WO2010010902A1 - マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品 - Google Patents

マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品 Download PDF

Info

Publication number
WO2010010902A1
WO2010010902A1 PCT/JP2009/063124 JP2009063124W WO2010010902A1 WO 2010010902 A1 WO2010010902 A1 WO 2010010902A1 JP 2009063124 W JP2009063124 W JP 2009063124W WO 2010010902 A1 WO2010010902 A1 WO 2010010902A1
Authority
WO
WIPO (PCT)
Prior art keywords
soluble substance
microcapsule
water
dispersed
dispersion
Prior art date
Application number
PCT/JP2009/063124
Other languages
English (en)
French (fr)
Inventor
田中 眞人
紀彦 土本
Original Assignee
国立大学法人新潟大学
サッポロビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学, サッポロビール株式会社 filed Critical 国立大学法人新潟大学
Priority to CN2009801229956A priority Critical patent/CN102065989A/zh
Priority to EP09800416A priority patent/EP2305373A1/en
Priority to US12/999,214 priority patent/US20110123680A1/en
Priority to JP2010521720A priority patent/JP5632746B2/ja
Publication of WO2010010902A1 publication Critical patent/WO2010010902A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/046Making microcapsules or microballoons by physical processes, e.g. drying, spraying combined with gelification or coagulation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/256Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from seaweeds, e.g. alginates, agar or carrageenan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/10Moulding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/043Drying and spraying

Definitions

  • the present invention relates to a microcapsule, a method for producing the same and a food or drink containing the microcapsule.
  • microcapsules are formed by forming a coating layer, which is a wall film material, around the functional inclusion material that serves as the core material.
  • a coating layer which is a wall film material
  • microcapsules have been used in various fields due to a combination of a core material to be encapsulated and a wall film material covering the core material.
  • production of microcapsules has been studied for the purpose of use in food or pharmaceutical applications (see, for example, Patent Documents 1 to 4).
  • Microcapsules having a multilayer structure such as W / O and W / O / W are known.
  • Examples of the microcapsules having a W / O / W three-layer structure include an underwater drying method (for example, see Patent Document 5), a method using multiple nozzles (for example, see Patent Documents 6 and 7), and the like.
  • JP 05-049899 A Japanese translation of PCT publication No. 2002-511796 JP 05-049433 A Japanese Patent Laid-Open No. 06-254382 Japanese Patent Laid-Open No. 05-031352 Japanese Patent Laid-Open No. 06-055060 Japanese Patent Application Laid-Open No. 08-010313
  • microcapsules used for food or pharmaceutical use microcapsules having a smaller particle size have been demanded from the viewpoint of improving the texture and the feeling of taking.
  • the microcapsules having a W / O / W three-layer structure disclosed in Patent Documents 5 to 7 cannot produce microcapsules having a small particle size.
  • an object of the present invention is to provide a production method capable of obtaining a microcapsule having a small particle size, a microcapsule obtainable by the production method, and a food or drink containing the microcapsule.
  • the present invention mixes a water-soluble substance and a fat-soluble substance, a primary dispersion step of obtaining a primary dispersion in which the water-soluble substance is dispersed in the fat-soluble substance, the primary dispersion and an aqueous sodium alginate solution, A secondary dispersion step of obtaining a secondary dispersion in which the primary dispersion is dispersed in the aqueous sodium alginate solution, and spraying the secondary dispersion into contact with a calcium ion-containing solution to form a calcium alginate gel. And a spraying step of obtaining microcapsules in which the primary dispersion is dispersed in the calcium alginate gel.
  • the present invention provides a solution in which a primary dispersion in which a water-soluble substance is dispersed in a fat-soluble substance is further brought into contact with a calcium ion-containing solution in a secondary dispersion in which the aqueous dispersion is further dispersed in a sodium alginate aqueous solution.
  • a method for producing a microcapsule in which a calcium alginate gel is formed to obtain a microcapsule in which the primary dispersion is dispersed in the calcium alginate gel.
  • the secondary dispersion in which the primary dispersion is dispersed in the aqueous sodium alginate solution is sprayed to come into contact with the calcium ion-containing solution, or the secondary dispersion in which the primary dispersion is dispersed in the aqueous sodium alginate solution.
  • the water-soluble substance dispersed and present in the primary dispersion may be a water-soluble substance in which a fat-soluble substance that is the same as or different from the fat-soluble substance is dispersed (in the fat-soluble substance, A water-soluble substance that is the same as or different from the water-soluble substance may be dispersed, and for the fat-soluble substance and the water-soluble substance, the repetition of the dispersion of the other substance in one substance may occur more than once. .
  • the viscosity of the aqueous sodium alginate solution is preferably 5 to 2000 mPa ⁇ s at 25 ° C. Thereby, the particle size of a microcapsule can be made still smaller.
  • the calcium ion-containing solution is preferably a calcium chloride aqueous solution, a calcium lactate aqueous solution, or a calcium sulfate aqueous solution.
  • grains which consist of a secondary dispersion liquid can be included in a calcium alginate gel instantly by spraying, and a microcapsule with a still smaller particle diameter can be obtained.
  • the present invention provides a microcapsule that can be obtained by the above production method.
  • a microcapsule has a small particle size.
  • the present invention is a microcapsule composed of a calcium alginate gel and having an average particle size of less than 200 ⁇ m, wherein a fat-soluble substance is dispersed in the calcium alginate gel, and the fat-soluble substance is contained in the fat-soluble substance.
  • a fat-soluble substance is dispersed in the calcium alginate gel, and the fat-soluble substance is contained in the fat-soluble substance.
  • the water-soluble substance may be a water-soluble substance in which the same or different fat-soluble substance as the fat-soluble substance is dispersed (in the fat-soluble substance, the water-soluble substance is the same or different from the water-soluble substance.
  • the substance may be dispersed, and for the fat-soluble substance and the water-soluble substance, a repetition that the other substance is dispersed in one substance may be further repeated several times).
  • microcapsules preferably have an irregularity of less than 1.8. Since such microcapsules are nearly spherical and excellent in durability, it is possible to suppress leakage of water-soluble substances and fat-soluble substances into foods and drinks and suppress deterioration in the quality of food and drinks.
  • this invention provides the food / beverage products containing the microcapsule of the said invention.
  • Such foods and drinks include microcapsules having a small particle size, and thus have excellent texture and texture.
  • the present invention it is possible to provide a production method capable of obtaining a microcapsule having a small particle size, a microcapsule obtainable by the production method, and a food or drink containing the microcapsule.
  • FIG. 2 is an optical micrograph of the microcapsules produced in Example 1.
  • 4 is an optical micrograph of the microcapsules produced in Example 4.
  • 6 is an optical micrograph of the microcapsules produced in Example 5.
  • 2 is an optical micrograph of microcapsules produced in Example 13.
  • FIG. 2 is an optical micrograph of microcapsules produced in Example 19.
  • FIGS. 1 to 3 are diagrams schematically showing a method of manufacturing a microcapsule according to the present embodiment.
  • the manufacturing method of the microcapsule of this embodiment mixes the water-soluble substance 1 and the fat-soluble substance 3, and a primary dispersion liquid (primary dispersion) in which the primary dispersion particles 10 made of the water-soluble substance 1 are dispersed in the fat-soluble substance 3.
  • the primary dispersion step (FIG. 1) for obtaining (dispersion) 15, the primary dispersion 15 and the aqueous sodium alginate solution 5 were mixed, and the secondary dispersion particles 20 comprising the primary dispersion 15 were dispersed in the aqueous sodium alginate solution 5.
  • a secondary dispersion step (FIG.
  • a water layer containing a water-soluble substance (hereinafter simply referred to as “water-soluble substance”) 1 and an oil layer containing a fat-soluble substance (hereinafter simply referred to as “fat-soluble substance”). 1 is prepared, and then the water-soluble substance 1 and the fat-soluble substance 3 are mixed with each other as shown in FIG. Disperse (hereinafter referred to as “primary dispersion” in some cases).
  • a primary dispersion method a conventionally known method can be used. For example, mixing and dispersion can be performed using a homomixer or a homogenizer.
  • the water-soluble substance 1 is not particularly limited as long as it is used for food and drink applications, and examples thereof include water-soluble physiologically active substances, starches, and bitters.
  • water-soluble physiologically active substances include ascorbic acid, thiamine, riboflavin, niacin, pantothenic acid, biotin, vitamin B6 (pyridoxine, pyridoxal, pyridoxamine, etc.), water-soluble vitamins such as folic acid, cyanocobalamin, water-soluble dietary fiber (pectin, Guar bean enzyme degradation product, agarose, glucomannan, polydextrose, etc.), dextrin, caffeine, naringin, amino acid, amino acid derivative, water-soluble peptide, water-soluble protein, water-soluble polyphenol.
  • the water-soluble substance 1 can also be used individually by 1 type or in combination of 2 or more types.
  • the viscosity of the water-soluble substance 1 is preferably 10,000 mPa ⁇ s or less at 25 ° C., more preferably 5000 mPa ⁇ s or less. When the viscosity of the water-soluble substance 1 exceeds 10,000 mPa ⁇ s, it is difficult to disperse (emulsify), and the particle size of the primary dispersed particles 10 tends to increase.
  • the fat-soluble substance 3 is not particularly limited as long as it is used for foods and drinks, but examples thereof include fat-soluble physiologically active substances such as vitamin A, vitamin D, vitamin E and vitamin K.
  • Fat-soluble vitamins, coenzymes Q such as ubiquinone, astaxanthin, zeaxanthin, fucoxanthin, ⁇ -carotene, DHA, EPA, edible oils and fats (corn oil, rapeseed oil, soybean oil, etc.)
  • Vitamin A includes retinol, retinoic acid, retinoid, carotene, etc.
  • vitamin D includes cholecalciferol, ergocalciferol, etc.
  • vitamin E includes tocopherol, tocopherol acetate, tocopherol succinate, nicotine. Examples include acid tocopherol and tocotrienol
  • examples of vitamin K include phytonadione and menatetrenone.
  • the fat-soluble substance 3 can also be used individually by 1 type or in combination of 2 or
  • the viscosity of the fat-soluble substance 3 is preferably 10 to 10000 mPa ⁇ s at 25 ° C., more preferably 20 to 5000 mPa ⁇ s.
  • the viscosity of the fat-soluble substance 3 exceeds 10,000 mPa ⁇ s, it tends to be difficult to disperse (emulsify).
  • the viscosity is less than 10 mPa ⁇ s, the particles once dispersed (emulsified) are united to form primary dispersed particles 10. There is a tendency for the diameter to increase.
  • the blending ratio of the water-soluble substance 1 is preferably 100 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the fat-soluble substance 3 from the viewpoint of favorably dispersing the water-soluble substance 1. More preferably, it is 40 mass parts or less, More preferably, it is 30 mass parts or less. Moreover, from the viewpoint of improving the yield of the microcapsules, the lower limit value of the mixing ratio of the water-soluble substance 1 is preferably about 10 parts by mass.
  • the blending ratio of the water-soluble substance 1 is preferably 100 parts by volume or less, and 50 parts by volume or less with respect to 100 parts by volume of the fat-soluble substance 3 from the viewpoint of favorably dispersing the water-soluble substance 1. More preferably, it is more preferably 40 parts by volume or less, and particularly preferably 30 parts by volume or less. Moreover, from the viewpoint of improving the yield of the microcapsules, the lower limit value of the mixing ratio of the water-soluble substance 1 is preferably about 10 parts by volume.
  • a more stable primary dispersion 15 can be formed by adding and emulsifying an emulsifier when mixing the water-soluble substance 1 and the fat-soluble substance 3 as necessary.
  • the emulsifier is not particularly limited as long as it is used for pharmaceuticals and foods and beverages.
  • glycerin fatty acid ester glycerin fatty acid ester, glycerin acetic acid fatty acid ester, glycerin lactic acid fatty acid ester, glycerin succinic acid fatty acid ester, glycerin diacetyl tartaric acid fatty acid.
  • Esters sorbitan fatty acid esters, sucrose fatty acid esters, sucrose acetate isobutyric acid esters, polyglycerol fatty acid esters, polyglycerol condensed ricinoleic acid esters, propylene glycol fatty acid esters, stearoyl calcium lactate, sodium stearoyl lactate, polyoxyethylene sorbitan monostearate , Polyoxyethylene sorbitan monoglyceride, and lecithin.
  • the addition amount of the emulsifier is preferably about 0.01 to 15 parts by mass with respect to 100 parts by mass of the fat-soluble substance 3.
  • the primary dispersion 15 may be finely dispersed in the fat-soluble substance 3 by stirring the primary dispersion 15 by a higher speed / high pressure method.
  • a method of finely dispersing the primary dispersed particles 10 it is preferable to apply a high shearing force, and examples thereof include a method of stirring using a high-pressure homogenizer, nanomizer, homomixer, colloid mill, disper mill, static mixer, or the like.
  • the primary dispersion 15 in which the primary dispersion particles 10 made of the water-soluble substance 1 are dispersed in the fat-soluble substance 3 can be obtained.
  • a secondary dispersion process First, as shown to Fig.2 (a), the primary dispersion 15 containing the primary dispersion particle 10 prepared above and the sodium alginate aqueous solution 5 are prepared. Next, as shown in FIG. 2 (b), the primary dispersion 15 and the sodium alginate aqueous solution 5 are mixed with each other, so that one or more primary dispersion particles 10 are encapsulated in the sodium alginate aqueous solution 5.
  • the secondary dispersion particles 20 are dispersed to obtain a secondary dispersion 25 (hereinafter referred to as “secondary dispersion” in some cases).
  • a method of secondary dispersion a conventionally known method can be used. For example, mixing and dispersion can be performed using a homomixer or a homogenizer.
  • the average particle size of the secondary dispersed particles 20 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the average particle size of the secondary dispersed particles 20 exceeds 20 ⁇ m, the particle size of the microcapsules is difficult to be reduced, and the microcapsules tend to be uneven and difficult to be spherical.
  • the average particle diameter of the secondary dispersion particle 20 can be measured using a laser diffraction / scattering particle size distribution meter, and refers to a volume average particle diameter.
  • the blending ratio of the primary dispersion 15 is preferably 100 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the sodium alginate aqueous solution 5 from the viewpoint of favorably dispersing the secondary dispersion particles 20. More preferably, it is more preferably 40 parts by mass or less.
  • the blending ratio of the primary dispersion 15 is particularly preferably 20 parts by mass or less from the viewpoint of further reducing the average particle size of the microcapsules and improving the deformity.
  • the lower limit value of the mixing ratio of the primary dispersion 15 is preferably about 5 parts by mass.
  • the blending ratio of the primary dispersion 15 is preferably 100 parts by volume or less with respect to 100 parts by volume of the sodium alginate aqueous solution 5 from the viewpoint of favorably dispersing the secondary dispersion particles 20, and 50 parts by volume. More preferably, it is more preferably 40 parts by volume or less.
  • the mixing ratio of the primary dispersion 15 is particularly preferably 20 parts by volume or less from the viewpoint of further reducing the average particle size of the microcapsules and improving the degree of deformation.
  • the lower limit value of the mixing ratio of the primary dispersion 15 is preferably about 5 parts by volume.
  • the concentration of the aqueous sodium alginate solution 5 is preferably 0.1 to 5.0% by mass, more preferably 0.5 to 3.0% by mass, and 0.5 to 2.0% by mass. More preferably. If the concentration of the sodium alginate aqueous solution 5 is less than 0.1% by mass, calcium alginate tends to be difficult to gel in the spraying step described later, and if it exceeds 5.0% by mass, the secondary dispersion 25 is supplied in the spraying step. It tends to be difficult to flow in the road and is less likely to be sprayed from the nozzle.
  • the viscosity of the aqueous sodium alginate solution 5 is preferably 5 to 2000 mPa ⁇ s at 25 ° C., more preferably 10 to 500 mPa ⁇ s, and still more preferably 15 to 100 mPa ⁇ s.
  • the viscosity of the aqueous sodium alginate solution 5 is less than 5 mPa ⁇ s, the durability of the microcapsules tends to decrease, and when it exceeds 2000 mPa ⁇ s, the particle size of the microcapsules tends to increase.
  • an emulsifier is added and emulsified when mixing the secondary dispersion 25 and the aqueous sodium alginate solution 5 to form a more stable secondary dispersion 25.
  • the emulsifier is not particularly limited as long as it is used for pharmaceuticals and foods and beverages.
  • glycerin fatty acid ester glycerin fatty acid ester, glycerin acetic acid fatty acid ester, glycerin lactic acid fatty acid ester, glycerin succinic acid fatty acid ester, glycerin diacetyl tartaric acid fatty acid.
  • Esters sorbitan fatty acid esters, sucrose fatty acid esters, sucrose acetate isobutyric acid esters, polyglycerol fatty acid esters, polyglycerol condensed ricinoleic acid esters, propylene glycol fatty acid esters, stearoyl calcium lactate, sodium stearoyl lactate, polyoxyethylene sorbitan monostearate , Polyoxyethylene sorbitan monoglyceride, and lecithin.
  • the amount of the emulsifier added is preferably about 0.1 to 5 parts by mass with respect to the aqueous sodium alginate solution.
  • the secondary dispersion particles 20 may be finely dispersed in the sodium alginate aqueous solution 5 by stirring the secondary dispersion 25 by a higher speed and high pressure method.
  • a method of finely dispersing the secondary dispersion particles 20 it is preferable to apply a high shearing force, and examples thereof include a method of stirring using a high-pressure homogenizer, nanomizer, homomixer, colloid mill, disper mill, or static mixer. .
  • the secondary dispersion 25 in which the primary dispersion 15 in which the water-soluble substance 1 is dispersed in the fat-soluble substance 3 is dispersed as the secondary dispersion particles 20 in the aqueous sodium alginate solution 5 can be obtained.
  • the secondary dispersion 25 is sprayed into the calcium ion-containing solution 9 in the form of a mist through the nozzle 7 so that the secondary dispersion particles 20 are encapsulated in the calcium alginate gel 30. 100 is produced.
  • the droplets of the secondary dispersion 25 are brought into contact with the calcium ion-containing solution 9, and the droplets of the secondary dispersion 25 are encapsulated by the calcium alginate gel 30. Capsule 100 can be obtained.
  • the calcium ion-containing solution 9 functions as a gelling agent (coagulant), and when the secondary dispersion 25 is sprayed into the calcium ion-containing solution 9, the sprayed secondary dispersion 25
  • the sodium alginate on the droplet surface reacts with calcium ions to form an insoluble calcium alginate gel.
  • the secondary dispersion particles 20 are encapsulated in the calcium alginate gel 30 to form the microcapsule 100.
  • the calcium ion-containing solution 9 is preferably a calcium chloride aqueous solution, a calcium lactate aqueous solution or a calcium sulfate aqueous solution from the viewpoint of instant gelation, and from the viewpoint that calcium ions are easily released, a calcium chloride aqueous solution. It is more preferable that
  • the concentration of calcium ions in the calcium ion-containing solution 9 is preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and even more preferably 1 to 10% by mass. If the calcium ion concentration is less than 0.5% by mass, gelation tends to be difficult, and if it exceeds 20% by mass, the cost increases and the cleaning step described later tends to take a long time.
  • the discharge port diameter of the nozzle 7 is preferably 1.7 mm or less, more preferably 1.2 mm or less, and even more preferably 1.1 mm or less. When the discharge port diameter exceeds 1.7 mm, the particle size of the microcapsule tends to increase.
  • the nozzle 7 may have only one discharge port or a plurality of discharge ports.
  • the atomizing gas pressure to the nozzle 7 when spraying the secondary dispersion 25 is preferably 0.1 to 1.0 MPa, and more preferably 0.3 to 0.5 MPa.
  • the pressure is less than 0.1 MPa, the particle size of the microcapsule tends to increase.
  • the pressure exceeds 1.0 MPa, the microcapsule tends to be uneven, and the microcapsule tends to have a higher degree of deformity.
  • the liquid feeding speed of the secondary dispersion 25 to the nozzle 7 is preferably 0.1 to 2.0 mL / min, and more preferably 0.25 to 1.0 mL / min.
  • the liquid feeding speed is less than 0.1 mL / min, the production efficiency tends to decrease, and when it exceeds 2.0 mL / min, the particle size of the microcapsule tends to increase.
  • FIG. 4 is a diagram schematically showing the microcapsule 100 manufactured by the manufacturing method of the present embodiment.
  • the secondary dispersed particles 20 encapsulating the primary dispersed particles 10 are encapsulated in the calcium alginate gel 30 to obtain a microcapsule 100 having a small particle size and a nearly spherical shape. be able to.
  • the microcapsule 100 has a three-layer structure of a layer made of the water-soluble substance 1, a layer made of the fat-soluble substance 3, and a layer made of the calcium alginate gel 30, and the secondary dispersed particles (composite emulsion) 20 are
  • the water-soluble substance 1 is dispersed in the fat-soluble substance 3.
  • the average particle size of the microcapsule 100 is preferably less than 200 ⁇ m, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the average particle size of the microcapsules 100 is 200 ⁇ m or more, when blended in a food or drink, the food texture or the feeling of taking tends to be reduced.
  • the average particle diameter of the microcapsule 100 can be measured using a laser diffraction / scattering particle size distribution meter, and refers to a volume average particle diameter.
  • the deformity of the microcapsule 100 is preferably less than 1.8, more preferably less than 1.6, and even more preferably less than 1.4.
  • the degree of profile is 1.8 or more, the durability of the microcapsule tends to decrease.
  • the degree of irregularity means measuring the major axis (longest diameter in the microcapsule) and minor axis (shortest diameter in the microcapsule) from the photograph taken by observing the microcapsule with an optical microscope, and converting the major axis into the minor axis. The value divided by. That is, the closer the profile is to 1.00, the closer it is to a sphere.
  • the encapsulation rate of the water-soluble substance 1 encapsulated in the microcapsule is preferably 0.1% or more, and more preferably 0.5% or more with respect to the entire microcapsule.
  • the encapsulation rate can be obtained as follows. First, the microcapsules are dried under predetermined drying conditions, and after ethanol is added, they are crushed. Then, after centrifuging the ethanol solution containing the crushed microcapsules, the absorbance of the supernatant is measured, and the content (mass ratio) of the water-soluble substance 1 in a state where moisture in the dry microcapsules is removed is calculated. By doing so, the inclusion rate can be obtained.
  • the encapsulation rate of the fat-soluble substance 3 encapsulated in the microcapsule is preferably 50% or more and more preferably 60% or more with respect to the entire microcapsule.
  • the encapsulation rate is obtained by calculating the content (mass ratio) of the fat-soluble substance 3 in the dry microcapsule by the same method as the encapsulation rate of the water-soluble substance 1.
  • the microcapsule 100 according to the present embodiment can be used as a pharmaceutical, a functional food or drink, or a food or drink additive by appropriately changing the water-soluble substance 1 and the fat-soluble substance 3 contained therein. Especially, since a particle size is small and it is near spherical shape, it can add suitably to food-drinks. Therefore, the food / beverage products containing the said microcapsule 100 become a thing excellent in food texture and a feeling of taking. Since such a microcapsule 100 is nearly spherical and excellent in durability, the leakage of the water-soluble substance 1 and the fat-soluble substance 3 to the food and drink can be suppressed, and the quality deterioration of the food and drink can be suppressed.
  • the microcapsule of the present embodiment is a microcapsule composed of a calcium alginate gel, in which a fat-soluble substance is dispersed in the calcium alginate gel, and a water-soluble substance is dispersed in the fat-soluble substance.
  • the water-soluble substance is a water-soluble substance in which the same or different fat-soluble substance as the fat-soluble substance is dispersed (the same or different water-soluble substance as the water-soluble substance is further dispersed in the fat-soluble substance) It may be possible that the fat-soluble substance and the water-soluble substance may be further repeated several times in which the other substance is dispersed in one substance.) Four or more layers like a microcapsule The microcapsule may be used.
  • the microcapsule having a structure of four or more layers may be a water-soluble substance in which the water-soluble substance dispersed and present in the primary dispersion is a water-soluble substance in which the same or different fat-soluble substance is dispersed (the fat-soluble substance).
  • a water-soluble substance that is the same as or different from the above-mentioned water-soluble substance may be further dispersed.
  • a four-layer microcapsule can be obtained, for example, by the following steps. First, in the primary dispersion step, a water-soluble substance and a fat-soluble substance are mixed with each other to prepare a dispersion in which the water-soluble substance is dispersed in the water-soluble substance, and the dispersion is further dispersed in the fat-soluble substance. To prepare a primary dispersion. Next, in the secondary dispersion step, the primary dispersion is mixed with the aqueous sodium alginate solution to disperse the primary dispersion in the aqueous sodium alginate solution to prepare a secondary dispersion. And the microcapsule of a four-layer structure can be obtained by performing the spraying process and washing
  • a step of further dispersing the water-soluble substance in which the water-soluble substance is dispersed into the water-soluble substance, and a step in which the water-soluble substance in which the fat-soluble substance is dispersed are further provided.
  • the dispersion can be obtained by performing the same secondary dispersion step, spraying step and washing step as in the above embodiment.
  • Example 1 Polyphenol powder (produced by Samplite Co., Ltd., grape seed extract OPC30) was dissolved in distilled water to prepare a 20% by mass polyphenol aqueous solution. Next, 1.6 g of emulsifier (trade name “POEM PR-100” manufactured by Riken Vitamin Co., Ltd.) is dissolved in 14.4 g of vitamin E (manufactured by Wako Pure Chemical Industries, Ltd.), and 4.0 g of a polyphenol aqueous solution is further added.
  • emulsifier trade name “POEM PR-100” manufactured by Riken Vitamin Co., Ltd.
  • This solution was first dispersed (emulsified) using a homomixer (trade name “BM-2”, manufactured by Nippon Seiki Co., Ltd.) under the conditions of 12000 rpm, 5 minutes, 60 ° C., and W / O A dispersion was prepared.
  • BM-2 manufactured by Nippon Seiki Co., Ltd.
  • this W / O / W dispersion is passed through a spray nozzle (manufactured by Atmax Co., Ltd., trade name “AM-6 type”, nozzle discharge port diameter: 1.1 mm), a liquid feed speed of 1.0 mL / min, and a spray gas pressure.
  • Spraying was performed on a 5 mass% calcium chloride aqueous solution at 0.3 MPa to form W / O / W three-layer microcapsules.
  • the W / O / W three-layer microcapsules were collected by filtration using 5A filter paper (manufactured by Advantech Toyo Co., Ltd.) and washed with 3 times the amount of distilled water. Then, the W / O / W three-layer microcapsules were again filtered with 5A filter paper to recover the W / O / W three-layer microcapsules.
  • the volume average particle size of the obtained W / O / W three-layer microcapsules was measured with a laser diffraction / scattering particle size distribution meter (trade name “SALD-3000”, manufactured by Shimadzu Corporation). Was 25 ⁇ m.
  • Example 2 A W / O / W dispersion containing secondary dispersion particles having a volume average particle size of 3 ⁇ m, except that a sodium alginate aqueous solution having a concentration of 0.75 mass% and a viscosity of 70 mPa ⁇ s was used. A liquid was obtained. Using this W / O / W dispersion, the same operation as in Example 1 was performed to collect W / O / W three-layer microcapsules. The obtained W / O / W three-layer microcapsule had a volume average particle size of 26 ⁇ m.
  • Example 3 A W / O / W dispersion containing secondary dispersion particles having a volume average particle size of 8 ⁇ m, except that an aqueous sodium alginate solution having a concentration of 0.5 mass% and a viscosity of 15 mPa ⁇ s was used. A liquid was obtained. Using this W / O / W dispersion, the same operation as in Example 1 was performed to collect W / O / W three-layer microcapsules. The obtained W / O / W three-layer microcapsule had a volume average particle size of 36 ⁇ m.
  • Example 4 The same operation as in Example 1 was performed except that a spray nozzle (manufactured by Atmax Co., Ltd., trade name “AM-12”, nozzle discharge port diameter: 1.2 mm) was used in the spraying process, and W / O / W Three-layer microcapsules were collected. The obtained W / O / W three-layer microcapsule had a volume average particle size of 89 ⁇ m.
  • a spray nozzle manufactured by Atmax Co., Ltd., trade name “AM-12”, nozzle discharge port diameter: 1.2 mm
  • Example 5 W / O / W was performed in the same manner as in Example 1 except that a spray nozzle (trade name “AM-25 type” manufactured by Atmax Co., Ltd., nozzle discharge port diameter: 1.7 mm) was used in the spraying process. Three-layer microcapsules were collected. The obtained W / O / W three-layer microcapsule had a volume average particle diameter of 198 ⁇ m.
  • a spray nozzle trade name “AM-25 type” manufactured by Atmax Co., Ltd., nozzle discharge port diameter: 1.7 mm
  • Example 6 W / O / W three-layer microcapsules were collected in the same manner as in Example 4 except that the blending amount of the 20 mass% polyphenol aqueous solution was changed to 5.8 g with respect to 14.4 g of vitamin E.
  • the obtained W / O / W three-layer microcapsule had a volume average particle diameter of 143 ⁇ m.
  • Example 7 W / O / W three-layer microcapsules were collected in the same manner as in Example 4 except that the blending amount of 20 mass% polyphenol was changed to 7.2 g with respect to 14.4 g of vitamin E.
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 135 ⁇ m.
  • Example 8 W / O / W three-layer microcapsules were collected in the same manner as in Example 4 except that the blending amount of 20% by mass polyphenol was changed to 11.5 g with respect to 14.4 g of vitamin E.
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 115 ⁇ m.
  • Example 9 W / O / W three-layer microcapsules were collected in the same manner as in Example 4 except that the blending amount of 20% by mass polyphenol was changed to 14.4 g with respect to 14.4 g of vitamin E.
  • the obtained W / O / W three-layer microcapsule had a volume average particle diameter of 117 ⁇ m.
  • Example 10 Except that the atomizing gas pressure was changed to 0.1 MPa, the same operation as in Example 4 was performed, and W / O / W three-layer microcapsules were collected.
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 156 ⁇ m.
  • Example 11 Except that the atomizing gas pressure was changed to 0.5 MPa, the same operation as in Example 4 was performed to collect W / O / W three-layer microcapsules.
  • the obtained W / O / W three-layer microcapsule had a volume average particle diameter of 72 ⁇ m.
  • Example 12 Except that the calcium ion concentration of the aqueous calcium chloride solution was changed to 0.5 mass%, the same operation as in Example 4 was performed, and W / O / W three-layer microcapsules were collected. The obtained W / O / W three-layer microcapsule had a volume average particle diameter of 97 ⁇ m.
  • Example 13 Except that the calcium ion concentration of the aqueous calcium chloride solution was changed to 10% by mass, the same operation as in Example 4 was performed to collect W / O / W three-layer microcapsules.
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 90 ⁇ m.
  • Example 14 Except that the calcium ion concentration of the aqueous calcium chloride solution was changed to 20% by mass, the same operation as in Example 4 was performed to collect W / O / W three-layer microcapsules.
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 124 ⁇ m.
  • Example 15 W / O / W three-layer microcapsules were collected in the same manner as in Example 4 except that the 5 mass% calcium chloride aqueous solution was changed to a 2.5 mass% calcium sulfate aqueous solution.
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 133 ⁇ m.
  • Example 16 W / O / W three-layer microcapsules were collected in the same manner as in Example 4 except that the 5 mass% calcium chloride aqueous solution was changed to a 2.5 mass% calcium lactate aqueous solution.
  • the obtained W / O / W three-layer microcapsule had a volume average particle diameter of 119 ⁇ m.
  • Example 17 Except for changing the concentration of the aqueous sodium alginate solution to 0.2% by mass and changing the viscosity of the aqueous sodium alginate solution to 5 mPa ⁇ s, the same operation as in Example 4 was performed, and the W / O / W three-layer microcapsules were obtained. It was collected. The obtained W / O / W three-layer microcapsule had a volume average particle size of 114 ⁇ m.
  • Example 18 Except for changing the concentration of the aqueous sodium alginate solution to 1.2% by mass and changing the viscosity of the aqueous sodium alginate solution to 500 mPa ⁇ s, the same operation as in Example 4 was performed, and the W / O / W three-layer microcapsules were obtained. It was collected. The obtained W / O / W three-layer microcapsule had a volume average particle size of 124 ⁇ m.
  • Example 19 The same operation as in Example 4 was performed except that the concentration of the sodium alginate aqueous solution was changed to 1.5 mass% and the viscosity of the aqueous sodium alginate aqueous solution was changed to 1000 mPa ⁇ s, and the W / O / W three-layer microcapsules were obtained. It was collected. The obtained W / O / W three-layer microcapsule had a volume average particle size of 112 ⁇ m.
  • Example 20 The same operation as in Example 4 was performed except that the concentration of the sodium alginate aqueous solution was changed to 2.0% by mass and the viscosity of the sodium alginate aqueous solution was changed to 2000 mPa ⁇ s. It was collected. The obtained W / O / W three-layer microcapsule had a volume average particle diameter of 117 ⁇ m.
  • Example 21 W / O / W three-layer microcapsules were recovered in the same manner as in Example 4 except that the blending amount of the W / O dispersion was changed to 9.3 g with respect to 187.1 g of the sodium alginate aqueous solution. .
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 67 ⁇ m.
  • Example 22 W / O / W three-layer microcapsules were collected by performing the same operation as in Example 4 except that the amount of the W / O dispersion was changed to 65.4 g with respect to 131.0 g of the sodium alginate aqueous solution. .
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 142 ⁇ m.
  • Example 23 W / O / W three-layer microcapsules were collected by performing the same operation as in Example 4 except that the amount of the W / O dispersion was changed to 98.2 g with respect to 98.2 g of the sodium alginate aqueous solution. .
  • the obtained W / O / W three-layer microcapsule had a volume average particle size of 139 ⁇ m.
  • FIG. 5 is an optical micrograph of the W / O / W three-layer microcapsule obtained in Example 1.
  • the W / O / W three-layer microcapsules obtained in Example 4, Example 5, Example 13, and Example 19 were digital microscopes (trade name “Digital Microscope VHX-100F” manufactured by Keyence Corporation). ).
  • 6 to 9 are photographs of the W / O / W three-layer microcapsules obtained in Example 4, Example 5, Example 13, and Example 19, respectively.
  • the supernatant is collected at 285 nm using an absorbance measuring device (trade name “Spectrophotometer U-3210” manufactured by Hitachi Instrument Service Co., Ltd.). The absorbance of the supernatant was measured. The mass ratios of polyphenol and vitamin E were determined from the measured absorbance, and the inclusion ratios of polyphenol and vitamin E in the W / O / W three-layer microcapsules were calculated.
  • Tables 1 to 4 show production conditions and measurement results (average particle diameter, deformity, polyphenol and vitamin E inclusion rate). Show. Further, Table 5 shows the results of the durability test on the W / O / W three-layer microcapsules obtained in Examples 1, 3, and 19.
  • the W / O / W three-layer microcapsules obtained in Examples 1 to 23 were confirmed to have a small average particle diameter according to Tables 1 to 4, and a microcapsule having a small degree of irregularity and a nearly spherical shape was obtained. It was confirmed that
  • SYMBOLS 1 Water-soluble substance, 3 ... Fat-soluble substance, 5 ... Sodium alginate aqueous solution, 7 ... Nozzle, 9 ... Calcium ion containing solution, 10 ... Primary dispersion particle, 15 ... Primary dispersion liquid, 20 ... Secondary dispersion particle, 25 ... Secondary dispersion, 30 ... calcium alginate gel, 100 ... microcapsules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Nutrition Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mycology (AREA)
  • Manufacturing & Machinery (AREA)
  • Botany (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

 水溶性物質と脂溶性物質とを混合し、水溶性物質からなる一次分散粒子10が脂溶性物質中に分散した一次分散液を得る一次分散工程と、一次分散液とアルギン酸ナトリウム水溶液とを混合し、一次分散液からなる二次分散粒子20が当該アルギン酸ナトリウム水溶液中に分散した二次分散液を得る二次分散工程と、二次分散液を噴霧してカルシウムイオン含有溶液9と接触させることで、アルギン酸カルシウムゲル30を形成させ、二次分散粒子20がアルギン酸カルシウムゲル30中に分散したマイクロカプセル100を得る噴霧工程と、を備えるマイクロカプセル100の製造方法。

Description

マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品
 本発明は、マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品に関する。
 マイクロカプセルは、芯物質となる機能性内包物質を保護するために、その周りに壁膜物質である被覆層を形成したものである。近年、マイクロカプセルは、内包される芯物質と該芯物質を被覆する壁膜物質との組み合わせにより、様々な分野において使用されている。特に、食品又は医薬品等の用途で使用することを目的として、マイクロカプセルを製造することが検討されている(例えば、特許文献1~4参照)。
 マイクロカプセルは、例えばW/Oや、W/O/W等の多層構造を有するものが知られている。W/O/W三層構造のマイクロカプセルについては、例えば水中乾燥法(例えば、特許文献5参照)や、多重ノズルを用いた方法(例えば、特許文献6,7参照)等が挙げられる。
特開平05-049899号公報 特表2002-511796号公報 特開平05-049433号公報 特開平06-254382号公報 特開平05-031352号公報 特開平06-055060号公報 特開平08-010313号公報
 食品又は医薬用途に用いられるマイクロカプセルには、食感及び服用感を向上する観点から、粒径がより小さいマイクロカプセルが求められてきている。しかしながら、特許文献5~7のW/O/W三層構造のマイクロカプセルでは、粒径が小さいマイクロカプセルを製造することができなかった。
 そこで、本発明は、粒径が小さいマイクロカプセルを得ることのできる製造方法、当該製造方法により得ることのできるマイクロカプセル、並びに該マイクロカプセルを含む飲食品を提供することを目的とする。
 本発明は、水溶性物質と脂溶性物質とを混合し、水溶性物質が脂溶性物質中に分散した一次分散物を得る一次分散工程と、上記一次分散物とアルギン酸ナトリウム水溶液とを混合し、上記一次分散物が当該アルギン酸ナトリウム水溶液中に分散した二次分散物を得る二次分散工程と、上記二次分散物を噴霧してカルシウムイオン含有溶液と接触させることで、アルギン酸カルシウムゲルを形成させ、上記一次分散物が当該アルギン酸カルシウムゲル中に分散したマイクロカプセルを得る噴霧工程と、を備えるマイクロカプセルの製造方法を提供する。
 また、本発明は、水溶性物質が脂溶性物質中に分散した一次分散物が、さらにアルギン酸ナトリウム水溶液中に分散されている二次分散液の液滴を、カルシウムイオン含有溶液と接触させることで、アルギン酸カルシウムゲルを形成させ、上記一次分散物が当該アルギン酸カルシウムゲル中に分散したマイクロカプセルを得る、マイクロカプセルの製造方法を提供する。
 本発明では、一次分散物がアルギン酸ナトリウム水溶液中に分散した二次分散物を噴霧してカルシウムイオン含有溶液と接触、又は、一次分散物がアルギン酸ナトリウム水溶液中に分散されている二次分散液の液滴をカルシウムイオン含有溶液と接触させてマイクロカプセルを製造することにより、得られるマイクロカプセルの粒径を小さくすることができる。
 また、上記一次分散物中に分散して存在する水溶性物質は、上記脂溶性物質と同一又は異なる脂溶性物質が分散した水溶性物質であってもよい(当該脂溶性物質中には、さらに上記水溶性物質と同一又は異なる水溶性物質が分散していてもよく、脂溶性物質と水溶性物質について、一方の物質中に他方の物質が分散するという繰り返しがさらに複数回生じていてもよい。)
 また、上記アルギン酸ナトリウム水溶液の粘度は、25℃において5~2000mPa・sであることが好ましい。これにより、マイクロカプセルの粒径をより一層小さくすることができる。
 本発明のマイクロカプセルの製造方法において、上記カルシウムイオン含有溶液は、塩化カルシウム水溶液、乳酸カルシウム水溶液又は硫酸カルシウム水溶液であることが好ましい。これにより、噴霧により瞬時に二次分散液からなる粒子をアルギン酸カルシウムゲル中に内包でき、より一層粒径が小さいマイクロカプセルを得ることができる。
 本発明は、上記製造方法により得ることのできるマイクロカプセルを提供する。このようなマイクロカプセルは、粒径が小さいものとなる。
 また、本発明は、アルギン酸カルシウムゲルで構成され、平均粒径が200μm未満であるマイクロカプセルであって、上記アルギン酸カルシウムゲル中には、脂溶性物質が分散しており、当該脂溶性物質中には水溶性物質が分散しているマイクロカプセルを提供する。このようなマイクロカプセルは、粒径が小さいものとなるため、食感を低下させることなく、様々な飲食品に添加することができる。
 また、上記水溶性物質は、上記脂溶性物質と同一又は異なる脂溶性物質が分散した水溶性物質であってもよい(当該脂溶性物質中には、さらに上記水溶性物質と同一又は異なる水溶性物質が分散していてもよく、脂溶性物質と水溶性物質について、一方の物質中に他方の物質が分散するという繰り返しがさらに複数回生じていてもよい。)。
 また、上記マイクロカプセルは、異形度が1.8未満であることが好ましい。このようなマイクロカプセルは、球状に近く耐久性に優れることから、飲食品への水溶性物質及び脂溶性物質の漏出を抑制し、飲食品の品質低下を抑制することができる。
 更に、本発明は、上記本発明のマイクロカプセルを含む飲食品を提供する。このような飲食品は、粒径が小さいマイクロカプセルを含むことから、食感及び服用感に優れるものとなる。
 本発明によれば、粒径が小さいマイクロカプセルを得ることのできる製造方法、当該製造方法により得ることのできるマイクロカプセル、並びに当該マイクロカプセルを含む飲食品を提供することができる。
本発明に係るマイクロカプセルの製造方法を模式的に示す図である。 本発明に係るマイクロカプセルの製造方法を模式的に示す図である。 本発明に係るマイクロカプセルの製造方法を模式的に示す図である。 本実施形態の製造方法で作製したマイクロカプセルを模式的に示す図である。 実施例1で作製したマイクロカプセルの光学顕微鏡写真である。 実施例4で作製したマイクロカプセルの光学顕微鏡写真である。 実施例5で作製したマイクロカプセルの光学顕微鏡写真である。 実施例13で作製したマイクロカプセルの光学顕微鏡写真である。 実施例19で作製したマイクロカプセルの光学顕微鏡写真である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
(マイクロカプセルの製造方法)
 図1~図3は、本実施形態に係るマイクロカプセルの製造方法を模式的に示す図である。本実施形態のマイクロカプセルの製造方法は、水溶性物質1と脂溶性物質3とを混合し、水溶性物質1からなる一次分散粒子10が脂溶性物質3中に分散された一次分散液(一次分散物)15を得る一次分散工程(図1)と、一次分散液15とアルギン酸ナトリウム水溶液5とを混合し、一次分散液15からなる二次分散粒子20がアルギン酸ナトリウム水溶液5中に分散された二次分散液(二次分散物)25を得る二次分散工程(図2)と、二次分散液25を噴霧してカルシウムイオン含有溶液9と接触させることで、アルギン酸カルシウムゲル30を形成させ、二次分散粒子20がアルギン酸カルシウムゲル30中に分散されたマイクロカプセル100を得る噴霧工程(図3)とを備える。
 以下、図1~図3を参照しながら、本実施形態のマイクロカプセルの製造方法における各工程について更に詳細に説明する。
(一次分散工程)
 まず、図1(a)に示すように、水溶性物質を含む水層(以下、単に「水溶性物質」という)1と、脂溶性物質を含む油層(以下、単に「脂溶性物質」という)3とを準備した後、図1(b)に示すように、水溶性物質1と脂溶性物質3とを互いに混合することで脂溶性物質3中に水溶性物質1からなる一次分散粒子10を分散させる(以下、場合により「一次分散」という)。一次分散する方法としては、従来公知の方法を用いることができ、例えば、ホモミキサー又はホモジナイザーを用いて、混合・分散することができる。
 水溶性物質1は、飲食品用途で使用されるものであれば特に制限されないが、例えば、水溶性生理活性物質、澱粉、苦味料が挙げられる。水溶性生理活性物質としては、アスコルビン酸、チアミン、リボフラビン、ナイアシン、パントテン酸、ビオチン、ビタミンB6(ピリドキシン、ピリドキサール、ピリドキサミン等)、葉酸、シアノコバラミン等の水溶性ビタミン類、水溶性食物繊維(ペクチン、グアー豆酵素分解物、アガロース、グルコマンナン、ポリデキストロース等)、デキストリン、カフェイン、ナリンジン、アミノ酸、アミノ酸誘導体、水溶性ペプチド、水溶性タンパク質、水溶性ポリフェノールが挙げられる。また、水溶性物質1は、1種を単独で又は2種以上組み合わせて使用することもできる。
 水溶性物質1の粘度は、25℃で10000mPa・s以下であることが好ましく、5000mPa・s以下であることがより好ましい。水溶性物質1の粘度が10000mPa・sを超えると、分散(乳化)しにくく、一次分散粒子10の粒径が大きくなる傾向がある。
 脂溶性物質3としては、飲食品用途で使用されるものであれば特に制限されないが、脂溶性生理活性物質が挙げられ、例えば、ビタミンA類、ビタミンD類、ビタミンE類及びビタミンK類等の脂溶性ビタミン、ユビキノン等の補酵素Q類、アスタキサンチン、ゼアキサンチン、フコキサンチン、βカロチン、DHA、EPA、食用油脂(コーン油、菜種油、大豆油等)が挙げられる。ビタミンA類としてはレチノール、レチノイン酸、レチノイド、カロチン等が挙げられ、ビタミンD類としてはコレカルシフェロール、エルゴカルシフェロール等が挙げられ、ビタミンE類としてはトコフェロール、酢酸トコフェロール、コハク酸トコフェロール、ニコチン酸トコフェロール、トコトリエノール等が挙げられ、ビタミンK類としてはフィトナジオン、メナテトレノン等が挙げられる。また、脂溶性物質3は、1種を単独で又は2種以上組み合わせて使用することもできる。
 脂溶性物質3の粘度は、25℃で10~10000mPa・sであることが好ましく、20~5000mPa・sであることがより好ましい。脂溶性物質3の粘度が10000mPa・sを超えると、分散(乳化)しにくくなる傾向があり、10mPa・s未満となると、一旦分散(乳化)した粒子が合一して一次分散粒子10の粒径が大きくなる傾向がある。
 水溶性物質1の配合割合は、水溶性物質1を良好に分散させるという観点から、100質量部の脂溶性物質3に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることが更に好ましく、30質量部以下であることが特に好ましい。また、マイクロカプセルの収率を向上する観点から、水溶性物質1の配合割合の下限値は、10質量部程度であることが好ましい。
 また、水溶性物質1の配合割合は、水溶性物質1を良好に分散させるという観点から、100体積部の脂溶性物質3に対して、100体積部以下であることが好ましく、50体積部以下であることがより好ましく、40体積部以下であることが更に好ましく、30体積部以下であることが特に好ましい。また、マイクロカプセルの収率を向上する観点から、水溶性物質1の配合割合の下限値は、10体積部程度であることが好ましい。
 また、一次分散工程では、必要に応じて、水溶性物質1及び脂溶性物質3の混合時に乳化剤を添加して乳化させることにより、更に安定な一次分散液15を形成することができる。乳化剤としては、医薬品、飲食品用途で使用されるものであれば特に制限を受けないが、例えば、グリセリン脂肪酸エステル、グリセリン酢酸脂肪酸エステル、グリセリン乳酸脂肪酸エステル、グリセリンコハク酸脂肪酸エステル、グリセリンジアセチル酒石酸脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ショ糖酢酸イソ酪酸エステル、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル、プロピレングリコール脂肪酸エステル、ステアロイル乳酸カルシウム、ステアロイル乳酸ナトリウム、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノグリセリド、レシチンが挙げられる。乳化剤の添加量は、100質量部の脂溶性物質3に対して、0.01~15質量部程度であることが好ましい。
 一次分散工程では、一次分散液15を一層高速・高圧の方法で撹拌することで、一次分散粒子10を脂溶性物質3に微分散させてもよい。一次分散粒子10を微分散させる方法としては、高いせん断力をかけることが好ましく、例えば、高圧ホモジナイザー、ナノマイザー、ホモミキサー、コロイドミル、ディスパーミル又はスタティックミキサー等を用いて撹拌する方法が挙げられる。
 以上により、水溶性物質1からなる一次分散粒子10が脂溶性物質3中に分散された一次分散液15を得ることができる。
(二次分散工程)
 まず、図2(a)に示すように、上記で調製した一次分散粒子10を含む一次分散液15と、アルギン酸ナトリウム水溶液5とを準備する。次に、図2(b)に示すように、一次分散液15と、アルギン酸ナトリウム水溶液5とを互いに混合することで、アルギン酸ナトリウム水溶液5中に、一次分散粒子10を一つ又は複数内包する二次分散粒子20を分散させ、二次分散液25を得る(以下、場合により「二次分散」という)。二次分散する方法としては、従来公知の方法を用いることができ、例えば、ホモミキサー又はホモジナイザーを用いて、混合・分散することができる。
 二次分散粒子20の平均粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更に好ましい。二次分散粒子20の平均粒径が20μmを超えると、マイクロカプセルの粒径が小さくなり難く、マイクロカプセルに凹凸が生じ、球状になり難い傾向がある。なお、二次分散粒子20の平均粒径は、レーザー回析/散乱式粒度分布計を用いて測定することができ、体積平均粒径をいう。
 一次分散液15の配合割合は、二次分散粒子20を良好に分散させるという観点から、100質量部のアルギン酸ナトリウム水溶液5に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることが更に好ましい。一次分散液15の配合割合は、マイクロカプセルの平均粒径が更に減少すると共に異形度が向上する観点から、20質量部以下であることが特に好ましい。また、マイクロカプセルの収率を向上する観点から、一次分散液15の配合割合の下限値は、5質量部程度であることが好ましい。
 また、一次分散液15の配合割合は、二次分散粒子20を良好に分散させるという観点から、100体積部のアルギン酸ナトリウム水溶液5に対して、100体積部以下であることが好ましく、50体積部以下であることがより好ましく、40体積部以下であることが更に好ましい。一次分散液15の配合割合は、マイクロカプセルの平均粒径が更に減少すると共に異形度が向上する観点から、20体積部以下であることが特に好ましい。また、マイクロカプセルの収率を向上する観点から、一次分散液15の配合割合の下限値は、5体積部程度であることが好ましい。
 アルギン酸ナトリウム水溶液5の濃度は、0.1~5.0質量%であることが好ましく、0.5~3.0質量%であることがより好ましく、0.5~2.0質量%であることが更に好ましい。アルギン酸ナトリウム水溶液5の濃度が0.1質量%未満では、後述する噴霧工程においてアルギン酸カルシウムがゲル化しにくくなる傾向があり、5.0質量%を超えると、噴霧工程において二次分散液25が供給路内で流れにくくなり、ノズルより噴霧されにくくなる傾向がある。
 アルギン酸ナトリウム水溶液5の粘度は、25℃において5~2000mPa・sであることが好ましく、10~500mPa・sであることがより好ましく、15~100mPa・sであることが更に好ましい。アルギン酸ナトリウム水溶液5の粘度が5mPa・s未満では、マイクロカプセルの耐久性が低下する傾向があり、2000mPa・sを超えると、マイクロカプセルの粒径が増大する傾向がある。
 また、二次分散工程では、必要に応じて、二次分散液25とアルギン酸ナトリウム水溶液5との混合時に乳化剤を添加して乳化させることにより、更に安定な二次分散液25を形成することもできる。乳化剤としては、医薬品、飲食品用途で使用されるものであれば特に制限を受けないが、例えば、グリセリン脂肪酸エステル、グリセリン酢酸脂肪酸エステル、グリセリン乳酸脂肪酸エステル、グリセリンコハク酸脂肪酸エステル、グリセリンジアセチル酒石酸脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ショ糖酢酸イソ酪酸エステル、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル、プロピレングリコール脂肪酸エステル、ステアロイル乳酸カルシウム、ステアロイル乳酸ナトリウム、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノグリセリド、レシチンが挙げられる。乳化剤の添加量は、アルギン酸ナトリウム水溶液に対して、0.1~5質量部程度であることが好ましい。
 二次分散工程では、二次分散液25を一層高速・高圧の方法で撹拌することで、二次分散粒子20をアルギン酸ナトリウム水溶液5に微分散させてもよい。二次分散粒子20を微分散させる方法としては、高いせん断力をかけることが好ましく、例えば、高圧ホモジナイザー、ナノマイザー、ホモミキサー、コロイドミル、ディスパーミル又はスタティックミキサー等を用いて撹拌する方法が挙げられる。
 以上により、水溶性物質1が脂溶性物質3中に分散された一次分散液15が、二次分散粒子20としてアルギン酸ナトリウム水溶液5中に分散されている二次分散液25を得ることができる。
(噴霧工程)
 次に、図3に示すように、二次分散液25をカルシウムイオン含有溶液9中にノズル7を通して霧状に噴霧することにより、二次分散粒子20がアルギン酸カルシウムゲル30で内包されたマイクロカプセル100が作製される。このように二次分散液25を噴霧することにより、二次分散液25の液滴をカルシウムイオン含有溶液9と接触させ、二次分散液25の液滴がアルギン酸カルシウムゲル30により内包されたマイクロカプセル100を得ることができる。
 すなわち、カルシウムイオン含有溶液9は、ゲル化剤(凝固剤)として機能するものであり、二次分散液25がカルシウムイオン含有溶液9中へ噴霧されると、噴霧された二次分散液25の液滴表面のアルギン酸ナトリウムがカルシウムイオンと反応し、不溶性のアルギン酸カルシウムのゲルとなる。その結果、二次分散粒子20がアルギン酸カルシウムゲル30に内包され、マイクロカプセル100が形成される。
 なお、カルシウムイオン含有溶液9は、瞬時にゲル化するという観点から、塩化カルシウム水溶液、乳酸カルシウム水溶液又は硫酸カルシウム水溶液であることが好ましく、更にカルシウムイオンが容易に遊離するという観点から、塩化カルシウム水溶液であることがより好ましい。
 カルシウムイオン含有溶液9におけるカルシウムイオンの濃度は、0.5~20質量%であることが好ましく、0.5~10質量%がより好ましく、1~10質量%であることが更に好ましい。カルシウムイオンの濃度が0.5質量%未満では、ゲル化しにくくなる傾向があり、20質量%を超えると、コストが増加すると共に後述する洗浄工程が長時間化する傾向がある。
 ノズル7の吐出口径は、1.7mm以下であることが好ましく、1.2mm以下であることがより好ましく、1.1mm以下であることが更に好ましい。吐出口径が1.7mmを超えると、マイクロカプセルの粒径が増大する傾向がある。なお、ノズル7は吐出口を1つだけ有していてもよく、複数有していてもよい。
 二次分散液25を噴霧する際のノズル7への噴霧気体圧力は、0.1~1.0MPaであることが好ましく、0.3~0.5MPaであることがより好ましい。上記圧力が0.1MPa未満では、マイクロカプセルの粒径が大きくなる傾向があり、1.0MPaを超えると、マイクロカプセルに凹凸が生じ、マイクロカプセルの異形度が大きくなる傾向がある。
 二次分散液25のノズル7への送液速度は、0.1~2.0mL/minであることが好ましく、0.25~1.0mL/minであることがより好ましい。上記送液速度が0.1mL/min未満では、製造能率が低下する傾向があり、2.0mL/minを超えると、マイクロカプセルの粒径が大きくなる傾向がある。
(洗浄工程)
 次いで、マイクロカプセル100はろ過回収され、使用する用途に応じて適宜洗浄処理や分級等を行った後、W/O/W三層マイクロカプセルとして単離される。図4は、本実施形態の製造方法で作製されたマイクロカプセル100を模式的に示す図である。このように、本実施形態によれば、一次分散粒子10を内包する二次分散粒子20が、アルギン酸カルシウムゲル30に内包されており、粒径が小さく、かつ、球状に近いマイクロカプセル100を得ることができる。すなわち、マイクロカプセル100は、水溶性物質1からなる層、脂溶性物質3からなる層及びアルギン酸カルシウムゲル30からなる層の三層構造を有しており、二次分散粒子(複合エマルジョン)20は、水溶性物質1が脂溶性物質3に分散されてなる。
 マイクロカプセル100の平均粒径は、200μm未満であることが好ましく、100μm以下であることがより好ましく、50μm以下であることが更に好ましい。マイクロカプセル100の平均粒径が200μm以上では、飲食品に配合した場合に、その飲食品の食感又は服用感が低下する傾向がある。なお、マイクロカプセル100の平均粒径は、レーザー回折/散乱式粒度分布計を用いて測定することができ、体積平均粒径をいう。
 マイクロカプセル100の異形度は、1.8未満であることが好ましく、1.6未満であることがより好ましく、1.4未満であることが更に好ましい。異形度が1.8以上では、マイクロカプセルの耐久性が低下する傾向がある。ここで、異形度とは、マイクロカプセルを光学顕微鏡で観察して撮影した写真から長径(マイクロカプセルにおける最も長い径)及び短径(マイクロカプセルにおける最も短い径)をそれぞれ計測し、長径を短径で割った値である。すなわち、異形度が1.00に近いほど球状に近いことを意味する。
 マイクロカプセルに内包される水溶性物質1の内包率は、マイクロカプセル全体に対して、0.1%以上であることが好ましく、0.5%以上であることがより好ましい。ここで、内包率は、以下のようにして得ることができる。まず、マイクロカプセルを所定の乾燥条件で乾燥し、エタノールを加えた後に破砕処理する。そして、破砕されたマイクロカプセルを含むエタノール溶液を遠心分離した後、上清の吸光度を測定し、乾燥マイクロカプセル中の水分が除去された状態での水溶性物質1の含量(質量割合)を算出することで内包率が得られる。
 マイクロカプセルに内包される脂溶性物質3の内包率は、マイクロカプセル全体に対して、50%以上であることが好ましく、60%以上であることがより好ましい。ここで、内包率は、上記水溶性物質1の内包率と同様の手法により、乾燥マイクロカプセル中の脂溶性物質3の含量(質量割合)を算出することで得られる。
 本実施形態に係るマイクロカプセル100は、内包される水溶性物質1及び脂溶性物質3を適宜変更することにより、医薬品、機能性飲食品、又は飲食品添加剤として使用することができる。中でも、粒径が小さく、かつ、球状に近いことから、飲食品に好適に添加することができる。よって、上記マイクロカプセル100を含む飲食品は、食感及び服用感に十分優れるものとなる。このようなマイクロカプセル100は、球状に近く耐久性に優れることから、飲食品への水溶性物質1及び脂溶性物質3の漏出を抑制し、飲食品の品質低下を抑制することができる。
 以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されるものではない。
 本実施形態のマイクロカプセルは、アルギン酸カルシウムゲルで構成されるマイクロカプセルであって、上記アルギン酸カルシウムゲル中には、脂溶性物質が分散しており、当該脂溶性物質中には水溶性物質が分散しているマイクロカプセルであるが、三層構造に限定されるものではない。例えば、上記水溶性物質が、上記脂溶性物質と同一又は異なる脂溶性物質が分散した水溶性物質である(当該脂溶性物質中には、さらに上記水溶性物質と同一又は異なる水溶性物質が分散していてもよく、脂溶性物質と水溶性物質について、一方の物質中に他方の物質が分散するという繰り返しがさらに複数回生じていてもよい。)マイクロカプセルのように、四層以上の構造のマイクロカプセルであってもよい。
 四層以上の構造のマイクロカプセルは、一次分散液中に分散して存在する水溶性物質が、上記脂溶性物質と同一又は異なる脂溶性物質が分散した水溶性物質であればよい(当該脂溶性物質中には、さらに上記水溶性物質と同一又は異なる水溶性物質が分散していてもよく、脂溶性物質と水溶性物質について、一方の物質中に他方の物質が分散するという繰り返しがさらに複数回生じていてもよい。)。
 四層構造のマイクロカプセルは、例えば、以下の工程により得ることができる。まず、一次分散工程において、水溶性物質と脂溶性物質とを互いに混合することで水溶性物質中に脂溶性物質を分散させた分散液を調製し、当該分散液を更に脂溶性物質に分散させて一次分散液を調製する。次に、二次分散工程において、一次分散液とアルギン酸ナトリウム水溶液とを互いに混合することでアルギン酸ナトリウム水溶液中に一次分散液を分散させて二次分散液を調製する。そして、上記実施形態と同様の噴霧工程及び洗浄工程を行うことにより、四層構造のマイクロカプセルを得ることができる。
 五層以上の構造を有するマイクロカプセルについても、一次分散工程において、水溶性物質が分散された脂溶性物質を更に水溶性物質に分散する工程や、脂溶性物質が分散された水溶性物質を更に脂溶性物質に分散する工程を複数回繰り返し、一次分散液を調製することにより、当該分散液について上記実施形態と同様の二次分散工程、噴霧工程及び洗浄工程を行うことにより得ることができる。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
(実施例1)
 ポリフェノール粉末(サンプライト株式会社製、ブドウ種子抽出物OPC30)を蒸留水に溶解し、20質量%のポリフェノール水溶液を調製した。次に、ビタミンE(和光純薬工業株式会社製)14.4gに乳化剤(理研ビタミン株式会社製、商品名「POEM PR-100」)1.6gを溶解し、更にポリフェノール水溶液4.0gを添加した溶液を調製し、この溶液をホモミキサー(日本精機株式会社製、商品名「BM-2」)を用い、12000rpm、5分間、60℃の条件下で一次分散(乳化)し、W/O分散液を調製した。
 そして、アルギン酸ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解した1質量%、粘度80mPa・sのアルギン酸ナトリウム水溶液176.4gを調製後、乳化剤(阪本薬品工業株式会社製、商品名「ML-750」)3.6gと、W/O分散液20gとを添加し、ホモミキサー(日本精機株式会社製、商品名「BM-2」)にて8000rpm、5分間、60℃の条件下で二次分散(乳化)し、体積平均粒径が3μmの二次分散粒子を含むW/O/W分散液を調製した。
 その後、このW/O/W分散液を噴霧ノズル(アトマックス社製、商品名「AM-6型」、ノズル吐出口径:1.1mm)を通して、送液速度1.0mL/min、噴霧気体圧力0.3MPaで、5質量%の塩化カルシウム水溶液に噴霧し、W/O/W三層マイクロカプセルを形成した。上記W/O/W三層マイクロカプセルを5Aろ紙(アドバンテック東洋株式会社製)を用いてろ過して回収し、3倍量の蒸留水で洗浄した。そして、W/O/W三層マイクロカプセルを再度5Aろ紙でろ過することにより、W/O/W三層マイクロカプセルを回収した。
 得られたW/O/W三層マイクロカプセルの体積平均粒径をレーザー回折/散乱式粒度分布計(島津製作所株式会社製、商品名「SALD-3000」)で測定したところ、体積平均粒径は25μmであった。
(実施例2)
 濃度0.75質量%、粘度70mPa・sのアルギン酸ナトリウム水溶液を用いた以外は、実施例1と同様の操作を行い、体積平均粒径が3μmの二次分散粒子を含むW/O/W分散液を得た。このW/O/W分散液を用い、実施例1と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は26μmであった。
(実施例3)
 濃度0.5質量%、粘度15mPa・sのアルギン酸ナトリウム水溶液を用いた以外は、実施例1と同様の操作を行い、体積平均粒径が8μmの二次分散粒子を含むW/O/W分散液を得た。このW/O/W分散液を用い、実施例1と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は36μmであった。
(実施例4)
 噴霧工程において噴霧ノズル(アトマックス社製、商品名「AM-12型」、ノズル吐出口径:1.2mm)を用いたこと以外は、実施例1と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は89μmであった。
(実施例5)
 噴霧工程において噴霧ノズル(アトマックス社製、商品名「AM-25型」、ノズル吐出口径:1.7mm)を用いたこと以外は、実施例1と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は198μmであった。
(実施例6)
 20質量%ポリフェノール水溶液の配合量をビタミンE14.4gに対して5.8gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は143μmであった。
(実施例7)
 20質量%ポリフェノールの配合量をビタミンE14.4gに対して7.2gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は135μmであった。
(実施例8)
 20質量%ポリフェノールの配合量をビタミンE14.4gに対して11.5gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は115μmであった。
(実施例9)
 20質量%ポリフェノールの配合量をビタミンE14.4gに対して14.4gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は117μmであった。
(実施例10)
 噴霧気体圧力を0.1MPaに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は156μmであった。
(実施例11)
 噴霧気体圧力を0.5MPaに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は72μmであった。
(実施例12)
 塩化カルシウム水溶液のカルシウムイオン濃度を0.5質量%に変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は97μmであった。
(実施例13)
 塩化カルシウム水溶液のカルシウムイオン濃度を10質量%に変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は90μmであった。
(実施例14)
 塩化カルシウム水溶液のカルシウムイオン濃度を20質量%に変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は124μmであった。
(実施例15)
 5質量%の塩化カルシウム水溶液を2.5質量%の硫酸カルシウム水溶液に変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は133μmであった。
(実施例16)
 5質量%の塩化カルシウム水溶液を2.5質量%の乳酸カルシウム水溶液に変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は119μmであった。
(実施例17)
 アルギン酸ナトリウム水溶液の濃度を0.2質量%に変更し、アルギン酸ナトリウム水溶液の粘度を5mPa・sに変更した以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は114μmであった。
(実施例18)
 アルギン酸ナトリウム水溶液の濃度を1.2質量%に変更し、アルギン酸ナトリウム水溶液の粘度を500mPa・sに変更した以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は124μmであった。
(実施例19)
 アルギン酸ナトリウム水溶液の濃度を1.5質量%に変更し、アルギン酸ナトリウム水溶液の粘度を1000mPa・sに変更した以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は112μmであった。
(実施例20)
 アルギン酸ナトリウム水溶液の濃度を2.0質量%に変更し、アルギン酸ナトリウム水溶液の粘度を2000mPa・sに変更した以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は117μmであった。
(実施例21)
 W/O分散液の配合量をアルギン酸ナトリウム水溶液187.1gに対して9.3gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は67μmであった。
(実施例22)
 W/O分散液の配合量をアルギン酸ナトリウム水溶液131.0gに対して65.4gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は142μmであった。
(実施例23)
 W/O分散液の配合量をアルギン酸ナトリウム水溶液98.2gに対して98.2gに変更したこと以外は、実施例4と同様の操作を行い、W/O/W三層マイクロカプセルを回収した。得られたW/O/W三層マイクロカプセルの体積平均粒径は139μmであった。
(顕微鏡観察)
 実施例1で得られたW/O/W三層マイクロカプセルを光学顕微鏡(オリンパス株式会社製、商品名「BX-51-PRF」)により観察した。図5は、実施例1で得られたW/O/W三層マイクロカプセルの光学顕微鏡写真である。また、実施例4、実施例5、実施例13、実施例19で得られたW/O/W三層マイクロカプセルをデジタルマイクロスコープ(株式会社キーエンス製、商品名「デジタルマイクロスコープVHX-100F」)により観察した。図6~9は、それぞれ実施例4、実施例5、実施例13、実施例19で得られたW/O/W三層マイクロカプセルの写真である。
(マイクロカプセルの異形度)
 実施例1~23で得られたW/O/W三層マイクロカプセルのそれぞれについて、上記と同様に光学顕微鏡観察を行い、W/O/W三層マイクロカプセルの長径及び短径を計測して異形度を算出した。W/O/W三層マイクロカプセル50個についてそれぞれ異形度を算出し、50個の異形度の平均値を各実施例における異形度とした。
<W/O/W三層マイクロカプセルの内包率測定>
 実施例1~23で得られたW/O/W三層マイクロカプセルを105℃で6時間乾燥させて、乾燥質量を測定した。その後、乾燥したマイクロカプセルにエタノールを加え、700rpmで12時間攪拌した。次いで、超音波式ホモジナイザー(タイテック株式会社製、商品名「VP-050」)で40分間処理し、処理後のマイクロカプセルを破砕した。破砕されたマイクロカプセルを含むエタノール溶液を、7000rpmで10分間遠心分離し上清を回収し、吸光度測定機(日立計測器サービス株式会社製、商品名「分光光度計U-3210」)にて285nmにおける上記上清の吸光度を測定した。測定された吸光度からポリフェノール及びビタミンEの質量割合をそれぞれ求め、W/O/W三層マイクロカプセル中のポリフェノール及びビタミンEの内包率をそれぞれ算出した。
<W/O/W三層マイクロカプセルの耐久性試験>
 実施例1,3,19で得られたW/O/W三層マイクロカプセルを蒸留水に懸濁させ、振とう機(ヤマト科学株式会社製、商品名「SA-31」)で240rpmの速度で1時間振とうさせた。その後、上記内包率の測定と同様の操作を行い、W/O/W三層マイクロカプセル中のポリフェノール及びビタミンEの内包率をそれぞれ算出した。振とう前の内包率を100%とした場合の振とう後のポリフェノール及びビタミンEのそれぞれの残存率に基づき、ポリフェノール含有層及びビタミンE含有層の耐久性を評価した。
 実施例1~23で得られたW/O/W三層マイクロカプセルについて、作製条件、及び、各測定結果(平均粒径、異形度、ポリフェノール及びビタミンEの内包率)を表1~4に示す。更に、実施例1,3,19で得られたW/O/W三層マイクロカプセルについての耐久性試験の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~23により得られたW/O/W三層マイクロカプセルは、表1~4により、平均粒径が小さいことが確認され、異形度が小さく、球状に近いマイクロカプセルが得られていることが確認された。
 1…水溶性物質、3…脂溶性物質、5…アルギン酸ナトリウム水溶液、7…ノズル、9…カルシウムイオン含有溶液、10…一次分散粒子、15…一次分散液、20…二次分散粒子、25…二次分散液、30…アルギン酸カルシウムゲル、100…マイクロカプセル。

Claims (10)

  1.  水溶性物質と脂溶性物質とを混合し、水溶性物質が脂溶性物質中に分散した一次分散物を得る一次分散工程と、
     前記一次分散物とアルギン酸ナトリウム水溶液とを混合し、前記一次分散物が当該アルギン酸ナトリウム水溶液中に分散した二次分散物を得る二次分散工程と、
     前記二次分散物を噴霧してカルシウムイオン含有溶液と接触させることで、アルギン酸カルシウムゲルを形成させ、前記一次分散物が当該アルギン酸カルシウムゲル中に分散したマイクロカプセルを得る噴霧工程と、
    を備えるマイクロカプセルの製造方法。
  2.  水溶性物質が脂溶性物質中に分散した一次分散物が、さらにアルギン酸ナトリウム水溶液中に分散されている二次分散液の液滴を、カルシウムイオン含有溶液と接触させることで、アルギン酸カルシウムゲルを形成させ、前記一次分散物が当該アルギン酸カルシウムゲル中に分散したマイクロカプセルを得る、マイクロカプセルの製造方法。
  3.  前記一次分散物中に分散して存在する水溶性物質は、
     前記脂溶性物質と同一又は異なる脂溶性物質が分散した水溶性物質である(当該脂溶性物質中には、さらに前記水溶性物質と同一又は異なる水溶性物質が分散していてもよく、脂溶性物質と水溶性物質について、一方の物質中に他方の物質が分散するという繰り返しがさらに複数回生じていてもよい。)、請求項1又は2に記載のマイクロカプセルの製造方法。
  4.  アルギン酸ナトリウム水溶液の粘度は、25℃において5~2000mPa・sである、請求項1~3のいずれか一項に記載のマイクロカプセルの製造方法。
  5.  カルシウムイオン含有溶液は、塩化カルシウム水溶液、乳酸カルシウム水溶液又は硫酸カルシウム水溶液である、請求項1~4のいずれか一項に記載のマイクロカプセルの製造方法。
  6.  請求項1~5のいずれか一項に記載のマイクロカプセルの製造方法により得ることのできる、マイクロカプセル。
  7.  アルギン酸カルシウムゲルで構成され、平均粒径が200μm未満であるマイクロカプセルであって、
     前記アルギン酸カルシウムゲル中には、脂溶性物質が分散しており、当該脂溶性物質中には水溶性物質が分散しているマイクロカプセル。
  8.  前記水溶性物質は、
     前記脂溶性物質と同一又は異なる脂溶性物質が分散した水溶性物質である(当該脂溶性物質中には、さらに前記水溶性物質と同一又は異なる水溶性物質が分散していてもよく、脂溶性物質と水溶性物質について、一方の物質中に他方の物質が分散するという繰り返しがさらに複数回生じていてもよい。)、請求項7に記載のマイクロカプセル。
  9.  異形度が1.8未満である、請求項7又は8に記載のマイクロカプセル。
  10.  請求項6~9のいずれか一項に記載のマイクロカプセルを含む、飲食品。
PCT/JP2009/063124 2008-07-24 2009-07-22 マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品 WO2010010902A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801229956A CN102065989A (zh) 2008-07-24 2009-07-22 微胶囊及其制造方法以及含微胶囊的饮食品
EP09800416A EP2305373A1 (en) 2008-07-24 2009-07-22 Microcapsule, process for production thereof, and food or beverage containing microcapsule
US12/999,214 US20110123680A1 (en) 2008-07-24 2009-07-22 Microcapsule, process for production thereof, and food or beverage containing microcapsule
JP2010521720A JP5632746B2 (ja) 2008-07-24 2009-07-22 マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008191360 2008-07-24
JP2008-191360 2008-07-24

Publications (1)

Publication Number Publication Date
WO2010010902A1 true WO2010010902A1 (ja) 2010-01-28

Family

ID=41570362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063124 WO2010010902A1 (ja) 2008-07-24 2009-07-22 マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品

Country Status (5)

Country Link
US (1) US20110123680A1 (ja)
EP (1) EP2305373A1 (ja)
JP (1) JP5632746B2 (ja)
CN (1) CN102065989A (ja)
WO (1) WO2010010902A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108013507A (zh) * 2017-12-05 2018-05-11 武汉黄鹤楼新材料科技开发有限公司 一种烟用滴丸及制备方法
WO2019182157A1 (ja) 2018-03-19 2019-09-26 国立大学法人京都大学 ハイドロゲルカプセル
WO2019208505A1 (ja) 2018-04-23 2019-10-31 国立大学法人京都大学 増殖抑制剤
WO2020012954A1 (ja) * 2018-07-10 2020-01-16 パナソニックIpマネジメント株式会社 ミスト発生装置
WO2021079874A1 (ja) 2019-10-21 2021-04-29 武田薬品工業株式会社 増殖抑制剤
WO2022107877A1 (ja) 2020-11-20 2022-05-27 オリヅルセラピューティクス株式会社 成熟化剤
WO2022172960A1 (ja) 2021-02-09 2022-08-18 オリヅルセラピューティクス株式会社 成熟化剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9320297B2 (en) * 2012-03-22 2016-04-26 Lemniscate Innovations Llc Spherification/reverse spherification automated and integrated system and method
WO2014150967A1 (en) 2013-03-15 2014-09-25 Altria Client Services Inc. Oral energy products including encapsulated caffeine
CN105748527B (zh) * 2016-02-25 2019-10-01 山东禹王制药有限公司 一种鱼油肠溶微胶囊及其制备方法
CN109305717B (zh) * 2017-07-28 2021-09-24 中国科学院宁波材料技术与工程研究所 高效可重复使用紧急用水装置及其制备方法与应用
CN111557441A (zh) * 2020-04-16 2020-08-21 江西省蚕桑茶叶研究所(江西省经济作物研究所) 一种桑叶年糕及其制备方法
NL2026204B1 (en) * 2020-08-03 2022-04-08 Iamfluidics Holding B V Method of preserving a reactive active compound, capsule and formulation.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531352A (ja) 1991-07-31 1993-02-09 Morishita Jintan Kk 親水性物質を内容物とするシームレスカプセルおよびその製法
JPH0549899A (ja) 1991-08-09 1993-03-02 Japan Tobacco Inc ビーズ及びこれを製造するための液滴生成装置
JPH0549433A (ja) 1991-08-14 1993-03-02 T Hasegawa Co Ltd 新規なコーテイング粉末香料の製法
JPH0655060A (ja) 1992-06-12 1994-03-01 Kao Corp 界面活性剤含有継ぎ目無しカプセル粒子の製造方法
JPH06254382A (ja) 1993-03-05 1994-09-13 Riken Vitamin Co Ltd マイクロカプセルの製造法およびその製造装置
JPH0810313A (ja) 1994-07-01 1996-01-16 Freunt Ind Co Ltd シームレスカプセルの製造方法
JPH1024233A (ja) * 1996-07-11 1998-01-27 Asahi Chem Ind Co Ltd 真球状マイクロカプセルの製造方法
JP2001522820A (ja) * 1997-11-10 2001-11-20 クエスト・インターナショナル・ビー・ブイ アルギナートマトリックス中の活性物質の包封体
JP2002511796A (ja) 1997-07-07 2002-04-16 エフエムシー バイオポリマー エイエス カプセルに関する改良
JP2005257561A (ja) * 2004-03-12 2005-09-22 Toppan Forms Co Ltd 温度管理媒体
WO2007103186A2 (en) * 2006-03-03 2007-09-13 Fmc Corporation Method and apparatus for the preparation of capsules

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375968B1 (en) * 1999-10-22 2002-04-23 3M Innovative Properties Company Encapsulated active material immobilized in hydrogel microbeads
NO20021592D0 (no) * 2002-04-04 2002-04-04 Fmc Biopolymer As Polysakkaridkapsler og fremgangsmåte ved fremstilling derav
GB0310673D0 (en) * 2003-05-09 2003-06-11 Givaudan Sa Alginate matrix particles

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531352A (ja) 1991-07-31 1993-02-09 Morishita Jintan Kk 親水性物質を内容物とするシームレスカプセルおよびその製法
JPH0549899A (ja) 1991-08-09 1993-03-02 Japan Tobacco Inc ビーズ及びこれを製造するための液滴生成装置
JPH0549433A (ja) 1991-08-14 1993-03-02 T Hasegawa Co Ltd 新規なコーテイング粉末香料の製法
JPH0655060A (ja) 1992-06-12 1994-03-01 Kao Corp 界面活性剤含有継ぎ目無しカプセル粒子の製造方法
JPH06254382A (ja) 1993-03-05 1994-09-13 Riken Vitamin Co Ltd マイクロカプセルの製造法およびその製造装置
JPH0810313A (ja) 1994-07-01 1996-01-16 Freunt Ind Co Ltd シームレスカプセルの製造方法
JPH1024233A (ja) * 1996-07-11 1998-01-27 Asahi Chem Ind Co Ltd 真球状マイクロカプセルの製造方法
JP2002511796A (ja) 1997-07-07 2002-04-16 エフエムシー バイオポリマー エイエス カプセルに関する改良
JP2001522820A (ja) * 1997-11-10 2001-11-20 クエスト・インターナショナル・ビー・ブイ アルギナートマトリックス中の活性物質の包封体
JP2005257561A (ja) * 2004-03-12 2005-09-22 Toppan Forms Co Ltd 温度管理媒体
WO2007103186A2 (en) * 2006-03-03 2007-09-13 Fmc Corporation Method and apparatus for the preparation of capsules

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108013507A (zh) * 2017-12-05 2018-05-11 武汉黄鹤楼新材料科技开发有限公司 一种烟用滴丸及制备方法
WO2019182157A1 (ja) 2018-03-19 2019-09-26 国立大学法人京都大学 ハイドロゲルカプセル
WO2019208505A1 (ja) 2018-04-23 2019-10-31 国立大学法人京都大学 増殖抑制剤
US20210229120A1 (en) * 2018-07-10 2021-07-29 Panasonic Intellectual Property Management Co., Ltd. Mist-generating device
CN112384252A (zh) * 2018-07-10 2021-02-19 松下知识产权经营株式会社 雾气产生装置
WO2020012954A1 (ja) * 2018-07-10 2020-01-16 パナソニックIpマネジメント株式会社 ミスト発生装置
JPWO2020012954A1 (ja) * 2018-07-10 2021-08-12 パナソニックIpマネジメント株式会社 ミスト発生装置
EP3821914A4 (en) * 2018-07-10 2021-09-01 Panasonic Intellectual Property Management Co., Ltd. FOG GENERATING DEVICE
JP7065357B2 (ja) 2018-07-10 2022-05-12 パナソニックIpマネジメント株式会社 ミスト発生装置
US11964294B2 (en) 2018-07-10 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Mist-generating device
WO2021079874A1 (ja) 2019-10-21 2021-04-29 武田薬品工業株式会社 増殖抑制剤
WO2022107877A1 (ja) 2020-11-20 2022-05-27 オリヅルセラピューティクス株式会社 成熟化剤
WO2022172960A1 (ja) 2021-02-09 2022-08-18 オリヅルセラピューティクス株式会社 成熟化剤

Also Published As

Publication number Publication date
JPWO2010010902A1 (ja) 2012-01-05
CN102065989A (zh) 2011-05-18
JP5632746B2 (ja) 2014-11-26
EP2305373A1 (en) 2011-04-06
US20110123680A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5632746B2 (ja) マイクロカプセル及びその製造方法並びにマイクロカプセルを含む飲食品
CN115243568B (zh) 受控释放的核-壳粒子及包含其的悬浮液
Choi et al. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability
WO2009147973A1 (ja) マイクロカプセル、マイクロカプセルの製造方法及びマイクロカプセルを含む飲食品
McClements Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals
Rodea-González et al. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices
Wang et al. Development and evaluation of microencapsulated peony seed oil prepared by spray drying: Oxidative stability and its release behavior during in-vitro digestion
JP6141529B2 (ja) 油分散性カロチノイド製剤の製造方法
Goindi et al. Nanoemulsions: an emerging technology in the food industry
Khalid et al. Critical review of encapsulation methods for stabilization and delivery of astaxanthin
Espinosa-Andrews et al. Development of fish oil microcapsules by spray drying using mesquite gum and chitosan as wall materials: Physicochemical properties, microstructure, and lipid hydroperoxide concentration
Hamad et al. A novel approach to develop spray‐dried encapsulated curcumin powder from oil‐in‐water emulsions stabilized by combined surfactants and chitosan
US11197493B2 (en) Stabilized fat soluble nutrient compositions and process for the preparation thereof
Sultana et al. Encapsulation of Tocotrienol-Enriched Flaxseed Oil in Calcium Alginate–Carboxymethyl Cellulose Hydrogel Beads for Improved Oxidative Stability and Release Profile
Teo et al. Nanoparticles and nanoemulsions
EP4284321A1 (en) Stable emulsions and methods
de la Haba Borrego et al. Improvements in the Microencapsulation of Fish Oil and Bioaccesibility of Omega-3 Fatty Acids: Influence of Chitosan Concentration and Homogenization Procedure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122995.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521720

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12999214

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009800416

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE