WO2010023777A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2010023777A1
WO2010023777A1 PCT/JP2009/000787 JP2009000787W WO2010023777A1 WO 2010023777 A1 WO2010023777 A1 WO 2010023777A1 JP 2009000787 W JP2009000787 W JP 2009000787W WO 2010023777 A1 WO2010023777 A1 WO 2010023777A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
type nitride
semiconductor portion
light emitting
axis
Prior art date
Application number
PCT/JP2009/000787
Other languages
English (en)
French (fr)
Inventor
島村隆之
小野雅行
谷口麗子
佐藤栄一
小田桐優
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010526486A priority Critical patent/JP5210387B2/ja
Priority to US13/061,052 priority patent/US8309985B2/en
Publication of WO2010023777A1 publication Critical patent/WO2010023777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Definitions

  • the present invention relates to a direct current drive type electroluminescent device using nitride semiconductor light emitting particles having a wurtzite crystal structure.
  • GaN-based semiconductors typified by gallium nitride (GaN), indium nitride / gallium mixed crystal (InGaN), aluminum nitride / gallium mixed crystal (AlGaN) or indium nitride / aluminum / gallium mixed crystal (InAlGaN) as typical semiconductor materials Is attracting attention, and its research and development is actively underway.
  • Such a GaN-based semiconductor has been conventionally produced as a single crystal thin film by growing on a substrate using a MOCVD (Metal Organic Chemical Vapor Deposition) method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • organic EL is another candidate for a light-emitting element that operates by direct current.
  • Organic EL can be manufactured at low cost because it can use an inexpensive process such as vapor deposition and can use an inexpensive substrate such as glass.
  • the reliability of organic EL is a problem.
  • an inorganic light-emitting material is handled as particles instead of a thin film, and the light-emitting elements are formed by arranging the particles.
  • the merit of the above means is that, for an inorganic thin film type direct current light emitting device, an inorganic light emitter can be generated without being affected by a substrate or the like, so that crystallinity can be increased and a large screen can be easily formed.
  • organic EL there is an advantage that reliability can be improved because an inorganic substance can be used for the light emitter.
  • an example in which inorganic light-emitting particles are arranged to constitute a light-emitting element has been proposed (for example, see Patent Document 1).
  • a light emitting layer made of another nitride semiconductor exists on the surface of a nitride semiconductor serving as a nucleus, and a nitride semiconductor layer is laminated on the light emitting layer, and these nitride semiconductor-light emitting layer A technique is disclosed in which the nitride semiconductor layer forms a quantum well structure.
  • an object of the present invention is to provide a light-emitting element that improves the light-emitting efficiency of the light-emitting particles, has high light-emitting efficiency, and can easily increase the area.
  • a light emitting device includes a pair of anode and cathode facing each other, A plurality of luminescent particles sandwiched between the pair of anode and cathode from a direction perpendicular to the main surface of the anode and the cathode;
  • the light emitting particles are nitride semiconductor light emitting particles having a wurtzite crystal structure including an n-type nitride semiconductor portion and a p-type nitride semiconductor portion, wherein the n-type nitride semiconductor portion is in contact with the cathode, The p-type nitride semiconductor portion is in contact with the anode;
  • the c-axis in each crystal structure is parallel to each other, and the n-type nitride semiconductor portion and the p-type nitride semiconductor portion are They are in contact with each other on a
  • the light emitting particles may be provided with an insulating film on the n-type nitride semiconductor portion, and a portion of the insulating film may be removed to expose a surface parallel to the c-axis of the n-type nitride semiconductor portion.
  • the p-type nitride semiconductor portion may be grown.
  • the luminescent particles are provided with an insulating film on the p-type nitride semiconductor portion, and a part of the insulating film is removed to expose a surface parallel to the c-axis of the p-type nitride semiconductor portion.
  • the n-type nitride semiconductor portion may be grown.
  • the luminescent particles may be arranged such that the c-axis in the crystal structure of the n-type nitride semiconductor portion and the p-type nitride semiconductor portion is parallel to the main surfaces of the anode and the cathode. .
  • the light emitting particles have the following lengths in the direction parallel to the c-axis common to the n-type nitride semiconductor portion and the p-type nitride semiconductor portion, and the shortest width of the bottom surface perpendicular to the c-axis. Relational expression (particle length in c-axis direction) / (shortest width of bottom surface perpendicular to c-axis direction) ⁇ 2 May be satisfied.
  • the n-type nitride semiconductor portion and the p-type nitride semiconductor portion are included in one light-emitting particle, light emission is facilitated by the combination of electrons and holes. Will improve.
  • the n-type nitride semiconductor portion and the p-type nitride semiconductor portion have the c-axis of each crystal structure parallel to each other, and the n-type nitride semiconductor portion and the p-type nitride are The semiconductor portions are in contact with each other on a plane parallel to the c-axis. Therefore, all the current paths in the luminescent particles can be perpendicular to the c-axis, and high-efficiency light emission can be obtained. As a result, a light-emitting element with high light-emitting efficiency can be obtained.
  • the light emitting particles are provided with an insulating film on the n-type nitride semiconductor portion, and a part of the insulating film is removed to expose a surface parallel to the c-axis of the n-type nitride semiconductor portion.
  • a physical semiconductor portion may be grown.
  • an insulating film is provided on the p-type nitride semiconductor portion, a part of the insulating film is removed to expose a surface parallel to the c-axis of the p-type nitride semiconductor portion, and an n-type nitride semiconductor portion is grown. May be configured.
  • the growth surface and the nitride semiconductor portion to be grown can be made into a nitride semiconductor having the same wurtzite crystal structure, and it becomes possible to suppress strain and dislocation during growth, resulting in higher luminous efficiency. Luminescent particles can be obtained.
  • the side surfaces of the luminescent particles are brought into contact with one of the electrodes. This makes it easier to increase the light emission luminance.
  • FIG. 1 It is a schematic block diagram of the light emitting element which concerns on Embodiment 1 of this invention. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is a figure which shows 1 process of the manufacturing process of the light emitting element which concerns on this Embodiment 1.
  • FIG. It is the schematic which shows the structure of the HVPE apparatus for manufacturing the luminescent particle which concerns on this Embodiment 1.
  • FIG. 1 shows a schematic configuration of the light emitting element according to Embodiment 1 of the present invention.
  • a lower electrode 20 luminescent particles 50, an upper electrode 30, and an upper substrate 40 are disposed in this order on a lower substrate 10.
  • FIG. 1 shows a minimum configuration for emitting light, and other members may be further provided.
  • the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor portion 53 are included in one light-emitting particle 50, light emission is facilitated by the combination of electrons and holes, so that the light emission efficiency is improved. To do. Further, in one light emitting particle 50, the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor portion 53 have the c-axis of each crystal structure parallel to each other, and the n-type nitride semiconductor portion 52 and The p-type nitride semiconductor portion 53 is in contact with each other on a plane parallel to the c-axis. Therefore, all the current paths in the luminescent particles 50 can be made perpendicular to the c-axis, and high-efficiency light emission can be obtained. As a result, a light-emitting element with high light-emitting efficiency can be obtained.
  • the materials of the lower substrate 10 and the upper substrate 40 are not particularly limited. However, when growing the semiconductor in the light emitting particles using the lower substrate 10, it is necessary to select a substrate that can withstand the semiconductor growth process. In order to extract light emitted from the light emitting layer, it is desirable to select a light transmissive material for either the lower substrate 10 or the upper substrate 40. In addition, both substrates are not necessarily required as long as the shape as a light emitting element can be maintained.
  • the material of the lower electrode 20 and the upper electrode 30 is not particularly limited as long as the material is conductive. However, when a semiconductor in the luminescent particles is grown on the lower electrode 20, it is necessary to select a substrate that can withstand the process. . However, it is desirable to use a material having a low work function such as aluminum, magnesium or silver as the material used on the cathode side, and a material having a high work function such as gold or ITO is preferable as the material used on the anode side.
  • the electrode on the light extraction side is preferably a light transmissive material.
  • a non-light transmissive material it is desirable to have a film thickness of 100 nm or less in order to transmit light as much as possible.
  • a conductive substrate such as a Si substrate or a metal substrate doped with other elements
  • the substrate itself can be used as an electrode, so that it is not always necessary to provide a separate electrode.
  • either of the electrodes has flexibility. Since the size of the luminescent particles 50 varies, if one of the electrodes is not a flexible electrode, there are many particles that cannot contact the two electrodes and do not emit light, resulting in a decrease in luminance of the light-emitting element. Invite.
  • the luminescent particles 50 and the electrodes 20 and 30 are in direct contact with each other, but may be in contact with each other through a conductor or a semiconductor.
  • the light emitting particle 50 includes a nucleus 51, an n-type nitride semiconductor portion 52, a p-type nitride semiconductor portion 53, and an insulating film 54. This shows a minimum configuration, and other members may be further arranged.
  • a semiconductor layer having a narrower band gap than the n-type nitride semiconductor 52 and the p-type nitride semiconductor 53 is provided at the interface between the n-type nitride semiconductor 52 and the p-type nitride semiconductor 53 to form a double hetero structure.
  • a buffer layer for promoting growth may be provided at the interface between the nucleus 51 and the semiconductor layer.
  • the n-type nitride semiconductor 52 and the p-type nitride semiconductor 53 are grown around the nucleus 51, but the growth position is not particularly limited, and may be partially grown around the nucleus 51.
  • the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor portion 53 may be in direct contact with each other in a plane parallel to the c-axis, or may be in electrical contact via a conductor or semiconductor.
  • the nucleus 51 is necessary for growing the n-type nitride semiconductor portion 52 or the p-type nitride semiconductor portion 53, and preferably has a wurtzite structure, and has a lattice constant as much as possible with the nitride semiconductor to be grown. Closer is better.
  • the semiconductor material to be grown is GaN, for example, sapphire, ZnO, AlN, and the like are listed as candidates for the nuclear material.
  • the core 51 may naturally be the same material as the semiconductor material to be grown.
  • Each of the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor portion 53 is a nitride semiconductor having a wurtzite crystal structure.
  • the nitride semiconductor wurtzite type crystal structure for example, AlN, GaN, InN, Al x Ga (1-x) N, etc. In y Ga (1-y) N and the like.
  • Each semiconductor portion is preferably a single crystal, and a vapor phase growth method is preferable as a means for generating the single crystal.
  • Examples of growth means using vapor phase growth include a halide vapor phase growth (HVPE) method and a metal organic vapor phase growth (MOCVD) method.
  • HVPE halide vapor phase growth
  • MOCVD metal organic vapor phase growth
  • a semiconductor growth method using vapor phase growth particles serving as nuclei are arranged on a substrate, heated to a required temperature, and then a source gas is flowed to grow the semiconductor on the nuclei on the substrate.
  • an n-type semiconductor can be formed by doping Si.
  • the characteristics of an n-type semiconductor are exhibited even when not doped.
  • the characteristics of the p-type semiconductor are exhibited by doping Mg.
  • the insulating film 54 is not necessarily required, but it is desirable to be present at a part of the interface between the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor 53.
  • the insulating film 54 is not necessarily required, but it is desirable to be present at a part of the interface between the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor 53.
  • crystals grow from various locations in the plane of the substrate, but crystals that grow in the horizontal direction with respect to the substrate interfere with each other and often cause dislocations. .
  • an insulator on which a crystal does not grow on the substrate, growth is not inhibited, so that dislocations can be reduced.
  • the insulating film 54 is provided so as to cover the n-type nitride semiconductor portion 52 or the p-type nitride semiconductor portion 53, and the insulating film is exposed so that only a part of the plane parallel to the c-axis is exposed. A portion of 54 is removed. By exposing only a part of the surface parallel to the c-axis as the growth surface, it is possible to suppress the growth in the horizontal direction on the growth surface and to suppress the inhibition of the growth of the entire crystal.
  • the material of the insulating film 54 include Al 2 O 3 , SiO 2 , TiO 2 , and BaTiO 3 .
  • the means for manufacturing the light emitting element is not limited, but an example thereof will be described with reference to FIGS. 2a to 2j.
  • a growth mask 62 is formed on a growth substrate 61 for growing luminescent particles as shown in FIG.
  • the growth substrate 61 at this time needs to be able to withstand the process of forming the n-type nitride semiconductor portion 52 and the p-type nitride semiconductor portion 53 to be formed later.
  • HVPE halide vapor phase epitaxy
  • MOCVD metal organic vapor phase epitaxy
  • a substrate on which a GaN semiconductor is epitaxially grown in the c-axis direction is preferable.
  • materials include a sapphire substrate with a plane orientation (0, 0, 0, 1), a plane orientation (1, 1, 1) silicon substrate, and the like.
  • the growth mask 62 may be made of any material that can withstand the nucleation process and is easy to remove. Examples include SiO 2 and the like.
  • the method of forming the hole portion of the growth mask 62 includes a method of forming by a lift-off method using a photoresist material, a method of directly forming other than the hole portion by using an ink jet method or the like, and a hole using a forming mask. For example, a method of directly forming the portion other than the portion.
  • nuclei 51 are formed.
  • the means for generating the nuclear material is not particularly limited, but a sputtering method, a halide vapor deposition (HVPE) method, a metal organic chemical vapor deposition (MOCVD) method, or the like is preferable.
  • the mask 62 is removed as shown in FIG. In the process of removing the mask 62 at this time, it is necessary to use means that does not affect the nucleus 51.
  • the nucleus 51 may be formed directly on the growth substrate 61 without using a growth mask. For example, if the means introduced in non-patent literature (Jpn. J. Appl. Phys. Vol.
  • n-type nitride semiconductor portion 52 is formed on the nucleus 51 as shown in FIG.
  • the means is preferably a halide vapor phase epitaxy (HVPE) method or a metal organic vapor phase epitaxy (MOCVD) method as described above.
  • HVPE halide vapor phase epitaxy
  • MOCVD metal organic vapor phase epitaxy
  • E As shown in FIG. 2 e, the particles in which the n-type nitride semiconductor portion 52 is formed on the nucleus 51 are separated from the growth substrate 61.
  • a means for separating for example, a mechanical means such as a means for applying vibration or a means for scraping off with a sharp object, or a chemical means such as dissolving a substrate may be used.
  • particles including the nucleus 51 and the n-type nitride semiconductor portion 52 are arranged on the lower substrate 10 including the lower electrode 20.
  • the particles it is more desirable to vibrate the lower substrate 10 because the longitudinal direction of each particle, that is, the c-axis direction is easily oriented parallel to the surface.
  • an insulating film 54 is formed on the particles.
  • the forming means is not particularly limited, and for example, a sputtering method can be mentioned.
  • H Further, as shown in FIG. 2h, a part of the insulating film 54 is removed. In this case, the surface parallel to the c-axis of the particles is exposed.
  • the means for removing the insulating film 54 is not limited, and examples thereof include a mechanical polishing method, a wet etching method, and a dry etching method.
  • I As shown in FIG.
  • a p-type nitride semiconductor portion 53 is formed on a surface parallel to the c-axis of the n-type nitride semiconductor portion 52 that is exposed by removing a part of the insulating film 54.
  • the halide vapor phase epitaxy (HPVE) method, the organometallic vapor phase epitaxy (MOCVD) method or the like is preferable as described above. In these processes, when the p-type nitride semiconductor portion is formed, both the lower electrode 20 and the lower substrate 10 must have heat resistance of 1000 ° C. or higher in an NH 3 atmosphere.
  • Examples of the material of the lower substrate 10 include a sapphire substrate and a silicon substrate, and examples of the material of the lower electrode 20 include molybdenum and tantalum. (J) Thereafter, the upper electrode 30 and the upper substrate 40 are sequentially disposed as shown in FIG.
  • Example 1 A method for manufacturing the light emitting device according to Example 1 will be described below.
  • a 2-inch (5.08 cm) sapphire substrate having a plane orientation (0, 0, 0, 1) is used as a growth substrate.
  • a SiO 2 film having a thickness of 10 ⁇ m was formed on the sapphire substrate using a sputtering method through a formation mask. The diameter of the hole was 2 ⁇ m.
  • the target was formed by sputtering using an SiO 2 target in an Ar gas atmosphere.
  • An AlN film was formed thereon as a nucleus by a sputtering method. The target was formed by sputtering using an Al target in an N 2 gas atmosphere.
  • AlN grew in the c-axis direction and had a thickness of 10 ⁇ m.
  • C The growth substrate on which the growth mask and nuclei were formed was immersed in a 3% aqueous hydrofluoric acid solution to remove the growth mask.
  • a non-doped GaN layer was formed as an n-type nitride semiconductor layer on a growth substrate on which only nuclei were formed, using a halide vapor phase epitaxy (HVPE) method. Details will be described below with reference to FIG.
  • HVPE halide vapor phase epitaxy
  • the particle bottom width was 6 ⁇ m
  • the particle height was 12 ⁇ m.
  • E After forming the n-type nitride semiconductor layer, mechanical growth is applied to the growth substrate, and particles having nuclei and n-type nitride semiconductor are taken out of the growth substrate and boron-doped n-type Si substrate Arranged while applying mechanical vibration on the top. At this time, the n-type Si substrate serves as a lower substrate and a lower electrode.
  • n-type Si substrate on which particles having nuclei and an n-type nitride semiconductor were disposed was attached to a sputtering apparatus, and an Al 2 O 3 film was formed as an insulating film by a sputtering method.
  • the target was formed by using an Al 2 O 3 target and performing sputtering in Ar gas. The thickness was 0.2 ⁇ m.
  • Ar plasma was generated on the substrate side in the sputtering apparatus, and the surface of the insulating film was dry etched. As a result, a part of the surface parallel to the c-axis of the n-type nitride semiconductor was exposed.
  • the n-type Si substrate on which the particles having the nucleus, the n-type nitride semiconductor, and the insulating film are arranged is taken out and attached again to the HVPE apparatus, and parallel to the exposed c-axis of the n-type nitride semiconductor
  • a p-type nitride semiconductor layer was formed on a smooth surface. This will also be described with reference to FIG.
  • HCl was supplied at 3 cc / min and N 2 was supplied at 250 cc / min, and Ga metal 75 was disposed in the middle.
  • the gas line B73 was provided with MgCl 2 powder 76, and N 2 gas was supplied at 250 cc / min.
  • Example 2 a light-emitting element was produced in the same manner as in Example 1 except that an insulating film of luminescent particles was not formed.
  • the luminance was 520 cd / m 2 and the light emission efficiency was 1.11 m / W.
  • Example 1 Compared to Example 2, the thickness of the SiO 2 film that is the formation mask is changed to 1 ⁇ m, the diameter of the hole is changed to 2 ⁇ m, and the thickness of the AlN film that is the nucleus is changed to 1 ⁇ m. No mechanical vibration was applied when the particles having the above were taken out and placed on an n-type Si substrate doped with boron. As a result, most of the luminescent particles had the c-axis of the luminescent particles perpendicular to the substrate. When this light emitting element was made to emit light by applying a voltage in the same manner as the light emitting element of Example 1, the luminance was 320 cd / m 2 and the luminous efficiency was 0.6 lm / W.
  • Comparative Example 2 A light emitting device was produced in the same manner as in Comparative Example 1 except that the p-type semiconductor layer of the light emitting particles was not formed, but an n-type semiconductor layer was formed to 4 ⁇ m. Similarly, when a light was applied to the light emitting element to emit light, the luminance was 80 cd / m 2 and the light emission efficiency was 0.15 lm / W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 発光素子は、互いに対向する一対の陽極と陰極と、前記一対の陽極と陰極との間に、前記陽極及び前記陰極の主面に垂直な方向から挟持され、複数の発光粒子で構成された発光層と、を備え、前記発光粒子は、n型窒化物半導体部分とp型窒化物半導体部分とを含むウルツ型結晶構造を有する窒化物半導体発光粒子であって、前記n型窒化物半導体部分が陰極と接しており、前記p型窒化物半導体部分が陽極と接していると共に、前記n型窒化物半導体部分と前記p型窒化物半導体部分とは、それぞれの結晶構造におけるc軸が互いに平行であって、前記n型窒化物半導体部分と前記p型窒化物半導体部分とは、前記c軸と平行な面で互いに接している。

Description

発光素子
 本発明は、ウルツ型結晶構造を有する窒化物半導体発光粒子を用いた直流電流駆動型の電界発光素子に関する。
 直流電流により動作する発光素子の中でも、特に、青色発光ダイオード(Blue-LED;Blue Light Emitting Diode)、紫外発光ダイオード(UV-LED;Ultra-Violet Light  Emitting Diode)などの発光素子に使用される実用的な半導体材料として、窒化ガリウム(GaN),窒化インジウム・ガリウム混晶(InGaN),窒化アルミニウム・ガリウム混晶(AlGaN)あるいは窒化インジウム・アルミニウム・ガリウム混晶(InAlGaN)に代表されるGaN系半導体が注目されており、その研究開発が活発に行われている。
 このようなGaN系半導体は、従来、MOCVD(Metal Organic Chemical Vapor Deposition;有機金属化学気相成長)法を用いて基板上に成長させることにより単結晶薄膜として作製されている。しかしながら、MOCVD法によりGaN系半導体の単結晶薄膜を大面積で生成することは極めて困難である。
 一方、直流電流により動作する発光素子のもう一つの候補として、有機ELが挙げられる。有機ELは蒸着法など安価なプロセスを用いることができ、かつガラス等安価な基板を使用できるため安価に製造できるメリットがある。しかしながら、有機ELは信頼性が問題になっている。
 このため、無機発光体を薄膜ではなく粒子として取り扱い、粒子を並べることにより発光素子とする手段が提案されている。前記手段のメリットとしては、無機薄膜型直流発光素子に対して、無機発光体を基板等の影響を受けずに生成できるため結晶性を高くできることや、大画面化が容易であることがあげられ、有機ELに対しては、発光体に無機物を使用できるため信頼性を向上できるという利点がある。例えば、無機発光体粒子を並べて発光素子を構成する例が提案されている(例えば、特許文献1参照。)。この特許文献1では、核となる窒化物半導体の表面に他の窒化物半導体からなる発光層が存在し、該発光層の上に窒化物半導体層が積層され、これらの窒化物半導体-発光層-窒化物半導体層が量子井戸構造を形成している技術が開示されている。
特開2006-117735号公報
 しかしながら、上記特許文献1に記載の従来技術による発光体粒子を用いて電界発光素子を作成しても発光効率が低いという課題がある。その理由は2つある。一つは、電子線照射もしくは紫外線照射により発光体を励起するため、p型半導体が存在せず、電子と正孔の再結合による発光が起きにくいためである。もう一つは、従来技術では発光体内の電流パスを規定していないため、低発光効率の電流パスと高発光効率の電流パスの2つが混在し、その結果、発光素子としての効率が低いためである。ウルツ型の結晶構造を持つ発光体に電流を流して発光させる場合、電流パスがc軸方向に平行な場合より、c軸に対して垂直な方がより効率が良い。これは、電流パスがc軸方向に平行な場合には、極性の影響を受け発光に使うエネルギーの一部をロスしてしまうためである。よって高効率に発光させるためには、電流パスがc軸に対して垂直方向のみにすることが望ましい。
 そこで本発明の目的は、発光粒子の発光効率を向上させ、発光効率が高く、大面積化が容易な発光素子を提供することである。
 本発明に係る発光素子は、互いに対向する一対の陽極と陰極と、
 前記一対の陽極と陰極との間に、前記陽極及び前記陰極の主面に垂直な方向から挟持された複数の発光粒子と、
を備え、
 前記発光粒子は、n型窒化物半導体部分とp型窒化物半導体部分とを含むウルツ型結晶構造を有する窒化物半導体発光粒子であって、前記n型窒化物半導体部分が陰極と接しており、前記p型窒化物半導体部分が陽極と接していると共に、
 前記n型窒化物半導体部分と前記p型窒化物半導体部分とは、それぞれの結晶構造におけるc軸が互いに平行であって、前記n型窒化物半導体部分と前記p型窒化物半導体部分とは、前記c軸と平行な面で互いに接していることを特徴とする。
 また、前記発光粒子は、前記n型窒化物半導体部分の上に絶縁膜を設け、前記絶縁膜の一部を除去して前記n型窒化物半導体部分のc軸に平行な面を露出させて、前記p型窒化物半導体部分を成長させて構成されていてもよい。
 さらに、前記発光粒子は、前記p型窒化物半導体部分の上に絶縁膜を設け、前記絶縁膜の一部を除去して前記p型窒化物半導体部分のc軸に平行な面を露出させて、前記n型窒化物半導体部分を成長させて構成されていてもよい。
 またさらに、前記発光粒子は、前記n型窒化物半導体部分と前記p型窒化物半導体部分の結晶構造におけるc軸が前記陽極及び前記陰極の主面に平行となるように配置されていてもよい。
 また、前記発光粒子は、前記n型窒化物半導体部分と前記p型窒化物半導体部分とにおいて共通する前記c軸に平行な方向についての長さと、前記c軸に垂直な底面の最短幅について下記関係式
(c軸方向の粒子長さ)/(c軸方向に垂直な底面の最短幅)≧2
を満たしてもよい。
 本発明に係る発光素子によれば、一つの発光粒子内にn型窒化物半導体部分とp型窒化物半導体部分とを有することにより、電子と正孔の結合により発光しやすくなるため、発光効率が向上する。
 また、一つの発光粒子内で、n型窒化物半導体部分とp型窒化物半導体部分とが、それぞれの結晶構造のc軸が互いに平行であって、n型窒化物半導体部分とp型窒化物半導体部分とがc軸と平行な面で互いに接している。そのため、発光粒子内での電流パスを全てc軸に対して垂直方向とすることができ、高効率発光が得られ、その結果、発光効率の高い発光素子が得られる。
 また、上記発光粒子は、n型窒化物半導体部分の上に絶縁膜を設け、絶縁膜の一部を除去してn型窒化物半導体部分のc軸に平行な面を露出させ、p型窒化物半導体部分を成長させて構成してもよい。あるいはp型窒化物半導体部分の上に絶縁膜を設け、絶縁膜の一部を除去してp型窒化物半導体部分のc軸に平行な面を露出させ、n型窒化物半導体部分を成長させて構成してもよい。これにより、成長面と成長させる窒化物半導体部分とを同じウルツ型の結晶構造を有する窒化物半導体とすることができ、成長時の歪や転位を抑えることが可能になり、より発光効率の高い発光粒子にすることができる。
 また、上記発光粒子として、(c軸方向の粒子長さ)/(c軸方向に垂直な底面の最短幅)を2以上とすることによって、発光粒子の側面がいずれか一方の電極にコンタクトさせやすくなり、発光輝度を高めることが出来る。
本発明の実施の形態1に係る発光素子の概略構成図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光素子の製造プロセスの一プロセスを示す図である。 本実施の形態1に係る発光粒子を製造するためのHVPE装置の構成を示す概略図である。
符号の説明
10 下部基板
20 下部電極
30 上部電極
40 上部基板
50 発光粒子
51 核
52 n型半導体
53 p型半導体
54 絶縁膜
61 成長用基板
62 成長用マスク
71 反応炉
72 ガスラインA
73 ガスラインB
74 ガスラインC
75 Ga金属
76 MgCl
77 基板ホルダ
 本発明の実施の形態に係る発光素子について、添付図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。
(実施の形態1)
 図1は、本発明の実施の形態1に係る発光素子の概略構成を表すものである。この発光素子は、下部基板10の上に下部電極20、発光粒子50、上部電極30、上部基板40が順に配設されている。なお、図1は発光させるにあたって最低限の構成を示しており、他の部材がさらに配設されていてもよい。
 この発光素子では、一つの発光粒子50内にn型窒化物半導体部分52とp型窒化物半導体部分53とを有することにより、電子と正孔の結合により発光しやすくなるため、発光効率が向上する。また、一つの発光粒子50内で、n型窒化物半導体部分52とp型窒化物半導体部分53とが、それぞれの結晶構造のc軸が互いに平行であって、n型窒化物半導体部分52とp型窒化物半導体部分53とがc軸と平行な面で互いに接している。そのため、発光粒子50内での電流パスを全てc軸に対して垂直方向とすることができ、高効率発光が得られ、その結果、発光効率の高い発光素子が得られる。
 以下、この発光素子を構成する各構成部材について説明する。
<下部基板及び上部基板>
 下部基板10および上部基板40の材料は特に限定されないが、下部基板10を用いて発光粒子中の半導体を成長させる場合は、半導体成長プロセスに耐えうる基板を選択する必要がある。また、発光層からの発光を取り出すために下部基板10もしくは上部基板40のいずれかは光透過性の材料を選択することが望ましい。また、発光素子としての形を維持できれば、必ずしも両方の基板を必要としない。
<下部電極及び上部電極>
 下部電極20および上部電極30の材料も導電性があれば特には問われないがが、下部電極20上に発光粒子中の半導体を成長させる場合は、プロセスに耐えうる基板を選択する必要がある。ただし、陰極側に用いる材料はアルミニウム、マグネシウム、銀などの仕事関数の低い材料を用いることが望ましく、陽極側に用いる材料は、金やITOなど仕事関数の高い材料が好ましい。
 また、光を取り出す側の電極は光透過性材料であることが好ましく、光透過性でない材料を用いる場合は発光をできるかぎり透過させるために100nm以下の膜厚にすることが望ましい。なお、基板に他元素をドーピングしたSi基板や金属基板などの導電性基板を使用している場合は、基板自体を電極として利用できるので、別に電極を設けることは必ずしも必要としない。また、電極のうちのどちらかは柔軟性を持つことが望ましい。発光粒子50の大きさにはばらつきがあるため、どちらか一方の電極が柔軟性電極でないと両電極にコンタクトできず発光しない粒子が多数存在するようになってしまい、結果として発光素子の輝度低下を招く。なお、ここでは発光粒子50と各電極20、30とは直接接しているが、導体もしくは半導体を介して接していても良い。
<発光粒子>
 発光粒子50は、核51、n型窒化物半導体部分52、p型窒化物半導体部分53、絶縁膜54から構成されている。これは最低限の構成を示しており、他の部材がさらに配設されていてもよい。例えば、n型窒化物半導体52とp型窒化物半導体53との界面にn型窒化物半導体52およびp型窒化物半導体53よりもバンドギャップの狭い半導体層を設けてダブルへテロ構造にしてもよい。他には、核51と半導体層の界面に成長を促進するためのバッファ層を設けてもよい。また、n型窒化物半導体52およびp型窒化物半導体53を核51のまわりに成長させるが、成長位置は特に限られるものではなく、核51の周りに部分的に成長させてもよい。n型窒化物半導体部分52とp型窒化物半導体部分53はc軸に対して平行な面において直接接しているか、あるいは導体若しくは半導体を介して電気的に接していればよい。
 <核>
 核51は、n型窒化物半導体部分52もしくはp型窒化物半導体部分53を成長させるために必要なものであり、ウルツ型構造であることが望ましく、成長させる窒化物半導体と格子定数が出来るだけ近い方がよい。成長させる半導体材料が、例えばGaNである場合には、サファイア、ZnO、AlNなどが核材料の候補として挙げられる。また、核51は、当然に成長させる半導体材料と同一材料であってもよい。
 <n型窒化物半導体部分及びp型窒化物半導体部分>
 n型窒化物半導体部分52およびp型窒化物半導体部分53は、それぞれウルツ型結晶構造の窒化物半導体である。ウルツ型結晶構造の窒化物半導体としては、例えば、AlN、GaN、InN、AlGa(1-x)N、InGa(1-y)Nなどが挙げられる。各半導体部分は単結晶体であることが好ましく、単結晶体を生成する手段としては気相成長法が好ましい。気相成長を用いた成長手段としては、ハライド気相成長(HVPE)法、有機金属気相成長(MOCVD)法などが挙げられる。気相成長を用いた半導体の成長方法では、核となる粒子を基板上に配置し、所要温度まで加熱した後に原料ガスを流して基板上の核の上に半導体を成長させる。n型半導体にする場合には、Siをドープすることによりn型半導体にすることも可能である。なお、窒化物半導体の場合はノンドープでもn型半導体の特性を示す。一方、p型半導体にする場合には、Mgをドープすることによりp型半導体の特性を示す。
 <絶縁膜>
 絶縁膜54は、必ずしも必要なものではないが、n型窒化物半導体部分52とp型窒化物半導体53との界面の一部に存在させることが望ましい。一般的にエピタキシャル成長させる際には、基板の面内の様々な場所から結晶が成長するが、基板に対して水平方向に成長する結晶同士が成長を阻害しあい、その結果として転位を生じることが多い。前記課題を解決するために、基板上に結晶が成長しない絶縁物を介在させることにより、成長が阻害されなくなるため、転位を減少させることができる。ここでは、絶縁膜54は、n型窒化物半導体部分52又はp型窒化物半導体部分53の上を覆うように設けられ、そのc軸に平行な面の一部のみを露出させるように絶縁膜54の一部が除去される。成長面としてc軸に平行な面の一部のみを露出させることによって、成長面に水平方向の成長を抑制でき、結晶全体の成長が阻害されることを抑制できる。絶縁膜54の材料としてはAl、SiO、TiO、BaTiOなどが挙げられる。
<発光素子の製造方法>
 発光素子の製造プロセスに関しても手段は限定されないが、その一例を図2a-図2jを用いて説明をする。
(a)発光粒子を成長させるための成長用基板61上に、成長用マスク62を図2aに示すように形成する。この時の成長用基板61は、後に形成されるn型窒化物半導体部分52やp型窒化物半導体部分53を形成するプロセスに耐えうるものであることが必要である。また、ハライド気相成長(HVPE)法や有機金属気相成長(MOCVD)法を用いる場合は、NH雰囲気にて1000℃以上の耐熱性を持つことが必要である。さらに、GaN半導体がc軸方向にエピタキシャル成長する基板が好ましい。材料例としては、面方位(0,0,0,1)のサファイア基板、面方位(1,1,1)シリコン基板等が挙げられる。
 成長用マスク62の材料も、核形成プロセスに耐え、かつ除去しやすいものであればよい。例としてはSiOなどが挙げられる。また成長用マスク62の孔の部分の形成方法は、フォトレジスト材を用いてリフトオフ法で形成する方法、インクジェット法等を用いて孔部以外を直接形成する方法、形成用マスクを使用して孔部以外を直接形成する方法などが挙げられる。
(b)次いで、図2bに示すように核51を形成する。核材料を生成する手段は特に限定されないが、スパッタリング法、ハライド気相成長(HVPE)法や有機金属気相成長(MOCVD)法などが好ましい。
(c)その後、図2cに示すようにマスク62を除去する。この時のマスク62を除去するプロセスにおいて、核51に影響を与えない手段を用いる必要がある。あるいは、成長用マスクを用いることなく成長用基板61上に、核51を直接に林立させるように形成してもよい。例えば、非特許文献(Jpn. J. Appl. Phys. Vol.38 (1999) pp6873-6877)にて紹介されている手段を用いれば、核51となるZnOを基板61上に直接に林立して形成できる。
(d)その後、図2dに示すように核51の上にn型窒化物半導体部分52を形成する。その手段は、前述のようにハライド気相成長(HVPE)法や有機金属気相成長(MOCVD)法などが好ましい。
(e)図2eに示すように、核51の上にn型窒化物半導体部分52が形成された粒子を成長用基板61から分離する。分離する手段としては、例えば、振動を与える手段や鋭利な物を用いてそぎ落とす手段などの機械的手段もしくは、基板を溶解させる等の化学的手段を用いればよい。
(f)次に、図2fに示すように、下部電極20を備えた下部基板10上に、核51とn型窒化物半導体部分52とを備えた粒子を並べる。このとき、基板10の面に対して粒子のc軸が平行になるように並べることが好ましい。このために、発光粒子の(c軸方向の粒子長さ)/(c軸方向に垂直な底面の最小幅)(アスペクト比)が2以上であることが望ましい。さらに、粒子を並べる際には下部基板10を振動させると、各粒子の長手方向、つまりc軸方向が面に平行に配向しやすくなるため、なお望ましい。
(g)次いで、図2gに示すように、粒子の上に絶縁膜54を形成する。形成手段は特には問わないが、例えばスパッタリング法が挙げられる。
(h)さらに、図2hに示すように絶縁膜54の一部を除去する。この場合、粒子のc軸に平行な面が露出するようにする。絶縁膜54の除去方法についても手段は限定されないが、例えば、機械研磨法、ウェットエッチング法、ドライエッチング法などが挙げられる。
(i)図2iに示すように、絶縁膜54の一部を除去して露出させたn型窒化物半導体部分52のc軸に平行な面の上にp型窒化物半導体部分53を形成させる。p型窒化物半導体部分53の形成手段としては、前述のようにハライド気相成長(HPVE)法や有機金属気相成長(MOCVD)法などが好ましい。また、それらのプロセスにおいて、p型窒化物半導体部分を形成する場合は、下部電極20、下部基板10ともにNH雰囲気にて1000℃以上の耐熱を持つことが必要である。下部基板10の材料例としては、サファイア基板、シリコン基板等が挙げられ、下部電極20の材料例としては、モリブデン、タンタルなどが挙げられる。
(j)その後、図2jに示すように上部電極30と上部基板40を順に配設して発光素子を得る。
(実施例1)
 以下に実施例1に係る発光素子の製造方法を説明する。
(a)面方位(0,0,0,1)である2インチ(5.08cm)のサファイア基板を成長用基板として用いる。前記サファイア基板上に形成用マスクを介してスパッタリング法を用いてSiO膜を10μmの厚みで形成した。孔部の直径は2μmであった。ターゲットはSiOターゲットを使用し、Arガス雰囲気中で、スパッタリングを行い形成した。
(b)その上に核としてAlN膜をスパッタリング法にて形成した。ターゲットはAlターゲットを使用し、Nガス雰囲気中でスパッタリングを行い形成した。AlNはc軸方向に成長し、その厚みは10μmであった。
(c)成長用マスクと核が形成されている成長用基板を3%フッ酸水溶液に浸漬して、成長用マスクを除去した。
(d)核のみが形成されている成長用基板に、ハライド気相成長(HVPE)法を用いて、n型窒化物半導体層としてノンドープのGaN層を形成した。以下、図3を用いて詳細を説明する。
 ガスラインA72にはHClを3cc/分およびNを250cc/分で流し、途中にGa金属75を配設した。ガスラインB73には何にも流さず、ガスラインC74にはNHを250cc/分流した。また炉内全体にN2を3000cc/分流した。反応炉の温度は1000℃にして2分間成長させて、ノンドープのGaN膜を2μmの膜厚で形成した。この時、粒子底面幅は6μmであり、粒子の高さは12μmであった。
(e)n型窒化物半導体層を形成後、成長用基板に機械的振動を与えて、成長用基板から核とn型窒化物半導体を有する粒子を取り出して、ホウ素をドープしたn型Si基板上に機械的振動を与えながら配設した。この時、n型Si基板は下部基板と下部電極を兼ねている。
(f)核とn型窒化物半導体を有する粒子が配設されているn型Si基板をスパッタリング装置に取り付け、絶縁膜としてAl膜をスパッタリング法にて製膜した。ターゲットはAlターゲットを使用し、Arガス中でスパッタリングを行い形成した。厚みは0.2μmであった。
(g)その後、そのスパッタリング装置内にて、今度は基板側にArプラズマを発生させて、絶縁膜の表面をドライエッチングした。これによってn型窒化物半導体のc軸に平行な面の一部を露出させた。
(h)その後、核とn型窒化物半導体と絶縁膜を有する粒子が配設されているn型Si基板を取り出し、再度HVPE装置に取り付け、n型窒化物半導体の露出させたc軸に平行な面の上にp型窒化物半導体層を形成した。これも図3を用いて説明する。
 ガスラインA72にはHClを3cc/分およびNを250cc/分流し、途中にGa金属75を配設した。ガスラインB73にはMgCl粉末76を配設し、Nガスを250cc/分流した。ガスラインC74にはNHを250cc/分で流した。また炉内全体にNを3000cc/分流した。反応炉の温度は1000℃にして2分間成長させて、MgドープのGaN膜を2μmの膜厚で形成した。反応後は炉内全体にNを3000cc/分流したままま温度を降下させ、700℃に降下させた時点で温度を1時間保持し、その後に再度炉内温度を降下させた。
(i)その後ITOペーストを2μmの厚みで塗布したガラス製の上部基板をペースト面を下にして、下部基板に押し付けて発光素子とした。
(j)上部基板の上側には、ZnS:Cu,Al蛍光体をアクリル樹脂に分散させたペーストを2μm塗布した。
 以上によって発光素子を得た。
 得られた発光素子のSi側を陰極とし、ITOペースト側を陰極として両電極間に15Vの直流電圧をかけて発光させた。この時、発光粒子からは紫外線が発光されるが、ZnS:Cu,Al蛍光体により波長が変換されて緑色の発光が得られた。その輝度は560cd/mであり、発光効率は1.2lm/Wであった。
(実施例2)
 実施例2では、発光粒子の絶縁膜を製膜しない他は実施例1と同様の方法で発光素子を作成した。
 得られた発光素子に実施例1と同様に電圧をかけて発光させたときの輝度は520cd/mであり、発光効率は1.11m/Wであった。
(比較例1)
 実施例2に対して、形成用マスクであるSiO膜の膜厚を1μm、孔部の直径を2μmと変更し、さらに核であるAlN膜の厚みを1μmと変更し、核とn型半導体を有する粒子を取り出して、ホウ素をドープしたn型Si基板上に配設する際には機械的振動を与えなかった。その結果、発光粒子のc軸が基板に対して垂直になっている発光粒子が大半を占めた。
 この発光素子に実施例1の発光素子と同様に電圧をかけて発光させたときの輝度は320cd/mであり、発光効率は0.6lm/Wであった。
(比較例2)
 比較例1に対して、発光粒子のp型半導体層を製膜しないかわりに、n型半導体層を4μm製膜させた他は比較例1と同様にして発光素子を作成した。
 発光素子に同様に電圧をかけて発光させたときの輝度は80cd/mであり、発光効率は0.15lm/Wであった。
 本発明によれば、発光効率が高く大面積化の容易な発光素子を提供することができる。

Claims (5)

  1.  互いに対向する一対の陽極と陰極と、
     前記一対の陽極と陰極との間に、前記陽極及び前記陰極の主面に垂直な方向から挟持された複数の発光粒子と、
    を備え、
     前記発光粒子は、n型窒化物半導体部分とp型窒化物半導体部分とを含むウルツ型結晶構造を有する窒化物半導体発光粒子であって、前記n型窒化物半導体部分が陰極と接しており、前記p型窒化物半導体部分が陽極と接していると共に、
     前記n型窒化物半導体部分と前記p型窒化物半導体部分とは、それぞれの結晶構造におけるc軸が互いに平行であって、前記n型窒化物半導体部分と前記p型窒化物半導体部分とは、前記c軸と平行な面で互いに接していることを特徴とする発光素子。
  2.  前記発光粒子は、前記n型窒化物半導体部分の上に絶縁膜を設け、前記絶縁膜の一部を除去して前記n型窒化物半導体部分のc軸に平行な面を露出させて、前記p型窒化物半導体部分を成長させて構成された、請求項1に記載の発光素子。
  3.  前記発光粒子は、前記p型窒化物半導体部分の上に絶縁膜を設け、前記絶縁膜の一部を除去して前記p型窒化物半導体部分のc軸に平行な面を露出させて、前記n型窒化物半導体部分を成長させて構成された、請求項1に記載の発光素子。
  4.  前記発光粒子は、前記n型窒化物半導体部分と前記p型窒化物半導体部分の結晶構造におけるc軸が前記陽極及び前記陰極の主面に平行となるように配置されている、請求項1から3のいずれか一項に記載の発光素子。
  5.  前記発光粒子は、前記n型窒化物半導体部分と前記p型窒化物半導体部分とにおいて共通する前記c軸に平行な方向についての長さと、前記c軸に垂直な底面の最短幅について下記関係式
    (c軸方向の粒子長さ)/(c軸方向に垂直な底面の最短幅)≧2
    を満たすことを特徴とする請求項1から4のいずれか一項に記載の発光素子。
PCT/JP2009/000787 2008-08-29 2009-02-24 発光素子 WO2010023777A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010526486A JP5210387B2 (ja) 2008-08-29 2009-02-24 発光素子
US13/061,052 US8309985B2 (en) 2008-08-29 2009-02-24 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008221271 2008-08-29
JP2008-221271 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023777A1 true WO2010023777A1 (ja) 2010-03-04

Family

ID=41720964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000787 WO2010023777A1 (ja) 2008-08-29 2009-02-24 発光素子

Country Status (3)

Country Link
US (1) US8309985B2 (ja)
JP (1) JP5210387B2 (ja)
WO (1) WO2010023777A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156402B2 (ja) * 2015-02-13 2017-07-05 日亜化学工業株式会社 発光装置
KR102199543B1 (ko) * 2019-06-12 2021-01-07 재단법인대구경북과학기술원 코팅층으로 둘러싸인 발광 입자를 포함하는 무기 전계 발광소자 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512734A (ja) * 1997-02-14 2002-04-23 オーバーマン、デビッド オプトエレクトロニクス半導体ダイオード及びそれを備えた装置
WO2004023569A1 (ja) * 2002-09-06 2004-03-18 Sony Corporation 半導体発光素子およびその製造方法、集積型半導体発光装置およびその製造方法、画像表示装置およびその製造方法ならびに照明装置およびその製造方法
JP2006245564A (ja) * 2005-02-07 2006-09-14 Matsushita Electric Ind Co Ltd 半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
WO2005087892A1 (ja) * 2004-03-12 2005-09-22 Kabushiki Kaisha Toshiba 電界発光蛍光体とその製造方法および電界発光素子
US7285799B2 (en) * 2004-04-21 2007-10-23 Philip Lumileds Lighting Company, Llc Semiconductor light emitting devices including in-plane light emitting layers
JP2006117735A (ja) 2004-10-19 2006-05-11 Toyota Motor Corp 粉末発光体及び発光装置
US7906788B2 (en) * 2004-12-22 2011-03-15 Panasonic Corporation Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element
US7432531B2 (en) * 2005-02-07 2008-10-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device
JP4462289B2 (ja) * 2007-05-18 2010-05-12 ソニー株式会社 半導体層の成長方法および半導体発光素子の製造方法
FR2924274B1 (fr) * 2007-11-22 2012-11-30 Saint Gobain Substrat porteur d'une electrode, dispositif electroluminescent organique l'incorporant, et sa fabrication
JP2011086377A (ja) * 2008-02-08 2011-04-28 Panasonic Corp 発光デバイス、プラズマディスプレイパネルおよびプラズマディスプレイ装置
US8178896B2 (en) * 2008-03-05 2012-05-15 Panasonic Corporation Light emitting element
US8698193B2 (en) * 2008-07-29 2014-04-15 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US20110175098A1 (en) * 2008-09-25 2011-07-21 Masayuki Ono Light emitting element and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512734A (ja) * 1997-02-14 2002-04-23 オーバーマン、デビッド オプトエレクトロニクス半導体ダイオード及びそれを備えた装置
WO2004023569A1 (ja) * 2002-09-06 2004-03-18 Sony Corporation 半導体発光素子およびその製造方法、集積型半導体発光装置およびその製造方法、画像表示装置およびその製造方法ならびに照明装置およびその製造方法
JP2006245564A (ja) * 2005-02-07 2006-09-14 Matsushita Electric Ind Co Ltd 半導体装置

Also Published As

Publication number Publication date
US8309985B2 (en) 2012-11-13
JPWO2010023777A1 (ja) 2012-01-26
JP5210387B2 (ja) 2013-06-12
US20110156080A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP4989978B2 (ja) 窒化物系発光素子及びその製造方法
US9385266B2 (en) Method of manufacturing a nanostructure light emitting device by planarizing a surface of the device
JP4872450B2 (ja) 窒化物半導体発光素子
JP5280004B2 (ja) 発光素子及びその製造方法
JP5059108B2 (ja) 低分極化効果のGaNベースド発光ダイオード用エピタキシャル材料及び製造方法
JP4572963B2 (ja) Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ
WO2010100844A1 (ja) 窒化物半導体素子及びその製造方法
JP4979810B2 (ja) 発光素子
JP2012256918A (ja) 窒化物系半導体発光素子及びその製造方法
JPH07202265A (ja) Iii族窒化物半導体の製造方法
JP2007266577A (ja) 窒化物半導体装置及びその製造方法
KR20120039324A (ko) 질화갈륨계 반도체 발광소자 및 그 제조방법
JP2007158100A (ja) 窒化物半導体発光素子の製造方法
JP5210387B2 (ja) 発光素子
KR100820836B1 (ko) 발광 다이오드 제조방법
KR20110105641A (ko) 발광 다이오드 및 이의 제조 방법
US20110303931A1 (en) Semiconductor light emitting diode and method for fabricating the same
JP2009123836A (ja) 窒化物半導体発光素子
CN105161583A (zh) 氮化嫁基紫外半导体发光二极管及其制作方法
JPH10178201A (ja) 半導体発光素子の製造方法
KR102296170B1 (ko) 반도체 제조 공정을 이용한 질화물 반도체 발광소자 제조 방법
US8536585B2 (en) Semiconductor light emitting device including anode and cathode having the same metal structure
JP2007149984A (ja) 窒化物半導体発光素子の製造方法
KR101319218B1 (ko) 기판의 분리 방법
JP2004080047A (ja) 窒化ガリウム系化合物半導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526486

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13061052

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809436

Country of ref document: EP

Kind code of ref document: A1