
図1は、本発明の実施の形態を示す無線モジュールの断面図である。 図2は、本発明の実施の形態を示す無線モジュールの断面図である。 図3は、本発明の実施の形態を示す無線モジュールの断面図である。 図4は、本発明の実施の形態を示す第1の配線基板の第1の面1aの平面図である。 図5は、本発明の実施の形態を示す第1の配線基板の第1の面1aの平面図である。 図6は、本発明の実施の形態を示す第1の配線基板の第1の面1aの平面図である。 図7は、本発明の実施の形態を示す第2の配線基板の第2の面2aの平面図である。 図8は、本発明の実施の形態を示す無線モジュールの製造方法を説明するための断面図である。 図9は、本発明の実施の形態を示す無線モジュールの断面図である。 図10は、本発明の実施の形態を示す無線モジュールの製造方法を説明するための断面図である。 図11は、本発明の実施例を示す導波管接続モデルのはんだ接続面の平面図である。 図12は、本発明の実施例を示す導波管接続モデルの断面斜視図である。 図13は、本発明の実施例および比較例を示す導波管接続モデルの挿入損失計算結果のグラフである。
[第1の実施の形態]
 本発明の第1の実施の形態である、無線モジュールについて説明する。図1~3に本発明の第1の実施の形態を示す無線モジュールの断面図を示す。図1に示す無線モジュールは、第1の配線基板1と、第1の配線基板1の第1の面1aに対向して配置された第2の配線基板2を有する。更に、第2の配線基板2には、内壁に導電体が形成されている貫通穴3が、設けられている。そして、導電体からなる中空の柱4が、第1の配線基板1の第1の面1a又は第2の配線基板2の第2の面2a(第2の面2aは第1の面に対向する)のうち、少なくとも一方の面上であって、貫通穴3に対応する位置に、設けられている。ここで、導電体からなる中空の柱4の軸方向の高さは、第1の面1aと第2の面2aとの隙間よりも低い。また、導電体からなる中空の柱4の一方の端面は固定されておらず、無線信号が柱の中空部を通過する。
 以下では、「導電体からなる中空の柱4」を省略して、「中空の柱4」と記載する。しかし、「中空の柱4」が導電体からなることに変わりはない。また、「内壁に導電体が形成された貫通穴3」を省略して「貫通穴3」と記載する。しかし、「貫通穴3」の内壁に導電体が形成されていることに変わりはない。
 図1では、中空の柱4が、第1の配線基板1の第1の面1aに設けられている。図2では、中空の柱4が、第2の配線基板2の第2の面2aに設けられている。図3では、中空の柱4が、第1の配線基板1および第2の配線基板2に設けられている。図3の場合は、両方の中空の柱4の高さを足した高さは、第1の面1aと第2の面2aとの隙間よりも低い。第1の配線基板1と第2の配線基板2は、図示していない固定部により、固定されている。固定部と配線基板は電気的に接続されていても、接続されていなくても良い。
 図4~6は、中空の柱4が第1の面1aに設けられている場合の、第1の面1aの平面図を示す。図4~6のように、中空の柱4の開口の形状やサイズは、限定されない。例えば図4に示すような方形、図5、図6に示す楕円形や円形が、好適に用いられる。図7では、中空の柱4が第2の配線基板2の第2の面2aに設けられている場合の、第2の面2aの平面図を示す。図7では、中空の柱4が方形である場合を示している。図4~7では送信1チャンネル、受信3チャンネルとなっているが、それぞれのチャネル数は限定されるものではない。
 第1の配線基板1に実装された電子部品(図示せず)から出力される高周波信号は、中空の柱4の中空部を通り、第2の配線基板2の貫通穴3に出力され、その後、図示していない外部へアンテナ出力される。逆に、図示していない外部から貫通穴3にアンテナ入力される高周波信号は、中空の柱4の中空部を通り、第1の配線基板1に入力される。
 なお、高周波信号を入出力する電子部品は、第1の配線基板1上に設けられていてもよく、第1の配線基板1内部に設けられても良い。電子部品から入出力される高周波信号が中空の柱4を通過する位置に、電子部品が実装されていれば良い。
 図1のように、中空の柱4が第1の配線基板1に設けられている場合、第1の配線基板1に実装された電子部品(図示せず)から出力される高周波信号は、中空の柱4の中空部を伝播する。したがって、高周波信号の断面積は、中空の柱4の中空部より大きくはならない。そして、中空の柱4の第2の配線基板2側の端部と、貫通穴3との間隙部分で、高周波信号の断面積は広がる。しかし、その間隙が狭いため、その広がりはわずかである。従って、中空の柱4から出力された高周波信号のうち、多くの割合の高周波信号が貫通穴3と結合する。つまり、損失が低くなるという効果が得られる。
 また、外部から貫通穴3に入力する高周波信号は、第2の配線基板2の第2の面2aから中空の柱4へ向けて出力する際に、高周波信号の断面積が広がる。しかし、貫通穴3と中空の柱4が狭い間隔で設けられているため、その広がりはわずかである。従って、貫通穴3から出力された高周波信号のうち、多くの割合の高周波信号が中空の柱4と結合する。つまり、損失が低くなるという効果が得られる。
 また、図1に示す中空の柱4は、第1の配線基板1にのみ固定され、第2の配線基板2には固定されていない。したがって、中空の柱4と第2の配線基板2との間に熱膨張率の差が生じても、中空の柱4と第2の配線基板2の間に応力は生じず、高い信頼性が得られる。一方、特許文献2の図3に示されている配線基板は、2つの基板がロウ付けにより固定されているため、誘電体基板や誘電体ボードと、ロウ材との熱膨張差による応力が、固定されている箇所に生じるため、信頼性が低くなる。
 図2、図3の場合も、中空の柱4の一方の端面は固定されていない。従って、熱膨張率差が、中空の柱4と、中空の柱4に相対する配線基板との間に生じても、中空の柱4と、中空の柱4に相対する配線基板との間に、応力は生じないので、高信頼性が得られる。
 以上、高周波信号の場合について説明したが、信号は高周波に限定されない。したがって、貫通穴3と中空の柱4の接続部には、任意の周波数の無線信号を通過させることができる。
 本実施の形態の無線モジュールの製造方法について、図1の構造を用いて説明する。最初に、図8(A)に示すように、第1の配線基板1の第1の面1aに、中空の柱4を形成する。例えば、金属箔を第1の配線基板1に貼り付け、中空の柱4となる部分を残してエッチングする。または、導電性樹脂を中空の柱4の形状のマスクを介して塗布し、熱処理することにより中空の柱4が形成される。次に、図8(B)に示すように、第2の配線基板2を貫通するように穴を形成する。例えば、第1の配線基板1をドリル、レーザー加工により穴を開け、めっき、スパッタ、蒸着により導電体を穴に形成する。そして、図8(A)に示すように、中空の柱4を形成した第1の配線基板1と、貫通穴3を形成した第2の配線基板2とを、中空の柱4と貫通穴3の位置が対応するように配置し固定する。この際、中空の柱4と貫通穴3が所定の間隔になるように配置し固定する。
 以上の製造方法によると、簡易な工程で、電気接続と、高周波信号接続できる無線モジュールを製造できる。
[第2の実施の形態]
 本発明の第2の実施の形態では、図7に示すように、第2の配線基板2を第2の面2aにおおよそ垂直な方向(上方向)から見て、中空の柱の開口6が、貫通穴の開口5を包含する構成をとっている。ここでは、図2の中空の柱4が第2の配線基板2に設けられた構成を示したが、それ以外に、中空の柱4が図1又は図3のいずれの配置でもよい。
 中空の柱の開口6が貫通穴の開口5を包含する構成であることにより、貫通穴3から出力された高周波信号のうち、ほぼ全ての割合の高周波信号が中空の柱4と結合する。つまり、損失が低くなるという効果が得られる。また中空の柱4から出力された高周波信号についても、ほぼ全ての割合の高周波信号が貫通穴3と結合する。つまり、損失が低くなるという効果が得られる。
[第3の実施の形態]
 本発明の第3の実施の形態について図9を用いて説明する。図9は、無線モジュールの断面図である。先に図1を用いて説明した部分については、説明を省略する。
 無線モジュールは、図1の第1の面1a上に、第1の電極7を有し、第2の面2a上に、第1の電極2に対応した第2の電極8を有する。加えて、第1の電極7と第2の電極8は導電体9で接続されている。また、無線モジュールは、第1の配線基板1のうち、導電体9で電気接続されている面とは反対の面に、導波路10を備えている。また、半導体素子12が、導波路10上の接合材11を介して、第1の配線基板1に電気接続されている。導波路10のうち、半導体素子12と接続している端と反対側の端には、何も電気接続されていなくても良い。また、導波路10のうち、半導体素子12と接続している端と反対側の端には、ヴィアが接続されていても良い。また、アンテナ電極が、第1の配線基板1の第1の面1a上に、導波路10のうち、半導体素子12と接続している端と反対側の端の位置に対応するように、設けられていても良い。更に、蓋13が半導体素子12を覆うように設けられ、半導体素子12を封止している。図2、3の構成についても、上記導波路10、接合材11、半導体素子12、蓋13を設けることが可能である。
 第1の配線基板1の第1の電極7と、第2の配線基板2の第2の電極8とを、導電体9により接続することにより、電源、バイアス信号等の複数の電気信号の接続が可能になる。また、第1の配線基板1と第2の配線基板2の間隔を一定に保って固定できる。
 第1の配線基板1の導波路10の形態は、コプレーナ線路が適している。これにより、高周波信号伝搬損失が小さく、放熱性が良いという効果を得ることができる。
 半導体素子12の接続方法には、フリップチップ接続やワイヤボンディングが用いられる。特に、ミリ波帯の信号を送受信する場合、フリップチップ接続とすることにより、接続部の伝送損失を小さくできる。
 半導体素子12をフリップチップ接続する際の接合材11の材料は、限定されないが、金スタッドバンプや、はんだバンプが好適である。また、半導体素子12の種類、サイズや数、接合材11のサイズやピッチは限定されない。
 半導体素子12の搭載面に蓋13を設け、封止することも可能である。封止することにより、EMI(Electromagnetic Interference:電磁干渉)やスプリアス(不要な目的外の電波)を抑制できる。
 また、中空の柱4と貫通穴3を除いて、導電体9部にのみに、アンダーフィルを設けても良い。また、中空の柱4の一部が切断されていてもよい。
 図9に示されるように、半導体素子12から出力される高周波信号は、接合材11を介して、導波路10を伝送する。また、この高周波信号の進行方向は、導波路10端部で、第1の配線基板1の第1の面1aの方向へ変換される。その後、高周波信号は、中空の柱4と貫通穴3を通り、図示していない外部に対してアンテナ出力される。外部から貫通穴3にアンテナ入力する高周波信号は、中空の柱4、導波路10、接合材11を通り、半導体素子12に入力される。
 次に無線モジュールの製造方法について説明する。最初に図8(A)と同様に、第1の配線基板1に中空の柱4を形成する。更に、第1の電極7と導波路10を形成する。次に、図8(B)と同様に、第2の配線基板2を貫通する穴を形成する。貫通穴3の内壁には、銅、ニッケル、金等の導電体を形成する。更に、第2の電極8を形成する。第1の電極7、導波路10、第2の電極8は、金属箔等のエッチングや、めっきにより形成できる。
 次に、半導体素子12を、接合材11により、第1の配線基板1の導波路10上に実装し、蓋13を第1の配線基板1に接合する。
 次に、第1の配線基板1の第1の電極7に導電体9を形成する。例えば、導電体9がボールの場合、ボール供給装置により、第1の電極7の上にボールを供給する。導電体9が導電性樹脂の場合、マスクを介して導電性樹脂を塗布すればよい。次に、第1の配線基板1の第1の電極7と、第2の配線基板2の第2の電極8とを、導電体9により接続する。例えば、フリップチップマウンターを用いて、第1の配線基板1の導電体9と第2の配線基板2の第2の電極8の位置を合わせることができる。ただし、導電体9は第2の配線基板2の第2の電極8に形成しても良い。
 図2の中空の柱4を第2の基板に形成する場合は、図8(B)に示した工程で、最初に中空の柱4を形成し、次に貫通穴3を形成すればよい。図3の中空の柱4を形成する場合も、同様の工程を用いることができる。
 以上の製造方法によれば、簡易な工程で、電気接続と、高周波信号接続をすることができる無線モジュールを製造できる。
[第4の実施の形態]
 本発明の第4の実施の形態では、中空の柱4に好適な材質について説明する。中空の柱4の材質は、第1の配線基板1の電極材質と同じであることが好ましい。第1の配線基板1がプリント配線基板の場合、電極が銅であるため、中空の柱4も銅が好適に用いられる。中空の柱4を第2の配線基板2に形成する場合も同様である。銅に金めっき等の表面処理を施して、中空の柱4としても良い。
 中空の柱4を銅で形成する場合、電極を形成する工程で、電極と中空の柱4を一括形成できる。最初に、図10(A)で中空の柱4を形成する面に、目的の中空の柱4の厚みの銅箔15を積層する。この銅箔15の厚みは、通常、電極を形成する場合よりも厚みが大きい。
 次に、図10(B)で、銅箔15の不要部分をエッチングすることにより、容易に中空の柱4を形成することができる。また、中空の柱4を形成する工程で、中空の柱4にマスクをかぶせる等によって、これを保護することができ、電極部のみエッチング量を増やすことができる。この工程により、電極を所定の薄さにできるため、中空の柱4と第1の電極7を同一工程で形成できる。
 銅の中空の柱4を第2の配線基板2に形成する場合も、第1の配線基板1と同じ製造方法をとることができる。
 また、中空の柱4を導電性樹脂で形成することも好適である。導電性樹脂ペーストを、マスクを介して、印刷、硬化させることにより、簡単なプロセスで中空の柱4を形成できる。更に、中空の柱4は、接合や接着によって形成できる。
[第5の実施の形態]
 本発明の第5の実施の形態では、第1の配線基板1が、有機配線基板である場合と、導電体9が、はんだである場合について説明する。
 第1の配線基板1には、有機配線基板が好ましい。その中で、高周波での誘電損失が小さい材料であるポリフェニレンエーテル(PPE:Polyphenylene ether)を主成分としたプリント基板、液晶ポリマー(LCP:Liquid Crystal Polymer)基板が望ましい。また、低温同時焼成セラミック(LTCC:Low Temperature Co−fired Ceramics)基板も用いられる。
 中空の柱4により、高周波信号を低損失で接続できるため、第1の配線基板1に有機配線基板を用いることができ、必ずしも低損失のセラミック基板を用いる必要がない。更に、第1の配線基板1と第2の配線基板2の両方が、プリント基板等の有機配線基板である場合、第1の配線基板1と第2の配線基板2の熱膨張係数は、ほぼ同一である。したがって、導電体8に生じる応力が小さいため、信頼性が高い。加えて、有機配線基板の低コスト化という効果も得られる。
 導電体9には、はんだ14が好ましく、Sn−Ag−Cu系の合金からなる鉛フリーはんだが好適に用いられる。
 中空の柱4を有する構成により、高周波信号を低損失で接続しつつ、はんだ14を大きくして、はんだ14接続部の信頼性が高くできるという効果が得られる。一方、特許文献2の図1に示された高周波送受信モジュールでは、はんだ接続部の信頼性を高くするため、はんだを大きくすると、2つの基板の間の隙間が大きくなる。この隙間が大きくなると高周波信号の損失が大きくなるという問題が生じる。逆に、高周波信号の損失を小さくするために、はんだの大きさを小さくすると、はんだ接続部の信頼性が低くなるという問題が生じる。
 第1の配線基板1と第2の配線基板2間の高周波信号の伝搬に関して、本発明の導電体からなる中空の柱4の有無の効果を確認する。このために、2つの導波管17同士を、はんだ14で接続し、片方の導波管17に中空の柱4として金属リング18を形成した場合の電磁界解析を行った。導波管17は、内壁に導電体が形成された貫通穴3の機能を果たす構造の一例として用いた。そのモデルを図11の平面図および図12の断面斜視図に示す。1つの金属16の外形サイズは12mm×12mm、厚み5mmである。貫通穴3のサイズは2.54mm×1.27mmである。金属リング18は内径が3.14mm×1.87mmであり、その幅は0.3mmである。また、金属リング18の高さは、0mm~0.5mmを0.1mm間隔で解析して、結果を比較した。はんだ14は、直径0.5mm、高さ0.5mmの円柱状に、導波管17の各辺に対して1個ずつ設けた。また、はんだ14は、各辺から、はんだ14までの距離が0.8mmとなる位置に設けた。周波数については、ミリ波帯の65GHzから85GHzまでを解析し、図12に示す入力面19と出力面20間の挿入損失を計算した。この結果を図13のグラフに示す。
 また、76GHzにおける挿入損失が、中空の柱4の高さに依存する性質を表1に示す。これらの結果から明らかなように中空の柱4がない(中空の柱4の高さ0mm)場合と比較して、中空の柱4を形成することにより、大幅に挿入損失を低下させることができることがわかる。また、中空の柱4の高さが大きいほどその効果が大きいことがわかる。高さ0.5mmでは中空の柱4を形成しない側の導波管17に接触してしまうが、中空の柱4高さの影響をみるために計算した。この結果から、はんだ高さになるべく近い中空の柱4の高さがより望ましいことが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
 以上、本発明の好適実施形態について説明したが、単なる例示に過ぎず、何ら本発明を限定するものではない。本発明は、要旨を逸脱しない範囲において、種々の変形が可能である。
 なお、以上の説明に関して更に以下の付記を開示する。
(付記1)
 第1の配線基板の第1の面、又は、前記第1の面に対向する前記第2の配線基板の第2の面の少なくとも一方に導電体からなる中空の柱を形成する工程と、
前記第2の配線基板に貫通穴を形成し、前記貫通穴の内壁に導電体を形成する工程と、
を備え
前記柱を形成する工程は、銅箔を前記第1の配線基板の第1の面、又は前記第2の配線基板の第2の面の少なくとも一方の上に積層する工程と、前記銅箔をエッチングする工程とを含む、
ことを特徴とする無線モジュールの製造方法。
 この出願は、2010年3月24日に出願された日本出願特願2010−068127を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1  第1の配線基板
1a  第1の面
2  第2の配線基板
2a  第2の面
3  貫通穴
4  中空の柱
5  貫通穴の開口
6  中空の柱の開口
7  第1の電極
8  第2の電極
9  導電体
10  導波路
11  接合材
12  半導体素子
13  蓋
14  はんだ
15  銅箔
16  金属
17  導波管
18  金属リング
19  入力面
20  出力面

Claims (10)

  1.  第1の配線基板と、
     前記第1の配線基板の第1の面に対向して配置された第2の配線基板と、
     前記第2の配線基板に設けられ、内壁に導電体が形成された貫通穴と、
     前記第1の面、又は、前記第1の面に対向する前記第2の配線基板の第2の面の少なくとも一方の上に、前記貫通穴に対応する位置に設けられ、導電体からなる中空の柱と、
    を備え、
     前記柱の軸方向の高さは、前記第1の面と前記第2の面との隙間よりも低く、
     前記柱の一方の端面が固定されておらず、
     前記柱の中空部を無線信号が通過する、
    ことを特徴とする無線モジュール。
  2.  前記柱の開口が、前記第2の面に垂直な方向から見て、前記貫通穴の開口を包含すること
    を特徴とする請求項1に記載の無線モジュール。
  3.  前記第1の面に設けられた第1の電極と、
     前記第2の面に、前記第1の電極に対応して設けられた第2の電極と、
     前記第1の電極と前記第2の電極を接続する導電体と、
    を備えることを特徴とする請求項1または2に記載の無線モジュール。
  4.  前記第1の配線基板の第1の面の反対側の面に、コプレーナ線路が設けられていることを特徴とする請求項1から3のいずれか1項に記載の無線モジュール。
  5.  前記第1の配線基板の第1の面の反対側の面に、半導体素子がフリップチップ接続されていることを特徴とする請求項1から4のいずれか1項に記載の無線モジュール。
  6.  前記第1の配線基板の第1の面の反対側の面に、前記半導体素子を封止する蓋が設けられていることを特徴とする請求項1から5のいずれか1項に記載の無線モジュール。
  7.  前記柱が銅からなることを特徴とする請求項1から6のいずれか1項に記載の無線モジュール。
  8.  前記第1の配線基板が有機配線基板であることを特徴とする請求項1から7のいずれか1項に記載の無線モジュール。
  9.  前記第1の電極と前記第2の電極を接続する前記導電体が、はんだであることを特徴とする請求項1から8のいずれか1項に記載の無線モジュール。
  10.  第1の配線基板の第1の面、又は、前記第1の面に対向する前記第2の配線基板の第2の面の少なくとも一方に導電体からなる中空の柱を形成する工程と、
     前記第2の配線基板に貫通穴を形成し、前記貫通穴の内壁に導電体を形成する工程と、
    を備えることを特徴とする無線モジュールの製造方法。
PCT/JP2011/056689 2010-03-24 2011-03-15 無線モジュール及びその製造方法 WO2011118544A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/636,576 US20130012145A1 (en) 2010-03-24 2011-03-15 Radio module and manufacturing method therefor
JP2012506992A JPWO2011118544A1 (ja) 2010-03-24 2011-03-15 無線モジュール及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010068127 2010-03-24
JP2010-068127 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118544A1 true WO2011118544A1 (ja) 2011-09-29

Family

ID=44673097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056689 WO2011118544A1 (ja) 2010-03-24 2011-03-15 無線モジュール及びその製造方法

Country Status (3)

Country Link
US (1) US20130012145A1 (ja)
JP (1) JPWO2011118544A1 (ja)
WO (1) WO2011118544A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478491B1 (en) * 2014-01-31 2016-10-25 Altera Corporation Integrated circuit package substrate with openings surrounding a conductive via
KR20150125262A (ko) 2014-04-30 2015-11-09 주식회사 만도 다층 기판 및 다층 기판의 제조 방법
US9917372B2 (en) 2014-06-13 2018-03-13 Nxp Usa, Inc. Integrated circuit package with radio frequency coupling arrangement
US10103447B2 (en) 2014-06-13 2018-10-16 Nxp Usa, Inc. Integrated circuit package with radio frequency coupling structure
US9887449B2 (en) * 2014-08-29 2018-02-06 Nxp Usa, Inc. Radio frequency coupling structure and a method of manufacturing thereof
US10225925B2 (en) * 2014-08-29 2019-03-05 Nxp Usa, Inc. Radio frequency coupling and transition structure
FR3057999B1 (fr) * 2016-10-21 2019-07-19 Centre National D'etudes Spatiales C N E S Guide d'onde multicouche comprenant au moins un dispositif de transition entre des couches de ce guide d'onde multicouche
US11735806B2 (en) * 2018-05-14 2023-08-22 Texas Instruments Incorporated Wireless device with waveguiding structures between radiating structures and waveguide feeds
GB2594935A (en) * 2020-05-06 2021-11-17 Blighter Surveillance Systems Ltd Modular high frequency device
US11963291B2 (en) * 2022-04-21 2024-04-16 Nxp B.V. Efficient wave guide transition between package and PCB using solder wall

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164465A (ja) * 2000-11-28 2002-06-07 Kyocera Corp 配線基板、配線ボード、それらの実装構造、ならびにマルチチップモジュール
JP2003078310A (ja) * 2001-09-04 2003-03-14 Murata Mfg Co Ltd 高周波用線路変換器、部品、モジュールおよび通信装置
WO2009017203A1 (ja) * 2007-08-02 2009-02-05 Mitsubishi Electric Corporation 導波管の接続構造
WO2010023827A1 (ja) * 2008-08-29 2010-03-04 日本電気株式会社 導波管、導波管接続構造および導波管接続方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164465A (ja) * 2000-11-28 2002-06-07 Kyocera Corp 配線基板、配線ボード、それらの実装構造、ならびにマルチチップモジュール
JP2003078310A (ja) * 2001-09-04 2003-03-14 Murata Mfg Co Ltd 高周波用線路変換器、部品、モジュールおよび通信装置
WO2009017203A1 (ja) * 2007-08-02 2009-02-05 Mitsubishi Electric Corporation 導波管の接続構造
WO2010023827A1 (ja) * 2008-08-29 2010-03-04 日本電気株式会社 導波管、導波管接続構造および導波管接続方法

Also Published As

Publication number Publication date
JPWO2011118544A1 (ja) 2013-07-04
US20130012145A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011118544A1 (ja) 無線モジュール及びその製造方法
US7236070B2 (en) Electronic component module and manufacturing method thereof
US9577340B2 (en) Waveguide adapter plate to facilitate accurate alignment of sectioned waveguide channel in microwave antenna assembly
JP6397127B2 (ja) 半導体素子パッケージ、半導体装置および実装構造体
US10512153B2 (en) High frequency circuit
US9419341B2 (en) RF system-in-package with quasi-coaxial coplanar waveguide transition
JP5729186B2 (ja) 半導体装置及びその製造方法
JP6643714B2 (ja) 電子装置及び電子機器
US10512155B2 (en) Wiring board, optical semiconductor element package, and optical semiconductor device
GB2307102A (en) High frequency module package
US8531023B2 (en) Substrate for semiconductor package and method of manufacturing thereof
EP2146557B1 (en) Integrated microwave circuit
KR101741648B1 (ko) 전자파 차폐 수단을 갖는 반도체 패키지 및 그 제조 방법
JP2011172173A (ja) ミリ波回路モジュール及びそれを用いたミリ波送受信機
JP2012182682A (ja) 高周波装置及び高周波モジュール
JP2004153179A (ja) 半導体装置および電子装置
JP2004297465A (ja) 高周波用パッケージ
JP2013110299A (ja) 複合モジュール
JP2012182174A (ja) 電子回路、及び、電子回路の製造方法
EP4312470A1 (en) Component carrier with signal conductive element and shielding conductive structure
EP2471351B1 (en) A microwave unit and method therefore
WO2021006037A1 (ja) 伝送線路、および電子機器
JP2007235149A (ja) 半導体装置および電子装置
JP2003332811A (ja) マイクロ波集積回路及びその製造方法並びに無線装置
JP2022083669A (ja) 無線通信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506992

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13636576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759349

Country of ref document: EP

Kind code of ref document: A1