WO2010013588A1 - 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置 - Google Patents

金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置 Download PDF

Info

Publication number
WO2010013588A1
WO2010013588A1 PCT/JP2009/062430 JP2009062430W WO2010013588A1 WO 2010013588 A1 WO2010013588 A1 WO 2010013588A1 JP 2009062430 W JP2009062430 W JP 2009062430W WO 2010013588 A1 WO2010013588 A1 WO 2010013588A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor die
metal nano
metal
ink
Prior art date
Application number
PCT/JP2009/062430
Other languages
English (en)
French (fr)
Inventor
前田 徹
徹郎 谷川
寺本 章伸
小田 正明
Original Assignee
株式会社新川
国立大学法人東北大学
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川, 国立大学法人東北大学, 株式会社アルバック filed Critical 株式会社新川
Priority to CN2009801300513A priority Critical patent/CN102124550B/zh
Priority to KR1020117000325A priority patent/KR101039655B1/ko
Priority to US13/055,747 priority patent/US8328928B2/en
Priority to DE112009001706T priority patent/DE112009001706T5/de
Publication of WO2010013588A1 publication Critical patent/WO2010013588A1/ja
Priority to US13/590,775 priority patent/US20130001280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/11318Manufacturing methods by local deposition of the material of the bump connector in liquid form by dispensing droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/115Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/1152Self-assembly, e.g. self-agglomeration of the bump material in a fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/1329Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81095Temperature settings
    • H01L2224/81096Transient conditions
    • H01L2224/81097Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01067Holmium [Ho]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to a metal nano ink for bonding an electrode of a semiconductor die and an electrode of a substrate and / or an electrode of a semiconductor die and another semiconductor die electrode, a manufacturing method thereof, a die bonding method and a die bonding apparatus using the metal nano ink. About.
  • a solder bump is formed on the electrode pad of the electronic component such as a semiconductor die, and the formed solder bump is used as an electrode of the circuit board.
  • a method is used in which it is disposed facing downward and heated and joined (see, for example, Patent Document 1).
  • Patent Document 1 when the electronic component is to be three-dimensionally laminated and bonded using solder, the bonding portion previously bonded is melted by heating during bonding, and the reliability of the bonding May deteriorate. For this reason, various methods using metal nanopaste containing ultrafine metal particles have been proposed as methods for joining the electrodes without using solder bumps.
  • Patent Document 1 a ball of a silver fine particle paste prepared by dispersing ultrafine silver powder in a solvent is formed on a terminal electrode of a circuit board, and a ball in which an electrode of a semiconductor element is formed on the terminal electrode of the circuit board A method is proposed in which a semiconductor element and a circuit board are electrically joined by bonding them by a face-down method, evaporating a solvent such as toluene in a silver fine particle paste, and then baking at a temperature of 100 to 250 ° C. Has been.
  • Patent Document 2 discloses a coating layer in which a metal nanoparticle dispersion liquid is ejected by ink jet or the like, and is laminated so that the height is the same as or higher than the radius of the bottom surface in a cylindrical shape having a circular bottom surface.
  • the metal nanoparticle dispersion is capable of forming a metal sintered pillar by low-temperature sintering, and by adjusting the components of the solvent, the metal nanoparticle dispersion is ejected as fine droplets.
  • Has a low viscosity so that the solvent evaporates from the time it is sprayed until the droplets land on the electrode surface, resulting in a viscosity that allows the coating layer to be stacked as a columnar structure.
  • Metal nanoparticle dispersions having viscous properties that can be extruded from between metal nanoparticles have been proposed. And it has been proposed to form a conductive wiring layer on a wiring board using this metal nanoparticle dispersion.
  • a metal layer is formed by sintering metal nano ink or metal nano paste
  • a portion other than the metal formed by sintering metal nanoparticles is formed inside the metal layer. This part is called a void, and it increases electrical resistance and decreases the strength of the metal layer. Therefore, when metal nanoinks are sintered to form a metal layer, the generation of voids is suppressed. It is necessary to suppress the remaining of unreacted metal nanoparticles because the dispersant cannot be removed.
  • the metal nano ink of the present invention is a metal nano ink for bonding a semiconductor die electrode and a substrate electrode and / or a semiconductor die electrode and another semiconductor die electrode by pressure sintering, and the surface of the semiconductor nano ink is dispersed by a dispersant. It is characterized by being prepared by mixing coated metal nanoparticles and oxygen in an organic solvent. In the metal nano ink of the present invention, the oxygen concentration in the organic solvent is preferably supersaturated.
  • the method for producing a metal nano ink of the present invention is a method for producing a metal nano ink for bonding a semiconductor die electrode and a substrate electrode and / or a semiconductor die electrode and another semiconductor die electrode by pressure sintering. And a metal nanoparticle mixing step of mixing metal nanoparticles surface-coated with a dispersant in an organic solvent, and an oxygen injection step of injecting oxygen into the organic solvent.
  • the oxygen injection step is also suitable as injecting oxygen into the organic solvent as nanobubbles.
  • it is good also as performing an oxygen implantation process after a metal nanoparticle mixing process and is good also as performing an oxygen implantation process before a metal nanoparticle mixing process.
  • bumps are formed on the electrodes by ejecting fine droplets of metal nano ink in which metal nanoparticles surface-coated with a dispersing agent and oxygen made into nano bubbles are mixed in an organic solvent.
  • a semiconductor die is ejected with fine droplets of metal nano-ink and a bump is formed on the electrode and / or a metal nano-ink is ejected with fine droplets on another semiconductor die with bumps formed on the electrode. Face-down, an overlapping process in which the electrodes of the semiconductor die and the substrate electrode and / or the semiconductor die electrode and another semiconductor die electrode are overlapped via the bumps, and the bumps between the electrodes are pressurized and heated.
  • a pressure sintering step in which the metal nanoparticles of the bumps are pressure-sintered to electrically join the electrodes, and the electrodes of the semiconductor die and the substrate and / or the substrate Is a method for bonding the electrode and the other semiconductor die of the semiconductor die electrode.
  • the die bonding apparatus of the present invention ejects fine droplets of metal nano ink in which metal nanoparticles surface-coated with a dispersant and oxygen as nano bubbles are mixed in an organic solvent to form bumps on the electrodes.
  • Bumps are formed on the electrodes by injecting microscopic droplets of metal nano ink onto the head and the semiconductor die on which the bumps are formed, and / or ejecting micro droplets of metal nano ink on the electrodes.
  • a superposition mechanism that faces down on another semiconductor die and superimposes the electrode of the semiconductor die and the electrode of the substrate and / or the electrode of the semiconductor die and the electrode of the other semiconductor die via a bump, and between each electrode
  • a pressure heating mechanism that pressurizes and heats the bumps of the bumps, and pressurizes and sinters the metal nanoparticles of the bumps to electrically bond the electrodes to each other.
  • the metal nano-ink of the present invention has an effect that generation of voids can be suppressed during pressure sintering.
  • the die bonding method and the die bonding apparatus of the present invention have an effect that generation of voids can be suppressed.
  • the metal nano ink 100 of the present embodiment can maintain a dispersed state in which the organic solvent 105, the metal nanoparticles 101 obtained by refining a conductive metal, and the metal nanoparticles 101 are not in contact with each other.
  • the metal nanoparticles 101 are about 5 to 50 nm in diameter.
  • the finely conductive metal constituting the metal nanoparticles 101 can be used as the finely conductive metal constituting the metal nanoparticles 101.
  • the dispersant 102 coated on the surface of the metal nanoparticles 101 alkylamine, alkanethiol, alkanediol, or the like can be used.
  • the liquid organic solvent 105 is a relatively high boiling nonpolar solvent or low polarity solvent that does not easily evaporate near room temperature, for example, a dispersion solvent such as terpineol, mineral spirit, xylene, toluene, tetradecane, dodecane, etc. What contains the thermosetting resin component which functions as an organic binder in can be used.
  • the coated metal nanoparticles 103 whose surface is coated with the dispersant 102 are, for example, about 100 nm in diameter and larger than the metal nanoparticles 101.
  • Such a metal nano ink 100 is manufactured as follows. First, coated metal nanoparticles 103 are prepared by coating the surface of metal nanoparticles 101 obtained by refining a conductive metal with a dispersing agent 102, and the coated metal nanoparticles 103 are mixed in an organic solvent 105 by a predetermined amount. . Thereafter, the viscosity is adjusted to obtain the metal nano ink 100 in which the oxygen bubbles 121 are not mixed. Next, as shown in FIG. 2, the metal nano ink 100 in which the oxygen bubbles 121 are not mixed is put into the container 131, and oxygen is injected into the metal nano ink 100 from the liquid surface by the oxygen injection nozzle 132 inserted into the metal nano ink 100. Inject into.
  • a part of the injected oxygen is dissolved in the organic solvent 105 to become dissolved oxygen 122, but a lot of oxygen is dispersed in the organic solvent 105 as bubbles.
  • the large bubbles rise to the liquid level and are discharged to the atmosphere. Only fine bubbles remain as oxygen bubbles 121 in the organic solvent 105, and the coated metal nanoparticles 103, oxygen bubbles 121, and dissolved oxygen remain in the organic solvent 105.
  • the metal nano-ink 100 containing 122 can be manufactured. For example, when oxygen is injected for a predetermined time such as 10 hours, the metal nano ink 100 containing appropriate oxygen is obtained.
  • the metal nano ink 100 may include oxygen nano bubbles 125 instead of the oxygen bubbles 121 or together with the oxygen bubbles 121.
  • the oxygen nanobubble 125 is a very small diameter bubble having a diameter similar to that of the coated metal nanoparticle 103.
  • the metal nano ink 100 including the oxygen nanobubbles 125 shown in FIG. 3 is obtained by encapsulating the oxygen nanobubbles 125 in the organic solvent 105 by the method shown in FIG.
  • the coated metal nanoparticles 103 having the surface coated with the dispersant 102 can be produced by mixing a predetermined amount in the organic solvent 105.
  • the oxygen injection device 150 includes a tank 133 that stores the organic solvent 105, a circulation pump 136 that circulates the organic solvent 105, a suction pipe 135 that connects the tank 133 and the circulation pump 136, and a circulation
  • the discharge pipe 137 of the pump 136, the oxygen injection nozzle 138 provided in the discharge pipe 137, and the oxygen injection nozzle 138 and the tank 133 are provided between the oxygen injection nozzle 138 and shearing oxygen bubbles injected from the oxygen injection nozzle 138.
  • It includes an injector 140 that is an oxygen nanobubble 125 of about 100 nm, and a pipe 134 that connects the injector 140 and the tank 133.
  • the tank 133 is provided with an oxygen concentration sensor 145 for detecting the oxygen concentration in the stored organic solvent 105.
  • the organic solvent 105 stored in the tank 133 is sucked into the circulation pump 136 from the suction pipe 135, pressurized, and discharged to the discharge pipe 137.
  • Oxygen is injected as bubbles from the oxygen injection nozzle 138 into the organic solvent 105 discharged to the discharge pipe 137.
  • Part of the injected oxygen is dissolved in the organic solvent 105 to become dissolved oxygen 122.
  • Undissolved oxygen flows into the injector 140 in the form of large bubbles.
  • the injector 140 includes a nozzle 141 having a tapered tapered hole and a core 142 provided in the nozzle 141, and a gap 143 formed on the conical cylinder surface between the nozzle 141 and the core 142.
  • the organic solvent 105 containing oxygen bubbles flows at a high speed, and the bubbles are turned into minute oxygen nanobubbles 125 by the shearing force between the wetting surface of the gap 143 and the bubbles.
  • the organic solvent 105 that has flowed from the injector 140 through the pipe 134 to the tank 133 contains dissolved oxygen 122, oxygen nanobubbles 125, and larger oxygen bubbles.
  • the large oxygen bubbles rise toward the liquid level of the organic solvent 105 in the tank 133 and escape from the liquid level to the atmosphere.
  • the oxygen nanobubbles 125 remain in the organic solvent 105.
  • the oxygen bubbles that are larger than the oxygen nanobubbles 125 but cannot escape from the liquid surface of the organic solvent 105 in a short time are sucked into the suction pipe 135 together with the organic solvent 105, and some of the oxygen bubbles are oxygenated by the injector 140. It becomes nano bubble 125. Then, when the circulation line including the injector 140 is circulated for a predetermined time, an organic solvent 105 containing oxygen nanobubbles 125 and dissolved oxygen 122 is formed. At this time, the amount of oxygen injected from the oxygen injection nozzle 138 can be appropriately adjusted according to the oxygen concentration in the organic solvent 105 detected by the oxygen concentration sensor 145 attached to the tank 133.
  • the diameter of the oxygen nanobubbles 125 contained in the organic solvent 105 manufactured in this way is very small, it can remain in the organic solvent 105 over time. Moreover, when oxygen is mixed in the organic solvent 105 as oxygen nanobubbles 125, the oxygen concentration in the organic solvent 105 can be oversaturated to a saturation concentration or higher, and a large amount of oxygen is included in the organic solvent 105. Can do.
  • the organic solvent 105 having a low viscosity is passed through the injector 140 to mix the oxygen nanobubbles 125 and then the coated metal nanoparticles 103 are mixed into the organic solvent 105.
  • This is a particularly effective method when the viscosity of the nanoparticle 103 is increased and oxygen nanobubbles cannot be mixed with the metal nanoink 100 by the injector 140.
  • the metal nano ink 100 is manufactured by mixing a predetermined amount of the coated metal nanoparticles 103 coated with the dispersant 102 on the surface of the metal nanoparticles 101 obtained by refining the conductive metal in the organic solvent 105 containing the oxygen nanobubbles 125.
  • the metal nanoink 100 containing a large amount of oxygen can be manufactured without being dissipated to the outside of the organic solvent 105 even during the mixing.
  • the metal nano ink 100 having a viscosity matched to the shape of the ejection head described later may be obtained by increasing the amount of the dispersant 102 or adding a component for adjusting the viscosity to the organic solvent 105.
  • a die bonding method for bonding the electrode 19a of the substrate 19 and the electrode 12a of the semiconductor die 12 using the metal nano ink 100 manufactured as described above with reference to FIGS. 5A to 9C will be described.
  • This die bonding method is a die bonding method for bonding the electrode 12a of the semiconductor die 12 to the electrode 19a of the substrate 19 and / or the electrode 12a of the semiconductor die 12 and the electrode 12a of another semiconductor die 12, and is a dispersion method.
  • the fine droplets 110 of the metal nano ink 100 are ejected and the bumps 200 are formed on the electrodes 12a and 19a, and / or the fine droplets 110 of the metal nano ink 100 are ejected and the bumps 200 are formed on the electrodes 12a and 19a.
  • Is faced down on the other semiconductor die 12 formed with the electrode of the semiconductor die 12 2a and the electrode 19a of the substrate 19 and / or the electrode 12a of the semiconductor die 12 and the electrode 12a of the other semiconductor die 12 are overlapped via the bump 200, and then the bump 200 between the electrodes 12a and 19a is pressed.
  • the metal nanoparticles 101 of the bumps 200 are pressure-sintered to electrically connect the electrodes 12a and 19a. Details will be described below.
  • fine droplets 110 of the metal nano-ink 100 are ejected a plurality of times from the ejection nozzle 26a of the ejection head 26 toward the electrode 12a of the semiconductor die 12 to form bumps 200 on the electrode 12a. .
  • the fine droplets 110 of the metal nano-ink 100 first ejected from the ejection nozzle 26a of the ejection head 26 onto the electrode 12a spread in a thin film shape on the electrode 12a. Since the next droplet 110 of the metal nano ink 100 is deposited on the film of the metal nano ink 100 spread on the electrode 12a, the spread is larger than that of the first droplet 110 directly deposited on the surface of the electrode 12a. Little bulge is formed on the surface of the electrode 12a. The next fine droplet 110 of the metal nano ink 100 is further less spread than the previous two fine droplets 110, and gradually rises.
  • the swell gradually increases, and as shown in FIG. A large conical bump 200 is formed.
  • the height from the electrode 12a of the bump 200 is H 1.
  • Bumps 200 may be formed on 12a.
  • the bump 200 is also formed on the electrode 19a of the substrate 19 by the same method as the formation of the bump 200 on the electrode 12a.
  • the semiconductor die 12 is inverted and sucked and held by the collet 54 as shown in FIG. 6A.
  • the height is detected by the height sensor 57a.
  • the height sensor 57b detects the height position of the surface of the substrate 19 fixed on the bonding stage by vacuum suction.
  • the distance between the surface of the semiconductor die 12 and the surface of the substrate 19 is obtained from the distance data between the height sensor 57a and the semiconductor die 12 and the distance data between the height sensor 57b and the substrate 19 obtained by the sensors 57a and 57b. to calculate the H 0.
  • the position of the bump 200 formed on the electrode 12a of the semiconductor die 12 held by the collet 54 by vacuum suction is aligned with the position of the bump 200 formed on the electrode 19a of the substrate 19.
  • the collet 54 is moved to.
  • the upper / lower two-field camera 57c is advanced between the semiconductor die 12 and the substrate 19, and the alignment mark on the surface of the semiconductor die 12 and the alignment mark on the surface of the substrate 19 are imaged.
  • a position shift between the optical axis 57c and each alignment mark is detected, and the collet 54 is moved by the amount of the shift to align the position of the electrode 12a of the semiconductor die 12 and the relative position of the electrode 19a of the substrate 19.
  • the electrodes 12a of the semiconductor die 12 by the collet 54 is in the right above of the electrode 19a of the substrate 19, the electrodes 12a, the bumps 200 of the height H 1 which is formed on the 19a contact
  • the vacuum of the collet 54 is released as shown in FIG. 6D, and the bumps 200 are formed between the electrode 12a of the semiconductor die 12 and the electrode 19a of the substrate 19.
  • the collet 54 and a collet moving device (not shown) that moves the collet 54 constitute an overlapping mechanism. As shown in FIG.
  • the bumps 200 formed on the electrodes 12a and 19a are integrated into a bonding bump 250, and the semiconductor die 12 is supported by the bonding bump 250.
  • the height of the bonding bump 250 is a height H 2 lower than the total height 2 ⁇ H 1 of the respective bumps 200 before overlapping. However, this height H 2 has a height greater than the height H 3 of the bonding metal 300 to be described later.
  • the substrate 19 is transferred to the pressure heating mechanism 80.
  • the pressure heating mechanism 80 detects the distance between the upper holding plate 82a and the lower holding plate 82b by the gap sensor 85, and sandwiches the semiconductor die 12 and the substrate 19 in the gap, so that the upper holding plate.
  • distance between 82a and lower holding plate 82b is made to be H 5 is a predetermined distance. Wherein the predetermined intervals H 5 is shown in FIG.
  • predetermined height H 3 to the respective electrodes 12a of the bonding metal 300 to be formed between the electrode 19a of the electrode 12a and the substrate 19 of the semiconductor die 12, 19a, the thickness of the semiconductor die 12, and the thickness of the substrate 19 are added.
  • Predetermined height H 3 of the bonding metal 300 shown in FIG. 9C from Figure 9A 15 [mu] m is preferably from 10 [mu] m.
  • the bonding bump 250 is compressed by H 2 -H 3 , and the bonding bump 250 is thereby pressurized.
  • the heaters 89a and 89b are turned on and heating of the bonding bumps 250 is started.
  • the temperature of the upper holding plate 82a and the temperature of the lower holding plate 82b are detected by the temperature sensors 86a and 86b, and the voltage applied to the heaters 89a and 89b is adjusted so that the temperature of the bonding bump 250 is 150 ° C. to 250 ° C.
  • the bonding bump 250 when the bonding bump 250 is heated as indicated by the wavy arrow, the organic dispersant 102 is decomposed and evaporated by heat, and the metal nanoparticles 101 come into contact with each other.
  • the metal nanoparticles 101 come into contact with each other, they are welded to each other at a temperature of about 150 ° C., which is lower than the normal metal welding temperature, and metal links are formed. Then, the dispersant 102 or the organic solvent 105 remaining in the gap of the link formed by the bonding of the metal nanoparticles 101 is pushed out of the link.
  • the dispersant 102 and the organic solvent 105 are volatilized and evaporated from the surface of the bonding bump 250 into the atmosphere by heat, and the dissolved oxygen 122 contained in the bonding bump 250 contains a carbon component contained therein. , Combined with oxygen bubbles 121 and oxygen nanobubbles 125 to form carbon dioxide. Gaseous carbon dioxide has better fluidity than the liquid dispersant 102 and the organic solvent 105, and passes through the link of the metal nanoparticles 101 and moves to the outer peripheral side of the bonding bump 250 to form a bubble 260. To go. The carbon dioxide bubbles 260 are expanded by heating and try to widen the distance between the electrodes 12a and 19a in the height direction.
  • the distance between the electrodes 12a and 19a in the height direction depends on the upper holding plate 82a and the lower holding plate. since the pressed to the height H 3 by the plate 82b, the pressure rise acts as a pressing force compressing the bonded bump 250 as shown by a hollow arrow in FIG. 9A.
  • the bonding bump 250 spreads in the lateral direction due to the internal pressure rise, and the carbon dioxide bubbles 260 generated inside move gradually in the lateral direction while being crushed horizontally, and from the side surface of the bonding bump 250 to the outside. Will be discharged. Then, when pressurized as indicated by a white arrow for a predetermined time and heated as indicated by a wavy arrow, as shown in FIG. 9C, the organic solvent 105 and the dispersant 102 are discharged as volatilization or carbon dioxide.
  • the metal nanoparticles 101 of the bonding bump 250 are bonded to each other to form a bulk bonding metal 300, and the electrodes 12a and 19a are electrically bonded.
  • the carbon component contained in the dispersant 102 and the organic solvent 105 is combined with oxygen during the sintering to be carbon dioxide and discharged to the atmosphere.
  • the outer peripheral cylindrical surface of the bonding bump 250 formed by the metal nano ink 100 is in contact with the atmosphere, the upper and lower surfaces are in contact with the surfaces of the electrodes 12a and 19a, so that the bonding bump 250 is taken into the bonding bump 250 from the surface.
  • the amount of oxygen is small and oxygen is not included in the form of oxygen bubbles 121 and oxygen nanobubbles 125, the carbon content is carbon dioxide inside the bonding bump 250 where oxygen cannot be taken in easily. For this reason, oxygen is insufficient and the carbon content remains without being carbon dioxide. For this reason, as shown in FIG.
  • the sintered joining metal 300 has a dense bulk metal 301 formed on the outer skin portion, but inside the link between which the metal nanoparticles 101 are joined. Things other than metal, such as carbon, remain as voids, resulting in a porous structure 302. Since the porous structure portion 302 has a large electric resistance and a low mechanical strength, the bondability is deteriorated.
  • the bump 200 is formed by the metal nano ink 100 in which oxygen is encapsulated in the form of dissolved oxygen 122, oxygen bubble 121, oxygen nano bubble 125 in the metal nano ink 100 and bonded to form the bonded bump 250.
  • the bonding bump 250 contains a large amount of oxygen inside, the carbon contained in the dispersant 102 and the organic solvent 105 can be discharged to the outside as carbon dioxide. For this reason, generation
  • region of the porous structure part 302 containing a void becomes remarkably small compared with the state of FIG. 10A, and the joining metal 300 with a low electrical resistance and a large mechanical strength can be shape
  • the metal nano ink 100 containing the oxygen bubble 121 and the dissolved oxygen 122 manufactured by the method of blowing oxygen described with reference to FIG. 2 is bumped onto the electrode 12a of the semiconductor die 12 and the electrode 19a of the substrate 19 by a dispenser. 200 is formed, the semiconductor die 12 is inverted, the positions of the electrodes 12a and 19a are aligned, overlapped to form the bonding bump 250, and oxygen is injected when pressure sintering is performed by the pressure heating mechanism 80.
  • the bonded metal 300 after pressure sintering had many porous structures 302 as shown in FIG. 10A.
  • the time for injecting oxygen is as long as about 10 hours and the amount of oxygen contained in the metal nano ink 100 is large, the bonded metal 300 after pressure sintering has a small porous structure 302 as shown in FIG. 10B.
  • the bulk metal 301 became a lot. Further, according to the test results, it was found that sinterability was improved when oxygen containing 5 times or more of the saturated oxygen concentration of the organic solvent 105 was included.
  • the metal nano ink 100 of the present embodiment can suppress the generation of voids during pressure sintering, and can form the bonded metal 300 with low electrical resistance and high mechanical strength. There is an effect.
  • the electrode 12a of the semiconductor die 12 is bonded to the electrode 19a of the substrate 19 has been described.
  • the electrode 12a of the semiconductor die 12 is connected to the electrode 12a of another semiconductor die 12. It is also possible to invert and superimpose and join. Further, the through electrode penetrates the electrode 12a or the semiconductor die 12 in the thickness direction, and the electrodes 12a are overlapped via the bump 200 without inverting the semiconductor die 12, and then the through electrodes are pressed by pressure sintering.
  • the semiconductor die 12 may be three-dimensionally mounted by connecting them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wire Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

 分散剤(102)によって表面コーティングされた金属ナノ粒子(101)を有機溶剤(105)中に混合させる前、または混合させた後、有機溶剤(105)中に酸素を酸素ナノバブル(125)または酸素バブル(121)として注入して、加圧焼結によって半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するための金属ナノインク(100)を製造する。この金属ナノインク(100)の微液滴を電極上に射出して半導体ダイの電極と基板の電極上にバンプを形成し、半導体ダイを反転して基板の上に位置合わせして重ね合わせた後、各電極間のバンプを加圧するとともに加熱し、バンプの金属ナノ粒子を加圧焼結させる。これによって、加圧焼結の際のボイドの発生を抑制する。

Description

金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置
 本発明は、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイ電極とを接合するための金属ナノインク及びその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置に関する。
 半導体ダイなどの電子部品の電極と回路基板上の回路パターンの電極との接合には、半導体ダイなどの電子部品の電極パッド上にはんだバンプを形成し、形成したはんだバンプを回路基板の電極に向けて下向きに配置し、加熱して接合する方法が用いられている(例えば、特許文献1参照)。しかし、特許文献1に記載された従来技術のように、はんだを用いて電子部品を3次元積層接合しようとすると接合の際の加熱によって先に接合した接合部を溶融させてしまい、接合の信頼性が低下してしまう場合がある。このため、はんだバンプを用いずに各電極を接合する方法として金属の超微粒子を含む金属ナノペーストを用いる色々な方法が提案されている。
 特許文献1には、回路基板の端子電極上に銀の超微粉末を溶剤に分散させて調製した銀微粒子ペーストのボールを形成し、半導体素子の電極を回路基板の端子電極上に形成したボール上にフェースダウン法で接合した後に、銀微粒子ペースト中のトルエン等の溶剤を蒸発させた後、100から250℃の温度で焼成して半導体素子と回路基板とを電気的に接合する方法が提案されている。
 特許文献2は、金属ナノ粒子分散液をインクジェットなどによって噴射して、円形形状の底面を有する円柱形状において、高さが底面の半径と同程度あるいはそれ以上の高さとなるように積層した塗布層を形成し、その後低温焼結によって金属焼結柱を作成することができる金属ナノ粒子分散液に関するもので、溶剤の成分を調整することによって、金属ナノ粒子分散液を微液滴として噴射する際には粘性が低く、噴射されてから微液滴が電極表面に着弾するまでの間に溶剤が蒸散して塗布層を柱状構造として積層できるような粘性となり、着弾後には低温焼結の際に金属ナノ粒子間より押し出されることができるような粘性特性を持つ金属ナノ粒子分散液が提案されている。そして、この金属ナノ粒子分散液を用いて配線基板に導電性配線層を形成することが提案されている。
特開平9-326416号公報 再表WO2005/025787号公報
 ところで、金属ナノインクあるいは金属ナノペースト等を焼結させて金属層を形成する場合に、金属層の内部に金属ナノ粒子が焼結して形成された金属以外の部分が形成される。この部分は、ボイドと言われ、電気抵抗を増加させたり、金属層の強度を低下させたりするため、金属ナノインク等を焼結させて金属層とする場合には、ボイドの発生を抑制して分散剤が取れず未反応の金属ナノ粒子の残存を抑制することが必要となる。
 本発明は、加圧焼結の際のボイドの発生を抑制することができる金属ナノインクを提供することを目的とする。また、本発明の他の目的は、ボイドの発生を抑制することができるダイボンディング方法及びダイボンディング装置を提供することを目的とする。
 本発明の金属ナノインクは、加圧焼結によって半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するための金属ナノインクであって、分散剤によって表面コーティングされた金属ナノ粒子と酸素とを有機溶剤中に混合させて調整されていること、を特徴とする。また、本発明の金属ナノインクにおいて、有機溶剤中の酸素濃度が過飽和であること、としても好適である。
 本発明の金属ナノインクの製造方法は、加圧焼結によって半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するための金属ナノインクの製造方法であって、分散剤によって表面コーティングされた金属ナノ粒子を有機溶剤中に混合させる金属ナノ粒子混合工程と、有機溶剤中に酸素を注入する酸素注入工程と、を有することを特徴とする。また、本発明の金属ナノインクの製造方法において、酸素注入工程は、酸素をナノバブルとして有機溶剤中に注入すること、としても好適である。また、金属ナノ粒子混合工程の後に酸素注入工程を行うこととしても良いし、金属ナノ粒子混合工程の前に酸素注入工程を行うこととしても良い。
 本発明のダイボンディング方法は、分散剤によって表面コーティングされた金属ナノ粒子とナノバブルとした酸素とを有機溶剤中に混合させた金属ナノインクの微液滴を射出して電極上にバンプが形成された半導体ダイを金属ナノインクの微液滴を射出して電極上にバンプが形成された基板および/または金属ナノインクの微液滴を射出して電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ工程と、各電極間のバンプを加圧するとともに加熱し、バンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧焼結工程と、を有し、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合する方法である。
 本発明のダイボンディング装置は、分散剤によって表面コーティングされた金属ナノ粒子とナノバブルとした酸素とを有機溶剤中に混合させた金属ナノインクの微液滴を射出して電極上にバンプを形成する射出ヘッドと、バンプが形成された半導体ダイを金属ナノインクの微液滴を射出して電極上にバンプが形成された基板および/または金属ナノインクの微液滴を射出して電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ機構と、各電極間のバンプを加圧するとともに加熱し、バンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧加熱機構と、を有し、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合する装置である。
 本発明の金属ナノインクは、加圧焼結の際にボイドの発生を抑制することができるという効果を奏する。また、本発明のダイボンディング方法及びダイボンディング装置は、ボイドの発生を抑制することができるという効果を奏する。
本発明の実施形態における金属ナノインクを示す説明図である。 本発明の実施形態における金属ナノインクの製造方法を示す説明図である。 本発明の他の実施形態における金属ナノインクを示す説明図である。 本発明の他の実施形態における金属ナノインクの製造方法において有機溶剤に酸素ナノバブルを注入する方法を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際のバンプの形成を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際のバンプの形成を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイの基板の上への重ね合わせを示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイの基板の上への重ね合わせを示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイの基板の上への重ね合わせを示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイの基板の上への重ね合わせを示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の接合バンプの形成を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の接合バンプの形成を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の加圧加熱機構に半導体ダイと基板とを挟み込んだ状態を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイと基板の各電極との加圧焼結を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイと基板の各電極との加圧焼結を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行う際の半導体ダイと基板の各電極との加圧焼結を示す説明図である。 従来技術の金属ナノインクを用いてダイボンディングを行った接合金属の断面を示す説明図である。 本発明の実施形態の金属ナノインクを用いてダイボンディングを行った接合金属の断面を示す説明図である。
 以下、本発明の好適な実施形態について図面を参照しながら説明する。図1に示すように、本実施形態の金属ナノインク100は、有機溶剤105と、導電性金属を微細化した金属ナノ粒子101と、金属ナノ粒子101相互が接触せず分散状態を保持することができるように金属ナノ粒子101の表面にコーティングされている分散剤102とを含み、有機溶剤105の中に混合されている被覆金属ナノ粒子103と、有機溶剤105の中に混合されている酸素バブル121と、有機溶剤105の中に溶解している溶解酸素122とを有している。金属ナノ粒子101は直径5から50nm程度の大きさである。金属ナノ粒子101を構成する微細化した導電性金属としては、金、銀、銅、白金、パラジウム、ニッケル、アルミニウムなどを用いることができる。金属ナノ粒子101の表面にコーティングされる分散剤102としては、アルキルアミン、アルカンチオール、アルカンジオールなどを用いることができる。また液体の有機溶剤105は、室温付近では容易に蒸散することのない比較的に高沸点な非極性溶剤あるいは低極性溶剤、例えば、テルピネオール、ミネラルスピリット、キシレン、トルエン、テトラデカン、ドデカン等の分散溶媒の中に有機バインダーとして機能する熱硬化性樹脂成分を含有させたものを用いることができる。分散剤102によって表面がコーティングされている被覆金属ナノ粒子103はたとえば、直径100nm程度の大きさで、金属ナノ粒子101よりも大きな粒子となっている。
 このような金属ナノインク100は次のようにして製造する。まず、導電性金属を微細化した金属ナノ粒子101の表面に分散剤102をコーティングした被覆金属ナノ粒子103を準備し、その被覆金属ナノ粒子103を有機溶剤105の中に所定の量だけ混合させる。その後、粘度の調整を行い、酸素バブル121の混合していない金属ナノインク100とする。次に、図2に示すように酸素バブル121の混合していない金属ナノインク100を容器131の中に入れ、液面から金属ナノインク100の中に差し込んだ酸素注入ノズル132により酸素を金属ナノインク100の中に注入する。注入された酸素の一部は有機溶剤105の中に溶解して溶解酸素122となるが、多くの酸素は泡となって有機溶剤105の中に分散する。そして、大きな泡は液面に上昇して大気に排出され、細かな泡のみが有機溶剤105中に酸素バブル121として残り、有機溶剤105の中に被覆金属ナノ粒子103と酸素バブル121と溶解酸素122とを含む金属ナノインク100が製造できる。そして、たとえば10時間など、所定の時間だけ酸素の注入をすると、適当な酸素を内包する金属ナノインク100となる。
 図3に示すように、金属ナノインク100は、酸素バブル121に代わって、或いは酸素バブル121と共に酸素ナノバブル125を含むようにしてもよい。酸素ナノバブル125は直径が被覆金属ナノ粒子103と同様の直径の非常に微小な直径のバブルである。図3に示した酸素ナノバブル125を含む金属ナノインク100は、図4に示すような方法によって有機溶剤105の中に酸素ナノバブル125を内包させた後、導電性金属を微細化した金属ナノ粒子101の表面に分散剤102をコーティングした被覆金属ナノ粒子103を有機溶剤105の中に所定の量だけ混合させることによって製造することができる。
 図4に示すように、酸素注入装置150は、有機溶剤105を貯留するタンク133と、有機溶剤105を循環させる循環ポンプ136と、タンク133と循環ポンプ136とを接続する吸い込み管135と、循環ポンプ136の吐出管137と、吐出管137に設けられた酸素注入ノズル138と、酸素注入ノズル138とタンク133との間に設けられ、酸素注入ノズル138から注入された酸素の泡を剪断して100nm程度の酸素ナノバブル125とするインジェクタ140と、インジェクタ140とタンク133とを接続する配管134とを含んでいる。また、タンク133には貯留されている有機溶剤105の中の酸素濃度を検出する酸素濃度センサ145が取り付けられている。
 タンク133に貯留された有機溶剤105は吸い込み管135から循環ポンプ136に吸い込まれて加圧され、吐出管137に吐出される。吐出管137に吐出された有機溶剤105には、酸素注入ノズル138から酸素が泡として注入される。注入された酸素の一部は有機溶剤105に溶解して溶解酸素122となる。溶解しない酸素は大きな泡の状態でインジェクタ140に流入する。インジェクタ140は、先細りのテーパ状の孔が設けられたノズル141とノズル141の内部に設けられた中子142によって構成され、ノズル141と中子142との間にできる円錐筒面の隙間143に酸素の泡を含む有機溶剤105が高速で流れ、隙間143の濡れ面と泡との剪断力によって泡を微小な酸素ナノバブル125にする。インジェクタ140から配管134を通ってタンク133に流出した有機溶剤105には溶解酸素122と酸素ナノバブル125と、それよりも大きな酸素の泡とが含まれている。大きな酸素の泡は、タンク133の有機溶剤105の液面に向かって上昇し、液面から大気に逃げていく。酸素ナノバブル125は有機溶剤105の中に残留する。そして酸素ナノバブル125よりも大きいが、短時間に有機溶剤105の液面から逃げることができない程度の酸素の泡は、再び有機溶剤105と共に吸い込み管135に吸い込まれ、インジェクタ140によってその一部は酸素ナノバブル125になる。そして、このインジェクタ140を含む循環管路を所定の時間だけ循環させると、酸素ナノバブル125と溶解酸素122とを含む有機溶剤105ができる。この際、酸素注入ノズル138から注入する酸素の量はタンク133に取り付けられた酸素濃度センサ145によって検出される有機溶剤105の中の酸素濃度によって適宜調整することができる。
 このようにして製造された有機溶剤105に含まれる酸素ナノバブル125はその直径が非常に小さいので、時間がたっても有機溶剤105の中に残留し続けることができる。また、酸素を酸素ナノバブル125として有機溶剤105の中に混合させると有機溶剤105の中の酸素濃度を飽和濃度以上の過飽和とすることができ、多くの酸素を有機溶剤105の中に含ませることができる。
 以上説明した方法は、粘性の低い有機溶剤105をインジェクタ140に通して酸素ナノバブル125を混合させてから有機溶剤105の中に被覆金属ナノ粒子103を混合させるので、有機溶剤105の中に被覆金属ナノ粒子103を混合させると粘性が上がってしまい、インジェクタ140によって酸素ナノバブルを金属ナノインク100に混合させることができなくなってしまう場合には、特に有効な方法である。
 次に、酸素ナノバブル125を含む有機溶剤105に、導電性金属を微細化した金属ナノ粒子101の表面に分散剤102をコーティングした被覆金属ナノ粒子103を所定量だけ混合させて金属ナノインク100を製造する。酸素ナノバブル125は、非常に粒子径が小さいので、この混合の際にも有機溶剤105の外部にはほとんど散逸せず、多くの酸素を内包する金属ナノインク100を製造することができる。また、分散剤102の量を多くしたり、有機溶剤105に粘性を調整する成分を添加したりして、後で説明する射出ヘッドの形状に合わせた粘度を持つ金属ナノインク100としてもよい。
 図5Aから図9Cを参照しながら以上説明したようにして製造された金属ナノインク100を用いて基板19の電極19aと半導体ダイ12の電極12aとを接合するダイボンディング方法について説明する。
 このダイボンディング方法は、半導体ダイ12の電極12aと基板19の電極19aおよび/または半導体ダイ12の電極12aと他の半導体ダイ12の電極12aとを接合するためのダイボンディング方法であって、分散剤102によって表面コーティングされた金属ナノ粒子101と酸素とを有機溶剤105中に混合させた金属ナノインク100の微液滴110を射出して電極12a,19a上にバンプ200が形成された半導体ダイ12を金属ナノインク100の微液滴110を射出して電極12a,19a上にバンプ200が形成された基板19および/または金属ナノインク100の微液滴110を射出して電極12a,19a上にバンプ200が形成された他の半導体ダイ12の上にフェースダウンし、半導体ダイ12の電極12aと基板19の電極19aおよび/または半導体ダイ12の電極12aと他の半導体ダイ12の電極12aとをバンプ200を介して重ね合わせた後、各電極12a,19a間のバンプ200を加圧するとともに加熱し、バンプ200の金属ナノ粒子101を加圧焼結させて各電極12a,19a間を電気的に接合するものである。以下、詳細に説明する。
 図5Aに示すように、金属ナノインク100の微液滴110を射出へッド26の射出ノズル26aから半導体ダイ12の電極12aに向かって複数回射出して、電極12a上にバンプ200を形成する。
 図5Bに示すように射出へッド26の射出ノズル26aから最初に電極12a上に射出された金属ナノインク100の微液滴110は、電極12aの上に薄い膜状に広がる。次の金属ナノインク100の微液滴110は、電極12aの上に広がった金属ナノインク100の膜の上に付着するので、電極12aの表面に直接付着する最初の微液滴110よりもその広がりが少なく、電極12aの表面に若干盛り上がりを形成する。その次の金属ナノインク100の微液滴110は先の2つの微液滴110よりも更に広がりが少なくなり、次第に盛り上がりが大きくなってくる。このように、金属ナノインク100の微液滴110を電極12aの上に順次射出していくと、次第に盛り上がりが大きくなり、何回かの射出によって、図5Bに示すように、上に行くほど傾斜の大きな上広がりの円錐形のバンプ200が形成される。バンプ200の電極12aからの高さはHである。射出へッド26にはインクジェットに用いられるような射出へッドを用いることによって多数の微液滴110を短時間で射出積層することができる。インクジェットヘッドによって射出を行う場合には、金属ナノインク100の粘度を低く調整するようにする。また、粘度の高い場合や、酸素ナノバブル125よりも大きい酸素バブル121を含む金属ナノインク100を使用する場合には、射出ヘッド26でのキャビィテーションを避けるためにディスペンサなどを用いて液滴を電極12aの上にバンプ200を形成するようにしても良い。
 電極12aの上へのバンプ200の形成と同様の方法によって、基板19の電極19aの上にもバンプ200を形成する。
 半導体ダイ12の電極12aと基板19の電極19aの上にそれぞれバンプ200を形成したら、図6Aに示すように、半導体ダイ12を反転させてコレット54に吸引、保持させ、半導体ダイ12の表面の高さを高さセンサ57aで検出する。また、ボンディングステージの上に真空吸着によって固定された基板19の表面の高さ位置を高さセンサ57bによって検出する。そして、各センサ57a,57bによって取得した高さセンサ57aと半導体ダイ12の距離のデータ及び高さセンサ57bと基板19との距離のデータから、半導体ダイ12の表面と基板19の表面との間隔Hを計算する。
 図6Bに示すように、コレット54に真空吸着により保持された半導体ダイ12の電極12a上に形成されたバンプ200の位置を基板19の電極19aの上に形成されたバンプ200の位置に合わせるようにコレット54を移動させる。そして、半導体ダイ12と基板19との間に上下二視野カメラ57cを進出させ、半導体ダイ12表面の位置合わせマークと基板19表面の位置合わせマークとを撮像し、撮像した画像から上下二視野カメラ57cの光軸と各位置合わせマークの位置ずれを検出し、そのずれ量分だけコレット54を移動させ、半導体ダイ12の電極12aの位置と基板19の電極19aの相対位置を合わせる。
 図6C及び図7Aに示すように、コレット54によって半導体ダイ12の電極12aが基板19の電極19aの直上にあって、各電極12a,19aに形成された高さHの各バンプ200が接触しない程度の高さになるよう、半導体ダイ12をフェースダウンさせた後、図6Dに示すように、コレット54の真空を開放し、半導体ダイ12の電極12aと基板19の電極19aとをバンプ200を介して重ね合わせる。ここで、コレット54と、コレット54を移動させる図示しないコレット移動装置は、重ね合わせ機構を構成する。図7Bに示すように、重ね合わせられると、各電極12a,19aの上に形成されたバンプ200は一体となって接合バンプ250となり、半導体ダイ12は接合バンプ250によって支持された状態となる。接合バンプ250の高さは重ね合わせ前の各バンプ200の合計高さ2×Hよりも低い高さHとなる。ただし、この高さHは、後に説明する接合金属300の高さHよりも高い高さとなっている。
 半導体ダイ12の電極12aが基板19の電極19aに重ね合わされると、基板19は、加圧加熱機構80に搬送される。図8に示すように、加圧加熱機構80は隙間センサ85によって上部保持板82aと下部保持板82bとの間隔を検出しながらその隙間に半導体ダイ12と基板19とを挟みこみ、上部保持板82aと下部保持板82bとの間隔が所定の間隔であるHとなるようにする。ここで所定の間隔Hは、図9Aから図9Cに示す、半導体ダイ12の電極12aと基板19の電極19aとの間に形成する接合金属300の所定の高さHに各電極12a,19a及び半導体ダイ12の厚さと基板19の厚さを加えたものである。図9Aから図9Cに示す接合金属300の所定の高さHは、10μmから15μmが好ましい。高さHは先に説明した接合バンプ250の高さHよりも低くなっているので、加圧加熱機構80の上部保持板82aと下部保持板82bとの間に半導体ダイ12と基板19の挟みこみが終了した際には、接合バンプ250はH-Hだけ圧縮され、これによって接合バンプ250は加圧される。
 上部保持板82aと下部保持板82bとの間への半導体ダイ12と基板19の挟みこみが終了したら、ヒータ89a,89bをオンとして、接合バンプ250の加熱を開始する。上部保持板82aの温度と下部保持板82bの温度は温度センサ86a,86bによって検出され、接合バンプ250の温度が150℃から250℃となるように、ヒータ89a,89bへの印加電圧が調整される。ヒータ89a,89bによって接合バンプ250が加熱されている間、各電極12a,19aの高さ方向の間隔は、上部保持板82a,下部保持板82bによって高さHに保持される。
 図9Aに示すように、接合バンプ250が波線矢印で示されるように加熱されると有機物である分散剤102が熱によって分解されて蒸散し、金属ナノ粒子101同士が接触するようになる。金属ナノ粒子101は接触すると通常の金属の溶着温度よりも低い150℃程度の温度で互いに溶着して金属のリンクが形成されていく。そして、金属ナノ粒子101の結合によってできたリンクの隙間に残った分散剤102或いは有機溶剤105はリンクの外側に押し出されていく。また、分散剤102、有機溶剤105は熱によって接合バンプ250の表面から大気中に揮発、蒸散すると共に、その中に含まれている炭素成分が接合バンプ250の中に含まれている溶解酸素122、酸素バブル121、酸素ナノバブル125と結合して二酸化炭素となる。気体の二酸化炭素は液体状態の分散剤102、有機溶剤105よりも流動性がよく、金属ナノ粒子101のリンクの間を抜けて接合バンプ250の外周側に移動しながら結合して気泡260となっていく。この二酸化炭素の気泡260は加熱により膨張し、各電極12a,19aの高さ方向の間隔を広げようとするが、各電極12a,19aの高さ方向の間隔は、上部保持板82a,下部保持板82bによって高さHに押さえられているので、圧力上昇分は図9Aの白抜き矢印で示すように接合バンプ250を圧縮する加圧力として作用する。
 図9Bに示すように、内部の圧力上昇によって接合バンプ250は横方向に広がり、内部に発生した二酸化炭素の気泡260は横長に潰れながら、次第に横方向に移動し、接合バンプ250の側面から外部に排出されていく。そして、所定の時間だけ白抜き矢印で示すように加圧され、波線矢印で示すように加熱されると、図9Cに示すように、有機溶剤105と分散剤102は揮発または二酸化炭素として排出され、接合バンプ250の金属ナノ粒子101同士が互いに接合し、バルクの接合金属300となり、各電極12a,19aとが電気的に接合される。
 このように、分散剤102や有機溶剤105に含まれている炭素成分は、焼結の際に酸素と結合して二酸化炭素となって大気に排出される。しかし、金属ナノインク100によって成形される接合バンプ250は外周の円筒面は大気に触れているが上下面は各電極12a,19aの面に接しているため、表面から接合バンプ250の内部に取り込まれる酸素の量は少なく、内部に酸素バブル121、酸素ナノバブル125のような形で酸素を内包していない場合には、酸素を容易に取り込めない接合バンプ250の内部では、炭素分を二酸化炭素とするための酸素が不足し、炭素分が二酸化炭素とならずに残ってしまう。このため、図10Aに示すように、焼結後の接合金属300は、外皮の部分には緻密なバルク金属301が形成されるものの、内部には、金属ナノ粒子101が接合したリンクの間に炭素分などの金属以外のものがボイドとして残り、ポーラス構造部302となってしまう。ポーラス構造部302は電気抵抗も大きく、機械的強度も低いため、接合性が低下してしまう。
 この様に、金属ナノインク100の中に溶解酸素122、酸素バブル121、酸素ナノバブル125のような形で酸素を内包させた金属ナノインク100によってバンプ200を成形し、接合して接合バンプ250を成形すると、接合バンプ250は内部に多くの酸素分を含むため、分散剤102、有機溶剤105に含まれている炭素分を二酸化炭素として外部に排出することができる。このため、加圧焼結の際のボイドの発生を抑制でき、図10Bに示すように、接合金属300のバルク金属301の部分が外皮部分から内部にまで及び、内部にもバルク金属301の部分が成形される。そして、ボイドを含むポーラス構造部302の領域は図10Aの状態に比較して格段に少なくなり、電気抵抗が低く、機械的強度が大きい接合金属300を成形することができる。また、金属ナノインク100の中に溶解酸素122、酸素バブル121、酸素ナノバブル125のような形で酸素を内包させた金属ナノインク100によって接合を行うと、分散剤が取れず未反応の金属ナノ粒子の残存を抑制することができるため、バルク金属301の部分を多くすることができる。
 金属ナノインク100に内包させる酸素の量はなるべく多くしたほうが望ましく、好ましくは有機溶剤105の酸素の飽和濃度以上に酸素を内包させることがよい。試験結果によると、図2を参照して説明した酸素を吹き込む方法によって製造した酸素バブル121、溶解酸素122を含む金属ナノインク100をディスペンサによって半導体ダイ12の電極12aと基板19の電極19aとにバンプ200を形成し、半導体ダイ12を反転させて各電極12a,19aの位置を合わせてから重ね合わせ、接合バンプ250とした後、加圧加熱機構80によって加圧焼結した場合、酸素を注入する時間が1時間程度と短く、金属ナノインク100の酸素の内包量が少ない場合には、加圧焼結後の接合金属300は図10Aに示すようなポーラス構造部302が多いものとなった。一方、酸素を注入する時間が10時間程度と長く、金属ナノインク100の酸素の内包量が多い場合には、加圧焼結後の接合金属300は図10Bに示すようなポーラス構造部302が少なく、バルク金属301の多いものとなった。また、試験結果によると、有機溶剤105の酸素の飽和濃度の5倍以上の酸素を内包させると焼結性が向上するという結果が得られた。
 以上説明したように、本実施形態の金属ナノインク100は、加圧焼結の際にボイドの発生を抑えることができ、電気抵抗が低く、機械的強度が大きい接合金属300を成形することができるという効果を奏する。
 以上説明した金属ナノインク100を用いた接合方法では、基板19の電極19aに半導体ダイ12の電極12aを接合する場合について説明したが、半導体ダイ12の電極12aを他の半導体ダイ12の電極12aの上に反転して重ね合わせて接合することとしても良い。また、電極12aか半導体ダイ12を厚み方向に貫通する貫通電極であり、半導体ダイ12を反転せずに各電極12aをパンプ200を介して重ね合わせた後、加圧焼結によって各貫通電極の間を接続して半導体ダイ12を3次元実装するようにしても良い。
 本発明は以上説明した実施形態に限定されるものではなく、請求の範囲により規定されている本発明の技術的範囲ないし本質から逸脱することない全ての変更及び修正を包含するものである。
 12 半導体ダイ、12a,19a 電極、19 基板、26 射出ヘッド、26a 射出ノズル、54 コレット、57a,57b 高さセンサ、57c 上下二視野カメラ、80 加圧加熱機構、82a 上部保持板、82b 下部保持板、85 隙間センサ、86a,86b 温度センサ、89a,89b ヒータ、100 金属ナノインク、101 金属ナノ粒子、102 分散剤、103 被覆金属ナノ粒子、105 有機溶剤、110 微液滴、121 酸素バブル、122 溶解酸素、125 酸素ナノバブル、131 容器、132 酸素注入ノズル、133 タンク、134 配管、135 吸込み管、136 循環ポンプ、137 吐出管、138 酸素注入ノズル、140 インジェクタ、141 ノズル、142 中子、143 隙間、145 酸素濃度センサ、150 酸素注入装置、200 バンプ、250 接合バンプ、260 気泡、300 接合金属、301 バルク金属、302 ポーラス構造部。

Claims (8)

  1.  加圧焼結によって半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するための金属ナノインクであって、
     分散剤によって表面コーティングされた金属ナノ粒子と酸素とを有機溶剤中に混合させて調整されている金属ナノインク。
  2.  請求項1に記載の金属ナノインクであって、
     有機溶剤中の酸素濃度が過飽和である金属ナノインク。
  3.  加圧焼結によって半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するための金属ナノインクの製造方法であって、
     分散剤によって表面コーティングされた金属ナノ粒子を有機溶剤中に混合させる金属ナノ粒子混合工程と、
     有機溶剤中に酸素を注入する酸素注入工程と、
     を有する金属ナノインクの製造方法。
  4.  請求項3に記載の金属ナノインクの製造方法であって、
     酸素注入工程は、酸素をナノバブルとして有機溶剤中に注入する金属ナノインクの製造方法。
  5.  請求項3に記載の金属ナノインクの製造方法であって、
     金属ナノ粒子混合工程の後に酸素注入工程を行う金属ナノインクの製造方法。
  6.  請求項3に記載の金属ナノインクの製造方法であって、
     金属ナノ粒子混合工程の前に酸素注入工程を行う金属ナノインクの製造方法。
  7.  ダイボンディング方法であって、
     分散剤によって表面コーティングされた金属ナノ粒子とナノバブルとした酸素とを有機溶剤中に混合させた金属ナノインクの微液滴を射出して電極上にバンプが形成された半導体ダイを金属ナノインクの微液滴を射出して電極上にバンプが形成された基板および/または金属ナノインクの微液滴を射出して電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ工程と、
     各電極間のバンプを加圧するとともに加熱し、バンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧焼結工程と、
     を有し、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するダイボンディング方法。
  8.  ダイボンディング装置であって、
     分散剤によって表面コーティングされた金属ナノ粒子とナノバブルとした酸素とを有機溶剤中に混合させた金属ナノインクの微液滴を射出して電極上にバンプを形成する射出ヘッドと、
     バンプが形成された半導体ダイを金属ナノインクの微液滴を射出して電極上にバンプが形成された基板および/または金属ナノインクの微液滴を射出して電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ機構と、
     各電極間のバンプを加圧するとともに加熱し、バンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧加熱機構と、
     を有し、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とを接合するダイボンディング装置。
PCT/JP2009/062430 2008-08-01 2009-07-08 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置 WO2010013588A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801300513A CN102124550B (zh) 2008-08-01 2009-07-08 金属纳米油墨及其制造方法,使用该金属纳米油墨的焊接方法及焊接装置
KR1020117000325A KR101039655B1 (ko) 2008-08-01 2009-07-08 금속 나노 잉크와 그 제조방법 및 그 금속 나노 잉크를 사용하는 다이본딩 방법 및 다이본딩 장치
US13/055,747 US8328928B2 (en) 2008-08-01 2009-07-08 Metal nanoink and process for producing the metal nanoink, and die bonding method and die bonding apparatus using the metal nanoink
DE112009001706T DE112009001706T5 (de) 2008-08-01 2009-07-08 Metallische Nanotinte und Verfahren zur Herstellung der metallischen Nanotinte, sowie Verfahren zum Chipbonden und Vorrichtung zum Chipbonden unter Verwendung der metallischen Nanotinte
US13/590,775 US20130001280A1 (en) 2008-08-01 2012-08-21 Metal nanoink and process for producing the metal nanoink, and die bonding method and die bonding apparatus using the metal nanoink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-200083 2008-08-01
JP2008200083A JP4454673B2 (ja) 2008-08-01 2008-08-01 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/590,775 Division US20130001280A1 (en) 2008-08-01 2012-08-21 Metal nanoink and process for producing the metal nanoink, and die bonding method and die bonding apparatus using the metal nanoink

Publications (1)

Publication Number Publication Date
WO2010013588A1 true WO2010013588A1 (ja) 2010-02-04

Family

ID=41610287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062430 WO2010013588A1 (ja) 2008-08-01 2009-07-08 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置

Country Status (7)

Country Link
US (2) US8328928B2 (ja)
JP (1) JP4454673B2 (ja)
KR (1) KR101039655B1 (ja)
CN (1) CN102124550B (ja)
DE (1) DE112009001706T5 (ja)
TW (1) TWI391452B (ja)
WO (1) WO2010013588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019031200A1 (ja) * 2017-08-08 2020-04-16 株式会社東海理化電機製作所 操作検出装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090748A1 (ja) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、その製法及び製造装置
WO2012173187A1 (ja) * 2011-06-16 2012-12-20 新日鉄住金化学株式会社 電子部品の接合材、接合用組成物、接合方法、及び電子部品
US20130256894A1 (en) * 2012-03-29 2013-10-03 International Rectifier Corporation Porous Metallic Film as Die Attach and Interconnect
JP6214273B2 (ja) * 2013-08-08 2017-10-18 三菱電機株式会社 金属ナノ粒子を用いた接合構造および金属ナノ粒子を用いた接合方法
US10192847B2 (en) * 2014-06-12 2019-01-29 Asm Technology Singapore Pte Ltd Rapid cooling system for a bond head heater
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
DE102014114093B4 (de) * 2014-09-29 2017-03-23 Danfoss Silicon Power Gmbh Verfahren zum Niedertemperatur-Drucksintern
DE102014114097B4 (de) 2014-09-29 2017-06-01 Danfoss Silicon Power Gmbh Sinterwerkzeug und Verfahren zum Sintern einer elektronischen Baugruppe
DE102014114095B4 (de) 2014-09-29 2017-03-23 Danfoss Silicon Power Gmbh Sintervorrichtung
DE102014114096A1 (de) 2014-09-29 2016-03-31 Danfoss Silicon Power Gmbh Sinterwerkzeug für den Unterstempel einer Sintervorrichtung
US11289445B2 (en) * 2018-12-24 2022-03-29 Asm Technology Singapore Pte Ltd Die bonder incorporating rotatable adhesive dispenser head
KR102635492B1 (ko) * 2020-08-10 2024-02-07 세메스 주식회사 본딩 장치 및 본딩 방법
CN113426499B (zh) * 2021-07-08 2022-10-14 成都齐碳科技有限公司 微结构、生物芯片、成膜方法、基因测序装置及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299833A (ja) * 2001-03-30 2002-10-11 Harima Chem Inc 多層配線板およびその形成方法
JP2004327908A (ja) * 2003-04-28 2004-11-18 Ricoh Co Ltd 光学電子デバイスの接合方法及び接合構造
JP2007177103A (ja) * 2005-12-28 2007-07-12 Dainippon Ink & Chem Inc 導電性塗料および導電性塗料の製造方法
JP2008218474A (ja) * 2007-02-28 2008-09-18 Shinkawa Ltd ボンディング装置及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090609A (en) * 1989-04-28 1992-02-25 Hitachi, Ltd. Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
JPH09326416A (ja) 1996-06-05 1997-12-16 Kokusai Electric Co Ltd 半導体素子の実装方法およびその製品
JP2002076589A (ja) * 2000-08-31 2002-03-15 Hitachi Ltd 電子装置及びその製造方法
JP3711953B2 (ja) * 2002-03-15 2005-11-02 株式会社デンソー ガスセンサ用センシング膜の製造方法
JP2005081501A (ja) * 2003-09-09 2005-03-31 Ulvac Japan Ltd 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法
CN100519012C (zh) 2003-09-12 2009-07-29 独立行政法人产业技术综合研究所 能够以微细的液滴的形状喷射、层叠涂布的金属纳米粒子分散液
WO2005115598A2 (en) * 2004-05-25 2005-12-08 The Board Of Trustees Of The University Of Arkansas System and method for dissolving gases in liquids
US7393771B2 (en) * 2004-06-29 2008-07-01 Hitachi, Ltd. Method for mounting an electronic part on a substrate using a liquid containing metal particles
KR100860446B1 (ko) * 2006-04-12 2008-09-25 주식회사 엘지화학 금속 나노 입자의 분산 보조제 및 이를 포함하는 금속 나노잉크
EP2012352A4 (en) 2006-04-24 2012-07-25 Murata Manufacturing Co ELECTRONIC COMPONENT, ELECTRONIC COMPONENT DEVICE THEREFOR AND METHOD OF MANUFACTURING THEREOF
US20080182011A1 (en) * 2007-01-26 2008-07-31 Ng Hou T Metal and metal oxide circuit element ink formulation and method
AU2008312607A1 (en) * 2007-10-15 2009-04-23 Nanoink, Inc. Lithography of nanoparticle based inks
US7704866B2 (en) * 2008-03-18 2010-04-27 Innovalight, Inc. Methods for forming composite nanoparticle-metal metallization contacts on a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299833A (ja) * 2001-03-30 2002-10-11 Harima Chem Inc 多層配線板およびその形成方法
JP2004327908A (ja) * 2003-04-28 2004-11-18 Ricoh Co Ltd 光学電子デバイスの接合方法及び接合構造
JP2007177103A (ja) * 2005-12-28 2007-07-12 Dainippon Ink & Chem Inc 導電性塗料および導電性塗料の製造方法
JP2008218474A (ja) * 2007-02-28 2008-09-18 Shinkawa Ltd ボンディング装置及び方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019031200A1 (ja) * 2017-08-08 2020-04-16 株式会社東海理化電機製作所 操作検出装置

Also Published As

Publication number Publication date
DE112009001706T5 (de) 2011-05-05
CN102124550A (zh) 2011-07-13
US20130001280A1 (en) 2013-01-03
KR20110016488A (ko) 2011-02-17
CN102124550B (zh) 2013-04-24
JP2010040676A (ja) 2010-02-18
KR101039655B1 (ko) 2011-06-08
JP4454673B2 (ja) 2010-04-21
TW201009029A (en) 2010-03-01
US8328928B2 (en) 2012-12-11
US20110114708A1 (en) 2011-05-19
TWI391452B (zh) 2013-04-01

Similar Documents

Publication Publication Date Title
JP4454673B2 (ja) 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置
US7743964B2 (en) Bonding apparatus and bonding method
JP4848674B2 (ja) 樹脂金属複合導電材料およびその製造方法
TWI286361B (en) An electronic device package and electronic equipment
JP2008218474A5 (ja)
TWI304377B (en) Method of manufacturing multi-layered substrate
CN106068059B (zh) 电路部件的连接结构、连接方法以及连接材料
CN102792787A (zh) 多层布线基板、多层布线基板的制造方法、及通路膏糊
WO2009125609A1 (ja) ボンディング装置及びボンディング方法
JP2004146694A (ja) 多層回路基板の製造方法およびそれにより製造される多層回路基板
Zacharatos et al. Laser-induced forward transfer (LIFT) technique as an alternative for assembly and packaging of electronic components
JP4369528B2 (ja) ボンディング装置及び方法
JP2010140928A (ja) 半導体装置ならびに半導体ダイの実装方法
JP2007150051A (ja) 基板上への半田パターン形成方法
JP5103206B2 (ja) セラミック多層基板の製造方法
JP2010098156A (ja) 半導体装置、半導体装置の製造方法、電子機器
JP5169171B2 (ja) 電子部品の接合方法
JP2011009376A (ja) バンプ形成方法及び半導体装置の製造方法
JP2004047816A (ja) 多層配線板の製造方法、多層配線板
JP2009129986A (ja) セラミック多層基板の製造方法
TW202349802A (zh) 連接結構體之製造方法、膜結構體、及膜結構體之製造方法
Pan et al. Solder jet printhead for deposition of molten metal drops
Chen et al. Direct printing for next generation high density packaging
JP2006128272A (ja) 半導体装置の製造方法、半導体装置、電子機器
JP2009170683A (ja) 多層基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130051.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802831

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117000325

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13055747

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001706

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase

Ref document number: 09802831

Country of ref document: EP

Kind code of ref document: A1