WO2010010869A1 - 芳香族ポリカルボン酸の水素化物の製造方法 - Google Patents
芳香族ポリカルボン酸の水素化物の製造方法 Download PDFInfo
- Publication number
- WO2010010869A1 WO2010010869A1 PCT/JP2009/063055 JP2009063055W WO2010010869A1 WO 2010010869 A1 WO2010010869 A1 WO 2010010869A1 JP 2009063055 W JP2009063055 W JP 2009063055W WO 2010010869 A1 WO2010010869 A1 WO 2010010869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycarboxylic acid
- aromatic polycarboxylic
- acid
- catalyst
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/347—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
- C07C51/36—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C61/00—Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C61/08—Saturated compounds having a carboxyl group bound to a six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C61/00—Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C61/08—Saturated compounds having a carboxyl group bound to a six-membered ring
- C07C61/09—Completely hydrogenated benzenedicarboxylic acids
Definitions
- the present invention relates to a method for producing a hydride of an aromatic polycarboxylic acid by hydrogenating (nuclear hydrogenation) the aromatic ring of the aromatic polycarboxylic acid, and hydrogen of the aromatic polycarboxylic acid obtained by the production method. Concerning a chemical. More specifically, the present invention relates to a production method capable of industrially obtaining a hydride of an aromatic polycarboxylic acid with high purity and high yield.
- Aromatic polycarboxylic acid hydrides are frequently used as raw materials for functional polyimides and functional epoxy resins. In recent years, with the high functionalization of these resins, high purity hydrides of aromatic polycarboxylic acids have been demanded. In particular, for applications that require a high degree of transparency, there is a strong demand for reducing the residual amount of aromatic rings in the hydride of aromatic polycarboxylic acid as much as possible.
- Non-Patent Document 1 discloses (i) a method of nuclear hydrogenating pyromellitic acid at a hydrogen pressure of 2.7 atm and 60 ° C. in the presence of a catalyst having 5% rhodium metal supported on a carbon support (amount of rhodium metal used: (2% by weight of raw material compound), (ii) A method of nuclear hydrogenation of phthalic acid, isophthalic acid and terephthalic acid at 60-70 ° C in the presence of a catalyst with 5% rhodium metal supported on an alumina carrier (use of rhodium metal Amount: 2.4% or 0.6% by weight of the starting compound).
- the amount of catalyst used is large, the conversion rate and selectivity of the aromatic polycarboxylic acid are not necessarily sufficient, and the raw material aromatic polycarboxylic acid tends to remain.
- Patent Document 1 proposes a method for nuclear hydrogenation of an aromatic polycarboxylic acid by a batch method in the presence of a catalyst containing rhodium metal and / or palladium metal (amount of noble metal used: aromatic polycarboxylic acid 100). 0.5 to 10 parts by weight relative to parts by weight).
- Patent Document 2 proposes a method for nuclear hydrogenation of an aromatic polycarboxylic acid in the presence of a catalyst having 5% rhodium metal supported on a ⁇ -alumina support having a specific surface area of 50 to 450 m 2 / g ( Use amount of rhodium metal: 0.25 parts by weight or more and less than 0.5 parts by weight with respect to 100 parts by weight of the aromatic polycarboxylic acid).
- Patent Document 2 describes that even if the activation treatment is not performed for each reaction and the catalyst is continuously used for the nuclear hydrogenation reaction, there is very little or no substantial decrease in catalytic activity. (Paragraph 0036). However, in Comparative Example 3 of Patent Document 4, when the nuclear hydrogenation reaction is repeated without activation using a catalyst having rhodium metal supported on a ⁇ -alumina carrier having a specific surface area of 150 m 2 / g, catalytic activity is increased. It is described that the conversion rate is remarkably reduced and a large amount of aromatic polycarboxylic acid remains in the fourth nuclear hydrogenation reaction in a batch system. Thus, the catalyst of patent document 2 cannot endure long-term repeated use. In addition, since rhodium metal is expensive, it is economically disadvantageous to perform the reaction by frequently replacing the catalyst.
- Patent Document 3 nucleates hydrogenated aromatic polycarboxylic acids in the presence of a catalyst in which one or more kinds of noble metals selected from ruthenium, rhodium, palladium and platinum are supported on an alumina, silica or silica-alumina support. A method is proposed (amount of precious metal used: 0.05 to 0.45% by weight of the aromatic polycarboxylic acid).
- Patent Document 4 it is possible to suppress a decrease in conversion rate and deterioration of a catalyst by performing a nuclear hydrogenation reaction in a specific temperature range, and the number of repeated uses of the catalyst is prolonged by performing an effective activation treatment. It is described.
- Patent Document 4 a rhodium catalyst is used and the reaction is repeated, but the number of repetitions is limited to about 10 times, which is still disadvantageous economically.
- Patent Documents 5 and 6 describe a method in which an aromatic polycarboxylic acid is converted to an ester derivative, and then the ester derivative is nuclear hydrogenated.
- An object of the present invention is to provide a method for industrially advantageously producing a hydride of an aromatic polycarboxylic acid with high purity and high yield, and an aromatic polycarboxylic acid substantially free of an aromatic polycarboxylic acid as a raw material Is to provide a hydride of
- the present inventors have (1) By using rhodium and palladium and / or platinum as the catalyst metal for the nuclear hydrogenation catalyst of aromatic polycarboxylic acid, the number of repetitions of the reaction can be dramatically increased compared to using each metal alone. And (2) It discovered that the hydride of aromatic polycarboxylic acid was obtained by high purity and a high yield by using the said catalyst, and came to complete this invention based on the knowledge which concerns.
- the present invention includes a step of obtaining an aromatic polycarboxylic acid hydride by hydrogenating an aromatic ring of an aromatic polycarboxylic acid in the presence of a catalyst, and satisfying the following conditions (1) to (6):
- a process for producing a hydride of an aromatic polycarboxylic acid characterized by (1)
- the catalyst is a supported catalyst in which rhodium and palladium and / or platinum are supported on a carbon support.
- (2) 0.05 parts by weight or more and less than 0.5 parts by weight of rhodium is used with respect to 100 parts by weight of the aromatic polycarboxylic acid.
- aromatic polycarboxylic acid used in the present invention is not particularly limited as long as it is a compound having two or more carboxyl groups on the aromatic ring, and known aromatic polycarboxylic acids can be used. Specifically, phthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6- Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 9,10-anthracene dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 2,2′-biphenyldicarboxylic acid, 3,3 ′ -Aromatic dicarboxylic acids such as biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxy
- aromatic tricarboxylic acids and aromatic tetracarboxylic acids are preferred.
- trimellitic acid, hemimellitic acid, trimesic acid, pyromellitic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid and 3,3 ′ , 4,4′-biphenyltetracarboxylic acid is preferred, and trimellitic acid, hemimellitic acid, trimesic acid and pyromellitic acid are more preferred. These may be used alone or in combination of two or more.
- an aromatic polycarboxylic acid hydride is produced by hydrogenating (nuclear hydrogenation) an aromatic ring of an aromatic polycarboxylic acid in the presence of a catalyst.
- the starting aromatic polycarboxylic acid has two or more aromatic rings
- the obtained hydride of aromatic polycarboxylic acid may be a complete hydride (all aromatic rings are hydrogenated), Partial hydrides (some aromatic rings are hydrogenated) may also be used.
- the partially hydride include a compound having a tetralin skeleton when the raw material is an aromatic polycarboxylic acid having a naphthalene skeleton.
- the raw material is an aromatic polycarboxylic acid having a biphenyl skeleton or a skeleton having a structure in which two benzene rings are bonded via various linking groups, one compound is a benzene ring and the other is a cyclohexane ring structure.
- hydrides of aromatic polycarboxylic acids include 1,2,4-cyclohexanetricarboxylic acid, 1,2,3-cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexane. Tetracarboxylic acid, 1,4,5,8-decahydronaphthalenetetracarboxylic acid, 2,3,6,7-decahydronaphthalenetetracarboxylic acid, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic acid, etc. Is mentioned.
- the nuclear hydrogenation reaction in the present invention is preferably performed in a reaction solvent.
- the reaction solvent include water, acetic acid, propionic acid, dimethyl ether, methyl ethyl ether, methyl acetate, ethyl acetate, propyl acetate, tetrahydrofuran, acetone, methyl ethyl ketone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and the like.
- the water is preferably ion exchange water or distilled water.
- the raw material aromatic polycarboxylic acid may be dissolved or suspended in the reaction solvent.
- the concentration of the aromatic polycarboxylic acid is preferably 5 to 40% by weight, more preferably 10 to 40% by weight, based on the total weight of the aromatic polycarboxylic acid and the reaction solvent.
- the hydride of the aromatic polycarboxylic acid may be crystallized by cooling or concentration, and the mother liquor after separating the crystals may be recycled as the reaction solvent.
- the rate at which the mother liquor is returned to the reactor can be appropriately determined according to the degree of impurity accumulation in the system.
- the nuclear hydrogenation reaction of the present invention is carried out in the presence of a catalyst in which rhodium and palladium and / or platinum are supported on a carbon support.
- a catalyst having palladium and carbon supported on a carbon support is particularly preferred.
- the shape of the catalyst is not particularly limited, and a powder, a crushed shape for a fixed bed, a pellet shape, and the like are selected according to the method of the hydrogenation reaction.
- the amount of each noble metal supported on the carrier is 0.5 to 10% by weight, more preferably 2 to 5% by weight, based on the total amount of the catalyst.
- a catalyst in which only one kind of noble metal is supported on carbon may be mixed and used, or a catalyst in which two or three kinds of noble metals are simultaneously supported may be used.
- rhodium is 0.05 parts by weight or more and less than 0.5 parts by weight, preferably 0.1 parts by weight or more and less than 0.5 parts by weight, with respect to 100 parts by weight of the aromatic polycarboxylic acid. More preferably, the hydrogen partial pressure is 1.3 parts by weight in the presence of a catalyst containing 0.13 parts by weight or more and less than 0.5 parts by weight and palladium and / or platinum in a proportion of 0.5 parts by weight or more and less than 5.0 parts by weight. It is preferable to carry out stirring at 0 MPa or more. If the amount of noble metal in the catalyst is less than the above range, the nuclear hydrogenation reaction may not proceed sufficiently.
- the hydrogen partial pressure is less than 1.0 MPa, a desired reaction conversion rate cannot be obtained, and the object of the present invention cannot be achieved.
- a preferable hydrogen partial pressure is in the range of 1.0 to 15 MPa.
- the reaction temperature is preferably in the range of 30 to 80 ° C, more preferably in the range of 50 to 65 ° C.
- the hydrogen used in the present invention may be of a grade generally produced industrially. For example, it is produced by the PSA method or membrane hydrogen production method, and the purity is 99.9% or more.
- the temperature of the reaction system rises at the beginning of the reaction, and there is almost no reaction heat generated in the latter stage of the reaction. Therefore, it is preferable to cool or heat the reaction system using a heating / cooling device in accordance with the degree of heat generation and heat radiation of the manufacturing apparatus to suppress the variation of the reaction temperature within ⁇ 5 ° C. of the initially set temperature. By suppressing the reaction temperature fluctuation within ⁇ 5 ° C., it is not necessary to use an excessive amount of the catalyst, and the conversion rate of the raw material can be kept at almost 100% even after repeated use of the catalyst.
- any apparatus that is normally used may be used.
- An external circulation heating system in which a part of the reaction solution is sent to the outside by a pump and heated by a heat exchanger is preferably used. Steam, hot oil, or the like is used as the heat medium.
- an internal coil system incorporating a coil for passing a refrigerant inside the reactor, a jacket system for passing the refrigerant outside the reactor, a part of the reaction solution is sent to the outside by a pump, and cooled by a heat exchanger.
- An external circulation cooling system is preferably used.
- As the refrigerant cooling water, ethanol or the like is used.
- the reaction time depends on the reaction temperature and other conditions and cannot be determined in general, but usually 0.5 to 3 hours is sufficient.
- the catalyst used for nuclear hydrogenation can be repeatedly used by performing an activation treatment after separation from the reaction product by filtration or the like.
- the catalyst activation treatment method include a method of contacting with air, a method of treating with an oxidizing agent, a method of contacting with nitrogen gas, a method of treating with steam, and a method of treating with an alkaline aqueous solution.
- the separated catalyst may be placed in a container such as glass and left in the air for several hours or more (for example, left at 0 to 100 ° C. for 1 to 100 hours), and 10 to 50 parts by weight.
- the catalyst may be put into 100 ml of water (ion exchange water, distilled water) to form a slurry, and air may be bubbled at 1 to 1000 ml / min for 0.1 to 10 hours while stirring at 0 to 100 ° C.
- An example of the oxidizing agent is hydrogen peroxide.
- Examples of the alkaline aqueous solution include 0.5 to 10% by weight sodium hydroxide aqueous solution and 0.5 to 10% by weight ammonia water.
- 10 to 50 parts by weight of the catalyst may be added to 100 parts by weight of the alkaline aqueous solution and stirred at 0 to 100 ° C. for 0.1 to 10 hours.
- a method of contacting with air, a method of treating with an alkaline aqueous solution, and a method of using them together are preferable from the viewpoint of the activation effect.
- the reactor used for the nuclear hydrogenation reaction has (i) a reactor made of an acid-resistant material, (ii) a pressure-resistant structure, and (iii) stirring that can sufficiently mix the catalyst, aromatic polycarboxylic acid, and hydrogen.
- the reaction apparatus is not particularly limited as long as it is equipped with a reactor, and a known reactor can also be used.
- a vertical or horizontal autoclave made of SUS316L can be used.
- the procedure of the nuclear hydrogenation reaction is not particularly limited as long as the effect of the present invention is not impaired.
- a predetermined amount of raw materials, reaction solvent, and catalyst are charged into the reactor, and the system is replaced with an inert gas.
- replacement with hydrogen is performed, and a nuclear hydrogenation reaction may be performed under predetermined reaction conditions (hydrogen partial pressure, reaction temperature, reaction time, stirring speed, etc.).
- the catalyst is filtered off at a temperature comparable to the reaction temperature, the filtrate is cooled to room temperature, the precipitated solid is filtered, and the filtered solid is dried to dry the target aromatic polycarboxylic acid. Can be obtained.
- the target aromatic polycarboxylic acid hydride can also be obtained by evaporating the reaction solvent from the filtrate and concentrating, filtering the precipitated solid, and then drying the filtered solid. .
- the filtration temperature may be added.
- the system thickens during crystallization it is preferable to add a reaction solvent in advance after the completion of the nuclear hydrogenation reaction.
- the residual amount of the aromatic polycarboxylic acid as a raw material is 0.10% by weight or less, preferably in a trace amount by a simple process and industrially advantageous method.
- Aromatic polycarboxylic acid hydrides can be produced which are either present or substantially absent. “Remaining amount is very small or not substantially remaining” means that the residual amount of aromatic polycarboxylic acid in the hydride of aromatic polycarboxylic acid is below the detection limit of gas chromatography analysis. It means that.
- Gas chromatography analysis conditions Gas chromatography analyzer: GC-17A (manufactured by Shimadzu Corporation) Capillary column: DB-1 (manufactured by Shimadzu Corporation) Injection temperature: 300 ° C Detector temperature: 280 ° C Initial column temperature, holding time: 200 ° C., 10 minutes Temperature rising rate: 7 ° C./minute Final column temperature, holding time: 280 ° C., 40 minutes Carrier gas: helium Carrier gas pressure: 130 kPa Detector: FID
- Example 1 The following compounds, catalyst, and reaction solvent were charged into a 500 ml SUS316L shaking autoclave equipped with a stirrer, a thermometer, a pressure gauge, an introduction pipe, and a heating / cooling device through which cooling water and steam could pass.
- Pyromellitic acid 20 g
- Ion exchange water 80g 5% by weight rhodium-carbon supported catalyst (manufactured by NE Chemcat, water-containing product, water content 50.5% by weight): 4.0 g (0.5 parts by weight as rhodium metal with respect to 100 parts by weight of pyromellitic acid) Less than) 5% by weight palladium-carbon supported catalyst (manufactured by N.E.
- the system was replaced twice with nitrogen gas while stirring the contents.
- the gas was replaced with hydrogen gas five times, and the pressure was increased to 8 MPa.
- the reaction was carried out at a temperature of 60 ° C. while maintaining a hydrogen partial pressure of 8 MPa.
- the reaction system is cooled so that the temperature of the reaction system does not exceed 65 ° C, and after 1 hour when almost no heat of reaction occurs, the reaction system is steamed so that the temperature of the reaction system does not fall below 55 ° C. And heated.
- the reaction solution was extracted from the autoclave by pressurizing with nitrogen using a pipe with a filter, and the catalyst was filtered off to obtain a colorless and transparent filtrate.
- the filtrate (crude reaction product) was analyzed by gas chromatography, and the results are shown in Table 1.
- the conversion of pyromellitic acid (PMA) was 99.92% by weight
- the selectivity for 1,2,4,5-cyclohexanetetracarboxylic acid (HPMA) was 99.01% by weight
- a by-product (Me-HTMA: 1 , 2,4,5-cyclohexanetetracarboxylic acid, in which one of the carboxyl groups was converted to a methyl group) was 0.65% by weight.
- the reaction yield of HPMA was 98.93% by weight.
- the ratio of the isomer (HPMA-5) represented by the following formula (1) in HPMA was extremely high at 97.09% by weight.
- Example 2 (130 activation processes with air) 100 ml of ion-exchanged water was added to the mixed carbon supported catalyst separated by filtration in Example 1. While stirring with a stirrer at room temperature, air was blown at 18 ml / min for 1.5 hours to activate the catalyst with air. The mixed carbon-supported catalyst was separated by filtration, and immediately charged with 20 g of pyromellitic acid and 80 g of ion-exchanged water into the autoclave, and a nuclear hydrogenation reaction was performed in the same manner as in Example 1. Thereafter, a catalyst recycling experiment was conducted by repeating 130 cycles of the mixed carbon-supported catalyst separation, air activation treatment, and nuclear hydrogenation reaction.
- Example 3 100 parts by weight of pyromellitic acid, 600 parts by weight of ion-exchanged water, 0.15 parts by weight of 5% by weight rhodium-carbon supported catalyst as rhodium metal, and 1% by weight of 5% by weight palladium-carbon supported catalyst as palladium metal
- the nuclear hydrogenation reaction, post-treatment and analysis were performed in the same manner as in Example 1 except that 35 parts by weight was used and the reaction temperature was changed to 40 ° C. The results are shown in Table 1.
- Example 4 (97 activation processes with air) Except that each nuclear hydrogenation reaction was carried out in the same manner as in Example 3, the cycle of separation of mixed carbon-supported catalyst, activation treatment with air, and nuclear hydrogenation reaction was repeated 97 times in the same manner as in Example 2 to recycle the catalyst. The experiment was conducted. The results are shown in Table 1.
- Comparative Example 1 The same as in Example 1 except that 4.0 g of a 5 wt% rhodium-carbon supported catalyst only (less than 0.5 parts by weight as rhodium metal with respect to 100 parts by weight of pyromellitic acid) was used and the reaction temperature was 50 ° C. Hydrogenation reaction, analysis of filtrate (crude reaction product) and post-treatment were performed to obtain 16.16 g of dry crystals. The analysis results are shown in Table 1. Compared to Example 1, Me-HTMA was produced more and the reaction yield of 1,2,4,5-cyclohexanetetracarboxylic acid was lower. The proportion of HPMA-5 was also significantly low (isomer selectivity was very low).
- Comparative Example 2 (11 activation processes with air) 100 ml of ion-exchanged water was added to the rhodium-carbon supported catalyst separated and recovered in Comparative Example 1. While stirring with a stirrer, air was blown at 18 ml / min for 1.5 hours to activate the catalyst with air. The rhodium-carbon supported catalyst was separated by filtration, and immediately charged with 20 g of pyromellitic acid and 80 g of ion-exchanged water in an autoclave, and a nuclear hydrogenation reaction was carried out in the same manner as in Example 1.
- Comparative Example 3 Nuclear hydrogenation as in Example 1 except that 40 g of 5 wt% palladium-carbon supported catalyst only (less than 5.0 parts by weight of palladium metal with respect to 100 parts by weight of pyromellitic acid) was used and the reaction temperature was 50 ° C. Reaction, analysis of the filtrate (crude reaction product) and post-treatment were performed to obtain 16.16 g of dry crystals. The analysis results are shown in Table 1. Compared to Example 1, the proportion of HPMA-5 was significantly lower (isomer selectivity was very low).
- Comparative Example 4 (35 activation processes with air) 100 ml of ion-exchanged water was added to the rhodium-carbon supported catalyst separated and recovered in Comparative Example 3. While stirring with a stirrer, air was blown at 18 ml / min for 1.5 hours to activate the catalyst with air. The rhodium-carbon supported catalyst was separated by filtration, and immediately charged with 20 g of pyromellitic acid and 80 g of ion exchange water in an autoclave, and a hydrogenation reaction was carried out in the same manner as in Example 1. Thereafter, a catalyst recycling experiment was carried out by repeating the cycle consisting of separation of the rhodium-carbon supported catalyst, activation treatment with air, and nuclear hydrogenation reaction 35 times.
- the analysis results of the filtrate (crude reaction product) obtained in the 36th nuclear hydrogenation reaction are shown in Table 1. From the analysis results, it can be seen that the catalyst activity was remarkably lowered even though the number of times of repeated use was about 1/4 of that in Example 2. Post-treatment was performed in the same manner as in Comparative Example 1 to obtain 15.96 g of dry crystals. The analysis results are shown in Table 1. The obtained dried 1,2,4,5-cyclohexanetetracarboxylic acid crystal had a large amount of pyromellitic acid remaining as a raw material and a low purity.
- HPMA 1,2,4,5-cyclohexanetetracarboxylic acid
- Me-HTMA by-product HPMA-5 in which one of carboxyl groups of HPMA is converted to a methyl group: represented by the above formula (1)
- a hydride of an aromatic polycarboxylic acid can be industrially advantageously produced with high purity and high yield.
- the hydride of aromatic polycarboxylic acid obtained by the production method of the present invention contains a very small amount of aromatic polycarboxylic acid as a raw material or substantially does not contain it. It is useful as a monomer raw material for functional polyimides and polyesters, and as a raw material for curing agents for functional epoxy resins having transparency.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
(1)芳香族ポリカルボン酸の核水素化触媒の触媒金属としてロジウム、及び、パラジウム及び/又は白金を用いることにより、それぞれの金属を単独で使用するより反応の繰り返し回数が飛躍的に伸びること、および
(2)当該触媒を使用することにより芳香族ポリカルボン酸の水素化物を高純度かつ高収率で得られること
を見出し、係る知見に基づいて本発明を完成するに至った。
(1)前記触媒がロジウム、及び、パラジウム及び/又は白金をカーボン担体に担持した担持触媒である、
(2)前記芳香族ポリカルボン酸100重量部に対し、ロジウムを0.05重量部以上0.5重量部未満用いる、
(3)前記芳香族ポリカルボン酸100重量部に対し、パラジウム及び/又は白金を0.5重量部以上5.0重量部未満用いる、
(4)反応水素分圧が1.0~15MPaである、
(5)反応温度が30~80℃である、および
(6)前記芳香族ポリカルボン酸を反応溶媒に溶解又は懸濁させる。
(i)芳香族ポリカルボン酸が水に溶解し易いので核水素化反応が進行し易い。
(ii)得られた芳香族ポリカルボン酸の水素化物が水へ溶解し易いので、触媒との分離が容易である。
(iii)触媒を分離した後、その濾液を濃縮若しくは冷却することにより芳香族ポリカルボン酸の水素化物を晶析させ、これを濾過や遠心分離などで固液分離することにより、より高純度の芳香族ポリカルボン酸の水素化物が得られるので、核水素化後の分離、回収操作が容易である
などの利点がある。
前処理
サンプルをジエチレングリコールジメチルエーテルに固形物濃度として6重量%となるように溶解させた。次に、その溶液をジアゾメタンでメチルエステル化処理してガスクロマトグラフィー用サンプルを調製した。尚、注入量は0.8μLである。
ガスクロマトグラフィー分析条件
ガスクロマトグラフィー分析装置:GC-17A(島津製作所(株)製)
キャピラリーカラム:DB-1(島津製作所(株)製)
インジェクション温度;300℃
検出器温度:280℃
初期カラム温度、保持時間:200℃、10分
昇温速度:7℃/分
最終カラム温度、保持時間:280℃、40分
キャリアガス:ヘリウム
キャリアガス圧力:130kPa
検出器:FID
撹拌機、温度計、圧力計、導入管、冷却水とスチームを通せる加熱冷却装置を具備した500mlのSUS316L製振とう式オートクレーブに下記化合物、触媒、反応溶媒を仕込んだ。
ピロメリット酸:20g
イオン交換水:80g
5重量%ロジウム-カーボン担持触媒(エヌ・イーケムキャット社製、含水品、水分含有率50.5重量%):4.0g(ピロメリット酸100重量部に対し、ロジウム金属として0.5重量部未満)
5重量%パラジウム-カーボン担持触媒(エヌ・イーケムキャット社製、含水品、水分含有率50.5重量%):36g(ピロメリット酸100重量部に対し、パラジウム金属として約4.5重量部)
内容物を撹拌しながら系内を窒素ガスで2回置換した。次いで、水素ガスで5回置換し、8MPaに昇圧した。水素分圧8MPaを保持しながら温度を60℃に設定して反応を行った。反応初期には反応熱により反応系の温度が65℃を越えないように冷却を行ない、ほとんど反応熱が生じなくなる1時間経過後には反応系の温度が55℃未満にならないように反応系をスチームで加熱した。
水素ガスで置換してから計2時間経過後、反応液をオートクレーブからフィルター付き配管を用いて窒素加圧して抜き出し、触媒を濾別すると共に、無色透明の濾液を得た。この濾液(粗反応物)をガスクロマトグラフィーにより分析し、その結果を表1に示した。ピロメリット酸(PMA)の転化率は99.92重量%、1,2,4,5-シクロヘキサンテトラカルボン酸(HPMA)の選択率は99.01重量%、副生成物(Me-HTMA:1,2,4,5-シクロヘキサンテトラカルボン酸のカルボキシル基の1つがメチル基に変換された化合物)の選択率は0.65重量%であった。HPMAの反応収率は98.93重量%であった。また、HPMA中の下記(1)式により示される異性体(HPMA-5)の割合は97.09重量%と極めて高かった。
実施例1で濾別した混合カーボン担持触媒に100mlのイオン交換水を加えた。室温で攪拌機で撹拌しながら空気を18ml/minで1.5時間吹き込み、触媒を空気により賦活処理した。混合カーボン担持触媒を濾過により分離し、直ちに前記オートクレーブにピロメリット酸20g、イオン交換水80gと共に仕込み、実施例1と同様にして核水素化反応を行った。その後、上記の混合カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを130回繰り返して触媒のリサイクル実験を行った。131回目の核水素化反応で得た濾液(粗反応物)の分析結果を表1に示した。その分析結果から、触媒の活性低下がわずかに認められるにすぎなかった。実施例1と同様にして1,2,4,5-シクロヘキサンテトラカルボン酸の乾燥結晶15.96gを得た。表1に乾燥結晶の分析結果を示した。
ピロメリット酸100重量部に対して、イオン交換水を600重量部、5重量%ロジウム-カーボン担持触媒をロジウム金属として0.15重量部、および5重量%パラジウム-カーボン担持触媒をパラジウム金属として1.35重量部使用し、反応温度を40℃に変更した以外は実施例1と同様にして核水素化反応、後処理および分析を行った。結果を表1に示す。
各核水素化反応を実施例3と同様に行った以外は実施例2と同様にして混合カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを97回繰り返して触媒のリサイクル実験を行った。結果を表1に示す。
5重量%ロジウム-カーボン担持触媒のみ4.0g(ピロメリット酸100重量部に対し、ロジウム金属として0.5重量部未満)用い、反応温度を50℃とした以外は実施例1と同様に核水素化反応、濾液(粗反応物)の分析および後処理を行い、乾燥結晶16.16gを得た。その分析結果を表1に示した。実施例1に比べ、Me-HTMAの生成が多く、1,2,4,5-シクロヘキサンテトラカルボン酸の反応収率が低かった。また、HPMA-5の割合も大幅に低かった(異性体選択率が極めて低い)。
比較例1で分離回収したロジウム-カーボン担持触媒に100mlのイオン交換水を加えた。攪拌機で撹拌しながら空気を18ml/minで1.5時間吹き込み、触媒を空気により賦活処理した。ロジウム-カーボン担持触媒を濾過により分離し、直ちにオートクレーブにピロメリット酸20g、イオン交換水80gと共に仕込み、実施例1と同様に核水素化反応を行った。その後、上記のロジウム-カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを11回繰り返して触媒のリサイクル実験を行った。12回目の核水素化反応で得た濾液(粗反応物)の分析結果を表1に示した。分析結果から、繰り返し使用回数が実施例2の1/10以下であるのに、触媒活性が著しく低下したことが分かる。比較例1と同様に後処理して乾燥結晶15.96gを得た。その分析結果を表1に示した。得られた乾燥1,2,4,5-シクロヘキサンテトラカルボン酸結晶は原料のピロメリット酸の残存量が多く純度が低かった。
5重量%パラジウム-カーボン担持触媒のみ40g(ピロメリット酸100重量部に対し、パラジウム金属として5.0重量部未満)用い、反応温度を50℃とした以外は実施例1と同様に核水素化反応、濾液(粗反応物)の分析及び後処理を行い、乾燥結晶16.16gを得た。その分析結果を表1に示した。実施例1に比べ、HPMA-5の割合が大幅に低かった(異性体選択率が極めて低い)。
比較例3で分離回収したロジウム-カーボン担持触媒に100mlのイオン交換水を加えた。攪拌機で撹拌しながら空気を18ml/minで1.5時間吹き込み、触媒を空気により賦活処理した。ロジウム-カーボン担持触媒を濾過により分離し、直ちにオートクレーブにピロメリット酸20g、イオン交換水80gと共に仕込み、実施例1と同様に水素化反応を行った。その後、上記のロジウム-カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを35回繰り返して触媒のリサイクル実験を行った。36回目の核水素化反応で得た濾液(粗反応物)の分析結果を表1に示した。その分析結果から、繰り返し使用回数が実施例2の約1/4であるのに、触媒活性が著しく低下したことが分かる。比較例1と同様に後処理して乾燥結晶15.96gを得た。その分析結果を表1に示した。得られた乾燥1,2,4,5-シクロヘキサンテトラカルボン酸結晶は原料のピロメリット酸の残存量が多く純度が低かった。
Claims (8)
- 芳香族ポリカルボン酸の芳香環を触媒存在下で水素化して芳香族ポリカルボン酸の水素化物を得る工程を含み、かつ、下記条件(1)~(6)を満たすことを特徴とする芳香族ポリカルボン酸の水素化物の製造方法。
(1)前記触媒がロジウム、及び、パラジウム及び/又は白金をカーボン担体に担持した担持触媒である、
(2)前記芳香族ポリカルボン酸100重量部に対し、ロジウムを0.05重量部以上0.5重量部未満用いる、
(3)前記芳香族ポリカルボン酸100重量部に対し、パラジウム及び/又は白金を0.5重量部以上5.0重量部未満用いる、
(4)反応水素分圧が1.0~15MPaである、
(5)反応温度が30~80℃である、および
(6)前記芳香族ポリカルボン酸を反応溶媒に溶解又は懸濁させる。 - 前記反応温度が50~65℃である請求項1に記載の芳香族ポリカルボン酸の水素化物の製造方法。
- 前記触媒が、前記水素化反応後に賦活処理された触媒である請求項1又は2記載の芳香族ポリカルボン酸の水素化物の製造方法。
- 前記賦活処理を、前記触媒を空気と接触させる方法、前記触媒をアルカリ水溶液で処理する方法、または、前記方法の組み合わせにより行う請求項3に記載の芳香族ポリカルボン酸の水素化物の製造方法。
- 前記芳香族ポリカルボン酸の濃度が、前記芳香族ポリカルボン酸と前記反応溶媒との合計重量に対して5~40重量%である請求項1~4のいずれか1項に記載の芳香族ポリカルボン酸の水素化物の製造方法。
- 前記反応溶媒が水である請求項1~5のいずれか1項に記載の芳香族ポリカルボン酸の水素化物の製造方法。
- 前記芳香族ポリカルボン酸がトリメリット酸、ヘミメリット酸、トリメシン酸及びピロメリット酸から選ばれる1種以上である請求項1~6のいずれか1項に記載の芳香族ポリカルボン酸の水素化物の製造方法。
- 請求項1~7のいずれか1項に記載の製造方法で得られ、前記芳香族ポリカルボン酸の含有量が0.10重量%以下である芳香族ポリカルボン酸の水素化物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09800383.3A EP2316811B1 (en) | 2008-07-23 | 2009-07-21 | Process for producing hydrogenated aromatic polycarboxylic acid |
JP2010521702A JP5594140B2 (ja) | 2008-07-23 | 2009-07-21 | 芳香族ポリカルボン酸の水素化物の製造方法 |
US13/055,247 US8846973B2 (en) | 2008-07-23 | 2009-07-21 | Process for producing hydrogenated aromatic polycarboxylic acid |
CN2009801287364A CN102105428A (zh) | 2008-07-23 | 2009-07-21 | 芳香族多羧酸的加氢化合物的制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008189832 | 2008-07-23 | ||
JP2008-189832 | 2008-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010010869A1 true WO2010010869A1 (ja) | 2010-01-28 |
Family
ID=41570329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063055 WO2010010869A1 (ja) | 2008-07-23 | 2009-07-21 | 芳香族ポリカルボン酸の水素化物の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8846973B2 (ja) |
EP (1) | EP2316811B1 (ja) |
JP (1) | JP5594140B2 (ja) |
KR (1) | KR101604504B1 (ja) |
CN (2) | CN105418405A (ja) |
TW (1) | TWI439450B (ja) |
WO (1) | WO2010010869A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180854A1 (ja) | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 |
WO2018180696A1 (ja) | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | cis,cis-1,2,4-シクロヘキサントリカルボン酸結晶の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102381977B (zh) * | 2011-10-28 | 2014-07-23 | 荣成市科盛化工有限公司 | 氢化均苯四甲酸脂的制备 |
TWI421240B (zh) * | 2011-12-12 | 2014-01-01 | Ind Tech Res Inst | 苯多羧酸或其衍生物形成環己烷多元酸酯之氫化方法 |
US9090553B2 (en) | 2012-10-05 | 2015-07-28 | Basf Se | Process for preparing cyclohexanepolycarboxylic acid derivatives having a low proportion of by-products |
EP2716623A1 (de) * | 2012-10-05 | 2014-04-09 | Basf Se | Verfahren zur Herstellung von Cyclohexanpolycarbonsäure-Derivaten mit geringem Nebenproduktanteil |
WO2015138129A1 (en) | 2014-03-12 | 2015-09-17 | Dow Global Technologies Llc | Process for regenerating catalyst used in hydrogenation of aromatic epoxides |
TWI630954B (zh) | 2014-12-09 | 2018-08-01 | 財團法人工業技術研究院 | 雙酚a或其衍生物的氫化方法以及對苯二甲酸或其衍生物的氫化方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753440A (en) * | 1980-09-17 | 1982-03-30 | Kureha Chem Ind Co Ltd | Preparation of 4-aminomethylcyclohexanecarboxylic acid and its mineral acid salt |
JPH0325196A (ja) | 1989-06-21 | 1991-02-01 | Shimizu Corp | 掘削用支保工 |
JPH0665165A (ja) * | 1992-03-17 | 1994-03-08 | Air Prod And Chem Inc | アミン水素化の方法 |
US5412108A (en) * | 1994-01-05 | 1995-05-02 | Amoco Corporation | Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride |
JPH08325201A (ja) | 1995-05-31 | 1996-12-10 | New Japan Chem Co Ltd | 脂環式ポリカルボン酸エステルの製造方法 |
JP2003286222A (ja) | 2001-12-28 | 2003-10-10 | Mitsubishi Gas Chem Co Inc | 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法 |
JP2006083080A (ja) | 2004-09-15 | 2006-03-30 | New Japan Chem Co Ltd | 水素化芳香族ポリカルボン酸の製造方法 |
JP2006124313A (ja) | 2004-10-28 | 2006-05-18 | Nippon Steel Chem Co Ltd | 脂環式多価カルボン酸及びその無水物の製造方法 |
JP2008063263A (ja) | 2006-09-06 | 2008-03-21 | Mitsubishi Gas Chem Co Inc | 水素化芳香族カルボン酸の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2823165A1 (de) * | 1978-05-26 | 1979-11-29 | Bayer Ag | Verfahren zur herstellung von cycloaliphatischen carbonsaeureestern |
JP3747493B2 (ja) | 1995-05-31 | 2006-02-22 | 新日本理化株式会社 | 脂環式ポリカルボン酸及びその酸無水物の製造方法 |
-
2009
- 2009-07-21 WO PCT/JP2009/063055 patent/WO2010010869A1/ja active Application Filing
- 2009-07-21 EP EP09800383.3A patent/EP2316811B1/en active Active
- 2009-07-21 JP JP2010521702A patent/JP5594140B2/ja active Active
- 2009-07-21 KR KR1020117001563A patent/KR101604504B1/ko active IP Right Grant
- 2009-07-21 CN CN201510801914.2A patent/CN105418405A/zh active Pending
- 2009-07-21 CN CN2009801287364A patent/CN102105428A/zh active Pending
- 2009-07-21 US US13/055,247 patent/US8846973B2/en active Active
- 2009-07-22 TW TW098124698A patent/TWI439450B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753440A (en) * | 1980-09-17 | 1982-03-30 | Kureha Chem Ind Co Ltd | Preparation of 4-aminomethylcyclohexanecarboxylic acid and its mineral acid salt |
JPH0325196A (ja) | 1989-06-21 | 1991-02-01 | Shimizu Corp | 掘削用支保工 |
JPH0665165A (ja) * | 1992-03-17 | 1994-03-08 | Air Prod And Chem Inc | アミン水素化の方法 |
US5412108A (en) * | 1994-01-05 | 1995-05-02 | Amoco Corporation | Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride |
JPH08325201A (ja) | 1995-05-31 | 1996-12-10 | New Japan Chem Co Ltd | 脂環式ポリカルボン酸エステルの製造方法 |
JP2003286222A (ja) | 2001-12-28 | 2003-10-10 | Mitsubishi Gas Chem Co Inc | 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法 |
JP2006083080A (ja) | 2004-09-15 | 2006-03-30 | New Japan Chem Co Ltd | 水素化芳香族ポリカルボン酸の製造方法 |
JP2006124313A (ja) | 2004-10-28 | 2006-05-18 | Nippon Steel Chem Co Ltd | 脂環式多価カルボン酸及びその無水物の製造方法 |
JP2008063263A (ja) | 2006-09-06 | 2008-03-21 | Mitsubishi Gas Chem Co Inc | 水素化芳香族カルボン酸の製造方法 |
Non-Patent Citations (2)
Title |
---|
J. ORG. CHEM., vol. 31, 1966, pages 3433 |
See also references of EP2316811A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180854A1 (ja) | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 |
WO2018180696A1 (ja) | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | cis,cis-1,2,4-シクロヘキサントリカルボン酸結晶の製造方法 |
WO2018180855A1 (ja) | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5594140B2 (ja) | 2014-09-24 |
TWI439450B (zh) | 2014-06-01 |
JPWO2010010869A1 (ja) | 2012-01-05 |
US20110196171A1 (en) | 2011-08-11 |
EP2316811A1 (en) | 2011-05-04 |
CN102105428A (zh) | 2011-06-22 |
KR101604504B1 (ko) | 2016-03-17 |
KR20110036053A (ko) | 2011-04-06 |
US8846973B2 (en) | 2014-09-30 |
EP2316811A4 (en) | 2012-12-26 |
EP2316811B1 (en) | 2015-12-16 |
TW201008907A (en) | 2010-03-01 |
CN105418405A (zh) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594140B2 (ja) | 芳香族ポリカルボン酸の水素化物の製造方法 | |
JP2009057385A (ja) | 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法 | |
US9663426B2 (en) | Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same | |
US7547803B2 (en) | Process for producing a high purity aromatic polycarboxylic acid | |
JP2012530144A (ja) | シクロヘキセン1,4−カルボキシレート | |
JP4622406B2 (ja) | 水素化芳香族ポリカルボン酸の製造方法 | |
US10329235B2 (en) | System and method for producing 1,4-cyclohexanedimethanol and 1,4- cyclohexanedicarboxylic acid from terephthalic acid | |
JP5239140B2 (ja) | 水素化芳香族カルボン酸の製造方法 | |
JP2006124313A (ja) | 脂環式多価カルボン酸及びその無水物の製造方法 | |
JP4633400B2 (ja) | 脂環式多価カルボン酸及びその酸無水物の製造方法 | |
JP3608354B2 (ja) | ジシクロヘキシル−2,3,3’,4’−テトラカルボン酸化合物 | |
RU2422434C1 (ru) | Способ получения сложных эфиров из отходов производства капролактама | |
JP5003231B2 (ja) | トランス,トランス−4,4’−ビシクロヘキシルジカルボン酸の製造方法 | |
CN117820078A (zh) | 一种顺式2,2,4,4-四甲基-1,3-环丁二醇的制备方法 | |
KR101083973B1 (ko) | 헥사히드로무수프탈산의 제조방법 | |
JPH0827067A (ja) | 2,6−デカヒドロナフタレンジカルボン酸ジメチルの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980128736.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09800383 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010521702 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117001563 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009800383 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13055247 Country of ref document: US |