WO2010023166A1 - Verfahren zum verkleben von bauteilen unter ausbildung einer temperaturbeständigen klebstoffschicht - Google Patents

Verfahren zum verkleben von bauteilen unter ausbildung einer temperaturbeständigen klebstoffschicht Download PDF

Info

Publication number
WO2010023166A1
WO2010023166A1 PCT/EP2009/060833 EP2009060833W WO2010023166A1 WO 2010023166 A1 WO2010023166 A1 WO 2010023166A1 EP 2009060833 W EP2009060833 W EP 2009060833W WO 2010023166 A1 WO2010023166 A1 WO 2010023166A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
epoxy resin
resin system
reaction resin
particles
Prior art date
Application number
PCT/EP2009/060833
Other languages
English (en)
French (fr)
Inventor
Roland Mueller
Irene Jennrich
Gerhard Hueftle
Patrick Stihler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US12/737,883 priority Critical patent/US8709201B2/en
Priority to CN2009801333061A priority patent/CN102137723B/zh
Priority to JP2011524335A priority patent/JP6091751B2/ja
Publication of WO2010023166A1 publication Critical patent/WO2010023166A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details

Definitions

  • the present invention relates to a method for bonding components to form a functioning at least in the temperature range of> 100 0 C to ⁇ 160 0 C adhesive layer, wherein the adhesive layer is obtained from a curable reaction resin system. It further relates to the use of a reaction resin system for bonding permanent magnet permanent magnets comprising piezoelectric ceramics and / or rare earth elements, and a component assembly comprising a piezoelectric ceramics, an impedance matching layer, and an adhesive layer in contact with the piezoelectric ceramics and the impedance matching layer.
  • Hardenable reaction resin systems are disclosed for example in DE 103 45 139 Al.
  • resin systems in particular potting compounds, laminating or impregnating resins
  • resin components are to be processed as a two-component mass and comprise a resin component, a mineral filler and polymer particles dispersed in the resin component.
  • the filler comprises nanoparticles.
  • the invention therefore proposes a method for bonding components to form a functional at least in the temperature range of> 100 0 C to ⁇ 160 0 C functional adhesive layer, wherein the adhesive layer is obtained from a curable reaction resin system.
  • the method is characterized in that the reaction resin system is an epoxy resin component (A) and in the epoxy resin component
  • (A) comprises dispersed polymer particles (B), wherein furthermore the dispersed polymer particles comprise addition-crosslinked silicone elastomer.
  • the reaction resin system is preferably to be processed as a two-component adhesive, ie after addition of a curing agent to the resin formulation. Under one
  • Epoxy resin component is generally understood to mean a molecule having two or more epoxide groups.
  • the cured reaction resin system can be impact-modified without sacrificing the modulus of elasticity and the glass transition temperature.
  • the silicone elastomer particles were obtained by an addition-crosslinking mechanism. This is based on the hydrosilylation of carbon-carbon double bonds in the polymer chain. This results in a different hydrophobicity of the particle surface compared to crosslinked by condensation
  • the proportion of the elastomer particles in the epoxy resin component may be, for example,> 30% by weight to ⁇ 50% by weight or> 38% by weight to ⁇ 42% by weight.
  • the bonding of the components themselves can be carried out, for example, at room temperature and the curing of the reaction resin system at elevated temperature.
  • That the adhesive layer to ⁇ 160 0 C is functional at least in the temperature range of> 100 0 C, in the present invention means in particular that in accordance with DIN EN 26922, "Determination of tensile strength perpendicular to the adhesive surface" certain tensile strength until failure of the adhesive bond within this temperature range is> 50%, preferably> 70% and more preferably> 90% of the tensile strength thus determined at room temperature.
  • Reactive resin system further comprises a component for adjusting thixotropic properties (C), this component (C) comprises hydrophilic fumed silica particles, which are in the form of aggregates or agglomerates of primary particles and wherein the primary particles have an average particle size of> 1 nm to ⁇ 25 nm.
  • This component (C) comprises hydrophilic fumed silica particles, which are in the form of aggregates or agglomerates of primary particles and wherein the primary particles have an average particle size of> 1 nm to ⁇ 25 nm.
  • Reaction resin system under shear as occurs for example by pressing from a nozzle, has a lower viscosity than the applied, but mechanically unaffected system.
  • non-horizontal surfaces can be specifically provided with the reaction resin system.
  • Hydrophilic fumed silica particles can be prepared by the combustion of tetrachlorosilane in one
  • the hydrophilic properties are due to silanol and siloxane groups on the surface of the particles.
  • the term “aggregates” is understood to mean primary particles which are juxtaposed flat or edge-shaped, and primary particles which are punctiformly mounted under agglomerates.
  • the mean particle size of the primary particles can also be in a range from> 5 nm to ⁇ 20 nm or from> 10 nm to ⁇ 15.
  • the agglomerates or aggregates may, for example, occupy a size of> 20 nm to ⁇ 100 ⁇ m.
  • the component for adjusting thixotropic properties (C) has a BET specific surface area of> 100 m 2 / g to ⁇ 300 m 2 / g and a
  • the BET surface area can preferably be determined using the standards DIN 66131 and DIN 66132.
  • the BET surface area thus determined can also be in a range from> 180 m / g to ⁇ 220 m / g.
  • the tamped density can be determined in accordance with the standard DIN EN ISO 787/11 and can also be in a range of> 50 g / l to ⁇ 50 g / l.
  • the epoxy resin component (A) comprises a resin based on bisphenol A, bisphenol B and / or bisphenol F.
  • bisphenol A diglycidyl ether can be used. - A -
  • the proportion by weight of the component for adjusting thixotropic properties (C) to the total weight fraction of the epoxy resin components present in the reaction resin system is in a ratio of> 0.1: 100 to ⁇ 10: 100.
  • any additives, fillers, etc., which may be present, are not taken into account in this calculation.
  • a formulation for a reaction resin system having 100 parts by weight of an epoxy resin component based on bisphenol A with 40% by weight addition-crosslinked silicone elastomer particles.
  • Formulation further contain 6 parts by weight of component C in the form of a hydrophilic fumed silica having a BET surface area of 200 m / g.
  • component C in the form of a hydrophilic fumed silica having a BET surface area of 200 m / g.
  • the ratio can also decrease.
  • Possible further ratio ranges are> 1: 100 to ⁇ 7: 100 and>
  • the reaction resin system further comprises a hardener component (D) selected from anhydride hardener and / or amine hardener.
  • a hardener component (D) selected from anhydride hardener and / or amine hardener.
  • An example of an anhydride hardener is
  • Phthalic anhydride An example of an amine hardener is isophoronediamine or dicyandiamide (DiCy).
  • the amine hardeners can also be added to accelerators.
  • the components are piezoelectric ceramics and / or rare earth elements comprising permanent magnets.
  • piezoelectric ceramics are lead zirconate titanates (PZT) and lead magnesium niobates (PMN).
  • permanent magnets are samarium-cobalt or neodymium-iron-boron magnets.
  • Piezoelectric ceramics may be included in ultrasonic transducers, for example.
  • Rare earth magnets can be, for example, components of electric motors.
  • a further subject matter of the present invention is the use of a reaction resin system comprising an epoxy resin component (A) and polymer particles (B) dispersed in the epoxy resin component (A), wherein furthermore the dispersed polymer particles comprise addition-crosslinked silicone elastomer for bonding elements of the rare earth magnets.
  • the reaction resin system further comprises a component for adjusting thixotropic properties (C), this component (C) comprising hydrophilic fumed silica particles which are in the form of aggregates or agglomerates of primary particles and wherein
  • Primary particles have a mean particle size of> 1 nm to ⁇ 25 nm.
  • a further subject of the present invention is the use of a reaction resin system comprising an epoxy resin component (A) and polymer particles (B) dispersed in the epoxy resin component (A), wherein furthermore the dispersed polymer particles comprise addition-crosslinked silicone elastomer, for
  • the reaction resin system further comprises a component for adjusting thixotropic properties (C), this component (C) comprises hydrophilic fumed silica particles which are present in the form of aggregates or agglomerates of primary particles and wherein the primary particles have a mean particle size of> 1 nm to ⁇ 25 nm.
  • this component (C) comprises hydrophilic fumed silica particles which are present in the form of aggregates or agglomerates of primary particles and wherein the primary particles have a mean particle size of> 1 nm to ⁇ 25 nm.
  • Another object of the present invention is a component assembly comprising a piezoelectric ceramic, an impedance matching layer, and a contact with the piezoelectric ceramic and the impedance matching layer wherein the adhesive layer is obtained from a curable reaction resin system which comprises an epoxy resin component (A) and polymer particles (B) dispersed in the epoxy resin component (A), wherein furthermore the dispersed polymer particles comprise addition-crosslinked silicone elastomer.
  • a curable reaction resin system which comprises an epoxy resin component (A) and polymer particles (B) dispersed in the epoxy resin component (A), wherein furthermore the dispersed polymer particles comprise addition-crosslinked silicone elastomer.
  • the piezoelectric ceramic is an ultrasonic transducer.
  • the piezoelectric ceramic can be, for example, a lead zirconate titanate
  • PZT lead magnesium niobate
  • PMN lead magnesium niobate
  • Impedance matching layer serves for better transmission of the ultrasonic waves from and to the piezoelectric ceramic. It is preferred if it has a density of> 0.5 g / cm to ⁇ 0.6 g / cm. It has been found that the adhesive layer described in the invention leads to an improvement of the acoustic signal transmission from and to the piezoelectric element.
  • the reaction resin system further comprises a component for adjusting thixotropic properties (C), this component (C) comprises hydrophilic fumed silica particles which are present in the form of aggregates or agglomerates of primary particles and wherein the primary particles have an average particle size of> 1 nm to ⁇ 25 nm.
  • this component (C) comprises hydrophilic fumed silica particles which are present in the form of aggregates or agglomerates of primary particles and wherein the primary particles have an average particle size of> 1 nm to ⁇ 25 nm.
  • Setting thixotropic properties a BET specific surface area of> 100 m 2 / g to ⁇ 300 m 2 / g and a tamped density of> 20 g / l to ⁇ 80 g / l on.
  • reaction resin systems Details of the described reaction resin systems have already been described above. Of course, the further refinements of the reaction resin system can also be transferred to the component arrangement according to the invention.
  • Silica 1 pyrogenic hydrophilic silica with a mean primary particle size of 12 nm and a BET surface area of
  • Hardener 1 latently accelerated anhydride hardener
  • Hardener 2 fast amine hardener made of polyamines, mostly isophoronediamine
  • This formulation contained 100 parts by weight of the epoxy resin 1 and 51 parts by weight of the curing agent 1.
  • the cured system had a glass transition temperature T g of about 160 0 C.
  • This formulation contained 100 parts by weight of the epoxy resin 1 and 20 parts by weight of the curing agent 2.
  • the cured system had a glass transition temperature T g of about 130 0 C.
  • This formulation contained 50 parts by weight of the epoxy resin 1 and 50 parts by weight of the epoxy resin 2 and 64.5 parts by weight of the curing agent 1.
  • the cured system had a glass transition temperature T g of about 160 0 C.
  • Formulation 4 This formulation contained 50 parts by weight of the epoxy resin 1 and 50 parts by weight of the epoxy resin 3 and 51 parts by weight of the curing agent 1.
  • the cured system had a glass transition temperature T g of about 160 0 C.
  • This formulation contained 100 parts by weight of the epoxy resin 1 and 6 parts by weight of the thixotropic agent silica 1 and 51 parts by weight of the curing agent 1.
  • the cured system had a glass transition temperature T g of about 160 0 C.
  • This formulation contained 100 parts by weight of the epoxy resin 1 and 6 parts by weight of the thixotropic agent silica 1 and 20 parts by weight of the curing agent 2.
  • the cured system had a glass transition temperature T g of about 130 0 C.
  • This formulation contained 50 parts by weight of the epoxy resin 1 and 50 parts by weight of the epoxy resin 2, further 5.25 parts by weight of the thixotropic agent silica 1 and 61 parts by weight of the curing agent 1.
  • the cured system had a glass transition temperature T g of about 160 0 C.
  • This formulation contained 50 parts by weight of the epoxy resin 1 and 50 parts by weight of the epoxy resin 3, further 4.5 parts by weight of the thixotropic silica 1 and 49 parts by weight of the curing agent 1.
  • the cured system had a glass transition temperature T g of about 160 0 C.
  • a piezoelectric ceramic was glued to an impedance matching layer by means of the formulations according to the invention. This ceramic had corresponding contacts, so that they could produce ultrasound. The amplitude of the ultrasound emitted by the piezoelectric ceramic through the impedance matching layer was determined.
  • a temperature shock change was carried out simultaneously. In this case, the temperature of the ultrasonic arrangement of -40 0 C changed to +140 0 C in 5 seconds and then back from +140 0 C to -40 0 C in 5 seconds. For one cycle, this temperature change was carried out for one hour. A deterioration of the properties of the adhesive layer is manifested in one
  • Temperature shock change test initially remained almost stable until it slowly decreased. Thus, over 800 cycles of change were run through before a deterioration of the ultrasonic amplitude was observed in the performance characteristics. In non-inventive comparative adhesive layers of epoxy resins showed from the beginning of the thermal cycling test to a strong decrease in the ultrasonic amplitude.
  • the ultrasound amplitude was determined as a function of the temperature with piezoelectric ceramics adhered to an impedance matching layer. Again, for the adhesive layer of the invention and non-inventive epoxy resin formulations were used.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Verkleben von Bauteilen unter Ausbildung einer mindestens im Temperaturbereich von ≥ 100 °C bis ≤ 160 °C funktionsfähigen Klebstoffschicht, wobei die Klebstoffschicht aus einem härtbaren Reaktionsharzsystem erhalten wird. Das Reaktionsharzsystem umfasst eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B), wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen. Die Erfindung betrifft weiterhin die Verwendung eines Reaktionsharzsystems zum Verkleben von piezoelektrische Keramiken und/oder Elemente der seltenen Erden umfassende Permanentmagnete und eine Bauteilanordnung, umfassend eine piezoelektrische Keramik, eine Impedanzanpassungsschicht sowie eine mit der piezoelektrischen Keramik und der Impedanzanpassungsschicht in Kontakt befindliche Klebstoffschicht.

Description

Beschreibung
Titel
Verfahren zum Verkleben von Bauteilen unter Ausbildung einer temperaturbeständigen Klebstoffschicht
Stand der Technik
Die vorliegende Erfindung betrifft ein Verfahren zum Verkleben von Bauteilen unter Ausbildung einer mindestens im Temperaturbereich von > 100 0C bis < 160 0C funktionsfähigen Klebstoffschicht, wobei die Klebstoffschicht aus einem härtbaren Reaktionsharzsystem erhalten wird. Sie betrifft weiterhin die Verwendung eines Reaktionsharzsystems zum Verkleben von piezoelektrische Keramiken und/oder Elemente der seltenen Erden umfassende Permanentmagnete und eine Bauteilanordnung, umfassend eine piezoelektrische Keramik, eine Impedanzanpassungsschicht sowie eine mit der piezoelektrischen Keramik und der Impedanzanpassungsschicht in Kontakt befindliche Klebstoffschicht.
Gegenwärtig sind flexible Klebstoffe für einen Anwendungsbereich bis etwa 80 0C bekannt. Diese können jedoch nicht in Anwendungen eingesetzt werden, bei denen höhere Temperaturen, Temperaturwechsel und sogar gleichzeitig mechanische Erschütterungen auftreten. Beispiele für solche Anwendungen sind piezoelektrische Ultraschallwandler und bestimmte Elektromotoren.
Härtbare Reaktionsharzsysteme werden beispielsweise in DE 103 45 139 Al offenbart.
Diese Harzsysteme, insbesondere Vergussmassen, Laminier- oder Imprägnierharze, sind als Zweikomponentenmasse zu verarbeiten und beinhalten eine Harzkomponente, einen mineralischen Füllstoff und in der Harzkomponente dispergierte Polymerpartikel. Der Füllstoff umfasst Nanopartikel. Nicht beschrieben ist jedoch, wie sich solche Reaktionsharz-Klebstoffsysteme bei höheren Temperaturen, Temperaturwechseln oder mechanischen Beanspruchungen verhalten. Es besteht also weiterhin der Bedarf an alternativen und weiterentwickelten Verfahren, um Bauteile zu verkleben.
Offenbarung der Erfindung
Erfindungsgemäß vorgeschlagen wird daher ein Verfahren zum Verkleben von Bauteilen unter Ausbildung einer mindestens im Temperaturbereich von > 100 0C bis < 160 0C funktionsfähigen Klebstoffschicht, wobei die Klebstoffschicht aus einem härtbaren Reaktionsharzsystem erhalten wird. Das Verfahren ist dadurch gekennzeichnet, dass das Reaktionsharzsystem eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente
(A) dispergierte Polymerpartikel (B) umfasst, wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen.
Das Reaktionsharzsystem ist vorzugsweise als Zweikomponentenklebstoff zu verarbeiten, also nach Zugabe eines Härters zu der Harzformulierung. Unter einer
Epoxidharzkomponente ist im Allgemeinen ein Molekül mit zwei oder mehr Epoxidgruppen zu verstehen.
Durch die in der Epoxidharzkomponente zusätzlich vorhandenen Silikonelastomerpartikel kann das ausgehärtete Reaktionsharzsystem ohne Einbußen beim Elastizitätsmodul sowie der Glasübergangstemperatur schlagzäh modifiziert werden. Die Silikonelastomerpartikel wurden durch einen additionsvernetztenden Mechanismus erhalten. Dieser beruht auf der Hydrosilylierung von Kohlenstoff- Kohlenstoff-Doppelbindungen in der Polymerkette. Hieraus resultiert eine andere Hydrophobie der Partikeloberfläche gegenüber durch Kondensation vernetzten
Silikonelastomeren. Der Anteil der Elastomerpartikel in der Epoxidharzkomponente kann beispielsweise > 30 Gewichts-% bis < 50 Gewichts-% oder > 38 Gewichts-% bis < 42 Gewichts-% betragen.
Das Verkleben der Bauteile selbst kann beispielsweise bei Raumtemperatur erfolgen und die Aushärtung des Reaktionsharzsystems bei erhöhter Temperatur.
Dass die Klebstoffschicht mindestens im Temperaturbereich von > 100 0C bis < 160 0C funktionsfähig ist, bedeutet im Rahmen der vorliegenden Erfindung insbesondere, dass die gemäß DIN EN 26922 "Bestimmung der Zugfestigkeit senkrecht zur Klebefläche" bestimmte Zugfestigkeit bis zum Versagen der Klebeverbindung innerhalb dieses Temperaturbereichs > 50%, bevorzugt > 70% und mehr bevorzugt > 90% der so bestimmten Zugfestigkeit bei Raumtemperatur beträgt.
In einer Ausführungsform des erfindungsgemäßen Verfahrens umfasst das
Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C), diese Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen. Die Einstellung thixotroper Eigenschaften bedeutet insbesondere, dass das
Reaktionsharzsystem bei Scherung, wie sie beispielsweise durch das Pressen aus einer Düse auftritt, eine niedrigere Viskosität als das aufgetragene, aber mechanisch unbeeinflusste System aufweist. Hierdurch können auch nicht-horizontale Oberflächen gezielt mit dem Reaktionsharzsystem versehen werden. Hydrophile pyrogene Siliziumdioxidpartikel lassen sich durch die Verbrennung von Tetrachlorsilan in einer
Knallgasflamme erhalten. Die hydrophilen Eigenschaften rühren von Silanol- und Siloxangruppen auf der Oberfläche der Partikel her. Gemäß DIN 53206 werden unter Aggregaten flächig oder kantenförmig aneinander gelagerte Primärteilchen und unter Agglomeraten punktförmig aneinander gelagerte Primärteilchen verstanden. Die mittlere Teilchengröße der Primärpartikel kann auch in einem Bereich von > 5 nm bis < 20 nm oder von > 10 nm bis < 15 liegen. Die Agglomerate oder Aggregate können beispielsweise eine Größe von > 20 nm bis < 100 μm einnehmen.
Es ist hierbei möglich, dass die Komponente zur Einstellung thixotroper Eigenschaften (C) eine spezifische BET-Oberfläche von > 100 m2/g bis < 300 m2/g und eine
Stampfdichte von > 20 g/l bis < 80 g/l aufweist. Die BET-Oberfläche kann vorzugsweise anhand der Normen DIN 66131 und DIN 66132 bestimmt werden. Die so bestimmte BET-Oberfläche kann auch in einem Bereich von > 180 m /g bis < 220 m /g liegen. Die Stampfdichte kann in Anlehnung an die Norm DIN EN ISO 787/11 bestimmt werden und kann auch in einem Bereich von > 50 g/l bis < 50 g/l liegen.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst die Epoxidharzkomponente (A) ein Harz auf der Basis von Bisphenol A, Bisphenol B und/oder Bisphenol F. Beispielsweise kann Bisphenol A- digylcidy lether eingesetzt werden. - A -
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens steht der Gewichtsanteil der Komponente zur Einstellung thixotroper Eigenschaften (C) zum Gesamt-Gewichtsanteil der im Reaktionsharzsystem vorliegenden Epoxidharzkomponenten in einem Verhältnis von > 0,1 :100 bis < 10:100. Im Falle von fertig verfügbaren Handelsprodukten für Epoxidharzkomponenten werden also die gegebenenfalls enthaltenen Additive, Füllstoffe, etc. bei dieser Berechnung nicht mit berücksichtigt. Als Beispiel sei in eine Formulierung für ein Reaktionsharzsystem mit 100 Gewichtsteilen einer Epoxidharzkomponente auf der Basis von Bisphenol A mit 40 Gewichts-% additionsvernetzten Silikonelastomerpartikeln betrachtet. In der
Formulierung sind weiterhin 6 Gewichtsanteile der Komponente C in Form einer hydrophilen pyrogenen Kieselsäure mit einer BET-Oberfläche von 200 m /g enthalten. Hier liegt also ein Verhältnis der Gewichtsanteile von Thixotropiermittel C zu Bisphenol A-Epoxid von 10:100 vor. Durch die Zumischung anderer Epoxide kann das Verhältnis aber auch sinken. Mögliche weitere Verhältnisbereiche sind > 1 :100 bis < 7:100 und >
3:100 bis < 6:100.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst das Reaktionsharzsystem weiterhin eine Härterkomponente (D) ausgewählt aus Anhydridhärter und/oder Aminhärter. Ein Beispiel für einen Anhydridhärter ist
Phthalsäureanhydrid. Ein Beispiel für einen Aminhärter ist Isophorondiamin oder auch Dicyandiamid (DiCy). Den Aminhärtern kann weiterhin auch Beschleuniger zugefügt werden.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens sind die Bauteile piezoelektrische Keramiken und/oder Elemente der seltenen Erden umfassende Permanentmagnete. Beispiele für piezoelektrische Keramiken sind Blei-Zirkonat-Titanate (PZT) und Blei-Magnesium-Niobate (PMN). Beispiele für Permanentmagnete sind Samarium-Cobalt- oder Neodym-Eisen-Bor-Magnete. Solche Bauteile, welche mechanischen Schwingungen und Temperaturwechseln ausgesetzt sind, profitieren am meisten vom erfindungsgemäßen Klebeverfahren. Piezoelektrische Keramiken können beispielsweise in Ultraschallwandlern enthalten sein. Seltenerdmagnete können beispielsweise Bauteile von Elektromotoren sein. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines Reaktionsharzsystems umfassend eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B), wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen, zum Verkleben von Elemente der seltenen Erden umfassenden Magneten.
In einer Ausführungsform dieser Verwendung umfasst das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C), diese Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die
Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
Details zu den beschriebenen Verwendungen wurden bereits vorstehend beschrieben. Die weiteren Ausgestaltungen des erfindungsgemäßen Verfahren können selbstverständlich auch auf die erfindungsgemäße Verwendung übertragen werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines Reaktionsharzsystems umfassend eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B), wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen, zum
Verkleben von piezoelektrischen Keramiken.
In einer Ausführungsform dieser Verwendung umfasst das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C), diese Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
Details zu den beschriebenen Verwendungen wurden bereits vorstehend beschrieben. Die weiteren Ausgestaltungen des erfindungsgemäßen Verfahren können selbstverständlich auch auf die erfindungsgemäße Verwendung übertragen werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Bauteilanordnung, umfassend eine piezoelektrische Keramik, eine Impedanzanpassungsschicht sowie eine mit der piezoelektrischen Keramik und der Impedanzanpassungsschicht in Kontakt befindliche Klebstoffschicht, wobei die Klebstoffschicht aus einem härtbaren Reaktionsharzsystem erhalten wird, welches eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B) umfasst, wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen.
Solch eine Bauteilanordnung ist vorteilhafterweise Bestandteil eines Ultraschalldurchflussmessgeräts. In einer Ausführungsform ist die piezoelektrische Keramik daher ein Ultraschallwandler.
Allgemein kann die piezoelektrische Keramik beispielsweise eine Blei-Zirkonat-Titanat-
(PZT) oder Blei-Magnesium-Niobat- (PMN) Keramik sein. Die
Impedanzanpassungsschicht dient zur besseren Übertragung der Ultraschallwellen von und zu der piezoelektrischen Keramik. Bevorzugt ist, wenn sie eine Dichte von > 0,5 g/cm bis < 0,6 g/cm aufweist. Es wurde festgestellt, dass die in der Erfindung beschriebene Klebstoffschicht zu einer Verbesserung der akustischen Signalübertragung von und zu dem piezoelektrischen Element führt.
In einer weiteren Ausführungsform dieser Bauteilanordnung umfasst das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C), diese Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
In einer weiteren Ausführungsform dieser Bauteilanordnung weist die Komponente zur
Einstellung thixotroper Eigenschaften (C) eine spezifische BET-Oberfläche von > 100 m2/g bis < 300 m2/g und eine Stampfdichte von > 20 g/l bis < 80 g/l auf.
Details zu den beschriebenen Reaktionsharzsystemen wurden bereits vorstehend beschrieben. Die weiteren Ausgestaltungen des Reaktionsharzsystems können selbstverständlich auch auf die erfindungsgemäße Bauteilanordnung übertragen werden.
Die vorliegende Erfindung wird anhand der nachfolgenden Formulierungsbeispiele für Reaktionsharzsysteme weiter erläutert. Dabei haben die verwendeten Substanzbezeichnungen die folgende Bedeutung: Epoxidharz 1 Bisphenol A-Epoxidharz, modifiziert mit 40 Gewichts-% Silikonelastomerpartikel (additionsvernetzt)
Epoxidharz 2 Bisphenol A-Epoxidharz
Epoxidharz 3 Bisphenol A/F-Epoxidharz, modifiziert mit 40 Gewichts-% Siliziumdioxid-Nanopartikeln
Siliziumdioxid 1 pyrogenes hydrophiles Siliziumdioxid mit einer mittleren Größe der Primärteilchen von 12 nm und einer BET-Oberfläche von
200 m2/g
Härter 1 latent beschleunigter Anhydridhärter
Härter 2 schneller Aminhärter aus Polyaminen, mehrheitlich Isophorondiamin
Formulierung 1
Diese Formulierung enthielt 100 Gewichtsteile des Epoxidharzes 1 und 51 Gewichtsteile des Härters 1. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 160 0C auf.
Formulierung 2
Diese Formulierung enthielt 100 Gewichtsteile des Epoxidharzes 1 und 20 Gewichtsteile des Härters 2. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 130 0C auf.
Formulierung 3
Diese Formulierung enthielt 50 Gewichtsteile des Epoxidharzes 1 und 50 Gewichtsteile des Epoxidharzes 2 sowie 64,5 Gewichtsteile des Härters 1. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 160 0C auf.
Formulierung 4 Diese Formulierung enthielt 50 Gewichtsteile des Epoxidharzes 1 und 50 Gewichtsteile des Epoxidharzes 3 sowie 51 Gewichtsteile des Härters 1. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 160 0C auf.
Formulierung 5
Diese Formulierung enthielt 100 Gewichtsteile des Epoxidharzes 1 und 6 Gewichtsteile des Thixotropiemittels Siliziumdioxid 1 sowie 51 Gewichtsteile des Härters 1. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 160 0C auf.
Formulierung 6
Diese Formulierung enthielt 100 Gewichtsteile des Epoxidharzes 1 und 6 Gewichtsteile des Thixotropiemittels Siliziumdioxid 1 sowie 20 Gewichtsteile des Härters 2. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 130 0C auf.
Formulierung 7
Diese Formulierung enthielt 50 Gewichtsteile des Epoxidharzes 1 und 50 Gewichtsteile des Epoxidharzes 2, weiterhin 5,25 Gewichtsteile des Thixotropiemittels Siliziumdioxid 1 sowie 61 Gewichtsteile des Härters 1. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 160 0C auf.
Formulierung 8
Diese Formulierung enthielt 50 Gewichtsteile des Epoxidharzes 1 und 50 Gewichtsteile des Epoxidharzes 3, weiterhin 4,5 Gewichtsteile des Thixotropiemittels Siliziumdioxid 1 sowie 49 Gewichtsteile des Härters 1. Das ausgehärtete System wies eine Glasübergangstemperatur Tg von ca. 160 0C auf.
Die Vorteile der erfindungsgemäßen Klebverbindung werden nachfolgend dokumentiert.
In einer Untersuchung wurde mittels der erfindungsgemäßen Formulierungen eine piezoelektrische Keramik auf eine Impedanzanpassungsschicht geklebt. Diese Keramik wies entsprechende Kontaktierungen auf, so dass sie Ultraschall erzeugen konnte. Die Amplitude des von der piezoelektrischen Keramik durch die Impedanzanpassungsschicht abgegebenen Ultraschalls wurde ermittelt. Während der Ultraschallabgabe wurde gleichzeitig ein Temperaturschockwechsel durchgeführt. Hierbei wechselte die Temperatur der Ultraschallanordnung von -40 0C auf +140 0C in 5 Sekunden und dann zurück von +140 0C auf -40 0C in 5 Sekunden. Für einem Zyklus wurde dieser Temperaturwechsel eine Stunde lang durchgeführt. Eine Verschlechterung der Eigenschaften der Klebstoffschicht manifestiert sich in einer
Verringerung der Ultraschallamplitude bei steigender Anzahl von Temperaturschockwechseln.
Es zeigte sich, dass die Ultraschallamplitude bei den Versuchsexemplaren mit aus erfindungsgemäßen Formulierungen erhaltenen Klebstoffschichten im Verlaufe der
Temperaturschockwechselprüfung zunächst annähernd stabil blieb, bis sie langsam abnahm. So wurden über 800 Wechselzyklen durchlaufen, bevor eine die Gebrauchseigenschaften beeinträchtigende Abnahme der Ultraschallamplitude zu beobachten war. Bei nicht- erfindungsgemäßen Vergleichsklebeschichten aus Epoxyharzen zeigte von Beginn der Temperaturwechselprüfung an eine starke Abnahme der Ultraschallamplitude.
In einer weiteren Untersuchung wurde die Ultraschallamplitude in Abhängigkeit von der Temperatur bei auf einer Impedanzanpassungsschicht aufgeklebten piezoelektrischen Keramiken ermittelt. Auch hier wurden für die Klebeschicht erfindungsgemäße und nicht- erfindungsgemäße Epoxyharz-Formulierungen verwendet.
Es zeigte sich, dass bei mit erfindungsgemäß verklebten Versuchsexemplaren sowohl die absolute Ultraschallamplitude höher als auch ihre Abnahme bei steigender Temperatur bis hin zum Glasübergangspunkt des Epoxyharzes geringer als bei den
Vergleichsklebstoffen.

Claims

Ansprüche
1. Verfahren zum Verkleben von Bauteilen unter Ausbildung einer mindestens im Temperaturbereich von > 100 0C bis < 160 0C funktionsfähigen Klebstoffschicht, wobei die Klebstoffschicht aus einem härtbaren Reaktionsharzsystem erhalten wird, dadurch gekennzeichnet, dass das Reaktionsharzsystem eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B) umfasst, wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen.
2. Verfahren gemäß Anspruch 1, wobei das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C) umfasst, diese Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
3. Verfahren gemäß Anspruch 2, wobei die Komponente zur Einstellung thixotroper EEiiggeennsscchhaafftteenn ((CC)) eeiinnee ssppeezziiffiisscchhee BBEETT--OObbeerrflflääcchhee Λ von > 100 m2/g bis < 300 m2/g und eine Stampfdichte von > 20 g/l bis < 80 g/l aufweist.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Epoxidharzkomponente (A) ein Harz auf der Basis von Bisphenol A, Bisphenol B und/oder Bisphenol F umfasst.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei der Gewichtsanteil der Komponente zur Einstellung thixotroper Eigenschaften (C) zum Gesamt-Gewichtsanteil der im Reaktionsharzsystem vorliegenden Epoxidharzkomponenten in einem Verhältnis von > 0,1 :100 bis < 10:100 steht.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei das Reaktionsharzsystem weiterhin eine Härterkomponente (D) ausgewählt aus Anhydridhärter und/oder Aminhärter umfasst.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei die Bauteile piezoelektrische
Keramiken und/oder Elemente der seltenen Erden umfassende Permanentmagnete sind.
8. Verwendung eines Reaktionsharzsystems umfassend eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B), wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen, zum
Verkleben von Elemente der seltenen Erden umfassenden Magneten.
9. Verwendung gemäß Anspruch 8, wobei das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C) umfasst, diese Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
10. Verwendung eines Reaktionsharzsystems umfassend eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B), wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen, zum Verkleben von piezoelektrischen Keramiken..
11. Verwendung gemäß Anspruch 10, wobei das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C) umfasst, diese Komponente
(C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
12. Bauteilanordnung, umfassend eine piezoelektrische Keramik, eine
Impedanzanpassungsschicht sowie eine mit der piezoelektrischen Keramik und der Impedanzanpassungsschicht in Kontakt befindliche Klebstoffschicht, wobei die Klebstoffschicht aus einem härtbaren Reaktionsharzsystem erhalten wird, welches eine Epoxidharzkomponente (A) und in der Epoxidharzkomponente (A) dispergierte Polymerpartikel (B) umfasst, wobei weiterhin die dispergierten Polymerpartikel additionsvernetztes Silikonelastomer umfassen.
13. Bauteilanordnung gemäß Anspruch 12, wobei das Reaktionsharzsystem weiterhin eine Komponente zur Einstellung thixotroper Eigenschaften (C) umfasst, diese
Komponente (C) hydrophile pyrogene Siliziumdioxidpartikel umfasst, welche in Form von Aggregaten oder Agglomeraten von Primärpartikeln vorliegen und wobei die Primärpartikel eine mittlere Teilchengröße von > 1 nm bis < 25 nm aufweisen.
14. Bauteilanordnung gemäß Anspruch 13, wobei die Komponente zur Einstellung thixotroper Eigenschaften (C) eine spezifische BET-Oberfläche von > 100 m2/g bis < 300 m /g und eine Stampfdichte von > 20 g/l bis < 80 g/l aufweist.
15. Bauteilanordnung gemäß einem der Ansprüche 12 bis 14, wobei die piezoelektrische Keramik ein Ultraschallwandler ist.
PCT/EP2009/060833 2008-08-28 2009-08-21 Verfahren zum verkleben von bauteilen unter ausbildung einer temperaturbeständigen klebstoffschicht WO2010023166A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/737,883 US8709201B2 (en) 2008-08-28 2009-08-21 Method for gluing components, forming a temperature-resistant adhesive layer
CN2009801333061A CN102137723B (zh) 2008-08-28 2009-08-21 用于在构成耐温度变化的粘合剂层的情况下对构件进行粘合的方法
JP2011524335A JP6091751B2 (ja) 2008-08-28 2009-08-21 温度安定性接着剤層の形成下での構成部材(Bauteilen)の接着法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041657.6 2008-08-28
DE102008041657A DE102008041657A1 (de) 2008-08-28 2008-08-28 Verfahren zum Verkleben von Bauteilen unter Ausbildung einer temperaturbeständigen Klebstoffschicht

Publications (1)

Publication Number Publication Date
WO2010023166A1 true WO2010023166A1 (de) 2010-03-04

Family

ID=41259606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/060833 WO2010023166A1 (de) 2008-08-28 2009-08-21 Verfahren zum verkleben von bauteilen unter ausbildung einer temperaturbeständigen klebstoffschicht

Country Status (5)

Country Link
US (1) US8709201B2 (de)
JP (1) JP6091751B2 (de)
CN (1) CN102137723B (de)
DE (1) DE102008041657A1 (de)
WO (1) WO2010023166A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020023356A1 (en) 2018-07-23 2020-01-30 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230513B1 (ko) * 2010-12-27 2013-02-06 (주)엘오티베큠 배기 유체 처리 장치
CN109161351A (zh) * 2018-08-10 2019-01-08 阜南县力韦包装材料有限公司 一种阻燃导热双面胶
CN110831401B (zh) * 2019-10-14 2021-08-06 珠海凯邦电机制造有限公司 导热材料及制备工艺、品控方法和导热胶、电路板、电机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051051A1 (de) * 2000-10-14 2002-04-18 Bosch Gmbh Robert Silikonmodifizierte Einkomponentenvergußmasse
WO2008016889A1 (en) * 2006-07-31 2008-02-07 Henkel Ag & Co. Kgaa Curable epoxy resin-based adhesive compositions

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996122A (ja) * 1982-11-22 1984-06-02 Toray Silicone Co Ltd 熱硬化性エポキシ樹脂組成物
US5278257A (en) 1987-08-26 1994-01-11 Ciba-Geigy Corporation Phenol-terminated polyurethane or polyurea(urethane) with epoxy resin
JPS6487679A (en) * 1987-09-28 1989-03-31 Aisin Seiki Bonding of piezoelectric ceramic
JPH062820B2 (ja) * 1989-09-05 1994-01-12 信越化学工業株式会社 シリコーンエラストマー微粉末の製造方法
JPH04300254A (ja) * 1991-03-27 1992-10-23 Aisin Seiki Co Ltd 圧電セラミツクスの接合方法
US6193795B1 (en) 1993-08-02 2001-02-27 Degussa Corporation Low structure pyrogenic hydrophilic and hydrophobic metallic oxides, production and use
DE19851764A1 (de) * 1998-12-04 2000-06-08 Wacker Chemie Gmbh Hitzehärtbare einkomponentige additionsvernetzende Siliconmassen
JP2001129990A (ja) * 1999-11-01 2001-05-15 Kyocera Corp 圧電セラミック体を用いた貼付構造体及びその製造方法並びにこれを用いたインクジェット記録ヘッド
US6884854B2 (en) * 2000-04-10 2005-04-26 Henkel Kommanditgesellschaft Auf Aktien Composition of epoxy resin, low glass transition temperature copolymer, latent hardener and carboxy-terminated polyamide and/or polyamide
JP3808819B2 (ja) * 2001-09-28 2006-08-16 化研テック株式会社 磁石固定用接着剤および磁石のリサイクル方法
JP2003173910A (ja) * 2001-12-05 2003-06-20 Yaskawa Electric Corp 電磁機器
JP2003286391A (ja) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd エポキシ樹脂組成物、ワニス、このエポキシ樹脂組成物を用いたフィルム状接着剤及びその硬化物
US6923921B2 (en) 2002-12-30 2005-08-02 3M Innovative Properties Company Fluorinated polyether compositions
DE10345139A1 (de) 2003-09-29 2005-04-21 Bosch Gmbh Robert Härtbares Reaktionsharzsystem
JP4556423B2 (ja) * 2003-12-09 2010-10-06 日立金属株式会社 磁石接着体の製造に適した熱硬化性エポキシ樹脂か否かを判断する方法
US7488538B2 (en) * 2005-08-08 2009-02-10 Guardian Industries Corp. Coated article including soda-lime-silica glass substrate with lithium and/or potassium to reduce sodium migration and/or improve surface stability and method of making same
JP5046366B2 (ja) 2005-10-20 2012-10-10 信越化学工業株式会社 接着剤組成物及び該接着剤からなる接着層を備えたシート
JP4171052B2 (ja) * 2006-05-31 2008-10-22 株式会社東芝 アレイ式超音波プローブおよび超音波診断装置
US20080051524A1 (en) * 2006-08-28 2008-02-28 Henkel Corporation Epoxy-Based Compositions Having Improved Impact Resistance
WO2008060545A1 (en) 2006-11-13 2008-05-22 Henkel Corporation Benzoxazine compositions with core shell rubbers
JP5008190B2 (ja) * 2007-06-15 2012-08-22 信越化学工業株式会社 スクリーン印刷用接着剤組成物
WO2009022574A1 (ja) 2007-08-10 2009-02-19 Asahi Kasei E-Materials Corporation 接着剤及び接合体
JP2009057500A (ja) * 2007-08-31 2009-03-19 Dow Corning Toray Co Ltd 硬化性エポキシ樹脂組成物およびその硬化物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051051A1 (de) * 2000-10-14 2002-04-18 Bosch Gmbh Robert Silikonmodifizierte Einkomponentenvergußmasse
WO2008016889A1 (en) * 2006-07-31 2008-02-07 Henkel Ag & Co. Kgaa Curable epoxy resin-based adhesive compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Structural Adhesives Containing Submicron Silicone Particles", IP.COM JOURNAL, IP.COM INC., WEST HENRIETTA, NY, US, 20 July 2004 (2004-07-20), XP013020900, ISSN: 1533-0001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020023356A1 (en) 2018-07-23 2020-01-30 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use

Also Published As

Publication number Publication date
US20110221308A1 (en) 2011-09-15
JP2012500878A (ja) 2012-01-12
US8709201B2 (en) 2014-04-29
CN102137723A (zh) 2011-07-27
JP6091751B2 (ja) 2017-03-08
DE102008041657A1 (de) 2010-03-04
CN102137723B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
DE19800178B4 (de) Gehärtetes Produkt einer Epoxyharzmasse zur Halbleitereinkapselung und dessen Verwendung
DE60025489T2 (de) Unterfüllmaterial für halbleitergehäuse
EP1601706A1 (de) Polymere epoxidharz-zusammensetzung
WO2010023166A1 (de) Verfahren zum verkleben von bauteilen unter ausbildung einer temperaturbeständigen klebstoffschicht
DE102010022523B4 (de) Gradientenspule mit in einer Vergussmasse vergossenen Spulenwicklungen
CN1950912A (zh) 电路连接粘合剂
DE112007001047T5 (de) Harzzusammensetzung, Prepreg, Laminat und Leiterplatte
DE102005018671A1 (de) Schlagzähe Epoxidharz-Zusammensetzungen
JP2006249342A (ja) 接着剤組成物およびそれを用いた異方導電性接着剤
EP1518889B1 (de) Härtbares Reaktionsharzsystem
KR20130122711A (ko) 이방성 도전 재료 및 그 제조 방법
JP2009203431A (ja) 注形用エポキシ樹脂組成物および高熱伝導コイル
EP1341847B1 (de) Wärmeleitfähige vergussmasse
JP2005075983A (ja) 接着剤及びその製造方法
JP2008053174A (ja) 絶縁構造材料
DE10351429B4 (de) SAW Bauelement mit Klebestelle und Verwendung dafür
Rao et al. Mechanical properties of E-glass fiber reinforced epoxy composites with SnO2 and PTFE
DE102006042796A1 (de) Kleb- oder Dichtstoff mit modifizierten anorganischen Partikeln
WO2009089957A1 (de) Härtbares reaktionsharzsystem
DE10222153B4 (de) 2-Komponenten-Mischsysteme
EP0796488A1 (de) Oberflächenwellenbauelement und verfahren zur erzeugung einer dämpfungsstruktur dafür
DE102008049888B4 (de) In einer Ummantelung positioniertes Magnetsystem und Verfahren zur Herstellung eines Magnetsystems
JPH1168190A (ja) 圧電分散型有機系複合制振材料
DE102005060860A1 (de) Elektronikkomponente mit Vergussmasse
WO1989011738A1 (en) Improvements in and relating to piezoelectric composites

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133306.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011524335

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12737883

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09782084

Country of ref document: EP

Kind code of ref document: A1