WO2010013720A1 - 温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置 - Google Patents

温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置 Download PDF

Info

Publication number
WO2010013720A1
WO2010013720A1 PCT/JP2009/063441 JP2009063441W WO2010013720A1 WO 2010013720 A1 WO2010013720 A1 WO 2010013720A1 JP 2009063441 W JP2009063441 W JP 2009063441W WO 2010013720 A1 WO2010013720 A1 WO 2010013720A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
temperature
physical quantity
measuring
measurement
Prior art date
Application number
PCT/JP2009/063441
Other languages
English (en)
French (fr)
Inventor
東條 文男
平川 俊三
敏康 豊田
大 井口
雄介 片山
Original Assignee
株式会社山文電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山文電気 filed Critical 株式会社山文電気
Priority to KR1020117001867A priority Critical patent/KR101394185B1/ko
Priority to EP09802963.0A priority patent/EP2320207B1/en
Priority to US13/055,973 priority patent/US8918226B2/en
Priority to CN2009801298424A priority patent/CN102112852B/zh
Publication of WO2010013720A1 publication Critical patent/WO2010013720A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • G01D3/0365Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves the undesired influence being measured using a separate sensor, which produces an influence related signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/06Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in linear movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed

Definitions

  • the present invention relates to a sheet-like body (web of paper, sheet, film, or plate-like sheet-like body) and a temperature measuring method for measuring the temperature of the atmosphere in the vicinity of the sheet-like body, and an apparatus and a sheet-like body using the same.
  • the present invention relates to a temperature control method for controlling the temperature of the sheet, an apparatus using the same, a correction method for correcting a physical quantity of a sheet-like body, and an apparatus using the same.
  • Patent Document 1 there is an apparatus for measuring the thickness of a film that is traveling or stopping (Patent Document 1). As shown in FIG. 16, the apparatus described in Patent Literature 1 includes a main body frame 100, a sheet thickness measurement sensor 102, a measurement head 103, and a moving mechanism 104. a shows the sheet
  • the main body frame 100 has a frame shape through which the sheet a should pass.
  • the sheet thickness measuring sensor 102 uses a non-contact type such as an air type, a capacitance type, an ultrasonic type, or a contact type in addition to one that emits electromagnetic waves, radiation, or particle beams.
  • Patent Document 1 shows an air type.
  • the sheet thickness measurement sensor 102 is installed facing the top and bottom of the sheet a.
  • the sheet thickness measurement sensor 102 is supported at the tip of the measurement head 103 so as to be able to approach and separate from the sheet a via an approach and separation means (not shown) such as an air cylinder.
  • the moving mechanism 104 is for moving the measuring head 103 in the width direction orthogonal to the passing direction of the sheet a.
  • the moving mechanism 104 is installed facing the top and bottom of the main body frame 100 with respect to the passing position of the seat a.
  • the sheet thickness measurement sensor 102 when X-rays are emitted to measure the thickness of the sheet a, the sheet thickness measurement sensor 102 includes an X-ray generation unit and an X-ray detection that are arranged facing the top and bottom of the sheet a. It consists of parts. That is, the X-rays supplied from the X-ray generation unit are emitted in the thickness direction from below the sheet a, and the emitted X-rays are supplied to the X-ray detection unit. Then, the thickness of the sheet a is measured by measuring the amount of X-rays supplied to the X-ray detector.
  • the actually measured thickness profile (for example, around 40 ⁇ m) is more than the actual thickness profile (for example, 44 ⁇ m). Appear thinly.
  • the sheet thickness measurement sensor measures the volume of the sheet and the upper and lower air layers. That is, since the sheet
  • the density of the air layer is reduced, and the attenuation (change amount) of the emitted matter (for example, X-rays, ⁇ -rays, ⁇ -rays) from the sheet thickness measurement sensor is reduced. For this reason, the thickness profile is different from the actual profile.
  • the thickness measurement sensor measures the temperature of the reference place where there is no sheet where the physical quantity to be measured (in this case, the thickness of the sheet) is 0, and then measures the temperature of the measurement area in the measurement area where the sheet is measured. Is used to measure the thickness of the sheet.
  • the attenuation amount of the emitted matter emitted from the sheet thickness measurement sensor in the measurement region atmosphere can be obtained.
  • a deviation amount between the actually measured physical quantity and the actual physical quantity is obtained, and the actual physical quantity can be obtained by correcting the deviation amount by adding or subtracting from the actually measured physical quantity.
  • the temperature sensor in order to detect the temperature of the measurement part of the sheet thickness measurement sensor, the temperature sensor has been installed at a position away from the measurement part. In this case, it has been difficult to accurately measure the temperature of the temperature sensor due to the influence of the airflow generated by the movement of the sheet and the airflow generated by the external environment. Moreover, since the temperature sensor is not arranged in or near the measurement unit, the temperature in the measurement unit cannot be measured accurately. Furthermore, since the temperature distribution of the sheet is different, it is necessary to perform correction according to the temperature distribution, and the thickness cannot be measured accurately on the assumption that the temperature distribution of the sheet is constant.
  • thermocouple when a radiation thermometer is used, measurement errors may occur due to the influence of the projectile that has passed through the sheet from other heat sources and reached the thermometer.
  • a highly responsive thermocouple with a small heat capacity is required, but it cannot be applied because the thermocouple is more susceptible to disturbances. It was.
  • the present invention provides a temperature measurement method and a temperature measurement device that can accurately measure the temperature of a sheet-like body even when the temperature of the sheet-like body varies depending on the position.
  • a correction method and a correction apparatus that can correct an error of a physical quantity according to a temperature distribution of a sheet-like body are provided.
  • the temperature measurement method of the present invention is a temperature measurement method for measuring a physical quantity measurement area or a temperature in the vicinity thereof when the physical quantity of the sheet-like body is measured by the physical quantity measurement means, and is close to the temperature sensor, and On one side or both sides of the sheet-like body that travels relatively in a predetermined direction with respect to the temperature sensor, the sheet-like body is substantially blocked by an airflow curtain that is jetted toward the sheet-like body so as to surround the temperature sensor.
  • a measurement space having a predetermined atmosphere is formed, the measurement area is provided in the measurement space, and the temperature of the measurement area or its vicinity is measured by the temperature sensor in the measurement space.
  • the temperature measurement method of the present invention can block the air flow generated by the external environment by forming an atmosphere measurement space substantially closed by the air flow curtain (preventing air flow entrainment), and the inside of this atmosphere. Is not affected by external disturbances such as airflow. Thereby, when the temperature is measured in this measurement space, the temperature can be measured without being affected by disturbance such as an outside air flow.
  • the sheet-like body generates an air flow from the sheet-like body itself by traveling or the like, but the air flow generated from the sheet-like body itself can be blocked by the air flow curtain.
  • the measurement area refers to a part of the sheet-like body that is a physical quantity measurement target part at a certain point in time and the vicinity thereof in the case of non-contact measurement.
  • the physical quantity is measured by a contact method, it refers to a part of the sheet-like body that is a physical quantity measurement target part at a certain time.
  • the temperature control method of the present invention controls the temperature in the physical quantity measurement area or in the vicinity thereof when processing the physical quantity of the sheet-like body with the physical quantity measuring means while heating or cooling the sheet-like body.
  • a temperature control method for measuring a physical quantity of a sheet-like body after processing by a physical quantity measuring means, and measuring a temperature in a measurement space of the sheet-like body by the temperature measurement method of the present invention, and after processing The correlation between the physical quantity of the sheet-like body and the temperature in the measurement space of the sheet-like body is detected, and the temperature of the sheet-like body is controlled based on this correlation so that the ideal value of the preset physical quantity is obtained. To do.
  • the temperature control method of the present invention can accurately measure the temperature even in the case of a sheet-like body that is processed by heating or cooling, because the temperature in the measurement area or in the vicinity thereof can be measured in the measurement space. Thereby, the correlation between the temperature in the measurement space of the sheet-like body and the physical quantity of the processed sheet-like body can be detected, and if the temperature of the sheet-like body is controlled based on this correlation, the desired physical quantity Can be obtained.
  • the correction method of the present invention is a correction method for correcting a physical quantity of a sheet-like body, and measures the temperature of a reference place without the sheet-like body, and then measures the physical quantity of the sheet-like body by a physical quantity measuring means. After measuring the sheet-like body temperature in the measurement space in the measurement area for measuring the physical quantity of the sheet-like body by the temperature measurement method of the present invention, the temperature of the reference place and the temperature measured in the measurement area Calculate the temperature difference, calculate the amount of change of the physical quantity measuring means based on the temperature difference, convert the amount of deviation of the physical quantity of the sheet-like body actually measured by the physical quantity measuring means from this change amount, and measure the actual sheet-like body The physical quantity of the sheet-like body is corrected by adding or subtracting the deviation amount to the physical quantity.
  • the correction method of the present invention can measure the temperature in the measurement space within the measurement region, it accurately measures the temperature difference between the temperature of the sheet-like body at the reference location and the actually measured temperature of the sheet-like body. can do. Thereby, the deviation
  • the amount of change in the projectile emitted from the physical quantity measuring means in the measurement region atmosphere can be accurately obtained from the temperature difference, the amount of deviation between the actually measured physical quantity and the actual physical quantity is obtained based on the amount of change.
  • the actual physical quantity can be obtained by adding or subtracting the deviation amount from the actually measured physical quantity.
  • the measurement region refers to the entire region that is a measurement target of the physical quantity of the sheet-like body, and means a region wider than the measurement area.
  • the amount of change refers to the amount of attenuation of the emitted matter.
  • the temperature measuring device of the present invention When measuring the physical quantity of the sheet-like body with the physical quantity measuring means, the temperature measuring device of the present invention relatively passes through the physical quantity measurement area, and the physical quantity of the sheet-like body is within this measurement area.
  • a temperature measuring device for measuring a temperature in or near a measurement area when measuring a temperature sensor disposed close to a sheet-like body, and the sheet shape so as to surround the temperature sensor and the measurement area An external airflow inflow prevention means for forming a measurement space of an atmosphere substantially closed by an airflow curtain sprayed toward the body on one side or both sides of the sheet-like body, A measurement area is provided, and the temperature of the measurement area or its vicinity is measured by the temperature sensor in a measurement space.
  • First external airflow inflow prevention means for forming a measurement space with respect to one surface of the sheet-like body, and second external airflow inflow prevention means for forming a measurement space with respect to the other surface of the sheet-like body Can be provided.
  • the physical quantity measuring means emits an electromagnetic wave, radiation or particle beam to a sheet-like body, and detects the electromagnetic wave, radiation or particle beam transmitted through the sheet-like body, and the electromagnetic quantity or radiation emitted from the physical quantity measuring means.
  • the temperature can be measured within the emission range of the particle beam, or the temperature can be measured outside the emission range of the electromagnetic wave, radiation, or particle beam emitted from the physical quantity measuring means.
  • the physical quantity measuring means can be selected from a capacitance type, air type, ultrasonic type, and contact type.
  • the electromagnetic wave, radiation or particle beam emitted from the physical quantity measuring means may be selected from ⁇ rays, ⁇ rays, ⁇ rays, X rays, neutron rays, visible rays, ultraviolet rays, infrared rays, and lasers.
  • the sheet-like body travels in the longitudinal direction, and the speed of the airflow of the airflow curtain at the arrival point of the sheet-like body can be made larger than the traveling speed of the sheet-like body. Thereby, it is possible to prevent outside air from entering the measurement space.
  • an injection nozzle that injects a temperature adjusting gas and / or a humidity adjusting gas that creates an environment that is not affected by the temperature and humidity of the outside air can be provided.
  • the physical quantity can be selected from the thickness dimension, length dimension, mass, density, basis weight, current, charge, voltage, potential difference, force, energy, speed, magnetism, and optical characteristics of the sheet-like body.
  • the temperature control device of the present invention is a temperature control device that controls the temperature of a sheet-like body when the sheet-like body is heated or cooled to perform processing, and measures a physical quantity of the processed sheet-like body.
  • the physical quantity measuring means, the temperature measuring device of the present invention for measuring the temperature in the measurement space of the sheet-like body, and detecting the correlation between the physical quantity of the processed sheet-like body and the temperature in the measurement space of the sheet-like body And an adjusting means for controlling the temperature of the sheet-like body so as to obtain an ideal value of a preset physical quantity based on this correlation.
  • the correction device of the present invention is a correction device that corrects the physical quantity of a sheet-like body of a sheet-like body measured by a physical quantity measuring means, and calculates the temperature of a reference place without the sheet-like body and the physical quantity of the sheet-like body.
  • the temperature measurement device of the present invention that measures the temperature of the measurement space in the measurement region to be measured, and the temperature difference between the temperature measured at the reference location and the temperature measured in the measurement region is calculated, and the temperature difference
  • the amount of change of the projectile emitted from the physical quantity measuring means is calculated based on the above, and the amount of deviation between the physical quantity of the sheet-like body and the measured physical quantity of the sheet-like body is converted from the amount of change, and the measured sheet-like body is calculated.
  • the physical quantity measuring means can measure the physical quantity of the sheet-like body while traversing in the width direction of the sheet-like body and the direction orthogonal thereto.
  • the sheet-like body travels in the longitudinal direction, and the velocity of the air current in the air flow curtain at the site where the sheet-like body reaches is higher than the speed of the vector of the traverse speed of the physical quantity measuring means and the traveling speed of the sheet-like body.
  • the speed can be increased.
  • the temperature measuring method and temperature measuring apparatus of the present invention the temperature is measured in the measurement space, so that the influence of the airflow generated by the sheet-like body itself is not affected by the influence of disturbance such as the outside airflow. Without being received, it is possible to accurately measure the atmospheric temperature almost the same as the temperature of the sheet-like body with high response. Thereby, even when the temperature of the sheet-like body is not uniformly the same temperature and the distribution differs depending on the position, a highly responsive and accurate temperature measurement is possible.
  • First external airflow inflow prevention means for forming a measurement space with respect to one surface of the sheet-like body
  • second external airflow inflow prevention means for forming a measurement space with respect to the other surface of the sheet-like body Since the fluttering of the sheet can be prevented, the measurement accuracy can be further improved.
  • Physical quantity measurement means that emits electromagnetic waves, radiation, or particle beams to the sheet-like body is used to measure the physical quantity of the sheet-like body, and the temperature is measured within the emission range of the electromagnetic waves, radiation, or particle rays emitted from the physical quantity measurement means. Then, the temperature in the measurement area can be measured accurately. In addition, if the temperature is measured outside the emission range of the electromagnetic wave, radiation, or particle beam emitted from the physical quantity measuring means, the electromagnetic wave, radiation, or particle beam emitted by the temperature sensor can be prevented from being blocked accurately. Physical quantity can be measured.
  • the electromagnetic waves emitted from the physical quantity measuring means may be ⁇ rays, X rays, visible rays, ultraviolet rays, infrared rays, lasers, or radiation such as ⁇ rays and ⁇ rays. Furthermore, a particle beam such as a neutron beam may be used. Capacitance type, air type, ultrasonic type, contact type can be selected for physical quantity measurement of sheet-like body, and it can be applied to various types and has excellent versatility. Become.
  • Increasing the velocity of the airflow in the airflow curtain at the arrival point of the sheet-like body than the traveling speed of the sheet-like body can prevent outside air from entering the measurement space, and a stable measurement space can be created. Can be formed.
  • Injecting the temperature adjustment gas and / or humidity adjustment gas can create an environment that is not affected by the temperature and humidity of the outside air in the measurement space, so that highly accurate measurement can be performed. it can.
  • the physical quantity can be the thickness dimension of the sheet-like body.
  • a thickness meter in which air or other gas exists between the sheet-like body and the physical quantity measuring means, or temperature distribution measurement during the sheet / film manufacturing process can be performed.
  • length, mass, density, basis weight, current, charge, voltage, potential difference, force, energy, speed, magnetism, and optical characteristics can be applied to various devices other than thickness gauges. It is excellent in versatility.
  • the temperature of the sheet-like body can be accurately measured even if the sheet-like body is processed by heating or cooling.
  • a correlation with the physical quantity can be obtained, and the physical quantity can be controlled with high accuracy based on this correlation. Therefore, even when the temperature of the sheet-like body is not uniformly the same temperature and the distribution differs depending on the position, it becomes possible to measure the physical quantity of the sheet-like body accurately with high response and accurate temperature measurement. it can.
  • the temperature in the measurement region for measuring the physical quantity of the sheet-like body can be accurately measured. Therefore, the deviation amount of the physical quantity due to the temperature difference can be corrected. . Therefore, even when the temperature of the sheet-like body is not uniformly the same temperature and the distribution differs depending on the position, it becomes possible to measure the physical quantity of the sheet-like body accurately with high response and accurate temperature measurement. it can.
  • the physical quantity measuring means measures the physical quantity of the sheet-like body while traversing in the width direction of the sheet-like body and the direction perpendicular thereto, it is optimal for measuring the thickness of the sheet-like body.
  • the sheet is longer. Even when the vehicle travels in the direction and the physical quantity measuring means traverses, it is possible to prevent the outside air from entering the measurement space. For this reason, the measurement space of the stable state can be formed.
  • Air curtain 10
  • External airflow inflow prevention means 20
  • Calculation means 21
  • Temperature difference calculation means 22
  • Attenuation amount calculation means 23
  • Conversion means 24
  • Correction means a Sheet-like body T Air curtain section
  • the temperature measuring device measures the temperature of a web or a plate-like sheet-like body such as paper, sheet, or film that is running or stopped.
  • the correction device corrects the physical quantity of the actually measured sheet-like body.
  • FIG. 1 shows a physical quantity measuring device, which includes temperature measuring devices 1a and 1b for measuring the temperature of a sheet-like body, physical quantity measuring means 2a and 2b for measuring the physical quantity of a sheet-like body, and moving mechanisms 4a and 4b.
  • the sheet-like body is a sheet a traveling at a predetermined speed in the longitudinal direction
  • the physical quantity is the thickness of the sheet a.
  • the temperature of the reference location C (outside the thickness measurement region W) where the sheet a is not present and the temperature of the thickness measurement region W for measuring the thickness of the sheet a are measured, and measured in the thickness measurement region W based on this temperature difference.
  • the thickness is corrected.
  • the thickness measurement region W refers to the entire region to be measured for the thickness of the sheet a.
  • the physical quantity measuring device has a thickness measurement region W for measuring the sheet a and a reference location C where there is no sheet.
  • an annular rectifying plate 14 having an opening 16 at the center is provided. Thereby, also in the reference place C, it can be set as the temperature measurement conditions substantially the same as the thickness measurement area
  • the physical quantity measuring means 2 is a sheet thickness measuring sensor that measures the thickness of the sheet a.
  • the sheet thickness measurement sensor is roughly classified into a non-contact type and a contact type.
  • Non-contact types include ⁇ -rays, ⁇ -rays, ⁇ -rays, X-rays, neutron rays, visible rays, ultraviolet rays, infrared rays, electromagnetic waves selected from a laser, radiation or particle rays, air-type, static
  • non-contact types such as capacitance type and ultrasonic type.
  • a displacement sensor is provided above and below the sheet a so as to sandwich the sheet a, and the tip thereof is brought into contact with the sheet a.
  • the sheet thickness meter side sensor 2 is provided with an X-ray generation unit 2a and an X-ray detection unit 2b facing the upper and lower sides of the sheet a.
  • X-rays supplied from the X-ray generator 2c of the X-ray generator 2a are emitted from the lower side of the sheet a in the thickness direction, and the emitted X-rays are X-ray detector 2d of the X-ray detector 2b (see FIG. 2).
  • the thickness of the sheet a is measured by measuring the amount of X-rays supplied to the X-ray detector 2d.
  • the moving mechanisms 4a and 4b include conveying means 8a and 8b.
  • the conveying means 8a and 8b include driving pulleys 5a and 5b, driven pulleys 6a and 6b, and belt members 7a and 7b wound around the pulleys 6a and 6b.
  • Etc., and the driving pulleys 5a and 5b are driven by driving means such as the motor M, whereby the physical quantity measuring means 2a and 2b can be reciprocated along the sheet a.
  • the physical quantity measuring means 2a and 2b further include a conveying means (not shown), and continuously move in the width direction from one end to the other end in the width direction of the sheet a while traversing in the longitudinal direction and width direction of the sheet-like body. Or move the pitch at equal intervals.
  • the temperature measuring devices 1a and 1b are composed of external airflow inflow prevention means 10a and 10b and temperature sensors 11a and 11b.
  • the first external airflow inflow prevention means 10 a is provided on the X-ray generation unit 2 a side of the sheet thickness measurement sensor 2.
  • the second external airflow inflow prevention means 10 b is provided on the X-ray detection unit 2 b side of the sheet thickness measurement sensor 2.
  • the first and second external airflow inflow prevention means 10a and 10b are provided with an air supply source (not shown), nozzles 12a and 12b for supplying air to the sheet a, and air from the air supply source to the nozzles 12a and 12b. Air supply passages 13a and 13b.
  • the nozzles 12a and 12b are composed of a double cylindrical body having an inner peripheral wall and an outer peripheral wall. For this reason, the air outlet has an annular shape.
  • an airflow curtain (air curtain) 3a is formed on the upper surface side of the sheet a
  • an air curtain 3b is formed on the lower surface side of the sheet a.
  • An air curtain part T is formed around the measurement part.
  • the speed Vn at the arrival position of the air sheet a is made larger than the speed V1 of the sum of the vectors of the traverse speed of the sheet thickness measurement sensor 2 and the traveling speed of the sheet a.
  • the speed of the vector of the traverse speed of the sheet thickness measurement sensor 2 and the traveling speed of the sheet a is V1
  • the flow velocity of the air flow accompanying the traveling of the sheet a is as shown in the graph of FIG.
  • Vn> V1 it is possible to prevent the outside air from entering the air curtain portion T, and the air curtain portion T can be reliably formed.
  • the air curtain portion T is provided with temperature sensors 11a and 11b for measuring the temperature of the sheet a in an airflow inflow prevention atmosphere inside the air curtain.
  • the temperature sensors 11a and 11b are preferably temperature sensors having high responsiveness and a small heat capacity (for example, thermocouples and resistance thermometers that are not radiation thermometers).
  • One temperature sensor 11 a is provided in the X-ray emission range emitted from the sheet thickness measurement sensor 2.
  • the other temperature sensor 11 b is provided outside the X-ray emission range emitted from the sheet thickness measurement sensor 2.
  • Calculation means 20 for correcting the actually measured thickness of the sheet a is provided.
  • the calculation means 20 is emitted from the temperature measurement calculation means 21 for calculating the temperature difference between the temperature of the reference place C and the temperature in the airflow inflow prevention atmosphere in the thickness measurement region W, and the thickness measurement sensor 2 based on the temperature difference.
  • Attenuation amount calculating means 22 for calculating the amount of X-ray change (attenuation amount in the present embodiment), and a conversion means 23 for converting a deviation amount between the thickness of the sheet a and the actually measured thickness of the sheet a from the attenuation amount.
  • a correction unit 24 that corrects the thickness of the sheet a by adding or subtracting the shift amount from the measured thickness of the sheet a to measure the thickness of the sheet a.
  • the computing means 20 is composed of, for example, a microcomputer (not shown).
  • the temperature measuring device 1 sheet thickness measuring sensor 2 of FIG. 1 is moved to the reference location C where there is no sheet a, and the temperature t of the reference location C is acquired (step S1).
  • the motor M of FIG. 1 is driven, and the moving mechanism 4 causes the sheet thickness measurement sensor 2 to move the pitch continuously or intermittently in the longitudinal direction and the width direction of the sheet a in the thickness measurement region.
  • X-rays are emitted from the X-ray generator 2c of the X-ray generator 2a in FIG. 3 toward the detector 2d of the X-ray detector 2b, and the thickness of the sheet a at each position is measured.
  • air is blown out in the form of an air curtain from a nozzle provided around the sheet thickness measurement sensor 2 toward the sheet a, and an air curtain portion T is formed around the thickness measurement portion of the sheet a.
  • the measurement area S refers to an X-ray emission range that can be detected by the detector 2d in the X-ray emission range, for example, a range as indicated by a dotted line in FIG.
  • step S6 calculates a temperature difference t f -t between the temperature t at the reference location and the temperature t f measured in the airflow inflow prevention atmosphere in the measurement region W (step S3), and the temperature difference t based on f -t, attenuation calculation unit 22 calculates the attenuation of the X-rays emitted from the sheet thickness measurement sensor 2 (step S4). Thereafter, the amount of deviation of the thickness of the sheet a actually measured by the conversion means 23 is converted from this attenuation amount (step S5), and the correction means 24 adds or subtracts the amount of deviation from the thickness of the actually measured sheet a. The thickness of a is corrected (step S6). By such a method, the thickness of the sheet a can be accurately measured by correcting the actually measured thickness of the sheet a.
  • the external airflow inflow prevention means 10 blocks the airflow generated from the sheet a and the airflow generated by the external environment.
  • the inside of the airflow inflow prevention atmosphere is not affected by disturbances such as the outside airflow.
  • the temperature is measured in the airflow inflow prevention atmosphere, the atmospheric temperature almost the same as the temperature of the sheet a in the measurement region W is accurately measured with high response without being affected by disturbances such as the outside airflow. can do. Thereby, even if the temperature of the sheet a is not uniformly the same temperature and the distribution differs depending on the position, it is possible to measure the temperature with high response and accuracy.
  • the temperature difference between the temperature of the sheet a at the reference location C and the actually measured temperature of the sheet a is accurately measured. can do. Because of this temperature difference, the attenuation amount of the X-rays emitted from the sheet thickness measurement sensor 2 is determined. Therefore, the measured thickness deviation amount is obtained based on the attenuation amount, and the deviation amount is actually added or subtracted from the measured thickness. Can be obtained.
  • the external airflow inflow prevention means 10 forms the air curtains 3a and 3b by the outflow of air to the sheet a, the external airflow inflow prevention means 10 can be reliably formed.
  • First external airflow inflow prevention means 10a that forms an airflow inflow prevention atmosphere on the upper surface of the sheet a
  • second external airflow inflow prevention means 10b that forms an airflow inflow prevention atmosphere on the lower surface of the sheet a. If provided, fluttering of the sheet a can be prevented, so that the measurement accuracy can be made even higher.
  • the sheet thickness measurement sensor 2 When the sheet thickness measurement sensor 2 is used to measure the thickness of the sheet a and the temperature is measured within the X-ray emission range emitted from the sheet thickness measurement sensor 2, the temperature in the measurement area can be accurately measured. , X-ray attenuation can be accurately measured. Further, when the temperature is measured outside the X-ray emission range emitted from the sheet thickness measurement sensor 2, the temperature sensor 11b can be prevented from blocking the X-ray, and the physical quantity can be accurately measured. .
  • the electromagnetic wave emitted from the sheet thickness measuring sensor 2 may be visible light, ultraviolet light, ⁇ -ray, infrared light, or laser in addition to X-rays. Also, radiation such as ⁇ rays and ⁇ rays may be used. Furthermore, a particle beam such as a neutron beam may be used. Thereby, it can apply to the thing of a various format, and will become the thing excellent in versatility.
  • the sheet a travels in the longitudinal direction, and the velocity Vn at the arrival position of the airflow sheet a is set to be higher than the velocity V1 of the vector of the traverse speed of the sheet thickness measurement sensor 2 and the traveling speed of the sheet a. Can be great. Thereby, it can prevent that external air penetrate
  • the physical quantity is the thickness dimension of the sheet a
  • a thickness meter in which air or other gas exists between the sheet-like body and the physical quantity measuring means, or temperature distribution measurement during the sheet / film manufacturing process. It can be carried out.
  • length, mass, density, basis weight, current, charge, voltage, potential difference, force, energy, speed, magnetism, and optical characteristics can be applied to various devices other than thickness gauges. It is excellent in versatility.
  • the sheet thickness measurement sensor 2 traverses in the width direction of the sheet a and the direction orthogonal thereto, but may be one that does not traverse (stops).
  • the sheet a travels in the longitudinal direction, and it is desirable that the speed of the airflow at the arrival position of the sheet a is larger than the traveling speed of the sheet a.
  • an injection nozzle 15 for injecting a temperature adjusting gas having a predetermined temperature and a humidity adjusting gas having a predetermined humidity is provided in the airflow inflow prevention atmosphere.
  • the airflow inflow prevention atmosphere can create an environment that is not affected by the temperature and humidity of the outside air, and high-precision measurement is possible.
  • FIG. 9 shows a temperature measuring apparatus according to the second embodiment.
  • an X-ray type sheet thickness meter side sensor that is an electromagnetic wave is used as the physical quantity measuring means 2, but a capacitance type sheet thickness measuring sensor may be used as shown in FIG. .
  • the electrostatic capacitance type sheet thickness measurement sensor sandwiches the sheet a by two sensor heads 40a and 40b.
  • the sensor heads 40a and 40b include sensor electrodes 41a and 41b, insulators 42a and 42b, and a guard. Rings 43a and 43b are provided.
  • the cylindrical sensor electrodes 41a and 41b are concentrically covered with the insulators 42a and 42b, and the outer circumferences of the insulators 42a and 42b are concentrically covered with the guard rings 43a and 43b of the conductor.
  • the thickness of the sheet a is detected by a change in capacitance between both electrodes.
  • the thickness of the sheet a is measured by detecting the change in the thickness of the sheet a as a change in capacitance between the electrodes 41a and 41b.
  • external airflow inflow prevention means 10a and 10b are provided in the guard rings 43a and 43b.
  • the external airflow inflow prevention means 10a and 10b include an air supply source (not shown), nozzles 45a and 45b for supplying air to the sheet a, and air supply paths 50a and 50b for introducing air from the air supply source to the nozzles 45a and 45b.
  • Temperature sensors 44a and 44b are provided on the inner peripheral surface of the nozzle and the outer peripheral surfaces of the electrodes 41a and 41b. Also in this case, it is preferable to use temperature sensors 44a and 44b having high responsiveness and a small heat capacity (for example, thermocouples and resistance thermometers which are not radiation thermometers).
  • the temperature sensors 44a and 44b can accurately measure the temperature of the sheet a with high response without being affected by disturbances such as an outside air flow.
  • the capacitive sheet thickness measurement sensor also has the same effects as the X-ray sheet thickness measurement sensor.
  • FIG. 9 shows a capacitance type sheet thickness measurement sensor in which two electrodes sandwich the sheet a, but from one side of the sheet a as shown in FIGS.
  • a measuring method may be used. That is, the cylindrical first sensor electrode 46 is concentrically covered with the first insulator 49, and the second sensor electrode 47 is further covered with the second insulator 48 to form the second insulation. The outer periphery of the object 48 is concentrically covered by a guard ring 43 made of a conductor.
  • the thickness of the sheet a is detected by a change in capacitance between both electrodes. In this method, the thickness of the sheet a is measured by detecting the change in the thickness of the sheet a as a change in the capacitance between the electrodes 46 and 47.
  • FIG. 11 shows a temperature measuring apparatus according to a third embodiment of the present invention.
  • a laser-type sheet thickness measuring sensor as shown in FIG.
  • This sheet thickness measurement sensor includes a roll 32, a first displacement meter 33, and a second displacement meter 34.
  • As the first displacement meter 33 an eddy current sensor or a magnetic sensor can be used.
  • the roll 32 is disposed perpendicular to the traveling direction of the seat a, is rotatably supported by a main body frame (not shown), is connected to a motor (not shown) at one end, and has a fixed origin at the other end.
  • a rotation angle detection means (not shown) is provided.
  • the rotation angle detection means includes an absolute rotary encoder that detects the position of the roll 32 in the rotation direction at an equal angle within a range of 0 ° to 360 °, for example, every 15 °, a rotation angle detector, a rotation angle origin sensor, It is comprised with what combined.
  • the motor preferably drives the roll 32 to rotate at a surface speed (circumferential speed) that matches the speed of the conveyance line of the sheet a. By doing so, it is possible to prevent the error due to the difference in response time between the first displacement meter 33 and the second displacement meter 34 and the error due to the difference in the speed of the conveyance line of the sheet a from being intervened. it can.
  • the first displacement meter 33 is installed on a part of the second displacement meter 34 above the axis of the roll 32, detects a change in the distance A from the upper surface of the roll 32, and is emitted from the light emitting unit 34a. The upper end of the parallel light beam 35 is determined.
  • a metal-sensitive or magnetic-sensitive displacement meter is used, and which one to use is selected according to the physical properties of the sheet a to be measured.
  • a metal sensitive type such as an eddy current sensor
  • a magnetic sensitive displacement meter in the case of a conductive sheet.
  • the second displacement meter 34 has a light emitting portion 34 a and a light receiving portion 34 b that are installed opposite to each other across the roll 32, and thereby the thickness of the sheet a that travels in contact with the roll 32 is adjusted to a parallel ray 35.
  • a laser beam type measuring instrument, a CCD image sensor, or other optical measuring means can be used.
  • a distance between the first displacement meter 33 and the roll 32 is measured as A, and the parallel light beam 35 emitted from the light emitting unit 34 a is reflected on the first displacement meter 33 and the roll 32. In addition, the light is blocked by the sheet a and is incident on the light receiving unit 34b.
  • the distance A between the first displacement meter 33 and the roll 32 is measured without the sheet a, and then the first displacement meter 33 and the sheet with the sheet a disposed on the roll 32.
  • the external airflow inflow prevention means 10 is provided around the first displacement meter 33.
  • the external airflow inflow prevention means 10 includes an air supply source (not shown), a nozzle 36 that supplies air to the sheet a, and an air supply path 38 that introduces air from the air supply source to the nozzle 36.
  • a temperature sensor 37 a is provided on the inner peripheral surface of the nozzle 36 and on the outer peripheral surface of the first displacement meter 33. Also in this case, it is preferable to use a temperature sensor 37a having a small heat capacity and a high response temperature (for example, a thermocouple other than a radiation thermometer, a resistance temperature detector, etc.). As a result, the temperature sensor 37a can accurately measure the temperature of the sheet a with high response without being affected by disturbance such as an outside airflow. In this way, the laser-type sheet thickness measurement sensor has the same effects as the X-ray type sheet thickness measurement sensor.
  • the position of the temperature sensor 37 is a temperature that does not block the laser beam 35, even on the lower surface of the first displacement meter 33.
  • a sensor 37b can be provided.
  • the light to be used is not limited to laser light, and other light such as an LED can also be used.
  • an ultrasonic sheet thickness measurement sensor is used for the physical quantity measuring means 2 (not shown). This is for transmitting ultrasonic waves in place of X-rays in the apparatus configurations as shown in FIGS. That is, a short ultrasonic pulse is incident in the thickness direction of the sheet a, the time until the reflected wave returns is measured, and the thickness of the sheet-like body is obtained by multiplying the reflection time by the speed of sound. . Further, the sheet resonates at a frequency at which twice the thickness of the sheet a is an integral multiple of the wavelength of the ultrasonic wave, and based on the ultrasonic resonance frequency in the thickness direction of the sheet a. The thickness of a can also be obtained. Also, the thickness can be obtained from the attenuation amount of the ultrasonic wave.
  • an air-type sheet thickness measurement sensor is used for the physical quantity measuring means 2 (not shown).
  • the thickness measurement sensor ejects air at a constant pressure from the air nozzle toward the sheet a.
  • the air nozzle is connected to a rod of a piston inserted into the cylinder, and causes the back pressure of the air nozzle to act on the piston lower chamber in the cylinder, and a constant air pressure always opposes the back pressure in the piston upper chamber. Make it work.
  • the pressure between the upper and lower chambers of the piston balances to maintain a constant gap between the air nozzle and the seat a, and the gap changes due to the change in the thickness of the seat to change the back pressure.
  • the piston rod is displaced in a direction in which the pressures on both sides of the piston are balanced, and the thickness is measured by measuring the displacement of the rod with a linear gauge.
  • a contact-type sheet thickness sensor is used for the physical quantity measuring means 2.
  • displacement sensors 9a and 9b are provided above and below the sheet a so as to sandwich the sheet a, and both the displacement sensors 9a and 9b are urged toward each other so that the leading ends thereof are brought into contact with the sheet a.
  • the position of both is detected and the thickness of the sandwiched sheet a is measured.
  • the temperature measuring device and the correction device of the present invention can be used in a stretching device as shown in FIGS.
  • This stretching apparatus uses the temperature control apparatus according to the present invention.
  • 14 and 15 includes an extruder 50, a die 51 attached to the extruder 50, a pair of guide rails 52 for conveying and stretching the sheet a in the direction of the arrow, and the sheet a.
  • a heating unit 53 provided in the stretching unit 54 and composed of a plurality of heaters H 1 ..., H n, and a physical quantity measuring unit 2 (in this case, a sheet thickness measurement sensor) provided on the downstream side of the stretching unit 54 And a winder 55 for winding the stretched sheet a.
  • the physical quantity measuring means 2 is provided with the temperature measuring device 1 of the present invention.
  • This stretching apparatus is provided with a control mechanism 56 that controls the temperature of the heating means 53.
  • the control mechanism 56 includes an input unit 57 for detecting the thickness and temperature of the sheet a after processing (stretching), a setting unit 58 for setting a temperature condition and an ideal thickness during processing of the sheet a, and detection.
  • a monitor 59 for displaying the measured temperature and the temperature set value, a calculation means 60 for detecting the correlation between the detected temperature and the measured thickness of the sheet a, and a heating means 53 based on the detection result of the calculation means 60.
  • adjusting means 61 for adjusting the temperature of the.
  • the input unit 57 includes a temperature input unit 62 that detects the temperature of the sheet a measured by the temperature measuring device 1, and a physical quantity input unit 63 that detects the thickness of the sheet a measured by the sheet thickness measurement sensor 2.
  • the setting unit 58 includes a temperature setting unit 64 that sets a temperature in the sheet width direction, and a physical quantity setting unit 65 that sets an ideal thickness value.
  • the sheet a extruded from the extruder 50 is conveyed in the direction of the arrow by the guide rail 52.
  • the stretching unit 54 the sheet a is expanded in the sheet width direction while being heated by the heating unit 53 so that the sheet a has the temperature set by the temperature setting unit 64 and the thickness set by the physical quantity setting unit 65.
  • the rail 52 extends in the width direction. Then, the thickness of the sheet a is measured by the physical quantity measuring means 2 and a thickness profile can be obtained by the physical quantity input means 63, and the temperature in the width direction of the sheet a is measured by the temperature measuring apparatus 1 of the present invention.
  • a temperature profile can be obtained by the input means 62.
  • the calculating means 60 detects the correlation between this temperature profile and the measured thickness profile. And based on the result of the calculating means 60, the setting value of the temperature setting means 64 or the physical quantity setting means 65 is changed, and the adjustment means 61 adjusts the temperature of the heating means 53. Thereby, an accurate and highly accurate extending
  • the adjusting means 61 can be manually adjusted while viewing the temperature profile in the width direction of the sheet a on the monitor.
  • the sheet thickness measurement sensor 2 includes a temperature measuring device, the correlation between the temperature profile in the width direction of the sheet a and the thickness profile can be obtained, and the thickness profile in the width direction of the sheet a can be obtained. It can be adjusted with high accuracy.
  • the thickness dimension of the sheet-like body was measured, but other physical quantities, that is, length dimension, mass, density, basis weight, current, charge, voltage, potential difference, force, energy, It may measure velocity, magnetism, and optical characteristics.
  • the X-ray generation unit 2a and the X-ray detection unit 2b are upside down. It may be a position.
  • the airflow generated from the external airflow inflow prevention means 10 is not limited to air but may be other gases.
  • the reference location C may be an end portion of the apparatus, and may be the point D shown in FIG. 1 in addition to the point C, or may be both the point C and the point D.
  • the temperature sensor 11 may be disposed either above or below the sheet-like body a.
  • the rectifying plate 14 at the reference location can be omitted.
  • the gas injected from the injection nozzle 15 may be either a temperature adjusting gas or a humidity adjusting gas.
  • the physical quantity is the thickness of the sheet-like body, but various physical quantities such as mass and volume may be used.
  • mass it can be used for a gravimetric meter.
  • seat can be quantitatively measured by measuring those temperature distributions in the manufacturing process of a film and a sheet
  • the present invention can be used not only for a thickness measuring device but also for a stretching device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

 シート状体の温度分布が異なる場合であっても、シート状体の温度を正確に測定することができる温度測定方法を提供する。  シート状体aの物理量を物理量測定手段にて測定する際に、物理量の測定エリアS又はその近傍の温度を測定する温度測定方法である。温度センサ11に近接して温度センサ11に対して所定方向で相対的に走行するシート状体aの片面側又は両面側に、温度センサ11を囲繞するようにシート状体aに向けて噴射される気流カーテンによって実質的に閉塞された雰囲気の測定空間Tを形成し、測定空間内に測定エリアSを設け、測定空間内で温度センサ11によって測定エリアS又はその近傍の温度測定を行う。

Description

温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置
 本発明は、シート状体(紙、シート、フィルム等のウェブ又は板状のシート状体)及びシート状体付近の雰囲気の温度測定を行う温度測定方法、及びそれを用いた装置、シート状体の温度を制御する温度制御方法、及びそれを用いた装置、シート状体の物理量を補正する補正方法、及びそれを用いた装置に関する。
 従来から、走行移動中又は停止中のフィルムの厚みを測定する装置がある(特許文献1)。特許文献1に記載の装置は、図16に示すように、本体フレーム100と、シート厚み計測センサ102と、計測ヘッド103と、移動機構104とを備えている。aは被計測物としてのシートを示している。
 本体フレーム100は、シートaを通過させるべき枠状をなしている。シート厚み計測センサ102は、電磁波や放射線や粒子線を出射するものの他、エア式、静電容量式、超音波式等の非接触式のもの、又は接触式のものを使用するものであって、特許文献1ではエア式のものを示している。このシート厚み計測センサ102は、シートaの上下に対向して設置されるものである。シート厚み計測センサ102は、計測ヘッド103の先端にシートaに向けてエアシリンダ等の接近離隔手段(図示省略)を介して接近離隔可能に支持されている。移動機構104は、計測ヘッド103をシートaの通過方向に直交する幅方向に移動させるためのものである。この移動機構104は、シートaの通過位置に対して、本体フレーム100の上下に対向して設置してある。
 このような厚み測定装置において、例えばX線を出射してシートaの厚みを計測する場合、シート厚み計測センサ102は、シートaの上下に対向して配置されるX線発生部とX線検出部にて構成される。すなわち、X線発生部から供給されたX線を、シートaの下方から厚み方向に向かって出射し、出射したX線がX線検出部に供給される。そして、X線検出器に供給されたX線の量を計測することにより、シートaの厚みを計測する。
特開平9-159438号公報
 ところで、前記のように、X線等の電磁波を出射する装置を用いてシートの厚みを測定すると、実測した厚みのプロファイル(例えば、40μm付近)は実際の厚みのプロファイル(例えば、44μm)よりも薄く表れる。これは、シート厚み計測センサは、シートの体積、及びその上下の空気層を測定することに起因している。すなわち、シート状体であるシートは一般的に、測定器の配置されている雰囲気温度より高い温度を有しているため、シートとシート厚み計測センサとの間の温度が高くなる傾向がある。このように、温度が高いと空気層の密度が薄くなり、シート厚み計測センサからの出射物(例えば、X線、β線、γ線)の減衰量(変化量)が減少することになる。このため、厚みのプロファイルが実際のプロファイルと異なる。
 このような装置においては、シート厚み計測センサの測定エリア(X線の出射範囲のうち、X線検出部にて検出可能なX線の出射範囲)又はその近傍の実際の温度が正確に測定できれば、シート厚み計測センサからの出射物の減衰量を正確に予測することができて、実測したシートの厚みを補正することができる。すなわち、測定する物理量(この場合、シートの厚み)が0となるシートの無い参照場所の温度を測定し、次に、シートを測定する計測領域で計測領域の温度を測定しながら、厚み計測センサを用いてシートの厚みを測定する。そして、参照場所と計測領域との温度差に基づいて、計測領域雰囲気にてシート厚み計測センサから出射される出射物の減衰量を求めることができる。これにより、その減衰量に基づいて、実測した物理量と実際の物理量とのずれ量が求まり、ずれ量を実測した物理量から加算又は減算して補正することにより実際の物理量を求めることができる。このように、計測領域において、正確な温度プロファイルを得ることができれば、実測した厚みを正確に補正することができ、実際の厚みにほぼ等しい厚みプロファイルを得ることができる。
 従来においては、シート厚み計測センサの測定部の温度を検出するために、温度センサを測定部から離れた位置に設置していた。この場合、温度センサは、シートが移動することにより発生する気流や、外部環境により発生する気流の影響を受けて、正確な温度測定が困難であった。また、温度センサは、測定部内又は近傍に配置されていないため、測定部内の温度を正確に測定できなかった。さらに、シートの温度分布は異なっているため、温度分布に応じて補正を行うことが必要であり、シートの温度分布が一定であることを前提とすると正確に厚みを測定することができない。
 また、放射温度計を用いた場合は、他の熱源からシートを透過して温度計に到達した出射物の影響を受けて測定誤差を生じることがある。加えて、計測ヘッドのトラバース速度又はシートのライン速度が速くなるに従って、熱容量の小さい高応答な熱電対が必要となるが、熱電対が外乱の影響を受けやすくなるため、適用することができなかった。
 本発明は、上記課題に鑑みて、シート状体の温度が位置により異なる場合であっても、シート状体の温度を正確に測定することができる温度測定方法及び温度測定装置を提供する。また、シート状体の温度分布に応じた物理量の誤差補正が可能となる補正方法及び補正装置を提供する。
 本発明の温度測定方法は、シート状体の物理量を物理量測定手段にて測定する際に、物理量の測定エリア又はその近傍の温度を測定する温度測定方法であって、温度センサに近接して前記温度センサに対して所定方向で相対的に走行するシート状体の片面側又は両面側に、前記温度センサを囲繞するように前記シート状体に向けて噴射される気流カーテンによって実質的に閉塞された雰囲気の測定空間を形成し、この測定空間内に前記測定エリアを設け、測定空間内で前記温度センサによって前記測定エリア又はその近傍の温度測定を行うものである。
 本発明の温度測定方法は、気流カーテンによって実質的に閉塞された雰囲気の測定空間を形成することにより、外部環境により発生する気流を遮断することができ(気流引込の防止)、この雰囲気の内部は外側の気流等の外乱の影響を受けることがない。これにより、この測定空間内で温度を測定すると、外側の気流等の外乱の影響を受けることなく、温度測定を行うことができる。また、シート状体は、その走行等によりシート状体自身から気流を発生するが、気流カーテンにてシート状体自身から発生する気流も遮断することができる。ここで、測定エリアとは、非接触式で測定する場合には、ある時点において物理量の測定対象箇所となっているシート状体の一部の箇所、及びその近傍をいう。つまり、出射物の出射範囲のうち、検出可能な出射物の出射範囲である。一方、物理量を接触式で測定する場合には、ある時点において物理量の測定対象箇所となっているシート状体の一部の箇所をいう。
 本発明の温度制御方法は、シート状体の物理量を物理量測定手段にて測定しつつ、シート状体を加熱又は冷却して加工を行う際に、物理量の測定エリア又はその近傍の温度を制御する温度制御方法であって、物理量測定手段にて加工後のシート状体の物理量を測定するとともに、前記本発明の温度測定方法にてシート状体の測定空間での温度を測定した後、加工後のシート状体の物理量とシート状体の測定空間での温度との相関関係を検出し、この相関関係に基づいて、予め設定した物理量の理想値が得られるようにシート状体の温度を制御するものである。
 本発明の温度制御方法は、加熱又は冷却して加工が行われるシート状体であっても、測定空間で測定エリア又はその近傍の温度を測定することができるため、正確に温度測定ができる。これにより、シート状体の測定空間での温度と加工後のシート状体の物理量との相関関係を検出することができ、この相関関係に基づいてシート状体の温度を制御すると、所望の物理量を得ることができる。
 本発明の補正方法は、シート状体の物理量を補正する補正方法であって、シート状体の無い参照場所の温度を測定し、その後、物理量測定手段にてシート状体の物理量を測定するとともに、前記本発明の温度測定方法にてシート状体の物理量を測定する計測領域内において測定空間でのシート状体の温度を測定した後、参照場所の温度と計測領域内で測定した温度との温度差を算出し、前記温度差に基づいて物理量測定手段の変化量を計算し、この変化量から物理量測定手段にて実測したシート状体の物理量のずれ量を換算し、実測したシート状体の物理量に対して前記ずれ量を加算又は減算して、シート状体の物理量を補正するものである。
 本発明の補正方法は、計測領域内において測定空間内で温度を測定することができるため、参照場所でのシート状体の温度と、シート状体の実測した温度との温度差を正確に測定することができる。これにより、この温度差に起因する物理量のずれ量を補正することができる。すなわち、温度差により、計測領域雰囲気において物理量測定手段から出射される出射物の変化量を正確に求めることができるため、変化量に基づいて、実測した物理量と実際の物理量とのずれ量が求まり、ずれ量を実測した物理量から加算又は減算して実際の物理量を求めることができる。ここで、測定領域とは、シート状体の物理量の測定対象となる全領域をいい、測定エリアよりも広い領域を意味している。また、変化量とは、出射物の減衰量等をいう。
 本発明の温度測定装置は、シート状体の物理量を物理量測定手段にて測定する際に、シート状体が物理量の測定エリアを相対的に通過して、この測定エリア内でシート状体の物理量を測定する際に測定エリア又はその近傍の温度を測定する温度測定装置であって、シート状体に近接して配置される温度センサと、前記温度センサ及び測定エリアを囲繞するように前記シート状体に向けて噴射される気流カーテンによって実質的に閉塞された雰囲気の測定空間を、前記シート状体の片面側又は両面側に形成する外部気流流入防止手段とを設け、前記測定空間内に前記測定エリアを設け、測定空間内で前記温度センサによって前記測定エリア又はその近傍の温度測定を行うものである。
 前記シート状体の一方の面に対して測定空間を形成する第1の外部気流流入防止手段と、前記シート状体の他方の面に対して測定空間を形成する第2の外部気流流入防止手段とを備えることができる。
 前記物理量測定手段は電磁波又は放射線又は粒子線をシート状体に出射し、シート状体を透過した電磁波又は放射線又は粒子線を検出するものであって、その物理量測定手段から出射される電磁波又は放射線又は粒子線の出射範囲内にて温度を測定したり、その物理量測定手段から出射される電磁波又は放射線又は粒子線の出射範囲外にて温度を測定したりすることができる。また、前記物理量測定手段は静電容量式、エア式、超音波式、接触式から選択することもできる。
 前記物理量測定手段から出射される電磁波又は放射線又は粒子線は、α線、β線、γ線、X線、中性子線、可視光線、紫外線、赤外線、レーザから選択されるものとすることができる。
 前記シート状体は長手方向に走行するものであって、シート状体の走行速度よりも、気流カーテンの気流のシート状体の到達部位における速度を大とすることができる。これにより、外気が測定空間内に侵入するのを防止することができる。
 測定空間に、外気の温度、湿度に影響を受けない環境を作る温度調整用気体及び/又は湿度調整用気体を噴射する噴射ノズルを設けることができる。
 前記物理量は、シート状体の厚み寸法、長さ寸法、質量、密度、坪量、電流、電荷、電圧、電位差、力、エネルギー、速度、磁性、光学的特性から選択することができる。
 本発明の温度制御装置は、シート状体を加熱又は冷却して加工を行う際に、このシート状体の温度を制御する温度制御装置であって、加工後のシート状体の物理量を測定する物理量測定手段と、シート状体の測定空間での温度を測定する前記本発明の温度測定装置と、加工後のシート状体の物理量とシート状体の測定空間での温度との相関関係を検出する演算手段と、この相関関係に基づいて、予め設定した物理量の理想値が得られるようにシート状体の温度を制御する調整手段を設けたものである。
 本発明の補正装置は、物理量測定手段にて測定されるシート状体のシート状体の物理量を補正する補正装置であって、シート状体の無い参照場所の温度、及びシート状体の物理量を測定する計測領域内での測定空間の温度を測定する前記本発明の温度測定装置と、参照場所にて測定した温度と計測領域内にて測定した温度との温度差を算出し、前記温度差に基づいて物理量測定手段から出射される出射物の変化量を算出し、この変化量からシート状体の物理量と、実測したシート状体の物理量とのずれ量を換算し、実測したシート状体の物理量から前記ずれ量を加算又は減算して、シート状体の物理量を補正してシート状体の物理量を計測する演算手段とを設けたものである。
 物理量測定手段は、シート状体の幅方向及びそれに直交する方向にトラバースしつつ、シート状体の物理量を測定するものとできる。
 前記シート状体は長手方向に走行するものであって、物理量測定手段のトラバース速度とシート状体の走行速度とのベクトルの和の速度よりも、気流カーテンの気流のシート状体の到達部位における速度を大とすることができる。
 本発明の温度測定方法及び温度測定装置では、測定空間内で温度を測定しているので、外側の気流等の外乱の影響を受けることなく、また、シート状体自身が発生する気流の影響を受けることなく、シート状体の温度とほぼ同じ雰囲気温度を高応答に正確に測定することができる。これにより、シート状体の温度が一律に同じ温度ではなく、位置によってその分布が異なる場合であっても、高応答かつ正確な温度測定が可能となる。
 前記シート状体の一方の面に対して測定空間を形成する第1の外部気流流入防止手段と、前記シート状体の他方の面に対して測定空間を形成する第2の外部気流流入防止手段とを備えると、シートのばたつきを防止できるため、測定精度を一層高精度なものとできる。
 シート状体の物理量の測定に電磁波又は放射線又は粒子線をシート状体に出射する物理量測定手段を用い、その物理量測定手段から出射される電磁波又は放射線又は粒子線の出射範囲内にて温度を測定すると、測定エリアの温度を正確に測定することができる。また、その物理量測定手段から出射される電磁波又は放射線又は粒子線の出射範囲外にて温度を測定すると、温度センサが出射する電磁波又は放射線又は粒子線を遮るのを防止することができて、正確に物理量を測定することができる。
 前記物理量測定手段から出射される電磁波は、γ線、X線、可視光線、紫外線、赤外線、レーザであってもよく、また、α線やβ線等の放射線であってもよい。さらには、中性子線等の粒子線であってもよい。シート状体の物理量の測定に静電容量式、エア式、超音波式、接触式から選択したりすることができ、種々の形式のものに適用することができて汎用性に優れたものとなる。
 シート状体の走行速度よりも、気流カーテンの気流のシート状体の到達部位における速度を大とすると、外気が測定空間内に侵入するのを防止することができ、安定した状態の測定空間を形成することができる。
 温度調整用気体及び/又は湿度調整用気体を噴射するものでは、測定空間内において、外気の温度、湿度に影響を受けない環境を作ることができるため、高精度の測定を可能とすることができる。
 前記物理量は、シート状体の厚み寸法とすることができる。これにより、シート状体と物理量測定手段との間に空気または他の気体が存在する厚み計や、シート・フィルム製造工程中の温度分布測定を行うことができる。その他、長さ寸法、質量、密度、坪量、電流、電荷、電圧、電位差、力、エネルギー、速度、磁性、光学的特性とすることにより、厚み計以外の種々の装置に適用することができ、汎用性に優れたものとなる。
 本発明の温度制御方法及び温度制御装置では、加熱又は冷却して加工が行われるシート状体であっても、シート状体の温度を正確に測定することができるため、シート状体の温度と物理量との相関関係を得ることができ、この相関関係に基づいて物理量を高精度に制御することができる。従って、シート状体の温度が一律に同じ温度ではなく、位置によってその分布が異なる場合であっても、高応答かつ正確な温度測定が可能となり、正確にシート状体の物理量を測定することができる。
 本発明の補正方法及び補正装置では、シート状体の物理量を測定する計測領域内での温度を正確に測定することができるため、この温度差に起因する物理量のずれ量を補正することができる。従って、シート状体の温度が一律に同じ温度ではなく、位置によってその分布が異なる場合であっても、高応答かつ正確な温度測定が可能となり、正確にシート状体の物理量を測定することができる。
 物理量測定手段を、シート状体の幅方向及びそれに直交する方向にトラバースしつつ、シート状体の物理量を測定するものとすると、シート状体の厚みを測定するのに最適となる。
 この場合、物理量測定手段のトラバース速度とシート状体の走行速度とのベクトルの和の速度よりも、気流カーテンの気流のシート状体の到達部位における速度を大とすれば、シート状体が長手方向に走行し、かつ、物理量測定手段がトラバースする場合であっても、外気が測定空間内に侵入するのを防止することができる。このため、安定した状態の測定空間を形成することができる。
本発明の第1実施形態の物理量測定装置を使用した物理量測定装置の簡略正面図である。 前記物理量測定装置の参照場所を示す要部拡大断面図である。 本発明の第1実施形態の温度測定装置の要部拡大断面図である。 本発明の第1実施形態の温度測定装置の要部拡大断面図である。 シート状体の走行に伴う気流の流速とシート状体からの距離との関係を示すグラフ図である。 本発明の補正装置のブロック図である。 本発明の補正方法を示すフローチャートである。 本発明の第1実施形態の温度測定装置の変形例を示す要部拡大断面図である。 本発明の第2実施形態を示す温度測定装置の要部拡大断面図である。 本発明の第2実施形態の変形例を示す温度測定装置であり、(a)は要部拡大断面図、(b)は底面図である。 本発明の第3実施形態を示す温度測定装置であり、(a)は断面図、(b)は要部拡大断面図、(c)は底面図である。 本発明の第6実施形態を示す温度測定装置の要部拡大断面図である。 本発明の第6実施形態の変形例の温度測定装置の要部拡大断面図である。 本発明の温度測定装置を使用した延伸装置の簡略平面図である。 本発明の温度測定装置を使用した延伸装置の簡略側面図である。 従来のシート厚み計測装置を示す簡略正面図である。
2   物理量測定手段
3   エアーカーテン
10  外部気流流入防止手段
20  演算手段
21  温度差算出手段
22  減衰量算出手段
23  換算手段
24  補正手段
a   シート状体
T   エアーカーテン部
 以下、本発明の実施の形態を図1~図15に基づいて説明する。
 本発明の第1実施形態の温度測定装置は、走行移動中又は停止中の紙・シート・フィルム等のウェブ又は板状のシート状体の温度を測定するものである。また、補正装置は、実測したシート状体の物理量を補正するものである。図1は、物理量測定装置を示し、シート状体の温度を測定する温度測定装置1a、1bと、シート状体の物理量を測定する物理量測定手段2a、2bと、移動機構4a、4bとを備えている。本実施形態では、シート状体はその長手方向に所定の速度で走行しているシートaであり、物理量はシートaの厚みである。そして、シートaの無い参照場所C(厚み計測領域W外)の温度と、シートaの厚みを測定する厚み計測領域Wの温度とを測定し、この温度差に基づいて厚み計測領域Wで実測した厚みを補正するものである。ここで、厚み計測領域Wとは、シートaの厚みの測定対象となる全領域をいう。
 物理量測定装置は、シートaを測定する厚み計測領域Wと、シートが無い参照場所Cとを有している。参照場所Cには、図2に示すように、中央に開口部16を有する環状の整流板14が設けられている。これにより、参照場所Cにおいても、厚み計測領域Wとほぼ同一の温度測定条件とすることができる。
 物理量測定手段2(図1)は、シートaの厚みを測定するシート厚み計測センサである。シート厚み計測センサには、非接触式のものと接触式のものとに大別される。非接触式のものとしては、α線、β線、γ線、X線、中性子線、可視光線、紫外線、赤外線、レーザから選択される電磁波又は放射線又は粒子線を出射するもの、エア式、静電容量式、超音波式等の非接触式のものがある。接触式のものは、シートaを挟むようにその上下に変位センサを設けて、その先端をシートaに接触させるものである。シート厚み計測センサの一例として、本実施形態ではX線式のものを示す。シート厚み計側センサ2は、シートaの上下に対向してX線発生部2aとX線検出部2bが設置されている。X線発生部2aのX線発生器2cから供給されたX線を、シートaの下方から厚み方向に向かって出射し、出射したX線がX線検出部2bのX線検出器2d(図2)に供給される。このX線検出器2dに供給されたX線の量を計測することにより、シートaの厚みを計測するものである。
 移動機構4a、4bは搬送手段8a、8bを備え、搬送手段8a、8bは駆動側プーリ5a、5bと従動側プーリ6a、6bと、これらプーリ6a、6bに掛け回されるベルト部材7a、7b等を備え、駆動側プーリ5a、5bがモータM等の駆動手段にて駆動することにより、物理量測定手段2a、2bをシートaに沿って往復させることができる。また、物理量測定手段2a、2bは、図示省略の搬送手段をさらに備え、シート状体の長手方向及び幅方向にトラバースしつつ、シートaの幅方向一端から他端まで幅方向に連続的に移動または等間隔でピッチ移動する。
 温度測定装置1a、1bは、図3に示すように外部気流流入防止手段10a、10bと、温度センサ11a、11bとから構成されている。第1の外部気流流入防止手段10aは、シート厚み計測センサ2のX線発生部2a側に設けられている。第2の外部気流流入防止手段10bは、シート厚み計測センサ2のX線検出部2b側に設けられている。この場合、第1及び第2の外部気流流入防止手段10a、10bは、図示省略のエア供給源と、エアをシートaに供給するノズル12a、12bと、エア供給源からノズル12a、12bにエアを導入するエア供給路13a、13bとを備えている。ノズル12a、12bは、内周壁と外周壁とを備えた二重の筒状体から構成されている。このため、エアの噴出口は円環状となっている。ノズル12a、12bからシートaに向かってエアを噴き出すと、シートaの上面側に気流カーテン(エアーカーテン)3aを形成するとともに、シートaの下面側にエアーカーテン3bを形成し、シートaの厚み計測部の周辺にエアーカーテン部Tを形成する。このようにシートaの上面及び下面の両側に形成されたエアーカーテン部Tは、シートaのばたつきを防止するとともに、図3の矢印Aのように走行中のシートaから発生する気流(矢印B、矢印C)や、外部環境により発生する気流を遮断することができる雰囲気の測定空間(気流流入防止雰囲気)となる。これにより、図3に示すように、エアーカーテン部Tの外側のシートaの上面雰囲気の温度をt´、下面雰囲気の温度をt´´とすると、エアーカーテン部Tでは、外側の気流等の外乱の影響を受けることがないため、エアーカーテン部Tの温度はシートaの温度tのみに影響を受けることとなる。つまり、エアーカーテン部Tの温度がtと略同一もしくはtに近くなる。
 この場合、図4に示すようにシート厚み計測センサ2のトラバース速度とシートaの走行速度とのベクトルの和の速度V1よりも、エアのシートaの到達部位における速度Vnを大としている。シート厚み計測センサ2のトラバース速度とシートaの走行速度とのベクトルの和の速度がV1である場合、このシートaの走行に伴う気流の流速は、図5のグラフ図で示すように、シートaから遠くなる程0に近づき、シートaから近い位置(表面付近)ではV1に近づいて最大でV1となる。このため、Vn>V1とすることにより、外気がエアーカーテン部Tに侵入するのを防止することができ、確実にエアーカーテン部Tを形成することができる。
 前記エアーカーテン部Tには、図3に示すように、エアーカーテン内部の気流流入防止雰囲気中でシートaの温度を測定する温度センサ11a、11bを設けている。この場合、温度センサ11a、11bは高い応答性を有する熱容量の小さい温度センサ(例えば、放射温度計ではない熱電対、測温抵抗体等)を用いるのが好ましい。一方の温度センサ11aは、シート厚み計測センサ2から出射されるX線の出射範囲内に設けている。他方の温度センサ11bは、シート厚み計測センサ2から出射されるX線の出射範囲外に設けている。
 また、図6に示すように、温度測定装置1にて測定した参照場所C(図1)の温度と、厚み計測領域内にて測定した温度とから、厚み計測領域W内(図1)で実測したシートaの厚みを補正する演算手段20を設けている。演算手段20は、参照場所Cの温度と厚み計測領域Wでの気流流入防止雰囲気内の温度との温度差を算出する温度差算出手段21と、温度差に基づいて厚み計測センサ2から出射されるX線の変化量(本実施形態では減衰量)を算出する減衰量算出手段22と、この減衰量からシートaの厚みと、実測したシートaの厚みとのずれ量を換算する換算手段23と、実測したシートaの厚みから前記ずれ量を加算又は減算して、シートaの厚みを補正してシートaの厚みを計測する補正手段24とを備えている。演算手段20は、例えばマイクロコンピュータ(図示省略)にて構成されている。
 次に、前記補正装置にてシートaの厚みを補正する補正方法について図7のフローチャートを用いて説明する。まず、図1の温度測定装置1(シート厚み計測センサ2)を、シートaの無い参照場所Cにまで移動させ、参照場所Cの温度tを取得する(ステップS1)。
 次に、図1のモータMを駆動して、移動機構4にてシート厚み計測センサ2を、厚み計測領域内にあるシートaの長手方向及び幅方向に連続的又は間欠的にピッチ移動させる。このとき、図3のX線発生部2aのX線発生器2cからX線検出部2bの検出器2dに向かってX線を出射させて各位置でのシートaの厚みを計測する。また、シート厚み計測センサ2の周囲に設けられたノズルからシートaに向かってエアーカーテン状にエアを噴き出して、シートaの厚み計測部の周辺にエアーカーテン部Tを形成し、この内部にある温度センサ11a、11bにて、気流流入防止雰囲気における測定エリアS及びその近傍でシートaの温度プロファイルtを取得する(ステップS2)。なお、本実施形態で測定エリアSとはX線の出射範囲のうち、検出器2dにて検出可能なX線の出射範囲をいい、例えば図3の点線に示すような範囲をいう。
 図6の温度差算出手段21は、参照場所の温度tと、計測領域Wの気流流入防止雰囲気で測定した温度tとの温度差t-tを算出し(ステップS3)、温度差t-tに基づいて、減衰量算出手段22がシート厚み計測センサ2から出射されるX線の減衰量を算出する(ステップS4)。その後、この減衰量から、換算手段23が実測したシートaの厚みのずれ量を換算し(ステップS5)、補正手段24が、実測したシートaの厚みから、ずれ量を加算又は減算してシートaの厚みを補正する(ステップS6)。このような方法で、実測したシートaの厚みに対して補正を行ってシートaの厚みを正確に計測することができる。
 このように、本発明の第1実施形態の補正装置では、外部気流流入防止手段10(図2、3、4、)にてシートaから発生する気流や、外部環境により発生する気流を遮断することができ、気流流入防止雰囲気を形成することにより、気流流入防止雰囲気の内部は外側の気流等の外乱の影響を受けることがない。これにより、この気流流入防止雰囲気内で温度を測定すると、外側の気流等の外乱の影響を受けることなく、計測領域W内でのシートaの温度とほぼ同じ雰囲気温度を高応答に正確に測定することができる。これにより、シートaの温度が一律に同じ温度ではなく、位置によってその分布が異なる場合であっても、高応答かつ正確な温度測定が可能となる。
 シートaの厚みを測定する厚み計測領域W内での温度を正確に測定することができるため、参照場所Cでのシートaの温度と、実測したシートaの温度との温度差を正確に測定することができる。この温度差により、シート厚み計測センサ2から出射されるX線の減衰量が定まるため、減衰量に基づいて実測した厚みのずれ量が求まり、ずれ量を実測した厚みから加算又は減算して実際の厚みを求めることができる。
 外部気流流入防止手段10が、シートaへのエアの流出にてエアーカーテン3a、3bを形成するものでは、確実に外部気流流入防止手段10を形成することができる。
 シートaの上面に対して気流流入防止雰囲気を形成する第1の外部気流流入防止手段10aと、シートaの下面に対して気流流入防止雰囲気を形成する第2の外部気流流入防止手段10bとを備えると、シートaのばたつきを防止できるため、測定精度を一層高精度なものとできる。
 シートaの厚みの測定にシート厚み計測センサ2を用い、そのシート厚み計測センサ2から出射されるX線の出射範囲内にて温度を測定すると、測定エリアの温度を正確に測定することができ、X線の減衰量を正確に測定することができる。また、シート厚み計測センサ2から出射されるX線の出射範囲外にて温度を測定すると、温度センサ11bがX線を遮るのを防止することができて、正確に物理量を測定することができる。
 前記シート厚み計測センサ2から出射される電磁波は、X線の他に、可視光線、紫外線、γ線、赤外線、レーザであってもよい。また、α線やβ線等の放射線であってもよい。さらには、中性子線等の粒子線であってもよい。これにより、種々の形式のものに適用することができ、汎用性に優れたものとなる。
 前記シートaは長手方向に走行するものであって、シート厚み計測センサ2のトラバース速度とシートaの走行速度とのベクトルの和V1の速度よりも、気流のシートaの到達部位における速度Vnを大とすることができる。これにより、外気がエアーカーテン部T内に侵入するのを防止することができ、安定した状態の気流流入防止雰囲気を形成することができる。
 前記実施形態では、物理量はシートaの厚み寸法であるので、シート状体と物理量測定手段との間に空気または他の気体が存在する厚み計や、シート・フィルム製造工程中の温度分布測定を行うことができる。その他、長さ寸法、質量、密度、坪量、電流、電荷、電圧、電位差、力、エネルギー、速度、磁性、光学的特性とすることにより、厚み計以外の種々の装置に適用することができ、汎用性に優れたものとなる。
 また、前記実施形態では、シート厚み計測センサ2は、シートaの幅方向及びそれに直交する方向にトラバースするものであったが、トラバースしない(停止している)ものであってもよい。この場合、シートaは長手方向に走行するものであって、シートaの走行速度よりも、気流のシートaの到達部位における速度を大とするのが望ましい。これにより、外気が気流流入防止雰囲気内に侵入するのを防止することができ、安定した状態の気流流入防止雰囲気を形成することができる。
 次に、本発明の第1実施形態の温度測定装置の変形例について説明する。この場合、図8に示すように、気流流入防止雰囲気に、所定温度を有する温度調整用気体及び所定湿度を有する湿度調整用気体を噴射する噴射ノズル15を設けている。これにより、気流流入防止雰囲気は、外気の温度、湿度に影響を受けない環境を作ることができ、高精度の測定が可能となる。
 図9は第2実施形態の温度測定装置を示す。前記第1実施形態では、物理量測定手段2として電磁波であるX線式のシート厚み計側センサを用いたが、図9に示すように、静電容量式のシート厚み計測センサであってもよい。静電容量式のシート厚み計測センサは、2つのセンサヘッド40a、40bによって、シートaを挟むものであり、センサヘッド40a、40bは、センサ電極41a、41bと、絶縁物42a、42bと、ガードリング43a、43bとを備えている。すなわち、円筒形状のセンサ電極41a、41bを絶縁物42a、42bで同心円状に被覆し、さらに、絶縁物42a、42bの外周を導電体のガードリング43a、43bによって同心円状に被覆している。そして、両電極間の静電容量の変化によりシートaの厚みを検出するようにした方式である。この方式は、シートaの厚みの変化を両電極41a、41b間の静電容量の変化として検出することにより、シートaの厚みを計測するものである。
 この場合、ガードリング43a、43bに外部気流流入防止手段10a、10bを設けている。外部気流流入防止手段10a、10bは、図示省略のエア供給源と、エアをシートaに供給するノズル45a、45bと、エア供給源からノズル45a、45bにエアを導入するエア供給路50a、50bとを備えている。そして、ノズルの内周面かつ、電極41a、41bの外周面に、温度センサ44a、44bを設けている。この場合も、温度センサ44a、44bは高い応答性を有する熱容量の小さい温度センサ(例えば、放射温度計ではない熱電対、測温抵抗体等)を用いるのが好ましい。これにより、温度センサ44a、44bは外側の気流等の外乱の影響を受けることなく、シートaの温度を高応答に正確に測定することができる。このようにして、静電容量式のシート厚み計測センサにおいても、X線式のシート厚み計測センサと同様の作用効果を奏する。
 また、図9は、静電容量式のシート厚み計測センサにおいて、2つの電極がシートaを挟む方式のものであったが、図10(a)(b)のように、シートaの片方より測定する方式のものであってもよい。すなわち、円筒形状の第1のセンサ電極46を第1の絶縁物49で同心円状に被覆し、さらに、第2のセンサ電極47を、第2の絶縁物48で被覆して、第2の絶縁物48の外周を導電体のガードリング43によって同心円状に被覆している。そして、両電極間の静電容量の変化によりシートaの厚みを検出するようにした方式である。この方式は、シートaの厚みの変化を両電極46、47間の静電容量の変化として検出することにより、シートaの厚みを計測するものである。
 図11は本発明の第3実施形態の温度測定装置を示す。第3実施形態では、物理量測定手段2として図11(a)に示すようなレーザ式のシート厚み計測センサを用いている。このシート厚み計測センサは、ロール32と、第1の変位計33と、第2の変位計34とを備えている。第1の変位計33としては、渦電流センサ又は磁気センサを使用することができる。
 ロール32は、シートaの走行方向に直交して配置され、本体フレーム(図示省略)に回転可能に支持され、一端にはモータ(図示省略)が連結され、また、他端には固定原点を有する回転角度検出手段(図示省略)が設置されている。回転角度検出手段は、ロール32の回転方向の位置を0°~360°の範囲で等角度、例えば、15°毎に検出するアブソリュート方式のロータリーエンコーダや、回転角度検出器と回転角度原点センサとの組合せたもの等で構成されている。校正時、モータは、シートaの搬送ラインの速度と一致した表面速度(周速度)でロール32を回転駆動させるのが好ましい。このようにしておくと、第1の変位計33と第2の変位計34との応答時間の違いによる誤差やシートaの搬送ラインの速度の違いによる誤差が介入することをも防止することができる。
 第1の変位計33は、ロール32の軸線上方で第2の変位計34の一部に設置され、ロール32の上面との距離Aの変化を検出すると共に、発光部34aから発射される平行光線35の上端を確定するものである。第1の変位計33としては、金属感応型又は磁気感応型変位計が使用され、何れを使用するかは計測対象となるシートaの物性により選択するもので、例えば、非導電性シートの場合は渦電流センサなどの金属感応型とし、導電性シートの場合は磁気感応型変位計とする。
 第2の変位計34は、ロール32を跨いで両側に対向設置された発光部34aと受光部34bとを有し、これらにより、ロール32上を接触走行するシートaの厚さを平行光線35の遮光量の変化で計測するものであって、例えば、レーザービーム型計測器やCCDイメージセンサその他の光学式計測手段が使用できる。
 このレーザ式のシート厚み計測センサは、第1の変位計33によってロール32との間隔寸法を測定してAとし、発光部34aから照射された平行光線35が第1の変位計33、ロール32およびシートaによって遮断されて、受光部34bに入射することを利用している。まず、シートaが無い状態で、第1の変位計33とロール32間の間隔寸法Aを測定し、次に、ロール32上にシートaを配置した状態で、第1の変位計33とシートa間の間隔寸法Bを測定して、シート4の厚み寸法tを、t=A-Bで算出するものである。
 この場合、第1の変位計33の周囲に、外部気流流入防止手段10を設けている。この場合も、外部気流流入防止手段10は、図示省略のエア供給源と、エアをシートaに供給するノズル36と、エア供給源からノズル36にエアを導入するエア供給路38とを備えている。そして、ノズル36の内周面かつ、第1の変位計33の外周面に、温度センサ37aを設けている。この場合も、温度センサ37aは熱容量の小さい高応答な温度センサ(例えば、放射温度計ではない熱電対、測温抵抗体等)を用いるのが好ましい。これにより、温度センサ37aは、外側の気流等の外乱の影響を受けることなく、シートaの温度を高応答に正確に測定することができる。このようにして、レーザ式のシート厚み計測センサにおいても、X線式のシート厚み計測センサと同様の作用効果を奏する。
 なお、温度センサ37の位置としては、図11(b)や図11(c)に示すように、レーザ光35を遮らない位置であれば、第1の変位計33の下面であっても温度センサ37bを設けることができる。また、用いる光としては、レーザ光に限らず、LED等他の光を用いることもできる。
 第4実施形態として、物理量測定手段2に超音波式のシート厚み計測センサを用いる(図示省略)。これは、図2、図3、図8のような装置構成において、X線に替えて超音波を送出するものである。すなわち、シートaの厚さ方向に短い超音波パルスを入射して、反射波が戻ってくるまでの時間を測定し、この反射時間に音速を乗じてシート状体の厚さを求めるものである。また、シートaの厚さの2倍が超音波の波長の整数倍となる周波数でシート状体が共鳴するという現象を利用し、そのシートaの厚さ方向における超音波共鳴周波数に基づいてシートaの厚さを求めることもできる。また、超音波の減衰量から厚さを求めることもできる。
 第5実施形態として、物理量測定手段2にエア式のシート厚み計測センサを用いる(図示省略)。厚み計測センサは、一定圧のエアをエアノズルよりシートaに向けて噴出する。エアノズルは、シリンダ内に挿入されたピストンのロッドに連結されており、エアノズルの背圧をシリンダ内のピストン下部室に作用させ、ピストン上部室には常時一定圧のエア圧を前記背圧に対向作用させる。そして、ピストンの上下部室に作用する両圧力がバランスすることによりエアノズルとシートaとの隙間が一定に保持され、シートの厚みの変化により前記隙間が変化して前記背圧が変化する。これにより、前記ピストンの両側の圧力がバランスする方向にピストンロッドが変位し、このロッドの変位をリニアゲージで計測することにより厚みを測定するものである。
 第6実施形態として、物理量測定手段2に接触式のシート厚みセンサを用いる。図12に示すように、シートaを挟むようにその上下に変位センサ9a、9bを設け、両変位センサ9a、9bを互いに接近する方向に付勢して、その先端をシートaに接触させることにより、その時の両者の位置を検出して、挟まれたシートaの厚さを計測するものである。また、接触式の他の方式として、図13に示すように、ロール17に巻き掛けた状態で搬送されるシートaの表面の位置を検出するものもある。すなわち、ロール17に巻き掛けたシートaを変位センサ9にて付勢して、その先端をシートaに接触させることにより、位置を検出して、挟まれたシートaの厚さを計測するものである。
 前記本発明の温度測定装置及び補正装置は、図14及び図15に示すような延伸装置に用いることができる。この延伸装置は、本発明に係る温度制御装置を用いたものである。図14及び図15の延伸装置は、押出機50と、この押出機50に装着したダイ51と、シートaを矢印の方向に搬送して延伸させるための一対のガイドレール52と、シートaの延伸部54に設けられ、複数のヒータH・・・、Hから構成される加熱手段53と、延伸部54の下流側に設けられる物理量測定手段2(この場合、シート厚み計測センサ)と、延伸したシートaを巻き取る巻取機55とを備えている。物理量測定手段2には本発明の温度測定装置1が設けられている。そして、この延伸装置には、加熱手段53の温度を制御する制御機構56が設けられている。この制御機構56は、加工(延伸)後のシートaの厚み及び温度を検出するための入力部57と、シートaの加工時の温度条件や理想的な厚みを設定する設定部58と、検出された温度と温度設定値とを表示するモニタ59と、検出された温度と実測したシートaの厚みとの相関関係を検出する演算手段60と、演算手段60の検出結果に基づいて加熱手段53の温度を調整する調整手段61とを備えている。入力部57は、温度測定装置1によって測定されたシートaの温度を検出する温度入力手段62と、シート厚み計測センサ2にて測定されたシートaの厚みを検出する物理量入力手段63とを備えている。また、設定部58は、シート幅方向の温度設定を行う温度設定手段64と、厚みの理想値の設定を行う物理量設定手段65とを備えている。
 この延伸装置を用いた温度制御方法について説明する。押出機50より押出されたシートaは、ガイドレール52により矢印の方向に搬送される。そして、延伸部54において加熱手段53にてシートaが温度設定手段64にて設定された温度、及び物理量設定手段65にて設定された厚みとなるように加熱されながら、シート幅方向に拡がるガイドレール52により幅方向に延伸される。そして、物理量測定手段2によってシートaの厚みが測定され、物理量入力手段63にて厚みプロファイルを得ることができるとともに、本発明の温度測定装置1によってシートaの幅方向の温度が測定され、温度入力手段62にて温度プロファイルを得ることができる。この温度プロファイルと、測定した厚みプロファイルとの相関関係を演算手段60にて検出する。そして、演算手段60の結果に基づいて、温度設定手段64や物理量設定手段65の設定値を変更して、調整手段61が加熱手段53の温度を調整する。これにより、延伸工程中のシートaの温度を正確に測定することにより、容易にかつ高精度の延伸加工が実現できる。
 なお、制御機構56において、モニタにてシートaの幅方向の温度プロファイルを見ながら、手動で調整手段61を調整したりできる。このように、シート厚み計測センサ2に温度測定装置を具備したものであれば、シートaの幅方向の温度プロファイルと厚みプロファイルとの相関を得ることができ、シートaの幅方向の厚みプロファイルを高精度に調節することができる。
 前記各実施形態では、シート状体の厚み寸法を測定するものであったが、それ以外の物理量、すなわち長さ寸法、質量、密度、坪量、電流、電荷、電圧、電位差、力、エネルギー、速度、磁性、光学的特性を測定するものであってもよい。
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、X線発生部2aとX線検出部2bとは上下逆位置であってもよい。外部気流流入防止手段10から発生する気流としてはエアに限らず、その他の気体でもよい。参照場所Cは装置の端部であれば良く、C点以外に図1に示すD点であってもよく、また、C点及びD点の両方としてもよい。温度センサ11は、シート状体aの上方又は下方のいずれか一方に配設してもよい。参照場所の整流板14は省略することもできる。シート状体aとしては種々のものを採用することができ、紙、シート、フィルム等のウェブ又は板状又は大きな曲率半径を有する円筒状のシート状体であれば材質、寸法は種々のものを測定することができる。噴射ノズル15(図8)から噴射する気体は、温度調整用気体又は湿度調整用気体のいずれか一方であってもよい。
 実施形態では物理量はシート状体の厚みであったが、質量、体積等種々のものであってもよい。物理量を質量とした場合、坪量計に用いることができる。また、フィルム、シートの製造工程中において、それらの温度分布を測定することにより、フィルム、シートの加熱又は冷却効果を数量的に計測することができる。
 本発明は、厚み計測装置に用いることができる他、延伸装置にも用いることができる。

Claims (16)

  1.  シート状体の物理量を物理量測定手段にて測定する際に、物理量の測定エリア又はその近傍の温度を測定する温度測定方法であって、
     温度センサに近接して前記温度センサに対して所定方向で相対的に走行するシート状体の片面側又は両面側に、前記温度センサを囲繞するように前記シート状体に向けて噴射される気流カーテンによって実質的に閉塞された雰囲気の測定空間を形成し、この測定空間内に前記測定エリアを設け、測定空間内で前記温度センサによって前記測定エリア又はその近傍の温度測定を行うことを特徴とする温度測定方法。
  2.  シート状体の物理量を物理量測定手段にて測定しつつ、シート状体を加熱又は冷却して加工を行う際に、物理量の測定エリア又はその近傍の温度を制御する温度制御方法であって、
     物理量測定手段にて加工後のシート状体の物理量を測定するとともに、前記請求項1に記載の温度測定方法にてシート状体の測定空間での温度を測定した後、
     加工後のシート状体の物理量とシート状体の測定空間での温度との相関関係を検出し、
     この相関関係に基づいて、予め設定した物理量の理想値が得られるようにシート状体の温度を制御することを特徴とする温度制御方法。
  3.  シート状体の物理量を補正する補正方法であって、
     シート状体の無い参照場所の温度を測定し、その後、物理量測定手段にてシート状体の物理量を測定するとともに、前記請求項1に記載の温度測定方法にてシート状体の物理量を測定する計測領域内において測定空間でのシート状体の温度を測定した後、
     参照場所の温度と計測領域内で測定した温度との温度差を算出し、
     前記温度差に基づいて物理量測定手段の変化量を計算し、
     この変化量から物理量測定手段にて実測したシート状体の物理量のずれ量を換算し、
     実測したシート状体の物理量に対して前記ずれ量を加算又は減算して、シート状体の物理量を補正することを特徴とする補正方法。
  4.  シート状体の物理量を物理量測定手段にて測定する際に、シート状体が物理量の測定エリアを相対的に通過して、この測定エリア内でシート状体の物理量を測定する際に測定エリア又はその近傍の温度を測定する温度測定装置であって、
     シート状体に近接して配置される温度センサと、
     前記温度センサ及び測定エリアを囲繞するように前記シート状体に向けて噴射される気流カーテンによって実質的に閉塞された雰囲気の測定空間を、前記シート状体の片面側又は両面側に形成する外部気流流入防止手段とを設け、
     前記測定空間内に前記測定エリアを設け、測定空間内で前記温度センサによって前記測定エリア又はその近傍の温度測定を行うことを特徴とする温度測定装置。
  5.  前記シート状体の一方の面に対して測定空間を形成する第1の外部気流流入防止手段と、前記シート状体の他方の面に対して測定空間を形成する第2の外部気流流入防止手段とを備えたことを特徴とする請求項4の温度測定装置。
  6.  前記物理量測定手段は電磁波又は放射線又は粒子線をシート状体に出射し、シート状体を透過した電磁波又は放射線又は粒子線を検出するものであって、その物理量測定手段から出射される電磁波又は放射線又は粒子線の出射範囲内にて温度を測定することを特徴とする請求項4又は請求項5の温度測定装置。
  7.  前記物理量測定手段は電磁波又は放射線又は粒子線をシート状体に出射し、シート状体を透過した電磁波又は放射線又は粒子線を検出するものであって、その物理量測定手段から出射される電磁波又は放射線又は粒子線の出射範囲外にて温度を測定することを特徴とする請求項4又は請求項5の温度測定装置。
  8.  前記物理量測定手段から出射される電磁波又は放射線又は粒子線は、α線、β線、γ線、X線、中性子線、可視光線、紫外線、赤外線、レーザから選択されることを特徴とする請求項6又は請求項7の温度測定装置。
  9.  前記物理量測定手段は静電容量式、エア式、超音波式、接触式から選択されることを特徴とする請求項4又は請求項5の温度測定装置。
  10.  前記シート状体は長手方向に走行するものであって、シート状体の走行速度よりも、気流カーテンの気流のシート状体の到達部位における速度を大としたことを特徴とする請求項4~請求項9のいずれか1項の温度測定装置。
  11.  測定空間に、外気の温度、湿度に影響を受けない環境を作る温度調整用気体及び/又は湿度調整用気体を噴射する噴射ノズルを設けたことを特徴とする請求項4~請求項10のいずれか1項の温度測定装置。
  12.  前記物理量は、シート状体の厚み寸法、長さ寸法、質量、密度、坪量、電流、電荷、電圧、電位差、力、エネルギー、速度、磁性、光学的特性から選択されることを特徴とする請求項4~請求項11のいずれか1項の温度測定装置。
  13.  シート状体を加熱又は冷却して加工を行う際に、このシート状体の温度を制御する温度制御装置であって、
     加工後のシート状体の物理量を測定する物理量測定手段と、
     シート状体の測定空間での温度を測定する前記請求項4~請求項12に記載の温度測定装置と、
     加工後のシート状体の物理量とシート状体の測定空間での温度との相関関係を検出する演算手段と、
     この相関関係に基づいて、予め設定した物理量の理想値が得られるようにシート状体の温度を制御する調整手段を設けたことを特徴とする温度制御装置。
  14.  物理量測定手段にて測定されるシート状体のシート状体の物理量を補正する補正装置であって、
     シート状体の無い参照場所の温度、及びシート状体の物理量を測定する計測領域内での測定空間の温度を測定する前記請求項4~請求項12に記載の温度測定装置と、
     参照場所にて測定した温度と計測領域内にて測定した温度との温度差を算出し、前記温度差に基づいて物理量測定手段から出射される出射物の変化量を算出し、この変化量からシート状体の物理量と、実測したシート状体の物理量とのずれ量を換算し、実測したシート状体の物理量から前記ずれ量を加算又は減算して、シート状体の物理量を補正してシート状体の物理量を計測する演算手段とを設けたことを特徴とする補正装置。
  15.  物理量測定手段は、シート状体の幅方向及びそれに直交する方向にトラバースしつつ、シート状体の物理量を測定することを特徴とする請求項14の補正装置。
  16.  前記シート状体は長手方向に走行するものであって、物理量測定手段のトラバース速度とシート状体の走行速度とのベクトルの和の速度よりも、気流カーテンの気流のシート状体の到達部位における速度を大としたことを特徴とする請求項15の補正装置。
PCT/JP2009/063441 2008-07-29 2009-07-28 温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置 WO2010013720A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117001867A KR101394185B1 (ko) 2008-07-29 2009-07-28 온도 측정 방법, 온도 측정 장치, 온도 제어 방법, 온도 제어 장치, 보정 방법, 및 보정 장치
EP09802963.0A EP2320207B1 (en) 2008-07-29 2009-07-28 Temperature measuring method, temperature measuring apparatus, temperature control method, temperature control apparatus, correction method and correction apparatus
US13/055,973 US8918226B2 (en) 2008-07-29 2009-07-28 Temperature measuring method, temperature measuring apparatus, temperature control method, temperature control apparatus, correction method, and correction apparatus
CN2009801298424A CN102112852B (zh) 2008-07-29 2009-07-28 温度测定方法、温度测定装置、温度控制方法、温度控制装置、修正方法及修正装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-195251 2008-07-29
JP2008195251A JP2010032387A (ja) 2008-07-29 2008-07-29 温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置

Publications (1)

Publication Number Publication Date
WO2010013720A1 true WO2010013720A1 (ja) 2010-02-04

Family

ID=41610420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063441 WO2010013720A1 (ja) 2008-07-29 2009-07-28 温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置

Country Status (6)

Country Link
US (1) US8918226B2 (ja)
EP (1) EP2320207B1 (ja)
JP (1) JP2010032387A (ja)
KR (1) KR101394185B1 (ja)
CN (1) CN102112852B (ja)
WO (1) WO2010013720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083151A (zh) * 2010-04-02 2014-10-08 精工爱普生株式会社 温度测量装置以及温度测量方法
WO2019172338A1 (ja) * 2018-03-09 2019-09-12 帝人株式会社 超音波を用いる検査方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660682B2 (en) * 2010-11-22 2014-02-25 Honeywell Asca Inc. Air wipe and sheet guide temperature control on paper and continuous web scanners
EP2498074A1 (en) * 2011-03-07 2012-09-12 Bronlund, Ole Einar Temperature Calibrator further Development
US9265427B2 (en) 2012-03-19 2016-02-23 Welch Allyn, Inc. Systems and methods for determining patient temperature
US9138149B2 (en) 2012-03-19 2015-09-22 Welch Allyn, Inc. Systems and methods for determining patient temperature
US9702768B2 (en) * 2012-09-05 2017-07-11 Siemens Corporation Noise robust time of flight estimation for acoustic pyrometry
CN103162869B (zh) * 2013-02-05 2014-12-10 中国长江三峡集团公司 深水水库垂向水温分布的测量方法
EP2987895A4 (en) * 2013-04-17 2017-03-29 Finetex Ene, Inc. Electrospinning apparatus
CN103245433B (zh) * 2013-04-24 2015-01-21 中国长江三峡集团公司 水库水温的自适应测量装置及测量方法
JP6122796B2 (ja) * 2014-02-24 2017-04-26 株式会社東芝 X線厚さ計
JP6118967B2 (ja) * 2014-03-14 2017-04-26 株式会社新川 ボンディング装置およびボンディング方法
SG11201608603XA (en) * 2014-03-14 2016-12-29 Shinkawa Kk Bonding apparatus and bonding method
JP5849163B1 (ja) * 2015-01-19 2016-01-27 株式会社新川 ボンディング装置およびボンディング方法
CN104568187B (zh) * 2014-12-31 2017-07-25 中冶长天国际工程有限责任公司 一种回转窑温度检测方法及装置
WO2019116534A1 (ja) * 2017-12-15 2019-06-20 株式会社日本製鋼所 フィルム製造装置
KR101990863B1 (ko) * 2018-01-31 2019-06-19 문상호 비접촉식 두께 측정장치
JP6892836B2 (ja) * 2018-03-16 2021-06-23 明産株式会社 シート厚さ測定装置
EP3884790A1 (en) * 2018-05-31 2021-09-29 Japan Tobacco Inc. Flavor generation device
SE543393C2 (en) * 2019-06-18 2020-12-29 Ircon Drying Systems Ab Arrangement and method for measuring the temperature of a web, including computer program, computer readable medium and control unit
US11826773B2 (en) * 2021-03-29 2023-11-28 Honeywell International Inc. Correlate thermographic image data to online scanning basis weight measurement
WO2023089496A1 (en) * 2021-11-19 2023-05-25 Syncro S.R.L. Method and apparatus for measuring the thickness of one or more layers of a multi-layer film obtained by blow extrusion process
IT202100029324A1 (it) * 2021-11-19 2023-05-19 Syncro Srl Procedimento e apparecchiatura per la misura dello spessore di uno o piu' strati di un film multistrato
CN219015983U (zh) * 2022-09-16 2023-05-12 宁德时代新能源科技股份有限公司 面密度测量设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155905U (ja) * 1979-04-25 1980-11-10
JPH09159438A (ja) 1995-12-05 1997-06-20 Yamabun Denki:Kk シート厚み計測方法
JPH10170220A (ja) * 1996-12-12 1998-06-26 Toshiba Corp 耐熱型計測器
JP2005030920A (ja) * 2003-07-14 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd シート材厚み計測方法及び装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163406A (en) * 1961-03-15 1964-12-29 Faustel Inc Web temperature control apparatus
US3914477A (en) * 1972-01-04 1975-10-21 Owens Corning Fiberglass Corp Method of coating and drying strands
JPS55155905A (en) * 1980-01-31 1980-12-04 Okabe Kk Manufacture of cylindrical body for anchor
CS228191B1 (en) * 1982-04-05 1984-05-14 Hes Lubos Air screen for radiation thermometer
JPS6118816A (ja) * 1984-07-06 1986-01-27 Yamatake Honeywell Co Ltd 温度ドリフト補償測定器
JPH11142469A (ja) 1997-11-05 1999-05-28 Nec Corp 低高温電気特性測定方法および装置
JP2001128849A (ja) * 1999-11-05 2001-05-15 Fujimak Corp 自動炊飯または自動煮炊きのための制御方法および装置
JP2002037490A (ja) * 2000-07-17 2002-02-06 Teijin Ltd フィルムロール巻形状測定器
CN1159571C (zh) * 2001-03-27 2004-07-28 明基电通股份有限公司 压阻式温度感测器
JP4391195B2 (ja) * 2003-10-20 2009-12-24 新日本製鐵株式会社 温度測定装置
US8003049B2 (en) * 2004-09-30 2011-08-23 Arkray, Inc. Analyzer
DE102007030724A1 (de) * 2007-07-02 2009-01-08 Dürr Systems GmbH Beschichtungseinrichtung und Beschichtungsverfahren mit konstanter Lenklufttemperatur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155905U (ja) * 1979-04-25 1980-11-10
JPH09159438A (ja) 1995-12-05 1997-06-20 Yamabun Denki:Kk シート厚み計測方法
JPH10170220A (ja) * 1996-12-12 1998-06-26 Toshiba Corp 耐熱型計測器
JP2005030920A (ja) * 2003-07-14 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd シート材厚み計測方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2320207A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083151A (zh) * 2010-04-02 2014-10-08 精工爱普生株式会社 温度测量装置以及温度测量方法
WO2019172338A1 (ja) * 2018-03-09 2019-09-12 帝人株式会社 超音波を用いる検査方法
JP2019158459A (ja) * 2018-03-09 2019-09-19 帝人株式会社 超音波を用いる検査方法
US11835487B2 (en) 2018-03-09 2023-12-05 Teijin Limited Ultrasonic inspection of extents of voids or the like in heated material using fluid blowing

Also Published As

Publication number Publication date
US8918226B2 (en) 2014-12-23
CN102112852B (zh) 2012-11-21
KR101394185B1 (ko) 2014-05-14
JP2010032387A (ja) 2010-02-12
CN102112852A (zh) 2011-06-29
EP2320207A1 (en) 2011-05-11
EP2320207B1 (en) 2015-02-25
EP2320207A4 (en) 2012-11-07
US20110130890A1 (en) 2011-06-02
KR20110034007A (ko) 2011-04-04

Similar Documents

Publication Publication Date Title
WO2010013720A1 (ja) 温度測定方法、温度測定装置、温度制御方法、温度制御装置、補正方法、及び補正装置
Ding et al. Development of sensing and control system for robotized laser-based direct metal addition system
US7369255B2 (en) Apparatus and method for capacitive measurement of materials
US11312649B2 (en) Method and apparatus for reducing the camber in thin glasses
US9561522B2 (en) Ultrasonic transmitting and receiving device for thickness and/or grammage measurement
JP2021101045A (ja) 校正デバイスを備えた製品の付加製造のための装置及びこの装置の校正方法
EP2302319A1 (en) Radiation inspection apparatus
US20130083332A1 (en) Method of Measuring the Thickness of a Moving Web
US5865059A (en) Non-contact thickness gauge for non-metallic materials in the form of film, foil, tape and the like
JP5220836B2 (ja) 温度測定装置及び温度測定方法
US20220412723A1 (en) Methods and systems for blown film thickness measurement
JP2012229955A (ja) 厚さ測定装置、及び厚さ測定方法
JP5423705B2 (ja) 放射線検査装置
JPH03148026A (ja) 自動較正対センサ非接触温度測定方法および装置
US6029502A (en) Positioning system with pressure measurement in the layer of air between the measuring head and the material being measured
JP6128036B2 (ja) 膜厚計測装置
US4322971A (en) Controlling the thickness of moving webs of material
CN114761190B (zh) 用于对工件覆层的设备和方法
JP2011196755A (ja) 放射線測定装置
US11007803B2 (en) Printing apparatus and distance measuring method of sonic sensor
US6995372B2 (en) Nuclear gauge for measuring a characteristic of a sheet material with sheet position and alignment compensation
US20220034648A1 (en) Device and method for detecting an object
JP5962118B2 (ja) 真空装置
SU710339A1 (ru) Датчик радиометрического дефектоскопа
IT9020098A1 (it) Metodo ed apparecchiatura a scansione incrociata, per misurare lo spessore di un rivestimento su un film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129842.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117001867

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13055973

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009802963

Country of ref document: EP