WO2010010869A1 - 芳香族ポリカルボン酸の水素化物の製造方法 - Google Patents

芳香族ポリカルボン酸の水素化物の製造方法 Download PDF

Info

Publication number
WO2010010869A1
WO2010010869A1 PCT/JP2009/063055 JP2009063055W WO2010010869A1 WO 2010010869 A1 WO2010010869 A1 WO 2010010869A1 JP 2009063055 W JP2009063055 W JP 2009063055W WO 2010010869 A1 WO2010010869 A1 WO 2010010869A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarboxylic acid
aromatic polycarboxylic
acid
catalyst
weight
Prior art date
Application number
PCT/JP2009/063055
Other languages
English (en)
French (fr)
Inventor
朋宏 菅原
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP09800383.3A priority Critical patent/EP2316811B1/en
Priority to JP2010521702A priority patent/JP5594140B2/ja
Priority to US13/055,247 priority patent/US8846973B2/en
Priority to CN2009801287364A priority patent/CN102105428A/zh
Publication of WO2010010869A1 publication Critical patent/WO2010010869A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/08Saturated compounds having a carboxyl group bound to a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/08Saturated compounds having a carboxyl group bound to a six-membered ring
    • C07C61/09Completely hydrogenated benzenedicarboxylic acids

Definitions

  • the present invention relates to a method for producing a hydride of an aromatic polycarboxylic acid by hydrogenating (nuclear hydrogenation) the aromatic ring of the aromatic polycarboxylic acid, and hydrogen of the aromatic polycarboxylic acid obtained by the production method. Concerning a chemical. More specifically, the present invention relates to a production method capable of industrially obtaining a hydride of an aromatic polycarboxylic acid with high purity and high yield.
  • Aromatic polycarboxylic acid hydrides are frequently used as raw materials for functional polyimides and functional epoxy resins. In recent years, with the high functionalization of these resins, high purity hydrides of aromatic polycarboxylic acids have been demanded. In particular, for applications that require a high degree of transparency, there is a strong demand for reducing the residual amount of aromatic rings in the hydride of aromatic polycarboxylic acid as much as possible.
  • Non-Patent Document 1 discloses (i) a method of nuclear hydrogenating pyromellitic acid at a hydrogen pressure of 2.7 atm and 60 ° C. in the presence of a catalyst having 5% rhodium metal supported on a carbon support (amount of rhodium metal used: (2% by weight of raw material compound), (ii) A method of nuclear hydrogenation of phthalic acid, isophthalic acid and terephthalic acid at 60-70 ° C in the presence of a catalyst with 5% rhodium metal supported on an alumina carrier (use of rhodium metal Amount: 2.4% or 0.6% by weight of the starting compound).
  • the amount of catalyst used is large, the conversion rate and selectivity of the aromatic polycarboxylic acid are not necessarily sufficient, and the raw material aromatic polycarboxylic acid tends to remain.
  • Patent Document 1 proposes a method for nuclear hydrogenation of an aromatic polycarboxylic acid by a batch method in the presence of a catalyst containing rhodium metal and / or palladium metal (amount of noble metal used: aromatic polycarboxylic acid 100). 0.5 to 10 parts by weight relative to parts by weight).
  • Patent Document 2 proposes a method for nuclear hydrogenation of an aromatic polycarboxylic acid in the presence of a catalyst having 5% rhodium metal supported on a ⁇ -alumina support having a specific surface area of 50 to 450 m 2 / g ( Use amount of rhodium metal: 0.25 parts by weight or more and less than 0.5 parts by weight with respect to 100 parts by weight of the aromatic polycarboxylic acid).
  • Patent Document 2 describes that even if the activation treatment is not performed for each reaction and the catalyst is continuously used for the nuclear hydrogenation reaction, there is very little or no substantial decrease in catalytic activity. (Paragraph 0036). However, in Comparative Example 3 of Patent Document 4, when the nuclear hydrogenation reaction is repeated without activation using a catalyst having rhodium metal supported on a ⁇ -alumina carrier having a specific surface area of 150 m 2 / g, catalytic activity is increased. It is described that the conversion rate is remarkably reduced and a large amount of aromatic polycarboxylic acid remains in the fourth nuclear hydrogenation reaction in a batch system. Thus, the catalyst of patent document 2 cannot endure long-term repeated use. In addition, since rhodium metal is expensive, it is economically disadvantageous to perform the reaction by frequently replacing the catalyst.
  • Patent Document 3 nucleates hydrogenated aromatic polycarboxylic acids in the presence of a catalyst in which one or more kinds of noble metals selected from ruthenium, rhodium, palladium and platinum are supported on an alumina, silica or silica-alumina support. A method is proposed (amount of precious metal used: 0.05 to 0.45% by weight of the aromatic polycarboxylic acid).
  • Patent Document 4 it is possible to suppress a decrease in conversion rate and deterioration of a catalyst by performing a nuclear hydrogenation reaction in a specific temperature range, and the number of repeated uses of the catalyst is prolonged by performing an effective activation treatment. It is described.
  • Patent Document 4 a rhodium catalyst is used and the reaction is repeated, but the number of repetitions is limited to about 10 times, which is still disadvantageous economically.
  • Patent Documents 5 and 6 describe a method in which an aromatic polycarboxylic acid is converted to an ester derivative, and then the ester derivative is nuclear hydrogenated.
  • An object of the present invention is to provide a method for industrially advantageously producing a hydride of an aromatic polycarboxylic acid with high purity and high yield, and an aromatic polycarboxylic acid substantially free of an aromatic polycarboxylic acid as a raw material Is to provide a hydride of
  • the present inventors have (1) By using rhodium and palladium and / or platinum as the catalyst metal for the nuclear hydrogenation catalyst of aromatic polycarboxylic acid, the number of repetitions of the reaction can be dramatically increased compared to using each metal alone. And (2) It discovered that the hydride of aromatic polycarboxylic acid was obtained by high purity and a high yield by using the said catalyst, and came to complete this invention based on the knowledge which concerns.
  • the present invention includes a step of obtaining an aromatic polycarboxylic acid hydride by hydrogenating an aromatic ring of an aromatic polycarboxylic acid in the presence of a catalyst, and satisfying the following conditions (1) to (6):
  • a process for producing a hydride of an aromatic polycarboxylic acid characterized by (1)
  • the catalyst is a supported catalyst in which rhodium and palladium and / or platinum are supported on a carbon support.
  • (2) 0.05 parts by weight or more and less than 0.5 parts by weight of rhodium is used with respect to 100 parts by weight of the aromatic polycarboxylic acid.
  • aromatic polycarboxylic acid used in the present invention is not particularly limited as long as it is a compound having two or more carboxyl groups on the aromatic ring, and known aromatic polycarboxylic acids can be used. Specifically, phthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6- Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 9,10-anthracene dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 2,2′-biphenyldicarboxylic acid, 3,3 ′ -Aromatic dicarboxylic acids such as biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxy
  • aromatic tricarboxylic acids and aromatic tetracarboxylic acids are preferred.
  • trimellitic acid, hemimellitic acid, trimesic acid, pyromellitic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid and 3,3 ′ , 4,4′-biphenyltetracarboxylic acid is preferred, and trimellitic acid, hemimellitic acid, trimesic acid and pyromellitic acid are more preferred. These may be used alone or in combination of two or more.
  • an aromatic polycarboxylic acid hydride is produced by hydrogenating (nuclear hydrogenation) an aromatic ring of an aromatic polycarboxylic acid in the presence of a catalyst.
  • the starting aromatic polycarboxylic acid has two or more aromatic rings
  • the obtained hydride of aromatic polycarboxylic acid may be a complete hydride (all aromatic rings are hydrogenated), Partial hydrides (some aromatic rings are hydrogenated) may also be used.
  • the partially hydride include a compound having a tetralin skeleton when the raw material is an aromatic polycarboxylic acid having a naphthalene skeleton.
  • the raw material is an aromatic polycarboxylic acid having a biphenyl skeleton or a skeleton having a structure in which two benzene rings are bonded via various linking groups, one compound is a benzene ring and the other is a cyclohexane ring structure.
  • hydrides of aromatic polycarboxylic acids include 1,2,4-cyclohexanetricarboxylic acid, 1,2,3-cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexane. Tetracarboxylic acid, 1,4,5,8-decahydronaphthalenetetracarboxylic acid, 2,3,6,7-decahydronaphthalenetetracarboxylic acid, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic acid, etc. Is mentioned.
  • the nuclear hydrogenation reaction in the present invention is preferably performed in a reaction solvent.
  • the reaction solvent include water, acetic acid, propionic acid, dimethyl ether, methyl ethyl ether, methyl acetate, ethyl acetate, propyl acetate, tetrahydrofuran, acetone, methyl ethyl ketone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and the like.
  • the water is preferably ion exchange water or distilled water.
  • the raw material aromatic polycarboxylic acid may be dissolved or suspended in the reaction solvent.
  • the concentration of the aromatic polycarboxylic acid is preferably 5 to 40% by weight, more preferably 10 to 40% by weight, based on the total weight of the aromatic polycarboxylic acid and the reaction solvent.
  • the hydride of the aromatic polycarboxylic acid may be crystallized by cooling or concentration, and the mother liquor after separating the crystals may be recycled as the reaction solvent.
  • the rate at which the mother liquor is returned to the reactor can be appropriately determined according to the degree of impurity accumulation in the system.
  • the nuclear hydrogenation reaction of the present invention is carried out in the presence of a catalyst in which rhodium and palladium and / or platinum are supported on a carbon support.
  • a catalyst having palladium and carbon supported on a carbon support is particularly preferred.
  • the shape of the catalyst is not particularly limited, and a powder, a crushed shape for a fixed bed, a pellet shape, and the like are selected according to the method of the hydrogenation reaction.
  • the amount of each noble metal supported on the carrier is 0.5 to 10% by weight, more preferably 2 to 5% by weight, based on the total amount of the catalyst.
  • a catalyst in which only one kind of noble metal is supported on carbon may be mixed and used, or a catalyst in which two or three kinds of noble metals are simultaneously supported may be used.
  • rhodium is 0.05 parts by weight or more and less than 0.5 parts by weight, preferably 0.1 parts by weight or more and less than 0.5 parts by weight, with respect to 100 parts by weight of the aromatic polycarboxylic acid. More preferably, the hydrogen partial pressure is 1.3 parts by weight in the presence of a catalyst containing 0.13 parts by weight or more and less than 0.5 parts by weight and palladium and / or platinum in a proportion of 0.5 parts by weight or more and less than 5.0 parts by weight. It is preferable to carry out stirring at 0 MPa or more. If the amount of noble metal in the catalyst is less than the above range, the nuclear hydrogenation reaction may not proceed sufficiently.
  • the hydrogen partial pressure is less than 1.0 MPa, a desired reaction conversion rate cannot be obtained, and the object of the present invention cannot be achieved.
  • a preferable hydrogen partial pressure is in the range of 1.0 to 15 MPa.
  • the reaction temperature is preferably in the range of 30 to 80 ° C, more preferably in the range of 50 to 65 ° C.
  • the hydrogen used in the present invention may be of a grade generally produced industrially. For example, it is produced by the PSA method or membrane hydrogen production method, and the purity is 99.9% or more.
  • the temperature of the reaction system rises at the beginning of the reaction, and there is almost no reaction heat generated in the latter stage of the reaction. Therefore, it is preferable to cool or heat the reaction system using a heating / cooling device in accordance with the degree of heat generation and heat radiation of the manufacturing apparatus to suppress the variation of the reaction temperature within ⁇ 5 ° C. of the initially set temperature. By suppressing the reaction temperature fluctuation within ⁇ 5 ° C., it is not necessary to use an excessive amount of the catalyst, and the conversion rate of the raw material can be kept at almost 100% even after repeated use of the catalyst.
  • any apparatus that is normally used may be used.
  • An external circulation heating system in which a part of the reaction solution is sent to the outside by a pump and heated by a heat exchanger is preferably used. Steam, hot oil, or the like is used as the heat medium.
  • an internal coil system incorporating a coil for passing a refrigerant inside the reactor, a jacket system for passing the refrigerant outside the reactor, a part of the reaction solution is sent to the outside by a pump, and cooled by a heat exchanger.
  • An external circulation cooling system is preferably used.
  • As the refrigerant cooling water, ethanol or the like is used.
  • the reaction time depends on the reaction temperature and other conditions and cannot be determined in general, but usually 0.5 to 3 hours is sufficient.
  • the catalyst used for nuclear hydrogenation can be repeatedly used by performing an activation treatment after separation from the reaction product by filtration or the like.
  • the catalyst activation treatment method include a method of contacting with air, a method of treating with an oxidizing agent, a method of contacting with nitrogen gas, a method of treating with steam, and a method of treating with an alkaline aqueous solution.
  • the separated catalyst may be placed in a container such as glass and left in the air for several hours or more (for example, left at 0 to 100 ° C. for 1 to 100 hours), and 10 to 50 parts by weight.
  • the catalyst may be put into 100 ml of water (ion exchange water, distilled water) to form a slurry, and air may be bubbled at 1 to 1000 ml / min for 0.1 to 10 hours while stirring at 0 to 100 ° C.
  • An example of the oxidizing agent is hydrogen peroxide.
  • Examples of the alkaline aqueous solution include 0.5 to 10% by weight sodium hydroxide aqueous solution and 0.5 to 10% by weight ammonia water.
  • 10 to 50 parts by weight of the catalyst may be added to 100 parts by weight of the alkaline aqueous solution and stirred at 0 to 100 ° C. for 0.1 to 10 hours.
  • a method of contacting with air, a method of treating with an alkaline aqueous solution, and a method of using them together are preferable from the viewpoint of the activation effect.
  • the reactor used for the nuclear hydrogenation reaction has (i) a reactor made of an acid-resistant material, (ii) a pressure-resistant structure, and (iii) stirring that can sufficiently mix the catalyst, aromatic polycarboxylic acid, and hydrogen.
  • the reaction apparatus is not particularly limited as long as it is equipped with a reactor, and a known reactor can also be used.
  • a vertical or horizontal autoclave made of SUS316L can be used.
  • the procedure of the nuclear hydrogenation reaction is not particularly limited as long as the effect of the present invention is not impaired.
  • a predetermined amount of raw materials, reaction solvent, and catalyst are charged into the reactor, and the system is replaced with an inert gas.
  • replacement with hydrogen is performed, and a nuclear hydrogenation reaction may be performed under predetermined reaction conditions (hydrogen partial pressure, reaction temperature, reaction time, stirring speed, etc.).
  • the catalyst is filtered off at a temperature comparable to the reaction temperature, the filtrate is cooled to room temperature, the precipitated solid is filtered, and the filtered solid is dried to dry the target aromatic polycarboxylic acid. Can be obtained.
  • the target aromatic polycarboxylic acid hydride can also be obtained by evaporating the reaction solvent from the filtrate and concentrating, filtering the precipitated solid, and then drying the filtered solid. .
  • the filtration temperature may be added.
  • the system thickens during crystallization it is preferable to add a reaction solvent in advance after the completion of the nuclear hydrogenation reaction.
  • the residual amount of the aromatic polycarboxylic acid as a raw material is 0.10% by weight or less, preferably in a trace amount by a simple process and industrially advantageous method.
  • Aromatic polycarboxylic acid hydrides can be produced which are either present or substantially absent. “Remaining amount is very small or not substantially remaining” means that the residual amount of aromatic polycarboxylic acid in the hydride of aromatic polycarboxylic acid is below the detection limit of gas chromatography analysis. It means that.
  • Gas chromatography analysis conditions Gas chromatography analyzer: GC-17A (manufactured by Shimadzu Corporation) Capillary column: DB-1 (manufactured by Shimadzu Corporation) Injection temperature: 300 ° C Detector temperature: 280 ° C Initial column temperature, holding time: 200 ° C., 10 minutes Temperature rising rate: 7 ° C./minute Final column temperature, holding time: 280 ° C., 40 minutes Carrier gas: helium Carrier gas pressure: 130 kPa Detector: FID
  • Example 1 The following compounds, catalyst, and reaction solvent were charged into a 500 ml SUS316L shaking autoclave equipped with a stirrer, a thermometer, a pressure gauge, an introduction pipe, and a heating / cooling device through which cooling water and steam could pass.
  • Pyromellitic acid 20 g
  • Ion exchange water 80g 5% by weight rhodium-carbon supported catalyst (manufactured by NE Chemcat, water-containing product, water content 50.5% by weight): 4.0 g (0.5 parts by weight as rhodium metal with respect to 100 parts by weight of pyromellitic acid) Less than) 5% by weight palladium-carbon supported catalyst (manufactured by N.E.
  • the system was replaced twice with nitrogen gas while stirring the contents.
  • the gas was replaced with hydrogen gas five times, and the pressure was increased to 8 MPa.
  • the reaction was carried out at a temperature of 60 ° C. while maintaining a hydrogen partial pressure of 8 MPa.
  • the reaction system is cooled so that the temperature of the reaction system does not exceed 65 ° C, and after 1 hour when almost no heat of reaction occurs, the reaction system is steamed so that the temperature of the reaction system does not fall below 55 ° C. And heated.
  • the reaction solution was extracted from the autoclave by pressurizing with nitrogen using a pipe with a filter, and the catalyst was filtered off to obtain a colorless and transparent filtrate.
  • the filtrate (crude reaction product) was analyzed by gas chromatography, and the results are shown in Table 1.
  • the conversion of pyromellitic acid (PMA) was 99.92% by weight
  • the selectivity for 1,2,4,5-cyclohexanetetracarboxylic acid (HPMA) was 99.01% by weight
  • a by-product (Me-HTMA: 1 , 2,4,5-cyclohexanetetracarboxylic acid, in which one of the carboxyl groups was converted to a methyl group) was 0.65% by weight.
  • the reaction yield of HPMA was 98.93% by weight.
  • the ratio of the isomer (HPMA-5) represented by the following formula (1) in HPMA was extremely high at 97.09% by weight.
  • Example 2 (130 activation processes with air) 100 ml of ion-exchanged water was added to the mixed carbon supported catalyst separated by filtration in Example 1. While stirring with a stirrer at room temperature, air was blown at 18 ml / min for 1.5 hours to activate the catalyst with air. The mixed carbon-supported catalyst was separated by filtration, and immediately charged with 20 g of pyromellitic acid and 80 g of ion-exchanged water into the autoclave, and a nuclear hydrogenation reaction was performed in the same manner as in Example 1. Thereafter, a catalyst recycling experiment was conducted by repeating 130 cycles of the mixed carbon-supported catalyst separation, air activation treatment, and nuclear hydrogenation reaction.
  • Example 3 100 parts by weight of pyromellitic acid, 600 parts by weight of ion-exchanged water, 0.15 parts by weight of 5% by weight rhodium-carbon supported catalyst as rhodium metal, and 1% by weight of 5% by weight palladium-carbon supported catalyst as palladium metal
  • the nuclear hydrogenation reaction, post-treatment and analysis were performed in the same manner as in Example 1 except that 35 parts by weight was used and the reaction temperature was changed to 40 ° C. The results are shown in Table 1.
  • Example 4 (97 activation processes with air) Except that each nuclear hydrogenation reaction was carried out in the same manner as in Example 3, the cycle of separation of mixed carbon-supported catalyst, activation treatment with air, and nuclear hydrogenation reaction was repeated 97 times in the same manner as in Example 2 to recycle the catalyst. The experiment was conducted. The results are shown in Table 1.
  • Comparative Example 1 The same as in Example 1 except that 4.0 g of a 5 wt% rhodium-carbon supported catalyst only (less than 0.5 parts by weight as rhodium metal with respect to 100 parts by weight of pyromellitic acid) was used and the reaction temperature was 50 ° C. Hydrogenation reaction, analysis of filtrate (crude reaction product) and post-treatment were performed to obtain 16.16 g of dry crystals. The analysis results are shown in Table 1. Compared to Example 1, Me-HTMA was produced more and the reaction yield of 1,2,4,5-cyclohexanetetracarboxylic acid was lower. The proportion of HPMA-5 was also significantly low (isomer selectivity was very low).
  • Comparative Example 2 (11 activation processes with air) 100 ml of ion-exchanged water was added to the rhodium-carbon supported catalyst separated and recovered in Comparative Example 1. While stirring with a stirrer, air was blown at 18 ml / min for 1.5 hours to activate the catalyst with air. The rhodium-carbon supported catalyst was separated by filtration, and immediately charged with 20 g of pyromellitic acid and 80 g of ion-exchanged water in an autoclave, and a nuclear hydrogenation reaction was carried out in the same manner as in Example 1.
  • Comparative Example 3 Nuclear hydrogenation as in Example 1 except that 40 g of 5 wt% palladium-carbon supported catalyst only (less than 5.0 parts by weight of palladium metal with respect to 100 parts by weight of pyromellitic acid) was used and the reaction temperature was 50 ° C. Reaction, analysis of the filtrate (crude reaction product) and post-treatment were performed to obtain 16.16 g of dry crystals. The analysis results are shown in Table 1. Compared to Example 1, the proportion of HPMA-5 was significantly lower (isomer selectivity was very low).
  • Comparative Example 4 (35 activation processes with air) 100 ml of ion-exchanged water was added to the rhodium-carbon supported catalyst separated and recovered in Comparative Example 3. While stirring with a stirrer, air was blown at 18 ml / min for 1.5 hours to activate the catalyst with air. The rhodium-carbon supported catalyst was separated by filtration, and immediately charged with 20 g of pyromellitic acid and 80 g of ion exchange water in an autoclave, and a hydrogenation reaction was carried out in the same manner as in Example 1. Thereafter, a catalyst recycling experiment was carried out by repeating the cycle consisting of separation of the rhodium-carbon supported catalyst, activation treatment with air, and nuclear hydrogenation reaction 35 times.
  • the analysis results of the filtrate (crude reaction product) obtained in the 36th nuclear hydrogenation reaction are shown in Table 1. From the analysis results, it can be seen that the catalyst activity was remarkably lowered even though the number of times of repeated use was about 1/4 of that in Example 2. Post-treatment was performed in the same manner as in Comparative Example 1 to obtain 15.96 g of dry crystals. The analysis results are shown in Table 1. The obtained dried 1,2,4,5-cyclohexanetetracarboxylic acid crystal had a large amount of pyromellitic acid remaining as a raw material and a low purity.
  • HPMA 1,2,4,5-cyclohexanetetracarboxylic acid
  • Me-HTMA by-product HPMA-5 in which one of carboxyl groups of HPMA is converted to a methyl group: represented by the above formula (1)
  • a hydride of an aromatic polycarboxylic acid can be industrially advantageously produced with high purity and high yield.
  • the hydride of aromatic polycarboxylic acid obtained by the production method of the present invention contains a very small amount of aromatic polycarboxylic acid as a raw material or substantially does not contain it. It is useful as a monomer raw material for functional polyimides and polyesters, and as a raw material for curing agents for functional epoxy resins having transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 芳香族ポリカルボン酸の芳香環を、ロジウム、および、パラジウム及び/又は白金をカーボン担体に担持した触媒存在下で水素化して芳香族ポリカルボン酸の水素化物を製造する方法。上記触媒を使用することにより、芳香族ポリカルボン酸の水素化物を高純度かつ高収率で工業的に有利に製造することができる。ロジウム、および、パラジウム及び/又は白金をカーボン担体に担持した触媒は水素化に使用後賦活処理することにより、繰り返し使用を重ねた後であっても、芳香族ポリカルボン酸の水素化物への転化率をほぼ100%に保ち続けることができる。また、原料の芳香族ポリカルボン酸を実質的に含有しない芳香族ポリカルボン酸の水素化物が得られる。

Description

芳香族ポリカルボン酸の水素化物の製造方法
 本発明は、芳香族ポリカルボン酸の芳香環を水素化(核水素化)して該芳香族ポリカルボン酸の水素化物を製造する方法、及びその製造方法により得られる芳香族ポリカルボン酸の水素化物に関する。更に詳しくは、芳香族ポリカルボン酸の水素化物を高純度かつ高収率で工業的に得ることができる製造方法に関する。
 芳香族ポリカルボン酸の水素化物は機能性ポリイミドや機能性エポキシ樹脂の原料として多用されている。近年、それらの樹脂の高機能化に伴い、高純度の芳香族ポリカルボン酸の水素化物が要望されるようになった。特に、高度に透明性を必要とする用途には芳香族ポリカルボン酸の水素化物中の芳香環の残存量をできる限り低減させることが強く要望されている。
 高純度の芳香族ポリカルボン酸の水素化物を得る方法として、(i)芳香族ポリカルボン酸を直接核水素化する方法(非特許文献1、特許文献1~4参照)、(ii)芳香族ポリカルボン酸をそのエステル誘導体に変換し、次いで、該エステル誘導体を核水素化する方法(特許文献5及び6参照)が提案されている。
 非特許文献1には、(i)カーボン担体にロジウム金属を5%担持した触媒の存在下、水素圧2.7atm、60℃でピロメリット酸を核水素化する方法(ロジウム金属の使用量:原料化合物の2重量%)、(ii)アルミナ担体にロジウム金属を5%担持した触媒の存在下、60~70℃でフタル酸、イソフタル酸、テレフタル酸を核水素化する方法(ロジウム金属の使用量:原料化合物の2.4重量%又は0.6重量%)が記載されている。
 しかしながら、上記方法は何れも触媒の使用量が多く、また芳香族ポリカルボン酸の転化率及び選択率が必ずしも十分でなく、原料の芳香族ポリカルボン酸が残存する傾向があった。
 特許文献1は、ロジウム金属及び/又はパラジウム金属を含む触媒の存在下で芳香族ポリカルボン酸を回分式により核水素化する方法を提案している(貴金属の使用量:芳香族ポリカルボン酸100重量部に対して0.5~10重量部)。
 しかし、その実施例においては、0.5重量%、2重量%または5重量%カーボン担持ロジウム触媒、または、5重量%カーボン担持パラジウム触媒を用いた製造方法が記載されているだけであり、ロジウム及びパラジウムの双方を用いた核水素化は記載されていない。さらに、経済的に重要な触媒の繰り返し使用に関しては9回までのリサイクル反応を行っているのみである。
 特許文献2は、比表面積が50~450m2/gであるγ-アルミナ担体にロジウム金属を5%担持した触媒の存在下で芳香族ポリカルボン酸を核水素化する方法を提案している(ロジウム金属の使用量:芳香族ポリカルボン酸100重量部に対して0.25重量部以上0.5重量部未満)。
 特許文献2は、反応毎に賦活処理を施さず、連続的に核水素化反応に使用しても、触媒活性の低下は非常に少ないか或いは実質的な低下が認められないと記載している(段落0036)。しかし、特許文献4の比較例3には、比表面積が150m2/gであるγ-アルミナ担体にロジウム金属を担持した触媒を用いて賦活処理することなく核水素化反応を繰り返すと、触媒活性が低下し、回分式で4回目の核水素化反応では転化率が著しく低下し多量の芳香族ポリカルボン酸が残存することが記載されている。このように特許文献2の触媒は長期の繰り返し使用には耐えられない。また、ロジウム金属は高価なので、触媒を頻繁に取り替えて反応を行うことは経済的に非常に不利である。
 特許文献3は、アルミナ、シリカ又はシリカ-アルミナ担体にルテニウム、ロジウム、パラジウム及び白金から選ばれる1種または2種以上の貴金属を担持した触媒の存在下で芳香族ポリカルボン酸を核水素化する方法を提案している(貴金属の使用量:芳香族ポリカルボン酸の0.05~0.45重量%)。
 しかし、特許文献3の実施例で使用されているのはロジウム-アルミナ触媒のみである。このロジウム-アルミナ触媒は特許文献2と同様の触媒であり、それ故、特許文献2の触媒と同様に長期の繰り返し再使用が困難であり、経済的に不利である。
 特許文献4は、核水素化反応を特定の温度範囲で行うことにより転化率の低下と触媒の劣化を抑えることができること、効果的な賦活処理を施すことにより触媒の繰り返し使用回数が長期化することが記載されている。
 特許文献4の実施例ではロジウム触媒を使用し、繰り返し反応を行っているが、繰り返し回数は10回程度が限度で、経済的にはまだ不利であった。
 特許文献5及び6には、芳香族ポリカルボン酸をそのエステル誘導体に変換し、次いで、該エステル誘導体を核水素化する方法が記載されている。
 しかしながら、該製造方法は芳香族カルボン酸を一旦エステル誘導体に変換する必要があり、全製造工程は長くなり反応装置も複雑となる。その為に、製造コストが上昇する。
特開2003-286222号公報 特開2006-83080号公報 特開2006-124313号公報 特開2008-63263号公報 特開平8-325196号公報 特開平8-325201号公報 J. Org. Chem., 31, 3433 (1966)
 本発明の目的は、芳香族ポリカルボン酸の水素化物を高純度かつ高収率で工業的に有利に製造する方法、及び原料の芳香族ポリカルボン酸を実質的に含有しない芳香族ポリカルボン酸の水素化物を提供することである。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、
(1)芳香族ポリカルボン酸の核水素化触媒の触媒金属としてロジウム、及び、パラジウム及び/又は白金を用いることにより、それぞれの金属を単独で使用するより反応の繰り返し回数が飛躍的に伸びること、および
(2)当該触媒を使用することにより芳香族ポリカルボン酸の水素化物を高純度かつ高収率で得られること
を見出し、係る知見に基づいて本発明を完成するに至った。
 即ち、本発明は、芳香族ポリカルボン酸の芳香環を触媒存在下で水素化して芳香族ポリカルボン酸の水素化物を得る工程を含み、かつ、下記条件(1)~(6)を満たすことを特徴とする芳香族ポリカルボン酸の水素化物の製造方法。
(1)前記触媒がロジウム、及び、パラジウム及び/又は白金をカーボン担体に担持した担持触媒である、
(2)前記芳香族ポリカルボン酸100重量部に対し、ロジウムを0.05重量部以上0.5重量部未満用いる、
(3)前記芳香族ポリカルボン酸100重量部に対し、パラジウム及び/又は白金を0.5重量部以上5.0重量部未満用いる、
(4)反応水素分圧が1.0~15MPaである、
(5)反応温度が30~80℃である、および
(6)前記芳香族ポリカルボン酸を反応溶媒に溶解又は懸濁させる。
 本発明に用いる芳香族ポリカルボン酸は、芳香環上に2個以上のカルボキシル基を有する化合物であれば特に限定されず、公知の芳香族ポリカルボン酸が使用できる。具体的には、フタル酸、イソフタル酸、テレフタル酸、1,2-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、9,10-アントラセンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、2,2’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、3,3’-ビフェニルエーテルジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、4,4’-ビナフチルジカルボン酸等の芳香族ジカルボン酸;ヘミメリット酸、トリメリット酸、トリメシン酸、1,2,4-ナフタレントリカルボン酸、2,5,7-ナフタレントリカルボン酸等の芳香族トリカルボン酸;メロファン酸、プレーニト酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,3,3’,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、3,3’,4,4’-ジフェニルメタンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、アントラセンテトラカルボン酸等の芳香族テトラカルボン酸;ベンゼンペンタカルボン酸等の芳香族ペンタカルボン酸;ベンゼンヘキサカルボン酸等の芳香族ヘキサカルボン酸などが例示される。これらは、単独で又は2種以上を適宜組み合わせて使用することができる。
 中でも、芳香族トリカルボン酸と芳香族テトラカルボン酸が好ましい。具体的には、トリメリット酸、ヘミメリット酸、トリメシン酸、ピロメリット酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸及び3,3’,4,4’-ビフェニルテトラカルボン酸が好ましく、トリメリット酸、ヘミメリット酸、トリメシン酸及びピロメリット酸がより好ましい。これらは単独で又は2種以上を適宜組み合わせて使用することができる。
 本発明では、芳香族ポリカルボン酸の芳香環を触媒存在下で水素化(核水素化)し芳香族ポリカルボン酸の水素化物を製造する。原料の芳香族ポリカルボン酸が2個以上の芳香環を有する場合、得られた芳香族ポリカルボン酸の水素化物は、完全水素化物(すべての芳香環が水素化)であっても良いし、部分水素化物(一部の芳香環が水素化)であっても良い。部分水素化物としては、例えば原料がナフタレン骨格を有する芳香族ポリカルボン酸の場合、テトラリン骨格を有する化合物などを挙げることができる。また原料がビフェニル骨格や、各種連結基を介して2個のベンゼン環が結合した構造の骨格を有する芳香族ポリカルボン酸の場合、一方がベンゼン環で、他方がシクロヘキサン環構造の骨格を有する化合物等を挙げることができる。
 芳香族ポリカルボン酸の水素化物としては、1,2,4-シクロヘキサントリカルボン酸、1,2,3-シクロヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,4,5,8-デカヒドロナフタレンテトラカルボン酸、2,3,6,7-デカヒドロナフタレンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸等が挙げられる。
 本発明における核水素化反応は反応溶媒中で行うのが好ましい。反応溶媒としては、水、酢酸、プロピオン酸、ジメチルエーテル、メチルエチルエーテル、酢酸メチル、酢酸エチル、酢酸プロピル、テトラヒドロフラン、アセトン、メチルエチルケトン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等が挙げられ、水が好ましい。水はイオン交換水又は蒸留水が好ましい。また、芳香族ポリカルボン酸の水素化物を電気・電子分野に利用する場合には、ナトリウム、カリウム、カルシウム、マグネシウム、鉄等の金属成分の含有量が極力少ない水を用いることが好ましい。
 反応溶媒として水を選択することにより、
(i)芳香族ポリカルボン酸が水に溶解し易いので核水素化反応が進行し易い。
(ii)得られた芳香族ポリカルボン酸の水素化物が水へ溶解し易いので、触媒との分離が容易である。
(iii)触媒を分離した後、その濾液を濃縮若しくは冷却することにより芳香族ポリカルボン酸の水素化物を晶析させ、これを濾過や遠心分離などで固液分離することにより、より高純度の芳香族ポリカルボン酸の水素化物が得られるので、核水素化後の分離、回収操作が容易である
などの利点がある。
 原料の芳香族ポリカルボン酸は反応溶媒中に溶解させても縣濁させても良い。このときの芳香族ポリカルボン酸濃度は、芳香族ポリカルボン酸と反応溶媒との合計重量に対して、5~40重量%が好ましく、10~40重量%がより好ましい。
 核水素化反応後に冷却もしくは濃縮などにより芳香族ポリカルボン酸の水素化物を結晶化させ、その結晶を分離した後の母液を反応溶媒として循環使用しても構わない。母液を反応器に戻す割合は、不純物の系内蓄積度合いに応じて適宜決めることができる。
 本発明の核水素化反応は、ロジウム、及び、パラジウム及び/又は白金をカーボン担体に担持した触媒の存在下で行う。ジウム及びパラジウムをカーボン担体に担持した触媒が特に好ましい。触媒の形状は特に限定はなく、水素化反応の方式に応じて粉末、固定床用の破砕状、ペレット状などが選択される。上記各貴金属の担体への担持量は、触媒全量に対して0.5~10重量%、より好ましくは2~5重量%である。1種の貴金属のみをカーボンに担持させた触媒を混合使用してもよいし、2種または3種の貴金属を同時に担持した触媒を用いても良い。
ロジウム、及び、パラジウム及び/又は白金の異種金属を同時に担持した触媒、又は、これらの金属をそれぞれ単独に担持した触媒の混合物を用いると、上記金属をただ1種含む触媒を使用する場合に比べ、原料芳香族ポリカルボン酸のカルボキシル基がメチル基に変換された副生成物の生成を抑制できる。また、芳香族ポリカルボン酸の水素化物の特定の異性体が選択率良く、純品に近い形で得られる。このような芳香族ポリカルボン酸の水素化物を機能性ポリマーなどの製造に使用すると、ハンドリング性が良く、目的物が高純度で得られる。
 本発明の核水素化反応は、芳香族ポリカルボン酸100重量部に対し、ロジウムを0.05重量部以上0.5重量部未満、好ましくは0.1重量部以上0.5重量部未満、より好ましくは0.13重量部以上0.5重量部未満、及び、パラジウム及び/又は白金を0.5重量部以上5.0重量部未満の割合で含む触媒の存在下、水素分圧1.0MPa以上で撹拌しながら行うことが好ましい。触媒の貴金属量が上記範囲より少ないと核水素化反応が十分に進行しないことがある。上記範囲より多くても、その量に見合うだけの効果が得られにくく、製造コストの上昇を招くことがある。水素分圧が1.0MPa未満では所望の反応転化率が得られず、本発明の目的が達せられない。好ましい水素分圧は1.0~15MPaの範囲である。反応温度は30~80℃の範囲が好ましく、より好ましくは50~65℃の範囲である。
 本発明において用いる水素は、工業的に一般に製造されるグレードのものであればよい。例えばPSA法や膜式水素製造法などで製造され、純度が99.9%以上のものが挙げられる。
 核水素化反応は発熱反応であるので反応初期は反応系の温度が上昇し、反応後期には反応熱の生成がほとんどなく製造装置の放熱により反応系の温度は下降する。従って、発熱と製造装置の放熱の度合いに応じて加熱冷却装置を用いて反応系を冷却又は加熱して反応温度の変動を最初に設定した温度の±5℃以内に抑えることが好ましい。反応温度変動を±5℃以内に抑えることにより、過剰な量の触媒を用いる必要がなくなり、触媒の繰り返し使用を重ねても原料の転化率をほぼ100%に保ち続けることができる。
 加熱反応装置としては、通常使用されるものであれば構わないが例を挙げれば、反応器内部に熱媒を通すためのコイルを組み込んだ内部コイル方式、反応器外側に熱媒を通すジャケット方式、反応液の一部をポンプにより外部に送り、熱交換器により加熱する外部循環加熱方式が好適に用いられる。熱媒としてはスチーム、ホットオイル等が用いられる。冷却装置としては、反応器内部に冷媒を通すためのコイルを組み込んだ内部コイル方式、反応器外側に冷媒を通すジャケット方式、反応液の一部をポンプにより外部に送り、熱交換器により冷却する外部循環冷却方式が好適に用いられる。冷媒としては、冷却水、エタノールなどが用いられる。
 反応時間は、反応温度やその他条件により左右され、一概に決めることはできないが、通常0.5~3時間程度で十分である。
 核水素化に使用した触媒は、反応生成物から濾過などにより分離した後賦活処理をすることにより繰り返し使用することができる。触媒の賦活処理方法としては空気と接触させる方法、酸化剤で処理する方法、窒素ガスと接触させる方法、スチームで処理する方法、アルカリ水溶液で処理する方法等を挙げることができる。空気と接触させる方法は、分離した触媒をガラス等の容器に入れて数時間以上空気中に放置するだけでも良いし(例えば、0~100℃で1~100時間放置)、10~50重量部の触媒を100mlの水(イオン交換水、蒸留水)に入れスラリー状にしてから0~100℃で撹拌しながら空気を1~1000ml/minで0.1~10時間バブリングしても良い。酸化剤としては過酸化水素が例示される。アルカリ水溶液としては0.5~10重量%水酸化ナトリウム水溶液、0.5~10重量%アンモニア水を例示することができる。アルカリ処理は、例えば、10~50重量部の触媒を100重量部のアルカリ水溶液に加え、0~100℃で0.1~10時間撹拌すればよい。触媒をアルカリ処理した場合には残存アルカリをできるだけ低減するために、アルカリ処理触媒を酢酸等の低級脂肪族カルボン酸で洗浄し、最後に水で洗浄することが望ましい。
 上記賦活処理方法の中で、空気と接触させる方法、アルカリ水溶液で処理する方法及びそれらを併用する方法が賦活効果の点などから好適である
 核水素化反応に用いる反応装置は、(i)反応器が耐酸性の材質であり、(ii)耐圧構造であり、(iii)触媒と芳香族ポリカルボン酸と水素とを十分に混合できる撹拌機を具備している反応装置であれば特に限定されず、公知の反応器も使用できる。例えば、SUS316L製縦型若しくは横型オートクレーブ等が挙げられる。
 核水素化反応の手順は、本発明の効果を損ねない限り、特に限定されない。例えば、反応装置に原料、反応溶媒及び触媒を所定量仕込み、系内を不活性ガスで置換する。次に水素で置換し、所定の反応条件下(水素分圧、反応温度、反応時間、撹拌速度等)で核水素化反応を行えばよい。
 反応終了後、例えば、反応温度と同程度の温度で触媒を濾別し、濾液を室温まで冷却し、析出した固体を濾過し、濾別した固体を乾燥することにより目的の芳香族ポリカルボン酸の水素化物を得ることができる。
 また、前記濾液から反応溶媒を留去して濃縮し、析出した固体を濾別し、次に濾別した固体を乾燥することによっても目的の芳香族ポリカルボン酸の水素化物を得ることができる。
 核水素化反応終了後に芳香族ポリカルボン酸の水素化物が比較的多く析出している場合、触媒分離中に芳香族ポリカルボン酸の水素化物が析出する可能性がある場合等には、濾過温度を上げてもいいし、反応溶媒を加えてもいい。晶析時に系が増粘する場合には、核水素化反応終了後に予め反応溶媒を加えておくのが好ましい。
 上記の本発明の製造方法によれば、簡単なプロセスで、且つ工業的に有利な方法で原料の芳香族ポリカルボン酸の残存量が0.10重量%以下、好ましくは残存量が極微量であるかあるいは実質的に残存していない芳香族ポリカルボン酸の水素化物を製造することができる。なお、「残存量が極微量であるかあるいは実質的に残存していない」とは、芳香族ポリカルボン酸の水素化物中の芳香族ポリカルボン酸の残存量がガスクロマトグラフィー分析の検出限界以下であることを意味する。
 以下、実施例及び比較例を挙げ、本発明を詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
ガスクロマトグラフィー分析条件
前処理
 サンプルをジエチレングリコールジメチルエーテルに固形物濃度として6重量%となるように溶解させた。次に、その溶液をジアゾメタンでメチルエステル化処理してガスクロマトグラフィー用サンプルを調製した。尚、注入量は0.8μLである。
ガスクロマトグラフィー分析条件
 ガスクロマトグラフィー分析装置:GC-17A(島津製作所(株)製)
 キャピラリーカラム:DB-1(島津製作所(株)製)
 インジェクション温度;300℃
 検出器温度:280℃
 初期カラム温度、保持時間:200℃、10分
 昇温速度:7℃/分
 最終カラム温度、保持時間:280℃、40分
 キャリアガス:ヘリウム
 キャリアガス圧力:130kPa
 検出器:FID
実施例1
 撹拌機、温度計、圧力計、導入管、冷却水とスチームを通せる加熱冷却装置を具備した500mlのSUS316L製振とう式オートクレーブに下記化合物、触媒、反応溶媒を仕込んだ。
  ピロメリット酸:20g
  イオン交換水:80g
  5重量%ロジウム-カーボン担持触媒(エヌ・イーケムキャット社製、含水品、水分含有率50.5重量%):4.0g(ピロメリット酸100重量部に対し、ロジウム金属として0.5重量部未満)
  5重量%パラジウム-カーボン担持触媒(エヌ・イーケムキャット社製、含水品、水分含有率50.5重量%):36g(ピロメリット酸100重量部に対し、パラジウム金属として約4.5重量部)
 内容物を撹拌しながら系内を窒素ガスで2回置換した。次いで、水素ガスで5回置換し、8MPaに昇圧した。水素分圧8MPaを保持しながら温度を60℃に設定して反応を行った。反応初期には反応熱により反応系の温度が65℃を越えないように冷却を行ない、ほとんど反応熱が生じなくなる1時間経過後には反応系の温度が55℃未満にならないように反応系をスチームで加熱した。
 水素ガスで置換してから計2時間経過後、反応液をオートクレーブからフィルター付き配管を用いて窒素加圧して抜き出し、触媒を濾別すると共に、無色透明の濾液を得た。この濾液(粗反応物)をガスクロマトグラフィーにより分析し、その結果を表1に示した。ピロメリット酸(PMA)の転化率は99.92重量%、1,2,4,5-シクロヘキサンテトラカルボン酸(HPMA)の選択率は99.01重量%、副生成物(Me-HTMA:1,2,4,5-シクロヘキサンテトラカルボン酸のカルボキシル基の1つがメチル基に変換された化合物)の選択率は0.65重量%であった。HPMAの反応収率は98.93重量%であった。また、HPMA中の下記(1)式により示される異性体(HPMA-5)の割合は97.09重量%と極めて高かった。
Figure JPOXMLDOC01-appb-C000001
 次に、上記の濾液をロータリーエバポレーターで減圧下に濃縮し、1,2,4,5-シクロヘキサンテトラカルボン酸(HPMA)の結晶を析出させた。この結晶を分離、乾燥したところ、16.37gの乾燥結晶が得られた。この乾燥結晶をガスクロマトグラフィーにより分析し、結果を表1に示した。HPMAの純度は99.10重量%であり、原料のピロメリット酸は検出されなかった(検出限界:0.02重量%)。
実施例2(空気による賦活処理130回)
 実施例1で濾別した混合カーボン担持触媒に100mlのイオン交換水を加えた。室温で攪拌機で撹拌しながら空気を18ml/minで1.5時間吹き込み、触媒を空気により賦活処理した。混合カーボン担持触媒を濾過により分離し、直ちに前記オートクレーブにピロメリット酸20g、イオン交換水80gと共に仕込み、実施例1と同様にして核水素化反応を行った。その後、上記の混合カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを130回繰り返して触媒のリサイクル実験を行った。131回目の核水素化反応で得た濾液(粗反応物)の分析結果を表1に示した。その分析結果から、触媒の活性低下がわずかに認められるにすぎなかった。実施例1と同様にして1,2,4,5-シクロヘキサンテトラカルボン酸の乾燥結晶15.96gを得た。表1に乾燥結晶の分析結果を示した。
実施例3
 ピロメリット酸100重量部に対して、イオン交換水を600重量部、5重量%ロジウム-カーボン担持触媒をロジウム金属として0.15重量部、および5重量%パラジウム-カーボン担持触媒をパラジウム金属として1.35重量部使用し、反応温度を40℃に変更した以外は実施例1と同様にして核水素化反応、後処理および分析を行った。結果を表1に示す。
実施例4(空気による賦活処理97回)
 各核水素化反応を実施例3と同様に行った以外は実施例2と同様にして混合カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを97回繰り返して触媒のリサイクル実験を行った。結果を表1に示す。
比較例1
 5重量%ロジウム-カーボン担持触媒のみ4.0g(ピロメリット酸100重量部に対し、ロジウム金属として0.5重量部未満)用い、反応温度を50℃とした以外は実施例1と同様に核水素化反応、濾液(粗反応物)の分析および後処理を行い、乾燥結晶16.16gを得た。その分析結果を表1に示した。実施例1に比べ、Me-HTMAの生成が多く、1,2,4,5-シクロヘキサンテトラカルボン酸の反応収率が低かった。また、HPMA-5の割合も大幅に低かった(異性体選択率が極めて低い)。
比較例2(空気による賦活処理11回)
 比較例1で分離回収したロジウム-カーボン担持触媒に100mlのイオン交換水を加えた。攪拌機で撹拌しながら空気を18ml/minで1.5時間吹き込み、触媒を空気により賦活処理した。ロジウム-カーボン担持触媒を濾過により分離し、直ちにオートクレーブにピロメリット酸20g、イオン交換水80gと共に仕込み、実施例1と同様に核水素化反応を行った。その後、上記のロジウム-カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを11回繰り返して触媒のリサイクル実験を行った。12回目の核水素化反応で得た濾液(粗反応物)の分析結果を表1に示した。分析結果から、繰り返し使用回数が実施例2の1/10以下であるのに、触媒活性が著しく低下したことが分かる。比較例1と同様に後処理して乾燥結晶15.96gを得た。その分析結果を表1に示した。得られた乾燥1,2,4,5-シクロヘキサンテトラカルボン酸結晶は原料のピロメリット酸の残存量が多く純度が低かった。
比較例3
 5重量%パラジウム-カーボン担持触媒のみ40g(ピロメリット酸100重量部に対し、パラジウム金属として5.0重量部未満)用い、反応温度を50℃とした以外は実施例1と同様に核水素化反応、濾液(粗反応物)の分析及び後処理を行い、乾燥結晶16.16gを得た。その分析結果を表1に示した。実施例1に比べ、HPMA-5の割合が大幅に低かった(異性体選択率が極めて低い)。
比較例4(空気による賦活処理35回)
 比較例3で分離回収したロジウム-カーボン担持触媒に100mlのイオン交換水を加えた。攪拌機で撹拌しながら空気を18ml/minで1.5時間吹き込み、触媒を空気により賦活処理した。ロジウム-カーボン担持触媒を濾過により分離し、直ちにオートクレーブにピロメリット酸20g、イオン交換水80gと共に仕込み、実施例1と同様に水素化反応を行った。その後、上記のロジウム-カーボン担持触媒の分離、空気による賦活処理及び核水素化反応からなるサイクルを35回繰り返して触媒のリサイクル実験を行った。36回目の核水素化反応で得た濾液(粗反応物)の分析結果を表1に示した。その分析結果から、繰り返し使用回数が実施例2の約1/4であるのに、触媒活性が著しく低下したことが分かる。比較例1と同様に後処理して乾燥結晶15.96gを得た。その分析結果を表1に示した。得られた乾燥1,2,4,5-シクロヘキサンテトラカルボン酸結晶は原料のピロメリット酸の残存量が多く純度が低かった。
Figure JPOXMLDOC01-appb-T000002
PMA:ピロメリット酸
HPMA:1,2,4,5-シクロヘキサンテトラカルボン酸
Me-HTMA:HPMAのカルボキシル基の1つがメチル基に変換された副生成物
HPMA-5:上記(1)式で示されるHPMAの異性体
 本発明によれば、芳香族ポリカルボン酸の水素化物を高純度かつ高収率で工業的に有利に製造できる。又、本発明の製造方法により得られた芳香族ポリカルボン酸の水素化物は、原料の芳香族ポリカルボン酸が極微量であるか或いは実質的に含有していないので、透明性や溶剤可溶性等を有する機能性ポリイミドやポリエステルのモノマー原料、透明性を有する機能性エポキシ樹脂の硬化剤原料などに有用である。

Claims (8)

  1. 芳香族ポリカルボン酸の芳香環を触媒存在下で水素化して芳香族ポリカルボン酸の水素化物を得る工程を含み、かつ、下記条件(1)~(6)を満たすことを特徴とする芳香族ポリカルボン酸の水素化物の製造方法。
    (1)前記触媒がロジウム、及び、パラジウム及び/又は白金をカーボン担体に担持した担持触媒である、
    (2)前記芳香族ポリカルボン酸100重量部に対し、ロジウムを0.05重量部以上0.5重量部未満用いる、
    (3)前記芳香族ポリカルボン酸100重量部に対し、パラジウム及び/又は白金を0.5重量部以上5.0重量部未満用いる、
    (4)反応水素分圧が1.0~15MPaである、
    (5)反応温度が30~80℃である、および
    (6)前記芳香族ポリカルボン酸を反応溶媒に溶解又は懸濁させる。
  2. 前記反応温度が50~65℃である請求項1に記載の芳香族ポリカルボン酸の水素化物の製造方法。
  3. 前記触媒が、前記水素化反応後に賦活処理された触媒である請求項1又は2記載の芳香族ポリカルボン酸の水素化物の製造方法。
  4. 前記賦活処理を、前記触媒を空気と接触させる方法、前記触媒をアルカリ水溶液で処理する方法、または、前記方法の組み合わせにより行う請求項3に記載の芳香族ポリカルボン酸の水素化物の製造方法。
  5. 前記芳香族ポリカルボン酸の濃度が、前記芳香族ポリカルボン酸と前記反応溶媒との合計重量に対して5~40重量%である請求項1~4のいずれか1項に記載の芳香族ポリカルボン酸の水素化物の製造方法。
  6. 前記反応溶媒が水である請求項1~5のいずれか1項に記載の芳香族ポリカルボン酸の水素化物の製造方法。
  7. 前記芳香族ポリカルボン酸がトリメリット酸、ヘミメリット酸、トリメシン酸及びピロメリット酸から選ばれる1種以上である請求項1~6のいずれか1項に記載の芳香族ポリカルボン酸の水素化物の製造方法。
  8. 請求項1~7のいずれか1項に記載の製造方法で得られ、前記芳香族ポリカルボン酸の含有量が0.10重量%以下である芳香族ポリカルボン酸の水素化物。
PCT/JP2009/063055 2008-07-23 2009-07-21 芳香族ポリカルボン酸の水素化物の製造方法 WO2010010869A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09800383.3A EP2316811B1 (en) 2008-07-23 2009-07-21 Process for producing hydrogenated aromatic polycarboxylic acid
JP2010521702A JP5594140B2 (ja) 2008-07-23 2009-07-21 芳香族ポリカルボン酸の水素化物の製造方法
US13/055,247 US8846973B2 (en) 2008-07-23 2009-07-21 Process for producing hydrogenated aromatic polycarboxylic acid
CN2009801287364A CN102105428A (zh) 2008-07-23 2009-07-21 芳香族多羧酸的加氢化合物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008189832 2008-07-23
JP2008-189832 2008-07-23

Publications (1)

Publication Number Publication Date
WO2010010869A1 true WO2010010869A1 (ja) 2010-01-28

Family

ID=41570329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063055 WO2010010869A1 (ja) 2008-07-23 2009-07-21 芳香族ポリカルボン酸の水素化物の製造方法

Country Status (7)

Country Link
US (1) US8846973B2 (ja)
EP (1) EP2316811B1 (ja)
JP (1) JP5594140B2 (ja)
KR (1) KR101604504B1 (ja)
CN (2) CN105418405A (ja)
TW (1) TWI439450B (ja)
WO (1) WO2010010869A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180854A1 (ja) 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
WO2018180696A1 (ja) 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 cis,cis-1,2,4-シクロヘキサントリカルボン酸結晶の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381977B (zh) * 2011-10-28 2014-07-23 荣成市科盛化工有限公司 氢化均苯四甲酸脂的制备
TWI421240B (zh) * 2011-12-12 2014-01-01 Ind Tech Res Inst 苯多羧酸或其衍生物形成環己烷多元酸酯之氫化方法
US9090553B2 (en) 2012-10-05 2015-07-28 Basf Se Process for preparing cyclohexanepolycarboxylic acid derivatives having a low proportion of by-products
EP2716623A1 (de) * 2012-10-05 2014-04-09 Basf Se Verfahren zur Herstellung von Cyclohexanpolycarbonsäure-Derivaten mit geringem Nebenproduktanteil
WO2015138129A1 (en) 2014-03-12 2015-09-17 Dow Global Technologies Llc Process for regenerating catalyst used in hydrogenation of aromatic epoxides
TWI630954B (zh) 2014-12-09 2018-08-01 財團法人工業技術研究院 雙酚a或其衍生物的氫化方法以及對苯二甲酸或其衍生物的氫化方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753440A (en) * 1980-09-17 1982-03-30 Kureha Chem Ind Co Ltd Preparation of 4-aminomethylcyclohexanecarboxylic acid and its mineral acid salt
JPH0325196A (ja) 1989-06-21 1991-02-01 Shimizu Corp 掘削用支保工
JPH0665165A (ja) * 1992-03-17 1994-03-08 Air Prod And Chem Inc アミン水素化の方法
US5412108A (en) * 1994-01-05 1995-05-02 Amoco Corporation Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride
JPH08325201A (ja) 1995-05-31 1996-12-10 New Japan Chem Co Ltd 脂環式ポリカルボン酸エステルの製造方法
JP2003286222A (ja) 2001-12-28 2003-10-10 Mitsubishi Gas Chem Co Inc 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法
JP2006083080A (ja) 2004-09-15 2006-03-30 New Japan Chem Co Ltd 水素化芳香族ポリカルボン酸の製造方法
JP2006124313A (ja) 2004-10-28 2006-05-18 Nippon Steel Chem Co Ltd 脂環式多価カルボン酸及びその無水物の製造方法
JP2008063263A (ja) 2006-09-06 2008-03-21 Mitsubishi Gas Chem Co Inc 水素化芳香族カルボン酸の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2823165A1 (de) * 1978-05-26 1979-11-29 Bayer Ag Verfahren zur herstellung von cycloaliphatischen carbonsaeureestern
JP3747493B2 (ja) 1995-05-31 2006-02-22 新日本理化株式会社 脂環式ポリカルボン酸及びその酸無水物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753440A (en) * 1980-09-17 1982-03-30 Kureha Chem Ind Co Ltd Preparation of 4-aminomethylcyclohexanecarboxylic acid and its mineral acid salt
JPH0325196A (ja) 1989-06-21 1991-02-01 Shimizu Corp 掘削用支保工
JPH0665165A (ja) * 1992-03-17 1994-03-08 Air Prod And Chem Inc アミン水素化の方法
US5412108A (en) * 1994-01-05 1995-05-02 Amoco Corporation Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride
JPH08325201A (ja) 1995-05-31 1996-12-10 New Japan Chem Co Ltd 脂環式ポリカルボン酸エステルの製造方法
JP2003286222A (ja) 2001-12-28 2003-10-10 Mitsubishi Gas Chem Co Inc 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法
JP2006083080A (ja) 2004-09-15 2006-03-30 New Japan Chem Co Ltd 水素化芳香族ポリカルボン酸の製造方法
JP2006124313A (ja) 2004-10-28 2006-05-18 Nippon Steel Chem Co Ltd 脂環式多価カルボン酸及びその無水物の製造方法
JP2008063263A (ja) 2006-09-06 2008-03-21 Mitsubishi Gas Chem Co Inc 水素化芳香族カルボン酸の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. ORG. CHEM., vol. 31, 1966, pages 3433
See also references of EP2316811A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180854A1 (ja) 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
WO2018180696A1 (ja) 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 cis,cis-1,2,4-シクロヘキサントリカルボン酸結晶の製造方法
WO2018180855A1 (ja) 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法

Also Published As

Publication number Publication date
JP5594140B2 (ja) 2014-09-24
TWI439450B (zh) 2014-06-01
JPWO2010010869A1 (ja) 2012-01-05
US20110196171A1 (en) 2011-08-11
EP2316811A1 (en) 2011-05-04
CN102105428A (zh) 2011-06-22
KR101604504B1 (ko) 2016-03-17
KR20110036053A (ko) 2011-04-06
US8846973B2 (en) 2014-09-30
EP2316811A4 (en) 2012-12-26
EP2316811B1 (en) 2015-12-16
TW201008907A (en) 2010-03-01
CN105418405A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5594140B2 (ja) 芳香族ポリカルボン酸の水素化物の製造方法
JP2009057385A (ja) 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法
US9663426B2 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
US7547803B2 (en) Process for producing a high purity aromatic polycarboxylic acid
JP2012530144A (ja) シクロヘキセン1,4−カルボキシレート
JP4622406B2 (ja) 水素化芳香族ポリカルボン酸の製造方法
US10329235B2 (en) System and method for producing 1,4-cyclohexanedimethanol and 1,4- cyclohexanedicarboxylic acid from terephthalic acid
JP5239140B2 (ja) 水素化芳香族カルボン酸の製造方法
JP2006124313A (ja) 脂環式多価カルボン酸及びその無水物の製造方法
JP4633400B2 (ja) 脂環式多価カルボン酸及びその酸無水物の製造方法
JP3608354B2 (ja) ジシクロヘキシル−2,3,3’,4’−テトラカルボン酸化合物
RU2422434C1 (ru) Способ получения сложных эфиров из отходов производства капролактама
JP5003231B2 (ja) トランス,トランス−4,4’−ビシクロヘキシルジカルボン酸の製造方法
CN117820078A (zh) 一种顺式2,2,4,4-四甲基-1,3-环丁二醇的制备方法
KR101083973B1 (ko) 헥사히드로무수프탈산의 제조방법
JPH0827067A (ja) 2,6−デカヒドロナフタレンジカルボン酸ジメチルの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128736.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521702

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117001563

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009800383

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13055247

Country of ref document: US