WO2012173187A1 - 電子部品の接合材、接合用組成物、接合方法、及び電子部品 - Google Patents

電子部品の接合材、接合用組成物、接合方法、及び電子部品 Download PDF

Info

Publication number
WO2012173187A1
WO2012173187A1 PCT/JP2012/065242 JP2012065242W WO2012173187A1 WO 2012173187 A1 WO2012173187 A1 WO 2012173187A1 JP 2012065242 W JP2012065242 W JP 2012065242W WO 2012173187 A1 WO2012173187 A1 WO 2012173187A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
bonding material
joining
nanoparticles
electronic parts
Prior art date
Application number
PCT/JP2012/065242
Other languages
English (en)
French (fr)
Inventor
巽 宏平
山田 勝弘
英朗 野本
井上 修治
河野 巧
Original Assignee
新日鉄住金化学株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社, 学校法人早稲田大学 filed Critical 新日鉄住金化学株式会社
Priority to JP2013520582A priority Critical patent/JP6061427B2/ja
Publication of WO2012173187A1 publication Critical patent/WO2012173187A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/05186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29486Coating material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20106Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20107Temperature range 250 C=<T<300 C, 523.15K =<T< 573.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20108Temperature range 300 C=<T<350 C, 573.15K =<T< 623.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20109Temperature range 350 C=<T<400 C, 623.15K =<T< 673.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/2011Temperature range 400 C=<T<450 C, 673.15K =<T< 723.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a bonding material and a bonding composition used for bonding electronic components such as semiconductor devices, a method for bonding electronic components using them, and an electronic component such as a semiconductor device manufactured using them.
  • SiC semiconductors are attracting attention as energy conversion devices that enable energy saving.
  • SiC single crystal quality and device technology practical application of SiC semiconductor devices is finally being realized. Since this SiC semiconductor has a large band gap, the SiC semiconductor device itself is characterized in that it can be used at high voltage and high temperature for automobiles and transportation equipment. However, a sufficient study has not been made on the mounting technology required for actual use as a device.
  • the conventional mounting technology assumes a Si device and has not been assumed to be used in a high temperature environment of 150 ° C. or higher, for example. For this reason, there has been a demand for a bonding technique such as die bonding for high-temperature applications that cannot be used with conventional Si devices such as automobiles.
  • a bonding technique such as die bonding for high-temperature applications that cannot be used with conventional Si devices such as automobiles.
  • die bonding materials to high-temperature packaging, first of all, by using nanoparticles as the high melting point material, it becomes surface active at low temperatures, and the characteristics of particle bonding, grain growth, and reaction with the surface to be joined are utilized. I pay attention to it. However, sufficient research has not been conducted on the bonding process of the nanoparticles. There are few reports on metals other than precious metals.
  • SiC semiconductors are semiconductors that can be used at high temperatures instead of conventional Si semiconductors, but efforts to solve the problems of high-temperature mounting technology are still insufficient.
  • low melting point metals such as solder materials have been used for die bonding. Solder materials can be bonded at low temperatures, but their melting points are low, so that devices used in high temperature environments cannot be bonded.
  • a high melting point Ni brazing material or the like needs to be heated to about 800 ° C. or more. At this temperature, the heat resistance of peripheral materials is not sufficient even when mounting a SiC semiconductor, and the high temperature heat resistance of electrode materials and the like is also low. Not enough.
  • Ni that is relatively inexpensive and has corrosion resistance and heat resistance.
  • Ni fine particles having a particle size of 100 nm or less have a problem that the surface free energy is large, aggregation is likely to occur, and usability is poor.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a bonding material for electronic parts having good usability by using a Ni material which is cheaper than Ag and can be used at a high temperature. That is.
  • the bonding material for electronic components of the present invention is a bonding material for electronic components used for bonding electronic components, Comprising metal fine particles composed of a metal selected from the group consisting of Ni and Ni alloys, and an oxygen-containing film covering the metal fine particles, and comprising metal nanoparticles having an average particle diameter of 100 nm or less To do.
  • the oxygen-containing film may be an oxide film or a hydroxide film having a thickness in the range of 1 nm to 8 nm.
  • the metal nanoparticles may further include a reductive organic film of one or more molecular films that further coats the outside of the oxygen-containing film.
  • the reducing organic substance may be an amine compound.
  • the bonding material for electronic parts of the present invention contains carbon in the range of 0.1 wt% to 5.0 wt% and oxygen in the range of 0.5 wt% to 10.0 wt%. It may be a thing.
  • the coefficient of variation CV of the particle diameter of the metal fine particles may be 0.2 or less.
  • the metal nanoparticles may contain 5% or more of particles having a particle diameter in the range of 10 nm to 100 nm.
  • the metal nanoparticles may contain 40% or more of the particles having a particle diameter in the range of 50 nm to 100 nm.
  • the metal nanoparticles may contain 40% or more of the particles having a particle diameter in the range of 10 nm to 50 nm.
  • the bonding material for electronic parts of the present invention may have a crystallite diameter of the metal fine particles measured by X-ray diffraction of 30 nm or less.
  • the electronic component bonding material of the present invention may be one in which the metal nanoparticles are synthesized by a wet microwave irradiation method.
  • the electronic component bonding composition of the present invention contains any one of the electronic component bonding materials described above and a volatile solution, and the bonding material is dispersed in the volatile solution.
  • composition for joining electronic parts of the present invention may be in the form of a slurry or a paste.
  • the electronic component of the present invention is formed by forming a joint portion with any one of the above-described joining materials.
  • the joining portion may be formed between the back surface of the semiconductor element and the substrate, between the semiconductor electrode and the substrate electrode, or between the semiconductor electrode and the semiconductor electrode.
  • the electronic component of the present invention may be bonded through a heating process of 200 ° C. or higher and 450 ° C. or lower.
  • the electronic component bonding method of the present invention is to perform bonding by heating a bonding material for any of the above electronic components to a temperature of 200 ° C. or higher and 450 ° C. or lower.
  • the bonding material of the electronic component of the present invention includes metal nanoparticles having an oxygen-containing coating covering metal fine particles selected from the group consisting of Ni and Ni alloys, the surface free energy is suppressed to be small, and the metal fine particles are aggregated. Hard to occur. Moreover, since the metal nanoparticles used for the bonding material of the present invention are mainly composed of Ni or Ni alloy, they are less expensive than Ag, have excellent heat resistance, and are less likely to cause migration. Furthermore, since the metal nanoparticles used for the bonding material of the present invention have an average particle diameter of 100 nm or less, the metal nanoparticles can be bonded at a temperature of about 450 ° C. or less, and sufficient bonding strength can be obtained. Therefore, the bonding material of the present invention has high utility value for bonding electronic parts such as semiconductor devices.
  • the bonding material of the electronic component according to the present embodiment has an average particle diameter of 100 nm or less, and contains Ni or Ni alloy fine particles (hereinafter, these may be collectively referred to simply as “metal particles”). It contains metal nanoparticles with a coating.
  • FIG. 1 shows a cross-sectional structure of Ni nanoparticles 1 as “metal nanoparticles” according to an embodiment of the present invention.
  • the Ni nanoparticle 1 includes an oxygen-containing film 5 on the surface of the metal particle 3.
  • FIG. 2 shows a cross-sectional structure of Ni nanoparticles 1A as “metal nanoparticles” according to another embodiment of the present invention.
  • This Ni nanoparticle 1 ⁇ / b> A includes a metal particle 3, an oxygen-containing film 5, and a reducing organic material film 7 of one molecular film or more that covers the outside of the oxygen-containing film 5.
  • the Ni nanoparticles 1 and 1A can be used as they are as bonding materials for electronic components.
  • the metal particles 3 are Ni or Ni alloy fine particles. When Ni alloy is used, it contains one or more metals selected from Au, Ag, Pt, Pd, etc. as a metal other than Ni from the viewpoint of controlling the particle diameter of fine particles or adjusting the sintering temperature. May be. Further, the Ni alloy may contain Cu and Al as metals other than nickel from the viewpoint of improving the conductivity of Ni and softening it to relieve stress and reduce defects such as cracks.
  • the metal particles 3 preferably have a crystallite diameter of Ni or Ni alloy measured by X-ray diffraction of 30 nm or less from the viewpoint of improving sinterability. If the crystallite diameter exceeds 30 nm, the sintering temperature increases and the adhesive strength may decrease, which is not preferable.
  • Ni nanoparticles 1 and 1A if the particle size of the metal particles 3 is small, it is easy to sinter by heating at the time of joining, but there is a drawback that oxygen is easily taken up. On the other hand, when the particle diameter of the metal particles 3 is large, it is difficult to sinter at the time of heating, but there is an aspect in which oxygen uptake can be suppressed. Moreover, it is preferable to combine a thing with a large particle diameter and a small thing as the metal particle 3 used for Ni nanoparticle 1 and 1A also from a viewpoint of raising the density as a joining material and improving adhesiveness more.
  • the coefficient of variation CV of the particle diameter is 0.2 or less.
  • the coefficient of variation CV is preferably 0.2 or less.
  • the coefficient of variation CV with a particle size of 50 nm or less is 0.2 or less
  • the coefficient of variation CV with a particle size of 50 nm or more is 0.2 or less.
  • the coefficient of variation CV is set to 0.2 or less, so that it is easy to achieve both improvement in density as a bonding material and improvement in adhesive strength.
  • the Ni nanoparticles 1 and 1A include 40% or more of particles having a particle diameter in the range of 50 nm to 100 nm, or 40% or more of particles having a particle diameter in the range of 10 nm to 50 nm. It is more preferable.
  • the oxygen-containing film 5 formed on the surface of the metal particle 3 is preferably, for example, an oxide film or a hydroxide film. More specifically, a film of, for example, nickel oxide (NiO) or nickel hydroxide (Ni (OH) 2 ) is formed on the surface of the metal particle 3 as the oxygen-containing film 5. Such an oxygen-containing film 5 may be a film partially present on the surface of the metal particle 3 or a film covering the entire surface of the particle.
  • the thickness of the oxygen-containing film 5 is preferably in the range of 1 to 8 nm, for example, from the viewpoint of effectively suppressing aggregation of the metal particles 3.
  • the Ni nanoparticles 1 preferably contain oxygen in the range of 0.5 to 10.0% by weight with respect to the total weight. Note that the thickness of the oxygen-containing film 5 is determined by observing the surface of the randomly extracted 200 metal particles 3 with a transmission electron microscope with an acceleration voltage of 300 KV and distinguishing the metal particles 3 from the lattice spacing with a high contrast. The length from the end that can be formed to the end of the portion with low contrast is measured, and the average of the measurement results of the ten metal particles 3 is taken as the thickness of the film.
  • the reducing organic film 7 has an action of reducing the oxygen-containing film 5 under the heating condition during bonding and ensuring the conductivity of the bonding portion (metal bonding layer).
  • the reducing organic material constituting the reducing organic material film 7 include amine compounds and carboxylic acids. More specifically, examples of the amine compound include oleylamine, octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, myristylamine, laurylamine and the like.
  • the carboxylic acid examples include formic acid, oxalic acid, citric acid, ascorbic acid, and abietic acid.
  • the Ni nanoparticles 1A have the oxygen-containing film 5 and the reducing organic film 7, so that oxygen is in the range of 0.5 to 10.0% by weight and carbon is in the range of 0.1 to 5.%.
  • the content is preferably within the range of 0% by weight.
  • the Ni nanoparticles 1, 1A are preferably synthesized by reducing metal ions (or metal compounds) by a wet microwave irradiation method.
  • reducing metal ions or metal compounds
  • a preferred method for producing the Ni nanoparticles 1, 1A will be exemplified.
  • the method for producing Ni nanoparticles 1 and 1A includes a first step of obtaining a complexing reaction solution in which a nickel complex is formed by heating a mixture containing nickel carboxylate (nickel carboxylate) and a primary amine; A second step of heating the complexing reaction liquid with microwaves to obtain a nickel nanoparticle slurry.
  • heating can be performed at a temperature in the range of 105 ° C. or higher and 160 ° C. or lower.
  • microwaves can be irradiated and heated at a temperature of 160 ° C. or higher, preferably 180 ° C. or higher.
  • a complexing reaction solution is obtained by heating a mixture containing nickel carboxylate and primary amine.
  • the nickel carboxylate (nickel salt of carboxylic acid) is not limited to the type of carboxylic acid.
  • the carboxy group may be one monocarboxylic acid, and the carboxy group has two or more carboxylic acids. It may be an acid.
  • acyclic carboxylic acid may be sufficient and cyclic carboxylic acid may be sufficient.
  • nickel carboxylate for example, nickel formate having a low reduction temperature (reduction temperature; 190 to 200 ° C.) is preferably used.
  • the nickel carboxylate may be an anhydride or a hydrate.
  • nickel carboxylate it is also possible to use inorganic salts such as nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel hydroxide, but in the case of inorganic salts, dissociation (decomposition) is at a high temperature. In the reduction process, heating at a high temperature is necessary, which is not preferable. It is also possible to use nickel salts composed of organic ligands such as Ni (acac) 2 ( ⁇ -diketonato complex) and stearate ions, but using these nickel salts increases the cost of raw materials. It is not preferable.
  • Primary amine (Primary amine)
  • the primary amine can form a complex with nickel ions, and effectively exhibits a reducing ability for nickel complexes (or nickel ions).
  • secondary amines have great steric hindrance and may hinder good formation of nickel complexes, and tertiary amines cannot be used because they do not have the ability to reduce nickel ions.
  • the primary amine is not particularly limited as long as it can form a complex with nickel ions, and can be solid or liquid at room temperature.
  • room temperature means 20 ° C. ⁇ 15 ° C.
  • the primary amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex.
  • even if it is a primary amine solid at normal temperature there is no particular problem as long as it is liquid by heating at 100 ° C. or higher, or can be dissolved using an organic solvent.
  • the primary amine also functions as a dispersant, and the nickel complex can be well dispersed in the reaction solution. Therefore, the particles when the Ni complex 1, 1A is obtained by thermally decomposing the nickel complex after forming the complex. Aggregation can be suppressed.
  • the primary amine may be an aromatic primary amine, but an aliphatic primary amine is preferred from the viewpoint of easy nickel complex formation in the reaction solution. Aliphatic primary amines can control the particle size of the produced nanoparticles, for example, by adjusting the length of their carbon chains, and in particular, produce Ni nanoparticles 1, 1A with an average particle size of 10 to 100 nm. This is advantageous.
  • the aliphatic primary amine is preferably selected from those having about 6 to 20 carbon atoms.
  • examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine.
  • oleylamine exists in a liquid state under the temperature conditions in the nanoparticle production process, and therefore can efficiently proceed with a reaction in a homogeneous solution.
  • the primary amine forms a reducing organic film 7 having a function as a surface modifier when the metal particles 3 are generated, secondary aggregation can be suppressed even after removal of the primary amine.
  • the primary amine is also preferable from the viewpoint of ease of processing operation in the washing step of separating the solid component of the produced Ni nanoparticles 1, 1A and the solvent or unreacted primary amine after the reduction reaction.
  • the primary amine preferably has a boiling point higher than the reduction temperature from the viewpoint of ease of reaction control when the nickel complex is reduced to obtain the Ni nanoparticles 1, 1A. That is, the aliphatic primary amine preferably has a boiling point of 180 ° C. or higher, more preferably 200 ° C. or higher.
  • the aliphatic primary amine preferably has 9 or more carbon atoms.
  • the boiling point of C 9 H 21 N (nonylamine) of an aliphatic amine having 9 carbon atoms is 201 ° C.
  • the amount of primary amine is preferably 2 mol or more, more preferably 2.2 mol or more, and more preferably 4 mol or more with respect to 1 mol of nickel in terms of metal contained in nickel carboxylate.
  • the upper limit of the amount of primary amine is not particularly limited. For example, from the viewpoint of productivity, the amount is preferably about 20 mol or less with respect to 1 mol of metal in terms of metal contained in nickel carboxylate.
  • a divalent nickel ion is known as a ligand-substituted active species, and the ligand of the complex to be formed may easily change in complex formation by ligand exchange depending on temperature and concentration.
  • a complexing reaction solution by heating a mixture of nickel carboxylate and primary amine, steric hindrance such as carbon chain length of the amine to be used is considered, and carboxylate ions (R 1 COO, R 2 COO) may be coordinated by either bidentate or monodentate coordination, and when the amine concentration is in a large excess, there may be a structure in which carboxylate ions are present in the outer sphere.
  • At least one of the ligands must be coordinated with a primary amine.
  • the primary amine is excessively present in the reaction solution, and it is preferable that at least 2 mol per 1 mol of nickel ions is present, and 2.2 mol or more exist. It is more preferable that 4 mol or more is present.
  • the complexing reaction liquid refers to a reaction product liquid (reaction product) generated by a reaction between nickel carboxylate and a primary amine.
  • reaction product a reaction product liquid
  • the complexing reaction can proceed even at room temperature, heating is performed at a temperature of 100 ° C. or higher in order to carry out the reaction reliably and more efficiently. This heating is particularly advantageous when a nickel carboxylate hydrate such as nickel formate dihydrate is used as the nickel carboxylate.
  • the heating temperature is preferably higher than 100 ° C, more preferably 105 ° C or higher.
  • nickel formate dihydrate has a complex structure in which two coordinated water and two formate ions as bidentate ligands and two water molecules exist in the outer sphere at room temperature.
  • the heating temperature is preferably 140 ° C. or lower from the viewpoint of reliably separating the subsequent nickel complex (or nickel ions) from the heat reduction process by microwave irradiation and completing the complex formation reaction.
  • a range of 140 ° C. is more preferable, and a range of 110 to 130 ° C. is desirable.
  • the heating time can be appropriately determined according to the heating temperature and the content of each raw material, but is preferably 15 minutes or more from the viewpoint of reliably completing the complex formation reaction. Although there is no upper limit on the heating time, heating for a long time is useless from the viewpoint of saving energy consumption and process time.
  • the heating method is not particularly limited, and may be heating by a heat medium such as an oil bath or heating by microwave irradiation.
  • the complex formation reaction between nickel carboxylate and primary amine can be confirmed by a change in the color of the solution when a solution obtained by mixing nickel carboxylate and primary amine is heated.
  • this complex formation reaction is carried out by measuring the maximum absorption wavelength of the absorption spectrum observed in the wavelength region of 300 nm to 750 nm using, for example, an ultraviolet / visible absorption spectrum measuring apparatus, and measuring the maximum absorption wavelength of the raw material (for example, nickel formate 2 In the case of a hydrate, the maximum absorption wavelength is 710 nm.
  • the complexing reaction solution obtained is heated by microwave irradiation as described later, thereby reducing nickel ions of the nickel complex, Carboxylic acid ions coordinated to nickel ions are simultaneously decomposed, and finally metal particles 3 containing nickel having an oxidation number of 0 are generated.
  • nickel carboxylate is hardly soluble under conditions other than using water as a solvent, and a solution containing nickel carboxylate needs to be a homogeneous reaction solution as a pre-stage of the heat reduction reaction by microwave irradiation.
  • the primary amine used in the present embodiment is liquid under the operating temperature conditions, and is considered to be liquefied by coordination with nickel ions to form a homogeneous reaction solution.
  • an organic solvent other than the primary amine may be newly added.
  • the organic solvent may be mixed with the nickel carboxylate and the primary amine.
  • the organic solvent is added to form the primary amine. Is more preferable because it efficiently coordinates to nickel ions.
  • the organic solvent that can be used is not particularly limited as long as it does not inhibit the complex formation between the primary amine and the nickel ion.
  • the organic solvent having 4 to 30 carbon atoms, 7 to 30 carbon atoms, and the like.
  • Saturated or unsaturated hydrocarbon organic solvents alcohol organic solvents having 8 to 18 carbon atoms, and the like can be used. Further, from the viewpoint of enabling use even under heating conditions by microwave irradiation, it is preferable to select an organic solvent having a boiling point of 170 ° C. or higher, more preferably in the range of 200 to 300 ° C. It is better to choose one. Specific examples of such an organic solvent include tetraethylene glycol and n-octyl ether.
  • ⁇ Second step> the complexing reaction solution is heated at a temperature of 160 ° C. or higher, preferably 180 ° C. or higher by microwaves, whereby the nickel complex (or nickel ions) is reduced to metallic nickel to generate metal particles 3. If the heating temperature is lower than 160 ° C., the nickel complex may not be reduced favorably.
  • the microwave penetrates into the complexing reaction solution, so uniform heating is performed and energy can be directly applied to the medium, so rapid heating is performed. Can do.
  • the entire complexing reaction solution can be brought to a desired uniform temperature, and the processes of reduction, nucleation, and nucleation of the nickel complex (or nickel ions) are simultaneously generated in the entire solution, and the particle size distribution is reduced.
  • Narrow monodisperse particles can be easily produced in a short time.
  • the surface of the finally generated metal particles 3 is thinly oxidized to be changed into oxide or hydroxide, and the oxygen-containing film 5 Is formed.
  • the oxygen-containing film 5 can reduce the large surface free energy of the metal particles 3 and prevent the metal particles 3 from aggregating.
  • the primary amine used for the complex formation reaction with nickel ions forms the reductive organic film 7 of the amine compound and forms the Ni nanoparticles 1A when the metal particles 3 are formed, the Ni nanoparticles 1A are aggregated. Is even more suppressed.
  • the reducing organic film 7 reduces the oxides and hydroxides in the oxygen-containing film 5 during the sintering of the Ni nanoparticles 1A during bonding, and conducts the conductive portion (metal bonding layer). It also has the effect of improving the properties.
  • a carboxylic acid for example, formic acid, oxalic acid, citric acid, ascorbic acid, abietic acid, etc.
  • a carboxylic acid for example, formic acid, oxalic acid, citric acid, ascorbic acid, abietic acid, etc.
  • the Ni nanoparticle 1A having an amine compound coating is dispersed in an organic solvent containing the reducing carboxylic acid (for example, alcohol, hydrocarbon, etc.) and stirred, whereby the amine compound coating is formed into a carboxylic acid.
  • An acid can be substituted.
  • the amine compound coating can be replaced with carboxylic acid. it can.
  • the upper limit of the heating temperature by microwave irradiation is not particularly limited, but is preferably about 270 ° C. or less from the viewpoint of efficiently performing the treatment.
  • the heating time is not particularly limited and can be, for example, about 2 to 10 minutes.
  • the wavelength used for the microwave is not particularly limited, and is, for example, 2.45 GHz.
  • the nickel complex is uniformly and sufficiently generated in the first step (step in which the nickel complex is generated), and the second step It is necessary to simultaneously generate and grow nickel (zero-valent) nuclei generated by reduction of the nickel complex (or nickel ion) in the process (heating by microwave irradiation). That is, by adjusting the heating temperature of the first step within the above-mentioned specific range and keeping it lower than the heating temperature of the second step, particles having a uniform particle size and shape are easily generated. .
  • the heating temperature in the first step if the heating temperature is too high in the first step, the formation of a nickel complex and the reduction reaction to nickel (zero valence) proceed simultaneously, making it difficult to generate particles having a uniform particle shape in the second step. There is a fear. Further, if the heating temperature in the second step is too low, the reduction reaction rate to nickel (zero valence) is slowed, and the generation of nuclei is reduced, so that not only the particles are enlarged but also the Ni nanoparticles 1, 1A are collected. It is not preferable also in terms of rate.
  • the slurry of the metal particles 3 obtained by heating by microwave irradiation is, for example, left and separated, and after removing the supernatant, washed with an appropriate solvent, and dried to obtain the metal particles 3. .
  • the organic solvent described above an alcohol such as octanol (octyl alcohol), a nonpolar solvent, or the like may be added to the complexing reaction solution as necessary.
  • an alcohol such as octanol (octyl alcohol), a nonpolar solvent, or the like
  • the primary amine used for the complex formation reaction is preferably used as it is as the organic solvent.
  • the manufacturing method of Ni nanoparticles 1 and 1A in the present embodiment can include an optional step in addition to the above steps.
  • the bonding composition of the present invention contains the Ni nanoparticles 1 or 1A and a volatile solution, and the Ni nanoparticles 1 or 1A are dispersed in the volatile solution.
  • the volatile solution include organic solvents such as toluene, xylene, hexane, cyclohexane, octane, dencan, limonene, methanol, ethanol, propanol, isopropanol, and butanol.
  • the composition for joining electronic components can be in the form of, for example, a slurry, a paste, a grease, or a wax.
  • the bonding composition of the present invention preferably contains Ni nanoparticles 1 or 1A in the range of 20 to 90% by weight with respect to the total weight of the composition.
  • Ni nanoparticles 1 or 1A is less than 20% by weight, for example, it is necessary to repeat coating several times, which may cause unevenness and may not provide sufficient bonding strength, exceeding 90% by weight.
  • fluidity liquidity falls and the usability as a joining material may fall.
  • the electronic component of the present invention is obtained by forming a joining portion (metal joining layer) using the Ni nanoparticles 1, 1A or the joining composition.
  • the electronic component mainly include a semiconductor device and an energy conversion module component.
  • the Ni nanoparticles 1, 1A or the bonding composition may be, for example, between the back surface of the semiconductor element and the substrate, between the semiconductor electrode and the substrate electrode, and between the semiconductor electrode and the semiconductor electrode. It can be applied to bonding between a power device or a power module and a heat radiating member.
  • the joining with the Ni nanoparticles 1, 1A or the joining composition is, for example, a step of applying the Ni nanoparticles 1, 1A or the joining composition to one or both of the surfaces to be joined (a coating step). And bonding the surfaces to be joined together, for example, by heating to a temperature of 200 ° C. or higher and 450 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower, to sinter the bonding material (heating step), and sintered bonding A step of solidifying by cooling the material to form a metal bonding layer (solidification step).
  • FIG. 3 is a drawing for explaining an example in which the joining of electronic components using Ni nanoparticles 1, 1A or a joining composition is applied to a die bonding process of a semiconductor integrated circuit (IC).
  • IC semiconductor integrated circuit
  • an IC chip 20 as a semiconductor element is bonded to an island portion (die pad) 10A provided on the lead frame 10.
  • the Ni nanoparticles 1, 1A or the bonding composition can be applied to the upper surface of the island portion 10A by an arbitrary method, and the IC chip 20 can be overlapped thereon and heated to be bonded.
  • Ni nanoparticles 1, 1A or the bonding composition In the coating step of applying the Ni nanoparticles 1, 1A or the bonding composition, methods such as spray coating, inkjet coating, and printing can be employed.
  • the Ni nanoparticles 1 and 1A or the bonding composition can be applied in an arbitrary shape such as a pattern, an island, a mesh, a lattice, or a stripe depending on the purpose.
  • Ni nanoparticles 1, 1A or a bonding composition may be applied to the lower surface of the IC chip 20.
  • Ni and Ni alloy constituting the Ni nanoparticles 1 and 1A are sintered, and a metal bonding layer having a uniform and strong adhesive force can be formed. Further, in the Ni nanoparticles 1, 1A provided with the reducing organic substance film 7, since the Ni oxide and the Ni hydroxide constituting the oxygen-containing film 5 are reduced by the action of the reducing organic substance, Oxygen is prevented from entering, and the conductivity of the metal bonding layer is ensured.
  • the heating temperature for bonding is preferably 200 ° C. or higher, and more preferably 250 ° C. or higher in order to obtain sufficient bonding strength. Further, when the heating temperature exceeds 450 ° C., there is a concern about damage to peripheral circuits or electrodes. Therefore, the upper limit of the heating temperature is preferably 450 ° C. or less, and more preferably 400 ° C. or less.
  • the atmosphere during bonding preferably contains 1% by volume or more of oxygen. Further, by reducing the pressure, an effect of suppressing the generation of voids can be obtained. For example, the effect is confirmed at a pressure of 95% or less of the atmospheric pressure. Moreover, when bonding a joint surface, it can be pressurized as needed.
  • a contact metal layer made of a material such as Au, Cu, Pd, Ni, Ag, Cr, Ti or an alloy thereof is previously formed on one or both of the surfaces to be bonded.
  • a contact metal layer made of a material such as Au, Cu, Pd, Ni, Ag, Cr, Ti or an alloy thereof is previously formed on one or both of the surfaces to be bonded.
  • the material of the surface to be joined is SiC or Si or an oxide film on the surface thereof
  • a contact metal layer made of a material such as Ti, TiW, TiN, Cr, Ni, Pd, V or an alloy thereof is used. It is preferable to provide it.
  • the thickness of each contact metal layer is preferably in the range of, for example, 50 nm or more and 2 ⁇ m or less. If the thickness of the contact metal layer is less than 50 nm, defects are likely to occur, and if it exceeds 2 ⁇ m, the vapor deposition process becomes long, and the production efficiency may be reduced.
  • the thickness of the joining portion (metal joining layer) made of Ni or Ni alloy formed by the Ni nanoparticles 1, 1A is preferably 120 nm or more, for example. When the thickness of the joint portion is thinner than this, defects in the joint portion increase, which causes an increase in electrical resistance and a decrease in strength.
  • the joining portion (metal joining layer) made of Ni or Ni alloy formed by the Ni nanoparticles 1 and 1A may have a void when applied to an application requiring thermal stress relaxation.
  • the above bonding material, bonding structure and bonding conditions are not limited to bonding of Si and SiC, but can be used for bonding of other structural materials such as metal materials.
  • the base material is deteriorated in the heat-affected zone in joining by wax material or welding, it is preferable to join at a low temperature using the Ni nanoparticles 1 or 1A of the present invention.
  • the Ni nanoparticles 1 or 1A of the present invention For example, hardened steel, stainless steel, metal materials reinforced by work hardening, inorganic materials and metals that deteriorate due to thermal oxidation and thermal strain, whose strength is reduced by recovery or recrystallization when heated at 450 ° C or higher or 800 ° C or higher.
  • Suitable for joining materials include, but are not limited to, a pipe, a plate, a joint, a rod, a wire, and a bolt.
  • the average particle size of the metal particles is obtained by taking a photograph of the sample with an SEM (scanning electron microscope), randomly extracting 200 samples from the sample, and obtaining the average particle size (area average size) and standard deviation. It was. The CV value (coefficient of variation) was calculated by (standard deviation) / (average particle size).
  • Crystal diameter of metal particles It calculated from the X-ray powder diffraction (XRD) result according to Scherrer's equation.
  • the 5% heat shrink temperature is obtained by placing a sample in a 5 ⁇ ⁇ 2 mm cylindrical molding machine and producing a molded product obtained by press molding, and then heating it in an atmosphere of nitrogen gas (containing 3% hydrogen gas). The temperature was 5% thermal yield measured by an analyzer (TMA).
  • Synthesis example 1 By adding 18.5 g of nickel formate dihydrate to 144.9 g of myristylamine and heating at 120 ° C. for 10 minutes under a nitrogen flow, the nickel formate was dissolved to obtain a complexing reaction solution. Next, 96.6 g of myristylamine was further added to the complexing reaction solution, and the mixture was heated at 180 ° C. for 10 minutes using a microwave to obtain a Ni nanoparticle slurry 1a.
  • Ni nanoparticles 1b (nickel-containing) Rate: 98 wt%, average particle size: 71 nm, crystallite size: 19 nm, CV value: 0.16, 5% heat shrinkage temperature: 290 ° C.).
  • elemental analysis it was C; 0.7, N; 0.016, O; 2.8 (unit: mass%).
  • the elemental carbon and elemental nitrogen in this elemental analysis are derived from myristylamine and mean a coating of an amine compound.
  • the thickness of the oxygen-containing film was 3 nm.
  • Ni nanoparticle slurry 2a and Ni nanoparticle 2b (nickel content: 98 wt.%) Were obtained in the same manner as in Synthesis Example 1 except that 209.8 g of laurylamine was used instead of 241.5 g of myristylamine in Synthesis Example 1. %, Average particle size: 100 nm, crystallite size: 23 nm, CV value: 0.17, 5% heat shrinkage temperature: 295 ° C.). As a result of elemental analysis, it was C; 0.5, N; 0.026, O; 2.2 (unit: mass%). The carbon element and the nitrogen element in this elemental analysis are derived from laurylamine, and mean a coating of an amine compound. The thickness of the oxygen-containing film was 4 nm.
  • Synthesis example 3 Ni nanoparticle slurry 3a and Ni nanoparticle 3b (nickel content; similar to synthesis example 1) except that 400.2 g of trioctylamine was used instead of 241.5 g of myristylamine in synthesis example 1. 98 wt%, average particle size: 20 nm, crystallite size: 13 nm, CV value: 0.17, 5% heat shrinkage temperature: 265 ° C.). As a result of elemental analysis, it was C; 2.8, N; 0.125, O; 5.3 (unit: mass%). The carbon element and the nitrogen element in this elemental analysis are derived from trioctylamine and mean a coating of an amine compound. The thickness of the oxygen-containing film was 3 nm.
  • Ni nanoparticle slurry 4a and Ni nanoparticle 4b were prepared in the same manner as in Synthesis Example 1 except that 302.7 g of oleylamine was used instead of 241.5 g of myristylamine in Synthesis Example 1.
  • elemental analysis it was C; 1.9, N; 0.076, O; 3.3 (unit: mass%).
  • the elemental carbon and elemental nitrogen in this elemental analysis are derived from oleylamine and mean a coating of an amine compound.
  • the thickness of the oxygen-containing film was 2 nm.
  • a dummy chip was prepared for bonding evaluation using Ni nanoparticles.
  • the structure of this dummy chip is as shown in FIG. 4, and Cr / Ni / Au is vapor-deposited at a thickness of 500/3000/500 angstroms on the Si oxide film (thickness of 1000 angstroms) on the Si substrate surface.
  • Vapor deposition was performed by evaporating metal chips on a boat with a vacuum vapor deposition apparatus.
  • the Au layer is provided for the purpose of preventing the oxidation of the surface.
  • Each element was continuously deposited in a vacuum chamber.
  • the size of the dummy chip was 2.7 ⁇ 2.7 mm.
  • the above-mentioned chip pair is prepared, and as shown in FIG. 5, the Au surfaces are arranged facing each other, and Ni nanoparticles as a die bonding material are applied between them. Then, it was heated to a maximum of 300 ° C. and pressurized to a maximum of 50 kg for bonding.
  • a metal bonding layer made of Ni nanoparticles is denoted by reference numeral 100.
  • Ni nanoparticles have an average particle diameter of 20 nm (Ni nanoparticles 3b of Synthesis Example 3), 100 nm (Ni nanoparticles 2b of Synthesis Example 2), 200 nm (Ni nanoparticles c; commercial product, nickel content: 99 wt%, 200 nm, crystallite diameter; 40 nm, CV value; 0.32, 5% heat shrink temperature; 400 ° C.) and 400 nm (Ni nanoparticle d; commercial product, nickel content; 99 wt%, average particle diameter; 400 nm, crystallite diameter; 45 nm, CV value; 0.36, 5% heat shrink temperature; 470 ° C.).
  • the particle size includes 95% or more of the size of ⁇ 50% of the average particle size. Further, particles having an average particle diameter of 200 nm and 400 nm do not contain 3% or more of particles having a particle diameter of 100 nm or less.
  • Ni nanoparticles having an average particle size of 20 nm and 100 nm have an increase in shear strength from a bonding temperature of about 200 ° C., and the shear strength at a bonding temperature of 300 ° C. is higher than that of those having an average particle size of 200 nm and 400 nm. , Confirmed to be significantly higher values.
  • the observation of the bonding state was performed by transmitting images with a microfocus X-ray apparatus (Shimadzu SMX-1000) and observing the structure by cross-sectional polishing.
  • the fracture surface of the joint section was also observed.
  • SEM images of the used Ni nanoparticles are shown in FIGS. 7 and 8, and an example of a fracture surface of the joining portion (metal joining layer) is shown in FIG.
  • FIGS. 7 and 8 SEM images of the used Ni nanoparticles
  • FIGS. 7 and 8 an example of a fracture surface of the joining portion (metal joining layer) is shown in FIG.
  • Examples 1 to 5, Comparative Examples 1 and 2 Ti, Ni, and Ag films were sequentially deposited on the back surface of the SiC chip.
  • the upper surface of the SiC chip was prepared with an Al film formed to a thickness of 2 ⁇ m.
  • a substrate prepared by plating Ag on Cu was prepared.
  • bonding materials samples containing the following A to D Ni nanoparticles were prepared.
  • A Containing 40% or more of Ni nanoparticles having a particle size of 10 nm or more and 50 nm or less
  • B Containing 40% or more of Ni nanoparticles having a particle size of 50 nm or more and 100 nm or less
  • C Particle size of 10 nm or more Containing 5% of Ni nanoparticles of 100 nm or less in all particles
  • D Containing 96% of Ni nanoparticles having a particle diameter of 200 nm or more in all particles
  • Sample A is 60 parts by mass of Ni nanoparticles 1b (average particle size: 71 nm) obtained in Synthesis Example 1, 40 parts by mass of Ni nanoparticles 3b (average particle size; 20 nm) obtained in Synthesis Example 3, Were prepared by mixing.
  • Sample B is 40 parts by mass of Ni nanoparticles 1b (average particle diameter: 71 nm) obtained in Synthesis Example 1, 60 parts by mass of Ni nanoparticles 3b (average particle size; 20 nm) obtained in Synthesis Example 3, Were prepared by mixing.
  • Sample C is 95 parts by mass of Ni nanoparticles c (commercially available product, nickel content: 99 wt%, average particle size; 200 nm, crystallite size; 40 nm, CV value; 0.32, 5% heat shrink temperature; 400 ° C.) 5 parts by mass of Ni nanoparticles 3b (average particle diameter; 20 nm) obtained in Synthesis Example 3, Were prepared by mixing.
  • Sample D is 96 parts by mass of Ni nanoparticles d (commercially available product, nickel content: 99 wt%, average particle size; 400 nm, crystallite size; 45 nm, CV value; 0.36, 5% heat shrink temperature; 470 ° C.) 4 parts by mass of Ni nanoparticles 3b (average particle size; 20 nm) obtained in Synthesis Example 3, Were prepared by mixing.
  • the solution in which the bonding material of each sample was dispersed in a solution was spray-coated on the substrate surface so that the thickness of the bonded portion (metal bonding layer) after bonding was 120 nm or more and dried.
  • Each sample was joined at the heating temperature shown in Table 1. The joining time was 10 minutes in all cases. The atmosphere was air.
  • a bonding material containing Ni nanoparticles having a particle diameter of 100 nm or less in a total particle of 5% or more, preferably 40% or more has a practically sufficient bonding strength by bonding at a heating temperature of 250 ° C. or more. It was confirmed to have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

電子部品の接合材は、Niナノ粒子1を含む。Niナノ粒子1は、平均粒子径が100nm以下であり、Ni又はNi合金の微粒子である金属粒子3の表面に、酸素含有皮膜5を備えている。酸素含有皮膜5は、例えば酸化ニッケル(NiO)などの酸化物皮膜又は水酸化ニッケル(Ni(OH))などの水酸化物皮膜である。酸素含有皮膜5の厚みは、1~8nmの範囲内であることが好ましい。金属粒子3の粒子径の変動係数CVは0.2以下であることが好ましい。

Description

電子部品の接合材、接合用組成物、接合方法、及び電子部品
 本発明は、半導体装置等の電子部品の接合に用いる接合材及び接合用組成物、それらを用いる電子部品の接合方法、並びにそれらを用いて製造された半導体装置等の電子部品に関する。
 省エネルギーを可能とするエネルギー変換デバイスとして、パワーデバイス分野で、例えばSiC半導体が注目されている。SiC単結晶の高品質化とデバイス化技術の課題の進展にともない、SiC半導体デバイスの実用化がようやく実現しようとしている。このSiC半導体は、バンドギャップが大きいことから、SiC半導体デバイスそのものは、自動車や輸送機器用途に高電圧、高温で使用できるという特徴がある。しかし、実際にデバイスとして使用する場合に必要となる実装技術については、十分な検討がなされていない。
 従来の実装技術は、Siデバイスを想定しているものであり、例えば150℃以上の高温環境下で使用されることは想定されてこなかった。そのため、特に自動車など、従来のSiデバイスでは使用できない高温での用途に向けた、ダイボンディングなどの接合技術が求められてきた。ダイボンディング材料の高温実装への適用としては、まず高融点材料をナノ粒子とすることで、低温で表面活性となり、粒子の結合、粒成長、被接合表面との反応が進むという特徴を利用することに着目している。しかし、このナノ粒子の接合過程については、かならずしも十分な研究がなされていない。また、貴金属以外の金属については、報告も少ない。
 また、ナノ粒子の実際の取り扱いにおいては、大気にさらされることが避けられないため、常温で、大気中の酸素との反応を防止するために、例えば有機物による表面処理を行うことが提案されている(例えば、特許文献1、2)。接合温度ではこれらの有機物が分解消失することが必要となるが、ガス化したときにボイド発生の原因となることも懸念される。また、実用化の別な視点では、接合材の価格についても重要である。このような状況の中で、低温での焼結が可能なダイボンディング材料として、これまでは主にAgナノ粒子が検討されてきた。しかしながら、Agは加熱によって腐食が生じたり、マイグレーションが生じたりする、という問題や、高価格であるという課題があり、実用化に至っていない。
特開2004-107728号公報 特開2008-161197号公報
 上述のように、SiC半導体は、従来のSi半導体に代わって高温で使用可能な半導体であるが、高温用の実装技術の課題解決の取り組みは、未だ不十分である。ダイボンディングについては、従来半田材料などの低融点金属などが利用されてきた。半田材料は、低温での接合が可能であるが、融点が低いため、高温環境で使用されるデバイスの接合は不可能である。一方、高融点のNiろう材などは、800℃程度以上に加熱する必要があり、この温度では、SiC半導体の実装においても周辺材料の耐熱性が十分でないうえ、電極材料などの高温耐熱性も十分とはいえない。したがって、450℃程度以下の温度で接合可能な高融点金属の接合材が求められてきた。このような接合材の材質として、本発明者らは、比較的安価で耐食性と耐熱性を有するNiを利用することを着想した。しかし、粒子径が100nm以下のNi微粒子は、表面自由エネルギーが大きくなり、凝集が生じやすく、使用性に劣るという問題があった。
 本発明は上記実情に鑑みてなされたものであり、その目的は、Agよりも安価で、高温での使用が可能なNi材料を利用して使用性の良好な電子部品の接合材を提供することである。
 本発明の電子部品の接合材は、電子部品の接合に用いられる電子部品の接合材であって、
Ni及びNi合金からなる群より選ばれる金属により構成される金属微粒子と、該金属微粒子を被覆する酸素含有皮膜と、を備え、平均粒子径が100nm以下である金属ナノ粒子を含むことを特徴とする。
 本発明の電子部品の接合材において、前記酸素含有皮膜は、厚みが1nm以上8nm以下の範囲内の酸化物皮膜又は水酸化物皮膜であってもよい。
 また、本発明の電子部品の接合材において、前記金属ナノ粒子は、前記酸素含有皮膜の外側をさらに被覆する、1分子膜以上の還元性有機物の膜をさらに備えたものであってもよい。この場合、前記還元性有機物が、アミン化合物であってもよい。
 また、本発明の電子部品の接合材は、炭素を0.1重量%以上5.0重量%以下の範囲内、酸素を0.5重量%以上10.0重量%以下の範囲内で含有するものであってもよい。
 また、本発明の電子部品の接合材は、前記金属微粒子の粒子径の変動係数CVが0.2以下であってもよい。
 また、本発明の電子部品の接合材において、前記金属ナノ粒子は、粒子径10nm以上100nm以下の範囲内のものを全体の5%以上含むものであってもよい。
 また、本発明の電子部品の接合材において、前記金属ナノ粒子は、粒子径50nm以上100nm以下の範囲内のものを全体の40%以上含むものであってもよい。
 また、本発明の電子部品の接合材において、前記金属ナノ粒子は、粒子径10nm以上50nm以下の範囲内のものを全体の40%以上含むものであってもよい。
 また、本発明の電子部品の接合材は、X線回折で測定される前記金属微粒子の結晶子径が30nm以下であってもよい。
 また、本発明の電子部品の接合材は、前記金属ナノ粒子が、湿式のマイクロ波照射法により合成されたものであってもよい。
 本発明の電子部品の接合用組成物は、上記いずれかの電子部品の接合材と、揮発性溶液と、を含有し、前記接合材が前記揮発性溶液中に分散している。
 また、本発明の電子部品の接合用組成物は、スラリー状またはペースト状であってもよい。
 本発明の電子部品は、上記いずれかの接合材により接合部分を形成したものである。この場合、前記接合部分は、半導体素子の裏面と基板との間、半導体電極と基板電極との間、又は半導体電極と半導体電極との間に形成されていてもよい。
 本発明の電子部品は、200℃以上450℃以下の加熱工程を経て接合されているものであってもよい。
 本発明の電子部品の接合方法は、上記いずれかの電子部品の接合材を200℃以上450℃以下の温度に加熱して接合を行うものである。
 本発明の電子部品の接合材は、Ni及びNi合金からなる群より選ばれる金属微粒子を覆う酸素含有皮膜を備えた金属ナノ粒子を含むため、表面自由エネルギーが小さく抑制され、金属微粒子の凝集を生じにくい。また、本発明の接合材に用いる金属ナノ粒子は、Ni又はNi合金を主成分とするため、Agに比べて安価であり、かつ耐熱性に優れ、マイグレーションの発生も起こしにくい。さらに、本発明の接合材に用いる金属ナノ粒子は、平均粒子径が100nm以下であるため、450℃程度以下の温度で接合可能であり、かつ十分な接合強度を得ることができる。従って、本発明の接合材は、例えば半導体装置などの電子部品の接合に利用価値が高いものである。
本発明の一実施の形態のNiナノ粒子の構造を説明する断面図である。 本発明の別の実施の形態のNiナノ粒子の構造を説明する断面図である。 本発明の接合材による電子部品の接合一例としてのダイボンディング工程を説明する図面である。 試験例に使用したダミーチップの構造を説明する断面図である。 試験例における接合方法を説明する図面である。 試験例におけるダイシェアテストの結果を示すグラフである。 平均粒子径20nmのNi粒子を使用した試験例における接合部分の観察結果を示す画像である。 平均粒子径100nmのNi粒子を使用した試験例における接合部分の観察結果を示す画像である。 試験例における接合部の破断面の例を示す画像である。
[接合材]
 本実施の形態の電子部品の接合材は、平均粒子径が100nm以下であり、Ni又はNi合金の微粒子(以下、これらを総称して単に「金属粒子」と記すことがある)に、酸素含有皮膜を備えた金属ナノ粒子を含有するものである。図1は、本発明の一実施の形態にかかる「金属ナノ粒子」としてのNiナノ粒子1の断面構造を示している。Niナノ粒子1は、金属粒子3の表面に、酸素含有皮膜5を備えている。図2は、本発明の別の実施の形態の「金属ナノ粒子」としてのNiナノ粒子1Aの断面構造を示している。このNiナノ粒子1Aは、金属粒子3と、酸素含有皮膜5と、酸素含有皮膜5の外側を被覆する、1分子膜以上の還元性有機物膜7を備えている。Niナノ粒子1,1Aは、そのまま電子部品の接合材として用いることができる。
<金属粒子>
 金属粒子3は、Ni又はNi合金の微粒子である。Ni合金を使用する場合は、微粒子の粒子径の制御又は焼結温度の調整の観点から、Ni以外の金属として、例えばAu,Ag,Pt,Pd等から選ばれる1種以上の金属を含有してもよい。また、Ni合金は、Niの導電性の向上及び軟質にして応力を緩和させ、クラック等の不具合を低減させるという観点から、ニッケル以外の金属としてCu、Alを含有してもよい。
 金属粒子3は、焼結性向上の観点から、X線回折で測定されるNi又はNi合金の結晶子径が30nm以下であることが好ましい。結晶子径が30nmを超えると、焼結温度が高くなり接着強度が低下することがあり、好ましくない。
 Niナノ粒子1,1Aにおいて、金属粒子3の粒子径が小さいと接合時の加熱で焼結しやすいが、酸素を取り込みやすくなるという欠点がある。一方、金属粒子3の粒子径が大きいと、加熱時に焼結しにくいが、酸素の取り込みを抑制できるという側面がある。また、接合材としての密度を高くして接着性をより高めるという観点からも、Niナノ粒子1,1Aに使用する金属粒子3は、粒子径が大きいものと小さいものとを組み合わせることが好ましい。
 また、粒子径が50nm以下である金属粒子3を用いる場合は、その粒子径の変動係数CVが0.2以下であることが好ましい。変動係数CVを0.2以下とすることで、接合材としての密度を高くでき、均一でムラの少ない焼結が可能となる。このようなことから、金属粒子3として、例えば粒子径が50nm以下のものと、50nm以上のものを組み合わせる場合には、粒子径が50nm以下の変動係数CVを0.2以下とすることが好ましく、より好ましくは粒子径が50nm以下の変動係数CVを0.2以下、粒子径が50nm以上の変動係数CVを0.2以下とすることがよい。粒子径が異なるものを組み合わせる場合、それぞれの変動係数CVを0.2以下とすることで、接合材としての密度の向上と接着強度の向上の両立を図りやすくなる。
 Niナノ粒子1,1Aは、これを焼結させて形成される接合部分のシェア強度を十分に高くするため、粒子径10nm以上100nm以下の範囲内のものを全体の5%以上含むことが好ましい。また、Niナノ粒子1,1Aは、粒子径50nm以上100nm以下の範囲内のものを全体の40%以上含むか、あるいは、粒子径10nm以上50nm以下の範囲内のものを全体の40%以上含むことが、より好ましい。
<酸素含有皮膜>
 金属粒子3の表面に形成された酸素含有皮膜5は、例えば酸化物皮膜又は水酸化物皮膜であることが好ましい。より具体的には、金属粒子3の表面には、酸素含有皮膜5として、例えば酸化ニッケル(NiO)又は水酸化ニッケル(Ni(OH))の皮膜が形成されている。このような酸素含有皮膜5は、金属粒子3の表面に部分的に存在する皮膜でもよいし、該粒子の全表面に亘る皮膜であってもよい。
 酸素含有皮膜5の厚みは、金属粒子3の凝集を効果的に抑制する観点から、例えば1~8nmの範囲内であることが好ましい。酸素含有皮膜5を有することにより、Niナノ粒子1は、全体の重量に対して酸素を0.5~10.0重量%の範囲内で含有するものであることが好ましい。なお、酸素含有皮膜5の厚みとは、無作為に200個抽出した金属粒子3の表面を、加速電圧300KVの透過型電子顕微鏡で観察し、コントラストの濃い格子面間隔からも金属粒子3と判別できる末端から、コントラストの薄い部分の末端までの長さを測定し、10個の金属粒子3における測定結果の平均を皮膜の厚みとする。
<還元性有機物膜>
 Niナノ粒子1Aにおいて、還元性有機物膜7は、接合時の加熱条件下で、酸素含有皮膜5を還元し、接合部分(金属接合層)の導電性を確保する作用を有している。還元性有機物膜7を構成する還元性有機物としては、アミン化合物またはカルボン酸を挙げることができる。より具体的には、アミン化合物として、例えばオレイルアミン、オクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。また、カルボン酸としては、例えばギ酸、シュウ酸、クエン酸、アスコルビン酸、アビエチン酸等を挙げることができる。Niナノ粒子1Aは、酸素含有皮膜5と還元性有機物膜7を有することにより、全体の重量に対して酸素を0.5~10.0重量%の範囲内、炭素を0.1~5.0重量%の範囲内で含有するものであることが好ましい。酸素及び炭素の含有量を上記範囲内とすることで、Niナノ粒子1Aの凝集を抑制し、接着強度を向上させることができる。また、酸素の含有量が上記上限を上回る場合には、Niナノ粒子1Aの焼結温度が高くなる傾向になり、また炭素の含有量が上記上限を上回る場合には、Niナノ粒子1Aの焼結後の金属接合層中に炭素が残留しやすく、接着強度が低下する傾向になる。
[製造方法]
 Niナノ粒子1,1Aは、湿式のマイクロ波照射法により、金属イオン(または金属化合物)を還元して合成することが好ましい。以下、Niナノ粒子1,1Aの好ましい製造方法について例示する。
 Niナノ粒子1,1Aの製造方法は、カルボン酸ニッケル(カルボン酸ニッケル塩)および1級アミンを含有する混合物を加熱してニッケル錯体を生成させた錯化反応液を得る第一の工程と、該錯化反応液をマイクロ波で加熱してニッケルナノ粒子スラリーを得る第二の工程と、を有する。第一の工程において、105℃以上160℃以下の範囲内の温度で加熱を行うことができる。また、上記第二の工程において、マイクロ波を照射して、160℃以上、好ましくは180℃以上の温度で加熱することができる。
<第一の工程>
 第一の工程では、カルボン酸ニッケルおよび1級アミンを含有する混合物を加熱して錯化反応液を得る。
(カルボン酸ニッケル)
 カルボン酸ニッケル(カルボン酸のニッケル塩)は、カルボン酸の種類を限定されるものではなく、例えば、カルボキシ基が1つのモノカルボン酸であってもよく、また、カルボキシ基が2つ以上のカルボン酸であってもよい。また、非環式カルボン酸であってもよく、環式カルボン酸であってもよい。カルボン酸ニッケルとして、例えば還元温度の低いギ酸ニッケル(還元温度;190~200℃)を用いることが好ましい。カルボン酸ニッケルは、無水物であってもよく、また水和物であってもよい。なお、カルボン酸ニッケルに代えて、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、水酸化ニッケル等の無機塩を用いることも考えられるが、無機塩の場合、解離(分解)が高温であるため、還元過程で高温での加熱が必要であり好ましくない。また、Ni(acac)(β-ジケトナト錯体)、ステアリン酸イオン等の有機配位子により構成されるニッケル塩を用いることも考えられるが、これらのニッケル塩を用いると、原料コストが高くなり好ましくない。
(1級アミン)
 1級アミンは、ニッケルイオンとの錯体を形成することができ、ニッケル錯体(又はニッケルイオン)に対する還元能を効果的に発揮する。一方、2級アミンは立体障害が大きいため、ニッケル錯体の良好な形成を阻害するおそれがあり、3級アミンはニッケルイオンの還元能を有しないため、いずれも使用できない。
 1級アミンは、ニッケルイオンとの錯体を形成できるものであれば、特に限定されるものではなく、常温で固体又は液体のものが使用できる。ここで、常温とは、20℃±15℃をいう。常温で液体の1級アミンは、ニッケル錯体を形成する際の有機溶媒としても機能する。なお、常温で固体の1級アミンであっても、100℃以上の加熱によって液体であるか、又は有機溶媒を用いて溶解するものであれば、特に問題はない。
 1級アミンは、分散剤としても機能し、ニッケル錯体を反応液中に良好に分散させることができるため、錯体形成後にニッケル錯体を加熱分解してNiナノ粒子1,1Aを得る際の粒子同士の凝集を抑えることができる。1級アミンは、芳香族1級アミンであってもよいが、反応液におけるニッケル錯体形成の容易性の観点からは脂肪族1級アミンが好適である。脂肪族1級アミンは、例えばその炭素鎖の長さを調整することによって生成するナノ粒子の粒径を制御することができ、特に平均粒径が10~100nmのNiナノ粒子1,1Aを製造する場合において有利である。Niナノ粒子1,1Aの粒径を制御する観点から、脂肪族1級アミンは、その炭素数が6~20程度のものから選択して用いることが好適である。炭素数が多いほど得られるナノ粒子の粒径が小さくなる。このようなアミンとして、例えばオクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。例えばオレイルアミンは、ナノ粒子生成過程に於ける温度条件下において液体状態として存在するため均一溶液での反応を効率的に進行できる。
 1級アミンは、金属粒子3の生成時に、表面修飾剤としての機能を持つ還元性有機物膜7を形成するため、1級アミンの除去後においても二次凝集を抑制できる。また、1級アミンは、還元反応後に、生成したNiナノ粒子1,1Aの固体成分と溶剤又は未反応の1級アミン等を分離する洗浄工程における処理操作の容易性の観点からも好ましい。更に、1級アミンは、ニッケル錯体を還元してNiナノ粒子1,1Aを得るときの反応制御の容易性の観点からは還元温度より沸点が高いものが好ましい。すなわち、脂肪族1級アミンは、沸点が180℃以上のものが好ましく、200℃以上のものがより好ましい。また、脂肪族1級アミンは、炭素数が9以上であることが好ましい。ここで、例えば炭素数が9である脂肪族アミンのC21N(ノニルアミン)の沸点は201℃である。1級アミンの量は、カルボン酸ニッケル中に含まれる金属換算のニッケル1molに対して2mol以上用いることが好ましく、2.2mol以上用いることがより好ましく、4mol以上用いることが望ましい。1級アミンの量が2mol未満では、得られるNiナノ粒子1,1Aの粒子径の制御が困難となり、粒子径がばらつきやすくなる。また、1級アミンの量の上限は特にはないが、例えば生産性の観点からは、カルボン酸ニッケル中に含まれる金属換算のニッケル1molに対して20mol以下程度とすることが好ましい。
 2価のニッケルイオンは配位子置換活性種として知られており、形成する錯体の配位子は温度、濃度によって容易に配位子交換により錯形成が変化する可能性がある。例えばカルボン酸ニッケルおよび1級アミンの混合物を加熱して錯化反応液を得る第二の工程において、用いるアミンの炭素鎖長等の立体障害を考慮すると、カルボン酸イオン(RCOO、RCOO)が二座配位または単座配位のいずれかで配位する可能性があり、さらにアミンの濃度が大過剰の場合は外圏にカルボン酸イオンが存在する構造をとる可能性がある。目的とする反応温度(還元温度)において均一溶液とするには配位子のうち少なくとも一箇所は1級アミンが配位している必要がある。その状態をとるには、1級アミンが過剰に反応溶液内に存在している必要があり、少なくともニッケルイオン1molに対し2mol以上存在していることが好ましく、2.2mol以上存在していることがより好ましく、4mol以上存在していることが望ましい。
(錯化反応液)
 錯化反応液とは、カルボン酸ニッケルと1級アミンの反応によって生成する反応生成液(反応生成物)をいう。錯形成反応は室温においても進行させることができるが、反応を確実かつより効率的に行うために、100℃以上の温度で加熱を行う。この加熱は、カルボン酸ニッケルとして、例えばギ酸ニッケル2水和物のようなカルボン酸ニッケルの水和物を用いた場合に特に有利である。加熱温度は、好ましくは100℃を超える温度とし、より好ましくは105℃以上の温度とする。これにより、カルボン酸ニッケルに配位した配位水と1級アミンとの配位子置換反応が効率よく行われ、この錯体配位子としての水分子を解離させることができ、更にその水を系外に出すことができるので効率よく錯体を形成させることができる。例えば、ギ酸ニッケル2水和物は、室温では2個の配位水と2座配位子である2個のギ酸イオン、外圏に2つの水分子が存在した錯体構造をとっているため、この2つの配位水と1級アミンの配位子置換により効率よく錯形成させるには、100℃より高い温度で加熱することでこの錯体配位子としての水分子を解離させることが好ましい。また、加熱温度は、後に続くニッケル錯体(又はニッケルイオン)のマイクロ波照射による加熱還元の過程と確実に分離し、前記の錯形成反応を完結させるという観点から、140℃以下が好ましく、105~140℃の範囲内がより好ましく、110~130℃の範囲内が望ましい。
 加熱時間は、加熱温度や、各原料の含有量に応じて適宜決定することができるが、錯形成反応を確実に完結させるという観点から、15分以上とすることが好ましい。加熱時間の上限は特にないが、長時間加熱することは、エネルギー消費及び工程時間を節約する観点から無駄である。なお、この加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよい。
 カルボン酸ニッケルと1級アミンとの錯形成反応は、カルボン酸ニッケルと1級アミンを混合して得られる溶液を加熱したときに、溶液の色の変化によって確認することができる。また、この錯形成反応は、例えば紫外・可視吸収スペクトル測定装置を用いて、300nm~750nmの波長領域において観測される吸収スペクトルの極大吸収波長を測定し、原料の極大吸収波長(例えばギ酸ニッケル2水和物ではその極大吸収波長は710nmである。)に対する反応液のシフトを観測することによって確認することができる。
 カルボン酸ニッケルと1級アミンとの錯形成が行われた後、得られる錯化反応液を、後で説明するように、マイクロ波照射によって加熱することにより、ニッケル錯体のニッケルイオンが還元され、ニッケルイオンに配位しているカルボン酸イオンが同時に分解し、最終的に酸化数が0価のニッケルを含有する金属粒子3が生成する。一般にカルボン酸ニッケルは水を溶媒とする以外の条件では難溶性であり、マイクロ波照射による加熱還元反応の前段階として、カルボン酸ニッケルを含む溶液は均一反応溶液とする必要がある。これに対して、本実施の形態で使用される1級アミンは、使用温度条件で液体であり、かつそれがニッケルイオンに配位することで液化し、均一反応溶液を形成すると考えられる。
(有機溶媒)
 均一溶液での反応をより効率的に進行させるために、1級アミンとは別の有機溶媒を新たに添加してもよい。有機溶媒を用いる場合、有機溶媒をカルボン酸ニッケル及び1級アミンと同時に混合してもよいが、カルボン酸ニッケル及び1級アミンをまず混合し、錯形成した後に有機溶媒を加えると、1級アミンが効率的にニッケルイオンに配位するので、より好ましい。使用できる有機溶媒としては、1級アミンとニッケルイオンとの錯形成を阻害しないものであれば、特に限定されるものではなく、例えば炭素数4~30のエーテル系有機溶媒、炭素数7~30の飽和又は不飽和の炭化水素系有機溶媒、炭素数8~18のアルコール系有機溶媒等を使用することができる。また、マイクロ波照射による加熱条件下でも使用を可能とする観点から、使用する有機溶媒は、沸点が170℃以上のものを選択することが好ましく、より好ましくは200~300℃の範囲内にあるものを選択することがよい。このような有機溶媒の具体例としては、例えばテトラエチレングリコール、n-オクチルエーテル等が挙げられる。
<第二の工程>
 本工程では、錯化反応液をマイクロ波で160℃以上、好ましくは180℃以上の温度で加熱することにより、ニッケル錯体(又はニッケルイオン)を金属ニッケルに還元して金属粒子3を生成させる。加熱温度が160℃を下回るとニッケル錯体の還元反応が良好に行われないおそれがある。マイクロ波で錯化反応液を加熱することにより、マイクロ波が錯化反応液内に浸透するため、均一加熱が行われ、かつ、エネルギーを媒体に直接与えることができるため、急速加熱を行うことができる。これにより、錯化反応液全体を所望の均一な温度にすることができ、ニッケル錯体(又はニッケルイオン)の還元、核生成、核成長各々の過程を溶液全体において同時に生じさせ、粒径分布の狭い単分散な粒子を短時間で容易に製造することができる。また、湿式のマイクロ波照射法では、反応系に水分子が存在するため、最終的に生成する金属粒子3の表面が薄く酸化されて、酸化物又は水酸化物に変化し、酸素含有皮膜5が形成される。この酸素含有皮膜5によって、金属粒子3の大きな表面自由エネルギーを低減させ、金属粒子3が凝集することを防止できる。
 さらに、ニッケルイオンとの錯形成反応に用いた1級アミンは、金属粒子3の生成時にアミン化合物の還元性有機物膜7を形成してNiナノ粒子1Aを形成するため、Niナノ粒子1Aの凝集が、よりいっそう抑制される。そして、この還元性有機物膜7は、接合時においてNiナノ粒子1Aの焼結の際に、酸素含有皮膜5中の酸化物や水酸化物を還元して、接合部分(金属接合層)の導電性を向上させる作用も有している。
 また、カルボン酸(例えばギ酸、シュウ酸、クエン酸、アスコルビン酸、アビエチン酸等)を還元性有機物膜7としてNi表面に形成する場合は、以下に例示する方法を採用することが好ましい。例えば、ニッケル錯体の還元反応の前段階でニッケル錯体中にカルボン酸を共存させておく方法を挙げることができる。また、例えば、前記還元性を有するカルボン酸を含む有機溶媒(例えばアルコール、炭化水素等)に、アミン化合物の被膜を有するNiナノ粒子1Aを分散させ、撹拌することによって、アミン化合物の被膜をカルボン酸に置換することができる。さらに、例えば、アミン化合物の被膜を有するNiナノ粒子1Aを有機溶媒に分散させた後に前記還元性を有するカルボン酸を添加して撹拌することによって、アミン化合物の被膜をカルボン酸に置換することができる。
 マイクロ波照射による加熱温度の上限は特にないが、処理を能率的に行う観点からは例えば270℃以下程度とすることが好適である。加熱時間は特に限定されるものではなく、例えば2~10分程度とすることができる。なお、250℃以上で長時間加熱を行うと、生成したNiナノ粒子に炭素が固溶化して炭化ニッケルの粒子となり、このような炭化ニッケルの粒子は焼結温度が過度に高くなるので好ましくない。
 なお、マイクロ波の使用波長は、特に限定されるものではなく、例えば2.45GHzである。
 均一な粒径を有したNiナノ粒子1,1Aを生成させるには、第一の工程(ニッケル錯体の生成が行われる工程)でニッケル錯体を均一にかつ十分に生成させることと、第二の工程(マイクロ波照射によって加熱する工程)でニッケル錯体(又はニッケルイオン)の還元により生成するニッケル(0価)の核の同時発生・成長を行う必要がある。すなわち、第一の工程の加熱温度を上記の特定の範囲内で調整し、第二の工程の加熱温度よりも確実に低くしておくことで、粒径・形状の整った粒子が生成し易い。例えば、第一の工程で加熱温度が高すぎるとニッケル錯体の生成とニッケル(0価)への還元反応が同時に進行し、第二の工程での粒子形状の整った粒子の生成が困難となるおそれがある。また、第二の工程の加熱温度が低すぎるとニッケル(0価)への還元反応速度が遅くなり、核の発生が少なくなるため粒子が大きくなるだけでなく、Niナノ粒子1,1Aの収率の点からも好ましくはない。
 マイクロ波照射によって加熱して得られる金属粒子3のスラリーは、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥することで、金属粒子3が得られる。
 第二の工程においては、必要に応じ、錯化反応液に前述の有機溶媒や、例えばオクタノール(オクチルアルコール)等のアルコールや非極性溶媒等を加えてもよい。なお、前記したように、錯形成反応に使用する1級アミンを有機溶媒としてそのまま用いることが好ましい。
 本実施の形態におけるNiナノ粒子1,1Aの製造方法は、上記工程以外に任意の工程を含むことができる。
[電子部品の接合用組成物]
 本発明の接合用組成物は、上記Niナノ粒子1又は1Aと、揮発性溶液と、を含有し、Niナノ粒子1又は1Aが揮発性溶液中に分散している。揮発性溶液は、例えば、トルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、デンカン、リモネン、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等の有機溶媒を挙げることができる。この電子部品の接合用組成物は、例えばスラリー状、ペースト状、グリース状、ワックス状等の形態とすることができる。
 本発明の接合用組成物中には、組成物全重量に対して、Niナノ粒子1又は1Aを20~90重量%の範囲内で含有することが好ましい。Niナノ粒子1又は1Aの含有量が20重量%未満では、例えば塗布などを複数回繰り返す必要があり、ムラの原因となり、また十分な接合強度が得られない場合があり、90重量%を超えると、流動性が低下して接合材としての使用性が低下する場合がある。
[電子部品、その製造]
 本発明の電子部品は、上記Niナノ粒子1,1A又は接合用組成物を使用して、接合部分(金属接合層)を形成したものである。ここで、電子部品としては、主に半導体装置、エネルギー変換モジュール部品などを例示できる。電子部品が半導体装置である場合、Niナノ粒子1,1A又は接合用組成物は、例えば、半導体素子の裏面と基板との間、半導体電極と基板電極との間、半導体電極と半導体電極との間、パワーデバイス若しくはパワーモジュールと放熱部材との間などの接合に適用できる。
 Niナノ粒子1,1A又は接合用組成物による接合は、例えば、Niナノ粒子1,1A又は接合用組成物を一対の被接合部品の片方又は両方の被接合面に塗布する工程(塗布工程)、被接合面どうしを貼り合せ、例えば温度200℃以上450℃以下、好ましくは250℃以上400℃以下に加熱することにより、接合材を焼結させる工程(加熱工程)、並びに、焼結した接合材を冷却することにより固化し、金属接合層を形成する工程(固化工程)、を含むことができる。図3は、Niナノ粒子1,1A又は接合用組成物による電子部品の接合を、半導体集積回路(IC)のダイボンディング工程へ適用した例を説明する図面である。この例では、リードフレーム10に設けられたアイランド部(ダイパッド)10Aに、半導体素子としてのICチップ20を接合する。この場合、アイランド部10Aの上面に、Niナノ粒子1,1A又は接合用組成物を任意の方法で塗布し、その上からICチップ20を重ね合わせ、加熱することによって接合を行うことができる。
 Niナノ粒子1,1A又は接合用組成物を塗布する塗布工程では、例えばスプレー塗布、インクジェット塗布、印刷等の方法を採用できる。Niナノ粒子1,1A又は接合用組成物は、目的に応じて、例えばパターン状、アイランド状、メッシュ状、格子状、ストライプ状など任意の形状に塗布することができる。塗布工程では、接合後の固化した接合部分(金属接合層)の厚みが120nm以上となるように、Niナノ粒子1,1A又は接合用組成物を塗布することが好ましい。このような厚みで塗布をすることで、接合部分の欠陥を少なくできるため、電気抵抗の上昇や接合強度の低下を防止できる。なお、図3において、ICチップ20の下面にNiナノ粒子1,1A又は接合用組成物を塗布してもよい。
 加熱工程では、Niナノ粒子1,1Aを構成するNiやNi合金が焼結し、均一で強固な接着力を持つ金属接合層を形成することができる。また、還元性有機物膜7を備えたNiナノ粒子1,1Aでは、酸素含有皮膜5を構成するNi酸化物やNi水酸化物が還元性有機物の作用で還元されるため、金属接合層中に酸素が入りこむことが抑制され、金属接合層の導電性が確保される。接合のための加熱温度は、十分な接合強度を得るために、200℃以上が好ましく、250℃以上がより好ましい。また、加熱温度が450℃超では、周辺回路もしくは電極への損傷が懸念されるので、加熱温度の上限は450℃以下が好ましく、400℃以下がより好ましい。
 接合時の雰囲気は、1体積%以上の酸素が存在することが好ましい。また、減圧することで、ボイド発生を抑制する効果が得られ、例えば大気圧の95%以下の圧力でその効果が確認される。また、接合面を貼り合わせる際には、必要に応じて加圧することができる。
 電子部品を接合させる際は、接合強度を高めるため、予め被接合面の片方又は両方に、例えば、Au,Cu,Pd,Ni,Ag,Cr,Tiあるいはそれらの合金などの材質の接触金属層を設けておくことが好ましい。また、被接合面の材質が、SiCもしくはSiあるいはそれらの表面の酸化膜である場合は、例えばTi,TiW,TiN,Cr,Ni、Pd,Vあるいはそれらの合金などの材質の接触金属層を設けておくことが好ましい。接触金属層の膜厚は、それぞれ、例えば50nm以上2μm以下の範囲内であることが好ましい。接触金属層の厚みが50nm未満では、欠陥が生じやすく、2μm超では蒸着工程が長くなり、生産効率が低下することがある。
 Niナノ粒子1,1Aにより形成されるNiもしくはNi合金からなる接合部分(金属接合層)の厚みは、例えば120nm以上が好ましい。接合部分の厚みがこれよりも薄い場合は、接合部分の欠陥が多くなり、電気抵抗の上昇や、強度の低下を引き起こす原因となる。
 また、Niナノ粒子1,1Aにより形成されるNiもしくはNi合金からなる接合部分(金属接合層)は、熱応力緩和を必要とする用途に適用する場合には、ボイドを有してもよい。
 以上の接合材、接合構造と接合条件は、SiやSiCの接合に限らず、金属材料など他の構造材料の接合にも利用できる。特に蝋材や溶接による接合で、熱影響部における母材の劣化がみられる場合に本発明のNiナノ粒子1又は1Aを使用して低温で接合することが好適である。たとえば450℃以上又は800℃以上での加熱により、回復や再結晶等により強度低下する焼き入れ鋼、ステンレス鋼、加工硬化により強化された金属材料、熱酸化や熱ひずみにより劣化する無機材料や金属材料の接合に適している。被接合体は管、板、継手、ロッド、ワイヤ、ボルトなどがあげられるが、これらに限定されるものではない。
 次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、本発明の実施例において特にことわりのない限り、各種測定、評価は下記によるものである。
[金属ナノ粒子の平均粒子径]
 金属粒子の平均粒子径は、SEM(走査電子顕微鏡)により試料の写真を撮影して、その中から無作為に200個を抽出して、その平均粒径(面積平均径)と標準偏差を求めた。CV値(変動係数)は(標準偏差)÷(平均粒径)によって算出した。
[金属粒子の結晶子径]
粉末X線回折(XRD)結果からシェラーの式により算出した。
[5%熱収縮温度]
 5%熱収縮温度は、試料を5Φ×2mmの円柱状成型器に入れ、プレス成型して得られる成型体を作製し、これを窒素ガス(水素ガス3%含有)の雰囲気下で、熱機械分析装置(TMA)により測定される5%熱収率の温度とした。
合成例1
 144.9gのミリスチルアミンに18.5gのギ酸ニッケル二水和物を加え、窒素フロー下、120℃で10分間加熱することによって、ギ酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、さらに96.6gのミリスチルアミンを加え、マイクロ波を用いて180℃で10分間加熱することによって、Niナノ粒子スラリー1aを得た。
 Niナノ粒子スラリー1aを静置分離し、上澄み液を取り除いた後、ヘキサンとメタノールを用いて洗浄した後、60℃に維持される真空乾燥機で6時間乾燥してNiナノ粒子1b(ニッケル含有率;98wt%、平均粒子径;71nm、結晶子径;19nm、CV値;0.16、5%熱収縮温度;290℃)を得た。元素分析の結果、C;0.7、N;0.016、O;2.8(単位は質量%)であった。この元素分析における炭素元素及び窒素元素は、ミリスチルアミンに由来するものであり、アミン化合物の被覆を意味する。また、酸素含有皮膜の厚みは、3nmであった。
合成例2
 合成例1における241.5gのミリスチルアミンの代わりに、209.8gのラウリルアミンを使用したこと以外、合成例1と同様にして、Niナノ粒子スラリー2a及びNiナノ粒子2b(ニッケル含有率;98wt%、平均粒子径;100nm、結晶子径;23nm、CV値;0.17、5%熱収縮温度;295℃)を得た。元素分析の結果、C;0.5、N;0.026、O;2.2(単位は質量%)であった。この元素分析における炭素元素及び窒素元素は、ラウリルアミンに由来するものであり、アミン化合物の被覆を意味する。また、酸素含有皮膜の厚みは、4nmであった。
合成例3
 合成例1における241.5gのミリスチルアミンの代わりに、400.2gのトリオクチルアミンを使用したこと以外、合成例1と同様にして、Niナノ粒子スラリー3a及びNiナノ粒子3b(ニッケル含有率;98wt%、平均粒子径;20nm、結晶子径;13nm、CV値;0.17、5%熱収縮温度;265℃)を得た。元素分析の結果、C;2.8、N;0.125、O;5.3(単位は質量%)であった。この元素分析における炭素元素及び窒素元素は、トリオクチルアミンに由来するものであり、アミン化合物の被覆を意味する。また、酸素含有皮膜の厚みは、3nmであった。
合成例4
 合成例1における241.5gのミリスチルアミンの代わりに、302.7gのオレイルアミンを使用したこと以外、合成例1と同様にして、Niナノ粒子スラリー4a及びNiナノ粒子4b(ニッケル含有率;98wt%、平均粒子径;43nm、結晶子径;15nm、CV値;0.17、5%熱収縮温度;275℃)を得た。元素分析の結果、C;1.9、N;0.076、O;3.3(単位は質量%)であった。この元素分析における炭素元素及び窒素元素は、オレイルアミンに由来するものであり、アミン化合物の被覆を意味する。また、酸素含有皮膜の厚みは、2nmであった。
[試験例]
 まず、本発明の基礎となった実験結果について説明する。ここでは、比較的安価に製造できる、Niナノ粒子の利用について、その粒子径と接合温度が、接合強度に与える影響について検討した。
 Niナノ粒子による接合評価には、ダミーチップを準備した。このダミーチップの構造は図4に示すとおりで、Si基板表面のSi酸化膜(1000オングストローム厚)上にCr/Ni/Auをそれぞれ500/3000/500オングストロームの厚みで蒸着したものである。蒸着は真空蒸着装置により、金属チップをボート上で蒸発させることにより行った。Au層は、表面の酸化防止の目的で設けたものである。真空チャンバー内で、各元素を連続して蒸着した。ダミーチップのサイズは2.7×2.7mmとした。
 ダイボンディング材としての評価をするために、まず上記のチップ対を準備し、図5に示すように、Au面を対向させて配置し、その間に、ダイボンディング材としてのNiナノ粒子を塗布して、最大300℃に加熱、最大50kgまで加圧して接合した。図5中、Niナノ粒子による金属接合層を符号100で示した。Niナノ粒子は、平均粒子径が20nm(合成例3のNiナノ粒子3b)、100nm(合成例2のNiナノ粒子2b)、200nm(Niナノ粒子c;市販品、ニッケル含有率;99wt%、平均粒子径;200nm、結晶子径;40nm、CV値;0.32、5%熱収縮温度;400℃)及び400nm(Niナノ粒子d;市販品、ニッケル含有率;99wt%、平均粒子径;400nm、結晶子径;45nm、CV値;0.36、5%熱収縮温度;470℃)のものについてそれぞれ試験した。いずれも粒径は、それぞれの平均粒子径の数字の粒径の±50%のサイズのものを95%以上含んでいる。また、平均粒子径200nm、400nmのものに、粒子径100nm以下の粒子は3%以上含まれていない。
 接合強度試験には、レスカ製シェアテスタ(PTR-04)、ロードセルMAX5kgfを使用し、ダイシェアテストを実施した。ダイシェアテストの結果を図6に示した。なお、図6のグラフの縦軸のシェア強度は規格化された数字である。この図6から、平均粒子径20nm及び100nmのNiナノ粒子は、平均粒子径200nm、400nmのものに比べて、低温での接合でも高いシェア強度を示した。すなわち、平均粒子径20nm及び100nmのNiナノ粒子は、約200℃の接合温度からシェア強度の上昇が認められ、接合温度300℃でのシェア強度は、平均粒子径200nm、400nmのものに比べて、大幅に高い値であることが確認された。
 接合状況の観察は、マイクロフォーカスX線装置(島津SMX-1000)による透過像、ならびに断面研磨による組織観察を行った。また接合部断面の破断面についても観察した。使用したNiナノ粒子のSEM像を図7及び図8に示し、接合部分(金属接合層)の破断面の例を図9に示した。これらの接合状況の観察結果として、接合前にはナノサイズレベルの粒子が、接合後粒成長して、バルク金属化していることが確認された。
[実施例1~5、比較例1及び2]
 SiCチップの裏面にTi、Ni,Agの膜を順に蒸着した。SiCチップの上面はAl膜が2μmの厚みで形成されたものを準備した。基板はCuにAgメッキされたものを準備した。接合材として、以下のA~DのNiナノ粒子を含むサンプルを準備した。
 A:粒子径10nm以上50nm以下のNiナノ粒子を、全粒子中40%以上含むもの
 B:粒子径50nm以上100nm以下のNiナノ粒子を、全粒子中40%以上含むもの
 C:粒子径10nm以上100nm以下のNiナノ粒子を、全粒子中5%含むもの
 D: 粒子径200nm以上のNiナノ粒子を、全粒子中96%含むもの
 サンプルAは、
 合成例1で得られたNiナノ粒子1b(平均粒子径;71nm)の60質量部と、
 合成例3で得られたNiナノ粒子3b(平均粒子径;20nm)の40質量部と、
を混合することにより調製した。
 サンプルBは、
 合成例1で得られたNiナノ粒子1b(平均粒子径;71nm)の40質量部と、
 合成例3で得られたNiナノ粒子3b(平均粒子径;20nm)の60質量部と、
を混合することにより調製した。
 サンプルCは、
 Niナノ粒子c(市販品、ニッケル含有率;99wt%、平均粒子径;200nm、結晶子径;40nm、CV値;0.32、5%熱収縮温度;400℃)の95質量部と、
 合成例3で得られたNiナノ粒子3b(平均粒子径;20nm)の5質量部と、
を混合することにより調製した。
 サンプルDは、
 Niナノ粒子d(市販品、ニッケル含有率;99wt%、平均粒子径;400nm、結晶子径;45nm、CV値;0.36、5%熱収縮温度;470℃)の96質量部と、
 合成例3で得られたNiナノ粒子3b(平均粒子径;20nm)の4質量部と、
を混合することにより調製した。
 各サンプルの接合材を溶液分散させたものを、接合後の接合部分(金属接合層)の厚みがいずれも120nm以上となるように基板表面にスプレー塗布し、乾燥させた。そして、各サンプルについて、表1に示す加熱温度で接合を行った。接合時間はいずれも10分とした。雰囲気は大気中とした。
 評価は、市販のダイボンディング用半田で接合したものを基準にシェア強度の比較を行い、半田接合の強度に対して40%以上の強度を有するものを○(良好)、40%未満を×(不良)とした。その結果を表1にあわせて示した。なお、接合後の接合部分(金属接合層)の厚みは、いずれも約40μmであった。
Figure JPOXMLDOC01-appb-T000001
 表1から、粒子径100nm以下のNiナノ粒子を、全粒子中5%以上、好ましくは40%以上含む接合材は、250℃以上の加熱温度で接合することにより、実用上十分な接合強度を有することが確認された。
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。
 1,1A…Niナノ粒子、3…金属粒子、5…酸素含有皮膜、7…還元性有機物膜、10…リードフレーム、10A…アイランド部(ダイパッド)、20…ICチップ

Claims (17)

  1.  電子部品の接合に用いられる電子部品の接合材であって、
     Ni及びNi合金からなる群より選ばれる金属により構成される金属微粒子と、該金属微粒子を被覆する酸素含有皮膜と、を備え、平均粒子径が100nm以下である金属ナノ粒子を含むことを特徴とする電子部品の接合材。
  2.  前記酸素含有皮膜は、厚みが1nm以上8nm以下の範囲内の酸化物皮膜又は水酸化物皮膜である請求項1に記載の電子部品の接合材。
  3.  前記金属ナノ粒子は、前記酸素含有皮膜の外側をさらに被覆する、1分子膜以上の還元性有機物の膜をさらに備えたものである請求項1又は2に記載の電子部品の接合材。
  4.  前記還元性有機物が、アミン化合物である請求項3に記載の電子部品の接合材。
  5.  炭素を0.1重量%以上5.0重量%以下の範囲内、酸素を0.5重量%以上10.0重量%以下の範囲内で含有する請求項3又は4に記載の電子部品の接合材。
  6.  前記金属微粒子の粒子径の変動係数CVが0.2以下である請求項1から5のいずれか1項に記載の電子部品の接合材。
  7.  前記金属ナノ粒子は、粒子径10nm以上100nm以下の範囲内のものを全体の5%以上含む請求項1から6のいずれか1項に記載の電子部品の接合材。
  8.  前記金属ナノ粒子は、粒子径50nm以上100nm以下の範囲内のものを全体の40%以上含む請求項1から6のいずれか1項に記載の電子部品の接合材。
  9.  前記金属ナノ粒子は、粒子径10nm以上50nm以下の範囲内のものを全体の40%以上含む請求項1から6のいずれか1項に記載の電子部品の接合材。
  10.  X線回折で測定される前記金属微粒子の結晶子径が30nm以下である請求項1から9のいずれか1項に記載の電子部品の接合材。
  11.  前記金属ナノ粒子が、湿式のマイクロ波照射法により合成されたものである請求項1から10のいずれか1項に記載の電子部品の接合材。
  12.  請求項1から11のいずれか1項に記載の電子部品の接合材と、
     揮発性溶液と、を含有し、
     前記接合材が前記揮発性溶液中に分散している電子部品の接合用組成物。
  13.  スラリー状またはペースト状である請求項12に記載の電子部品の接合用組成物。
  14.  請求項1から11のいずれか1項に記載の接合材により接合部分を形成した電子部品。
  15.  前記接合部分は、半導体素子の裏面と基板との間、半導体電極と基板電極との間、又は半導体電極と半導体電極との間に形成されている請求項14に記載の電子部品。
  16.  200℃以上450℃以下の加熱工程を経て接合されている請求項14又は15に記載の電子部品。
  17.  請求項1から11のいずれか1項に記載の電子部品の接合材を200℃以上450℃以下の温度に加熱して接合を行う電子部品の接合方法。
PCT/JP2012/065242 2011-06-16 2012-06-14 電子部品の接合材、接合用組成物、接合方法、及び電子部品 WO2012173187A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520582A JP6061427B2 (ja) 2011-06-16 2012-06-14 電子部品の接合材、接合用組成物、接合方法、及び電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011134557 2011-06-16
JP2011-134557 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012173187A1 true WO2012173187A1 (ja) 2012-12-20

Family

ID=47357168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065242 WO2012173187A1 (ja) 2011-06-16 2012-06-14 電子部品の接合材、接合用組成物、接合方法、及び電子部品

Country Status (2)

Country Link
JP (1) JP6061427B2 (ja)
WO (1) WO2012173187A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029013A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
JP2014029012A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
JP2014029014A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
JP2014029010A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子及びその製造方法
JP2014145117A (ja) * 2013-01-30 2014-08-14 Nippon Steel & Sumikin Chemical Co Ltd ニッケル微粒子含有組成物及びその製造方法
JP2014162967A (ja) * 2013-02-26 2014-09-08 Nippon Steel & Sumikin Chemical Co Ltd ニッケル微粒子、その使用方法及びニッケル微粒子の製造方法
WO2014141742A1 (ja) * 2013-03-13 2014-09-18 Dic株式会社 コア-シェル型ナノ粒子及びその製造方法
JP2014173105A (ja) * 2013-03-07 2014-09-22 Nippon Steel & Sumikin Chemical Co Ltd ニッケルナノ粒子の表面改質方法
JP2015127448A (ja) * 2013-12-27 2015-07-09 新日鉄住金化学株式会社 ニッケル粒子
JP2015198209A (ja) * 2014-04-03 2015-11-09 新日鐵住金株式会社 回路基板及びその製造方法
JP2016186102A (ja) * 2015-03-27 2016-10-27 新日鉄住金化学株式会社 ニッケル粒子及びその製造方法
JP2017150058A (ja) * 2016-02-26 2017-08-31 住友金属鉱山株式会社 ニッケル微粉末及びその製造方法
WO2017208554A1 (ja) * 2016-05-31 2017-12-07 株式会社日立製作所 金属接合材料及びその製造方法、並びにそれを使用した金属接合体の製造方法
JP2017228714A (ja) * 2016-06-24 2017-12-28 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
US11817415B2 (en) 2016-06-24 2023-11-14 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
WO2024143517A1 (ja) * 2022-12-29 2024-07-04 邦宏 福本 焼結金属材料、焼結用金属微粒子及びそれらの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107728A (ja) * 2002-09-18 2004-04-08 Ebara Corp 接合材料及び接合方法
JP2005105365A (ja) * 2003-09-30 2005-04-21 Fujikura Ltd 導電性粉末材料及びその製造方法
WO2005095040A1 (ja) * 2004-03-31 2005-10-13 Ebara Corporation 接合方法及び接合体
JP2007330980A (ja) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd 接合方法
JP2011068988A (ja) * 2009-08-28 2011-04-07 Dowa Electronics Materials Co Ltd 金属ナノ粒子とその凝集体、金属ナノ粒子分散体、それを用いて形成された部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828178B2 (ja) * 2004-08-18 2011-11-30 ハリマ化成株式会社 導電性接着剤および該導電性接着剤を利用する物品の製造方法
JP4454673B2 (ja) * 2008-08-01 2010-04-21 株式会社新川 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107728A (ja) * 2002-09-18 2004-04-08 Ebara Corp 接合材料及び接合方法
JP2005105365A (ja) * 2003-09-30 2005-04-21 Fujikura Ltd 導電性粉末材料及びその製造方法
WO2005095040A1 (ja) * 2004-03-31 2005-10-13 Ebara Corporation 接合方法及び接合体
JP2007330980A (ja) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd 接合方法
JP2011068988A (ja) * 2009-08-28 2011-04-07 Dowa Electronics Materials Co Ltd 金属ナノ粒子とその凝集体、金属ナノ粒子分散体、それを用いて形成された部材

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029013A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
JP2014029012A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
JP2014029014A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
JP2014029010A (ja) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子及びその製造方法
JP2014145117A (ja) * 2013-01-30 2014-08-14 Nippon Steel & Sumikin Chemical Co Ltd ニッケル微粒子含有組成物及びその製造方法
JP2014162967A (ja) * 2013-02-26 2014-09-08 Nippon Steel & Sumikin Chemical Co Ltd ニッケル微粒子、その使用方法及びニッケル微粒子の製造方法
JP2014173105A (ja) * 2013-03-07 2014-09-22 Nippon Steel & Sumikin Chemical Co Ltd ニッケルナノ粒子の表面改質方法
WO2014141742A1 (ja) * 2013-03-13 2014-09-18 Dic株式会社 コア-シェル型ナノ粒子及びその製造方法
JP2015127448A (ja) * 2013-12-27 2015-07-09 新日鉄住金化学株式会社 ニッケル粒子
JP2015198209A (ja) * 2014-04-03 2015-11-09 新日鐵住金株式会社 回路基板及びその製造方法
JP2016186102A (ja) * 2015-03-27 2016-10-27 新日鉄住金化学株式会社 ニッケル粒子及びその製造方法
JP2017150058A (ja) * 2016-02-26 2017-08-31 住友金属鉱山株式会社 ニッケル微粉末及びその製造方法
WO2017208554A1 (ja) * 2016-05-31 2017-12-07 株式会社日立製作所 金属接合材料及びその製造方法、並びにそれを使用した金属接合体の製造方法
JPWO2017208554A1 (ja) * 2016-05-31 2019-03-28 株式会社日立製作所 金属接合材料及びその製造方法、並びにそれを使用した金属接合体の製造方法
JP2017228714A (ja) * 2016-06-24 2017-12-28 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
US11817415B2 (en) 2016-06-24 2023-11-14 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
WO2024143517A1 (ja) * 2022-12-29 2024-07-04 邦宏 福本 焼結金属材料、焼結用金属微粒子及びそれらの製造方法

Also Published As

Publication number Publication date
JP6061427B2 (ja) 2017-01-18
JPWO2012173187A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6061427B2 (ja) 電子部品の接合材、接合用組成物、接合方法、及び電子部品
Ishizaki et al. A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding
TWI651149B (zh) 金屬接合用組成物
JP5706881B2 (ja) ニッケルナノ粒子の製造方法
TWI652353B (zh) Nickel particle composition, joint material, and joining method using same
JP6042747B2 (ja) ニッケル微粒子、その使用方法及びニッケル微粒子の製造方法
JP6422289B2 (ja) ニッケル粒子組成物、接合材及び接合方法
EP3778069A1 (en) Copper paste, bonding method, and method for producing bonded body
JP7139590B2 (ja) 導体形成用組成物、並びに接合体及びその製造方法
JP5830010B2 (ja) ニッケル−コバルトナノ粒子の製造方法
US20170278589A1 (en) Metal oxide particles for bonding, sintering binder including same, process for producing metal oxide particles for bonding, and method for bonding electronic components
Kobayashi et al. Preparation of CuO nanoparticles by metal salt-base reaction in aqueous solution and their metallic bonding property
JP6463195B2 (ja) ニッケル粒子組成物、接合材及びそれを用いた接合方法
JP6126426B2 (ja) 接合方法
JP2011214144A (ja) 金属複合ニッケルナノ粒子の製造方法
JP2013108140A (ja) 金属微粒子組成物及びその製造方法
JP7430664B2 (ja) 金属粒子
JP6938125B2 (ja) 接合体およびその製造方法、並びに半導体モジュール
JP6338419B2 (ja) 金属粒子組成物、接合材及びそれを用いた接合方法
JP2021188087A (ja) ニッケルナノ粒子凝集体、その製造方法及びニッケルナノ粒子複合基板
JPWO2019066081A1 (ja) 複合体粒子及びその製造方法、複合体粒子組成物、接合材及び接合方法、並びに接合体
Maeda et al. Metal-metal bonding properties of copper oxide nanoparticles
JP2013108141A (ja) 金属微粒子組成物及びその製造方法
Wang et al. Copper submicron particle pastes with organic compounds as anti-oxidative additive for Cu–Cu bonding in air
Yi et al. Enhanced Anti-Oxidation Copper-Based Conductive Inks for Low Porosity Copper Films in Power Electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800351

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013520582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800351

Country of ref document: EP

Kind code of ref document: A1