WO2010016556A1 - 発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法 - Google Patents

発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法 Download PDF

Info

Publication number
WO2010016556A1
WO2010016556A1 PCT/JP2009/063969 JP2009063969W WO2010016556A1 WO 2010016556 A1 WO2010016556 A1 WO 2010016556A1 JP 2009063969 W JP2009063969 W JP 2009063969W WO 2010016556 A1 WO2010016556 A1 WO 2010016556A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
foam
rubber
thermoplastic resin
resin composition
Prior art date
Application number
PCT/JP2009/063969
Other languages
English (en)
French (fr)
Inventor
博成 村木
光秋 前田
Original Assignee
テクノポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008203959A external-priority patent/JP5455335B2/ja
Priority claimed from JP2009107554A external-priority patent/JP5650891B2/ja
Application filed by テクノポリマー株式会社 filed Critical テクノポリマー株式会社
Publication of WO2010016556A1 publication Critical patent/WO2010016556A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • B29C44/586Moulds with a cavity increasing in size during foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2455/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2423/00 - C08J2453/00

Definitions

  • the present invention relates to a thermoplastic resin composition for foam molding containing a rubber-reinforced styrene resin, a foam molded body using the same, and a molding method thereof.
  • injection foam molding in which foam molding is performed for the purpose of reducing the resin material to be used and reducing the weight has been studied.
  • a method for performing injection foam molding for example, as disclosed in Patent Document 1, a method of using a pyrolytic chemical foaming agent such as azodicarboxylic amide for a thermoplastic resin is known.
  • a physical foaming agent using nitrogen gas, carbon dioxide or the like as a foaming agent instead of chemical foaming is also known.
  • a method using a physical foaming agent in a supercritical state has been proposed.
  • a core-shell graft copolymer is prepared by mixing a polyolefin with a core-shell graft copolymer and an inorganic filler such as talc.
  • an inorganic filler such as talc.
  • a polyolefin resin composition obtained by graft copolymerization of a monomer component comprising a copolymerizable vinyl compound with a crosslinked rubber-like polymer, and a foam obtained by adding a foaming agent to the foamed foam It is disclosed.
  • the polyolefin-type resin composition which exhibits the outstanding workability, impact resistance, rigidity, and surface property simultaneously, and a molded object consisting thereof can be constituted.
  • a raw material resin is filled in a mold cavity formed by a movable side mold and a fixed side mold of the mold and is in contact with the mold.
  • the clamping pressure from the mold clamping cylinder is instantaneously applied.
  • the foam layer is formed inside the skin layer. This enables injection molding with a high expansion ratio.
  • thermoplastic resin compositions such as Patent Documents 1 to 3 exhibit a fine foam cell structure at a high foaming ratio, and the size of the foam cell is uniform regardless of the part of the foam molded body. It is not sufficient to obtain a foamed molded article having excellent mechanical performance (particularly rigidity).
  • the present invention has been made in view of such conventional problems.
  • the present invention expresses a fine foam cell structure, and the size of the foam cell is uniform regardless of the part of the foam molded body.
  • An object of the present invention is to provide a thermoplastic resin composition for foam molding that can form a foam molded article having excellent mechanical performance and excellent surface appearance, a foam molded article using the same, and a molding method therefor.
  • the first aspect of the present invention is a polycarbonate resin (A) 20 to 80% by mass, A graft copolymer (B1) obtained by polymerizing a vinyl monomer (b2) containing an aromatic vinyl compound in the presence of the rubber polymer (b1), or a vinyl monomer (b3) 20 to 80% by mass of rubber-reinforced vinyl resin (B) comprising a mixture of copolymer (B2) and graft copolymer (B1),
  • the total amount of the components (A) and (B) is 100 parts by mass
  • the chemical foaming agent (C) is 0.05 to 5 parts by mass
  • the thermoplastic resin composition for foam molding is characterized in that the ratio of the component (b1) in the total of 100% by mass of the components (A) and (B) is 3 to 50% by mass.
  • the second aspect of the present invention is a polycarbonate resin (A) 10-90% by mass, 5 to 90 mass of rubber-reinforced vinyl resin (B1) comprising a graft copolymer obtained by polymerizing vinyl monomer (b2) containing an aromatic vinyl compound in the presence of rubber polymer (b1) %When, 0 to 85% by mass of a vinyl resin (B2) comprising a copolymer obtained by polymerizing a vinyl monomer (b3) containing an aromatic vinyl compound; It consists of 0.05 to 5 parts by mass of chemical foaming agent (C) and 0.1 to 18 parts by mass of talc (D) with respect to 100 parts by mass in total of the above components (A), (B1) and (B2).
  • the thermoplastic resin composition for foam molding is characterized in that the ratio of the component (b1) in the total of 100% by mass of the components (A), (B1) and (B2) is 3 to 50% by mass.
  • thermoplastic resin composition for foam molding is filled in a cavity formed between a first mold part and a second mold part, and the first mold part is filled with the thermoplastic resin composition.
  • the second mold part is foam-molded by relatively moving in the separation direction in which the volume of the cavity is enlarged.
  • the thermoplastic resin composition for foam molding is filled in a cavity formed between a first mold part and a second mold part, and the first mold part is filled with the thermoplastic resin composition.
  • a method of molding a foam molded article by relatively moving the second mold part in the separation direction in which the volume of the cavity is enlarged, The second mold part is provided with a cavity forming convex part disposed in a cavity forming concave part provided in the first mold part, Between the inner surface formed in parallel to the movable direction of the first mold portion and the second mold portion in the cavity forming concave portion and the outer surface formed in parallel to the movable direction in the cavity forming convex portion.
  • a filling gap for filling the molten resin is formed in communication with the cavity; Semi-curing the molten resin filled in the cavity and the filling gap to form an unfoamed skin layer, Next, the first mold part and the second mold part are moved relative to each other in the separation direction to form a foamed layer in which the molten resin is foamed on the inner side of the skin layer, and the foam molding is performed.
  • the present invention resides in a method for forming a foamed molded product, wherein the molded product is molded.
  • the thermoplastic resin composition for foam molding according to the first aspect of the present invention contains the polycarbonate resin (A), the rubber-reinforced styrene resin (B), and the chemical foaming agent (C).
  • the ratio of the rubber-like polymer (b1) composing B) is made appropriate, a fine foam cell structure is expressed when performing injection foam molding, and the size of the foam cell is independent of the part of the foam molded body. It is possible to form a foamed molded article having a uniform thickness and excellent mechanical performance.
  • the rubber polymer (100% by mass in total of the components (A) and (B)) is particularly developed by the inventor's research and development. It was found that the proportion of b1) needs to be 3 to 50% by mass.
  • the total of the component (A) and the component (B) is 100% by mass.
  • the skin layer (contacts the surface of the cavity) stably at the part where the molten resin contacts the surface of the mold cavity.
  • the cell diameter by foaming can be made as uniform as possible by the presence of the polycarbonate resin (A) having a high viscosity at a predetermined temperature at which the injection foam molding is performed, and the appearance of the foam molded body can be improved. Further, at a predetermined temperature at which injection foam molding is performed, the presence of the rubber-reinforced vinyl resin (B) having a viscosity lower than that of the polycarbonate resin (A) can stably form a skin layer on the surface of the foam molded body. it can. As described above, according to the thermoplastic resin composition for foam molding, it is possible to obtain a foam molded article having not only fine and uniform foam cells but also excellent mechanical performance.
  • thermoplastic resin composition for foam molding of the first aspect in the injection foam molding, a fine foam cell structure is expressed, and the size of the foam cell is uniform regardless of the part of the foam molded body. Yes, it is possible to form a foam molded article having excellent mechanical performance and excellent surface appearance.
  • thermoplastic resin composition for foam molding contains the above specified amount of talc (D), so that talc (D) serves as a starting point for foaming during foam molding, and a chemical foaming agent (C ) Can be promoted.
  • the total ratio of the component (B1) and the component (B2) can be selected within the range of 5 to 90% by mass. .
  • the total of components (A), (B1) and (B2) is 100% by mass.
  • thermoplastic resin composition for foam molding on the second side also exhibits a fine foam cell structure in injection foam molding, and the size of the foam cell is uniform regardless of the part of the foam molded article. It is possible to form a foam molded article having excellent mechanical performance and excellent surface appearance.
  • the above-mentioned effects can be easily obtained by molding the foamed molded article by performing core-back injection foaming.
  • the foam molded article molding method may form a skin layer obtained by curing the molten resin to be filled with almost no foam on the entire circumferential surface of the foam molded article. It can be done.
  • a filling gap communicating with the cavity is formed between the first mold part and the second mold part, and the skin layer is also formed by the molten resin filled in the filling gap. Can be formed.
  • the molten resin is filled in the cavity and filled in the filling gap.
  • the temperature of the molten resin that comes into contact with the bottom surface and the inner surface of the cavity forming concave portion in the first mold portion and the tip surface and the outer surface of the cavity forming convex portion in the second mold portion is usually adjusted to 30 to 100 ° C. Since it is in contact with the molds (the first mold part and the second mold part), the curing starts before the molten resin inside the cavity (inner part).
  • the molten resin is semi-cured to form an unfoamed skin layer not only on the contact surface in the cavity but also on the contact surface in the filling gap. A skin layer can be formed on the entire filling gap.
  • semi-curing means that the molten resin can no longer form a foam layer, but has cured to such an extent that it can flow as the second mold part moves relative to the first mold part. It means being.
  • the first mold part and the second mold part are relatively moved in the separation direction.
  • the outer surface of the cavity forming convex portion slides with respect to the skin layer formed in the filling gap, and the molten resin flows into the inner portion of the skin layer formed in the filling gap.
  • the first mold part and the second mold part are relatively moved to a predetermined position to form a foam molded body, the molten resin is foamed inside the foam molded body to form a fine and uniform foam cell.
  • a skin layer in which the molten resin is almost unfoamed and hardened can be stably formed on the entire surface of the foamed molded body.
  • a foam layer having fine and uniform foam cells can be formed, and a skin layer can be stably formed on the entire surface of the foam molded body. And the mechanical strength of the foamed molded product can be improved.
  • Sectional explanatory drawing which shows the manufacturing apparatus which has a 1st type
  • FIG. Sectional explanatory drawing which shows the state which filled the cavity and the clearance gap for filling with the molten resin in the filling process in Example 1.
  • FIG. Cross-sectional explanatory drawing which shows the state which filled the cavity and the clearance gap for filling with molten resin in the filling process in Example 1 from the direction orthogonal to FIG. Sectional explanatory drawing which shows the state which moved the 2nd type
  • Sectional explanatory drawing which shows the state which filled the cavity and the clearance gap for filling with the molten resin in the filling process in Example 3.
  • FIG. Sectional explanatory drawing which shows the state which filled the molten resin in the cavity and the clearance gap for filling in Example 3 in the state seen from the direction orthogonal to FIG.
  • Sectional explanatory drawing which shows the state which moved the 2nd type
  • Sectional explanatory drawing which shows the state which shape
  • thermoplastic resin composition for foam molding contains 0 fibrous filler (E) with respect to 100 parts by mass in total of the components (A), (B1) and (B2). It is preferable to blend 5 to 25 parts by mass.
  • thermoplastic resin composition for foam molding contains the fibrous filler (E)
  • fibrous filler (E) makes it difficult for contamination to occur on the molding surface of a mold for foam molding, and a foam molded article having an excellent surface appearance can be molded with high production efficiency. all right.
  • the reason is considered as follows. That is, by containing the fibrous filler (E), the surface of the thermoplastic resin composition for foam molding in contact with the molding surface of the mold becomes rough and rough, and the chemical foaming agent (C It is thought that the volatile components generated with the foaming of the metal) easily escaped from between the molding surface of the mold and the surface of the foamed thermoplastic resin composition for foam molding. For this reason, it has been found that contamination on the molding surface of the mold is less likely to occur, the frequency of cleaning can be reduced, and a foamed molded article having excellent surface appearance can be molded efficiently.
  • thermoplastic resin composition for foam molding contains talc (D) and fibrous filler (E), so that the foam cells are fine and uniform, have excellent mechanical performance, and have excellent surface appearance. It has been found that the body can be molded. The reason is considered as follows. That is, when foam molding is performed, talc (D) and fibrous filler (E) serve as starting points of foaming, and foaming by the chemical foaming agent (C) can be promoted. At this time, it is considered that a fine and uniform foam cell can be obtained more effectively by mixing the foam start point by talc (D) and the foam start point by both ends of the fibrous filler (E).
  • the rubbery polymer (b1) is preferably at least one of acrylic rubber and ethylene / ⁇ -olefin rubber.
  • a rubbery polymer is appropriate, and a foamed molded product having fine and uniform foamed cells can be obtained stably.
  • the amount of hot cyclohexane dissolved in the graft copolymer (B1) or the rubber-reinforced vinyl resin (B1) in the rubber-reinforced vinyl resin (B) is based on the rubbery polymer (b1) (100 mass). %) Is preferably 1 to 99% by mass. In this case, it becomes easy to obtain fine and uniform foamed cells in the foamed molded article to be molded.
  • the chemical blowing agent (C) is selected from the group consisting of sodium bicarbonate, azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, and 4,4′-oxybis (benzenesulfonylhydrazide). It is preferable. In this case, the chemical foaming agent (C) is appropriate, and it becomes easy to obtain fine and uniform foamed cells in the foamed molded article to be molded.
  • the polycarbonate resin is preferably an aromatic polycarbonate resin. In this case, it becomes easy to obtain fine and uniform foamed cells in the foamed molded article to be molded.
  • thermoplastic resin composition for foam molding is preferably used for core-back injection foam molding.
  • a foamed molded product having fine and uniform foamed cells can be obtained stably.
  • the thermoplastic resin composition contains other resin components besides the polycarbonate resin (A) and the rubber-reinforced vinyl resin (B) (or the rubber-reinforced vinyl resin (B1) and the vinyl resin (B2)). Can be configured.
  • the other resin component is, for example, a range that does not impair the effect of the invention with respect to the total of the components (A) and (B) (components (B1) and (B2)) (for example, within 5% by mass). It can contain.
  • the other resin components are not particularly limited, but excluding the component (B) (components (B1) and (B2)), styrene resins, acrylic resins, vinyl chloride resins, polyamide resins (PA), Examples thereof include polyester resins, olefin resins, and ethylene copolymers. These can be used individually by 1 type and can also be used in combination of 2 or more type.
  • the thermoplastic resin composition contains 50 to 70% by mass of an aromatic polycarbonate resin as the polycarbonate resin (A), and the balance is the rubber-reinforced vinyl resin (B) (or rubber-reinforced vinyl resin ( B1) and a vinyl resin (B2)) are preferred.
  • the aromatic polycarbonate resin (B) is compared with the content of the rubber-reinforced vinyl resin (B) (or the rubber-reinforced vinyl resin (B1) and the vinyl resin (B2)).
  • the content of A) is large, the skin layer can be more stably formed on the surface of the foam molded article.
  • the foamed molded article preferably has a foaming ratio of 1.1 to 3.0 times.
  • a foamed molded article having an appropriate expansion ratio of the foamed molded article, having no fuzz on the surface, uniform cell diameter by foaming, excellent appearance, and excellent mechanical strength.
  • the foaming ratio of the foamed molded product is less than 1.1 times, an effect such as lightening by foaming is not obtained so much.
  • the foaming ratio of the foamed molded product exceeds 3.0 times, the molten resin filled in the cavity does not expand sufficiently, and the surface of the molded foamed molded product may be corrugated.
  • the foaming ratio of the foamed molded product can be more preferably 1.2 to 2.0 times.
  • thermoplastic resin composition for foam molding A preferred composition of the thermoplastic resin composition for foam molding will be described.
  • (co) polymerization means homopolymerization and copolymerization
  • (meth) acrylate means at least one of acrylate and methacrylate.
  • thermoplastic resin composition for foam molding of the present invention may be simply abbreviated as “thermoplastic resin composition”.
  • Polycarbonate resin (A) The polycarbonate resin (A) used in the present invention is obtained by reaction of various dihydroxyaryl compounds with phosgene (phosgene method), or obtained by transesterification of dihydroxyaryl compounds and diphenyl carbonate (esters). Exchange method).
  • a preferred polycarbonate resin is an aromatic polycarbonate resin.
  • a representative aromatic polycarbonate resin is 2,2′-bis (4-hydroxyphenyl) propane, that is, a polycarbonate resin obtained by reaction of bisphenol A and phosgene.
  • dihydroxyaryl compound examples include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, and 2,2-bis (4- Hydroxyphenyl) octane, bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-tert-butylphenyl) Propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4′-dihydroxyphenyl ether, 4,4′-dihydroxyphenyl sulfide, 4,4 '-Dihydroxyphenylsulfone, 4,4'-dihydroxy-3,3'-dimethyldiphe Rusuruhon, hydroquinone, resorcinol, and the like.
  • hydroxyaryloxy-terminated polyorganosiloxanes see, for example, US Pat. No. 3,419,634. These can be used individually by 1 type or in combination of 2 or more types. Of these, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is preferred.
  • the viscosity average molecular weight of the polycarbonate resin (A) is preferably 12,000 to 40,000, more preferably 15,000 to 35,000, and particularly preferably 18,000 to 30,000.
  • Two or more kinds of polycarbonates having different molecular weights can also be used.
  • the polycarbonate resin obtained by interfacial polycondensation may contain various chlorine compounds, which may adversely affect the durability of the composition of the present invention. From this, the chlorine compound content is usually 300 ppm or less, preferably 100 ppm or less, as chlorine atoms.
  • the content of the (aromatic) polycarbonate resin (A) in the thermoplastic resin composition used in the present invention is 10 to 90% by mass (when the talc (D) is included as the second aspect of the present invention) 20 to 80% by mass, preferably 30 to 75% by mass, and more preferably 50 to 70% by mass.
  • the content of the polycarbonate resin (A) is less than 20% by mass, it is difficult to obtain a foamed molded article having a uniform cell diameter, while the content of the polycarbonate resin (A) is included.
  • the amount exceeds 80% by mass it tends to be difficult to obtain a foamed molded article having an excellent appearance.
  • the content of the polycarbonate resin (A) is less than 10% by mass, it is difficult to obtain a foamed molded article having a uniform cell diameter, while the polycarbonate resin (A) When the content of exceeds 90% by mass, it tends to be difficult to obtain a foamed molded article having an excellent appearance.
  • the rubber-reinforced vinyl resin (B) of the thermoplastic resin composition for foam molding according to the first aspect of the present invention will be described in detail.
  • Rubber reinforced vinyl resin (B) first aspect of the present invention
  • the rubbery polymer (b1) used in the first aspect of the present invention may be a homopolymer or a copolymer as long as it is rubbery at room temperature.
  • a polymer based on a non-diene rubbery polymer and a diene polymer (a diene rubbery polymer) are preferred.
  • the rubbery polymer (b1) may be a crosslinked polymer or a non-crosslinked polymer. These can be used alone or in combination of two or more.
  • the content of the rubbery polymer (b1) is 3 to 50% by mass, preferably 3 to 40% by mass, more preferably 5 to 35%, with the total amount of the component (A) and the component (B) being 100% by mass. % By mass.
  • the component (b1) is in this range, the foamability, the appearance of the foamed molded product, and the mechanical properties are excellent.
  • non-diene polymer examples include ethylene / ⁇ -olefin copolymer rubbers, urethane rubbers, acrylics containing ethylene units and ⁇ -olefin units having 3 or more carbon atoms.
  • examples thereof include a polymer obtained by hydrogenating a (co) polymer including a unit rubber, a silicone rubber, a silicone / acrylic IPN rubber, and a conjugated diene compound. These copolymers may be block copolymers or random copolymers. These copolymers may be hydrogenated (however, the hydrogenation rate is 50% or more).
  • the said non-diene polymer can be used individually by 1 type or in combination of 2 or more types.
  • diene polymer examples include homopolymers such as polybutadiene, polyisoprene, polychloroprene, styrene / butadiene copolymer, styrene / butadiene / styrene copolymer, Examples include acrylonitrile / butadiene copolymer, styrene / butadiene copolymer rubber such as acrylonitrile / styrene / butadiene copolymer, styrene / isoprene copolymer, styrene / isoprene / styrene copolymer, acrylonitrile / styrene / isoprene.
  • homopolymers such as polybutadiene, polyisoprene, polychloroprene, styrene / butadiene copolymer, styrene
  • Examples thereof include styrene / isoprene copolymer rubber such as a copolymer, or natural rubber. These copolymers may be block copolymers or random copolymers. These copolymers may be hydrogenated (however, the hydrogenation rate is less than 50%).
  • the said diene polymer can be used individually by 1 type or in combination of 2 or more types.
  • the rubber-reinforced vinyl resin (B) obtained when at least one of ethylene / ⁇ -olefin and ethylene / ⁇ -olefin / non-conjugated diene copolymer is used as the rubbery polymer (b1) Generally, it is said to be “AES resin”.
  • the rubber reinforced vinyl resin (B) obtained when a diene polymer is used as the rubber polymer (b1) is a diene rubber reinforced vinyl resin, and generally referred to as “ABS resin”. It is said.
  • the rubber-reinforced vinyl resin (B) obtained when acrylic rubber is used as the rubber polymer (b1) is an acrylic rubber-reinforced vinyl resin, and is generally referred to as “ASA resin”. ing.
  • the shape of the rubbery polymer (b1) used for forming the rubber-reinforced vinyl resin (B) is not particularly limited, but when it is particulate, the volume average particle diameter is preferably 50 to 3,000 nm. More preferably, the thickness is 100 to 2,000 nm, and still more preferably 120 to 800 nm. When the volume average particle diameter is less than 50 nm, the thermoplastic resin composition of the present invention and the molded article (foamed molded article) containing the thermoplastic resin composition tend to be inferior in impact resistance. The surface appearance tends to be inferior.
  • the weight average particle diameter can be measured by an electron micrograph, a laser diffraction method, a light scattering method, or the like.
  • the vinyl monomer (b2) used for forming the rubber-reinforced vinyl resin (B) contains an aromatic vinyl compound.
  • the vinyl monomer (b2) may be only an aromatic vinyl compound, and the aromatic vinyl compound and, for example, a vinyl cyanide compound, a (meth) acrylic acid ester compound, a maleimide compound, an acid anhydride It may be a combination of a compound copolymerizable with an aromatic vinyl compound such as a product.
  • the compounds copolymerizable with the above aromatic vinyl compound can be used singly or in combination of two or more.
  • the vinyl monomer (b2) the monomer (x) composed of one or more aromatic vinyl compounds, or one or more aromatic vinyl compounds and a copolymer with the aromatic vinyl compound.
  • a monomer (y) in combination with one or more possible compounds can be used.
  • the aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples thereof include styrene, ⁇ -methylstyrene, o-methylstyrene, Examples thereof include p-methylstyrene, vinyltoluene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinylxylene, vinylnaphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, and fluorostyrene. These can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferred.
  • Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
  • Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Examples thereof include isobutyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, and phenyl (meth) acrylate. These can be used alone or in combination of two or more. Of these, methyl (meth) acrylate is preferred.
  • maleimide compounds examples include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-hydroxyphenyl) maleimide, N-cyclohexylmaleimide and the like. Can be mentioned. These can be used alone or in combination of two or more.
  • a method for introducing a unit composed of a maleimide compound for example, a method in which maleic anhydride is copolymerized and then imidized may be used as another method for introducing a unit composed of a maleimide compound.
  • acid anhydride examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These can be used alone or in combination of two or more.
  • vinyl compounds having a functional group such as a hydroxyl group, an amino group, an epoxy group, an amide group, a carboxyl group, or an oxazoline group can be used as necessary.
  • examples include 3,4-oxycyclohexyl acrylate, vinyl glycidyl ether, methallyl glycidyl ether, allyl glycidyl ether, methacrylamide, acrylamide, (meth) acrylic acid, and vinyl oxazoline. These can be used alone or in combination of two or more.
  • Examples of the vinyl monomer (b2) include one or more aromatic vinyl compounds and one or more combinations of compounds copolymerizable with the aromatic vinyl compound, that is, the monomer (y).
  • the mass ratio between the aromatic vinyl compound and the other compound (aromatic vinyl compound / other compound) is usually (100% by mass). 2 to 95) mass% / (98 to 5) mass%, preferably (10 to 90) mass% / (90 to 10) mass%. If the ratio of the aromatic vinyl compound is too small, molding processability tends to be inferior. If it is too large, the resulting molded article may not have sufficient chemical resistance, heat resistance, and the like.
  • the monomer (y) is preferably a combination of an aromatic vinyl compound and a vinyl cyanide compound (hereinafter referred to as “monomer (y1)”), an aromatic vinyl compound, and a vinyl cyanide compound. And other compounds (such as (meth) acrylic acid ester compounds) (hereinafter referred to as “monomer (y2)”).
  • a vinyl cyanide compound By using a vinyl cyanide compound, the balance of physical properties such as chemical resistance and heat resistance is improved.
  • the rubber-reinforced vinyl resin (B) may be only the rubber-reinforced vinyl resin (B) (graft copolymer (B1)), or the rubber-reinforced vinyl resin (B). It may be a mixture comprising B) and a (co) polymer of the vinyl monomer (b3) (hereinafter referred to as “(co) polymer (B2)”).
  • the vinyl monomer (b3) used for forming the (co) polymer (B2) the compounds exemplified as the vinyl monomer (b2) can be used.
  • the (co) polymer (B2) is a polymer obtained by polymerizing components having exactly the same composition as the vinyl monomer (b2) used for forming the rubber-reinforced vinyl resin (B). It may be a polymer obtained by polymerizing the same type of monomer with different compositions, or it may be a polymer obtained by polymerizing different types of monomers with different compositions. It may be a coalescence. Two or more of these polymers may be contained.
  • the graft copolymer (B1) as the rubber-reinforced vinyl resin (B) is produced by polymerizing the vinyl monomer (b2) in the presence of the rubbery polymer (b1). Can do.
  • the polymerization method emulsion polymerization, solution polymerization, bulk polymerization, and bulk-suspension polymerization are preferable.
  • the rubber polymer (b1) and the vinyl monomer (b2) are used in the reaction system in the total amount of the rubber polymer (b1).
  • the vinyl monomer (b2) may be added all at once to initiate the polymerization, or the polymerization may be carried out separately or continuously.
  • the vinyl monomer (b2) may be added all at once to initiate polymerization, or divided or continuously. May be added. At this time, the remainder of the rubber-like polymer (b1) may be added all at once in the course of the reaction, divided or continuously.
  • the amount of the rubbery polymer (b1) used is usually 5 to 80 parts by mass, preferably 10 to 70 parts by mass, and more preferably 15 to 60 parts by mass.
  • the amount of the vinyl monomer (b2) used is usually 25 to 1,900 parts by weight, preferably 60 to 560 parts by weight, based on 100 parts by weight of the rubbery polymer (b1).
  • the graft copolymer (B1) used in the present invention can be produced by known emulsion polymerization, solution polymerization, suspension polymerization, etc., but when produced by emulsion polymerization, it is usually coagulated with a coagulant and obtained. The resulting powder is purified by washing and drying.
  • this coagulant it is common to use at least one of inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride and inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid.
  • a general thing can be used as a radical initiator at the time of graft polymerization.
  • Specific examples include cumene hydroperoxide, diisopropylbenzene hydroperoxide, potassium persulfate, azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, t-butyl peroxylaurate, t-butyl peroxymonocarbonate.
  • Etc The amount of the radical initiator used is usually 0.05 to 5% by mass, preferably 0.1 to 1% by mass, based on the monomer component.
  • an organic peroxide and a solvent are selected so that the grafting reaction proceeds uniformly during graft polymerization, and a rubbery polymer is synthesized by emulsion polymerization and grafted by emulsion polymerization.
  • Polymerize start the polymerization by uniformly dissolving the rubbery polymer, dissolve the pre-melted kneaded material in the solution and perform solution polymerization or bulk polymerization, emulsion polymerization or suspension polymerization of the re-emulsified It is preferable to devise a polymerization method such as.
  • the rubber-reinforced vinyl resin (B) (graft copolymer (B1)) thus obtained has a graft ratio of 10 to 150%, preferably 30 to 100%.
  • the graft ratio is less than 10%, the interfacial adhesive strength between the resin and the rubber is inferior, an excellent impact strength and uniform cells cannot be obtained, and the appearance of the foamed molded product may be deteriorated.
  • the graft ratio exceeds 150%, the interface layer becomes thick, and a resin layer grafted inside the rubber develops, resulting in a decrease in rubber elasticity. As a result, excellent impact strength and uniform cells may not be obtained, and the appearance of the foamed molded product may deteriorate.
  • the graft ratio can be easily adjusted by changing the type and amount of the rubbery polymer, polymerization initiator, chain transfer agent, emulsifier, and the like, as well as the polymerization time and polymerization temperature.
  • the intrinsic viscosity (measured in methyl ethyl ketone at 30 ° C.) of the acetone soluble part of the rubber-reinforced vinyl resin (B) of the present invention is 0.2 to 0.8 dl / g, preferably 0.3 to 0.00. 7 dl / g. If the intrinsic viscosity of the acetone-soluble part (measured in methyl ethyl ketone at 30 ° C.) is less than 0.2 dl / g, the impact resistance may be reduced.
  • the intrinsic viscosity can be easily controlled by changing the kind and amount of a polymerization initiator, a chain transfer agent, an emulsifier, a solvent, a polymerization time, a polymerization temperature, and the like.
  • the copolymer (B2) in the rubber-reinforced vinyl resin (B) component used in the present invention preferably has an aromatic vinyl compound / vinyl cyanide compound / other vinyl monomer mass ratio. It is 50 to 90/10 to 40/0 to 30, more preferably 60 to 79/21 to 40/0 to 30, and particularly preferably 62 to 78/22 to 38/0 to 30 (mass%). When the amount of the vinyl cyanide compound is 21% by mass or more in the above range, the resulting molded article may be further excellent in chemical resistance.
  • compatibility with polycarbonate resin (A) will fall, and impact resistance and heat-resistant deterioration will be inferior, on the other hand, if it exceeds 90 mass%, this also Moreover, compatibility with polycarbonate resin (A) may fall, and impact strength and chemical resistance may be inferior. Furthermore, if the amount of the vinyl cyanide compound used is less than 10% by mass, the compatibility with the polycarbonate resin (A) is remarkably reduced, resulting in problems such as a reduction in impact resistance and surface peeling, while 40% by mass is reduced. When it exceeds, heat-resistant deterioration property may fall.
  • the intrinsic viscosity (measured in methyl ethyl ketone at 30 ° C.) of the acetone-soluble component of the copolymer (B2) of the present invention is 0.31 to 0.8 dl / g, preferably 0.32 to 0.8 dl / g, Further, it is 0.32 to 0.7 dl / g, particularly preferably 0.36 to 0.7 dl / g. In the above range, if the intrinsic viscosity is less than 0.31 dl / g, the impact resistance of the resulting molded product (foamed molded product) is inferior. On the other hand, if it exceeds 0.8 dl / g, the moldability is remarkably lowered. In some cases, it is difficult to form the skin layer of the foam molded article.
  • the copolymer (B2) used in the present invention can be produced by known emulsion polymerization, solution polymerization, suspension polymerization, etc., but when produced by emulsion polymerization, it is usually a powder that can be coagulated with a coagulant. The product is purified by washing with water and drying.
  • this coagulant it is common to use at least one of inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride and inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid.
  • the proportion of the rubber polymer (b1) in the rubber-reinforced vinyl resin (B) is usually 4 to 40% by mass, preferably 6 to 35% by mass, and more preferably 8 to 30% by mass.
  • the blending ratio of the rubber-reinforced vinyl resin (B) component in the thermoplastic resin composition of the present invention is 20 to 80% by mass (when the talc (D) is not contained as the first aspect of the present invention). .
  • the blending ratio of the rubber-reinforced vinyl resin (B) component is preferably 25 to 70% by mass, more preferably 30 to 50% by mass.
  • the blending ratio of the rubber-reinforced vinyl resin (B) component is less than 20% by mass, the moldability of the resin composition is lowered, and a foamed molded article having an excellent appearance is obtained.
  • it exceeds 80% by mass it is difficult to obtain a foamed molded article having a uniform cell diameter.
  • the rubbery polymer (b1) of the present invention is preferably an ethylene / ⁇ -olefin rubbery polymer.
  • an AES resin as the rubber-reinforced vinyl resin (B)
  • AES resin is excellent in heat deterioration resistance.
  • the thermoplastic resin composition used in the present invention contains the polycarbonate resin (A), it is required to increase the molding temperature. In this respect, the AES resin can satisfy the demand for excellent heat deterioration resistance and excellent workability.
  • the content of the ethylene / ⁇ -olefin rubber polymer derived from the rubber-reinforced vinyl resin (B) component is preferably 2 to 20% by mass, more preferably Is 2 to 15% by mass, particularly preferably 3 to 15% by mass. When it is in the above range, the thermoplastic resin composition which is the object of the present invention is easily obtained.
  • the ethylene / ⁇ -olefin rubbery polymer (b1) used as the base rubber of the rubber-reinforced vinyl resin (B) (graft copolymer (B1)) is an ethylene / ⁇ having 3 to 20 carbon atoms.
  • a copolymer rubber obtained by copolymerizing a monomer having a mixing ratio of olefin / non-conjugated diene 5 to 95/95 to 5/0 to 30% by mass is preferable.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, etc. Preferred are propylene, 1-butene and 1-octene, and more preferred is propylene.
  • These ⁇ -olefins can be used alone or in combination of two or more.
  • the ⁇ -olefin has 3 to 20 carbon atoms, preferably 3 to 12 and more preferably 3 to 8. When the number of carbon atoms exceeds 20, the copolymerizability is extremely lowered, which is not preferable.
  • the weight ratio of ethylene to ⁇ -olefin is preferably 5 to 95/95 to 5, more preferably 60 to 88/40 to 12, and particularly preferably 70 to 85/30 to 15.
  • Non-conjugated dienes that may be used in the ethylene / ⁇ -olefin rubbery polymer (b1) include alkenyl norbornenes, cyclic dienes, and aliphatic dienes, preferably 5-ethylidene- 2-norbornene and dicyclopentadiene. These non-conjugated dienes can be used alone or in combination of two or more.
  • the content of non-conjugated diene in the ethylene / ⁇ -olefin rubbery polymer is 0 to 30% by mass, preferably 0 to 15% by mass.
  • the amount of unsaturated groups of this rubbery polymer is preferably in the range of 0 to 40 in terms of iodine value.
  • a heterogeneous catalyst In order to produce the ethylene / ⁇ -olefin rubbery polymer (b1) of the present invention, either a heterogeneous catalyst or a homogeneous catalyst may be used.
  • the heterogeneous catalyst include a vanadium catalyst in which a vanadium compound and an organoaluminum compound are combined.
  • the homogeneous catalyst include a metallocene catalyst.
  • a metallocene catalyst is effective for producing the rubber using an ⁇ -olefin having 6 to 20 carbon atoms.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the ethylene / ⁇ -olefin rubbery polymer (b1) is preferably 40 or less, more preferably 25 to 35.
  • the Mooney viscosity can be adjusted by changing the type and amount of the molecular weight regulator, the monomer concentration, the reaction temperature, and the like.
  • the content of components having a weight average molecular weight of 1,000,000 or more in terms of polystyrene is preferably 10% by mass or less, more preferably 8% by mass or less.
  • Such a rubbery polymer can be produced by changing the type / amount of the molecular weight regulator and the type / amount of the catalyst.
  • the glass transition temperature (Tg) of the ethylene / ⁇ -olefin rubbery polymer is preferably ⁇ 110 to ⁇ 40 ° C., more preferably ⁇ 70 to ⁇ 50 ° C.
  • the melting point (Tm) is preferably 30 to 110 ° C., more preferably 40 to 70 ° C.
  • the proportion of the ethylene / ⁇ -olefin rubber polymer is usually 3 to 50% by mass, preferably 5 to 45% by mass, more preferably 7 to 40% by mass in the graft copolymer (B1) component. It is. If it is less than 3% by mass, impact resistance may not be exhibited, whereas if it exceeds 50% by mass, moldability and appearance may be deteriorated.
  • the rubber-reinforced vinyl resin (B1) and vinyl resin (B2) of the thermoplastic resin composition for foam molding according to the second aspect of the present invention will be described in detail below.
  • Rubber reinforced vinyl resin (B1) (second aspect of the present invention)
  • the rubber-reinforced vinyl resin (B1) can be copolymerized with an aromatic vinyl compound or an aromatic vinyl compound and an aromatic vinyl compound in the presence of the rubbery polymer (b1). It can be constituted by polymerizing other vinyl monomers.
  • the rubbery polymer (b1) used here has a glass transition temperature (Tg) of ⁇ 10 ° C.
  • Conjugated diene rubbers ethylene / propylene copolymers, ethylene / propylene / nonconjugated diene copolymers, ethylene / 1-butene copolymers, ethylene / 1-butene / nonconjugated diene copolymers, and other olefin rubbers
  • acrylic rubber silicone rubber, polyurethane rubber, silicone / acrylic IPN rubber, natural rubber, conjugated diene block copolymer, hydrogenated conjugated diene block copolymer, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the rubbery polymer (b1) is 3 to 50% by mass, preferably 3 to 40% by mass, more preferably 5 to 35%, with the total amount of the component (A) and the component (B) being 100% by mass. % By mass.
  • the component (b1) is in this range, the foamability, the appearance of the foamed molded product, and the mechanical properties are excellent.
  • the olefin rubber is not particularly limited, and examples thereof include an ethylene / ⁇ -olefin rubber containing ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • the ethylene content is preferably 5 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 100% by mass when the total amount of monomers constituting the ethylene / ⁇ -olefin rubber is 100% by mass. 60 to 88% by mass.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms as the ⁇ -olefin include propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-methyl-1-butene, 2-methyl-2-butene, Examples include 3-methylbutene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-undecene and the like. These ⁇ -olefins may be included singly or in combination of two or more. Of the ⁇ -olefins, propylene and 1-butene are preferable.
  • the content of the ⁇ -olefin is preferably 95 to 5% by mass, more preferably 50 to 10% by mass, when the total amount of monomers constituting the ethylene / ⁇ -olefin rubber is 100% by mass. Particularly preferred is 40 to 12% by mass.
  • the ethylene / ⁇ -olefin rubber may be a binary copolymer composed of ethylene and ⁇ -olefin, or a polymer composed of these and another compound (ternary). Copolymer, quaternary copolymer, etc.). Other compounds include non-conjugated diene compounds.
  • non-conjugated diene compound used in the olefin rubber examples include alkenyl norbornenes, cyclic dienes and aliphatic dienes, and dicyclopentadiene and 5-ethylidene-2-norbornene are preferable. These non-conjugated diene compounds can be used alone or in combination of two or more.
  • the content of the non-conjugated diene compound unit in the ethylene / ⁇ -olefin rubber is usually less than 30% by mass, preferably less than 15% by mass.
  • the acrylic rubber is not particularly limited, but a (co) polymer of a (meth) acrylic acid alkyl ester compound having 1 to 8 carbon atoms in the alkyl group, or the (meth) acrylic acid alkyl ester compound, A copolymer with a copolymerizable vinyl monomer is preferred.
  • alkyl acrylate ester compound having 1 to 8 carbon atoms in the alkyl group used here include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, i-butyl acrylate, amyl acrylate, and hexyl.
  • examples thereof include acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and the like.
  • alkyl methacrylate examples include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, amyl methacrylate, hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate and the like. It is done. Of these compounds, n-butyl acrylate and 2-ethylhexyl acrylate are preferable. Moreover, these can be used individually by 1 type or in combination of 2 or more types.
  • examples of the vinyl monomer copolymerizable with the (meth) acrylic acid alkyl ester compound include polyfunctional vinyl compounds, aromatic vinyl compounds, and vinyl cyanide compounds.
  • the polyfunctional vinyl compound refers to a monomer having two or more vinyl groups in one monomer molecule, the function of crosslinking the (meth) acrylic copolymer, and the reaction starting point during graft polymerization. It plays a role.
  • Specific examples of the polyfunctional vinyl monomer include polyfunctional aromatic vinyl compounds such as divinylbenzene and divinyltoluene; (meta) of polyhydric alcohols such as (poly) ethylene glycol dimethacrylate and trimethylolpropane triacrylate.
  • Acrylic acid ester ; diallyl malate, diallyl fumarate, triallyl cyanurate, triallyl cyanurate, diallyl phthalate, allyl methacrylate and the like.
  • These polyfunctional vinyl compounds can be used singly or in combination of two or more.
  • aromatic vinyl compound and vinyl cyanide compound used here all of those described later can be used.
  • other copolymerizable monomers acrylamide, methacrylamide, vinylidene chloride, alkyl (C 1-6) vinyl ether, alkyl (meth) acrylic acid alkyl ester having 9 or more carbon atoms, ( (Meth) acrylic acid etc. are mentioned, These are used individually by 1 type or in combination of 2 or more types.
  • a preferable monomer composition of the acrylic rubber is 80 to 99.99% by mass, more preferably 90 to 99.95% by mass, of (meth) acrylic acid alkyl ester compound unit having 1 to 8 carbon atoms in the alkyl group. 0.01 to 5% by mass of a polyfunctional vinyl compound unit, more preferably 0.05 to 2.5% by mass, and 0 to 20% by mass of other vinyl monomers copolymerizable therewith, more preferably 0 to 10% by mass.
  • the monomer composition is 100% by mass in total.
  • a polyfunctional vinyl compound is used in the production of the acrylic rubber.
  • the acrylic rubber production method of the present invention includes (1) a method in which various vinyl monomers are added at once and polymerized. (3) A method in which a part of various vinyl monomers is added and polymerized, and the remaining vinyl monomer is continuously added and polymerized. (4) Various vinyl monomers There is a method of polymerizing by dividing it into two or more stages, preferably the method (4), more preferably the method (4) using the polyfunctional vinyl compound in the later stage after the second stage. It is a method to do. As the polymerization method, emulsion polymerization is particularly preferable.
  • the volume average particle diameter of the acrylic rubber is preferably 50 to 1000 nm, more preferably 40 to 700 nm, and particularly preferably 50 to 500 nm.
  • conjugated diene block copolymer specifically, a copolymer comprising at least one of the following block A or the following block C and at least one of the following block B or the following block A / B, or A polymer by block B or A / B, which is a known method by anionic polymerization, for example, Japanese Patent Publication No. 47-28915, Japanese Patent Publication No. 47-3252, Japanese Patent Publication No. 48-2423, Japanese Patent Publication No. It can be produced by the method disclosed in Japanese Patent No. 48-20038.
  • A Aromatic vinyl compound polymer block
  • B conjugated diene polymer block
  • a / B Random copolymer block of aromatic vinyl compound / conjugated diene
  • C a tapered block made of a copolymer of a conjugated diene and an aromatic vinyl compound, and the aromatic vinyl compound gradually increasing;
  • B1 is a conjugated diene polymer block or a copolymer block of a conjugated diene and an aromatic vinyl compound, and the vinyl bond content of the conjugated diene moiety is preferably 20% or more
  • B2 is a conjugated diene polymer block or (This is a copolymer block of a conjugated diene and an aromatic vinyl compound, and the vinyl bond content of the conjugated diene moiety is preferably less than 20%.)
  • AA / B AA / BC AA / BB AA / BA B2-B1-B2 (B1 and B2 are the same as above.)
  • the conjugated dienes used here include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3- Hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene and the like can be mentioned, but conjugated diene block copolymers having industrial properties and excellent physical properties can be used. To obtain it, 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene is more preferred.
  • aromatic vinyl compound used here examples include styrene, t-butylstyrene, ⁇ -methylstyrene, p-methylstyrene, hydroxystyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromo.
  • Styrene fluorostyrene, pt-butylstyrene, ethylstyrene, vinylnaphthalene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethylstyrene, N, N-diethyl-p-aminoethyl Examples thereof include styrene and vinylpyridine, and styrene and ⁇ -methylstyrene are preferable, and styrene is particularly preferable.
  • the ratio of aromatic vinyl compound / conjugated diene in the conjugated diene block copolymer is from 0 to 70/100 to 30, preferably from 0 to 60/100 to 40, more preferably from 0 to 50/100 in terms of mass ratio.
  • the aromatic vinyl compound is essential, it is preferably 10 to 70/90 to 30.
  • the content of the aromatic vinyl compound exceeds 70% by mass, it becomes resinous and the effect as a rubber component is inferior.
  • the vinyl bond content of the conjugated diene moiety in the conjugated diene block is usually in the range of 5 to 80%.
  • the number average molecular weight of the conjugated diene block copolymer is usually 10,000 to 1,000,000, preferably 20,000 to 500,000, more preferably 20,000 to 200,000. Of these, the number average molecular weight of the A part in the above structural formula is preferably in the range of 3,000 to 150,000, and the number average molecular weight of the B part is preferably in the range of 5,000 to 200,000.
  • Adjustment of the vinyl bond amount of the conjugated diene compound is carried out by adjusting amines such as N, N, N ′, N′-tetramethylethylenediamine, trimethylamine, triethylamine, diazocyclo (2,2,2) octamine, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diester. It can be carried out using ethers such as butyl ether, thioethers, phosphines, phosphoamides, alkylbenzene sulfonates, alkoxides of potassium and sodium, and the like.
  • amines such as N, N, N ′, N′-tetramethylethylenediamine, trimethylamine, triethylamine, diazocyclo (2,2,2) octamine, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diester. It can be carried out using ethers such as butyl ether, thi
  • Examples of the coupling agent used in the present invention include diethyl adipate, divinylbenzene, methyldichlorosilane, silicon tetrachloride, butyltrichlorosilicon, tetrachlorotin, butyltrichlorotin, dimethylchlorosilicon, tetrachlorogermanium, 1,2 -Dibromoethane, 1,4-chloromethylbenzene, bis (trichlorosilyl) ethane, epoxidized linseed oil, tolylene diisocyanate, 1,2,4-benzene triisocyanate and the like.
  • the hydrogenated conjugated diene block copolymer used in the present invention is such that at least 30% or more, preferably 50% or more, of the carbon-carbon double bonds in the conjugated diene portion of the conjugated diene block copolymer are hydrogenated. Partial hydrogenated or completely hydrogenated, and more preferably 90% or more hydrogenated hydrogenated.
  • the hydrogenation reaction of the conjugated diene block copolymer can be carried out by a known method, and the target polymer can be obtained by adjusting the hydrogenation rate by a known method.
  • Specific methods include Japanese Patent Publication No. 42-8704, Japanese Patent Publication No. 43-6636, Japanese Patent Publication No. 63-4841, Japanese Patent Publication No. 63-5401, Japanese Patent Publication No. 2-133406, Japanese Patent Publication No. Hei 1 There is a method disclosed in Japanese Patent No. -297413.
  • the rubbery polymer (b1) used in the present invention preferably has a gel content of 70% by mass or less from the foamability of the present invention, more preferably 50% by mass or less, and particularly preferably 10% by mass. % Or less.
  • the gel content can be determined by the following method. 1 g of the rubbery polymer (b1) is put into 100 ml of toluene and allowed to stand at room temperature for 48 hours. Thereafter, the toluene insoluble matter and the wire mesh filtered through a 100 mesh wire mesh (mass is W1 gram) are vacuum-dried at a temperature of 80 ° C. for 6 hours and weighed (mass W2 gram). Substituting W1 and W2 into the following equation to obtain the gel content.
  • Some ethylene-propylene rubbery polymers have ethylene crystals. When such rubbery polymers are used, they are dissolved at a temperature of 80 ° C. to obtain the gel content.
  • Gel content [[W2 (g) ⁇ W1 (g)] / 1 (g)] ⁇ 100
  • the gel content is determined when the rubbery polymer (b1) is produced, such as the type of crosslinkable monomer and the amount used, the type and amount of molecular weight regulator used, the polymerization time, the polymerization temperature, and the polymerization conversion rate. It can be adjusted by appropriately setting.
  • the rubbery polymer (b1) used in the present invention is polybutadiene, butadiene / styrene copolymer, olefin rubber, acrylic rubber, silicone rubber, conjugated diene block copolymer, hydrogenated conjugated diene.
  • Block copolymers, more preferably olefin rubbers, acrylic rubbers, hydrogenated conjugated diene block copolymers, particularly preferred are acrylic rubbers, ethylene / propylene copolymers, ethylene A propylene / non-conjugated diene copolymer and a hydrogenated conjugated diene block copolymer are most preferable, and the acrylic rubber has a gel content of 10% by mass or less and a volume average particle size of 50. Of up to 500 nm.
  • the rubbery polymer (b1) of the present invention can be obtained by a known method such as emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization or the like.
  • polybutadiene and acrylic rubber are preferably produced by emulsion polymerization, such as ethylene / propylene copolymer, ethylene / propylene / nonconjugated diene copolymer, conjugated diene block copolymer and hydrogenated conjugate.
  • the diene block copolymer is preferably prepared by solution polymerization.
  • the rubber-reinforced styrene-based resin that is the component (B1) of the present invention is an aromatic vinyl compound or other copolymer that can be copolymerized with an aromatic vinyl compound and an aromatic vinyl compound in the presence of the rubber polymer (b1). It can be obtained by polymerizing the vinyl monomer (b2). That is, the component (b2) may be an aromatic vinyl compound alone or a mixture of an aromatic vinyl compound and another vinyl monomer copolymerizable with the aromatic vinyl compound.
  • the aromatic vinyl compound used here any of those described for the rubber polymer (b1) can be used. Particularly preferred are styrene and ⁇ -methylstyrene, and these can be used alone or in combination of two or more.
  • Examples of other vinyl monomers copolymerizable with the aromatic vinyl compound include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, and other various functional group-containing unsaturated compounds.
  • vinyl cyanide compounds unsaturated acid compounds, epoxy group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, acid anhydride group-containing unsaturated compounds, oxazoline group-containing unsaturated compounds, substituted or unsubstituted And amino group-containing unsaturated compounds.
  • vinyl monomers can be used alone or in combination of two or more.
  • Examples of the vinyl cyanide compound include acrylonitrile, methacrylonitrile and the like, and these can be used alone or in combination of two or more. Chemical resistance is imparted by using a vinyl cyanide compound.
  • the amount of the vinyl cyanide compound used is usually 0 to 60% by mass, preferably 5 to 50% by mass as a proportion of the total amount of the vinyl monomer (b2).
  • Examples of the (meth) acrylic acid ester compound include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like. These may be used alone or in combination of two or more. Can be used in combination.
  • the amount of the (meth) acrylic acid ester compound used is usually 0 to 80% by mass as a proportion of the total amount of the vinyl monomer (b2).
  • maleimide compound examples include maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, N-cyclohexylmaleimide and the like, and these can be used alone or in combination of two or more.
  • maleic anhydride may be copolymerized and then imidized. Heat resistance is imparted by using a maleimide compound.
  • the amount of maleimide compound used is usually 1 to 60% by mass as a proportion of the total amount of vinyl monomer (b2).
  • unsaturated acid compounds include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and the like. These may be used alone or in combination of two or more. can do.
  • epoxy group-containing unsaturated compound examples include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether and the like, and these can be used alone or in combination of two or more.
  • hydroxyl-containing unsaturated compounds include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, and 3-hydroxy-3- Examples thereof include methyl-1-propene, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, N- (4-hydroxyphenyl) maleimide, and these may be used alone or in combination of two or more. it can.
  • oxazoline group-containing unsaturated compound examples include vinyl oxazoline, and these can be used alone or in combination of two or more.
  • acid anhydride group-containing unsaturated compound examples include maleic anhydride, itaconic anhydride, citraconic anhydride and the like, and these can be used alone or in combination of two or more.
  • substituted or unsubstituted amino group-containing unsaturated compounds include aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, phenylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, and acrylamine , N-methylacrylamine, acrylamide, N-methylacrylamide, p-aminostyrene and the like, and these can be used alone or in combination of two or more.
  • the aromatic polycarbonate resin (A), the rubber-reinforced styrene resin (B1), and the styrene resin (B2) are blended, the compatibility between the two is improved. There is a case.
  • the amount of the other various functional group-containing unsaturated compounds used is usually 0 as the total amount of the functional group-containing unsaturated compounds relative to the total of the components (A), (B1) and (B2). 0.1 to 20% by mass, preferably 0.1 to 10% by mass.
  • the amount of the monomer other than the aromatic vinyl compound in the total amount of the vinyl monomer (b2) is usually 80% by mass or less, preferably 60% by mass, when the total of the component (b2) is 100% by mass. Hereinafter, it is more preferably 50% by mass or less.
  • More preferable combinations of monomers constituting the vinyl monomer (b2) are styrene alone, styrene / acrylonitrile, styrene / methyl methacrylate, styrene / acrylonitrile / methyl methacrylate, styrene / acrylonitrile / glycidyl methacrylate, styrene / acrylonitrile.
  • the rubber-reinforced styrene resin (B1) used in the present invention can be produced by a known polymerization method, for example, emulsion polymerization, bulk polymerization, solution polymerization, suspension polymerization, or a polymerization method combining these.
  • the rubber polymer (b1) obtained by emulsion polymerization can also be produced by emulsion polymerization in the production of the component (B1), and the rubber polymer (b1) can be produced by solution polymerization.
  • component (B1) is generally and preferably produced by bulk polymerization, solution polymerization and suspension polymerization.
  • the component (B1) can be produced by emulsion polymerization if the rubbery polymer (b1) is emulsified by a known method.
  • the rubber polymer (b1) produced by emulsion polymerization can be solidified and isolated, and then the component (B1) of the present invention is produced by bulk polymerization, solution polymerization and suspension polymerization. Can do.
  • a polymerization initiator In the case of producing by emulsion polymerization, a polymerization initiator, a chain transfer agent, an emulsifier and the like are used, and all of these known ones can be used.
  • the polymerization initiator include cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, tetramethylbutyl hydroperoxide, tert-butyl hydroperoxide, potassium persulfate, azobisisobutyronitrile and the like. Can be mentioned.
  • redox systems such as various reducing agents, sugar-containing iron pyrophosphate formulations, sulfoxylate formulations and the like as polymerization initiation assistants.
  • Examples of the chain transfer agent include octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexyl mercaptan, and terpinolenes.
  • Examples of emulsifiers include alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, aliphatic sulfonates such as sodium lauryl sulfate, higher fatty acid salts such as potassium laurate, potassium stearate, potassium oleate, and potassium palmitate, and rosin acid. A rosinate such as potassium can be used.
  • the rubber polymer (b1) and the vinyl monomer may be used by adding a vinyl monomer in the presence of the entire amount of the rubber polymer (b1) for polymerization. It may be polymerized by dividing or adding continuously. Moreover, you may add a part of rubber-like polymer (b1) in the middle of superposition
  • the obtained latex is usually coagulated with a coagulant.
  • the powder of (B1) component is obtained by washing with water and drying.
  • two or more kinds of latexes of component (B1) obtained by emulsion polymerization may be appropriately blended and then coagulated, and further, the latex of component (B2) may be appropriately blended and then coagulated.
  • the coagulant inorganic salts such as calcium chloride, magnesium sulfate and magnesium chloride, and acids such as sulfuric acid, acetic acid, citric acid and malic acid can be used.
  • the powder of component (B1) can also be obtained by spray drying the latex.
  • the solvent that can be used when the component (B1) of the present invention is produced by solution polymerization is an inert polymerization solvent used in ordinary radical polymerization, for example, aromatic hydrocarbons such as ethylbenzene and toluene, Examples thereof include ketones such as methyl ethyl ketone and acetone, acetonitrile, dimethylformamide, N-methylpyrrolidone and the like.
  • the polymerization temperature is usually in the range of 80 to 140 ° C, preferably 85 to 120 ° C.
  • a polymerization initiator may be used, or polymerization may be performed by thermal polymerization without using a polymerization initiator.
  • organic peroxides such as ketone peroxide, dialkyl peroxide, diacyl peroxide, peroxy ester, hydroperoxide, azobisisobutyronitrile, and benzoyl peroxide are preferably used.
  • a chain transfer agent for example, mercaptans, terpinolenes, ⁇ -methylstyrene dimer, etc. can be used.
  • the polymerization initiator, chain transfer agent, etc. described in the solution polymerization can be used.
  • the amount of the remaining monomer in the component (B1) of the present invention obtained by the above polymerization methods is usually 10,000 ppm or less, preferably 5,000 ppm or less.
  • the above vinyl monomer was graft copolymerized with the rubber polymer (b1).
  • An ungrafted component [(co) polymer of the above-mentioned vinyl monomer] not grafted to the copolymer and the rubbery polymer (b1) is included.
  • the graft ratio of the rubber-reinforced styrene resin (B1) is usually controlled to 5 to 100% by mass, preferably 10 to 90% by mass, more preferably 15 to 85% by mass, and particularly preferably 20 to 80% by mass. It is preferable.
  • Graft rate is the type of polymerization initiator, the amount used, the type of chain transfer agent, the amount used, the polymerization method, the contact time of the monomer and rubber polymer (b1) during polymerization, the type of rubber polymer, the polymerization
  • the component that dissolves in the hot cyclohexane from the component (B1) decreases in the direction of increasing the graft ratio, but the foaming property of the composition of the present invention is eliminated by eliminating the component. Becomes worse.
  • T represents 1 g of rubber-reinforced styrene resin (B1) in 20 ml of acetone (acetonitrile in the case of acrylic rubber), shaken with a shaker for 2 hours, and then centrifuged ( It is the mass (g) of the insoluble matter obtained by centrifuging for 60 minutes at a rotational speed of 23,000 rpm and separating the insoluble matter and the soluble matter.
  • S is the mass (g) of the rubbery polymer (b1) contained in 1 g of the rubber-reinforced styrene resin (B1).
  • the intrinsic viscosity [ ⁇ ] (measured at 30 ° C. using methyl ethyl ketone as a solvent) of acetone (acetonitrile in the case of acrylic rubber) soluble in the rubber-reinforced styrene resin (B1) used in the present invention is Usually, it is 0.15 to 1.2 dl / g, preferably 0.2 to 1.0 dl / g, more preferably 0.2 to 0.8 dl / g.
  • the average particle size of the grafted rubbery polymer particles dispersed in the rubber-reinforced styrene resin (B1) used in the present invention is usually 50 to 3,000 nm, preferably 40 to 5,000 nm, particularly preferably 50 to 2,000 nm.
  • the rubber particle diameter is less than 50 nm, the impact resistance tends to be inferior, and when it exceeds 3,000 nm, the appearance of the molded product surface tends to be inferior.
  • the refractive index of the rubber polymer (b1) and the vinyl monomer copolymer to be used is substantially matched and / or the particle diameter of the dispersed rubber polymer (b1) is substantially visible.
  • the (B1) component which has transparency can be obtained by setting it to below the wavelength of light (usually 1,500 nm or less), these transparent resins can also be used as the (B1) component of the present invention.
  • the component (B1) used in the composition of the present invention has a hot cyclohexane dissolution amount shown under the following conditions based on the rubbery polymer (b1) used (100% by mass) for expression of foamability. 1 to 99% by mass, preferably 2% by mass or more, more preferably 4% by mass or more, and particularly preferably 5 to 80% by mass.
  • dissolves here is a rubber-like polymer (b1).
  • the rubbery polymer (b1) is an acrylic rubber
  • the rubbery polymer (b1) is an olefin rubber, it is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and particularly preferably 20 to 40% by mass.
  • the amount of hot cyclohexane dissolved can be determined by the following method. That is, cyclohexane is refluxed for 8 hours under normal pressure using a Soxhlet extractor using a rubber-reinforced styrene resin (B1) [wherein the amount of rubber in the component (B1) is W1 grams]. The cyclohexane solution is dried, the weight of the extract is measured (W2 grams), and the amount of hot cyclohexane dissolved is calculated by the following formula.
  • Hot cyclohexane dissolution amount (%) W2 / W1 ⁇ 100
  • the amount of hot cyclohexane dissolved in the rubber-reinforced styrene resin (B1) used in the present invention is 1% by mass or more based on the rubbery polymer (b1), specifically, in the component (B1)
  • the rubber polymer (b1) is dissolved in hot cyclohexane, that is, when the rubber polymer (b1) is in an uncrosslinked or loosely crosslinked state, the foamability of the resin is improved.
  • the vinyl resin (B2) in the second aspect of the present invention is constituted by polymerizing an aromatic vinyl compound or an aromatic vinyl compound and another vinyl monomer (b3) copolymerizable with the aromatic vinyl compound.
  • the component (b3) may be an aromatic vinyl compound alone or a mixture of an aromatic vinyl compound and another vinyl monomer copolymerizable with the aromatic vinyl compound.
  • the aromatic vinyl compound and the other vinyl monomer copolymerizable with the aromatic vinyl compound all those described in the component (B1) can be used.
  • the vinyl monomer (b3) may be the same as or different from the vinyl monomer (b2).
  • Preferred components (B2) include styrene homopolymers, styrene / acrylonitrile copolymers, styrene / methyl methacrylate copolymers, styrene / acrylonitrile / methyl methacrylate copolymers, styrene / maleimide compound copolymers, styrene An acrylonitrile / maleimide compound copolymer and a copolymer of these and the functional group-containing unsaturated compound.
  • the component (B2) of the present invention can be produced by emulsion polymerization, bulk polymerization, solution polymerization, suspension polymerization and a combination thereof, which are known polymerization methods described in the above-described production method of the component (B1). it can.
  • the rubber-reinforced vinyl resin (B1) is blended in an amount of 5 to 90% by mass when the total of the components (A), (B1) and (B2) is 100% by mass. It is preferably 6 to 60% by mass, more preferably 7 to 40% by mass. If the rubber-reinforced vinyl resin (B1) is less than 5% by mass or more than 90% by mass, the foamability is poor. Further, the blending amount of the vinyl resin (B2) in the second aspect of the present invention is preferably 0 to 85% by mass, when the total of the components (A), (B1) and (B2) is 100% by mass. Is 5 to 50% by mass, more preferably 10 to 30% by mass.
  • the component (B2) is prepared by adjusting the amount of the rubber polymer (b1) to 3 to 50% by mass when the total of the components (A), (B1) and (B2) is 100% by mass, ) It is blended for the purpose of imparting a function to the composition of the present invention by changing the polymer species and improving the compatibility with other thermoplastic polymers.
  • Chemical foaming agent (C) The chemical foaming agent (C) to be used is not particularly limited but is preferably a thermal decomposition type inorganic foaming agent that decomposes to generate carbon dioxide (sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, etc.), decomposition Pyrolytic foaming agents that generate nitrogen gas (azodicarbonamide (ADCA), N, N′-dinitrosopentamethylenetetramine (DPT), 4,4′-oxybis (benzenesulfonylhydrazide) (OBSH), azo Known thermal decomposition type foamable compounds such as bisisobutyronitrile, p-toluenesulfonyl hydrazide, 5-phenyltetrazole and the like can be mentioned.
  • azodicarbonamide ADCA
  • OBSH 4,4′-oxybis (benzenesulfonylhydr
  • the content of the chemical foaming agent (C) is appropriately selected according to the type of chemical foaming agent and resin used so that a desired foaming ratio can be obtained, but the above components (A) and (B)
  • the total amount of (B1, B2) is 100 to 5 parts by mass, and the chemical foaming agent is 0.05 to 5 parts by mass, preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass, still more preferably 0.3 to 3 parts by mass.
  • the content of the chemical foaming agent is less than 0.05 parts by mass, the content of the chemical foaming agent is small and it is difficult to make the cell diameters of foaming uniform.
  • the pellets of the thermoplastic resin composition and the foaming agent master batch pellet are dry blended, and then supplied to the molding machine, and the resin is plasticized in the molding machine.
  • the foaming method is preferably used.
  • Specific examples of the physical foaming agent include propane, butane, water, carbon dioxide gas, and the like.
  • the talc (D) used in the present invention is not particularly limited, but is generally a kind of hydrous magnesium silicate clay mineral, and its composition is (MgO) x (SiO 2 ) y ⁇ zH 2 O ( x, y, and z are positive values). Further, a part of Mg in talc may be substituted with a divalent metal ion such as Ca 2+ .
  • the particle size of talc is not particularly limited, but is usually from 0.1 to 50 ⁇ m, preferably from 0.3 to 25 ⁇ m, more preferably from 0.5 to 20 ⁇ m, as an average particle size by laser scattering.
  • the average particle diameter of talc When the average particle diameter of talc is less than 0.1 ⁇ m, the dispersibility of talc in the thermoplastic resin composition becomes insufficient, the foamability is inferior, and it becomes difficult to obtain a foamed molded article having an excellent appearance. On the other hand, when the average particle diameter of talc exceeds 50 ⁇ m, the foamability is inferior and it is difficult to obtain a foamed molded article having an excellent appearance.
  • the content of talc (D) in the present invention is 0.5 to 18 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass in total of the components (A) and (B) (B1, B2). More preferably, it is 2 to 12 parts by mass.
  • the content of talc is less than 0.5 parts by mass and when the content of talc exceeds 18 parts by mass, the foamability is poor and it is difficult to obtain a foamed molded article having an excellent appearance.
  • Fibrous filler (E) The fibrous filler (E) in the present invention is not particularly limited as long as it is fibrous, and examples thereof include organic fibers such as glass fibers, carbon fibers, and aramid fibers, inorganic fibers such as ceramic whiskers, and metal fibers. It is done. Among these, it is preferable to use glass fiber from a viewpoint of the rigidity improvement of a foaming molding.
  • the composition of the glass fiber used in the present invention includes silicate glass, borosilicate glass, phosphate glass and the like.
  • the glass include E glass, C glass, A glass, S glass, M glass, AR glass, and L glass, and E glass and C glass are preferable.
  • An appropriate sizing agent may be used for the glass fiber used in the present invention.
  • the sizing agent include a surface treatment agent, a film forming agent, a lubricant, a surfactant, and an antistatic agent.
  • the surface treatment agent include amine-based, silane-based, and epoxy-based coupling agents.
  • the glass fiber used in the present invention may be a long fiber type using roving or a chopped strand.
  • the diameter of the glass fiber used in the present invention is not particularly specified, but is usually ⁇ 1 to 500 ⁇ m, preferably ⁇ 5 to 200 ⁇ m, and more preferably ⁇ 5 to 100 ⁇ m. If the diameter of the glass fiber is less than ⁇ 1 ⁇ m, the mechanical strength may be insufficient. On the other hand, when the diameter of the glass fiber exceeds ⁇ 500 ⁇ m, the foamability and the appearance of the foamed molded product may be deteriorated.
  • the length of the glass fiber is not particularly specified, but is usually 0.01 to 10 mm, preferably 0.05 to 5 mm. If the length of the glass fiber is less than 0.01 mm, the foamability is poor and the mechanical strength may be insufficient. On the other hand, if the length of the glass fiber exceeds 10 mm, the foamability may be insufficient.
  • the length ( ⁇ m) / diameter ( ⁇ m) of the glass fiber is usually 5 to 1000, preferably 8 to 500. If the length / diameter of the glass fiber is less than 5, both ends of the glass fiber do not become the foaming origin, and the foamability may be insufficient.
  • the length / diameter of the glass fiber exceeds 1000, the number of foaming starting points may decrease due to a decrease in the number of glass fibers, and foamability may be insufficient.
  • the residual average fiber length of the glass fibers dispersed in the molded foam molded article is preferably 0.01 to 1 mm, more preferably 0.02 to 0.8 mm, and 0.03 to 0.7 mm. Further preferred. When the remaining average fiber length of the glass fibers is in the above range, the foamability, the appearance of the foamed molded product, and the mechanical properties are sufficient.
  • the carbon fiber may be a carbon fiber structure such as a carbon nanotube.
  • the diameter of the carbon fiber used in the present invention is not particularly specified, but is preferably 0.5 ⁇ m to 200 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and even more preferably 5 ⁇ m to 50 ⁇ m.
  • the length of the fiber is not particularly specified, but is preferably 20 ⁇ m or more in the foamed molded product.
  • the blending amount of the fibrous filler (E) in the present invention is 0.5 to 25 parts by mass with respect to a total of 100 parts by mass of the components (A) and (B) (B1 and B2), preferably 0.8.
  • the amount is 5 to 18 parts by mass, more preferably 2 to 18 parts by mass, and particularly preferably 4 to 18 parts by mass.
  • the content of the fibrous filler is less than 0.5 parts by mass or more than 25 parts by mass, the foamability, the appearance of the foamed molded product, mold contamination, and mechanical strength may be deteriorated.
  • thermoplastic resin composition used in the present invention a heat aging inhibitor can be blended.
  • the heat aging inhibitor include phenol, phosphorus, and sulfur, and a phenol, phosphorus, and sulfur mixed system is preferable.
  • this three-type mixed system is used as a heat aging inhibitor, the effect of maintaining the tensile elongation when exposed to a high temperature for a long time can be obtained.
  • the phenolic types include 2,6-di-t-butylphenol derivatives, 2-methyl-6-t-butylphenol derivatives, octadecyl 3 (3,5-di-t-butyl-4-hydroxy).
  • Phenyl) propionate 4,4′-butylidene-bis (6-tert-butyl-m-cresol), pentaerythrityl tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] 2 [1- (2-hydroxy-3,5-di-t-pentylphenyl) -ethyl] -4,6-di-t-pentylphenyl acrylate, 2-t-butyl-6 (3-t-butyl -2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate and the like.
  • Phosphorus includes tris (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis (2,4-di-t-butylphenyl phosphite), distearyl pentaerythritol diphosphite , Sodium dihydrogen phosphate, disodium monohydrogen phosphate, and the like.
  • Sulfur compounds include 3,3′-thiobispropionic acid didodecyl ester, 3,3′-thiobispropionic acid dioctadecyl ester, pentaerythritol-tetrakis (3-laurylpropionate), dilauryl 3,3′- Examples include thiodipropionate.
  • the proportion of the heat aging inhibitor in the thermoplastic resin composition used in the present invention is 0 to 5% by mass, preferably 0 to 3% by mass.
  • the rubber reinforced vinyl resin (B) component other than the polycarbonate resin (A) is improved in heat aging characteristics by adding a heat aging inhibitor.
  • Resin (A) may work as a catalyst for the thermal aging inhibitor to promote hydrolysis, and there is also a tendency to suppress deterioration when no thermal aging inhibitor is added. In view of these contradictory effects, an optimum heat aging prevention effect can be obtained by adding the heat aging inhibitor up to 5% by mass.
  • thermoplastic resin composition for foam molding used in the present invention includes known weathering agents, lubricants, colorants, antistatic agents, silicone oils, talc (within a range not impairing the target performance of the present invention).
  • D) and additives such as inorganic fillers other than the fibrous filler (E) can be blended.
  • benzotriazole, triazine, benzophenone, and the like are preferable as the weathering agent.
  • ethylene bisstearylamide, hydrogenated castor oil and the like are preferable.
  • the colorant include carbon black and bengara.
  • antistatic agent include polyethers and sulfonates having an alkyl group.
  • thermoplastic resin composition for foam molding of the present invention other thermoplastic resins can be further blended within a range that does not impair the target performance of the present invention.
  • thermoplastic resin a styrene resin (except for the components (B) (B1, B2)), a polyolefin resin, a vinyl chloride resin, an acrylic resin, a polyester resin, a polyamide resin, a polyacetal resin, There are polyphenylene ether resins, polyarylene sulfide resins, and the like.
  • thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resin composition used in the present invention can be kneaded using various extruders, Banbury mixers, kneaders, rolls and the like.
  • (A) and (B) (B1 and B2), (C), (D) and (E) components, and other additives as necessary are kneaded to form pellets of the thermoplastic resin composition.
  • Obtainable Specifically, a method in which the components (A) to (E) are melted by a twin screw extruder may be used.
  • the kneading temperature is appropriately selected depending on the composition of the thermoplastic resin composition, but is usually 220 to 260 ° C. in the present invention.
  • thermoplastic resin composition for injection foam molding is injected into a cavity space formed in a mold of an injection molding machine, and immediately or after a predetermined time has passed, a movable mold or a movable mold
  • a foamed molded article can be obtained by a so-called core back type injection molding method in which a movable core provided in a mold is retracted to a predetermined position at a predetermined speed to expand the cavity space. Since the temperature of the mold is usually considerably lower than the temperature of the thermoplastic resin composition at the time of injection, the surface of the foamed molded body formed in contact with the surface of the cavity is a dense foam that is hardly foamed. A skin layer is formed.
  • the foamed molded body can be integrally formed so as to be in contact with the surface of a substrate made of resin or the like.
  • a laminate can be formed by placing a base material in the cavity space in advance and injecting a thermoplastic resin composition on the surface thereof. Also, using an injection molding machine equipped with two injection units, first, the base material is formed by injecting the resin as the base material, and then the movable core built in the movable mold is retracted. Forming a cavity space for injecting the thermoplastic resin composition, then injecting the thermoplastic resin composition, and then further retracting the movable core to expand the cavity space and foam, It can also be set as the laminated product by which the foaming molding was laminated
  • the retracting speed of the movable mold or the retracting speed of the movable core provided in the movable mold is 0.05 to 20 mm / second.
  • the mold opening speed is preferably 0.1 to 10 mm / second.
  • the temperature of the injected thermoplastic resin composition is preferably 200 to 280 ° C., particularly preferably 220 to 270 ° C. When this temperature is less than 200 ° C., the fluidity of the thermoplastic resin composition becomes insufficient, and in particular, poor filling may occur at the end portion. On the other hand, when it exceeds 280 ° C., there is a concern about thermal deterioration or the like depending on the composition of the thermoplastic resin composition.
  • the mold temperature is preferably 20 to 80 ° C., particularly preferably 30 to 70 ° C.
  • this temperature is less than 20 ° C.
  • the thermoplastic resin composition in contact with the inner surface of the mold is rapidly cooled, and it cannot be made into a homogeneous foamed molded product, and filling failure may occur at the end portion. is there.
  • the temperature exceeds 80 ° C., a homogeneous skin layer may not be formed on the portion formed in contact with the surface of the cavity of the foam molded article, which is not preferable.
  • the time from the injection of the thermoplastic resin composition to the start of retraction of the movable core or the movable core provided in the movable mold depends on the mold opening speed. It is preferable to set it to 3 seconds or less, and the reverse may be started immediately after completion of the injection.
  • the mold retraction delay time is preferably 0.1 to 2.5 seconds, particularly preferably 0.1 to 1.5 seconds. If the mold retraction delay time exceeds 3 seconds, cooling may proceed and a homogeneous foamed molded product may not be obtained.
  • the retraction amount of the mold may be set according to a predetermined foaming ratio, and is not limited.
  • the foamed molded body has an initial thickness of the material filled in the cavity space in the mold. It is preferable to retract the mold, that is, open the mold so that the final thickness becomes 1.1 to 3.0 times.
  • the ratio of the wall thickness is the expansion ratio
  • the expansion ratio is preferably 1.1 to 3 times, more preferably 1.5 to 2.5 times
  • the thickness of the foamed molded product is 5 to 30 mm.
  • the retraction amount of the mold is usually 2.5 to 30 mm.
  • the cooling time depends on the size of the foamed molded product or the cooling method, but the temperature of the foamed molded product at the time of demolding may be lowered to about 40 to 80 ° C., and generally 30 seconds or more. Well, 100 seconds is sufficient even for large products.
  • a fabric or a film may be inserted into the mold during injection filling.
  • Foam molding The foam molding obtained by the molding method of the present invention expresses a fine foam cell structure, and the foam cell has a uniform foam cell size and excellent mechanical performance regardless of the part of the foam molding. Is the body. Specifically, the average diameter of the foamed cell diameter is preferably 50 to 500 ⁇ m, more preferably 70 to 450 ⁇ m, still more preferably 100 to 400 ⁇ m, the foamed cell diameter is uniform, and the particle size distribution is preferably narrow. . In particular, the foamed molded body is preferably a uniform foamed molded body having a cell diameter of 400 ⁇ m or less.
  • the foamed molded article obtained by the molding method of the present invention has an expansion ratio of 1.01 to 3.0 times, preferably 1.1 to 2.7 times, more preferably 1.5 to 2.5 times. A desired magnification can be obtained.
  • the shape of the foamed molding obtained by the molding method of the present invention is selected depending on the purpose, application, etc., and can be plate-shaped (sheet-shaped), cylindrical, semi-cylindrical, rod-shaped, linear, massive, or the like. .
  • the foamed molded product of the present invention includes a display panel, a concrete panel, a roof heat insulating material, a tatami core material, a fence, a wood substitute for a system kitchen, a civil engineering / architecture related material such as a bath lid, a table board, a side molding, a sound absorbing material, Bumper, door handle, console box, ceiling material, pillar, center low cluster finish panel, cowl side trim, center outlet, door lining, ash tray, footrest, steering column cover, lower insert, lower handle panel, foil cap, spoiler, etc.
  • Interior and exterior materials for vehicles daily necessities such as containers, trays and returnable boxes, televisions, videos, air conditioner housings, parabona antennas, electric and electronic parts such as air conditioner outdoor units, sports equipment such as beat plates and protectors , Wall, floor, machine frame, furniture, conversion Seats, partitions, lattices, fences, gutters, sizing boards, carport and other housing / office interior and exterior materials, machine frames for toys and gaming machines, cushioning materials, reinforcing materials, heat insulating materials, core materials, substitute plywood Etc. can be used.
  • the foamed molded product of the present invention can be used as an article formed by being integrated with another molded product, member or the like depending on the application.
  • thermoplastic resin composition for foam molding of the present invention contains 20-80% by mass of an aromatic polycarbonate resin (A) and an aromatic vinyl compound and a vinyl cyanide compound in the presence of the rubbery polymer (b1).
  • the rubber-reinforced vinyl resin (B) comprising the graft copolymer (B1) obtained by polymerizing the vinyl monomer (b2) is mixed with the remaining 20 to 80% by mass (component (A) and component (B). The total is 100 mass%).
  • the thermoplastic resin composition for foam molding contains 0.05 to 5 parts by mass of the chemical foaming agent (C) with respect to a total of 100 parts by mass of the components (A) and (B), and the component (A) And the ratio of the component (b1) in the total of 100% by mass of (B) is 3 to 50% by mass.
  • the rubber-reinforced vinyl resin (B) in this example is a rubber-reinforced styrene resin (B).
  • the rubber-reinforced vinyl resin (B) can also be composed of a mixture of the vinyl monomer (b3) copolymer (B2) and the graft copolymer (B1).
  • thermoplastic resin composition for foam molding of this example the foam molded body 6 using the same, and the molding method of the foam molded body 6 will be described in detail with reference to FIGS.
  • a fine foam cell structure is expressed when performing injection foam molding, and the foam cell is not affected by the location of the foam molded body 6.
  • the foam molded body 6 having a uniform size, excellent mechanical performance, and excellent surface appearance can be formed.
  • the molten resin 60 in which the foam molding thermoplastic resin composition was melted was hardened almost without foaming on the entire surface of the foam molded body 6 to be foam molded.
  • the skin layer 61 can be formed effectively.
  • the manufacturing apparatus 1 is used when the foamed molded body 6 is molded using the thermoplastic resin composition for foam molding.
  • the manufacturing apparatus 1 includes a first mold part 2 and a second mold part 3 that is movable relative to the first mold part 2 as a mold. Then, the manufacturing apparatus 1 fills the cavity 41A formed between the second mold part 3 and the first mold part 2 with the molten resin 60 in which the thermoplastic resin composition is melted, and the first mold part 2 And the second mold part 3 are configured to be relatively movable in the separation direction R in which the volume of the cavity 41A is increased.
  • the second mold part 3 is provided with a cavity forming convex part 31 disposed in a cavity forming concave part 21 provided in the first mold part 2.
  • a filling gap 42 for filling the molten resin 60 is formed in communication with the cavity 41A.
  • the manufacturing apparatus 1 of this example fills the cavity 41A with the molten resin 60 and fills the filling gap 42, and then relatively moves the first mold part 2 and the second mold part 3 in the separation direction R. It is configured as follows.
  • the first mold part 2 of this example is a fixed mold part provided with a resin injection port 22 for filling the molten resin 60 into the cavity 41.
  • the second mold part 3 of this example is a movable mold part that is movable in the separation direction R with respect to the first mold part 2.
  • the second mold part 3 of this example is larger than the first mold part 2 so that the volume of the cavity 41 formed between the first mold part 2 and the first mold part 2 is enlarged by 1.1 to 3.0 times. It is configured to retreat in the separation direction R.
  • the foaming ratio of the foamed molded body 6 to be foam-molded is 1.1 to 3.0 times. As shown in FIGS.
  • the manufacturing apparatus 1 of the present example is connected to a resin injection port 22 provided in the first mold part 2, and an injection nozzle 25 for injecting a molten resin 60 into the cavity 41 ⁇ / b> A. have.
  • the second mold part 3 of this example is configured to move forward and backward (move in the movable direction D) with respect to the first mold part 2 by a drive source that operates by hydraulic pressure, air pressure, electric power, and the like.
  • the first mold part 2 and the second mold part 3 are used to foam-mold a foam-shaped molded body 6 having a substantially rectangular parallelepiped shape, a rectangular cross section, and a long plate shape in one direction L. .
  • the second mold part 3 of this example is separated from the first mold part 2 until the distal end surface 312 of the cavity forming convex part 31 moves to the end part in the movable direction D of the filling gap 42. It is configured to move in the direction R.
  • a filling gap 42 for filling the molten resin 60 is formed in communication with the cavity 41.
  • the filling gap 42 is formed to have a width (gap) that allows the skin layer 61 to be formed in the entire filling gap 42 when the molten resin 60 is filled.
  • a width (gap) that allows the skin layer 61 to be formed in the entire filling gap 42 when the molten resin 60 is filled.
  • FIGS. 1 and 2 when the second mold part 3 is in the original position 301 before moving in the separation direction R, there is a volume between the second mold part 3 and the first mold part 2.
  • FIG. 4 when the second mold part 3 is in the movable position 302 that is movable in the separation direction R, the second mold part 3 and the first mold are formed.
  • a cavity 41 ⁇ / b> B having an enlarged volume is formed between the portion 2.
  • the first mold portion 2 of the present example includes a surface 212 on the resin injection side in the cavity 41 (a bottom surface for molding the fixed side surface of the foam molded body 6) and a surface orthogonal to the surface on the resin injection side. It has a cavity forming recess 21 for forming a peripheral side surface 211 (inner side surface 211, a surface on which all the side surfaces of the foam molded body 6 are molded).
  • the second mold part 3 of this example includes a surface 312 on the resin receiving side in the cavity 41 (a tip surface for molding the movable surface of the foam molded body 6), and a side surface 311 on the entire circumference orthogonal to the surface on the resin injection side.
  • the inner side surface 211 of the cavity forming concave portion 21 of the first mold part 2 and the outer side surface 311 of the cavity forming convex part 31 of the second mold part 3 are formed in parallel to the movable direction D.
  • the first mold part 2 of the present example there is an outer periphery of the opening tip part 23 and the second mold part 3 around the entire circumference of the opening tip part 23 of the mold wall part that forms the cavity forming recess 21.
  • a closed mold part 5 that closes the side surface 311 is provided.
  • the manufacturing apparatus 1 moves the second mold part 3 relative to the first mold part 2 in the separation direction R, the manufacturing apparatus 1 closes the distal end surface 312 of the second mold part 3.
  • the inner end face 52 of the mold part 5 is configured to coincide.
  • the skin layer 61 is formed on the entire surface of the foam molded body 6, and the skin layer A foam layer 62 can be formed on the inner portion of 61.
  • the second mold part 3 may not be moved in the separation direction R until the tip surface 312 of the second mold part 3 and the inner end surface 52 of the closing mold part 5 coincide.
  • a shape in which the protruding portion by the skin layer 61 protrudes from the foamed molded body 6 can be formed.
  • the width (gap) of the filling gap 42 in this example can be changed as appropriate, and the thickness of the skin layer 61 formed in the filling gap 42 can be changed as appropriate.
  • a method for molding the foam molded body 6 using the manufacturing apparatus 1 will be described in detail.
  • a molten resin 60 is filled in the cavity 41A formed between the second mold part 3 and the first mold part 2.
  • the skin layer 61 is formed on the part of the molten resin 60 that contacts the surface of the cavity 41A, and the volume of the cavity 41A is increased as shown in FIG. 4 as the movable process, as shown in FIG.
  • a foam layer 62 in which the molten resin 60 is foamed is formed in an inner portion with respect to the skin layer 61 by being moved relatively in the separation direction R.
  • the molding method of the foam molded body 6 in this example is a method of expanding the volume of the cavity 41A filled with the molten resin 60 and foaming the molten resin 60.
  • the skin layer 61 in which the molten resin 60 is hardened with almost no foaming can be effectively formed.
  • the molten resin 60 held in the injection nozzle 25 is put into the cavity 41 ⁇ / b> A in a state where the molten resin 60 is reduced from the resin injection port 22 in the first mold part 2. inject. At this time, the molten resin 60 flows from the cavity 41 ⁇ / b> A into the filling gap 42, and the molten resin 60 is filled into the entire cavity 41 and the filling gap 42 in a reduced state.
  • the semi-cured skin layer 61 is formed by cooling and hardening earlier than the other molten resin 60 portions (the portions of the molten resin 60 in the cavity 41 (inner portion)). Therefore, the molten resin 60 is semi-cured to form an unfoamed skin layer 61 not only on the contact surface in the cavity 41 but also on the contact surface in the filling gap 42. In this example, the skin layer 61 is formed on the entire filling gap 42.
  • the second mold part 3 is moved in the separation direction R with respect to the first mold part 2.
  • the outer surface 311 of the cavity forming convex part 31 of the second mold part 3 slides against the skin layer 61 of the molten resin 60 filled and cured in the filling gap 42, and the skin layer 61
  • the molten resin 60 flows into the inner portion and foams.
  • the molten resin 60 flows and foams.
  • the foam layer 62 in which the molten resin 60 is foamed can be formed inside the foam molded body 6, and the skin layer 61 can be formed on the entire circumference of the foam molded body 6. Therefore, the skin layer 61 can be stably formed on the surface of the entire circumference, and the mechanical strength of the foamed molded product 6 that has been foam-molded can be effectively improved.
  • the skin layer 61 can be formed on the entire surface of the foam molded body 6, and the mechanical strength of the foam molded body 6 can be improved. it can.
  • the formation of the stable skin layer 61 can improve the strength of the foamed molded body 6 to be molded, make the cell diameter by foaming more uniform, and suppress the deterioration of the appearance of the foamed molded body 6. Can do.
  • the cell diameter by foaming can be made as uniform as possible due to the presence of the aromatic polycarbonate resin (A) having a high viscosity at a predetermined temperature at which resin molding is performed. Can be improved. Further, the skin layer 61 is stably formed on the surface of the foam molded body 6 due to the presence of the rubber-reinforced styrene resin (B) having a lower viscosity than the aromatic polycarbonate resin (A) at a predetermined temperature at which the resin molding is performed. can do.
  • Example 2 This example is an example in which the composition of the thermoplastic resin composition for foam molding is different from that in Example 1.
  • the thermoplastic resin composition for foam molding of this example has an aromatic polycarbonate resin (A) of 10 to 90 mass%, a rubber-reinforced styrene resin (B1) of 5 to 90 mass%, and a styrene resin (B2) of 0 to 90 mass%.
  • the total of components (A), (B1) and (B2) is 100% by mass
  • chemical foaming with respect to a total of 100 parts by mass of components (A), (B1) and (B2) 0.1 to 5 parts by mass of agent (C), 0.5 to 18 parts by mass of talc (D), and 0.5 to 25 parts by mass of fibrous filler (E) are blended.
  • the rubber-reinforced styrene-based resin (B1) of this example is an aromatic vinyl compound or other vinyl monomer copolymerizable with an aromatic vinyl compound and an aromatic vinyl compound in the presence of the rubbery polymer (b1).
  • the amount of hot cyclohexane dissolved is 1 to 99% by mass based on the rubber polymer (b1) (100% by mass).
  • the styrene resin (B2) of this example is obtained by polymerizing an aromatic vinyl compound or an aromatic vinyl compound and another vinyl monomer copolymerizable with the aromatic vinyl compound.
  • the proportion of the rubbery polymer (b1) in the total 100% by mass of the components (A), (B1) and (B2) is 3 to 50% by mass.
  • thermoplastic resin composition for foam molding of this example can be molded into the foam molded body 6 by performing the molding method using the production apparatus 1.
  • the thermoplastic resin composition for foam molding of this example comprises the above aromatic polycarbonate resin (A), rubber-reinforced styrene resin (B1) (and styrene resin (B2)), chemical foaming agent (C), talc (D ) And the fibrous filler (E), and the ratio of the rubbery polymer (b1) composing the rubber-reinforced styrene resin (B1) is appropriate, it is fine when performing injection foam molding.
  • a foamed molded body 6 that expresses a foamed cell structure has a uniform foamed cell size regardless of the site of the foamed molded body 6, and is excellent in mechanical performance can be molded.
  • thermoplastic resin composition for foam molding of this example contains talc (D) and fibrous filler (E), so that the foamed molded body is further excellent in foamability and mechanical performance and excellent in surface appearance. 6 can be molded.
  • the reason is considered as follows. That is, when foam molding is performed, talc (D) and fibrous filler (E) serve as starting points of foaming, and foaming by the chemical foaming agent (C) can be promoted. At this time, it is considered that a fine and uniform foam cell can be obtained more effectively by mixing the foam start point by talc (D) and the foam start point by both ends of the fibrous filler (E).
  • thermoplastic resin composition for foam molding contains the fibrous filler (E)
  • the foam molded body 6 having particularly excellent rigidity as mechanical performance can be obtained.
  • the molding surface (surface of the cavity 41 and the filling gap 42 in the first mold part 2 and the second mold part 3) of the mold for foam molding is contaminated. It was found that the foamed molded body 6 that is less likely to be generated and excellent in surface appearance can be molded with high production efficiency. The reason is considered as follows.
  • the surface of the thermoplastic resin composition for foam molding in contact with the molding surface of the mold becomes rough and rough, and the chemical foaming agent (C) It is thought that the volatile components generated with the foaming of the metal) easily escaped from between the molding surface of the mold and the surface of the foamed thermoplastic resin composition for foam molding. For this reason, it has been found that contamination on the molding surface of the mold is less likely to occur, the frequency of cleaning can be reduced, and the foamed molded product 6 can be molded with high production efficiency.
  • thermoplastic resin composition for foam molding of this example a fine foam cell structure is expressed in injection foam molding, and the size of the foam cell is uniform regardless of the part of the foam molded body 6.
  • the foamed molded product 6 having excellent mechanical performance and excellent surface appearance can be molded with high production efficiency.
  • the molding method of the foamed molded body 6 of this example is a low-foamed layer having a low foaming ratio in the portion of the high-foamed layer 621 in the foamed layer 62 shown in Example 1 above.
  • This is an example of manufacturing the foamed molded product 6 with further improved mechanical strength by providing 622.
  • the cavity 41 ⁇ / b> A of this example is a shape for molding the foamed molded body 6 having a long plate shape in one direction L, and the thickness direction of the plate shape is the first.
  • the mold part 2 and the second mold part 3 are formed in the movable direction D.
  • the bottom surface 212 of the cavity forming concave portion 21 of the first mold part 2 and the tip surface 312 of the cavity forming convex part 31 of the second mold part 3 of this example are arranged in one direction at the central portion of the cross section orthogonal to the one direction L.
  • a long protrusion 24 is formed along L.
  • the cavity is formed at the inner portion of the skin layer 61 in the cavity 41 ⁇ / b> B.
  • the low foam layer 622 is formed in a portion corresponding to the elongated protrusion 24, and the high foam layer 621 having a higher foam rate than the low foam layer 622 is formed in the other portion.
  • the molten resin 60 is foamed utilizing the foaming effect of the chemical foaming agent (C).
  • C the chemical foaming agent
  • a high foam layer 621 obtained by foaming the molten resin 60 and a low foam layer 622 having a foam rate lower than that of the high foam layer 621 are formed.
  • the And the low foaming layer 622 is formed in the state which connects the parts of the skin layer 61 so that the high foaming layer 621 may be divided into two in the part corresponding to the elongate protrusion 24.
  • the low foam layer 622 can support the portions of the skin layer 61, and the mechanical strength of the foam molded body 6 can be improved by forming the low foam layer 622.
  • the reason why the low foam layer 622 is formed is that the cavity 41 in the movable direction D of the portion where the long protrusions 24 are formed on the bottom surface 212 of the cavity forming concave portion 21 and the tip surface 312 of the cavity forming convex portion 31. It is considered that the width (width in the thickness direction) is narrow, the cooling of the molten resin 60 proceeds quickly, and the viscosity of the molten resin 60 increases, so that the molten resin 60 is difficult to foam.
  • a plurality of resin injection ports 22 can be formed on the tip surface 312 of the cavity forming convex portion 31 in the first mold portion 2, as shown in FIG.
  • the low foam layer 622 can also be formed in the state which connects the parts of the skin layer 61 in the part corresponding to the some resin injection port 22.
  • the reason why the low foam layer 622 is formed is that the periphery of the portion where the plurality of resin injection ports 22 are formed on the bottom surface 212 of the cavity forming recess 21 and the tip surface 312 of the cavity forming protrusion 31. It is considered that this is because the pressure is higher than other parts and the molten resin 60 is difficult to foam.
  • other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment can be obtained.
  • thermoplastic resin composition (invention products 1 to 7) and other thermoplastic resin compositions (comparative products 1 to 8) in the confirmation test 1 was as follows.
  • Polycarbonate resin (A)> (In Table 1, it is indicated by PC.)
  • aromatic polycarbonate resin “Novalex 7022PJ” manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used.
  • ⁇ Graft copolymer (B1-1)> (In Table 1, indicated as AES.) (Preparation of AES resin) To a 10 liter stainless steel autoclave equipped with a ribbon-type stirring blade, an ethylene / propylene rubber polymer (ethylene content 63%, non-conjugated diene component is dicyclopentadiene, iodine value 10, Mooney viscosity (ML 1+ 4 , 100 ° C) 33], 30 parts, 45.5 parts of styrene (aromatic vinyl compound), 24.5 parts of acrylonitrile (vinyl cyanide compound) and 100 parts of toluene, and after stirring, the temperature was increased. The coalescence (b1) was completely dissolved to obtain a uniform solution.
  • the volatile matter was substantially distilled off and the polymer was pelletized with a 40 mm ⁇ vented extruder (220 ° C., 700 mmHg).
  • the graft ratio was 60%
  • the intrinsic viscosity (measured in methyl ethyl ketone at 30 ° C.) was 0.42 dl / g
  • the volume average particle size was 500 nm.
  • ⁇ Graft copolymer (B1-2)> (In Table 1, it is indicated by ABS.)
  • the temperature When the temperature reaches 45 ° C., it consists of 0.1 part of ethylenediaminetetraacetate, 0.003 part of ferrous sulfate, 0.2 part of sodium formaldehyde sulfoxylate dihydrate and 15 parts of ion-exchanged water. An aqueous activator solution and 0.1 part of diisopropylbenzene hydroperoxide were added, and the reaction was continued for 1 hour.
  • an incremental polymerization component consisting of 50 parts of ion-exchanged water, 1 part of disproportionated sodium rosinate, 0.1 part of t-dodecyl mercaptan, 0.2 part of diisopropyl hydroperoxide, 30 parts of styrene and 10 parts of acrylonitrile was added to 3 parts.
  • the polymerization reaction was continued by continuously adding over time. After completion of the addition, stirring was further continued for 1 hour, and then 0.2 part of 2,2-methylene-bis (4-ethylene-6-t-butylphenol) was added, and the reaction product was taken out from the flask.
  • the reaction product latex was coagulated with 2 parts of sulfuric acid, and the reaction product was thoroughly washed with water and dried at 75 ° C. for 24 hours to obtain a white powder.
  • the polymerization conversion rate was 97.2%, the graft rate was 75%, and the intrinsic viscosity was 0.44 dl / g.
  • ⁇ Antioxidant> (In Table 1, indicated as AO1, AO2, AO3)
  • AO1 ADEKA ADEKA STAB AO-412S
  • AO2 ADEKA ADEKA STAB 2112
  • AO3 Sumitomo Chemical Industries Sumilizer GS
  • Tables 1 and 2 the addition amount (parts by mass) of the antioxidant is indicated by parts by mass with respect to 100 parts by mass of the thermoplastic resin composition.
  • C ⁇ Chemical foaming agent (C)>
  • the filling time (sec) is the time required to fill the cavity 41 and the filling gap 42 with the molten resin 60 in the filling step
  • the expanded thickness (mm) is the value after foam molding.
  • the thickness of the foamed molded body 6 in the movable direction D was set, and the foaming ratio ( ⁇ ) was the amount of movement of the second mold part 3 in the separation direction R, that is, the expansion rate of the volume of the cavity 41.
  • this confirmation test 1 after blending a polycarbonate resin (A) and a rubber reinforced vinyl resin (B) in a blender, using a twin screw extruder TEX44 manufactured by Nippon Steel Works, at 250 ° C.
  • thermoplastic resin pellets and a foaming agent master batch were dry blended and supplied to a foam molding machine.
  • the inventive products 1 to 7 all had good surface appearance. Moreover, about the internal cross section, except the invention product 5, all were uniform and fine foamed cells were formed. In addition, about the invention product 5, it is thought that the formation state of the foam cell in an internal cross section was a little inferior, for example because the expansion ratio was large. In addition, the bending elastic moduli (MPa) of Invention Products 1 to 7 were all 1000 or more, and excellent results were obtained. Inventive products 1, 2, 4 to 7 are considered to have obtained good results by containing 50% by mass or 60% by mass of the polycarbonate resin (A).
  • the polycarbonate resin (A) has a low content of 30% by mass, but it is considered that good results were obtained by the composition containing 40% by mass of the AS resin.
  • Inventive products 1 to 7 are all composed of a mixture of an AES resin constituting the graft copolymer (B1) and an AS resin constituting the vinyl monomer (b3) copolymer (B2). did.
  • the foaming ratio was tested as 1.4 times, 1.55 times and 1.91 times, and when 1.4 times and 1.55 times were used, good results were obtained. On the other hand, it was found that when the expansion ratio was 1.91 times, the molten resin 60 filled in the cavity 41 did not sufficiently expand, and the surface of the molded foam molded body 6 was wavy. Accordingly, it was found that the expansion ratio is preferably in the range of 1.1 to 1.6 times.
  • the comparative products 1 to 8 had a good surface appearance, but both the flexural modulus and the internal cross section were inferior.
  • the comparative products 1 to 5 do not contain any polycarbonate resin (A), which is considered to be a major reason why the flexural modulus was low and the foamed cells in the internal cross section were not refined.
  • the comparative product 6 does not contain any rubber-reinforced vinyl resin (B), which is a major reason that the surface appearance and internal cross section are poor and the flexural modulus is low.
  • the foamed molded products 6 of Inventions 1 to 7 using the thermoplastic resin composition shown in Table 1 appropriately contain the polycarbonate resin (A) and the rubber-reinforced vinyl resin (B). It was found that by using the thermoplastic resin composition, a stable skin layer 61 can be formed, and the foam molded body 6 having excellent strength and appearance can be molded.
  • thermoplastic resin composition for foam molding was used.
  • ⁇ Aromatic polycarbonate resin (A)> As an aromatic polycarbonate resin, “Novalex 7022PJ” manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used.
  • the latex of the reaction product was coagulated with an aqueous magnesium sulfate solution, washed with water, and then dried to obtain ASA resin (B1-1).
  • the graft ratio of this polymer B1-1 was 65%, and the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.38 dl / g.
  • the amount of hot cyclohexane dissolved was 5%.
  • Ethylene / propylene rubber polymer (ethylene content 63%, non-conjugated diene component is dicyclopentadiene, iodine value 10, Mooney viscosity (ML 1 + 4 , 100 ° C.) 33, gel content 0%], 45 parts of styrene, 25 parts of acrylonitrile, 140 parts of toluene, the internal temperature was raised to 75 ° C., and the contents of the autoclave were stirred for 1 hour. A homogeneous solution was obtained.
  • the graft ratio of this polymer B1-2 was 60%, the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.45 dl / g, and the dissolved amount of hot cyclohexane was 35%.
  • Polymer B1-3 butadiene rubber polymer / styrene / acrylonitrile copolymer
  • Polymer B1-2 polybutadiene [manufactured by JSR, “BR51”, high cis type, Mooney viscosity (ML 1 + 4 , 100 ° C.) 33, Gel content 0%]
  • Polymer B1-3 was obtained in the same manner as for polymer B1-2 except that the content was changed to 15 parts, 64 parts of styrene and 21 parts of acrylonitrile.
  • the polymerization conversion rate of this polymer B1-3 was 91%, the grafting rate was 68%, the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.39 dl / g, and the dissolved amount of hot cyclohexane was 2%.
  • Polymer B1-4 hydrogenated conjugated diene block copolymer / styrene / acrylonitrile / methyl methacrylate copolymer
  • JSR Dynalon 4600P trade name
  • Polymer B1-5 polybutadiene / styrene / acrylonitrile copolymer (In Table 3, it is indicated by ABS2.)
  • a polybutadiene latex (average rubber particle size 0.3 ⁇ m, gel content 85%) was used instead of the acrylic rubber latex used to obtain the polymer B1-1
  • a polymer B1-5 was obtained.
  • the polymerization conversion rate of this polymer B1-5 was 99%, the grafting rate was 78%, the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.38 dl / g, and the dissolved amount of hot cyclohexane was 0%. .
  • the polymerization temperature of the first group was controlled at 110 ° C., the average residence time was 2.0 hours, and the polymerization conversion was 57%.
  • the obtained polymer solution was continuously taken out from the first reaction vessel by the same amount as the styrene, acrylonitrile, toluene, molecular weight regulator, and polymerization initiator supplied by the pump.
  • the polymerization temperature of the second reaction vessel was 130 ° C., and the polymerization conversion was 75%.
  • the copolymer solution obtained in the second reaction vessel was directly devolatilized from the unreacted monomer and solvent using a twin-screw, three-stage vented extruder, and the intrinsic viscosity [ ⁇ ] 0.45 dl / g of polymer B2 was obtained.
  • the compounding amount of the chemical foaming agent was 0.35 parts by mass with respect to 100 parts by mass in total of the resin components (components (A), (B1) and (B2)).
  • ADEKA ADEKA STAB AO-412S (AO1)
  • ADEKA ADEKA STAB 2112 (AO2)
  • Sumitomo Chemical Industries Sumilizer GS (AO3)
  • the compounding quantity of antioxidant was 0.1 mass part with respect to a total of 100 mass parts of resin component ((A), (B1) and (B2) component), respectively.
  • Table 3 shows the compositions of the thermoplastic resin compositions produced using the components (A), (C), (D) and any of the components (B1-1) to (B1-5), (B2).
  • Table 4 shows the compositions of the thermoplastic resin compositions produced as comparative products 1 to 6.
  • the dissolved amount indicates the dissolved amount (%) of hot cyclohexane in the component (B1) (components (B1-1) to (B1-5)).
  • Inventive products 1 to 11 in Table 3 and Comparative products 1 to 6 in Table 2 were obtained as follows. After blending the components (A), (B1), (B2), (D), and the antioxidant with a Henschel mixer at the blending ratio shown in Table 3, a twin screw extruder TEX44 made by Nippon Steel is used. And extruded at 250 ° C. to obtain thermoplastic resin pellets before foam molding. As the foam molding machine, a 110 (t) electric molding machine (J110AD) manufactured by Nippon Steel Works was used. The obtained thermoplastic resin pellets and a foaming agent master batch (component (C)) were dry blended and supplied to a foam molding machine for injection foam molding to obtain a foam molded article as an evaluation test piece. The filling time in injection foam molding was 1 second, and the mold opening speed was 0.5 mm / second.
  • the amount of hot cyclohexane dissolved in the component (B1) was measured by the measurement method described above.
  • the gel content of the rubber polymer (b1), the graft ratio of the rubber-reinforced styrene resin (B1), the intrinsic viscosity of the acetone-soluble component of the rubber-reinforced styrene resin (B1) and the styrene resin (B2) [ [ ⁇ ] was also measured by the measurement method described above.
  • Tables 3 and 4 show the measurement results of the maximum foaming magnification, the evaluation results of appearance observation and internal observation, and the measurement results of bending modulus (flexural modulus) for the inventive products 1 to 11 and the comparative products 1 to 6.
  • the maximum foaming ratio was determined as the ratio at which the foaming ratio was increased from 1.1 times to 0.1 times, and the result of appearance observation changed from ⁇ to ⁇ (the ratio at which the molded appearance deteriorated).
  • the expansion ratio was obtained by setting the cavity gap before volume expansion to 3 mm and expanding the amount of cavity gap expansion by 0.3 mm.
  • the appearance of the foam molded product is observed by visually observing the surface of the foam molded product, ⁇ when a good flat surface is obtained, ⁇ when there is a surface that is partially undulated, and distorted undulating.
  • the case was evaluated as x.
  • the internal observation of the foamed molded product was performed by visually observing the cross section of the foamed molded product obtained with a foaming ratio of 1.5 times, and when the uniform and fine foamed cell was formed, the outer diameter of the foamed cell was The case where there was a large and small distribution was evaluated as ⁇ , and the case where most of the foamed cells had a large outer diameter was evaluated as ⁇ .
  • the bending modulus (flexural modulus) (MPa) was measured in accordance with ISO178 using a foamed molded article obtained with an expansion ratio of 1.5. The internal observation and the bending modulus of the foamed molded product were not measured when the foamed molded product was wavy or distorted. In this case, “-” is indicated in the table.
  • Inventive products 1 to 11 are foam molded articles molded using a thermoplastic resin composition for foam molding, have excellent foamability (highest foaming ratio), good molded appearance, In the observation, a fine foam cell structure was developed, and the size of the foam cell was uniform regardless of the part of the foam molded article. Further, a high bending modulus as a mechanical performance was obtained.
  • Comparative products 1, 2, and 4 are foam molded products molded using the thermoplastic resin composition not using the rubber-reinforced styrene resin (B1), and have a low maximum foaming ratio and a molded appearance. was found to be inferior.
  • Comparative Product 3 the amount of component (A) in the total of 100% by mass of components (A), (B1) and (B2) is as small as 5% by mass (outside the scope of the present invention), and the maximum foaming ratio It was found that the molding appearance was poor.
  • Comparative products 5 and 6 the blending amount of the component (B1) in the total 100 mass% of the components (A), (B1) and (B2) is as small as 2 mass% or as large as 95 mass% (this It was found out of the scope of the invention) that the maximum foaming ratio was low and the molding appearance was poor.
  • the amount of hot cyclohexane dissolved in the rubber-reinforced styrene resin (B1) is 1 to 99 based on the rubbery polymer (b1). It was found that the content was 3% by mass and the ratio of the rubber polymer (b1) to 100% by mass of the resin component was 3 to 50% by mass. Moreover, it turned out that the foaming molding which is excellent also in mechanical strength is obtained by this composition.
  • thermoplastic resin composition for foam molding containing the following components was used.
  • the components (A), the components (B1-1) to (B1-5), the component (B2), the component (C), and the component (D) are the same as those in the confirmation test 2. Is the same.
  • a micro glass chopped strand “RES 03-TP89Z” (trade name) manufactured by NS Vetertex was used as the glass fiber.
  • the glass fiber has a diameter of 13 ⁇ m and a length of 3 mm.
  • the material was soda-lime glass, and the weight average particle diameter was 32 ⁇ m.
  • Table 5 shows the compositions of Invention products 1 to 13 in Table 5
  • Table 6 shows the compositions of the thermoplastic resin compositions produced for comparison as Comparative products 1 to 9.
  • the dissolved amount indicates the dissolved amount (%) of hot cyclohexane in the component (B1) (components (B1-1) to (B1-5)).
  • Inventive products 1 to 13 in Table 5 and Comparative products 1 to 9 in Table 6 were obtained as follows. (A), (B1) ((B1-1) to (B1-5)), (B2), (D), (E), and other ingredients in the mixing ratio shown in Table 5 into the Henschel mixer After blending, the mixture was extruded at 250 ° C. using a twin screw extruder TEX44 manufactured by Nippon Steel Works to obtain thermoplastic resin pellets before foam molding. As the foam molding machine, a 110 (t) electric molding machine (J110AD) manufactured by Nippon Steel Works was used.
  • thermoplastic resin pellets and a foaming agent master batch (component (C)) were dry blended and supplied to a foam molding machine for injection foam molding to obtain a foam molded article as an evaluation test piece.
  • the filling time in injection foam molding was 1 second, and the mold opening speed was 0.5 mm / second.
  • the amount of hot cyclohexane dissolved in the component (B1) was measured by the measurement method described above.
  • the gel content of the rubber polymer (b1), the graft ratio of the rubber-reinforced styrene resin (B1), the intrinsic viscosity of the acetone-soluble component of the rubber-reinforced styrene resin (B1) and the styrene resin (B2) [ [ ⁇ ] was also measured by the measurement method described above.
  • Tables 5 and 6 show the measurement results of the maximum expansion ratio, the evaluation results of appearance observation and internal observation, the bending modulus (flexural modulus), and the evaluation results of mold contamination for the inventive products 1 to 13 and the comparative products 1 to 9. Shown in The maximum foaming ratio was determined as the ratio at which the foaming ratio was increased from 1.1 times to 0.1 times, and the result of appearance observation changed from ⁇ to ⁇ (the ratio at which the molded appearance deteriorated). The expansion ratio was obtained by setting the cavity gap before volume expansion to 3 mm and expanding the amount of cavity gap expansion by 0.3 mm.
  • the appearance of the foam molded product is observed by visually observing the surface of the foam molded product, ⁇ when a good flat surface is obtained, ⁇ when there is a surface that is partially undulated, and distorted undulating.
  • the case was evaluated as x.
  • the internal observation of the foamed molded product was performed by visually observing the cross section of the foamed molded product obtained with a foaming ratio of 1.5 times, and when the uniform and fine foamed cell was formed, the outer diameter of the foamed cell was The case where there was a large and small distribution was evaluated as ⁇ , and the case where most of the foamed cells had a large outer diameter was evaluated as ⁇ .
  • the bending modulus (flexural modulus) (MPa) was measured in accordance with ISO178 using a foamed molded article obtained with an expansion ratio of 1.5.
  • the internal observation and the bending modulus of the foamed molded product were not measured when the foamed molded product was wavy or distorted.
  • “-” is indicated in the table.
  • Contamination of the mold is ⁇ when the foam molding is molded with an expansion ratio of 1.5 times, and no contamination is observed on the molding surface of the mold after foam molding. Contamination on a part of the molding surface of the mold. In the case where the contamination was observed, ⁇ , and the case where the contamination was observed over the entire molding surface of the mold was evaluated as ⁇ . In the case where the maximum foaming ratio did not reach 1.5 times or more, the contamination of the mold was not evaluated.
  • Inventive products 1 to 13 are foam molded articles molded using a thermoplastic resin composition for foam molding, excellent foamability (highest foaming ratio is high), good molded appearance, In the observation, a substantially fine foam cell structure was developed, and the size of the foam cell was almost uniform regardless of the part of the foam molded article. Also, a high bending modulus as the mechanical performance was obtained. Furthermore, the mold was slightly contaminated.
  • the comparative products 1 and 2 are foam-molded using glass beads instead of the fibrous filler (glass fiber) (E), so that the foam cell becomes large, and the entire molding surface of the mold is obtained. There was contamination.
  • the comparative product 3 since there are many compounding quantities of glass fiber (E), a shaping
  • the comparative product 4 since the talc was not included, the foamed cell became large.
  • the comparative product 5 since there are many compounding quantities of talc (D), the shaping
  • the comparative product 6 has a small amount of the rubber-reinforced styrene resin (B1) and the rubbery polymer (b1), and the comparative product 7 has a large amount of the rubber-reinforced styrene resin (B1).
  • B1 the rubber-reinforced styrene resin
  • B2 the rubber-reinforced styrene resin
  • the maximum foaming ratio is low
  • the molding appearance is inferior
  • the foam cell is large, and the molding surface of the mold Contamination was seen throughout.
  • the comparative product 9 since the fibrous filler was not contained, the contamination was seen over the whole molding surface of a metal mold
  • the amount of hot cyclohexane dissolved in the rubber-reinforced styrene resin (B1) is 1 to 99 based on the rubbery polymer (b1). It was found that the content was 3% by mass, and the ratio of the rubber-like polymer (b1) to 100% by mass of the resin component was 3 to 50% by mass. Moreover, it turned out that the foaming molding excellent in mechanical strength and the shaping

Abstract

 第1型部2と第2型部3とを用い、キャビティ41B内に溶融樹脂60を充填してスキン層61を形成し、第2型部3を可動させて、スキン層61に対する内側部分に発泡層62を形成する。溶融樹脂60を構成する熱可塑性樹脂組成物は、芳香族ポリカーボネート樹脂(A)と、ゴム強化ビニル系樹脂(B)とを含有している。ゴム強化ビニル系樹脂(B)は、ゴム質重合体(b1)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体(b2)を重合して得られるグラフト共重合体(B1)からなる。

Description

発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法
 本発明は、ゴム強化スチレン系樹脂を含む発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法に関する。
 熱可塑性樹脂を用いた射出成形方法において、使用する樹脂材料の低減、軽量化等を目的として発泡成形を行う射出発泡成形が従来から検討されてきた。射出発泡成形を行う方法としては、例えば、特許文献1に開示されるように、熱可塑性樹脂に、アゾジカルボン酸アミドなどの熱分解型の化学発泡剤を使用する方法が知られている。
 また、化学発泡に代えて、窒素ガス、二酸化炭素などを発泡剤として用いる物理発泡剤も知られている。更に超臨界状態の物理発泡剤を用いる方法も提案されている。
 例えば、特許文献2のポリオレフィン系樹脂組成物およびそれからなる成形体においては、ポリオレフィンに対して、コア-シェルグラフト共重合体及びタルク等の無機充填剤を混合してなり、コア-シェルグラフト共重合体が、架橋ゴム状重合体に、共重合可能なビニル化合物からなる単量体成分をグラフト共重合してなるポリオレフィン系樹脂組成物、及びこれに発泡剤を配合して発泡成形した発泡体について開示されている。これにより、優れた加工性、耐衝撃性、剛性及び表面性を同時に呈するポリオレフィン系樹脂組成物およびそれからなる成形体を構成することができる。
 さらに、例えば、特許文献3の射出発泡成形体の製造方法においては、金型の可動側金型と固定側金型とによって形成される型内空隙に原料樹脂を充填して金型に接している部分に表皮層を形成し、原料樹脂の充填完了直後、溶融部分の発泡剤の発泡圧力が周りの表皮層を押し広げるだけの力が残っているうちに、型締めシリンダーによる締め圧を瞬時にゼロ近くまで落として、表皮層の内側に発泡層を形成している。これにより、高発泡倍率の射出成形を可能にしている。
特開2008-133485号公報 特開2002-179851号公報 特開2001-302830号公報
 しかしながら、特許文献1~3等の熱可塑性樹脂組成物によっては、高い発泡倍率で、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であり、機械的性能(特に剛性)にも優れた発泡成形体を得るためには十分ではない。
 本発明は、かかる従来の問題点に鑑みてなされたもので、射出発泡成形において、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であり、機械的性能に優れ、かつ表面外観にも優れる発泡成形体を成形することができる発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法を提供しようとするものである。
 本発明の第1の側面は、ポリカーボネート樹脂(A)20~80質量%と、
 ゴム質重合体(b1)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b2)を重合して得られるグラフト共重合体(B1)、又はビニル系単量体(b3)の共重合体(B2)と上記グラフト共重合体(B1)との混合物からなるゴム強化ビニル系樹脂(B)20~80質量%と、
 上記成分(A)及び(B)の合計100質量部に対し、化学発泡剤(C)0.05~5質量部とからなり、
 上記成分(A)及び(B)の合計100質量%における上記成分(b1)の割合が3~50質量%であることを特徴とする発泡成形用熱可塑性樹脂組成物にある。
 本発明の第2の側面は、ポリカーボネート樹脂(A)10~90質量%と、
 ゴム質重合体(b1)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b2)を重合して得られるグラフト共重合体からなるゴム強化ビニル系樹脂(B1)5~90質量%と、
 芳香族ビニル化合物を含むビニル系単量体(b3)を重合して得られる共重合体からなるビニル系樹脂(B2)0~85質量%と、
 上記成分(A)、(B1)及び(B2)の合計100質量部に対し、化学発泡剤(C)0.05~5質量部と、タルク(D)0.1~18質量部とからなり、
 上記成分(A)、(B1)及び(B2)の合計100質量%における上記成分(b1)の割合が3~50質量%であることを特徴とする発泡成形用熱可塑性樹脂組成物にある。
 本発明の第3の側面は、上記発泡成形用熱可塑性樹脂組成物を、第1型部と第2型部との間に形成したキャビティ内に充填し、該第1型部に対して該第2型部を上記キャビティの容積が拡大する離隔方向に相対的に可動させて発泡成形したことを特徴とする発泡成形体にある。
 本発明の第4の側面は、上記発泡成形用熱可塑性樹脂組成物を、第1型部と第2型部との間に形成したキャビティ内に充填し、該第1型部に対して該第2型部を上記キャビティの容積が拡大する離隔方向に相対的に可動させて、発泡成形体を成形する方法であって、
 上記第2型部には、上記第1型部に設けたキャビティ形成凹部内に配置するキャビティ形成凸部を設け、
 上記キャビティ形成凹部において上記第1型部と上記第2型部との可動方向に平行に形成した内側面と、上記キャビティ形成凸部において上記可動方向に平行に形成した外側面との間には、上記溶融樹脂を充填するための充填用隙間を上記キャビティと連通して形成しておき、
 上記キャビティ内及び上記充填用隙間に充填した上記溶融樹脂を半硬化させて未発泡のスキン層を形成し、
 次いで、上記第1型部と上記第2型部とを上記離隔方向に相対的に可動させて、上記スキン層に対する内側部分に上記溶融樹脂を発泡させた発泡層を形成して、上記発泡成形体を成形することを特徴とする発泡成形体の成形方法にある。
 本発明の第1の側面の発泡成形用熱可塑性樹脂組成物は、上記ポリカーボネート樹脂(A)、ゴム強化スチレン系樹脂(B)及び化学発泡剤(C)を含有し、ゴム強化スチレン系樹脂(B)を組成するゴム質重合体(b1)の割合を適切にしたことによって、射出発泡成形を行う際に、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であり、かつ機械的性能にも優れる発泡成形体を成形することができる。
 すなわち、成形する発泡成形体において、微細かつ均一な発泡セルを得るためには、本発明者の研究開発により、特に、成分(A)及び(B)の合計100質量%におけるゴム質重合体(b1)の割合を3~50質量%とすることが必要なことがわかった。なお、発泡成形用熱可塑性樹脂組成物において、成分(A)と成分(B)との合計は100質量%となる。
 また、上記組成により、発泡成形用熱可塑性樹脂組成物を用いて射出発泡成形を行う際に、溶融樹脂が金型のキャビティの表面に接触する部分に安定してスキン層(キャビティの表面に接触する溶融樹脂の部分が、その内部に位置する溶融樹脂の部分よりも早く硬化して形成されるほとんど未発泡の表面層)を形成することができる。そのため、安定したスキン層の形成により、機械的性能にも優れる発泡成形体が得られることがわかった。
 また、射出発泡成形を行う所定の温度において、粘度が高いポリカーボネート樹脂(A)の存在により、発泡によるセル径をできるだけ均一にすることができ、発泡成形体の外観を向上させることができる。また、射出発泡成形を行う所定の温度において、ポリカーボネート樹脂(A)よりも粘度が低いゴム強化ビニル系樹脂(B)の存在により、発泡成形体の表面に安定してスキン層を形成することができる。
 このように、上記発泡成形用熱可塑性樹脂組成物によれば、微細かつ均一な発泡セルを有するだけでなく、機械的性能にも優れた発泡成形体を得ることができる。
 それ故、第1の側面の発泡成形用熱可塑性樹脂組成物によれば、射出発泡成形において、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であり、機械的性能に優れ、かつ表面外観にも優れる発泡成形体を成形することができる。
 本発明の第2の側面の発泡成形用熱可塑性樹脂組成物は、タルク(D)を上記規定量含有することにより、タルク(D)が発泡成形の際の発泡起点となり、化学発泡剤(C)による発泡を促進することができる。そして、発泡成形用熱可塑性樹脂組成物がタルク(D)を含有することにより、上記成分(B1)と成分(B2)との合計割合は、5~90質量%の範囲内で選択可能となる。また、(B1)成分は、5質量%以上含有する必要がある。なお、発泡成形用熱可塑性樹脂組成物において、成分(A)、(B1)及び(B2)の合計は100質量%となる。
 それ故、第2の側面の発泡成形用熱可塑性樹脂組成物によっても、射出発泡成形において、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であり、機械的性能に優れ、かつ表面外観にも優れる発泡成形体を成形することができる。
 また、本発明の第3の側面に示すように、発泡成形体をコアバック型射出発泡成形を行って成形することにより、上記効果を容易に得ることができる。
 また、本発明の第4の側面の発泡成形体の成形方法は、充填する溶融樹脂がほとんど発泡せずに硬化して得られるスキン層を、発泡成形体の全周の表面に形成することができるものである。具体的には、本発明においては、第1型部と第2型部との間に、キャビティに連通する充填用隙間を形成しておき、充填用隙間に充填した溶融樹脂によってもスキン層を形成することができる。
 発泡成形体を成形するに当たっては、溶融樹脂をキャビティ内に充填すると共に充填用隙間に充填する。このとき、第1型部におけるキャビティ形成凹部の底面及び内側面と、第2型部におけるキャビティ形成凸部の先端面及び外側面とに接触する溶融樹脂は、通常30~100℃に温度調整されている金型(第1型部、第2型部)に接しているため、キャビティの内部(内側部分)における溶融樹脂よりも先に硬化を始める。そして、キャビティにおける接触表面だけでなく、充填用隙間における接触表面にも、溶融樹脂が半硬化して未発泡のスキン層が形成される。なお、充填用隙間の全体にスキン層を形成することができる。
 ここで、半硬化とは、溶融樹脂が、もはや発泡層を形成することはできないが、第1型部に対する第2型部の相対的な可動に伴って流動することができる程度に硬化していることをいう。
 次いで、キャビティ及び充填用隙間にスキン層を形成した後、第1型部と第2型部とを離隔方向に相対的に可動させる。このとき、充填用隙間に形成されたスキン層に対してキャビティ形成凸部の外側面がスライドし、充填用隙間に形成されたスキン層の内側部分に溶融樹脂が流動する。
 そして、第1型部と第2型部とを所定位置まで相対的に可動させ、発泡成形体を成形したときには、発泡成形体の内部には、溶融樹脂が発泡して微細かつ均一な発泡セルを有する発泡層を形成すると共に、発泡成形体の全周の表面には、溶融樹脂がほとんど未発泡で硬化したスキン層を安定して形成することができる。
 それ故、上記発泡成形体の成形方法によれば、微細かつ均一な発泡セルを有する発泡層を形成することができると共に、発泡成形体の全周の表面に安定してスキン層を形成することができ、発泡成形体の機械的強度を向上させることができる。
実施例1における、第1型部及び第2型部を有する製造装置を示す断面説明図。 実施例1における、充填工程において、キャビティ及び充填用隙間内に溶融樹脂を充填した状態を示す断面説明図。 実施例1における、充填工程において、キャビティ及び充填用隙間内に溶融樹脂を充填した状態を、図2と直交する方向から見た状態で示す断面説明図。 実施例1における、可動工程において、第1型部に対して第2型部を可動させて、キャビティ内に樹脂発泡成形体を成形した状態を示す断面説明図。 実施例3における、充填工程において、キャビティ及び充填用隙間内に溶融樹脂を充填した状態を示す断面説明図。 実施例3における、充填工程において、キャビティ及び充填用隙間内に溶融樹脂を充填した状態を、図5と直交する方向から見た状態で示す断面説明図。 実施例3における、可動工程において、第1型部に対して第2型部を可動させて、キャビティ内に発泡成形体を成形した状態を示す断面説明図。 実施例3における、他の製造装置において、キャビティ内に発泡成形体を成形した状態を示す断面説明図。
 上述した本発明の発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法における好ましい実施の形態につき説明する。
 本発明の第2の側面において、上記発泡成形用熱可塑性樹脂組成物は、上記成分(A)、(B1)及び(B2)の合計100質量部に対して繊維状充填材(E)を0.5~25質量部配合してなることが好ましい。
 発泡成形用熱可塑性樹脂組成物が繊維状充填材(E)を含有することにより、機械的性能として特に剛性が優れた発泡成形体を得ることができる。さらに、繊維状充填材(E)を含有することにより、発泡成形を行う金型の成形表面に汚染が発生し難くなり、表面外観に優れた発泡成形体を生産効率よく成形することができることがわかった。この理由は、次のように考えられる。
 すなわち、繊維状充填材(E)が含有されていることにより、金型の成形表面に接触する溶融状態の発泡成形用熱可塑性樹脂組成物の表面が凹凸状に粗くなり、化学発泡剤(C)の発泡に伴って発生する揮発成分が、金型の成形表面と溶融状態の発泡成形用熱可塑性樹脂組成物の表面との間から外部へ抜け易くなったと考えられる。
 そのため、金型の成形表面に汚染が発生し難くなり、その清掃を行う頻度を減少させることができ、生産効率よく表面外観に優れる発泡成形体を成形することができることがわかった。
 また、発泡成形用熱可塑性樹脂組成物は、タルク(D)及び繊維状充填材(E)を含有することにより、発泡セルが微細かつ均一で機械的性能に一層優れ、表面外観に優れる発泡成形体を成形することができることがわかった。この理由は、次のように考えられる。
 すなわち、発泡成形する際には、タルク(D)及び繊維状充填材(E)が発泡起点になり、化学発泡剤(C)による発泡を促進することができる。このとき、タルク(D)による発泡起点と繊維状充填材(E)の両端による発泡起点とが混在することにより、より効果的に微細かつ均一な発泡セルが得られると考えられる。
 また、本発明の第1、第2の側面において、上記ゴム質重合体(b1)は、アクリル系ゴムとエチレン・α-オレフィン系ゴムとの少なくとも一方であることが好ましい。
 この場合には、ゴム質重合体が適切であり、微細で均一な発泡セルを有する発泡成形体を安定して得ることができる。
 また、上記ゴム強化ビニル系樹脂(B)における上記グラフト共重合体(B1)又は上記ゴム強化ビニル系樹脂(B1)の熱シクロヘキサン溶解量が、上記ゴム質重合体(b1)を基準(100質量%)として1~99質量%であることが好ましい。
 この場合には、成形する発泡成形体において、微細かつ均一な発泡セルを得ることが容易になる。
 また、上記化学発泡剤(C)は、炭酸水素ナトリウム、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)の群から選択されたものであることが好ましい。
 この場合には、化学発泡剤(C)が適切で、成形する発泡成形体において、微細かつ均一な発泡セルを得ることが容易になる。
 また、上記ポリカーボネート樹脂は、芳香族ポリカーボネート樹脂であることが好ましい。
 この場合には、成形する発泡成形体において、微細かつ均一な発泡セルを得ることが容易になる。
 また、上記発泡成形用熱可塑性樹脂組成物は、コアバック型射出発泡成形に用いることが好ましい。
 この場合には、微細で均一な発泡セルを有する発泡成形体を安定して得ることができる。
 上記熱可塑性樹脂組成物は、ポリカーボネート樹脂(A)とゴム強化ビニル系樹脂(B)(又はゴム強化ビニル系樹脂(B1)及びビニル系樹脂(B2))以外にも、他の樹脂成分を含有して構成することができる。この他の樹脂成分は、例えば、(A)成分及び(B)成分((B1)及び(B2)成分)を合わせた全体に対して発明の効果を損わない範囲(例えば5質量%以内)で含有することができる。
 また、他の樹脂成分は、特に限定されないが、(B)成分((B1)及び(B2)成分)を除く、スチレン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、ポリアミド系樹脂(PA)、ポリエステル系樹脂、オレフィン系樹脂、エチレン系共重合体等が挙げられる。これらは一種を単独で用いることができ、二種以上を組み合わせて用いることもできる。
 また、上記熱可塑性樹脂組成物は、上記ポリカーボネート樹脂(A)としての芳香族ポリカーボネート樹脂を50~70質量%含有し、残部が上記ゴム強化ビニル系樹脂(B)(又はゴム強化ビニル系樹脂(B1)及びビニル系樹脂(B2))からなることが好ましい。
 この場合には、熱可塑性樹脂組成物において、ゴム強化ビニル系樹脂(B)(又はゴム強化ビニル系樹脂(B1)及びビニル系樹脂(B2))の含有量に比べて、芳香族ポリカーボネート樹脂(A)の含有量が多いことにより、発泡成形体の表面に、より安定してスキン層を形成することができる。
 また、本発明の第3の側面において、上記発泡成形体は、発泡倍率が1.1~3.0倍であることが好ましい。
 この場合には、発泡成形体の発泡倍率が適切であり、表面に毛羽立ちがなく、発泡によるセル径が均一で外観に優れ、さらに機械的強度にも優れる発泡成形体を得ることができる。
 なお、発泡成形体の発泡倍率が1.1倍未満である場合には、発泡による軽量化等の効果があまり得られない。一方、発泡成形体の発泡倍率が3.0倍を超える場合には、キャビティ内に充填した溶融樹脂が十分に拡張せず、成形した発泡成形体の表面に波打ちが生じるおそれがある。
 また、発泡成形体の発泡倍率は、より好ましくは1.2~2.0倍とすることができる。
1.発泡成形用熱可塑性樹脂組成物
 上記発泡成形用熱可塑性樹脂組成物の好ましい組成について説明する。
 なお、以下の説明において、「(共)重合」とは、単独重合及び共重合を意味し、「(メタ)アクリレート」とは、アクリレートとメタクリレートとの少なくとも一方を意味する。また、本発明の発泡成形用熱可塑性樹脂組成物を単に「熱可塑性樹脂組成物」と略記する場合がある。
(1)ポリカーボネート樹脂(A)
 本発明に用いられるポリカーボネート樹脂(A)としては、種々のジヒドロキシアリール化合物とホスゲンとの反応によって得られるもの(ホスゲン法)、あるいはジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応によって得られるもの(エステル交換法)が挙げられる。好ましいポリカーボネート樹脂は、芳香族ポリカーボネート樹脂である。代表的な芳香族ポリカーボネート樹脂としては、2,2’-ビス(4-ヒドロキシフェニル)プロパン、すなわちビスフェノールAとホスゲンとの反応によって得られるポリカーボネート樹脂がある。
 上記ジヒドロキシアリール化合物としては、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシフェニルエーテル、4、4’-ジヒドロキシフェニルスルフィド、4,4’-ジヒドロキシフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン、ヒドロキノン、レゾルシン等が挙げられる。更に、ヒドロキシアリールオキシ末端化されたポリオルガノシロキサン(例えば、米国特許第3,419,634号明細書参照)等がある。これらは1種単独で、または2種以上を組み合わせて使用することができる。これらの中では、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)が好ましい。
 ポリカーボネート樹脂(A)の粘度平均分子量は、好ましくは12,000~40,000、さらに好ましくは15,000~35,000、特に好ましくは18,000~30,000である。分子量が高い方が得られる発泡成形体の機械的強度が高くなるが、流動性が低下し、均一なセルが得られず、発泡成形体の外観が低下する傾向となる。また、分子量の異なる2種以上のポリカーボネートを用いることもできる。
 上記の芳香族ポリカーボネートの粘度平均分子量は、通常、塩化メチレンを溶媒として、20℃、濃度〔0.7g/100ml(塩化メチレン)〕で測定した比粘度(ηsp)を次の式に挿入して算出できる。
 粘度平均分子量=(〔η〕×8130)1.205
 ここで、〔η〕=〔(ηsp×1.12+1)1/2-1〕/0.56Cである。なお、Cは濃度を示す。
 界面重縮合で得られるポリカーボネート系樹脂は、各種の塩素化合物を含む場合があるが、この塩素化合物は、本発明の組成物の耐久性に悪影響する場合がある。このことから、塩素化合物含有量は、塩素原子として、通常300ppm以下、好ましくは100ppm以下とされる。
 本発明に用いられる熱可塑性樹脂組成物中の(芳香族)ポリカーボネート樹脂(A)の含有量は、10~90質量%(本発明の第2の側面として上記タルク(D)を含有する場合)、20~80質量%、好ましくは30~75質量%、さらに好ましくは50~70質量%である。
 本発明の第1の側面においては、ポリカーボネート樹脂(A)の含有量が20質量%未満では、均一なセル径を有する発泡成形体を得ることが困難となり、一方、ポリカーボネート樹脂(A)の含有量が80質量%を超えると、優れた外観を有する発泡成形体を得ることが困難となる傾向がある。また、本発明の第2の側面においては、ポリカーボネート樹脂(A)の含有量が10質量%未満では、均一なセル径を有する発泡成形体を得ることが困難となり、一方、ポリカーボネート樹脂(A)の含有量が90質量%を超えると、優れた外観を有する発泡成形体を得ることが困難となる傾向がある。
 以下に、本発明の第1の側面における発泡成形用熱可塑性樹脂組成物のゴム強化ビニル系樹脂(B)につき詳説する。
(2)ゴム強化ビニル系樹脂(B)(本発明の第1の側面)
(ゴム質重合体(b1))
 本発明の第1の側面において用いられる上記ゴム質重合体(b1)は、室温でゴム質であれば、単独重合体であってもよいし、共重合体であってもよいが、非ジエン系重合体(非ジエン系ゴム質重合体)及びジエン系重合体(ジエン系ゴム質重合体)が好ましい。更に、上記ゴム質重合体(b1)は、架橋重合体であってもよいし、非架橋重合体であってもよい。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 ゴム質重合体(b1)の含有量は、(A)成分及び(B)成分の合計量を100質量%として、3~50質量%、好ましくは3~40質量%、さらに好ましくは5~35質量%である。(b1)成分が、この範囲にあると、発泡性、発泡成形体の外観、機械的特性に優れる。
 上記非ジエン系重合体(非ジエン系ゴム質重合体)としては、エチレン単位と炭素数3以上のα-オレフィンからなる単位を含むエチレン・α-オレフィン系共重合体ゴム、ウレタン系ゴム、アクリル系ゴム、シリコーンゴム、シリコーン・アクリル系IPNゴム、共役ジエン系化合物よりなる単位を含む(共)重合体を水素添加してなる重合体等が挙げられる。これらの共重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。また、これらの共重合体は水素添加(但し、水素添加率は50%以上。)されたものであってもよい。上記非ジエン系重合体は、1種単独であるいは2種以上を組み合わせて用いることができる。
 また、上記ジエン系重合体(ジエン系ゴム質重合体)としては、ポリブタジエン、ポリイソプレン、ポリクロロプレン等の単独重合体が挙げられ、スチレン・ブタジエン共重合体、スチレン・ブタジエン・スチレン共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・スチレン・ブタジエン共重合体等のスチレン・ブタジエン系共重合体ゴムが挙げられ、スチレン・イソプレン共重合体、スチレン・イソプレン・スチレン共重合体、アクリロニトリル・スチレン・イソプレン共重合体等のスチレン・イソプレン系共重合体ゴムが挙げられ、又は天然ゴム等が挙げられる。これらの共重合体は、ブロック共重合体でもよいし、ランダム共重合体でもよい。また、これらの共重合体は水素添加(但し、水素添加率は50%未満。)されたものであってもよい。上記ジエン系重合体は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記ゴム質重合体(b1)として、エチレン・α-オレフィンと、エチレン・α-オレフィン・非共役ジエン共重合体との少なくとも一方を用いた場合に得られるゴム強化ビニル系樹脂(B)は、一般に、「AES樹脂」といわれている。また、上記ゴム質重合体(b1)として、ジエン系重合体を用いた場合に得られるゴム強化ビニル系樹脂(B)は、ジエン系ゴム強化ビニル系樹脂であり、一般に、「ABS樹脂」といわれている。更に、上記ゴム質重合体(b1)として、アクリル系ゴムを用いた場合に得られるゴム強化ビニル系樹脂(B)は、アクリル系ゴム強化ビニル系樹脂であり、一般に、「ASA樹脂」といわれている。
 上記ゴム強化ビニル系樹脂(B)の形成に用いる上記ゴム質重合体(b1)の形状は、特に限定されないが、粒子状である場合、その体積平均粒子径は、好ましくは50~3,000nm、より好ましくは100~2,000nm、更に好ましくは120~800nmである。体積平均粒子径が50nm未満であると、本発明の熱可塑性樹脂組成物及びそれを含む成形品(発泡成形体)の耐衝撃性が劣る傾向にあり、3,000nmを超えると、成形品の表面外観性が劣る傾向にある。尚、上記重量平均粒子径は、電子顕微鏡写真法、レーザー回折法、光散乱法等により測定することができる。
(ビニル系単量体(b2))
 上記ゴム強化ビニル系樹脂(B)の形成に用いる上記ビニル系単量体(b2)は、芳香族ビニル化合物を含む。このビニル系単量体(b2)は、芳香族ビニル化合物のみであってよいし、この芳香族ビニル化合物と、例えば、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、酸無水物等の芳香族ビニル化合物と共重合可能な化合物との組合せであってもよい。上記の芳香族ビニル化合物と共重合可能な化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 従って、上記ビニル系単量体(b2)としては、芳香族ビニル化合物の1種以上からなる単量体(x)、又は芳香族ビニル化合物の1種以上と、この芳香族ビニル化合物と共重合可能な化合物の1種以上とを組み合わせた単量体(y)を用いることができる。
 上記芳香族ビニル化合物としては、少なくとも1つのビニル結合と、少なくとも1つの芳香族環を有する化合物であれば、特に限定されず、その例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルトルエン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、スチレン及びα-メチルスチレンが好ましい。
 上記シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、アクリロニトリルが好ましい。
 上記(メタ)アクリル酸エステル化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。これらのうち、(メタ)アクリル酸メチルが好ましい。
 上記マレイミド系化合物としては、マレイミド、N-メチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。尚、マレイミド系化合物からなる単位を導入する他の方法としては、例えば、無水マレイン酸を共重合し、その後イミド化する方法でもよい。
 上記酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 また、上記化合物以外に、必要に応じ、ヒドロキシル基、アミノ基、エポキシ基、アミド基、カルボキシル基、オキサゾリン基等の官能基を有するビニル系化合物を用いることができる。例えば、(メタ)アクリル酸2-ヒドロキシエチル、ヒドロキシスチレン、(メタ)アクリル酸N,N-ジメチルアミノメチル、N,N-ジエチル-p-アミノメチルスチレン、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-オキシシクロヘキシル、ビニルグリシジルエーテル、メタリルグリシジルエーテル、アリルグリシジルエーテル、メタクリルアミド、アクリルアミド、(メタ)アクリル酸、ビニルオキサゾリン等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記ビニル系単量体(b2)としては、芳香族ビニル化合物の1種以上、及び、この芳香族ビニル化合物と共重合可能な化合物の1種以上の組み合わせ、即ち、上記単量体(y)を用いることが好ましく、この場合の芳香族ビニル化合物と、それ以外の化合物との質量割合(芳香族ビニル化合物/それ以外の化合物)は、これらの合計を100質量%とした場合、通常、(2~95)質量%/(98~5)質量%、好ましくは(10~90)質量%/(90~10)質量%である。上記芳香族ビニル化合物の割合が少なすぎると、成形加工性が劣る傾向にあり、多すぎると、得られる成形品の耐薬品性、耐熱性等が十分でない場合がある。
 上記単量体(y)としては、好ましくは、芳香族ビニル化合物及びシアン化ビニル化合物の組合せ(以下、「単量体(y1)」という。)、並びに、芳香族ビニル化合物、シアン化ビニル化合物及び他の化合物((メタ)アクリル酸エステル化合物等)の組合せ(以下、「単量体(y2)」という。)である。シアン化ビニル化合物を用いることにより、耐薬品性及び耐熱性等の物性バランスが向上する。
(ビニル系単量体(b3))
 尚、前述のように、上記ゴム強化ビニル系樹脂(B)は、上記ゴム強化ビニル系樹脂(B)(グラフト共重合体(B1))のみであってよいし、このゴム強化ビニル系樹脂(B)と、ビニル系単量体(b3)の(共)重合体(以下、「(共)重合体(B2)」という。)とからなる混合物であってもよい。
 この(共)重合体(B2)の形成に用いるビニル系単量体(b3)は、上記ビニル系単量体(b2)として例示した化合物を用いることができる。従って、上記(共)重合体(B2)は、上記ゴム強化ビニル系樹脂(B)の形成に用いた上記ビニル系単量体(b2)と全く同じ組成の成分を重合して得られる重合体であってもよいし、異なる組成で同じ種類の単量体を重合して得られる重合体であってもよいし、更には、異なる組成で異なる種類の単量体を重合して得られる重合体であってもよい。これらの各重合体が2種以上含まれるものであってもよい。
 次に、上記グラフト共重合体(B1)及び上記共重合体(B2)の製造方法について説明する。
 上記ゴム強化ビニル系樹脂(B)としてのグラフト共重合体(B1)は、上記ゴム質重合体(b1)の存在下に、上記ビニル系単量体(b2)を重合することにより製造することができる。重合方法としては、乳化重合、溶液重合、塊状重合、及び、塊状-懸濁重合が好ましい。
 尚、上記グラフト共重合体(B1)の製造の際には、ゴム質重合体(b1)及び上記ビニル系単量体(b2)は、反応系において、上記ゴム質重合体(b1)全量の存在下に、上記ビニル系単量体(b2)を一括添加して重合を開始してよいし、分割して又は連続的に添加しながら重合を行ってもよい。また、上記ゴム質重合体(b1)の一部存在下、又は、非存在下に、上記ビニル系単量体(b2)を一括添加して重合を開始してよいし、分割して又は連続的に添加してもよい。このとき、上記ゴム質重合体(b1)の残部は、反応の途中で、一括して、分割して又は連続的に添加してもよい。
 上記グラフト共重合体(B1)を100質量部製造する場合、上記ゴム質重合体(b1)の使用量は、通常、5~80質量部、好ましくは10~70質量部、更に好ましくは15~60質量部である。また、上記ビニル系単量体(b2)の使用量は、上記ゴム質重合体(b1)100質量部に対し、通常、25~1,900質量部、好ましくは60~560質量部である。
 本発明に用いられるグラフト共重合体(B1)は、公知の乳化重合、溶液重合、懸濁重合などにより製造することができるが、乳化重合により製造した場合、通常、凝固剤により凝固し、得られる粉末を水洗後、乾燥することによって精製される。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウムなどの無機塩と、硫酸、塩酸、リン酸などの無機酸との少なくとも一方を使用するのが一般的である。この際、得られるグラフト共重合体(B1)をポリカーボネート樹脂(A)に配合すると、(B1)成分中に残存する塩または乳化剤などにより、ポリカーボネート樹脂(A)の分子量低下を招く問題がある。したがって、凝固剤として、硫酸などの酸を使用することが望ましい。
 なお、グラフト重合時のラジカル開始剤としては、一般的なものが使用できる。具体例としては、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、過硫酸カリウム、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシラウレイト、t-ブチルパーオキシモノカーボネートなどが挙げられる。ラジカル開始剤の使用量は、単量体成分に対し、通常、0.05~5質量%、好ましくは0.1~1質量%である。
 本発明の効果を発現するためには、グラフト重合する際に、均一にグラフト反応が進むような有機過酸化物や溶媒の選択、およびゴム質重合体を乳化重合で合成し、乳化重合でグラフト重合させたり、ゴム質重合体を均一に溶解し重合を開始したり、あらかじめ溶融混練りしたものを溶液に溶解し溶液重合または塊状重合することや、再乳化したものを乳化重合または懸濁重合することなどの重合方法を工夫することが好ましい。
 このようにして得られる上記ゴム強化ビニル系樹脂(B)(グラフト共重合体(B1))のグラフト率は、10~150%、好ましくは30~100%である。グラフト率が10%未満であると、樹脂とゴムとの界面接着強度が劣り、優れた耐衝撃強度及び均一なセルが得られず、発泡成形体の外観が低下する場合がある。一方、グラフト率が150%を超えると、界面層が厚くなり、またゴム内部にグラフトした樹脂層が発達し、ゴム弾性が低下する。結果として、優れた耐衝撃強度及び均一なセルが得られず、発泡成形体の外観が低下する場合がある。上記グラフト率は、上記ゴム質重合体、重合開始剤、連鎖移動剤、乳化剤などの種類や量、さらに重合時間、重合温度などを変えることにより容易に調整することができる。
 ここで、グラフト率(%)は、グラフト共重合体(B1)成分中のゴム成分をS(g)、グラフト共重合体(B1)成分中のアセトン不溶分をT(g)とすると、下記の計算式により求められた値である。
 グラフト率(%)={(T-S)/S}×100
 また、本発明のゴム強化ビニル系樹脂(B)のアセトン可溶部の極限粘度(メチルエチルケトン中、30℃で測定)は、0.2~0.8dl/g、好ましくは0.3~0.7dl/gである。アセトン可溶部の極限粘度(メチルエチルケトン中、30℃で測定)が0.2dl/g未満であると、耐衝撃性が低下する場合があり、アセトン可溶部の極限粘度(メチルエチルケトン中、30℃で測定)が0.8dl/gを超えると流動性が低下し、スキン層が形成され難い場合がある。
 上記極限粘度は、重合開始剤、連鎖移動剤、乳化剤、溶剤などの種類や量、さらに重合時間、重合温度などを変えることにより、容易に制御することができる。
 一方、本発明に用いられるゴム強化ビニル系樹脂(B)成分中の共重合体(B2)は、芳香族ビニル化合物/シアン化ビニル化合物/他のビニル系単量体の質量比が、好ましくは50~90/10~40/0~30、さらに好ましくは60~79/21~40/0~30、特に好ましくは62~78/22~38/0~30(質量%)である。シアン化ビニル化合物量が、上記の範囲において、21質量%以上であると、得られる成形品の耐薬品性が一段と優れる場合がある。また、芳香族ビニル化合物の使用量が50質量%未満では、ポリカーボネート樹脂(A)との相溶性が低下し、耐衝撃性や耐熱劣化性が劣り、一方、90質量%を超えると、これもまた、ポリカーボネート樹脂(A)との相溶性が低下し、耐衝撃強度や耐薬品性が劣ることがある。さらに、シアン化ビニル化合物の使用量が10質量%未満では、ポリカーボネート樹脂(A)との相溶性が著しく低下し、耐衝撃性の低下や表層剥離などの問題を生じ、一方、40質量%を超えると、耐熱劣化性が低下する場合がある。さらに、他のビニル系単量体の使用量が30質量%を超えると、ポリカーボネート樹脂(A)との相溶性が低下し、耐衝撃性が劣る場合がある。
 なお、上記芳香族ビニル化合物、シアン化ビニル化合物や他のビニル系単量体は、ゴム強化ビニル系樹脂(B)に用いられる単量体成分と同様である。
 本発明の共重合体(B2)のアセトン可溶分の極限粘度(メチルエチルケトン中、30℃で測定)は、0.31~0.8dl/g、好ましくは0.32~0.8dl/g、さらに0.32~0.7dl/g、特に好ましくは0.36~0.7dl/gである。上記の範囲において、極限粘度が0.31dl/g未満では、得られる成形品(発泡成形体)の耐衝撃性に劣り、一方、0.8dl/gを超えると、成形加工性が著しく低下し、発泡成形体のスキン層が形成され難い場合がある。
 本発明に用いられる共重合体(B2)は、公知の乳化重合、溶液重合、懸濁重合などにより製造することができるが、乳化重合によって製造した場合、通常、凝固剤により凝固し得られる粉末を水洗後、乾燥することによって精製される。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウムなどの無機塩と、硫酸、塩酸、リン酸などの無機酸との少なくとも一方を使用するのが一般的である。この際、得られる共重合体(B2)をポリカーボネート樹脂(A)に配合すると、共重合体(B2)成分中に残存する塩または乳化剤などにより、ポリカーボネート樹脂(A)の分子量の低下を招く問題がある。したがって、凝固剤として、硫酸などの酸を使用することが望ましい。
 上記ゴム強化ビニル系樹脂(B)として用いる、グラフト共重合体(B1)と共重合体(B2)の配合割合は、(B1)成分が通常20~100質量%、好ましくは30~85質量%、さらに好ましくは35~80質量%、(B2)成分が通常0~80質量%、好ましくは15~70質量%、さらに好ましくは20~65質量%(ただし、(B1)+(B2)=100質量%)である。
 また、ゴム強化ビニル系樹脂(B)中のゴム質重合体(b1)の割合は、通常4~40質量%、好ましくは6~35質量%、さらに好ましくは8~30質量%である。
 本発明の熱可塑性樹脂組成物中におけるゴム強化ビニル系樹脂(B)成分の配合割合は、20~80質量%(本発明の第1の側面として上記タルク(D)を含有しない場合)である。また、ゴム強化ビニル系樹脂(B)成分の配合割合は、好ましくは25~70質量%、さらに好ましくは30~50質量%とすることができる。
 本発明の第1の側面においては、ゴム強化ビニル系樹脂(B)成分の配合割合が20質量%未満では、樹脂組成物の成形性等が低下し、優れた外観を有する発泡成形体を得ることが困難となり、一方、80質量%超過では、均一なセル径を有する発泡成形体を得ることが困難となる。
 本発明のゴム質重合体(b1)としては、エチレン・α-オレフィン系ゴム質重合体が好ましい。ゴム強化ビニル系樹脂(B)として、AES樹脂を用いることにより、ABS樹脂を用いた場合に比べ、容易に均一なセル径を有し、外観に優れた発泡成形体を得ることができる。これは、ゴム質重合体部分の架橋度の違い、すなわち形状の自由度の違いによるものと推測される。
 また、AES樹脂は、耐熱劣化性に優れる。本発明で用いられる熱可塑性樹脂組成物は、ポリカーボネート樹脂(A)を含有するが、そのため成形温度を高くすることが求められる。この点において、AES樹脂は耐熱劣化性に優れ、加工性に優れるという要求を満たすことができる。
 本発明に用いられる熱可塑性樹脂組成物において、上記ゴム強化ビニル系樹脂(B)成分から由来のエチレン・α-オレフィン系ゴム質重合体の含有量は、好ましくは2~20質量%、さらに好ましくは2~15質量%、特に好ましくは3~15質量%である。上記の範囲にあると、本発明の目的とする熱可塑性樹脂組成物が得られやすい。
 ここで、ゴム強化ビニル系樹脂(B)(グラフト共重合体(B1))のベースゴムとなるエチレン・α-オレフィン系ゴム質重合体(b1)としては、エチレン/炭素数3~20のα-オレフィン/非共役ジエン=5~95/95~5/0~30質量%の混合比からなる単量体を共重合して得られる共重合ゴムが好ましい。
 炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセンなどが挙げられ、好ましくはプロピレン、1-ブテン、1-オクテン、さらに好ましくはプロピレンである。これらのα-オレフィンは、1種単独で、あるいは2種以上を併用することができる。α-オレフィンの炭素数は、3~20であるが、好ましくは3~12、さらに好ましくは3~8である。炭素数が20を超えると、共重合性が極端に低下するため好ましくない。エチレンとα-オレフィンの重量比は、好ましくは5~95/95~5、さらに好ましくは60~88/40~12、特に好ましくは70~85/30~15である。
 また、エチレン・α-オレフィン系ゴム質重合体(b1)に用いられることのある非共役ジエンとしては、アルケニルノルボルネン類、環状ジエン類、脂肪族ジエン類などが挙げられ、好ましくは5-エチリデン-2-ノルボルネン、ジシクロペンタジエンである。これらの非共役ジエンは、1種単独で、あるいは2種以上を併用することができる。エチレン・α-オレフィン系ゴム質重合体中の非共役ジエンの含有量は、0~30質量%、好ましくは0~15質量%である。なお、このゴム質重合体の不飽和基量は、ヨウ素価に換算して、0~40の範囲が好ましい。
 本発明の上記エチレン・α-オレフィン系ゴム質重合体(b1)を製造するには、不均一系、均一系いずれの触媒を用いてもよい。不均一系触媒としては、例えばバナジウム化合物と有機アルミニウム化合物とを組み合わせたバナジウム系触媒を挙げることができる。また、均一系触媒としては、例えばメタロセン系触媒を挙げることができる。特に、炭素数6~20のα-オレフィンを用いた上記ゴムを製造するには、メタロセン系触媒が有効である。
 なお、エチレン・α-オレフィン系ゴム質重合体(b1)のムーニー粘度(ML1+4,100℃)は、好ましくは40以下、さらに好ましくは25~35である。ムーニー粘度は、分子量調節剤の種類・量や、モノマー濃度および反応温度などを変更することにより、調整することができる。
 また、エチレン・α-オレフィン系ゴム質重合体は、ポリスチレン換算の重量平均分子量100万以上の成分の含有率が、好ましくは10質量%以下、さらに好ましくは8質量%以下である。このようなゴム質重合体は、分子量調節剤の種類・量、触媒の種類・量を変更することにより、製造することができる。さらに、エチレン・α-オレフィン系ゴム質重合体のガラス転移温度(Tg)は、好ましくは-110~-40℃、さらに好ましくは-70~-50℃、融点(Tm)は、好ましくは30~110℃、さらに好ましくは40~70℃である。
 なお、エチレン・α-オレフィン系ゴム質重合体の割合は、通常、グラフト共重合体(B1)成分中に3~50質量%、好ましくは5~45質量%、さらに好ましくは7~40質量%である。3質量%未満では耐衝撃性が発現しない場合があり、一方、50質量%超過では成形性、外観が低下する場合がある。
 以下に、本発明の第2の側面における発泡成形用熱可塑性樹脂組成物のゴム強化ビニル系樹脂(B1)及びビニル系樹脂(B2)について詳説する。
(3)ゴム強化ビニル系樹脂(B1)(本発明の第2の側面)
 本発明の第2の側面において、ゴム強化ビニル系樹脂(B1)は、ゴム質重合体(b1)の存在下に、芳香族ビニル化合物又は芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体を重合して構成することができる。
 ここで使用されるゴム質重合体(b1)としては、ガラス転位温度(Tg)が-10℃以下のものであり、ポリブタジエン、ポリイソプレン、ブタジエン・スチレン共重合体、ブタジエン・アクリロニトリル共重合体等の共役ジエン系ゴム、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ブテン・非共役ジエン共重合体等のオレフィン系ゴム、アクリル系ゴム、シリコーンゴム、ポリウレタン系ゴム、シリコーン・アクリル系IPNゴム、天然ゴム、共役ジエン系ブロック共重合体、水素添加共役ジエン系ブロック共重合体等が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 ゴム質重合体(b1)の含有量は、(A)成分及び(B)成分の合計量を100質量%として、3~50質量%、好ましくは3~40質量%、さらに好ましくは5~35質量%である。(b1)成分が、この範囲にあると、発泡性、発泡成形体の外観、機械的特性に優れる。
 上記オレフィン系ゴムは特に限定されないが、例えば、エチレンと、炭素数が3以上のα-オレフィンとを含むエチレン・α-オレフィン系ゴムが挙げられる。エチレンの含有量は、上記エチレン・α-オレフィン系ゴムを構成する単量体の全量を100質量%とした場合、好ましくは5~95質量%、より好ましくは50~90質量%、更に好ましくは60~88質量%である。
 上記α-オレフィンである炭素数が3以上のα-オレフィンとしては、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチルブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン等が挙げられる。これらのα-オレフィンは、1種単独で含まれていてもよいし、2種以上の組み合わせで含まれていてもよい。また、上記α-オレフィンのうち、プロピレン、1-ブテンが好ましい。
 上記α-オレフィンの含有量は、上記エチレン・α-オレフィン系ゴムを構成する単量体の全量を100質量%とした場合、好ましくは95~5質量%、より好ましくは50~10質量%、特に好ましくは40~12質量%である。
 上記エチレン・α-オレフィン系ゴムは、上記エチレン、及びα-オレフィンから構成される二元共重合体であってもよいし、これらと、更に他の化合物とから構成される重合体(三元共重合体、四元共重合体等)であってもよい。他の化合物としては、非共役ジエン化合物が挙げられる。
 上記オレフィン系ゴムに使用される非共役ジエン化合物としては、アルケニルノルボルネン類、環状ジエン類、脂肪族ジエン類などが挙げられ、好ましくは、ジシクロペンタジエン及び5-エチリデン-2-ノルボルネンである。これらの非共役ジエン化合物は単独でまたは2種以上を組み合わせて使用することができる。エチレン・α-オレフィン系ゴム中の非共役ジエン化合物単位の含有量は、通常30質量%未満、好ましくは15質量%未満である。
 上記アクリル系ゴムは特に限定されないが、アルキル基の炭素数が1~8個の(メタ)アクリル酸アルキルエステル化合物の(共)重合体、あるいはこの(メタ)アクリル酸アルキルエステル化合物と、これと共重合可能なビニル系単量体との共重合体が好ましい。
 ここで使用されるアルキル基の炭素数が1~8個のアクリル酸アルキルエステル化合物の具体例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、シクロヘキシルアクリレート等が挙げられる。メタクリル酸アルキルエステルの具体例としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、n-オクチルメタクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルメタクリレート等が挙げられる。これらの化合物のうち、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。また、これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 また、上記(メタ)アクリル酸アルキルエステル化合物と共重合可能なビニル系単量体としては、例えば、多官能性ビニル化合物、芳香族ビニル化合物、シアン化ビニル化合物等が上げられる。上記多官能性ビニル化合物とは、単量体1分子中に2個以上のビニル基を有する単量体をいい、上記(メタ)アクリル系共重合体を架橋する機能及びグラフト重合時の反応起点の役割を果たすものである。上記多官能性ビニル単量体の具体例としては、ジビニルベンゼン、ジビニルトルエン等の多官能性芳香族ビニル化合物;(ポリ)エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の多価アルコールの(メタ)アクリル酸エステル;ジアリルマレート、ジアリルフマレート、トリアリルシアヌレート、トリアリルシアヌレート、ジアリルフタレート、メタクリル酸アリル等が挙げられる。これらの多官能性ビニル化合物は、1種単独で、または2種以上を組み合わせて使用することができる。
 ここで使用される芳香族ビニル化合物及びシアン化ビニル化合物としては、後述するものが全て使用できる。更に、他の共重合可能な単量体として、アクリルアミド、メタクリルアミド、塩化ビニリデン、アルキル(炭素数1~6)ビニルエーテル、アルキル基の炭素数が9個以上の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸等が挙げられ、これらは1種単独で、あるいは2種以上を組み合わせて使用される。
 上記アクリル系ゴムの好ましい単量体組成は、アルキル基の炭素数が1~8個の(メタ)アクリル酸アルキルエステル化合物単位80~99.99質量%、より好ましくは90~99.95質量%、多官能性ビニル化合物単位0.01~5質量%、より好ましくは0.05~2.5質量%、及びこれと共重合可能な他のビニル単量体0~20質量%、より好ましくは0~10質量%である。ただし、単量体組成は、合計100質量%とする。
 ゴム強化スチレン系樹脂(B1)の熱シクロヘキサン溶解量を、ゴム質重合体(b1)を基準として1質量%以上とする目的から、上記アクリル系ゴムの製造において、多官能性ビニル化合物を使用する場合は、重合の後段階で行うことが好ましい。即ち、重合の初期段階ではアクリル酸アルキルエステル化合物、及び必要に応じて共重合可能な他のビニル単量体(b1)を重合し、重合の後期段階でアクリル酸アルキルエステル化合物及び多官能性ビニル化合物、更に必要に応じて共重合可能な他のビニル単量体(b1)を重合する方法で製造することができる。
 本発明のアクリル系ゴムの製造方法としては、(1)各種ビニル単量体を一括添加して重合する方法、(2)特定のビニル単量体を一括添加重合し、重合の後期段階で残りのビニル単量体を添加重合する方法、(3)各種ビニル単量体の一部を添加重合し、残りのビニル単量体を連続添加して重合する方法、(4)各種ビニル単量体を2段以上に分割して重合する方法等があるが、好ましくは(4)の方法であり、更に好ましくは(4)の方法で多官能性ビニル化合物を2段目以降の後期段階で使用する方法である。重合方法としては、乳化重合が特に好ましい。
 上記アクリル系ゴムの体積平均粒子径は、50~1000nmであることが好ましく、さらに好ましくは40~700nm、特に好ましくは50~500nmである。
 共役ジエン系ブロック共重合体としては、具体的には少なくとも1個の下記ブロックAまたは下記ブロックCと、少なくとも1個の下記ブロックBまたは下記ブロックA/Bとを含んでなる共重合体、またはブロックBもしくはA/Bによる重合体であり、アニオン重合法で公知の方法である、例えば、特公昭47-28915号公報、特公昭47-3252号公報、特公昭48-2423号公報、特公昭48-20038号公報などに開示されている方法で製造することができる。その具体的構造は、
A;芳香族ビニル化合物重合体ブロック、
B;共役ジエン重合体ブロック、
A/B;芳香族ビニル化合物/共役ジエンのランダム共重合体ブロック、
C;共役ジエンと芳香族ビニル化合物の共重合体からなり、かつ芳香族ビニル化合物が漸増するテーパーブロック、
とそれぞれ定義すると、次のような構造のものが挙げられる。
A-B
A-B-A
A-B-C
A-B1-B2
(ここで、B1は共役ジエン重合体ブロックまたは共役ジエンと芳香族ビニル化合物との共重合体ブロックであり、共役ジエン部分のビニル結合量は好ましくは20%以上、B2は共役ジエン重合体ブロックまたは共役ジエンと芳香族ビニル化合物の共重合体ブロックであり、共役ジエン部分のビニル結合含有量は好ましくは20%未満である。)
A-A/B
A-A/B-C
A-A/B-B
A-A/B-A
B2-B1-B2
(ここで、B1、B2は上記と同じ。)
C-B
C-B-C
C-A/B-C
C-A-B
 また、これらの基本骨格を繰り返し有する共重合体を挙げることができ、さらにそれをカップリングして得られる共役ジエン系ブロック共重合体であってもよい。上記構造式(A-B1-B2)の構造のものについては、特開平2-133406号公報、上記構造式(A-A/B)及び上記構造式(A-A/B-C)の構造のものについては、特開平2-305814号公報、特開平3-72512号公報に示されている。
 ここで使用される共役ジエンとしては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレンなどが挙げられるが、工業的に利用でき、また物性の優れた共役ジエン系ブロック共重合体を得るには、1,3-ブタジエン、イソプレン、1,3-ペンタジエンが好ましく、より好ましくは1,3-ブタジエンである。
 また、ここで使用される芳香族ビニル化合物としては、スチレン、t-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、ヒドロキシスチレン、ビニルキシレン、モノクロルスチレン、ジクロルスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、p-t-ブチルスチレン、エチルスチレン、ビニルナフタレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルピリジンなどが挙げられ、スチレン、α-メチルスチレンが好ましく、特に好ましくはスチレンである。
 上記共役ジエンブロック系共重合体中の芳香族ビニル化合物/共役ジエンの割合は、質量比で0~70/100~30、好ましくは0~60/100~40、更に好ましくは0~50/100~50であり、芳香族ビニル化合物を必須とする場合、好ましくは10~70/90~30である。ここで、芳香族ビニル化合物の含有量が70質量%を超えると樹脂状となり、ゴム成分としての効果が劣り好ましくない。
 さらに、共役ジエンブロック中の共役ジエン部分のビニル結合量は、通常5~80%の範囲である。
 共役ジエン系ブロック共重合体の数平均分子量は、通常10,000~1,000,000、好ましくは20,000~500,000、更に好ましくは20,000~200,000である。これらのうち、上記構造式のA部の数平均分子量は3,000から150,000、B部の数平均分子量は5,000~200,000の範囲であることが好ましい。
 共役ジエン化合物のビニル結合量の調節は、N,N,N’,N’-テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ジアゾシクロ(2,2,2)オクタアミン等のアミン類、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のエーテル類、チオエーテル類、ホスフィン類、ホスホアミド類、アルキルベンゼンスルホン酸塩、カリウムやナトリウムのアルコキシド等を使用して行うことができる。
 本発明で使用されるカップリング剤としては、アジピン酸ジエチル、ジビニルベンゼン、メチルジクロロシラン、四塩化珪素、ブチルトリクロロ珪素、テトラクロロ錫、ブチルトリクロロ錫、ジメチルクロロ珪素、テトラクロロゲルマニウム、1,2-ジブロモエタン、1,4-クロロメチルベンゼン、ビス(トリクロロシリル)エタン、エポキシ化アマニ油、トリレンジイソシアネート、1,2,4-ベンゼントリイソシアネート等が挙げられる。
 本発明で使用される水素添加共役ジエン系ブロック共重合体は、上記共役ジエン系ブロック共重合体の共役ジエン部分の炭素-炭素二重結合の少なくとも30%以上、好ましくは50%以上が水素添加された部分水素添加物または完全水素添加物であり、更に好ましくは90%以上が水素添加された水素添加物である。
 上記共役ジエン系ブロック共重合体の水素添加反応は、公知の方法で行うことができるし、また、公知の方法で水素添加率を調節することにより、目的の重合体を得ることができる。具体的な方法としては、特公昭42-8704号公報、特公昭43-6636号公報、特公昭63-4841号公報、特公昭63-5401号公報、特開平2-133406号公報、特開平1-297413号公報等に開示されている方法がある。
 本発明で使用される上記ゴム質重合体(b1)は、ゲル含率は70質量%以下であることが、本発明の発泡性から好ましく、更に好ましくは50質量%以下、特に好ましくは10質量%以下である。
 ゲル含率は、以下に示す方法により求めることができる。
 ゴム質重合体(b1)1gをトルエン100mlに投入し、室温で48時間静置する。その後、100メッシュの金網(質量をW1グラムとする)で濾過したトルエン不溶分と金網を、温度80℃で6時間真空乾燥して秤量(質量W2グラムとする)する。W1及びW2を、下記式に代入して、ゲル含率を得る。なお、エチレン-プロピレン系ゴム質重合体においては、エチレン結晶を有するものがあり、このようなゴム質重合体を用いる場合は、80℃の温度で溶解しゲル含率を求める。
 ゲル含率=〔〔W2(g)-W1(g)〕/1(g)〕×100
 上記ゲル含率は、ゴム質重合体(b1)の製造時に、架橋性単量体の種類及びその使用量、分子量調節剤の種類及びその使用量、重合時間、重合温度、重合転化率等を適宜設定することにより調整できる。
 本発明で使用されるゴム質重合体(b1)として好ましいものは、ポリブタジエン、ブタジエン・スチレン共重合体、オレフィン系ゴム、アクリル系ゴム、シリコーンゴム、共役ジエン系ブロック共重合体、水素添加共役ジエン系ブロック共重合体であり、更に好ましくは、オレフィン系ゴム、アクリル系ゴム、水素添加共役ジエン系ブロック共重合体であり、特に好ましいものは、アクリル系ゴム、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、及び水素添加共役ジエン系ブロック共重合体であり、最も好ましいものは、アクリル系ゴムのゲル含率が10質量%以下のもので、かつ体積平均粒子径が50~500nmのものである。
 本発明のゴム質重合体(b1)は、公知の方法である乳化重合、溶液重合、塊状重合、懸濁重合等の方法で得ることができる。これらの中で、ポリブタジエン、アクリル系ゴムは乳化重合により製造されたものが好ましく、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、共役ジエン系ブロック共重合体及び水素添加共役ジエン系ブロック共重合体は溶液重合で製造されたものが好ましい。
 本発明の(B1)成分であるゴム強化スチレン系樹脂は、上記ゴム質重合体(b1)の存在下に、芳香族ビニル化合物又は芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体(b2)を重合して得ることができる。すなわち、(b2)成分は、芳香族ビニル化合物単独でもよいし、芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体との混合物でもよい。
 ここで使用される芳香族ビニル化合物としては、上記ゴム質重合体(b1)で記載したものが全て使用できる。特に好ましくはスチレン、α-メチルスチレンであり、これらは1種単独でまたは2種以上を組み合わせて使用することができる。
 芳香族ビニル化合物と共重合可能な他のビニル単量体としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド化合物、その他の各種官能基含有不飽和化合物などが挙げられる。その他の各種官能基含有不飽和化合物としては、不飽和酸化合物、エポキシ基含有不飽和化合物、水酸基含有不飽和化合物、酸無水物基含有不飽和化合物、オキサゾリン基含有不飽和化合物、置換または非置換のアミノ基含有不飽和化合物などが挙げられる。これらの他のビニル単量体は1種単独で、または2種以上を組み合わせて使用することができる。
 上記シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル等が挙げられ、これらは1種単独で、または2種以上を組み合わせて使用することができる。シアン化ビニル化合物を使用することにより耐薬品性が付与される。シアン化ビニル化合物の使用量は、ビニル単量体(b2)全体量中の割合として、通常0~60質量%、好ましくは5~50質量%である。
 (メタ)アクリル酸エステル化合物としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等が挙げられ、これらは1種単独で、または2種以上を組み合わせて使用することができる。(メタ)アクリル酸エステル化合物を使用することにより表面硬度が向上する。(メタ)アクリル酸エステル化合物の使用量は、ビニル単量体(b2)全体量の割合として、通常0~80質量%である。
 上記のマレイミド化合物としては、マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-シクロヘキシルマレイミド等が挙げられ、これらは1種単独で、または2種以上を組み合わせて使用することができる。また、マレイミド単位を導入するために、無水マレイン酸を共重合させた後にイミド化してもよい。マレイミド化合物を使用することにより耐熱性が付与される。マレイミド化合物の使用量は、ビニル単量体(b2)全体量における割合として、通常1~60質量%である。
 不飽和酸化合物としては、アクリル酸、メタクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸などが挙げられ、これらは1種単独で、または2種以上を組み合わせて使用することができる。
 エポキシ基含有不飽和化合物としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等が挙げられ、これらは1種単独で、または2種以上を組み合わせて使用することができる。
 水酸基含有不飽和化合物としては、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-3-メチル-1-プロペン、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、N-(4-ヒドロキシフェニル)マレイミド等が挙げられ、これらは1種単独で、または2種以上を組み合わせて使用することができる。
 オキサゾリン基含有不飽和化合物としては、ビニルオキサゾリン等が挙げられ、これらは、1種単独で、あるいは2種以上を組み合わせて使用することができる。
 酸無水物基含有不飽和化合物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられ、これらは1種単独で、あるいは2種以上を組み合わせて使用することができる。
 置換または非置換のアミノ基含有不飽和化合物としては、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸フェニルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アクリルアミン、N-メチルアクリルアミン、アクリルアミド、N-メチルアクリルアミド、p-アミノスチレン等があり、これらは1種単独で、あるいは2種以上を組み合わせて使用することができる。
 上記その他の各種官能基含有不飽和化合物を使用した場合、芳香族ポリカーボネート樹脂(A)とゴム強化スチレン系樹脂(B1)とスチレン系樹脂(B2)とをブレンドした際、両者の相溶性が向上する場合がある。上記その他の各種官能基含有不飽和化合物の使用量は、(A)成分、(B1)成分及び(B2)成分の合計中に対して、当該官能基含有不飽和化合物の合計量として、通常0.1~20質量%、好ましくは0.1~10質量%である。
 ビニル単量体(b2)全体量中の芳香族ビニル化合物以外の単量体の使用量は、(b2)成分の合計を100質量%とした場合、通常80質量%以下、好ましくは60質量%以下、更に好ましくは50質量%以下である。
 ビニル単量体(b2)を構成する単量体のより好ましい組み合わせは、スチレン単独、スチレン/アクリロニトリル、スチレン/メタクリル酸メチル、スチレン/アクリロニトリル/メタクリル酸メチル、スチレン/アクリロニトリル/グリシジルメタクリレート、スチレン/アクリロニトリル/2-ヒドロキシエチルメタクリレート、スチレン/アクリロニトリル/(メタ)アクリル酸、スチレン/N-フェニルマレイミド、スチレン/アクリロニトリル/N-フェニルマレイミド、スチレン/メタクリル酸メチル/シクロヘキシルマレミド等であり、更に好ましくは、スチレン単独、スチレン/アクリロニトリル=65/45~90/10(質量比)、スチレン/メタクリル酸メチル=80/20~20/80(質量比)、スチレン/アクリロニトリル/メタクリル酸メチルの組み合わせで、スチレン量が20~80質量%、アクリロニトリル及びメタクリル酸メチルの合計が20~80質量%の範囲で任意のものである。
 本発明で使用されるゴム強化スチレン系樹脂(B1)は、公知の重合法、例えば乳化重合、塊状重合、溶液重合、懸濁重合およびこれらを組み合わせた重合法で製造することができる。上記重合法は、ゴム質重合体(b1)が乳化重合で得られたものは(B1)成分の製造においては同じく乳化重合で製造することが、更にゴム質重合体(b1)が溶液重合で得られたものである場合は、(B1)成分は塊状重合、溶液重合及び懸濁重合で製造することが一般的で好ましい。ただし、溶液重合で製造されたゴム質重合体(b1)であっても、このゴム質重合体(b1)を公知の方法で乳化させれば、乳化重合で(B1)成分を製造することができるし、また、乳化重合で製造したゴム質重合体(b1)であっても、凝固し単離した後、塊状重合、溶液重合及び懸濁重合で本発明の(B1)成分を製造することができる。
 乳化重合で製造する場合、重合開始剤、連鎖移動剤、乳化剤などが使用されるが、これらは公知のものが全て使用できる。
 重合開始剤としては、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、テトラメチルブチルハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、過硫酸カリウム、アゾビスイソブチロニトリル等が挙げられる。また、重合開始助剤として、各種還元剤、含糖ピロリン酸鉄処方、スルホキシレート処方等のレドックス系を使用することが好ましい。
 連鎖移動剤としては、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキシルメルカプタン、ターピノーレン類などが挙げられる。
 乳化剤としては、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ラウリル硫酸ナトリウム等の脂肪族スルホン酸塩、ラウリル酸カリウム、ステアリン酸カリウム、オレイン酸カリウム、パルミチン酸カリウム等の高級脂肪酸塩、ロジン酸カリウム等のロジン酸塩などを使用することができる。
 なお、乳化重合において、ゴム質重合体(b1)及びビニル系単量体の使用方法は、ゴム質重合体(b1)全量の存在下にビニル系単量体を一括添加して重合してもよく、分割もしくは連続添加して重合してもよい。また、ゴム質重合体(b1)の一部を重合途中で添加してもよい。
 乳化重合後、得られたラテックスは、通常、凝固剤により凝固させられる。その後、水洗、乾燥することにより、(B1)成分の粉末を得る。この際、乳化重合で得た2種以上の(B1)成分のラテックスを適宜ブレンドした後、凝固してもよく、また、更に(B2)成分のラテックスを適宜ブレンドした後、凝固してもよい。凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム等の無機塩、硫酸、酢酸、クエン酸、リンゴ酸などの酸を使用することができる。また、ラテックスを噴霧乾燥することにより(B1)成分の粉末を得ることもできる。
 溶液重合により本発明の(B1)成分を製造する場合に使用することのできる溶剤は、通常のラジカル重合で使用される不活性重合溶媒であり、例えば、エチルベンゼン、トルエン等の芳香族炭化水素、メチルエチルケトン、アセトン等のケトン類、アセトニトリル、ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。
 重合温度は、通常80~140℃、好ましくは85~120℃の範囲である。重合に際し、重合開始剤を使用してもよいし、重合開始剤を使用せずに、熱重合で重合してもよい。
 重合開始剤としては、ケトンパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイド、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド等の有機過酸化物などが好適に使用される。また、連鎖移動剤を使用する場合、例えば、メルカプタン類、ターピノーレン類、α-メチルスチレンダイマー等を使用することができる。
 また、塊状重合、懸濁重合で製造する場合、溶液重合において説明した重合開始剤、連鎖移動剤などを使用することができる。上記各重合法によって得た本発明の(B1)成分中の残存する単量体量は、通常10,000ppm以下、好ましくは5,000ppm以下である。
 また、ゴム質重合体(b1)の存在下にビニル系単量体を重合して得られる重合体成分には、上記のビニル系単量体がゴム質重合体(b1)にグラフト共重合した共重合体とゴム質重合体(b1)にグラフトしていない未グラフト成分〔上記ビニル系単量体の(共)重合体〕が含まれる。
 上記のゴム強化スチレン系樹脂(B1)のグラフト率は、通常5~100質量%、好ましくは10~90質量%、更に好ましくは15~85質量%、特に好ましくは20~80質量%にコントロールすることが好ましい。グラフト率は、重合開始剤の種類、使用量、連鎖移動剤の種類、使用量、重合方法、重合時の単量体とゴム質重合体(b1)の接触時間、ゴム質重合体種、重合温度等の各種要因で変わるが、一般的にはグラフト率を上げる方向で(B1)成分から熱シクロヘキサンに溶解する成分が少なくなるが、当該溶解成分がなくなることにより本発明の組成物の発泡性が悪くなる。
 なお、グラフト率は以下の式により求めることができる。
 グラフト率(質量%)={(T-S)/S}×100
 上記グラフト率の式中、Tは、ゴム強化スチレン系樹脂(B1)1gをアセトン(アクリル系ゴムの場合はアセトニトリル)20mlに投入し、振とう機により2時間振とうした後、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(g)である。Sは、ゴム強化スチレン系樹脂(B1)1gに含まれるゴム質重合体(b1)の質量(g)である。
 なお、ビニル単量体として芳香族ビニル化合物のみを用いた場合は、アセトンの代わりにメチルエチルケトンを用いて測定する。
 また、本発明で使用されるゴム強化スチレン系樹脂(B1)のアセトン(アクリル系ゴムの場合はアセトニトリル)可溶分の極限粘度〔η〕(溶媒としてメチルエチルケトンを使用し、30℃で測定)は、通常0.15~1.2dl/g、好ましくは0.2~1.0dl/g、更に好ましくは0.2~0.8dl/gである。本発明で使用するゴム強化スチレン系樹脂(B1)中に分散するグラフト化ゴム質重合体粒子の平均粒子径は、通常50~3,000nm、好ましくは40~2,5000nm、特に好ましくは50~2,000nmである。ゴム粒子径が50nm未満では耐衝撃性が劣る傾向にあり、3,000nmを超えると成形品表面外観が劣る傾向にある。また、使用するゴム質重合体(b1)とビニル系単量体の共重合体の屈折率を実質的に合わせること及び/または分散するゴム質重合体(b1)の粒子径を実質的に可視光の波長以下(通常1,500nm以下)にすることで透明性を有する(B1)成分を得ることができるが、これらの透明性樹脂も本発明の(B1)成分として用いることができる。
 本発明の組成物に用いられる(B1)成分は、発泡性の発現のためには、下記条件で示した熱シクロヘキサン溶解量が、使用したゴム質重合体(b1)を基準(100質量%)として、1~99質量%であることが必要であり、好ましくは2質量%以上、更に好ましくは4質量%以上、特に好ましくは5~80質量%である。なお、ここで溶解してくる成分の主成分は、ゴム質重合体(b1)である。
 また、特にゴム質重合体(b1)がアクリル系ゴムの場合、熱シクロヘキサン溶解量は、好ましくは1~40質量%、さらに好ましくは2~30質量%、特に好ましくは3~20質量%である。ゴム質重合体(b1)がオレフィン系ゴムの場合、好ましくは5~60質量%、さらに好ましくは10~50質量%、特に好ましくは20~40質量%である。
 熱シクロヘキサン溶解量は、以下に示す方法により求めることができる。すなわち、ゴム強化スチレン系樹脂(B1)〔ここで(B1)成分中のゴム量は、W1グラム〕を、ソックスレー抽出器を用いて、常圧下で、シクロヘキサンを8時間還流させる。シクロヘキサン溶液を乾固し、抽出物の重量を測定し(W2グラム)、下記式で、熱シクロヘキサン溶解量を算出する。
 熱シクロヘキサン溶解量(%)=W2/W1×100
 本発明は、本発明で用いるゴム強化スチレン系樹脂(B1)の熱シクロヘキサン溶解量が、ゴム質重合体(b1)を基準として1質量%以上である場合、具体的には成分(B1)中のゴム質重合体(b1)が熱シクロヘキサンに溶解すること、即ちゴム質重合体(b1)が未架橋、またはルーズな架橋状態にある場合に、樹脂の発泡性が向上するというものである。
(4)ビニル系樹脂(B2)
 本発明の第2の側面におけるビニル系樹脂(B2)は、芳香族ビニル化合物、又は芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体(b3)を重合して構成することができる。すなわち、(b3)成分は、芳香族ビニル化合物単独でもよいし、芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体との混合物でもよい。ここで使用される芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体としては、上記(B1)成分で記載したものが全て使用できる。また、ビニル単量体(b3)は、上記ビニル単量体(b2)と同一であってもよいし、異なっていてもよい。
 好ましい(B2)成分としては、スチレンの単独重合体、スチレン・アクリロニトリル共重合体、スチレン・メタクリル酸メチル共重合体、スチレン・アクリロニトリル・メタクリル酸メチル共重合体、スチレン・マレイミド化合物共重合体、スチレン・アクリロニトリル・マレイミド化合物共重合体及びこれらと上記官能基含有不飽和化合物との共重合体である。
 本発明の(B2)成分は、上述した(B1)成分の製造法で記載した公知の重合法である乳化重合、塊状重合、溶液重合、懸濁重合及びこれらを組み合わせた方法で製造することができる。
 本発明の第2の側面において、上記ゴム強化ビニル系樹脂(B1)の配合量は、(A)、(B1)及び(B2)成分の合計を100質量%としたとき、5~90質量%、好ましくは6~60質量%、更に好ましくは7~40質量%である。ゴム強化ビニル系樹脂(B1)が5質量%未満及び90質量%超過では発泡性が劣る。
 また、本発明の第2の側面におけるビニル系樹脂(B2)の配合量は、(A)、(B1)及び(B2)成分の合計を100質量%としたとき、0~85質量%、好ましくは5~50質量%、更に好ましくは10~30質量%である。ビニル系樹脂(B2)が85質量%超過では発泡性が劣り、優れた外観を有する発泡成形体を得ることが困難となる。(B2)成分は、(A)、(B1)及び(B2)成分の合計を100質量%としたとき、ゴム質重合体(b1)の量を3~50質量%に調整すること、(共)重合体種を変えて本発明の組成物に機能を付与すること、及び、他の熱可塑性重合体との相溶性を向上させることを目的として配合される。
(5)化学発泡剤(C)
 使用する化学発泡剤(C)として、特に限定はないが好ましいものとしては、例えば分解されて炭酸ガスを発生する熱分解型無機発泡剤(炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウムなど)、分解されて窒素ガスを発生する熱分解型発泡剤(アゾジカルボンアミド(ADCA)、N,N’-ジニトロソペンタメチレンテトラミン(DPT)、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)、アゾビスイソブチロニトリル、p-トルエンスルホニルヒドラジド、5-フェニルテトラゾールなど公知の熱分解型発泡性化合物が挙げられる。
 化学発泡剤(C)の含有量は、所望の発泡倍率が得られるように、用いる化学発泡剤や樹脂の種類に応じて適宜選択されるものであるが、上記成分(A)及び(B)(B1、B2)の合計100質量部に対して化学発泡剤0.05~5質量部であり、好ましくは0.1~5質量部、より好ましくは0.2~4質量部、更に好ましくは0.3~3質量部である。化学発泡剤の含有量が0.05質量部未満である場合には、化学発泡剤の含有量が少なくて、発泡の各セル径を均一にすることが困難になる。一方、化学発泡剤の含有量が5質量部を超える場合には、化学発泡剤の含有量が多くて、化学発泡剤の残渣による金型汚染が生じ、外観に優れた発泡成形体を得ることが困難になる。
 溶融状態可塑性樹脂への発泡剤の配合方法としては、熱可塑性樹脂組成物のペレットと発泡剤マスターバッチペレットをドライブレンドした後、成形機に供給し、成形機内で樹脂を可塑化させ、金型内で発泡させる方法が好ましく用いられる。また、物理発泡剤を併用してもよい。物理発泡剤としては、具体的には、プロパン、ブタン、水、炭酸ガス等が挙げられる。
(5)タルク(D)
 本発明で用いられるタルク(D)は特に制限はないが、一般的には含水珪酸マグネシウム塩の粘土鉱物の一種で、その組成は(MgO)x(SiO2)y・zH2Oである(x、y、zは正値)。また、タルク中のMgの一部がCa2+等の2価の金属イオンに置換されてもよい。タルクの粒径は、特に制限されないが、レーザー散乱法による平均粒子径として、通常0.1~50μm、好ましくは0.3~25μm、更に好ましくは0.5~20μmである。タルクの平均粒子径が0.1μm未満では、熱可塑性樹脂組成物中でのタルクの分散性が不十分となり、発泡性が劣り、優れた外観を有する発泡成形体を得ることが困難となる。一方、タルクの平均粒径が50μmを超えると、発泡性が劣り、優れた外観を有する発泡成形体を得ることが困難となる。
 本発明におけるタルク(D)の含有量は、上記成分(A)及び(B)(B1、B2)の合計100質量部に対して、0.5~18質量部、好ましくは1~15質量部、更に好ましくは2~12質量部である。タルクの含有量が0.5質量部未満の場合及びタルクの含有量が18質量部を超える場合には、発泡性が劣り、優れた外観を有する発泡成形体を得ることが困難となる。
(6)繊維状充填材(E)
 本発明における繊維状充填材(E)は、繊維状であれば特に限定はないが、例えばガラス繊維、炭素繊維、アラミド繊維等の有機繊維、セラミック系ウィスカー等の無機繊維、金属繊維等が挙げられる。このうち、発泡成形体の剛性向上の観点から、ガラス繊維を用いることが好ましい。
 本発明に用いられるガラス繊維の組成は、珪酸塩ガラス、ほう酸珪酸ガラス、燐酸塩ガラス等が挙げられる。またガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Mガラス、ARガラス、Lガラス等が挙げられるが、Eガラス、Cガラスが好ましい。本発明に用いられるガラス繊維には、適当なサイジング剤を用いても構わない。サイジング剤としては、表面処理剤、フィルム形成剤、潤滑剤、界面活性剤、帯電防止剤等が挙げられる。表面処理剤としては、アミン系、シラン系、エポキシ系等のカップリング剤が挙げられる。本発明に用いられるガラス繊維は、ロービングを用いた長繊維タイプでもよく、チョップドストランドであってもよい。
 本発明に用いられるガラス繊維の直径は特に指定はないが、通常φ1~500μm、好ましくはφ5~200μm、更に好ましくはφ5~100μmである。ガラス繊維の直径がφ1μm未満では、機械的強度が不十分となるおそれがある。一方、ガラス繊維の直径がφ500μmを超えると、発泡性、発泡成形体の外観が悪化するおそれがある。
 また、ガラス繊維の長さは特に指定はないが、通常0.01~10mm、好ましくは0.05~5mmである。ガラス繊維の長さが0.01mm未満では、発泡性が劣り、機械的強度が不十分となるおそれがある。一方、ガラス繊維の長さが10mmを超えると、発泡性が不十分となるおそれがある。
 ガラス繊維の長さ(μm)/直径(μm)は、通常5~1000、好ましくは8~500である。ガラス繊維の長さ/直径が5未満では、ガラス繊維の両端が発泡起点とならず、発泡性が不十分となるおそれがある。一方、ガラス繊維の長さ/直径が1000を超えると、ガラス繊維の数の減少により、発泡起点の数が減少し、発泡性が不十分となるおそれがある。
 また、成形した発泡成形体中に分散しているガラス繊維の残存平均繊維長さは、0.01~1mmが好ましく、0.02~0.8mmがより好ましく、0.03~0.7mmが更に好ましい。ガラス繊維の残存平均繊維長さが上記範囲にあると、発泡性、発泡成形体の外観、機械的特性が十分になる。
 炭素繊維としては、PAN系、ピッチ系等が用いられる。また上記炭素繊維は、カーボンナノチューブなどの炭素繊維構造体であってもよい。
 本発明に用いられる炭素繊維の直径は特に指定はないが、0.5μm~200μmが好ましく、1μm~50μmがより好ましく、5μm~50μmがさらに好ましい。繊維の長さは特に指定はないが、発泡成形体中で20μm以上であることが好ましい。
 本発明における繊維状充填材(E)の配合量は、上記成分(A)及び(B)(B1、B2)の合計100質量部に対して、0.5~25質量部、好ましくは0.5~18質量部、更に好ましくは2~18質量部、特に好ましくは4~18質量部である。繊維状充填材の含有量が0.5質量部未満の場合及び25質量部を超える場合には、発泡性、発泡成形体の外観、金型汚染性、機械的強度が悪化するおそれがある。
 本発明に用いられる熱可塑性樹脂組成物には、熱老化防止剤を配合することができる。熱老化防止剤としては、フェノール系、リン系、硫黄系などが挙げられ、好ましくはフェノール系、リン系および硫黄系の3種混合系である。熱老化防止剤として、この3種混合系を用いると、長時間、高温下に曝された時の、引張り伸び率を保持するという効果が得られる。
 熱老化防止剤のうち、フェノール系としては、2,6-ジ-t-ブチルフェノール誘導体、2-メチル-6-t-ブチルフェノール誘導体、オクタデシル3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデン-ビス(6-t-ブチル-m-クレゾール)、ペンタエリスリチル・テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2〔1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)-エチル〕-4,6-ジ-t-ペンチルフェニルアクリレート、2-t-ブチル-6(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレートなどが挙げられる。
 リン系としては、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニルホスファイト)、ジステアリルペンタエリスリトールジホスファイト、リン酸2水素ナトリウム、リン酸1水素2ナトリウムなどが挙げられる。
 硫黄系としては、3,3’-チオビスプロピオン酸ジドデシルエステル、3,3’-チオビスプロピオン酸ジオクタデシルエステル、ペンタエリスリトール-テトラキス(3-ラウリルプロピオネート)、ジラウリル3,3’-チオジプロピオネートなどが挙げられる。
 本発明に用いられる熱可塑性樹脂組成物中の熱老化防止剤の割合は、0~5質量%、好ましくは0~3質量%である。本発明の熱可塑性樹脂組成物において、ポリカーボネート樹脂(A)以外のゴム強化ビニル系樹脂(B)成分は、熱老化防止剤を添加することで、熱老化特性が改良されるが、芳香族ポリカーボネート樹脂(A)は、熱老化防止剤が加水分解を促進する触媒として働くことがあり、熱老化防止剤を入れない方が劣化を抑制する傾向もある。これらの相反する効果を鑑みて、5質量%を上限として上記熱老化防止剤を添加すれば、最適な熱老化防止効果が得られる。
 また、本発明に用いられる発泡成形用熱可塑性樹脂組成物には、本発明の目的とする性能を損わない範囲で公知の耐候剤、滑剤、着色剤、帯電防止剤、シリコーンオイル、タルク(D)及び繊維状充填材(E)を除く無機フィラーなどの添加剤を配合することができる。このうち、耐候剤としては、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系などが好ましい。滑剤としては、エチレンビスステアリルアミド、硬化ヒマシ油などが好ましい。着色剤としては、カーボンブラック、ベンガラなどが挙げられる。帯電防止剤としては、ポリエーテル、アルキル基を有するスルホン酸塩などが挙げられる。
 本発明の発泡成形用熱可塑性樹脂組成物には、本発明の目的とする性能を損なわない範囲で、更に他の熱可塑性樹脂を配合することができる。熱可塑性樹脂としては、スチレン系樹脂〔ただし、(B)(B1、B2)成分は除く〕、ポリオレフィン系樹脂、塩化ビニル系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリアリーレンスルフィド系樹脂等があり、これらの熱可塑性樹脂は1種単独で、または2種以上を組み合わせて使用することができる。
2.熱可塑性樹脂組成物の製造
 本発明に用いられる熱可塑性樹脂組成物は、各種押出機、バンバリーミキサー、ニーダ
ー、ロールなどを用いて混練することができる。例えば、(A)及び(B)(B1及びB2)、(C)、(D)及び(E)成分、並びに必要に応じてその他の添加剤を混練することにより熱可塑性樹脂組成物のペレットを得ることができる。具体的には、2軸押出機によって(A)~(E)成分を溶融させる方法などが挙げられる。混練温度は、熱可塑性樹脂組成物の配合によって適宜選択されるが、本発明においては、通常220~260℃である。
3.発泡成形体(発泡成形品)の成形方法
 本発明の発泡成形用熱可塑性樹脂組成物を用いて発泡成形体を成型する方法としては、射出発泡成形、押出発泡成形等公知の方法を用いることができる。
 射出発泡成形方法では、上記射出発泡成形用熱可塑性樹脂組成物を、射出成形機の金型内に形成されたキャビティ空間に射出し、直ちに、あるいは所定時間が経過した後、可動型、あるいは可動型に内設された可動コアを所定の速度で所定位置まで後退させ、キャビティ空間を拡大することにより発泡させる、所謂、コアバック方式の射出成形法によって発泡成形体を得ることができる。金型の温度は、通常、射出される際の熱可塑性樹脂組成物の温度より相当に低いため、キャビティの表面に接して形成される発泡成形体の表面には、ほとんど発泡していない緻密なスキン層が形成される。
 発泡成形体は、樹脂製等の基材の表面に接するように一体に形成することもできる。このような積層品は、キャビティ空間に予め基材を配置しておき、その表面に熱可塑性樹脂組成物を射出することにより形成することができる。また、2本の射出ユニットが搭載された射出成形機を使用し、先ず、基材となる樹脂等を射出して基材を形成し、その後、可動型に内設された可動コアを後退させて熱可塑性樹脂組成物を射出するためのキャビティ空間を形成し、次いで、熱可塑性樹脂組成物を射出し、その後、可動コアを更に後退させてキャビティ空間を拡大し、発泡させて、基材の表面に発泡成形体が積層された積層品とすることもできる。
 本発明の射出発泡成形方法では、可動型の後退速度、あるいは可動型に内設して設けられた可動コアの後退速度、即ち、上記「型開速度」は0.05~20mm/秒である。この型開速度は、好ましくは0.1~10mm/秒である。このような型開速度とすることにより、平均セル径が50~500μmと適度に微細である均質な発泡成形体とすることができる。
 型開速度が0.05mm/秒未満であると、冷却が進んで発泡不足が発生し、発泡成形体の表面に凹凸が生じる。一方、型開速度が20mm/秒を越えると、セル径が大きく、また不均一な発泡成形体となる。
 更に、射出される熱可塑性樹脂組成物の温度は、好ましくは200~280℃、特に好ましくは220~270℃である。この温度が200℃未満であると、熱可塑性樹脂組成物の流動性が不十分となり、特に、末端部では充填不良が発生することがある。一方、280℃を越えると、熱可塑性樹脂組成物の組成によっては熱劣化等が懸念される。
 また、金型温度は、好ましくは20~80℃、特に好ましくは30~70℃である。この温度が20℃未満であると、金型内表面と接触した熱可塑性樹脂組成物が急激に冷却され、均質な発泡成形体とすることができず、末端部で充填不良が発生することもある。一方、80℃を越えると、発泡成形体のキャビティの表面に接して形成された部分に均質なスキン層が形成されないことがあり、好ましくない。
 また、熱可塑性樹脂組成物を射出してから可動型、あるいは可動型に内設された可動コアの後退を開始するまでの時間(金型後退遅延時間)は、型開速度にもよるが、3秒以下とすることが好ましく、射出完了後、直ちに後退を開始してもよい。この金型後退遅延時間は、好ましくは0.1~2.5秒、特に好ましくは0.1~1.5秒である。金型後退遅延時間が3秒を越えると、冷却が進んで均質な発泡成形体とすることができない場合がある。
 金型の後退量は所定の発泡倍率により設定すればよく、限定されないが、特に、機器の機枠等では、金型内キャビティ空間に充填された素材の初期肉厚に対して発泡成形体の最終肉厚が1.1~3.0倍となるように金型を後退させる、即ち、型開きすることが好ましい。この肉厚の比を発泡倍率とすれば、発泡倍率は、好ましくは1.1~3倍、更に好ましくは1.5~2.5倍であり、発泡成形体の肉厚が5~30mm、特に5~25mmである製品が多いことを考慮すれば、金型の後退量は、通常、2.5~30mmである。
 なお、冷却時間は発泡成形体の寸法、あるいは冷却方法にもよるが、脱型時の発泡成形体の温度が40~80℃程度にまで低下しておればよく、一般に30秒以上であればよく、大型の製品であっても100秒で十分である。
 本発明の発泡成形体の成形方法において、射出充填時に、金型内にファブリックやフィルムをインサートしてもよい。
4.発泡成形体
 本発明の成形方法により得られた発泡成形体は、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であり機械的性能に優れる発泡成形体である。具体的には、発泡セル径の平均径が好ましくは50~500μm、より好ましくは70~450μm、さらに好ましくは100~400μmであり、発泡セル径が均一であり、粒径分布の狭いことが好ましい。特に発泡成形体発泡セルの大半のセル径が400μm以下の均一発泡成形体であることが好ましい。
 本発明の成形方法により得られた発泡成形体は、さらに発泡倍率が1.01~3.0倍、好ましくは1.1~2.7倍、より好ましくは1.5~2.5倍の所望の倍率にすることができる。
 本発明の成形方法により得られた発泡成形体の形状は、目的、用途などにより選択され、板状(シート状)、筒状、半筒状、棒状、線状、塊状等とすることができる。
 本発明の発泡成形体は、表示板、コンクリートパネル、屋上断熱材、畳芯材、襖、システムキッチンの木材代替材、風呂蓋、テーブル板などの土木・建築関連資材、サイドモール、吸音材、バンパー、ドアハンドル、コンソールボックス、天井材、ピラー、センターロークラスタフィニッシュパネル、カウルサイドトリム、センターアウトレット、ドアライニング、アッシュトレイ、フットレスト、ステアリングコラムカバー、ロアインサート、ロアハンドルパネル、ホイルキャップ、スポイラーなどの車両用内外装関連資材、容器、トレー、通い箱等の日用雑貨用品、テレビ、ビデオ、エアコンのハウジング、パラボナアンテナ、エアコン室外機等の電気・電子部品、ビート板、プロテクターなどのスポーツ用品、壁、床、機枠、家具、化粧シート、間仕切り、ラティス、フェンス、雨樋、サイジングボード、カーポート等の住宅・事務所用内外装材、玩具・遊技機等の機枠、緩衝材、補強材、断熱材、芯材、代替合板等として用いることができる。
 さらに、本発明の発泡成形体は、用途によっては、他の成形品、部材等と一体化させ、複合化させてなる物品として用いることができる。
 以下に、本発明の発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法にかかる実施例につき、図面を参照して説明する。
(実施例1)
 本例の発泡成形用熱可塑性樹脂組成物は、芳香族ポリカーボネート樹脂(A)20~80質量%と、ゴム質重合体(b1)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体(b2)を重合して得られるグラフト共重合体(B1)からなるゴム強化ビニル系樹脂(B)を残りの20~80質量%(成分(A)と成分(B)の合計が100質量%)とを含有してなる。また、発泡成形用熱可塑性樹脂組成物は、上記成分(A)及び(B)の合計100質量部に対し、化学発泡剤(C)を0.05~5質量部含有し、成分(A)及び(B)の合計100質量%における成分(b1)の割合が3~50質量%である。本例のゴム強化ビニル系樹脂(B)は、ゴム強化スチレン系樹脂(B)である。
 なお、ゴム強化ビニル系樹脂(B)は、ビニル系単量体(b3)の共重合体(B2)と上記グラフト共重合体(B1)との混合物から構成することもできる。
 以下に、本例の発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体6及び発泡成形体6の成形方法につき、図1~図4を参照して詳説する。
 本例においては、上記組成の発泡成形用熱可塑性樹脂組成物を用いることによって、射出発泡成形を行う際に、微細な発泡セル構造を発現し、発泡成形体6の部位によらず発泡セルの大きさが均一であり、機械的性能にも優れ、かつ表面外観にも優れた発泡成形体6を成形することができる。
 また、本例の発泡成形体6の成形方法は、発泡成形する発泡成形体6の全周の表面に、発泡成形用熱可塑性樹脂組成物が溶融した溶融樹脂60がほとんど発泡せずに硬化したスキン層61を効果的に形成することができるものである。
 本例においては、上記発泡成形用熱可塑性樹脂組成物を用いて発泡成形体6を成形するに当たり、次の製造装置1を用いる。
 製造装置1は、図1~図4に示すごとく、金型として、第1型部2と、第1型部2に対して相対的に可動する第2型部3とを備えている。そして、製造装置1は、第2型部3と第1型部2との間に形成したキャビティ41A内に、熱可塑性樹脂組成物を溶融させた溶融樹脂60を充填し、第1型部2と第2型部3とをキャビティ41Aの容積が拡大する離隔方向Rに相対的に可動させるよう構成してある。
 図1に示すごとく、第2型部3は、第1型部2に設けたキャビティ形成凹部21内に配置するキャビティ形成凸部31を設けてなる。第1型部2及び第2型部3においては、キャビティ形成凹部21において第1型部2と第2型部3との可動方向Dに平行に形成した内側面211と、キャビティ形成凸部31において可動方向Dに平行に形成した外側面311との間には、溶融樹脂60を充填するための充填用隙間42がキャビティ41Aと連通して形成されている。
 本例の製造装置1は、溶融樹脂60をキャビティ41A内に充填すると共に充填用隙間42に充填した後、第1型部2と第2型部3とを離隔方向Rに相対的に可動させるよう構成してある。
 図1、図4に示すごとく、本例の第1型部2は、キャビティ41内に溶融樹脂60を充填するための樹脂注入口22を設けた固定型部である。本例の第2型部3は、第1型部2に対して離隔方向Rに可動する可動型部である。
 また、本例の第2型部3は、第1型部2との間に形成するキャビティ41の容積を1.1~3.0倍に拡大させるように、第1型部2に対して離隔方向Rへ後退するよう構成してある。そして、本例において発泡成形する発泡成形体6の発泡倍率は、1.1~3.0倍である。
 図2、図3に示すごとく、本例の製造装置1は、第1型部2に設けた樹脂注入口22に接続して、上記キャビティ41A内に溶融樹脂60を注入するための注入ノズル25を有している。本例の第2型部3は、油圧、空気圧、電力等によって動作する駆動源によって、第1型部2に対して進退する(可動方向Dに移動する)よう構成してある。
 本例においては、第1型部2及び第2型部3を用いて、略直方体形状であって、四角形状断面を有し、一方向Lに長い板形状の発泡成形体6を発泡成形する。
 図4に示すごとく、本例の第2型部3は、キャビティ形成凸部31の先端面312が充填用隙間42の可動方向Dの端部まで移動するまで第1型部2に対して離隔方向Rに可動するよう構成してある。
 第2型部3が第1型部2に対する原位置301にあるときには、キャビティ41に連通して、溶融樹脂60を充填するための充填用隙間42が形成される。この充填用隙間42は、溶融樹脂60を充填した際に、充填用隙間42の全体にスキン層61を形成することができる幅(隙間)に形成する。そして、図1、図2に示すごとく、第2型部3が離隔方向Rに可動する前の原位置301にあるときには、第2型部3と第1型部2との間には、容積が縮小したキャビティ41A及び充填用隙間42が形成されると共に、図4に示すごとく、第2型部3が離隔方向Rに可動した可動位置302にあるときには、第2型部3と第1型部2との間には、容積が拡大したキャビティ41Bが形成される。
 図1に示すごとく、本例の第1型部2は、キャビティ41における樹脂注入側の表面212(発泡成形体6の固定側表面を成形する底面)、及び樹脂注入側の表面に直交する全周の側面211(内側面211、発泡成形体6の全側面を成形する面)を形成するためのキャビティ形成凹部21を有している。本例の第2型部3は、キャビティ41における樹脂受け側の表面312(発泡成形体6の可動側表面を成形する先端面)、及び樹脂注入側の表面に直交する全周の側面311(外側面311)を形成するためのキャビティ形成凸部31を有している。
 第1型部2のキャビティ形成凹部21における内側面211、及び第2型部3のキャビティ形成凸部31における外側面311は、可動方向Dに平行に形成してある。
 また、同図に示すごとく、本例の第1型部2においてキャビティ形成凹部21を形成する型壁部の開口先端部23の全周には、開口先端部23と第2型部3における外側面311との間を閉塞する閉塞型部5が設けてある。
 そして、製造装置1は、第1型部2に対して第2型部3を離隔方向Rに可動させるときには、第2型部3における外側面311が閉塞型部5における内周面51と摺動することにより、充填用隙間42を形成した状態を維持して、キャビティ41Aの容積を拡大させるよう構成してある。
 また、図4に示すごとく、製造装置1は、第1型部2に対して第2型部3を離隔方向Rに相対的に可動させたときには、第2型部3における先端面312と閉塞型部5における内側端面52とが一致するよう構成してある。そして、上記可動工程において、第1型部2に対して第2型部3を離隔方向Rに可動させたときには、発泡成形体6の全周の表面にスキン層61を形成すると共に、スキン層61の内側部分に発泡層62を形成することができる。
 なお、成形する発泡成形体6の形状によっては、第2型部3における先端面312と閉塞型部5における内側端面52とが一致するまでは第2型部3を離隔方向Rに可動させずに、発泡成形体6からスキン層61による突出部が突出した形状を形成することもできる。
 また、本例の充填用隙間42の幅(隙間)は適宜変更することができ、充填用隙間42に形成するスキン層61の厚みを適宜変更することができる。
 次に、上記製造装置1を用いて、発泡成形体6を成形する方法を詳説する。
 本例の成形方法においては、充填工程として、図2、図3に示すごとく、第2型部3と第1型部2との間に形成したキャビティ41A内に、溶融樹脂60を充填してキャビティ41Aの表面に接触する溶融樹脂60の部分にスキン層61を形成し、可動工程として、図4に示すごとく、第1型部2と第2型部3とをキャビティ41Aの容積が拡大する離隔方向Rに相対的に可動させて、スキン層61に対する内側部分に溶融樹脂60を発泡させた発泡層62を形成する。
 本例の発泡成形体6の成形方法は、溶融樹脂60を充填したキャビティ41Aの容積を拡大させて、溶融樹脂60を発泡させる方法であり、発泡成形する発泡成形体6の全周の表面に、溶融樹脂60がほとんど発泡せずに硬化したスキン層61を効果的に形成することができるものである。
 本例においては、まず、充填工程として、図2、図3に示すごとく、注入ノズル25に保持する溶融樹脂60を、第1型部2における樹脂注入口22から縮小した状態のキャビティ41A内に注入する。このとき、溶融樹脂60は、キャビティ41Aから充填用隙間42へと流入し、縮小した状態のキャビティ41及び充填用隙間42の全体に溶融樹脂60が充填される。そして、第1型部2のキャビティ形成凹部21の底面212及び内側面211と、第2型部3のキャビティ形成凸部31の先端面312及び外側面311に接触する溶融樹脂60の部分は、他の溶融樹脂60の部分(キャビティ41の内部(内側部分)における溶融樹脂60の部分)よりも早く冷却硬化して半硬化状態のスキン層61が形成される。そのため、キャビティ41における接触表面だけでなく、充填用隙間42における接触表面にも、溶融樹脂60が半硬化して未発泡のスキン層61が形成される。本例では、充填用隙間42の全体にスキン層61が形成される。
 次いで、可動工程として、図4に示すごとく、第1型部2に対して第2型部3を離隔方向Rに可動させる。このとき、充填用隙間42内に充填されて硬化した溶融樹脂60によるスキン層61に対して、第2型部3のキャビティ形成凸部31における外側面311が摺動し、このスキン層61の内側部分に溶融樹脂60が流入して発泡する。また、第1型部2のキャビティ形成凹部21における樹脂注入側の表面212、及び第2型部3のキャビティ形成凸部31における樹脂受け側の表面312に形成されたスキン層61の内側部分にも溶融樹脂60が流入して発泡する。
 こうして、発泡成形体6の内部に溶融樹脂60が発泡した発泡層62を形成すると共に、発泡成形体6の全周の表面にスキン層61を形成することができる。そのため、全周の表面に安定してスキン層61を形成することができ、発泡成形した発泡成形体6の機械的強度を効果的に向上させることができる。
 それ故、本例の発泡成形体6の成形方法によれば、発泡成形体6の全周の表面にスキン層61を形成することができ、発泡成形体6の機械的強度を向上させることができる。また、安定したスキン層61の形成により、成形する発泡成形体6の強度を向上させることができ、発泡によるセル径をより均一にして、発泡成形体6の外観が悪化することを抑制することができる。
 また、本例においては、樹脂成形を行う所定の温度において、粘度が高い芳香族ポリカーボネート樹脂(A)の存在により、発泡によるセル径をできるだけ均一にすることができ、発泡成形体6の外観を向上させることができる。また、樹脂成形を行う所定の温度において、芳香族ポリカーボネート樹脂(A)よりも粘度が低いゴム強化スチレン系樹脂(B)の存在により、発泡成形体6の表面に安定してスキン層61を形成することができる。
(実施例2)
 本例は、発泡成形用熱可塑性樹脂組成物の組成が上記実施例1とは異なる例である。
 本例の発泡成形用熱可塑性樹脂組成物は、芳香族ポリカーボネート樹脂(A)10~90質量%と、ゴム強化スチレン系樹脂(B1)5~90質量%と、スチレン系樹脂(B2)0~85質量%(成分(A)、(B1)及び(B2)の合計が100質量%)とを含有し、成分(A)、(B1)及び(B2)の合計100質量部に対し、化学発泡剤(C)を0.1~5質量部、タルク(D)を0.5~18質量部、及び繊維状充填材(E)を0.5~25質量部配合してなる。
 本例のゴム強化スチレン系樹脂(B1)は、ゴム質重合体(b1)の存在下に、芳香族ビニル化合物、又は芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体を重合してなり、かつ熱シクロヘキサン溶解量が、ゴム質重合体(b1)を基準(100質量%)として1~99質量%である。本例のスチレン系樹脂(B2)は、芳香族ビニル化合物又は芳香族ビニル化合物及び芳香族ビニル化合物と共重合可能な他のビニル単量体を重合してなる。また、成分(A)、(B1)及び(B2)の合計100質量%におけるゴム質重合体(b1)の割合は、3~50質量%である。
 本例の発泡成形用熱可塑性樹脂組成物も、上記実施例1と同様に、上記製造装置1を用いて上記成形方法を行って、発泡成形体6に成形することができる。
 本例の発泡成形用熱可塑性樹脂組成物は、上記芳香族ポリカーボネート樹脂(A)、ゴム強化スチレン系樹脂(B1)(及びスチレン系樹脂(B2))、化学発泡剤(C)、タルク(D)及び繊維状充填材(E)を含有し、ゴム強化スチレン系樹脂(B1)を組成するゴム質重合体(b1)の割合を適切にしたことによって、射出発泡成形を行う際に、微細な発泡セル構造を発現し、発泡成形体6の部位によらず発泡セルの大きさが均一であり、かつ機械的性能にも優れる発泡成形体6を成形することができる。
 また、本例の発泡成形用熱可塑性樹脂組成物は、タルク(D)及び繊維状充填材(E)を含有することにより、発泡性、機械的性能に一層優れ、表面外観に優れる発泡成形体6を成形することができる。この理由は、次のように考えられる。
 すなわち、発泡成形する際には、タルク(D)及び繊維状充填材(E)が発泡起点になり、化学発泡剤(C)による発泡を促進することができる。このとき、タルク(D)による発泡起点と繊維状充填材(E)の両端による発泡起点とが混在することにより、より効果的に微細かつ均一な発泡セルが得られると考えられる。
 また、発泡成形用熱可塑性樹脂組成物が繊維状充填材(E)を含有することにより、機械的性能として特に剛性が優れた発泡成形体6を得ることができる。さらに、繊維状充填材(E)を含有することにより、発泡成形を行う金型の成形表面(第1型部2及び第2型部3におけるキャビティ41及び充填用隙間42の表面)に汚染が発生し難くなり、表面外観に優れた発泡成形体6を生産効率よく成形することができることがわかった。この理由は、次のように考えられる。
 すなわち、繊維状充填材(E)が含有されていることにより、金型の成形表面に接触する溶融状態の発泡成形用熱可塑性樹脂組成物の表面が凹凸状に粗くなり、化学発泡剤(C)の発泡に伴って発生する揮発成分が、金型の成形表面と溶融状態の発泡成形用熱可塑性樹脂組成物の表面との間から外部へ抜け易くなったと考えられる。
 そのため、金型の成形表面に汚染が発生し難くなり、その清掃を行う頻度を減少させることができ、生産効率よく発泡成形体6を成形できることがわかった。
 それ故、本例の発泡成形用熱可塑性樹脂組成物によれば、射出発泡成形において、微細な発泡セル構造を発現し、発泡成形体6の部位によらず発泡セルの大きさが均一であり、機械的性能に優れ、かつ表面外観にも優れる発泡成形体6を生産効率よく成形することができる。
(実施例3)
 本例の発泡成形体6の成形方法は、図5~図7に示すごとく、上記実施例1に示した発泡層62において、高発泡層621の部分の中に、発泡率が低い低発泡層622を設けることによって、より機械的強度を向上させた発泡成形体6を製造する例である。
 具体的には、図5、図6に示すごとく、本例のキャビティ41Aは、一方向Lに長い板形状を有する発泡成形体6を成形する形状であって、板形状の厚み方向を第1型部2と第2型部3との可動方向Dに向けて形成してある。本例の第1型部2のキャビティ形成凹部21の底面212と第2型部3のキャビティ形成凸部31の先端面312とには、一方向Lに直交する断面の中央部分に、一方向Lに沿って長尺状突起24が形成してある。
 そして、図7に示すごとく、本例の製造装置1において、第1型部2に対して第2型部3を離隔方向Rに可動させるときには、キャビティ41Bにおけるスキン層61の内側部分において、キャビティ41Bにおいて長尺状突起24に対応する部分において低発泡層622を形成すると共に、他の部分に低発泡層622よりも発泡率が高い高発泡層621を形成するよう構成してある。
 本例の成形方法において、第2型部3を第1型部2に対して離隔方向Rに可動させるときには、キャビティ形成凹部21及びキャビティ形成凸部31の表面に接触して形成されたスキン層61の内側部分においては、化学発泡剤(C)による発泡効果を利用して溶融樹脂60が発泡する。このとき、スキン層61の内側部分に形成される発泡層62においては、溶融樹脂60を発泡させた高発泡層621と、高発泡層621よりも発泡率が低い低発泡層622とが形成される。そして、低発泡層622は、長尺状突起24に対応する部分において高発泡層621を2つに仕切るようスキン層61の部分同士を繋ぐ状態で形成される。
 成形した発泡成形体6においては、低発泡層622がスキン層61の部分同士を支えることができ、低発泡層622の形成により、発泡成形体6の機械的強度を向上させることができる。
 なお、低発泡層622が形成される理由は、キャビティ形成凹部21の底面212とキャビティ形成凸部31の先端面312とにおいて、長尺状突起24を形成した部分のキャビティ41の可動方向Dの幅(厚み方向の幅)が狭くなっており、溶融樹脂60の冷却が早く進み、溶融樹脂60の粘度が高くなるため、溶融樹脂60が発泡し難い状態が形成されるためであると考える。
 また、上記長尺状突起24を設ける代わりに、図8に示すごとく、第1型部2におけるキャビティ形成凸部31の先端面312に、複数個の樹脂注入口22を形成することができる。これにより、低発泡層622は、複数個の樹脂注入口22に対応する部分においてスキン層61の部分同士を繋ぐ状態で形成することもできる。なお、この場合において、低発泡層622が形成される理由は、キャビティ形成凹部21の底面212とキャビティ形成凸部31の先端面312とにおいて、複数個の樹脂注入口22を形成した部分の周辺は、他の部分に比べて圧力が高く、溶融樹脂60が発泡し難いためであると考える。
 本例においても、その他の構成は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。
(確認試験1)
 本確認試験1においては、上記熱可塑性樹脂組成物を用いて成形した発泡成形体6(発明品1~7)の優れた効果を確認した。具体的には、成形した発泡成形体6について、表面外観の観察、強度としての曲げ弾性率(MPa)の測定、内部断面の観察を行い、それらが優れているかの評価を行った。発泡成形体6(発明品1~7)についての評価結果を表1に示し、比較のために、発明品1~7とは異なる熱可塑性樹脂組成物を用いて成形した発泡成形体6(比較品1~8)の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本確認試験1における熱可塑性樹脂組成物(発明品1~7)及び他の熱可塑性樹脂組成物(比較品1~8)に用いる各樹脂等は以下のようにした。
<ポリカーボネート樹脂(A)>
(表1においてはPCで示す。)
 芳香族ポリカーボネート樹脂として、三菱エンジニアリングプラスチックス社製「ノバレックス 7022PJ」を用いた。
<グラフト共重合体(B1-1)>
(表1においてはAESで示す。)
(AES樹脂の調製)
 リボン型撹拌翼を備えた内容積10リットルのステンレス製オートクレーブに、エチレン・プロピレン系ゴム質重合体〔エチレン含量63%、非共役ジエン成分はジシクロペンタジエン、ヨウ素価10、ムーニー粘度(ML1+4、100℃)33〕30部、スチレン(芳香族ビニル化合物)45.5部、アクリロニトリル(シアン化ビニル化合物)24.5部およびトルエン100部を仕込み、撹拌後、昇温し、ゴム質重合体(b1)を完全溶解し均一溶液を得た。次いで、t-ドデシルメルカプタン0.1部とベンゾイルパーオキサイド0.5部、ジクミルパーオキサイド0.1部を添加し、95℃に一定に制御しながら撹拌回転数200rpmで重合反応を行った。反応開始後6時間目から1時間を要して120℃まで昇温し、さらに2時間反応を行って終了した。重合転化率は、97%であった。100℃まで冷却後、2,2-メチレン-ビス-4-メチル-6-ブチルフェノール0.2部を添加したのち、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し細かく砕いたのち、40mmφベント付き押し出し機(220℃、700mmHg)にて、実質的に揮発分を留去するとともに、重合体をペレット化した。グラフト率は60%、極限粘度(メチルエチルケトン中、30℃で測定)は0.42dl/g、体積平均粒子径は500nmであった。
<グラフト共重合体(B1-2)>
(表1においてはABSで示す。)
 撹拌装置を備えた内容積7リットルのガラス製フラスコに、イオン交換水100部、不均化ロジン酸ナトリウム1.5部、t-ドデシルメルカプタン0.1部、ポリブタジエン(JSR(株)製、#0700)40部(固形分換算)、スチレン15部およびアクリロニトリル5部を加え、撹拌しながら昇温した。温度が45℃に達した時点で、エチレンジアミン4酢酸ナトリウム0.1部、硫酸第1鉄0.003部、ホルムアルデヒドナトリウムスルホキシレート・2水和物0.2部およびイオン交換水15部よりなる活性剤水溶液、ならびにジイソプロピルベンゼンヒドロパーオキサイド0.1部を添加し、1時間反応を続けた。その後、イオン交換水50部、不均化ロジン酸ナトリウム1部、t-ドデシルメルカプタン0.1部、ジイソプロピルヒドロパーオキサイド0.2部、スチレン30部およびアクリロニトリル10部からなるインクレメント重合成分を3時間にわたって連続的に添加し重合反応を続けた。添加終了後、さらに撹拌を1時間続けたのち、2,2-メチレン-ビス(4-エチレン-6-t-ブチルフェノール)0.2部を添加し、反応生成物をフラスコより取り出した。反応生成物のラテックスを硫酸2部で凝固し、反応生成物をよく水洗したのち、75℃で24時間乾燥し、白色粉末を得た。重合転化率は97.2%、グラフト率は75%、極限粘度は0.44dl/gであった。
<ビニル系単量体(b3)の共重合体(B2)>
(表1においてはASで示す。)
 テクノポリマー社製のAS樹脂(サンレックス SAN-C)、スチレン/アクリロニトリル=76/24(%)の共重合体を用いた。極限粘度は0.58dl/gであった。
<酸化防止剤>
(表1においてはAO1、AO2、AO3で示す。)
 酸化防止剤としては、ADEKA社製アデカスタブAO-412S(AO1)と、ADEKA社製アデカスタブ2112(AO2)と、住友化学工業社製スミライザーGS(AO3)とを用いた。表1、表2において、酸化防止剤の添加量(質量部)は、熱可塑性樹脂組成物100質量部に対する質量部によって示す。
<化学発泡剤(C)>
 化学発泡剤としては、永和化成工業社製「ポリスレンEB207」、マスターバッチ(炭酸水素ナトリウム/ABS=20/80(質量比))を用いた。
 表1、表2において、表面外観の観察においては、良好な平面が得られた場合は○、一部に波打ちしている面があった場合は△、平面になっておらず、歪んで波打ちしている場合は×とした。表面外観が悪化した理由としては、スキン層61が安定して形成されなかったことが考えられる。
 また、曲げ弾性率(曲げモジュラス)(MPa)の測定においては、ASTM D790に準拠して行った。曲げ弾性率の値が大きいほど、発泡成形体6の強度が高いことを意味する。なお、曲げ弾性率は、発泡成形体6が波打っていたり、歪んでいた場合には、測定を実施しなかった。この場合は、表中に「-」と記載した。
 また、内部断面の観察においては、発泡成形体6の断面が均一で微細な発泡セルが形成されていた場合は○、発泡セルの外径に大小の分布があった場合は△、発泡セルのほとんどが大きな外径になっていた場合は×とした。
 表1、表2において、充填時間(sec)は、充填工程においてキャビティ41及び充填用隙間42に溶融樹脂60を充填するに要した時間とし、拡張後肉厚(mm)は、発泡成形後の発泡成形体6の可動方向Dにおける肉厚とし、発泡倍率(-)は、第2型部3の離隔方向Rへの移動量、すなわちキャビティ41の容積の拡大率とした。
 また、本確認試験1においては、ポリカーボネート樹脂(A)とゴム強化ビニル系樹脂(B)とをブレンダーにてブレンドした後、日本製鋼所製の二軸押出機TEX44を用いて、250℃にて押し出し、このペレットを用いて試験を行い、結果を評価した。発泡成形機としては、日本製鋼所製180(t)電動成形機を用いた。また、得られた熱可塑性樹脂ペレットと発泡剤マスターバッチをドライブレンドして発泡成形機に供給した。
 表1において、発明品1~7については、いずれも表面外観がよかった。また、内部断面については、発明品5を除き、いずれも均一で微細な発泡セルが形成されていた。なお、発明品5については、発泡倍率が大きかったことなどが影響して、内部断面における発泡セルの形成状態が若干劣っていたものと考えられる。また、発明品1~7についての曲げ弾性率(MPa)は、いずれも1000以上となり、優れた結果が得られた。
 発明品1、2、4~7については、ポリカーボネート樹脂(A)を50質量%又は60質量%含有していることにより、良好な結果が得られたと考えられる。一方、発明品3については、ポリカーボネート樹脂(A)が含有率が30質量%と低いものの、AS樹脂を40質量%含有する組成によって、良好な結果が得られたと考えられる。
 なお、発明品1~7は、いずれもグラフト共重合体(B1)を構成するAES樹脂と、ビニル系単量体(b3)の共重合体(B2)を構成するAS樹脂との混合物から組成した。
 発泡倍率については、1.4倍、1.55倍、1.91倍として、試験を行ったところ、1.4倍、1.55倍とした場合には良好な結果が得られた。これに対し、発泡倍率を1.91倍としたときには、キャビティ41内に充填した溶融樹脂60が十分に拡張せず、成形した発泡成形体6の表面に波打ちが生じることがわかった。従って、発泡倍率は、1.1~1.6倍の範囲がよいことがわかった。
 表2において、比較品1~8については、表面外観がよいものもあるが、曲げ弾性率及び内部断面のいずれもが劣っていることがわかった。特に、比較品1~5については、ポリカーボネート樹脂(A)を全く含有していないことが、曲げ弾性率が低く、内部断面における発泡セルの微細化が行われなかった大きな理由であると考えられる。また、比較品6については、ゴム強化ビニル系樹脂(B)を全く含有していないことが、表面外観、内部断面が悪く、曲げ弾性率が低くなった大きな理由であると考えられる。
 また、比較品7については、ポリカーボネート樹脂(A)の含有率が少ないことが影響して、曲げ弾性率をあまり高くできなかったと考えられる。また、比較品8については、ポリカーボネート樹脂(A)の含有率が多く、ゴム強化ビニル系樹脂(B)の含有率が少ないことが、表面外観、内部断面が悪く、曲げ弾性率が低くなった大きな理由であると考えられる。
 以上の結果より、表1に示した熱可塑性樹脂組成物を用いた発明品1~7の発泡成形体6については、ポリカーボネート樹脂(A)とゴム強化ビニル系樹脂(B)とを適切に含有した熱可塑性樹脂組成物を用いることにより、安定したスキン層61を形成し、強度及び外観の優れた発泡成形体6を成形することができることがわかった。
(確認試験2)
 本確認試験2においては、上記発泡成形用熱可塑性樹脂組成物(発明品1~11)及び比較のための熱可塑性樹脂組成物(比較品1~6)を用いて発泡成形体を成形し、この発泡成形体の外観及び内部の観察と、機械的性能としての曲げモジュラスを測定した。
 ここで、本確認試験2における発明品1~11及び比較品1~6は、確認試験1における発明品及び比較品とは異なるものである。
 以下に具体的な組成の熱可塑性樹脂組成物を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明は以下の例に限定されるものではない。なお、以下の記載において「部」及び「%」は、特に断らない限り質量基準である。
 本確認試験2においては、次の発泡成形用熱可塑性樹脂組成物を用いた。
〔1〕発泡成形用熱可塑性樹脂組成物の成分:
<芳香族ポリカーボネート樹脂(A)>
 芳香族ポリカーボネート樹脂として、三菱エンジニアリングプラスチックス社製「ノバレックス 7022PJ」を用いた。
<ゴム強化スチレン系樹脂(B1)>
(重合体B1-1;アクリル系ゴム/スチレン/アクリロニトリル共重合体)
(表3においてはASAで示す。)
 攪拌機を備えたガラス製フラスコに、窒素気流中で、イオン交換水160部、ドデシルベンゼンスルホン酸ナトリウム1部、クメンハイドロパーオキサイド0.002部、エチレンジアミン四酢酸四ナトリウム塩0.004部、硫酸第1鉄7水和物0.001部とn-ブチルアクリレート10部、アリルメタクリレート0.02部を投入し、撹拌しながら昇温した。60℃に達したところで、ナトリウムホルムアルデヒドスルホキシレート0.75部(20%水溶液)を添加した。内温を60℃に保持し80分経過後、n-ブチルアクリレート40部、アリルメタクリレート0.65部、及びクメンハイドロパーオキサイド0.01部、ドデシルベンゼンスルホン酸ナトリウム0.3部、イオン交換水7部、を180分間かけて連続に添加し、添加終了後更に60分重合を継続した。60分経過後、アクリル系ゴムラテックスの一部をサンプリングし評価したところ、体積平均粒子径0.1μm、ゲル含率6%であった。
 その後、ドデシルベンゼンスルホン酸ナトリウム5.2部(4%水溶液)、ナトリウムホルムアルデヒドスルホキシレート3部(20%水溶液)を添加し、スチレン38部、アクリロニトリル12部、及びt-ブチルハイドロパーオキサイド0.2部、ドデシルベンゼンスルホン酸ナトリウム0.3部、イオン交換水20部を5時間かけて連続に添加した。添加終了後更に45分間重合を継続後、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)0.2部を添加して重合を終了した。重合転化率は99%であった。反応生成物のラテックスを硫酸マグネシウム水溶液で凝固、水洗した後、乾燥してASA樹脂(B1-1)を得た。
 この重合体B1-1のグラフト率は65%、アセトン可溶分の極限粘度は〔η〕は0.38dl/gであった。また、熱シクロヘキサン溶解量は5%であった。
(重合体B1-2;エチレン・プロピレン系ゴム質重合体/スチレン/アクリロニトリ共重合体)
(表3においてはAESで示す。)
 リボン型撹拌翼を備えたステンレス製オートクレーブに窒素気流中で、エチレン・プロピレン系ゴム質重合体〔エチレン含量63%、非共役ジエン成分はジシクロペンタジエン、ヨウ素価10、ムーニー粘度(ML1+4、100℃)33、ゲル含率0%〕を30部、スチレン45部、アクリロニトリル25部、トルエン140部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間撹拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温を更に昇温し、100℃に達した後、この温度を保持しながら、撹拌回転数100rpmとして重合反応を行った。
 重合反応開始後、4時間目から内温を120℃に昇温し、この温度を保持しながら更に2時間反応を行って終了した。内温を100℃まで冷却したあと、オクタデシルー3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部を添加した。重合転化率は95%であった。反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒とを留去し、40mmφの真空ベント付き押出機でシリンダー温度を220℃、真空度760mmHgに調節して揮発分を実質的に脱揮させ、ペレット化し重合体B1-2を得た。
 この重合体B1-2のグラフト率は60%、アセトン可溶分の極限粘度〔η〕は0.45dl/gであり、熱シクロヘキサン溶解量は35%であった。
(重合体B1-3;ブタジエン系ゴム質重合体/スチレン/アクリロニトリ共重合体)
(表3においてはABS1で示す。)
 重合体B1-2を得るために用いたエチレン・プロピレン系ゴム質重合体の代わりに、ポリブタジエン〔JSR社製、「BR51」、ハイシスタイプ、ムーニー粘度(ML1+4、100℃)33、ゲル含率0%〕15部、スチレン64部、アクリロニトリル21部に変えた以外は、重合体B1-2の場合と同様の方法で製造し、重合体B1-3を得た。
 この重合体B1-3の重合転化率は91%、グラフト率は68%、アセトン可溶分の極限粘度〔η〕は0.39dl/gであり、熱シクロヘキサン溶解量は2%であった。
(重合体B1-4;水素添加共役ジエン系ブロック共重合体/スチレン/アクリロニトリル/メタクリル酸メチル共重合体)
(表3においてはMXで示す。)
 リボン型撹拌翼を備えたステンレス製オートクレーブに窒素気流中で、水素添加ブタジエン系ブロック共重合体〔JSR社製
ダイナロン4600P(商品名)ゲル含率0%〕30部、メタクリル酸メチル50部、スチレン10部、アクリロニトリル10部、トルエン100部仕込み、内温を75℃に昇温させながら、撹拌により溶解させ均一溶液を得た後、t-ブチルパーオキシイソプロピルカーボネート0.5部、t-ドデシルメルカプタン0.1部を添加し、内温を更に昇温し、100℃に達した後は温度一定に制御しながら、撹拌回転数100rpmにて6時間重合反応を行った。その後、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部添加した後、反応混合物をオートクレーブより抜き出した。なお、重合転化率は91%であった。水蒸気蒸留により未反応物と溶媒を留去し、40mmφの真空ベント付き押出機(220℃、760mmHg真空)にて、実質的に揮発分を脱揮させ、重合体B1-4のペレットを得た。
 この重合体B1-4のグラフト率は35%、アセトン可溶分の極限粘度〔η〕は0.30であり、熱シクロヘキサン溶解量は65%であった。
(重合体B1-5;ポリブタジエン/スチレン/アクリロニトリル共重合体)
(表3においてはABS2で示す。)
 重合体B1-1を得るために用いたアクリル系ゴムラテックスの代わりに、ポリブタジエンラテックス(平均ゴム粒径0.3μm、ゲル含率85%)を用いた以外は、重合体B1-1の場合と同様の方法で製造し、重合体B1-5を得た。
 この重合体B1-5の重合転化率は99%、グラフト率は78%、アセトン可溶分の極限粘度〔η〕は、0.38dl/gであり、熱シクロヘキサン溶解量は0%であった。
<ビニル系単量体(b3)の共重合体(B2)>
(スチレン/アクリロニトリル共重合体)
(表3においてはASで示す。)
 リボン翼を備えたステンレス製オートクレーブを2基連結し、窒素置換した後、1基目の反応容器にスチレン75部、アクリロニトリル25部、トルエン20部を連続的に添加した。分子量調節剤としてtert-ドデシルメルカプタン0.14部及びトルエン5部の溶液、及び重合開始剤として、1,1’-アゾビス(シクロヘキサン-1-カーボニトリル)0.1部、及びトルエン5部の溶液を連続的に供給した。1基目の重合温度は、110℃にコントロールし、平均滞留時間2.0時間、重合転化率57%であった。得られた重合体溶液は、1基目の反応容器の外部に設けたポンプにより、スチレン、アクリロニトリル、トルエン、分子量調節剤、及び重合開始剤の供給量と同量を連続的に取り出し2基目の反応容器に供給した。2基目の反応容器の重合温度は、130℃で行い、重合転化率は75%であった。2基目の反応容器で得られた共重合溶液は、2軸3段ベント付き押出機を使用して、直接未反応単量体と溶剤を脱揮し、極限粘度〔η〕0.45dl/gの重合体B2を得た。
<化学発泡剤(C)>
 化学発泡剤としては、永和化成工業社製「ポリスレンEB106」、マスターバッチ(ADCA/ABS=10/90(質量比))を用いた。化学発泡剤の配合量は、樹脂成分((A)、(B1)及び(B2)成分)の合計100質量部に対し、0.35質量部とした。
<タルク(D)>
 日本タルク社製の微粉タルク「MICRO ACE SG-200」(商品名)を用いた。レーザー回折法によるD50(重量平均)は1μmである。
<酸化防止剤>
 酸化防止剤としては、ADEKA社製アデカスタブAO-412S(AO1)と、ADEKA社製アデカスタブ2112(AO2)と、住友化学工業社製スミライザーGS(AO3)とを用いた。酸化防止剤の配合量は、樹脂成分((A)、(B1)及び(B2)成分)の合計100質量部に対し、それぞれ0.1質量部とした。
 上記(A)、(C)、(D)成分、及び(B1-1)~(B1-5)、(B2)のいずれかの成分を用いて製造した熱可塑性樹脂組成物の組成を表3に発明品1~11として示し、比較のために製造した熱可塑性樹脂組成物の組成を表4に比較品1~6として示す。表3、表4において、溶解量は、(B1)成分((B1-1)~(B1-5)成分)中における熱シクロヘキサン溶解量(%)を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3における発明品1~11及び表2における比較品1~6は、次のようにして得た。
 表3に記載した配合割合で、(A)、(B1)、(B2)、(D)成分、酸化防止剤をヘンシエルミキサーにてブレンドした後、日本製鋼所製の二軸押出機TEX44を用いて、250℃にて押し出し、発泡成形前の熱可塑性樹脂ペレットを得た。
 発泡成形機としては、日本製鋼所製110(t)電動成形機(J110AD)を用いた。得られた熱可塑性樹脂ペレットと発泡剤マスターバッチ((C)成分)をドライブレンドして発泡成形機に供給して射出発泡成形を行い、評価用試験片としての発泡成形体を得た。
 また、射出発泡成形における充填時間は1秒、型開速度は0.5mm/秒とした。
 (B1)成分(ゴム強化スチレン系樹脂のグラフト共重合体)における熱シクロヘキサン溶解量は、上述した測定方法によって測定した。
 なお、ゴム質重合体(b1)のゲル含率、ゴム強化スチレン系樹脂(B1)のグラフト率、ゴム強化スチレン系樹脂(B1)及びスチレン系樹脂(B2)のアセトン可溶分の極限粘度〔η〕についても、上述した測定方法によって測定した。
 発明品1~11及び比較品1~6について、最高発泡倍率の測定結果、外観観察及び内部観察の評価結果、曲げモジュラス(曲げ弾性率)の測定結果を表3、表4に示す。
 最高発泡倍率は、発泡倍率を1.1倍から0.1倍ずつ上げていき、外観観察の結果が○から△に変わる倍率(成形外観が悪化する倍率)として求めた。また、発泡倍率は、容積拡張前のキャビティの隙間を3mmとし、キャビティの隙間を拡張する量を0.3mmずつ拡大して求めた。
 発泡成形体の外観観察は、発泡成形体の表面を目視観察し、良好な平面が得られた場合を○、一部に波打ちしている面があった場合を△、歪んで波打ちしている場合を×として評価した。
 発泡成形体の内部観察は、発泡倍率を1.5倍として得られた発泡成形体の断面を目視観察し、均一で微細な発泡セルが形成されていた場合を○、発泡セルの外径に大小の分布があった場合を△、発泡セルのほとんどが大きな外径になっていた場合を×として評価した。
 曲げモジュラス(曲げ弾性率)(MPa)は、発泡倍率を1.5倍として得られた発泡成形体を用い、ISO178に準拠して測定した。
 なお、発泡成形体の内部観察及び曲げモジュラスは、発泡成形体が波打っていたり、歪んでいた場合には、測定を実施しなかった。この場合は、表中に「-」と記載した。
 発明品1~11については、発泡成形用熱可塑性樹脂組成物を用いて成形した発泡成形体であり、発泡性に優れ(最高発泡倍率が高く)、成形外観が良好であり、また、内部の観察において、微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさが均一であった。さらに、機械的性能としての曲げモジュラスも高い値が得られた。
 これに対し、比較品1、2、4については、上記ゴム強化スチレン系樹脂(B1)を用いない熱可塑性樹脂組成物を用いて成形した発泡成形体であり、最高発泡倍率が低く、成形外観が劣ることがわかった。また、比較品3は、(A)、(B1)及び(B2)成分の合計100質量%における(A)成分の配合量が、5質量%と少なく(本発明の範囲外)、最高発泡倍率が低く、成形外観が劣ることがわかった。また、比較品5、6は、(A)、(B1)及び(B2)成分の合計100質量%における(B1)成分の配合量が、2質量%と少ない、又は95質量%と多く(本発明の範囲外)、最高発泡倍率が低く、成形外観が劣ることがわかった。
 そして、特に、成形する発泡成形体において、微細かつ均一な発泡セルを得るためには、ゴム強化スチレン系樹脂(B1)の熱シクロヘキサン溶解量がゴム質重合体(b1)を基準として1~99質量%であること、及び樹脂成分100質量%に対するゴム質重合体(b1)の割合が3~50質量%であることがわかった。また、この組成により、機械的強度にも優れる発泡成形体が得られることがわかった。
(確認試験3)
 本確認試験3においては、上記発泡成形用熱可塑性樹脂組成物(発明品1~13)及び比較のための熱可塑性樹脂組成物(比較品1~9)を用いて発泡成形体を成形し、この発泡成形体の外観及び内部の観察と、機械的性能としての曲げモジュラスの測定と、金型の汚染の観察とを行った。
 ここで、本確認試験3における発明品1~13及び比較品1~9は、確認試験1、2における発明品及び比較品とは異なるものである。
 以下に具体的な組成の熱可塑性樹脂組成物を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明は以下の例に限定されるものではない。なお、以下の記載において「部」及び「%」は、特に断らない限り質量基準である。
 本確認試験3においては、次の各成分を含有する発泡成形用熱可塑性樹脂組成物を用いた。
 ここで、本確認試験3においても、(A)成分、(B1-1)~(B1-5)の成分、(B2)成分、(C)成分、(D)成分は、上記確認試験2におけるものと同じである。
<(E)成分;繊維状充填材>
 ガラス繊維として、エヌエスジー・ヴェトロテックス社製のマイクログラス・チョップドストランド「RES 03-TP89Z」(商品名)を用いた。ガラス繊維の直径は13μm、長さは、3mmである。
<その他の成分;ガラスビーズ>
 ポッターズ・バロティーニ社製のフィラー用ガラスビーズ「GB731」(商品名)を用いた。材質はソーダ石灰ガラスであり、重量平均粒子径は32μmであった。
 上記(A)成分、上記(B1-1)~(B1-5)、(B2)のいずれかの成分、(C)~(E)成分、その他の成分を用いて製造した熱可塑性樹脂組成物の組成を表5に発明品1~13として示し、比較のために製造した熱可塑性樹脂組成物の組成を表6に比較品1~9として示す。表5、表6において、溶解量は、(B1)成分((B1-1)~(B1-5)成分)中における熱シクロヘキサン溶解量(%)を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5における発明品1~13及び表6における比較品1~9は、次のようにして得た。
 表5に記載した配合割合で、(A)、(B1)((B1-1)~(B1-5))、(B2)、(D)、(E)、その他の成分をヘンシエルミキサーにてブレンドした後、日本製鋼所製の二軸押出機TEX44を用いて、250℃にて押し出し、発泡成形前の熱可塑性樹脂ペレットを得た。
 発泡成形機としては、日本製鋼所製110(t)電動成形機(J110AD)を用いた。得られた熱可塑性樹脂ペレットと発泡剤マスターバッチ((C)成分)をドライブレンドして発泡成形機に供給して射出発泡成形を行い、評価用試験片としての発泡成形体を得た。
 また、射出発泡成形における充填時間は1秒、型開速度は0.5mm/秒とした。
 (B1)成分(ゴム強化スチレン系樹脂)における熱シクロヘキサン溶解量は、上述した測定方法によって測定した。
 なお、ゴム質重合体(b1)のゲル含率、ゴム強化スチレン系樹脂(B1)のグラフト率、ゴム強化スチレン系樹脂(B1)及びスチレン系樹脂(B2)のアセトン可溶分の極限粘度〔η〕についても、上述した測定方法によって測定した。
 発明品1~13及び比較品1~9について、最高発泡倍率の測定結果、外観観察及び内部観察の評価結果、曲げモジュラス(曲げ弾性率)、金型の汚染の評価結果を表5、表6に示す。
 最高発泡倍率は、発泡倍率を1.1倍から0.1倍ずつ上げていき、外観観察の結果が○から△に変わる倍率(成形外観が悪化する倍率)として求めた。また、発泡倍率は、容積拡張前のキャビティの隙間を3mmとし、キャビティの隙間を拡張する量を0.3mmずつ拡大して求めた。
 発泡成形体の外観観察は、発泡成形体の表面を目視観察し、良好な平面が得られた場合
を○、一部に波打ちしている面があった場合を△、歪んで波打ちしている場合を×として
評価した。
 発泡成形体の内部観察は、発泡倍率を1.5倍として得られた発泡成形体の断面を目視観察し、均一で微細な発泡セルが形成されていた場合を○、発泡セルの外径に大小の分布があった場合を△、発泡セルのほとんどが大きな外径になっていた場合を×として評価した。
 曲げモジュラス(曲げ弾性率)(MPa)は、発泡倍率を1.5倍として得られた発泡成形体を用い、ISO178に準拠して測定した。
 なお、発泡成形体の内部観察及び曲げモジュラスは、発泡成形体が波打っていたり、歪んでいた場合には、測定を実施しなかった。この場合は、表中に「-」と記載した。
 金型の汚染は、発泡倍率を1.5倍として発泡成形体を成形し、発泡成形後に金型の成形表面に汚染が見られなかった場合を○、金型の成形表面の一部に汚染が見られた場合を△、金型の成形表面の全体に渡って汚染が見られた場合を×として評価した。
 なお、最高発泡倍率が1.5倍以上に達しないものは、金型の汚染の評価を行わなかった。
 発明品1~13については、発泡成形用熱可塑性樹脂組成物を用いて成形した発泡成形体であり、発泡性に優れ(最高発泡倍率が高く)、成形外観が良好であり、また、内部の観察において、ほぼ微細な発泡セル構造を発現し、発泡成形体の部位によらず発泡セルの大きさがほぼ均一であった。また、機械的性能としての曲げモジュラスも高い値が得られた。さらに、金型の汚染も若干見られる程度であった。
 これに対し、比較品1、2については、繊維状充填材(ガラス繊維)(E)の代わりにガラスビーズを用いて発泡成形したことにより、発泡セルが大きくなり、金型の成形表面の全体に渡って汚染が見られた。比較品3については、ガラス繊維(E)の配合量が多いために、成形外観が劣り、発泡セルが大きくなった。比較品4については、タルクが含まれないために、発泡セルが大きくなった。比較品5については、タルク(D)の配合量が多いために、成形外観が劣り、発泡セルが大きくなった。
 また、比較品6については、ゴム強化スチレン系樹脂(B1)及びゴム質重合体(b1)が少ないことにより、比較品7については、ゴム強化スチレン系樹脂(B1)が多いことにより、比較品8については、ゴム強化スチレン系樹脂(B1)中の熱シクロヘキサン溶解量が0(%)であることにより、最高発泡倍率が低く、成形外観が劣り、発泡セルが大きくなり、金型の成形表面の全体に渡って汚染が見られた。また、比較品9については、繊維状充填材を含有していないことにより、金型の成形表面の全体に渡って汚染が見られた。
 なお、比較品1~8については、内部観察結果に劣ったため、曲げモジュラスは評価しなかった。
 そして、特に、成形する発泡成形体において、微細かつ均一な発泡セルを得るためには、ゴム強化スチレン系樹脂(B1)の熱シクロヘキサン溶解量がゴム質重合体(b1)を基準として1~99質量%であること、及び樹脂成分100質量%におけるゴム質重合体(b1)の割合が3~50質量%であることがわかった。また、この組成により、機械的強度及び成形外観に優れた発泡成形体が得られ、金型の汚染度合いも少ないことがわかった。

Claims (11)

  1.  ポリカーボネート樹脂(A)20~80質量%と、
     ゴム質重合体(b1)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b2)を重合して得られるグラフト共重合体(B1)、又はビニル系単量体(b3)の共重合体(B2)と上記グラフト共重合体(B1)との混合物からなるゴム強化ビニル系樹脂(B)20~80質量%と、
     上記成分(A)及び(B)の合計100質量部に対し、化学発泡剤(C)0.05~5質量部とからなり、
     上記成分(A)及び(B)の合計100質量%における上記成分(b1)の割合が3~50質量%であることを特徴とする発泡成形用熱可塑性樹脂組成物。
  2.  ポリカーボネート樹脂(A)10~90質量%と、
     ゴム質重合体(b1)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b2)を重合して得られるグラフト共重合体からなるゴム強化ビニル系樹脂(B1)5~90質量%と、
     芳香族ビニル化合物を含むビニル系単量体(b3)を重合して得られる共重合体からなるビニル系樹脂(B2)0~85質量%と、
     上記成分(A)、(B1)及び(B2)の合計100質量部に対し、化学発泡剤(C)0.05~5質量部と、タルク(D)0.1~18質量部とからなり、
     上記成分(A)、(B1)及び(B2)の合計100質量%における上記成分(b1)の割合が3~50質量%であることを特徴とする発泡成形用熱可塑性樹脂組成物。
  3.  請求項2において、上記成分(A)、(B1)及び(B2)の合計100質量部に対して繊維状充填材(E)を0.5~25質量部配合してなることを特徴とする発泡成形用熱可塑性樹脂組成物。
  4.  請求項1~3のいずれか一項において、上記ゴム質重合体(b1)が、アクリル系ゴムとエチレン・α-オレフィン系ゴムとの少なくとも一方であることを特徴とする発泡成形用熱可塑性樹脂組成物。
  5.  請求項1~4のいずれか一項において、上記ゴム強化ビニル系樹脂(B)における上記グラフト共重合体(B1)又は上記ゴム強化ビニル系樹脂(B1)の熱シクロヘキサン溶解量が、上記ゴム質重合体(b1)を基準(100質量%)として1~99質量%であることを特徴とする発泡成形用熱可塑性樹脂組成物。
  6.  請求項1~5のいずれか一項において、上記化学発泡剤(C)は、炭酸水素ナトリウム、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)の群から選択されたものであることを特徴とする発泡成形用熱可塑性樹脂組成物。
  7.  請求項1~6のいずれか一項において、上記ポリカーボネート樹脂は、芳香族ポリカーボネート樹脂であることを特徴とする発泡成形用熱可塑性樹脂組成物。
  8.  請求項1~7のいずれか一項において、コアバック型射出発泡成形に用いることを特徴とする発泡成形用熱可塑性樹脂組成物。
  9.  請求項1~8のいずれか一項に記載の発泡成形用熱可塑性樹脂組成物を、第1型部と第2型部との間に形成したキャビティ内に充填し、該第1型部に対して該第2型部を上記キャビティの容積が拡大する離隔方向に相対的に可動させて発泡成形したことを特徴とする発泡成形体。
  10.  請求項9において、発泡倍率が1.1~3.0倍であることを特徴とする発泡成形体。
  11.  請求項1~8のいずれか一項に記載の発泡成形用熱可塑性樹脂組成物を、第1型部と第2型部との間に形成したキャビティ内に充填し、該第1型部に対して該第2型部を上記キャビティの容積が拡大する離隔方向に相対的に可動させて、発泡成形体を成形する方法であって、
     上記第2型部には、上記第1型部に設けたキャビティ形成凹部内に配置するキャビティ形成凸部を設け、
     上記キャビティ形成凹部において上記第1型部と上記第2型部との可動方向に平行に形成した内側面と、上記キャビティ形成凸部において上記可動方向に平行に形成した外側面との間には、上記溶融樹脂を充填するための充填用隙間を上記キャビティと連通して形成しておき、
     上記キャビティ内及び上記充填用隙間に充填した上記溶融樹脂を半硬化させて未発泡のスキン層を形成し、
     次いで、上記第1型部と上記第2型部とを上記離隔方向に相対的に可動させて、上記スキン層に対する内側部分に上記溶融樹脂を発泡させた発泡層を形成して、上記発泡成形体を成形することを特徴とする発泡成形体の成形方法。
PCT/JP2009/063969 2008-08-07 2009-08-06 発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法 WO2010016556A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008203959A JP5455335B2 (ja) 2008-08-07 2008-08-07 樹脂発泡成形体の製造方法
JP2008-203959 2008-08-07
JP2009107554A JP5650891B2 (ja) 2009-04-27 2009-04-27 発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及び発泡成形体の成形方法
JP2009-107554 2009-04-27

Publications (1)

Publication Number Publication Date
WO2010016556A1 true WO2010016556A1 (ja) 2010-02-11

Family

ID=41663769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063969 WO2010016556A1 (ja) 2008-08-07 2009-08-06 発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法

Country Status (1)

Country Link
WO (1) WO2010016556A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139995A (ja) * 1996-11-05 1998-05-26 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物および成形品
JPH1192618A (ja) * 1997-09-24 1999-04-06 Techno Polymer Kk 熱可塑性樹脂組成物
JPH11199747A (ja) * 1998-01-12 1999-07-27 Techno Polymer Kk 熱可塑性樹脂組成物
JP2001302830A (ja) * 2000-04-25 2001-10-31 Kyowa Leather Cloth Co Ltd 射出発泡成形体樹脂組成物、射出発泡成形体の製造方法及び射出発泡成形体
JP2003327639A (ja) * 2002-05-13 2003-11-19 Techno Polymer Co Ltd ゴム強化樹脂ならびにその樹脂組成物
JP2006241201A (ja) * 2005-02-28 2006-09-14 Toray Ind Inc スチレン系樹脂組成物およびその製造方法
JP2008133485A (ja) * 2008-02-15 2008-06-12 Japan Polypropylene Corp 発泡成形用樹脂組成物および発泡成形体の製造方法
JP2008150476A (ja) * 2006-12-15 2008-07-03 Techno Polymer Co Ltd 発泡成形用熱可塑性樹脂組成物、発泡成形品及び積層品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139995A (ja) * 1996-11-05 1998-05-26 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物および成形品
JPH1192618A (ja) * 1997-09-24 1999-04-06 Techno Polymer Kk 熱可塑性樹脂組成物
JPH11199747A (ja) * 1998-01-12 1999-07-27 Techno Polymer Kk 熱可塑性樹脂組成物
JP2001302830A (ja) * 2000-04-25 2001-10-31 Kyowa Leather Cloth Co Ltd 射出発泡成形体樹脂組成物、射出発泡成形体の製造方法及び射出発泡成形体
JP2003327639A (ja) * 2002-05-13 2003-11-19 Techno Polymer Co Ltd ゴム強化樹脂ならびにその樹脂組成物
JP2006241201A (ja) * 2005-02-28 2006-09-14 Toray Ind Inc スチレン系樹脂組成物およびその製造方法
JP2008150476A (ja) * 2006-12-15 2008-07-03 Techno Polymer Co Ltd 発泡成形用熱可塑性樹脂組成物、発泡成形品及び積層品
JP2008133485A (ja) * 2008-02-15 2008-06-12 Japan Polypropylene Corp 発泡成形用樹脂組成物および発泡成形体の製造方法

Similar Documents

Publication Publication Date Title
JP6486884B2 (ja) 軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体
JP5937716B2 (ja) 軋み音を低減した接触用部品
WO2010117020A1 (ja) 軋み音を低減した自動車内装部品
JP5513804B2 (ja) 発泡成形用熱可塑性樹脂組成物及びこれを用いた発泡成形体
JP4949003B2 (ja) 発泡成形用熱可塑性樹脂組成物、発泡成形品及びその製造方法、並びに積層品
JP5528142B2 (ja) 軋み音を低減した自動車内装部品
JP2011137067A (ja) 軋み音を低減した自動車内装部品
WO2011090200A1 (ja) 異形押出成形用樹脂組成物及び異形押出樹脂成形品
JP5650891B2 (ja) 発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及び発泡成形体の成形方法
JP6110423B2 (ja) 熱可塑性樹脂組成物及び成形品
JP2020192704A (ja) 熱溶融積層方式三次元造形物
JP5848867B2 (ja) 軋み音を低減した自動車内装部品
WO2010016556A1 (ja) 発泡成形用熱可塑性樹脂組成物、これを用いた発泡成形体及びその成形方法
JP5455335B2 (ja) 樹脂発泡成形体の製造方法
CN116368190A (zh) 发泡成型用热塑性树脂组合物及其发泡成型品
CN117940498A (zh) 发泡成型用热塑性树脂组合物及其发泡成型品
JP5817129B2 (ja) 異形押出成形用樹脂組成物及び異形押出樹脂成形品
JP5160336B2 (ja) 樹脂発泡成形体及びその製造方法
JP6110424B2 (ja) 熱可塑性樹脂組成物及び成形品
JP5828711B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6087383B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6099101B2 (ja) 軋み音を低減した成形品及び自動車内装部品
JP2014132096A (ja) 熱可塑性樹脂組成物及び成形品
JPH09143340A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09805039

Country of ref document: EP

Kind code of ref document: A1