WO2010008041A1 - 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料 - Google Patents

改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料 Download PDF

Info

Publication number
WO2010008041A1
WO2010008041A1 PCT/JP2009/062861 JP2009062861W WO2010008041A1 WO 2010008041 A1 WO2010008041 A1 WO 2010008041A1 JP 2009062861 W JP2009062861 W JP 2009062861W WO 2010008041 A1 WO2010008041 A1 WO 2010008041A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
hydrolyzable
complex oxide
perovskite complex
modified
Prior art date
Application number
PCT/JP2009/062861
Other languages
English (en)
French (fr)
Inventor
田邉 信司
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008187266A external-priority patent/JP5283995B2/ja
Priority claimed from JP2008187262A external-priority patent/JP5341417B2/ja
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to CN2009801361729A priority Critical patent/CN102159498B/zh
Priority to US12/737,477 priority patent/US20110183834A1/en
Publication of WO2010008041A1 publication Critical patent/WO2010008041A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to a modified perovskite-type composite oxide, a method for producing the same, and a composite dielectric material using the same.
  • multilayer printed wiring boards In order to reduce the size, thickness, and density of electronic devices, multilayer printed wiring boards have come to be used frequently.
  • This multilayer printed wiring board can cope with further downsizing, thinning, and high density of electronic equipment by providing a layer made of a high dielectric constant material on the inner layer or surface layer to improve the mounting density.
  • a high dielectric constant material a ceramic sintered body obtained by firing a ceramic powder and then firing the ceramic powder is used. Therefore, the dimensions and shape of the material are limited by the forming method. Further, since the sintered body is high in hardness and brittle, it is difficult to freely process it, and it is extremely difficult to obtain an arbitrary shape or a complicated shape.
  • an inorganic filler having a high dielectric constant used here for example, a perovskite complex oxide is known (see, for example, Patent Document 1).
  • the A-site metal such as Ba, Ca, Sr, and Mg in the structure elutes, and accordingly, the interface between the resin and the inorganic filler peels off, There was a problem that insulation deterioration occurred due to migration.
  • Patent Documents 2 to 6 it is known to surface-treat an inorganic filler having a high dielectric constant such as barium titanate with a coupling agent for the purpose of improving dispersibility in the resin. Yes.
  • the present invention has been made to solve the above-described problems, and the dielectric properties are equal to or higher than those before the modification, and the elution of the coating component from the coating component that modifies the perovskite complex oxide.
  • the modified perovskite type complex oxide which effectively suppresses the elution of the A-site metal of the perovskite type complex oxide and has good crushability, its production method, and a composite dielectric using the same The purpose is to provide material.
  • the present inventors have hydrolyzed a specific hydrolyzable metal oxide precursor on the particle surface of the perovskite-type composite oxide, and then have a temperature of 700 ° C. to A primary coating layer containing a compound produced by firing at 1200 ° C. and a modified perovskite complex oxide covered with a secondary coating layer containing the compound have been found to solve the above problems. It came to complete.
  • the particle surface of the perovskite type complex oxide is at least one first selected from the group consisting of TiO 2 , Al 2 O 3 , ZrO 2 and Nd 2 O 3 .
  • a modified perovskite-type composite oxide that is primarily coated with a component of the above, wherein the primary coating comprises a hydrolyzable TiO 2 precursor, a hydrolyzable Al 2 O 3 precursor, a hydrolyzable ZrO 2 precursor, and A modified perovskite-type composite oxide formed by hydrolyzing at least one selected from the group of hydrolyzable Nd 2 O 3 precursors and calcining at 700 to 1200 ° C. It is.
  • the second invention provided by the present invention is a method in which a hydrolyzable Al 2 O 3 precursor is further hydrated on a primary coating layer containing Al 2 O 3 formed by firing at 700 to 1200 ° C. 700 to 1200 of at least one hydrolysis product selected from the group of degradable SiO 2 precursor, hydrolyzable TiO 2 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor.
  • a modified perovskite-type composite oxide having a secondary coating formed by firing at a temperature of 0 ° C.
  • the particle surface of the perovskite type composite oxide is at least one selected from the group consisting of TiO 2 , Al 2 O 3 , ZrO 2 and Nd 2 O 3 and is primary.
  • a method for producing a coated modified perovskite complex oxide (A) a step of preparing a slurry by dispersing perovskite-type composite oxide particles in a solvent; (B1) In the slurry obtained in (A), hydrolyzable TiO 2 precursor, hydrolyzable Al 2 O 3 precursor, hydrolyzable ZrO 2 precursor, and hydrolyzable Nd 2 O 3 precursor Adding at least one selected from the group, subjecting the precursor to hydrolysis in the presence of a catalyst, and then drying the slurry; and (C) A method for producing a modified perovskite complex oxide, comprising a step of firing the dried product obtained in (B1) at 700 ° C. to 1200 ° C.
  • the particle surface of the perovskite complex oxide is first coated with a coating layer containing at least Al 2 O 3 to form SiO 2 , TiO 2 , ZrO 2 and Nd 2 O 3.
  • a fifth invention provided by the present invention is a composite dielectric material comprising the modified perovskite complex oxide of the first invention and / or the second invention and a polymer material. is there.
  • the modified perovskite complex oxide according to the present invention basically comprises the following two embodiments. That is, in the modified perovskite complex oxide according to the first aspect of the present invention, the particle surface of the perovskite complex oxide is selected from the group of TiO 2 , Al 2 O 3 , ZrO 2 and Nd 2 O 3.
  • modified perovskite-type composite characterized by being formed by hydrolysis at least one selected from the group of hydrolyzable Nd 2 O 3 precursors and baking at 700-1200 ° C. It is an oxide (hereinafter referred to as “first invention”).
  • the modified perovskite complex oxide according to the second aspect of the present invention includes a primary containing Al 2 O 3 formed by firing at least a hydrolyzable Al 2 O 3 precursor at 700 to 1200 ° C. On the coating layer, at least one hydrolyzable SiO 2 precursor, hydrolyzable TiO 2 precursor, hydrolyzable ZrO 2 precursor, and hydrolyzable Nd 2 O 3 precursor is selected. It is a modified perovskite complex oxide characterized by having a secondary coating formed by firing the decomposition product at 700 to 1200 ° C. (hereinafter referred to as “second invention”).
  • the perovskite type complex oxide to be modified in the first and second inventions is not particularly limited, but is selected from the group of Ca, Ba, Sr and Mg at the A site in the ABO 3 type perovskite.
  • the perovskite type complex oxide in which at least one kind of metal element is arranged and at least one kind of metal element selected from the group of Ti and Zr is arranged at the B site is preferable.
  • perovskite complex oxides may be used alone or in combination of two or more.
  • the production history of such a perovskite complex oxide is not particularly limited, and examples thereof include wet methods such as coprecipitation method, hydrolysis method, hydrothermal synthesis method, sol-gel method, solid phase method and the like. What is obtained by a normal method is used.
  • the physical properties of these perovskite complex oxides are not particularly limited, but the BET specific surface area is preferably 0.5 m 2 / g to 12 m 2 / g, more preferably 1.5 m 2 / g to 6 m 2. / G is preferable in terms of handling properties, dispersibility, and adhesion to the resin.
  • an average particle diameter of 0.1 ⁇ m to 2 ⁇ m, more preferably 0.2 ⁇ m to 1 ⁇ m is particularly preferable in terms of further improving handling properties and dispersibility.
  • This average particle diameter is determined by a laser light scattering method.
  • the thing with little impurity content is especially preferable when obtaining a highly purified product.
  • the perovskite complex oxide to be modified may contain a subcomponent element.
  • subcomponent elements include metal elements, metalloid elements, transition metal elements, and rare earth elements having an atomic number of 3 or more other than the A site or B site constituting the perovskite complex oxide.
  • Sc Selected from the group of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, V, Bi, Al, W, Mo, Nb and Si At least one of these is preferred.
  • the content of the subcomponent elements is preferably 0.05 mol% to 20 mol%, more preferably 0.5 mol% to 5 mol%, based on the perovskite complex oxide.
  • the particle shape of the perovskite complex oxide is not particularly limited, and may be any of spherical, granular, plate-like, scale-like, whisker-like, rod-like, filament-like and the like.
  • At least one coating selected from the group consisting of TiO 2 , Al 2 O 3 , ZrO 2 and Nd 2 O 3 is hydrolyzable TiO. 2 precursor, a hydrolyzable Al 2 O 3 precursor, after at least one member selected from the group of hydrolyzable ZrO 2 precursor and a hydrolyzable Nd 2 O 3 precursor to hydrolyze, its hydrolysis product It is characterized by being formed by firing an object within a specific temperature range.
  • the coating formed from the hydrolyzable TiO 2 precursor, hydrolyzable Al 2 O 3 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor has a pH of the particle surface.
  • the pH value of the particle surface was obtained by adding 100 g of pure water to 4 g of the modified perovskite complex oxide, stirring at 25 ° C. for 60 minutes, and measuring the pH of the supernatant with a pH meter.
  • those formed from the hydrolyzable Al 2 O 3 precursor preferably in terms of high effect of suppressing elution of A-site metals.
  • hydrolyzable TiO 2 precursor examples include titanium alkoxides such as tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, tetraisopropoxy titanium, tetra-n-butoxy titanium, isopropyl triisostearoyl titanate, isopropyl tridodecylbenzene.
  • Sulfonyl titanate isopropyl tris (dioctyl borophosphate) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctyl) Vylophosphate) oxyacetate titanate, bis (dioctylvirophosphate) ethylene titanate, isopropyltrioctanoyl titanate, iso Lopyldimethacrylic isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, isopropyl tri (N-aminoethyl-aminoethyl
  • hydrolyzable Al 2 O 3 precursor examples include trimethoxyaluminum, triethoxyaluminum, tripropoxyaluminum, triisopropoxyaluminum, tri-n-butoxyaluminum, tri-sec-butoxyaluminum, tri-tert- Aluminum alkoxide such as butoxy aluminum, aluminum such as ethyl acetoacetate aluminum diisopropylate, methyl acetoacetate aluminum diisopropylate, ethyl acetate aluminum dibutyrate, alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate) Examples thereof include nate coupling agents, aluminum acetate, and aluminum nitrate nonahydrate. These hydrolyzable Al 2 O 3 precursors may be used alone or in combination of two or more.
  • hydrolyzable ZrO 2 precursor examples include zirconium alkoxides such as tetraethoxyzirconium, tetramethoxyzirconium, tetraisopropoxyzirconium, tetra-n-butoxyzirconium, tetra-tert-butoxyzirconium, and zirconium such as ethoxyzirconium stearate.
  • zirconate-based coupling agents such as alkoxides, zirconium chelate compounds such as zirconium tetraacetylacetonate and zirconium ⁇ -hydroxycarboxylate, zirconium soaps, and zirconium acetate.
  • These hydrolyzable ZrO 2 precursors may be used alone or in combination of two or more.
  • hydrolyzable Nd 2 O 3 precursor examples include neodymium acetate monohydrate, neodymium nitrate hexahydrate, neodymium chloride hexahydrate, triisopropoxyneodymium and the like. These hydrolyzable Nd 2 O 3 precursors may be used singly or in combination of two or more.
  • the firing temperature is important to be 700 ° C to 1200 ° C, preferably 900 ° C to 1100 ° C.
  • the coating is not sufficiently densified, so the effect of reducing the elution of the A-site metal is low.
  • the coating component is often eluted from the coating component that modifies the perovskite complex oxide.
  • the amount of elution of the A-site metal may increase or the relative dielectric constant may decrease.
  • the firing temperature exceeds 1200 ° C., fusion between particles and grain growth become remarkable, and even if pulverization treatment is performed, there is a tendency that the shape and particle size distribution before modification are greatly deviated.
  • the firing time is preferably 2 hours or longer, more preferably 3 hours to 10 hours.
  • the ratio of the primary coating according to the first invention is preferably 0.05% by mass to 20% by mass and more preferably 0.1% by mass to 5% by mass with respect to the perovskite complex oxide. preferable.
  • the coating ratio is less than 0.05% by mass, a sufficient elution reduction effect may not be obtained.
  • the coating ratio exceeds 20% by mass, the dielectric properties of the modified perovskite complex oxide May drop significantly.
  • the modified perovskite complex oxide according to the second invention comprises at least Al 2 O 3 formed by firing the hydrolyzable Al 2 O 3 precursor of the first invention at 700 to 1200 ° C. as an active ingredient.
  • a modified perovskite-type composite oxide having a secondary coating formed by firing a hydrolysis product of a specific hydrolyzable metal oxide precursor at 700 to 1200 ° C. is there. That is, the modified perovskite complex oxide according to the second invention is formed on a primary coating layer containing Al 2 O 3 formed by firing at least a hydrolyzable Al 2 O 3 precursor at 700 to 1200 ° C.
  • At least one hydrolysis product selected from the group of hydrolyzable SiO 2 precursor, hydrolyzable TiO 2 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor Is characterized by having a secondary coating formed by firing at 700 to 1200 ° C.
  • the perovskite complex oxide tends to cause a problem that the specific surface area changes with time and gradually lowers the dielectric properties.
  • the modified perovskite complex oxide according to the second invention suppresses the change with time of the specific surface area. Especially effective.
  • the primary coating layer containing at least Al 2 O 3 contains Al 2 O 3 in an amount of 40% by mass or more, preferably 50% by mass or more. is there.
  • the primary coating layer may contain at least one selected from the group consisting of SiO 2 , TiO 2 , ZrO 2 and Nd 2 O 3 as other components.
  • hydrolyzable Al 2 O 3 precursor, hydrolyzable TiO 2 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor according to the second invention are those of the first invention described above.
  • hydrolyzable Al 2 O 3 precursor, hydrolyzable TiO 2 precursor, same can be used as the hydrolyzable ZrO 2 precursor and a hydrolyzable Nd 2 O 3 precursor.
  • hydrolyzable SiO 2 precursor according to the second invention examples include silane alkoxides such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-n-butoxysilane.
  • ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, aminosilane, ⁇ -aminopropyltriethoxysilane, N- (2-aminoethyl) 3- Aminopropyltrimethoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane, hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethyl The Silane, benzyldimethylchlorosilane, methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane,
  • the firing temperature when forming the primary coating and the secondary coating is important to be 700 ° C. to 1200 ° C., preferably 900 ° C. to 1100 ° C.
  • the coating is not sufficiently densified, so the effect of reducing the elution of the A-site metal is low.
  • the coating component is often eluted from the coating component that modifies the perovskite complex oxide. The amount of elution of the A-site metal may increase or the relative dielectric constant may decrease.
  • the firing time is preferably 2 hours or longer, more preferably 3 hours to 10 hours.
  • the total of the primary coating and the secondary coating is preferably 0.05% by mass to 20% by mass in terms of oxide with respect to the perovskite complex oxide, and preferably 0.1% by mass to 5% by mass. Is more preferable.
  • the mass ratio of the primary coating to the secondary coating is preferably in the range of 3: 1 to 1:10, from the viewpoint of improving the hydrophobicity of the treated surface. A range is more preferable.
  • the modified perovskite complex oxide according to the first aspect of the present invention includes the following steps: (A) a step of preparing a slurry by dispersing perovskite-type composite oxide particles in a solvent; (B1) In the slurry obtained in (A), hydrolyzable TiO 2 precursor, hydrolyzable Al 2 O 3 precursor, hydrolyzable ZrO 2 precursor, and hydrolyzable Nd 2 O 3 precursor Adding at least one selected from the group, subjecting the precursor to hydrolysis in the presence of a catalyst, and then drying the slurry; and (C) The dry product obtained in (B1) is preferably produced by a method comprising a step of firing at 700 ° C. to 1200 ° C. (hereinafter referred to as “third invention”).
  • the modified perovskite complex oxide according to the second invention of the present invention includes the following steps: (A) a step of preparing a slurry by dispersing perovskite-type composite oxide particles in a solvent; (B2) A step of adding at least a hydrolyzable Al 2 O 3 precursor to the slurry obtained in (A) and performing a hydrolysis reaction of the hydrolyzable Al 2 O 3 precursor in the presence of a catalyst.
  • B3 From the group of hydrolyzable SiO 2 precursor, hydrolyzable TiO 2 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor into the slurry obtained in (B2).
  • the dry product obtained in (B3) is preferably produced by a method including a step of baking at 700 ° C. to 1200 ° C. (hereinafter referred to as “fourth invention”).
  • the manufacturing method of the modified perovskite complex oxide according to the third and fourth inventions of the present invention can be broadly classified as follows: (A) slurry preparation step (corresponding to the step (A)), (B) It consists of a coating treatment step (corresponding to steps (B1), (B2) and (B3)), and (C) a firing step (corresponding to step (C)).
  • the solvent is preferably 100 to 900 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the perovskite complex oxide to be modified. 150 parts by mass to 400 parts by mass are added and stirred to prepare a slurry in which each particle of the perovskite complex oxide is uniformly dispersed.
  • the solvent water, a hydrophilic organic solvent, or a mixture thereof can be used, but A-site metals such as Ba, Ca, Sr, and Mg may be eluted from the perovskite complex oxide by contact with water. It is preferable to use a hydrophilic organic solvent from the viewpoint of further improving the pulverizability of the obtained modified perovskite complex oxide.
  • hydrophilic organic solvent examples include glycol and alcohol.
  • glycols include propylene glycol monoethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethylene glycol, propylene glycol, diethylene glycol and the like.
  • alcohol examples include methanol, ethanol, isopropyl alcohol, n-butanol, pentanol and the like. These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, diethylene glycol monobutyl ether, methanol, ethanol, isopropyl alcohol and n-butanol are particularly preferable in that the dispersibility of the perovskite type complex oxide is good. preferable.
  • a dispersing device such as a high-speed stirring, a colloid mill, a homogenizer or the like may be used as necessary.
  • a conventional dispersant may be added to the slurry.
  • the (B) coating process step (the (B1) step) according to the third invention will be described below.
  • the hydrolyzable TiO 2 precursor, hydrolyzable Al 2 O 3 precursor, hydrolyzable ZrO 2 precursor, and hydrolyzable Nd 2 are added to the slurry prepared in the slurry preparation step (A).
  • At least one selected from the group of O 3 precursors and a catalyst are added, and a hydrolysis reaction is performed to precipitate a hydrolysis product uniformly on the particle surface of the perovskite complex oxide.
  • Addition amount of at least one precursor selected from the group of hydrolyzable TiO 2 precursor, hydrolyzable Al 2 O 3 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor May be appropriately determined in consideration of the solubility in a solvent or diluent, the reaction yield, and the like so as to achieve the above-described preferred coating ratio.
  • the catalyst examples include inorganic alkalis such as ammonia, sodium hydroxide and potassium hydroxide, inorganic alkali salts such as ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate and sodium hydrogen carbonate, monomethylamine, dimethylamine, trimethylamine and monoethylamine.
  • inorganic alkalis such as ammonia, sodium hydroxide and potassium hydroxide
  • inorganic alkali salts such as ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate and sodium hydrogen carbonate, monomethylamine, dimethylamine, trimethylamine and monoethylamine.
  • organic alkalis such as tetramethylammonium hydroxide, tetrapropylammonium hydroxide, ammonium formate, ammonium acetate, monomethylamine formate, dimethylamine acetate, pyridine lactate, guanidino Organic acid alkali salts such as acetic acid and aniline acetate can be used.
  • organic alkalis such as tetramethylammonium hydroxide and tetrapropylammonium hydroxide are desirable.
  • the amount of the catalyst added is preferably 0.2 to 10, more preferably 0.5 to 5, in terms of a molar ratio to the precursor.
  • the catalyst is preferably added to the slurry as a solution dissolved in water.
  • the conditions for the hydrolysis reaction are such that the reaction temperature is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 90 ° C., and the reaction time is preferably 1 hour or more, more preferably 3 hours to 10 hours. In addition, it is preferable to perform a hydrolysis reaction under stirring.
  • the perovskite complex oxide covered with the hydrolysis product is recovered and dried, and then lightly crushed as necessary.
  • the recovery method is not particularly limited, and means such as spray drying may be used.
  • the drying treatment conditions are such that the drying temperature is preferably 40 ° C. or higher, more preferably 60 ° C. to 120 ° C., and the drying time is preferably 1 hour or longer, more preferably 3 hours to 10 hours. Further, it may be dried under reduced pressure using a vacuum pump or the like.
  • step (B2) at least a hydrolyzable Al 2 O 3 precursor and a catalyst are added to the slurry prepared in the step (A), and a hydrolysis reaction is performed so that the surface of the perovskite complex oxide is uniformly distributed. At least the hydrolysis product of the hydrolyzable Al 2 O 3 precursor is precipitated.
  • the addition amount of the catalyst is preferably 0.2 to 10, in terms of a molar ratio with respect to the hydrolyzable Al 2 O 3 precursor (when other hydrolyzable precursor is added, the total with the precursor). More preferably, it is 0.5-5.
  • the catalyst is preferably added to the slurry as a solution dissolved in water.
  • the hydrolysis reaction conditions in the step (B2) are such that the reaction temperature is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 90 ° C., and the reaction time is preferably 1 hour or more, more preferably 3 hours to 10 ° C. It's time. In addition, it is preferable to perform a hydrolysis reaction under stirring.
  • a hydrolyzable SiO 2 precursor, a hydrolyzable TiO 2 precursor, and a hydrolyzable ZrO 2 precursor which are added in combination with the hydrolyzable Al 2 O 3 precursor, if necessary.
  • the hydrolyzable Nd 2 O 3 precursor can be added to the slurry, and the hydrolysis reaction of the Al 2 O 3 precursor and these precursors can be performed simultaneously.
  • the slurry prepared in the step (B2) (a slurry in which the perovskite type composite oxide coated with the precipitation layer containing at least the hydrolysis product of the hydrolyzable Al 2 O 3 precursor is dispersed.
  • At least one hydrolysis product selected from the group of degradable TiO 2 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable Nd 2 O 3 precursor is further precipitated uniformly.
  • this step (B3) it is usually unnecessary to add a catalyst, but it may be added as appropriate according to the amount of the precursor added in step (B3).
  • the hydrolysis reaction conditions in the step (B3) are such that the reaction temperature is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 90 ° C., and the reaction time is preferably 1 hour or more, more preferably 3 hours to 10 ° C. It's time. In addition, it is preferable to perform a hydrolysis reaction under stirring.
  • Addition amount of hydrolyzable Al 2 O 3 precursor in step (B2) and hydrolyzable SiO 2 precursor, hydrolyzable TiO 2 precursor, hydrolyzable ZrO 2 precursor and hydrolyzable in step (B3) The addition amount of at least one precursor selected from the group of Nd 2 O 3 precursors is appropriately determined in consideration of the solubility in a solvent or a diluent, the reaction yield, etc. so as to achieve the above-mentioned preferable coating ratio. Just decide.
  • the perovskite complex oxide covered with the hydrolysis product is recovered and dried, and then lightly crushed as necessary.
  • the recovery method is not particularly limited, and means such as spray drying may be used.
  • the drying treatment conditions are such that the drying temperature is preferably 40 ° C. or higher, more preferably 60 ° C. to 120 ° C., and the drying time is preferably 1 hour or longer, more preferably 3 hours to 10 hours. Further, it may be dried under reduced pressure using a vacuum pump or the like.
  • the dried product (perovskite-type composite oxide coated with the hydrolysis product) obtained after the completion of the step (B1) according to the third invention or the step (B3) according to the fourth invention is followed by (C) a firing step It is attached to.
  • the calcination step is performed at 700 ° C. to 1200 ° C., preferably 900 ° C., for the dried product obtained in the (B1) step according to the third invention or the dried product obtained in the (B3) step according to the fourth invention. Firing is performed at a temperature between 1 ° C and 1100 ° C.
  • the primary coating and the secondary coating can be simultaneously formed by performing the (C) firing step.
  • the perovskite complex oxide coated with the hydrolysis product is baked at the above-mentioned temperature range, so that the elution of the A-site metal is significantly reduced. be able to.
  • the firing temperature is less than 700 ° C.
  • the coating is not sufficiently densified, so the A site metal elution reduction effect is low, and in some cases, the coating component is often eluted from the coating component that modifies the perovskite complex oxide.
  • the amount of elution of the A-site metal may increase or the relative dielectric constant may decrease.
  • the firing time is preferably 2 hours or longer, more preferably 3 hours to 10 hours.
  • the particle surface according to the first invention is coated with at least one selected from the group consisting of TiO 2 , Al 2 O 3 , ZrO 2 and Nd 2 O 3 by appropriately cooling and crushing.
  • the modified perovskite type composite oxide or the particle surface according to the second invention is first coated with a coating layer containing at least Al 2 O 3 , and SiO 2 , TiO 2 , ZrO 2 and Nd 2 O 3
  • a modified perovskite complex oxide that is secondarily coated with at least one selected from the group consisting of:
  • the crushing treatment is usually carried out with a conventional mixer such as a food mixer or a coffee mill on a small scale, or a Henschel mixer on an industrial scale. It is enough to do.
  • the primary coating and the secondary coating are simultaneously formed by one firing as described above in terms of further improving the pulverization property.
  • it is obtained in the step (B2).
  • the dried product is fired, and the slurry prepared by dispersing this in a solvent may be used in the step (B3).
  • the composite dielectric material of the present invention contains the polymer material and the modified perovskite complex oxide of the first invention and / or the second invention as an inorganic filler.
  • the composite dielectric material of the present invention preferably contains 60% by mass or more, more preferably 70% by mass to 90% by mass of the modified perovskite complex oxide in the polymer material described later, preferably 15 or more, More preferably, the material has a relative dielectric constant of 20 or more.
  • thermosetting resins examples include epoxy resins, phenol resins, polyimide resins, melamine resins, cyanate resins, bismaleimides, addition polymers of bismaleimides and diamines, polyfunctional cyanate ester resins, and double resins.
  • thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an epoxy resin and a polyvinyl benzyl ether resin are preferable from the balance of heat resistance, processability, price and the like.
  • the epoxy resin used in the present invention includes monomers, oligomers, and polymers in general having at least two epoxy groups in one molecule.
  • phenols including phenol novolac type epoxy resins and orthocresol novolac type epoxy resins
  • Phenols such as cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde
  • Epoxidized novolak resin obtained by condensing or co-condensing with an acidic catalyst, bisphenol A, bisphenol B, bisphenol F, bisphenol S, diglycidyl ether such as alkyl-substituted or unsubstituted biphenol, ep
  • Any epoxy resin curing agent known to those skilled in the art can be used, and in particular, C 2 -C 20 linear aliphatic diamines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, Metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4 ' -Amines such as diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylylenediamine, paraxylylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, dicyanodiamid
  • phenolic resins obtained by cocondensation of a carbonyl compound with a phenol compound in which a hydrogen atom bonded to an aromatic ring such as naphthalene ring or other aromatic group is substituted with a hydroxyl group and acid anhydrides. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the compounding amount of the epoxy resin curing agent is preferably in the range of 0.1 to 10, more preferably 0.7 to 1.3 in terms of equivalent ratio to the epoxy resin.
  • a known curing accelerator can be used for the purpose of accelerating the curing reaction of the epoxy resin.
  • the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, tertiary amine compounds such as triethylenediamine and benzyldimethylamine, 2-methylimidazole, 2-ethyl-4- Examples thereof include imidazole compounds such as methylimidazole, 2-phenylimidazole and 2-phenyl-4-methylimidazole, organic phosphine compounds such as triphenylphosphine and tributylphosphine, phosphonium salts and ammonium salts. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the polyvinyl benzyl ether resin used in the present invention is obtained from a polyvinyl benzyl ether compound.
  • the polyvinyl benzyl ether compound is preferably a compound represented by the following general formula (1).
  • R 1 represents a methyl group or an ethyl group.
  • R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group represented by R 2 is an alkyl group, aralkyl group, aryl group or the like which may have a substituent.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the aralkyl group include a benzyl group.
  • the aryl group include a phenyl group.
  • R 3 represents a hydrogen atom or a vinylbenzyl group.
  • the hydrogen atom of R 3 is derived from the starting compound in the synthesis of the compound of general formula (1), and the curing reaction is carried out when the molar ratio of hydrogen atom to vinylbenzyl group is 60:40 to 0: 100.
  • the composite dielectric material of the present invention is preferable in that it can be sufficiently advanced and sufficient dielectric properties can be obtained.
  • n represents an integer of 2 to 4.
  • the polyvinyl benzyl ether compound may be used by polymerizing only it as a resin material, or may be used by copolymerizing with other monomers.
  • the copolymerizable monomer include styrene, vinyl toluene, divinyl benzene, divinyl benzyl ether, allylphenol, allyloxybenzene, diallyl phthalate, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, and modified products thereof.
  • the blending ratio of these monomers is 2% by mass to 50% by mass with respect to the polyvinyl benzyl ether compound.
  • Polymerization and curing of the polyvinyl benzyl ether compound can be performed by a known method. Curing can be done in the presence or absence of a curing agent.
  • a curing agent for example, known radical polymerization initiators such as benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, and t-butyl perbenzoate can be used.
  • the amount used is 0 to 10 parts by mass with respect to 100 parts by mass of the polyvinylbenzyl ether compound.
  • the curing temperature varies depending on whether or not a curing agent is used and the type of curing agent, but is preferably 20 ° C. to 250 ° C., more preferably 50 ° C. to 250 ° C. in order to sufficiently cure. Moreover, you may mix
  • thermoplastic resin examples include known ones such as (meth) acrylic resin, hydroxystyrene resin, novolac resin, polyester resin, polyimide resin, nylon resin, and polyetherimide resin.
  • Examples of the photosensitive resin include known ones such as a photopolymerizable resin and a photocrosslinkable resin.
  • Examples of the photopolymerizable resin used in the present invention include those containing an acrylic copolymer (photosensitive oligomer) having an ethylenically unsaturated group, a photopolymerizable compound (photosensitive monomer), and a photopolymerization initiator, epoxy.
  • photosensitive oligomers include those obtained by adding acrylic acid to an epoxy resin, those obtained by reacting them with an acid anhydride, and (meth) acrylic acid on a copolymer containing a (meth) acrylic monomer having a glycidyl group.
  • Those obtained by reacting them with an acid anhydride those obtained by reacting glycidyl (meth) acrylate with a copolymer containing a (meth) acrylic monomer having a hydroxyl group, and those obtained by reacting with an acid anhydride.
  • Examples include those obtained by reacting a copolymer containing maleic anhydride with a (meth) acrylic monomer having a hydroxyl group or a (meth) acrylic monomer having a glycidyl group. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • photopolymerizable compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-vinylpyrrolidone, acryloylmorpholine, methoxypolyethylene glycol (meth) acrylate, polyethylene Glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, N, N-dimethylacrylamide, phenoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, tris (hydroxyethyl) isocyanurate di (meth) acrylate, tris (hydroxyethyl) ) Isocyanurate tri (meth) acrylate.
  • These may
  • photopolymerization initiator examples include benzoin and its alkyl ethers, benzophenones, acetophenones, anthraquinones, xanthones, thioxanthones, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. In addition, these photoinitiators can be used together with well-known and usual photopolymerization accelerators, such as a benzoic acid type and a tertiary amine type.
  • Examples of the cationic photopolymerization initiator include triphenylsulfonium hexafluoroantimonate, diphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, and iron aroma of Bronsted acid.
  • Group compound salts (Ciba Geigy, CG24-061). These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the photopolymerizability is more preferable because the reaction speed of the alicyclic epoxy resin is faster than that of a normal glycidyl ester epoxy resin.
  • An alicyclic epoxy resin and a glycidyl ester epoxy resin can be used in combination.
  • the alicyclic epoxy resin include vinylcyclohexene diepoxide, alicyclic diepoxy acetal, alicyclic diepoxy adipate, alicyclic diepoxycarboxylate, manufactured by Daicel Chemical Industries, Ltd., and EHPE-3150. It is done. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • photocrosslinkable resin examples include water-soluble polymer dichromate, polyvinyl cinnamate (Kodak KPR), and cyclized rubber azide (Kodak KTFR). These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the dielectric constant of these photosensitive resins is generally as low as 2.5 to 4.0. Therefore, in order to increase the dielectric constant of the binder, a higher dielectric polymer (for example, SDP-E ( ⁇ : 15 ⁇ ) from Sumitomo Chemical, cyanoresin from Shin-Etsu Chemical ( ⁇ : 18 ⁇ )) and highly dielectric liquids (for example, SDP-S ( ⁇ : 40 ⁇ ) from Sumitomo Chemical) can also be added.
  • SDP-E ⁇ : 15 ⁇
  • cyanoresin from Shin-Etsu Chemical
  • ⁇ : 18 ⁇ highly dielectric liquids
  • the polymer materials described above may be used alone or in combination of two or more.
  • the blending amount of the modified perovskite complex oxide is preferably 60% by mass or more, more preferably 70% by mass to 90% by mass, as a proportion occupied by the compound with the resin. This is because if the amount is less than 60% by mass, a sufficient dielectric constant tends not to be obtained. On the other hand, if the amount exceeds 90% by mass, the viscosity tends to increase and the dispersibility tends to deteriorate. This is because there is a concern that the strength cannot be obtained. It is desirable that the material has a relative dielectric constant of preferably 15 or more, more preferably 20 or more, depending on the above composition.
  • the composite dielectric material of the present invention can contain other fillers in an addition amount within a range that does not impair the effects of the present invention.
  • other fillers include carbon fine powders such as acetylene black and ketjen black, graphite fine powders, and silicon carbide.
  • the composite dielectric material of the present invention includes a curing agent, a glass powder, a coupling agent, a polymer additive, a reactive diluent, a polymerization inhibitor, a leveling agent, a wetting agent as long as the effects of the present invention are not impaired.
  • Property improver, surfactant, plasticizer, UV absorber, antioxidant, antistatic agent, inorganic filler, antifungal agent, humidity control agent, dye dissolving agent, buffer, chelating agent, flame retardant, silane A coupling agent (integral blend method) or the like may be added.
  • These additives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the composite dielectric material of the present invention can be produced by preparing a composite dielectric paste and performing an organic solvent removal, curing reaction or polymerization reaction.
  • the composite dielectric paste contains a resin component, a modified perovskite composite oxide, an additive that is added if necessary, and an organic solvent.
  • the resin component contained in the composite dielectric paste is a polymerizable compound of a thermosetting resin, a polymer of a thermoplastic resin, and a polymerizable compound of a photosensitive resin.
  • these resin components may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polymerizable compound refers to a compound having a polymerizable group, and includes, for example, a precursor polymer, a polymerizable oligomer and a monomer before complete curing. Moreover, a polymer shows the compound which the polymerization reaction was completed substantially.
  • the organic solvent added as necessary varies depending on the resin component used and is not particularly limited as long as it can dissolve the resin component.
  • These organic solvents may be used individually by 1 type, and may be used
  • the composite dielectric paste is prepared to have a desired viscosity.
  • the viscosity of the composite dielectric paste is usually 1,000 mPa ⁇ s to 1,000,000 mPa ⁇ s (25 ° C.), and preferably 10,000 mPa ⁇ s to 600 considering the applicability of the composite dielectric paste. 1,000 mPa ⁇ s (25 ° C.).
  • the composite dielectric material of the present invention can be processed and used as a film-shaped, bulk-shaped or predetermined-shaped molded body, and can be used particularly as a high-dielectric film having a thin film shape.
  • a composite dielectric film using the composite dielectric material of the present invention may be manufactured according to a conventionally known method of using a composite dielectric paste, and an example thereof is shown below. After applying the composite dielectric paste onto the substrate, it can be formed into a film by drying.
  • a base material for example, a plastic film having a surface subjected to a peeling treatment can be used. When applied onto a plastic film that has been subjected to a release treatment and formed into a film, it is generally preferable to use the substrate after peeling it from the film.
  • plastic film that can be used as the substrate examples include polyethylene terephthalate (PET) film, polyethylene film, polypropylene film, polyester film, polyimide film, aramid, kapton, and polymethylpentene. Further, the thickness of the plastic film used as the substrate is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 40 ⁇ m. Moreover, as a mold release process performed on the substrate surface, a mold release process in which silicone, wax, fluororesin or the like is applied to the surface is preferably used.
  • a metal foil may be used as a substrate, and a dielectric film may be formed on the metal foil.
  • the metal foil used as the base material can be used as the capacitor electrode.
  • the method for applying the composite dielectric paste on the substrate is not particularly limited, and a general application method can be used. For example, it can apply
  • Such a dielectric film can be heated and thermally cured after being incorporated into a substrate such as a printed circuit board. Further, when a photosensitive resin is used, patterning can be performed by selective exposure.
  • the composite dielectric material of the present invention may be extruded and formed into a film by a calendar method or the like.
  • the extruded dielectric film may be molded so as to be extruded onto the substrate.
  • metal foil when using metal foil as a base material, foil, composite foil, etc. of these alloys other than foil made from copper, aluminum, brass, nickel, iron, etc. can be used as metal foil.
  • the metal foil may be subjected to a surface roughening treatment or an adhesive application treatment as necessary.
  • a dielectric film may be formed between the metal foils.
  • the metal foil is placed on the metal foil, and then dried with the composite dielectric paste sandwiched between the metal foils, so that the metal foil is sandwiched between the metal foils. You may form the dielectric film of the state.
  • a dielectric film provided between the metal foils may be formed by extrusion so as to be sandwiched between the metal foils.
  • the composite dielectric material of the present invention may be used as a prepreg by making a varnish using the organic solvent described above, then impregnating it with a cloth or non-woven fabric and drying.
  • the kind of cloth or nonwoven fabric that can be used is not particularly limited, and known ones can be used.
  • the cloth include glass cloth, aramid cloth, carbon cloth, stretched porous polytetrafluoroethylene, and the like.
  • the nonwoven fabric include aramid nonwoven fabric and glass paper.
  • the prepreg is laminated on an electronic component such as a circuit board and then cured, whereby an insulating layer can be introduced into the electronic component.
  • the composite dielectric material of the present invention has a high relative dielectric constant, it can be suitably used as a dielectric layer for electronic components, particularly electronic components such as printed circuit boards, semiconductor packages, capacitors, high frequency antennas, and inorganic EL. it can.
  • a multilayer printed wiring board using the composite dielectric material of the present invention it can be manufactured by a method known in the technical field (for example, JP 2003-192768 A, JP 2005-2005 A). No. 29700, Japanese Patent Laid-Open No. 2002-226816, Japanese Patent Laid-Open No. 2003-327827, etc.).
  • the example shown below is an illustration at the time of using a thermosetting resin as a polymer material of a composite dielectric material.
  • the composite dielectric material of the present invention is used as the dielectric film described above, and the circuit board is pressed and heated with the resin surface of the dielectric film, or laminated using a vacuum laminator. After lamination, a metal foil is further laminated on the resin layer exposed by peeling the substrate from the film, and the resin is cured by heating.
  • lamination of the composite dielectric material of the present invention as a prepreg on a circuit board can be performed by a vacuum press. Specifically, it is desirable to perform pressing by bringing one side of the prepreg into contact with the circuit board and placing a metal foil on the other side.
  • the composite dielectric material of the present invention is used as a varnish, and an intermediate insulating layer of a multilayer printed wiring board is formed on a circuit board by applying and drying by screen printing, curtain coating, roll coating, spray coating or the like. be able to.
  • a roughening method of the insulating layer it may be carried out according to specifications such as a method of immersing the substrate on which the insulating resin layer is formed in a solution of an oxidizing agent, a method of spraying a solution of an oxidizing agent, etc. it can.
  • the roughening agent examples include dichromate, permanganate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and other oxidizing agents, N-methyl-2-pyrrolidone, N, N-dimethylformamide, methoxy
  • An organic solvent such as propanol, an alkaline aqueous solution such as caustic soda and caustic potash, an acidic aqueous solution such as sulfuric acid and hydrochloric acid, or various plasma treatments can be used. These treatments may be used in combination.
  • a conductor layer is formed on the printed wiring board with the insulating layer roughened by dry plating such as vapor deposition, sputtering, ion plating, or wet plating such as electroless / electrolytic plating.
  • dry plating such as vapor deposition, sputtering, ion plating, or wet plating such as electroless / electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer may be formed, and the conductor layer may be formed only by electroless plating.
  • annealing treatment can be performed to further cure the thermosetting resin and further improve the peel strength of the conductor layer. In this way, a conductor layer can be formed on the outermost layer.
  • the metal foil on which the intermediate insulating layer is formed can be multilayered by laminating with a vacuum press.
  • the metal foil on which the intermediate insulating layer is formed can be made into a printed wiring board having a conductor layer as the outermost layer by laminating with a vacuum press on the printed wiring board on which the inner layer circuit is formed.
  • the prepreg using the composite dielectric material of the present invention is laminated together with a metal foil on a printed wiring board on which an inner layer circuit is formed by a vacuum press so that the outermost layer is a printed wiring board. Can be.
  • a predetermined through hole and via hole are drilled with a drill or a laser by a conformal method or the like, and the inside of the through hole and via hole is desmeared to form fine irregularities.
  • conduction between layers is achieved by wet plating such as electroless / electrolytic plating.
  • solder resist is applied by pattern printing / thermosetting by screen printing, or by curtain coating / roll coating / spray coating.
  • a desired multilayer printed wiring board is obtained by forming a pattern with a laser after full surface printing and thermosetting.
  • ⁇ Perovskite complex oxide sample> A commercially available (Ba 0.92 Ca 0.08 ) (Ti 0.71 Zr 0.29 ) O 3 (average particle size 0.76 ⁇ m, BET specific surface area 2.17 m) obtained by a solid phase method as a perovskite complex oxide sample to be modified. 2 / g) was used. The average particle size was determined by a laser light scattering method.
  • 4 g of a perovskite complex oxide was dispersed in 100 ml of pure water to prepare a 4% by mass slurry. After stirring at 100 rpm for 1 hour at 25 ° C., the pH of the supernatant was measured with a pH meter. .22.
  • Example 1 TiO 2 coated perovskite-type composite oxide>
  • Process A 100 parts by mass of a perovskite complex oxide sample was added to 150 parts by mass of n-butanol, and the mixture was sufficiently dispersed to prepare a slurry.
  • Step B1 Tetra-n-butoxytitanium (hydrolyzable TiO 2 precursor) is added to the slurry obtained in step A under stirring so as to be 4.26 parts by mass, and then 20 mass% tetramethylammonium hydroxide aqueous solution 10 A mass part was added and a hydrolysis reaction was performed at 90 ° C. for 3 hours. After completion of the hydrolysis reaction, solid-liquid separation was performed according to a conventional method.
  • the obtained separated cake was dispersed in 300 parts by mass of ethanol, stirred for 1 hour, then solid-liquid separated again, dried at 80 ° C for 20 hours, and crushed.
  • a perovskite complex oxide in which a hydrolysis product of tetra-n-butoxytitanium was precipitated on the particle surface was obtained.
  • the perovskite complex oxide obtained in step B1 was baked at 1000 ° C. for 4 hours in the atmosphere to obtain a perovskite complex oxide whose particle surface was coated with TiO 2 .
  • Table 1 shows properties of the obtained TiO 2 coated perovskite complex oxide sample.
  • Step A 100 parts by mass of a perovskite complex oxide sample was added to 150 parts by mass of ethanol, and sufficiently dispersed to prepare a slurry.
  • Step B1 aluminum acetate (hydrolyzable Al 2 O 3 precursor) was added with stirring so as to be 4.00 parts by mass (diluted 4 times with water), and then 20% by mass hydroxide 4.00 parts by mass of an aqueous tetramethylammonium solution was added and a hydrolysis reaction was performed at 60 ° C. for 3 hours. After completion of the hydrolysis reaction, solid-liquid separation was performed according to a conventional method.
  • the obtained separated cake was dispersed in 300 parts by mass of ethanol, stirred for 1 hour, then solid-liquid separated again, dried at 80 ° C for 20 hours, and crushed.
  • a perovskite-type composite oxide in which a hydrolysis product of aluminum acetate was deposited on the particle surface.
  • the perovskite complex oxide obtained in step B1 was baked at 900 ° C. for 4 hours in the atmosphere to obtain a perovskite complex oxide whose particle surface was coated with Al 2 O 3 .
  • Table 1 shows properties of the obtained Al 2 O 3 coated perovskite complex oxide sample.
  • the pH of this Al 2 O 3 coated perovskite complex oxide sample was measured in the same manner as in Example 1. As a result, the pH was 8.22.
  • ZrO 2 coated perovskite-type composite oxide > 4.80 parts by mass of tetra-n-butoxyzirconium (hydrolyzable ZrO 2 precursor) is used instead of tetra-n-butoxytitanium, and the addition amount of a 20% by mass tetramethylammonium hydroxide aqueous solution is 9.60 parts by mass.
  • a ZrO 2 coated perovskite complex oxide sample was obtained in the same manner as in Example 1 except that Table 1 shows various physical properties of the obtained ZrO 2 -coated perovskite complex oxide sample. As a result of measuring the pH of this ZrO 2 -coated perovskite complex oxide sample in the same manner as in Example 1, the pH was 8.55.
  • Example 4 Nd 2 O 3 coating perovskite-type composite oxide> Instead of tetra-n-butoxytitanium, 2.02 parts by mass of neodymium acetate monohydrate (hydrolyzable Nd 2 O 3 precursor) (diluted 8 times with water) is used, and a 20% by mass tetramethylammonium hydroxide aqueous solution An Nd 2 O 3 coated perovskite complex oxide sample was obtained in the same manner as in Example 1 except that the addition amount of was changed to 4.06 parts by mass. Table 1 shows properties of the obtained Nd 2 O 3 -coated perovskite complex oxide sample. As a result of measuring the pH of this Nd 2 O 3 coated perovskite complex oxide sample in the same manner as in Example 1, the pH was 8.36.
  • Silane coupling agent-treated perovskite complex oxide > 100 parts by mass of a perovskite complex oxide sample was charged into a coffee mill, and 1.2 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name KBM-403) was added over 1 minute while stirring. After stirring for 2 minutes, the treated powder was taken out, charged again into the coffee mill, and stirred for 2 minutes to take out the treated powder. Thereby, the fixed density
  • a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd .; trade name KBM-403
  • the silane coupling agent was subjected to hydrolysis and dehydration condensation processes to obtain a perovskite complex oxide sample treated with the silane coupling agent.
  • Table 1 shows the physical properties of the obtained silane coupling agent-treated perovskite complex oxide sample.
  • the pH of this silane coupling agent-treated perovskite complex oxide sample was measured in the same manner as in Example 1. As a result, the pH was 5.73.
  • the “coating amount” in Table 1 was directly determined by ICP-AES in Examples 2, 4 and Comparative Example 2 by dissolving the obtained coated products in an aqueous hydrochloric acid solution.
  • unprecipitated Ti and Zr were measured by ICP-AES from the solvent after the hydrolysis reaction, and subtracted from the charged amount.
  • Comparative Example 1 was obtained by measuring the amount of carbon in a sample thermally decomposed from solid total carbon analysis measurement.
  • thermosetting epoxy resin (trade name: Epicoat 815, manufactured by Japan Epoxy Resin Co., Ltd., having a molecular weight of about 330, specific gravity 1.1, nominal viscosity 9-12P at 25 ° C) 3g and cure accelerator (1-isobutyl-2-methylimidazole, nominal viscosity 4-12P at 25 ° C) 0.24g
  • An epoxy resin composition was prepared by kneading using a stirrer having a foam function (manufactured by THINKY Co., Ltd., trade name: Kentaro Foam).
  • the kneading conditions were a stirring operation of 5 minutes and a defoaming operation of 5 minutes.
  • Each of the obtained epoxy resin compositions was cured at 120 ° C. for 30 minutes to prepare a composite dielectric sample, and dielectric properties were evaluated according to a conventional method. It was confirmed that the dielectric properties of the composite dielectric samples using the modified perovskite complex oxide samples of Examples 1 to 4 were equal to or higher than those using the untreated perovskite complex oxide samples. It was.
  • the average particle size of the sample after the pulverization treatment is obtained by a laser light scattering method, and the average particle size increase rate is 50% or less based on the average particle size of the untreated perovskite complex oxide sample. Evaluation was made as ⁇ , and those exceeding 50% and 100% or less were evaluated as crushability ⁇ , and those exceeding 100% and 200% or less were evaluated as crushability ⁇ , and those exceeding 200% were evaluated as x. evaluated.
  • the results are shown in Table 2.
  • Coating component elution amount in Table 2 is Ti (Example 1), Al (Example 2), Zr (Example 3), Nd (Example 4), Si (Comparative Example) in the filtrate. It is the value which measured 1) and Al (comparative example 2), respectively.
  • Step A 100 parts by mass of a perovskite complex oxide sample was added to 150 parts by mass of n-butanol, and the mixture was sufficiently dispersed to prepare a slurry.
  • Step B2 To the slurry obtained in step A, aluminum acetate (hydrolyzable Al 2 O 3 precursor) was added with stirring so as to be 2 parts by mass (diluted 3 times with water), and then 20% by mass tetramethyl hydroxide. 5 parts by mass of an aqueous ammonium solution was added to conduct a hydrolysis reaction at 90 ° C. for 1 hour.
  • Step B3 Tetraethoxysilane (hydrolyzable SiO 2 precursor) was added to the slurry obtained in step B2 under stirring so as to be 2.5 parts by mass, and a hydrolysis reaction was performed at 90 ° C. for 3 hours. After completion of the hydrolysis reaction, solid-liquid separation was performed according to a conventional method. Further, the obtained separated cake was dispersed in 300 parts by mass of ethanol, stirred for 1 hour, then solid-liquid separated again, dried at 80 ° C. for 20 hours, and crushed. To obtain a perovskite-type composite oxide in which hydrolysis products were precipitated on the particle surface.
  • Example 6 Al 2 O 3 1 primary coating ⁇ SiO 2 2 primary coating perovskite-type composite oxide> A modified perovskite complex oxide sample was obtained in the same manner as in Example 5 except that the firing temperature was changed to 800 ° C. Table 3 shows properties of the obtained modified perovskite complex oxide sample. As a result of measuring the pH of this modified perovskite complex oxide sample in the same manner as in Example 5, the pH was 9.32.
  • Step B2 1 part by mass of tetraethoxysilane (hydrolyzable SiO 2 precursor) and 2 parts by mass of aluminum acetate (hydrolyzable Al 2 O 3 precursor) (diluted 3 times with water) are stirred in the slurry obtained in step A Then, 5 parts by mass of a 20% by mass tetramethylammonium hydroxide aqueous solution was added, and a hydrolysis reaction was performed at 90 ° C. for 1 hour.
  • Step B3 Tetraethoxysilane (hydrolyzable SiO 2 precursor) was added to the slurry obtained in step B2 under stirring so as to be 1.5 parts by mass, and a hydrolysis reaction was performed at 90 ° C. for 3 hours.
  • Step A 100 parts by mass of a perovskite complex oxide sample was added to 150 parts by mass of n-butanol, and the mixture was sufficiently dispersed to prepare a slurry.
  • Step B2 Tetraethoxysilane (hydrolyzable SiO 2 precursor) is added to the slurry obtained in step A under stirring so as to be 2.5 parts by mass, and then 5 parts by mass of a 20% by mass tetramethylammonium hydroxide aqueous solution is added. After the addition, hydrolysis reaction was carried out at 90 ° C. for 1 hour.
  • Step B3 Aluminum acetate (hydrolyzable Al 2 O 3 precursor) is added to the slurry obtained in step B2 under stirring so as to be 2 parts by mass (diluted 3 times with water), and hydrolyzed at 90 ° C. for 3 hours. Reaction was performed. After completion of the hydrolysis reaction, solid-liquid separation was performed according to a conventional method. Further, the obtained separated cake was dispersed in 300 parts by mass of ethanol, stirred for 1 hour, then solid-liquid separated again, dried at 80 ° C. for 20 hours, and crushed. To obtain a perovskite-type composite oxide in which hydrolysis products were precipitated on the particle surface.
  • Example 5 Example 6, Example 7 and Comparative Example 4
  • the obtained coated powder was dissolved in a hot aqueous solution and directly subjected to ICP-AES. It was measured and calculated in terms of oxide.
  • thermosetting epoxy resin (trade name: Epicoat 815, manufactured by Japan Epoxy Resin Co., Ltd., molecular weight of about 330, specific gravity 1.1, nominal viscosity 9-12P at 25 ° C) 3g and cure accelerator (1-isobutyl-2-methylimidazole, nominal viscosity 4-12P at 25 ° C) 0.24g
  • An epoxy resin composition was prepared by kneading using a stirrer having a foam function (manufactured by THINKY Co., Ltd., trade name: Kentaro Foam).
  • the kneading conditions were a stirring operation of 5 minutes and a defoaming operation of 5 minutes.
  • Each of the obtained epoxy resin compositions was cured at 120 ° C. for 30 minutes to prepare a composite dielectric sample, and dielectric properties were evaluated according to a conventional method. It was confirmed that the dielectric properties of the composite dielectric samples using the modified perovskite complex oxide samples of Examples 5 to 7 were equal to or higher than those using the untreated perovskite complex oxide samples. It was done.
  • ⁇ Dissolution test> 4 g of each of the modified perovskite complex oxide samples of Examples 5 to 7 and Comparative Examples 1 and 4 were dispersed in 100 ml of pure water to prepare a 4 mass% slurry, stirred at 100 rpm for 1 hour at 25 ° C., and then Then, the concentration of Ba and Ca in the filtrate and the concentration of Si and Al derived from the coating components were measured by ICP-AES, and quantified as the elution from the sample. The results are shown in Table 4. Further, an untreated perovskite complex oxide sample is shown in Table 4 as Comparative Example 3.
  • the average particle size of the sample after the pulverization treatment is obtained by a laser light scattering method, and the average particle size increase rate is 100% or less based on the average particle size of the untreated perovskite complex oxide sample. Evaluation was made with the property ⁇ , and those exceeding 100% and not more than 200% were evaluated as crushability ⁇ , and those exceeding 200% were evaluated as ⁇ . The results are shown in Table 4.
  • the change rate of the specific surface area is 2% or less, it is evaluated as ⁇ , when it exceeds 2% and 5% or less, it is evaluated as ⁇ , and when it exceeds 5% and 10% or less, it is evaluated as ⁇ . Those exceeding were evaluated as x.
  • the results are shown in Table 4.
  • the BET specific surface area is obtained by measuring the total surface area of a weighed sample using a Macsorb HM-1201 manufactured by Mountec Co., Ltd., and standardizing the sample weighed value.
  • the dielectric properties are equal to or higher than those before the modification
  • the coating component that modifies the perovskite complex oxide is substantially free from elution
  • the A-site metal of the perovskite complex oxide A modified perovskite-type composite oxide that effectively suppresses elution, has good crushability, and also effectively suppresses a change in specific surface area over time, a manufacturing method thereof, and a composite dielectric material using the same Can be aimed at providing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 誘電特性は改質前と同等以上で、改質する被覆成分からの被覆成分の溶出も実質的になく、Aサイト金属の溶出を効果的に抑制すると共に、解砕性の良好な改質ペロブスカイト型複合酸化物を提供すること。  ペロブスカイト型複合酸化物の粒子表面を、TiO、Al、ZrO及びNdの群から選択される少なくとも1種で1次被覆した改質ペロブスカイト型複合酸化物であって、前記1次被覆が、加水分解性TiO前駆体、加水分解性Al前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種を加水分解後、700~1200℃で焼成することにより形成されたものであることを特徴とする改質ペロブスカイト型複合酸化物。    

Description

改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
 本発明は、改質ペロブスカイト型複合酸化物、その製造方法及びそれを用いた複合誘電体材料に関するものである。
 電子機器の小型化、薄型化及び高密度化のため、多層プリント配線板が多く使用されるようになってきた。この多層プリント配線板は、高誘電率材料からなる層を内層又は表層に設けて実装密度を向上させることにより、電子機器の更なる小型化、薄型化及び高密度化に対応可能となる。
 従来、高誘電率材料としては、セラミック粉末を成形した後、これを焼成して得られるセラミック焼結体を用いているため、その寸法や形状は成形法により制約を受けた。また、焼結体は高硬度で脆性であるため、自由な加工が困難であり、任意の形状や複雑な形状を得るには困難を極めた。
 このため、樹脂中に高誘電率の無機充填材を分散させた複合誘電体材料が、加工性に優れるため注目されている。ここで用いられる高誘電率の無機充填材としては、例えば、ペロブスカイト型複合酸化物が知られている(例えば、特許文献1を参照)。しかし、ペロブスカイト型複合酸化物は、水と接触すると構造中のBa、Ca、Sr、Mg等のAサイト金属が溶出し、これに伴って樹脂と無機充填材との界面が剥離したり、イオンマイグレーションにより絶縁劣化が起こるという問題があった。
 一方、特許文献2~6に記載されるように、樹脂中における分散性を向上させる目的で、チタン酸バリウム等の高誘電率の無機充填材をカップリング剤で表面処理することが知られている。
国際公開第2005/093763号パンフレット 特開2003-49092号公報 特開2004-253219号公報 特開2005-2281号公報 特開2005-8665号公報 特開2005-15652号公報
 しかしながら、本発明者らが検討したところ、ペロブスカイト型複合酸化物の粒子表面をカップリング剤で単に処理しても、Ba等のAサイト金属の溶出を十分に低減することができず、更には、処理後のペロブスカイト型複合酸化物粒子に通常の解砕処理を施したとしても処理前の粒度分布からは大きく外れたものとなるということが分かった。粒度分布が大きく変化してしまうと、樹脂への均質な充填性や樹脂との親和性が低下するといった問題が起こる。また、処理粒子の粒度分布を処理前の粒度分布に近づけようとしても、解砕時間が著しく掛かったり、粒子破壊により未処理表面が露出するといった問題が起こる。また、ペロブスカイト型複合酸化物を改質する被覆成分からの被覆成分の溶出という問題もある。
 従って、本発明は、上記のような課題を解決するためになされたものであり、誘電特性は改質前と同等以上で、ペロブスカイト型複合酸化物を改質する被覆成分からの被覆成分の溶出も実質的になく、ペロブスカイト型複合酸化物のAサイト金属の溶出を効果的に抑制すると共に、解砕性の良好な改質ペロブスカイト型複合酸化物、その製造方法及びそれを用いた複合誘電体材料を提供することを目的とする。
 そこで、本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、ペロブスカイト型複合酸化物の粒子表面を、特定の加水分解性金属酸化物前駆体を加水分解した後、700℃~1200℃で焼成することにより生成される化合物を含む1次被覆層、更には該化合物を含む2次被覆層で覆った改質ペロブスカイト型複合酸化物が上記課題を解決することを見出し、本発明を完成するに至った。
 即ち、本発明が提供する第1の発明は、ペロブスカイト型複合酸化物の粒子表面を、TiO、Al、ZrO及びNdの群から選択される少なくとも1種の第1の成分で1次被覆した改質ペロブスカイト型複合酸化物であって、前記1次被覆が、加水分解性TiO前駆体、加水分解性Al前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種を加水分解後、700~1200℃で焼成することにより形成されたものであることを特徴とする改質ペロブスカイト型複合酸化物である。
 また、本発明が提供する第2の発明は、少なくとも加水分解性Al前駆体を700~1200℃で焼成して形成されたAlを含む1次被覆層上に、更に加水分解性SiO前駆体、加水分解性TiO前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種の加水分解生成物を700~1200℃で焼成することにより形成された2次被覆を有することを特徴とする改質ペロブスカイト型複合酸化物である。
 また、本発明が提供する第3の発明は、ペロブスカイト型複合酸化物の粒子表面を、TiO、Al、ZrO及びNdの群から選択される少なくとも1種で1次被覆した改質ペロブスカイト型複合酸化物の製造方法であって、
 (A)ペロブスカイト型複合酸化物粒子を溶媒に分散させてスラリーを調製する工程と、
 (B1)前記(A)で得られたスラリーに、加水分解性TiO2前駆体、加水分解性Al23前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に前記前駆体の加水分解反応を行った後、スラリーを乾燥させる工程と、
 (C)前記(B1)で得られた乾燥物を700℃~1200℃で焼成する工程と
を含むことを特徴とする改質ペロブスカイト型複合酸化物の製造方法である。
 また、本発明が提供する第4の発明は、ペロブスカイト型複合酸化物の粒子表面を少なくともAl23を含む被覆層で1次被覆し、SiO2、TiO2、ZrO2及びNd23からなる群から選択される少なくとも1種で2次被覆した改質ペロブスカイト型複合酸化物の製造方法であって、
 (A)ペロブスカイト型複合酸化物粒子を溶媒に分散させてスラリーを調製する工程と、
 (B2)前記(A)で得られたスラリーに、少なくとも加水分解性Al23前駆体を添加し、触媒の存在下に前記加水分解性Al23前駆体の加水分解反応を行う工程と、
 (B3)前記(B2)で得られたスラリーに、加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に前記前駆体の加水分解反応を行った後、スラリーを乾燥させる工程と、
 (C)前記(B3)で得られた乾燥物を700℃~1200℃で焼成する工程と
を含むことを特徴とする改質ペロブスカイト型複合酸化物の製造方法である。
 また、本発明が提供する第5の発明は、前記第1の発明又は/及び第2の発明の改質ペロブスカイト型複合酸化物と高分子材料とを含むことを特徴とする複合誘電体材料である。
 以下、本発明をその好ましい実施形態に基づき詳細に説明する。
(改質ペロブスカイト型複合酸化物)
 本発明に係る改質ペロブスカイト型複合酸化物は、基本的には下記の2つの実施形態からなるものである。
 即ち、本発明の第1の発明に係る改質ペロブスカイト型複合酸化物は、ペロブスカイト型複合酸化物の粒子表面を、TiO、Al、ZrO及びNdの群から選択される少なくとも1種で1次被覆した改質ペロブスカイト型複合酸化物であって、前記1次被覆が、加水分解性TiO前駆体、加水分解性Al前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種を加水分解後、700~1200℃で焼成することにより形成されたものであることを特徴とする改質ペロブスカイト型複合酸化物である(以下、「第1の発明」と呼ぶ。)。
 また、本発明の第2の発明に係る改質ペロブスカイト型複合酸化物は、少なくとも加水分解性Al前駆体を700~1200℃で焼成して形成されたAlを含む1次被覆層上に、更に加水分解性SiO前駆体、加水分解性TiO前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種の加水分解生成物を700~1200℃で焼成することにより形成された2次被覆を有することを特徴とする改質ペロブスカイト型複合酸化物である(以下、「第2の発明」と呼ぶ。)。
 第1の発明及び第2の発明で改質対象となるペロブスカイト型複合酸化物は、特に制限されるものではないが、ABO3型ペロブスカイトでAサイトにCa、Ba、Sr及びMgの群から選択される少なくとも1種の金属元素が配置され、BサイトにTi及びZrの群から選択される少なくとも1種の金属元素が配置されたペロブスカイト型複合酸化物であることが好ましく、具体的な好ましい化合物を例示すると、BaTiO3、CaTiO3、SrTiO3、MgTiO3、BaxCa1-xTiO3(式中、xは0<x<1)、BaxSr1-xZrO3(式中、xは0<x<1)、BaTixZr1-x3(式中、xは0<x<1)、BaxCa1-xTiyZr1-y3(式中、xは0<x<1、yは0<y<1)等が挙げられる。これらのペロブスカイト型複合酸化物は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 このようなペロブスカイト型複合酸化物の製造履歴は、特に制限されるものではなく、例えば、共沈法、加水分解法、水熱合成法等の湿式法、ゾル-ゲル法、固相法等の通常の方法で得られるものが使用される。これらペロブスカイト型複合酸化物の物性としては、特に制限されるものではないが、BET比表面積が好ましくは0.5m2/g~12m2/g、より好ましくは1.5m2/g~6m2/gのものがハンドリング性、分散性及び樹脂との密着性という点で好ましい。また、平均粒径が好ましくは0.1μm~2μm、より好ましくは0.2μm~1μmのものが、ハンドリング性や分散性が更に向上する点で特に好ましい。この平均粒径は、レーザー光散乱法により求められる。また、不純物含有量の少ないものが、高純度の製品を得る上で、特に好ましい。
 また、改質対象となるペロブスカイト型複合酸化物は、副成分元素を含有するものであってもよい。このような副成分元素としては、ペロブスカイト型複合酸化物を構成するAサイト又はBサイト以外の原子番号3以上の金属元素、半金属元素、遷移金属元素及び希土類元素が挙げられ、中でも、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、V、Bi、Al、W、Mo、Nb及びSiの群から選択される少なくとも1種が好ましい。また、副成分元素の含有量は、ペロブスカイト型複合酸化物に対して好ましくは0.05モル%~20モル%、より好ましくは0.5モル%~5モル%である。
 また、ペロブスカイト型複合酸化物の粒子形状は、特に制限されるものではなく、球状、粒状、板状、鱗片状、ウィスカー状、棒状、フィラメント状等の何れであってもよい。
 本発明の第1の発明に係る改質ペロブスカイト型複合酸化物において、TiO2、Al23、ZrO2及びNd23の群から選択される少なくとも1種の被覆は、加水分解性TiO2前駆体、加水分解性Al23前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を加水分解した後、その加水分解生成物を特定温度範囲内で焼成することにより形成されたものであることが特徴である。このように、加水分解性TiO2前駆体、加水分解性Al23前躯体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体から形成される被覆は、粒子表面のpHを中性付近(pH7~9)にすることができるため、チタン酸バリウム系酸化物では本来得られない表面電位を形成できることから、セラミックコンデンサー向けの用途だけでなく、無機充填材、トナーの外添剤等の他の用途への適用可能性が広がる。なお、粒子表面のpHの値は、改質ペロブスカイト型複合酸化物4gに純水100gを加え、25℃で60分間攪拌後、上澄み液のpHをpHメーターにより測定して求めたものである。また、加水分解性Al23前駆体から形成されるものは、Aサイト金属の溶出を抑制する効果が高いという点で好ましい。
 加水分解性TiO2前駆体としては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラ-n-ブトキシチタン等のチタンアルコキシド、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルバイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルバイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルバイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート、ポリジイソプロピルチタネート、テトラノルマルブチルチタネート、ポリジノルマルブチルチタネート等のチタネート系カップリング剤が挙げられる。これらの加水分解性TiO2前駆体は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 加水分解性Al23前駆体としては、例えば、トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-ブトキアルミニウム、トリ-sec-ブトキシアルミニウム、トリ-tert-ブトキシアルミニウム等のアルミニウムアルコキシド、エチルアセトアセテートアルミニウムジイソプロピレート、メチルアセトアセテートアルミニウムジイソプロピレート、エチルアセテートアルミニウムジブチレート、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)等のアルミネート系カップリング剤、酢酸アルミニウム、硝酸アルミニウム9水和物等が挙げられる。これらの加水分解性Al23前駆体は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 加水分解性ZrO2前駆体としては、例えば、テトラエトキシジルコニウム、テトラメトキシジルコニウム、テトライソプロポキシジルコニウム、テトラ-n-ブトキシジルコニウム、テトラ-tert-ブトキシジルコニウム等のジルコニウムアルコキシド、ステアリン酸エトキシジルコニウム等のジルコニウムアルコキシド類、ジルコニウムテトラアセチルアセトネートやα-ヒドロキシカルボン酸ジルコニウム等のジルコニウムキレート化合物、ジルコニウム石けん類、酢酸ジルコニウム等のジルコネート系カップリング剤が挙げられる。これらの加水分解性ZrO2前駆体は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 加水分解性Nd23前駆体としては、例えば、酢酸ネオジム1水和物、硝酸ネオジム6水和物、塩化ネオジム6水和物、トリイソプロポキシネオジム等が挙げられる。これらの加水分解性Nd23前駆体は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 焼成温度は700℃~1200℃であることが重要であり、好ましくは900℃~1100℃である。焼成温度が700℃未満であると、被覆が十分に緻密化されないためAサイト金属の溶出低減効果が低く、場合によってはペロブスカイト型複合酸化物を改質する被覆成分からの被覆成分の溶出が多くなったり、Aサイト金属の溶出量が被覆前よりも増えたり比誘電率が低下することがある。一方、焼成温度が1200℃を超えると、粒子同士の融着や粒成長が顕著になり、解砕処理を施したとしても改質前の形状や粒度分布から大きく外れたものとなる傾向がある。また、焼成時間は、好ましくは2時間以上、より好ましくは3時間~10時間である。
 第1の発明にかかる1次被覆の割合は、ペロブスカイト型複合酸化物に対して0.05質量%~20質量%とすることが好ましく、0.1質量%~5質量%とすることがより好ましい。被覆の割合が0.05質量%未満であると、溶出低減効果が十分に得られない場合があり、一方、被覆の割合が20質量%を超えると、改質ペロブスカイト型複合酸化物の誘電特性が大幅に低下する場合がある。
 第2の発明に係る改質ペロブスカイト型複合酸化物は、前記第1の発明の加水分解性Al前駆体を700~1200℃で焼成して形成された少なくともAlを有効成分として含む1次被覆層上に、更に特定の加水分解性金属酸化物前駆体の加水分解生成物を700~1200℃で焼成して形成された2次被覆を有する改質ペロブスカイト型複合酸化物である。即ち、第2の発明に係る改質ペロブスカイト型複合酸化物は、少なくとも加水分解性Al前駆体を700~1200℃で焼成して形成されたAlを含む1次被覆層上に、更に加水分解性SiO前駆体、加水分解性TiO前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種の加水分解生成物を700~1200℃で焼成することにより形成された2次被覆を有することが特徴である。
 ペロブスカイト型複合酸化物は、比表面積が経時変化し、徐々に誘電特性を低下させるという問題が生じやすいが、第2の発明に係る改質ペロブスカイト型複合酸化物は、比表面積の経時変化を抑制する効果が特に高い。
 また、第2の発明に係る改質ペロブスカイト型複合酸化物において、少なくともAlを含む1次被覆層は、Alを40質量%以上、好ましくは50質量%以上含有するものである。1次被覆層には、その他の成分として、SiO、TiO、ZrO及びNdからなる群から選択される少なくとも1種が含有されていてもよい。
 第2の発明に係る加水分解性Al前駆体、加水分解性TiO前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体は、前述した第1の発明の加水分解性Al前駆体、加水分解性TiO前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体と同じものを用いることができる。
 また、第2の発明に係る加水分解性SiO前駆体としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン等のシランアルコキシド、例えばγ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、アミノシラン、γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-ユレイドプロピルトリエトトキシシラン、アミノフッ素シラン等のシランカップリング剤が挙げられる。これらの加水分解性SiO2前駆体は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 1次被覆及び2次被覆を形成する際の焼成温度は、700℃~1200℃であることが重要であり、好ましくは900℃~1100℃である。焼成温度が700℃未満であると、被覆が十分に緻密化されないためAサイト金属の溶出低減効果が低く、場合によってはペロブスカイト型複合酸化物を改質する被覆成分からの被覆成分の溶出が多くなったり、Aサイト金属の溶出量が被覆前よりも増えたり比誘電率が低下することがある。一方、焼成温度が1200℃を超えると、粒子同士の融着や粒成長が顕著になり、解砕処理を施したとしても改質前の形状や粒度分布から大きく外れたものとなる傾向がある。また、焼成時間は、好ましくは2時間以上、より好ましくは3時間~10時間である。
 1次被覆及び2次被覆の合計は、ペロブスカイト型複合酸化物に対して酸化物換算で0.05質量%~20質量%とすることが好ましく、0.1質量%~5質量%とすることがより好ましい。被覆の割合が0.05質量%未満であると、溶出低減効果が十分に得られない場合があり、一方、被覆の割合が20質量%を超えると、改質ペロブスカイト型複合酸化物の誘電特性が低下する場合がある。また、1次被覆と2次被覆との質量比は、処理後表面の疎水性を向上させる点で、3:1~1:10の範囲であることが好ましく、2:1~1:5の範囲であることがより好ましい。
<改質ペロブスカイト型複合酸化物の製造方法>
 本発明の第1の発明に係る改質ペロブスカイト型複合酸化物は、下記工程;
 (A)ペロブスカイト型複合酸化物粒子を溶媒に分散させてスラリーを調製する工程と、
 (B1)前記(A)で得られたスラリーに、加水分解性TiO2前駆体、加水分解性Al23前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に前記前駆体の加水分解反応を行った後、スラリーを乾燥させる工程と、
 (C)前記(B1)で得られた乾燥物を700℃~1200℃で焼成する工程と
を含む方法により製造することが好ましい(以下、「第3の発明」という)。
 また、本発明の第2の発明に係る改質ペロブスカイト型複合酸化物は、下記工程;
 (A)ペロブスカイト型複合酸化物粒子を溶媒に分散させてスラリーを調製する工程と、
 (B2)前記(A)で得られたスラリーに、少なくとも加水分解性Al23前駆体を添加し、触媒の存在下に前記加水分解性Al23前駆体の加水分解反応を行う工程と、
 (B3)前記(B2)で得られたスラリーに、加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に前記前駆体の加水分解反応を行った後、スラリーを乾燥させる工程と、
 (C)前記(B3)で得られた乾燥物を700℃~1200℃で焼成する工程と
を含む方法により製造することが好ましい(以下、「第4の発明」という)。
 即ち、本発明の第3の発明及び第4の発明に係る改質ペロブスカイト型複合酸化物の製造方法は大別すると、(A)スラリー調製工程(前記(A)工程に相当)、(B)被覆処理工程(前記(B1)、(B2)及び(B3)工程に相当)、(C)焼成工程(前記(C)工程に相当)からなる。
 第3の発明及び第4の発明に係る(A)スラリー調製工程は、改質対象となるペロブスカイト型複合酸化物100質量部に対して溶媒を好ましくは100質量部~900質量部、より好ましくは150質量部~400質量部添加、撹拌し、ペロブスカイト型複合酸化物の各粒子が均一に分散したスラリーを調製する。
 溶媒としては、水、親水性有機溶媒又はこれらの混合物を用いることができるが、水との接触によりBa、Ca、Sr、Mg等のAサイト金属がペロブスカイト型複合酸化物から溶出する恐れがある点や得られる改質ペロブスカイト型複合酸化物の解砕性をより向上させる点で、親水性有機溶媒を用いることが好ましい。
 親水性有機溶媒としては、例えば、グリコール、アルコール等が挙げられる。グリコールの具体例としては、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコール、プロピレングリコール、ジエチレングリコール等が挙げられる。また、アルコールの具体例としては、メタノール、エタノール、イソプロピルアルコール、n-ブタノール、ペンタノール等が挙げられる。これらの溶媒は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの溶媒の中でも、ペロブスカイト型複合酸化物の分散性が良好であるという点で、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、メタノール、エタノール、イソプロピルアルコール及びn-ブタノールが特に好ましい。
 また、(A)スラリー調製工程において、ペロブスカイト型複合酸化物を溶媒に均一分散させるため、必要に応じて、高速攪拌、コロイドミル、ホモジナイザー等の分散装置を用いてもよく、また、必要に応じて、スラリーに常用の分散剤を添加してもよい。
 (A)スラリー調製工程終了後、次いで得られるスラリーを(B)被覆処理工程に付して、前記改質対象となるペロブスカイト型複合酸化物を所定の元素を含む加水分解生成物で被覆処理されたペロブスカイト型複合酸化物を得る。
 以下、第3の発明に係る(B)被覆処理工程(前記(B1)工程)について説明する。
 (B1)工程では、前記(A)スラリー調製工程で調整したスラリーに、加水分解性TiO2前駆体、加水分解性Al23前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種及び触媒を添加し、加水分解反応を行って、ペロブスカイト型複合酸化物の粒子表面に均一に加水分解生成物を析出させる。
 加水分解性TiO2前駆体、加水分解性Al23前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種の前駆体の添加量は、上述した好ましい被覆割合となるように、溶媒あるいは希釈媒への溶解度、反応収率等を考慮して適宜決定すればよい。
 触媒としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム等の無機アルカリ類、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機アルカリ塩類、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピリジン、アニリン、コリン、グアニジン、水酸化テトラメチルアンモニウム、水酸化テトラプロピルアンモニウム等の有機アルカリ類、蟻酸アンモニウム、酢酸アンモニウム、蟻酸モノメチルアミン、酢酸ジメチルアミン、乳酸ピリジン、グアニジノ酢酸、酢酸アニリン等の有機酸アルカリ塩を用いることができる。これらの中でも、溶媒として親水性有機溶媒を用いる場合には、水酸化テトラメチルアンモニウム、水酸化テトラプロピルアンモニウム等の有機アルカリ類が望ましい。
 触媒の添加量は、前駆体に対するモル比で好ましくは0.2~10、より好ましくは0.5~5である。なお、触媒は水に溶解した溶液としてスラリーに加えることが望ましい。
 加水分解反応の条件は、反応温度が好ましくは40℃~120℃、より好ましくは50℃~90℃であり、反応時間が好ましくは1時間以上、より好ましくは3時間~10時間である。なお、加水分解反応は攪拌下に行うことが好ましい。
 加水分解反応終了後、常法に従って固液分離し、必要により洗浄して加水分解生成物で被覆されたペロブスカイト型複合酸化物を回収後、乾燥し、必要に応じて軽度の解砕を行う。回収方法は特に制限されるものではなく、噴霧乾燥等の手段を用いてもよい。
 また、乾燥処理の条件は、乾燥温度が好ましくは40℃以上、より好ましくは60℃~120℃であり、乾燥時間が好ましくは1時間以上、より好ましくは3時間~10時間である。さらに、真空ポンプ等を併用して減圧状態のもとに乾燥してもよい。
 以下、第4の発明の改質ペロブスカイト型複合酸化物に係る(B)被覆処理工程(前記(B2)、(B3)工程)について説明する。
 (B2)工程では、(A)工程で調製したスラリーに、少なくとも加水分解性Al23前駆体及び触媒を添加し、加水分解反応を行って、ペロブスカイト型複合酸化物の粒子表面に均一に少なくとも加水分解性Al23前駆体の加水分解生成物を析出させる。
 触媒としては、前述した(B1)工程と同じものを使用することができる。触媒の添加量は、加水分解性Al23前駆体(その他の加水分解性前駆体が添加される場合には、その前駆体との合計)に対するモル比で好ましくは0.2~10、より好ましくは0.5~5である。なお、触媒は水に溶解した溶液としてスラリーに加えることが望ましい。
 (B2)工程における加水分解反応の条件は、反応温度が好ましくは40℃~120℃、より好ましくは50℃~90℃であり、反応時間が好ましくは1時間以上、より好ましくは3時間~10時間である。なお、加水分解反応は攪拌下に行うことが好ましい。
 なお、この(B2)工程では加水分解性Al23前駆体と併用して、その他必要により添加される加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体をスラリーに添加し、Al23前躯体とこれらの前躯体との加水分解反応を同時に行うことができる。
 続いて、(B3)工程では、(B2)工程で調製したスラリー(加水分解性Al23前駆体の加水分解生成物を少なくとも含む析出層で被覆されたペロブスカイト型複合酸化物が分散したスラリー)に、加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に加水分解反応を行って、(B2)工程で析出させた加水分解性Al23前駆体の加水分解生成物を少なくとも含む析出層上に、加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種の加水分解生成物を均一に更に析出させる。この(B3)工程では、通常、触媒を添加する必要はないが、(B3)工程で添加する上記前駆体の量に応じて適宜添加してもよい。
 (B3)工程における加水分解反応の条件は、反応温度が好ましくは40℃~120℃、より好ましくは50℃~90℃であり、反応時間が好ましくは1時間以上、より好ましくは3時間~10時間である。なお、加水分解反応は攪拌下に行うことが好ましい。
 (B2)工程における加水分解性Al23前駆体の添加量及び(B3)工程における加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種の前駆体の添加量は、上述した好ましい被覆割合となるように、溶媒あるいは希釈媒への溶解度、反応収率等を考慮して適宜決定すればよい。
 加水分解反応終了後、常法に従って固液分離し、必要により洗浄して加水分解生成物で被覆されたペロブスカイト型複合酸化物を回収後、乾燥し、必要に応じて軽度の解砕を行う。回収方法は特に制限されるものではなく、噴霧乾燥等の手段を用いてもよい。
 また、乾燥処理の条件は、乾燥温度が好ましくは40℃以上、より好ましくは60℃~120℃であり、乾燥時間が好ましくは1時間以上、より好ましくは3時間~10時間である。さらに、真空ポンプ等を併用して減圧状態のもとに乾燥してもよい。
 第3の発明に係る(B1)工程又は第4の発明に係る(B3)工程終了後に得られる乾燥物(加水分解生成物で被覆されたペロブスカイト型複合酸化物)は、次いで(C)焼成工程に付される。
 (C)焼成工程は、第3の発明に係る(B1)工程で得られた乾燥物又は第4の発明に係る(B3)工程で得られた乾燥物を700℃~1200℃、好ましくは900℃~1100℃で焼成する。
 なお、第4の発明では(C)焼成工程を行うことにより、1次被覆及び2次被覆を同時に形成させることができる。
 本発明の改質ペロブスカイト型複合酸化物の製造方法において、加水分解生成物で被覆されたペロブスカイト型複合酸化物を上記範囲温度で焼成を行うことにより、Aサイト金属の溶出をより顕著に低減させることができる。焼成温度が700℃未満であると、被覆が十分に緻密化されないためAサイト金属の溶出低減効果が低く、場合によってはペロブスカイト型複合酸化物を改質する被覆成分からの被覆成分の溶出が多くなったり、Aサイト金属の溶出量が被覆前よりも増えたり比誘電率が低下することがある。一方、焼成温度が1200℃を超えると、粒子同士の融着や粒成長が顕著になり、解砕処理を施したとしても改質前の形状や粒度分布から大きく外れたものとなる傾向がある。また、焼成時間は、好ましくは2時間以上、より好ましくは3時間~10時間である。
 焼成後、適宜冷却し、解砕処理を行うことにより、第1の発明に係る粒子表面がTiO2、Al23、ZrO2及びNd23の群から選択される少なくとも1種で被覆された改質ペロブスカイト型複合酸化物、或いは、第2の発明に係る粒子表面が、少なくともAl23を含む被覆層で1次被覆され、SiO2、TiO2、ZrO2及びNd23からなる群から選択される少なくとも1種で2次被覆された改質ペロブスカイト型複合酸化物を得ることができる。
 本発明の改質ペロブスカイト型複合酸化物は、解砕性が良好であるため、解砕処理は、通常、少スケールではフードミキサーやコーヒーミル、工業的にはヘンシェルミキサー等の常用の混合機で行えば十分である。
 なお、第4の発明において、解砕性をより向上させるという点で、上記したように1度の焼成により1次被覆及び2次被覆を同時に形成することが望ましいが、(B2)工程で得られたスラリーを乾燥させた後、乾燥物を焼成し、これを溶媒に分散させてスラリーを調製したものを(B3)工程で用いてもよい。
 次いで、本発明の複合誘電体材料について説明する。
 本発明の複合誘電体材料は、高分子材料と無機充填材として第1の発明及び/又は第2の発明の上記改質ペロブスカイト型複合酸化物とを含有するものである。
 本発明の複合誘電体材料は、後述する高分子材料に上記改質ペロブスカイト型複合酸化物を好ましくは60質量%以上、より好ましくは70質量%~90質量%含有させることで好ましくは15以上、より好ましくは20以上の比誘電率を有する材料であることが望ましい。
 本発明において用いることができる高分子材料としては、熱硬化性樹脂、熱可塑性樹脂又は光感光性樹脂が挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂、シアネート樹脂類、ビスマレイミド類、ビスマレイミド類とジアミンとの付加重合物、多官能性シアン酸エステル樹脂、二重結合付加ポリフェニレンオキサイド樹脂、不飽和ポリエステル樹脂、ポリビニルベンジルエーテル樹脂、ポリブタジエン樹脂、フマレート樹脂等の公知のものが挙げられる。これらの熱硬化性樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これら熱硬化性樹脂の中でも、耐熱性、加工性、価格等のバランスからエポキシ樹脂及びポリビニルベンジルエーテル樹脂が好ましい。
 本発明で用いるエポキシ樹脂とは、1分子内に少なくとも2個のエポキシ基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールB、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテル、フェノール類とジシクロペンタジエンやテルペン類との付加物または重付加物をエポキシ化したもの、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 エポキシ樹脂硬化剤としては、当業者において公知のものはすべて用いることができるが、特に、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等のC2~C20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、4,4’-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシリレンジアミン、パラキシリレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類、フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン、フェノールアラルキル樹脂、ナフトール系アラルキル樹脂等の、ベンゼン環やナフタリン環その他の芳香族性の環に結合する水素原子が水酸基で置換されたフェノール化合物と、カルボニル化合物との共縮合によって得られるフェノール樹脂や、酸無水物等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 エポキシ樹脂硬化剤の配合量は、エポキシ樹脂に対して、当量比で好ましくは0.1~10、より好ましくは0.7~1.3の範囲である。
 また、本発明においてエポキシ樹脂の硬化反応を促進させる目的で公知の硬化促進剤を用いることができる。硬化促進剤としては、例えば、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン等の三級アミン化合物、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン化合物、ホスホニウム塩、アンモニウム塩等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で用いるポリビニルベンジルエーテル樹脂とは、ポリビニルベンジルエーテル化合物から得られるものである。ポリビニルベンジルエーテル化合物は、下記一般式(1)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)の式中、R1はメチル基又はエチル基を示す。R2は水素原子又は炭素数1~10の炭化水素基を示す。R2で表される炭化水素基は、置換基を有していてもよいアルキル基、アラルキル基、アリール基等である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。アラルキル基としては、例えば、ベンジル基等が挙げられる。アリール基としては、例えば、フェニル基等が挙げられる。R3は水素原子又はビニルベンジル基を示す。なお、R3の水素原子は一般式(1)の化合物を合成する場合の出発化合物に由来し、水素原子とビニルベンジル基とのモル比が60:40~0:100であると硬化反応を十分に進行させることができ、また、本発明の複合誘電体材料において、十分な誘電特性が得られる点で好ましい。nは2~4の整数を示す。
 ポリビニルベンジルエーテル化合物は、それのみを樹脂材料として重合して用いてもよく、他のモノマーと共重合させて用いてもよい。共重合可能なモノマーとしてはスチレン、ビニルトルエン、ジビニルベンゼン、ジビニルベンジルエーテル、アリルフェノール、アリルオキシベンゼン、ジアリルフタレート、アクリル酸エステル、メタクリル酸エステル、ビニルピロリドン、これらの変性物等が挙げられる。これらのモノマーの配合割合は、ポリビニルベンジルエーテル化合物に対して2質量%~50質量%である。
 ポリビニルベンジルエーテル化合物の重合及び硬化は、公知の方法で行うことができる。硬化は、硬化剤の存在下又は不存在下の何れでも可能である。硬化剤としては、例えば、過酸化ベンゾイル、メチルエチルケトンパーオキシド、ジクミルパーオキシド、t-ブチルパーベンゾエート等の公知のラジカル重合開始剤を使用することができる。使用量は、ポリビニルベンジルエーテル化合物100質量部に対して0質量部~10質量部である。硬化温度は、硬化剤の使用の有無及び硬化剤の種類によっても異なるが、十分に硬化させるためには、好ましくは20℃~250℃、より好ましくは50℃~250℃である。
 また、硬化の調整のために、ハイドロキノン、ベンゾキノン、銅塩等を配合してもよい。
 熱可塑性樹脂としては、例えば、(メタ)アクリル樹脂、ヒドロキシスチレン樹脂、ノボラック樹脂、ポリエステル樹脂、ポリイミド樹脂、ナイロン樹脂、ポリエーテルイミド樹脂等の公知のものが挙げられる。
 感光性樹脂としては、例えば、光重合性樹脂、光架橋性樹脂等の公知のものが挙げられる。
 本発明で用いる光重合性樹脂としては、例えば、エチレン性不飽和基を有するアクリル系共重合体(感光性オリゴマー)と光重合性化合物(感光性モノマー)と光重合開始剤を含むもの、エポキシ樹脂と光カチオン重合開始剤とを含むもの等が挙げられる。感光性オリゴマーとしては、エポキシ樹脂にアクリル酸を付加したもの、それをさらに酸無水物と反応させたものやグリシジル基を有する(メタ)アクリルモノマーを含む共重合体に(メタ)アクリル酸を反応させたもの、さらにそれに酸無水物を反応したもの、水酸基を有する(メタ)アクリルモノマーを含む共重合体に(メタ)アクリル酸グリシジルを反応させたもの、さらにそれに酸無水物を反応したもの、無水マレイン酸を含む共重合体に水酸基を有する(メタ)アクリルモノマーあるいはグリシジル基を有する(メタ)アクリルモノマーを反応させたもの等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 光重合性化合物(感光性モノマー)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N-ビニルピロリドン、アクリロイルモルフォリン、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、N,N-ジメチルアクリルアミド、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 光重合開始剤としては、例えば、ベンゾインとそのアルキルエーテル類、ベンゾフェノン類、アセトフェノン類、アントラキノン類、キサントン類、チオキサントン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。なお、これらの光重合開始剤は、安息香酸系、第三アミン系等の公知慣用の光重合促進剤と併用することができる。光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、ブレンステッド酸の鉄芳香族化合物塩(チバ・ガイギー社、CG24-061)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 光カチオン重合開始剤によってエポキシ樹脂が開環重合するが、光重合性は通常のグリシジルエステル系エポキシ樹脂よりも脂環エポキシ樹脂の方が反応速度が速いのでより好ましい。脂環エポキシ樹脂とグリシジルエステル系エポキシ樹脂とを併用することもできる。脂環エポキシ樹脂としては、例えば、ビニルシクロヘキセンジエポキサイド、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ダイセル化学工業(株)製、EHPE-3150等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 光架橋性樹脂としては、例えば、水溶性ポリマー重クロム酸塩系、ポリケイ皮酸ビニル(コダックKPR)、環化ゴムアジド系(コダックKTFR)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これらの感光性樹脂の誘電率は一般に2.5~4.0と低い。従って、バインダーの誘電率を上げるために、感光性樹脂の感光特性を損なわない範囲で、より高誘電性のポリマー(例えば、住友化学のSDP-E(ε:15<)、信越化学のシアノレジン(ε:18<))や高誘電性液体(例えば、住友化学のSDP-S(ε:40<))を添加することもできる。
 本発明において、上記した高分子材料は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の複合誘電体材料において、改質ペロブスカイト型複合酸化物の配合量は、樹脂との複合時に占める割合として、好ましくは60質量%以上、より好ましくは70質量%~90質量%である。この理由は60質量%未満では十分な比誘電率が得られない傾向があり、一方、90質量%を越えると粘度が増加し分散性が悪くなる傾向があるとともに、複合物の固形時に十分な強度が得られない等の懸念があるためである。上記配合により好ましくは15以上、より好ましくは20以上の比誘電率を有する材料であることが望ましい。
 また、本発明の複合誘電体材料は、本発明の効果を損なわない範囲の添加量で他の充填剤を含有することができる。他の充填剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボン微粉、黒鉛微粉、炭化ケイ素等が挙げられる。
 また、本発明の複合誘電体材料には、本発明の効果を損なわない範囲で、硬化剤、ガラス粉末、カップリング剤、高分子添加剤、反応性希釈剤、重合禁止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、無機系充填剤、防カビ剤、調湿剤、染料溶解剤、緩衝剤、キレート剤、難燃剤、シランカップリング剤(インテグラルブレンド法)等を添加してもよい。これらの添加剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の複合誘電体材料は、複合誘電体ペーストを調製し、有機溶剤の除去、硬化反応又は重合反応を行うことにより製造することができる。
 複合誘電体ペーストは、樹脂成分、改質ペロブスカイト型複合酸化物、必要により添加される添加剤及び有機溶剤を含有するものである。
 複合誘電体ペーストに含有される樹脂成分は、熱硬化性樹脂の重合性化合物、熱可塑性樹脂の重合体及び感光性樹脂の重合性化合物である。なお、これらの樹脂成分は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 ここで、重合性化合物とは、重合性基を有する化合物を示し、例えば、完全硬化前の前駆体重合体、重合性オリゴマー及び単量体を含む。また、重合体とは、実質的に重合反応が完了した化合物を示す。
 必要により添加される有機溶剤としては、用いる樹脂成分により異なり、樹脂成分を溶解できるものであれば特に制限されるものではないが、例えば、N-メチルピロリドン、ジメチルホルムアミド、エーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1~6個の炭素原子を有する直鎖又は分岐のアルキル基を有するモノアルコールのエチルグリコールエーテル、プロピレングリコールエーテル、ブチルグリコールエーテル、ケトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、エステル、エチルアセテート、ブチルアセテート、エチレングリコールアセテート、メトキシプロピルアセテート、メトキシプロパノール、その他ハロゲン化炭化水素、脂環式炭化水素、芳香族炭化水素等が挙げられる。これらの有機溶剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、ヘキサン、ヘプタン、シクロヘキサン、トルエン及びジキシレンが好ましい。
 本発明において、複合誘電体ペーストは、所望の粘度に調製して使用される。複合誘電体ペーストの粘度は、通常、1,000mPa・s~1,000,000mPa・s(25℃)であり、複合誘電体ペーストの塗布性を考慮すると、好ましくは10,000mPa・s~600,000mPa・s(25℃)である。
 本発明の複合誘電体材料は、フィルム状、バルク状又は所定形状の成形体として加工して用いることができ、特に薄膜形状の高誘電体フィルムとして用いることができる。
 本発明の複合誘電材料を用いて複合誘電体フィルムを製造するには、例えば、従来公知の複合誘電体ペーストの使用方法に従って製造すればよく、下記にその一例を示す。
 複合誘電体ペーストを基材上に塗布した後、乾燥することによりフィルム状に成形することができる。基材としては、例えば、表面に剥離処理がなされたプラスチックフィルムを用いることができる。剥離処理が施されたプラスチックフィルム上に塗布してフィルム状に成形した場合、一般には成形後、フィルムから基材を剥離して用いることが好ましい。基材として用いることができるプラスチックフィルムとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエステルフィルム、ポリイミドフィルム、アラミド、カプトン、ポリメチルペンテン等のフィルムを挙げることができる。また、基材として用いるプラスチックフィルムの厚みとしては、1μm~100μmであることが好ましく、さらに好ましくは1μm~40μmである。また、基材表面上に施す離型処理としては、シリコーン、ワックス、フッ素樹脂等を表面に塗布する離型処理が好ましく用いられる。
 また、基材として金属箔を用い、金属箔の上に誘電体フィルムを形成してもよい。このような場合、基材として用いた金属箔をコンデンサーの電極として用いることができる。
 基材上に前記複合誘電体ペーストを塗布する方法としては、特に限定されるものではなく、一般的な塗布方法を用いることができる。例えば、ローラー法、スプレー法、シルクスクリーン法等により塗布することができる。
 このような誘電体フィルムは、プリント基板等の基板に組み込んだ後、加熱して熱硬化することができる。また、感光性樹脂を用いた場合には、選択的に露光することによりパターニングすることができる。
 また、例えば、カレンダー法等により、本発明の複合誘電体材料を押出成形して、フィルム状に成形してもよい。
 押出成形した誘電体フィルムは、上記の基材上に押し出されるように成形されてもよい。また、基材として、金属箔を用いる場合、金属箔としては、銅、アルミニウム、真鍮、ニッケル、鉄等を材料とする箔の他、これらの合金の箔、複合箔等を用いることができる。金属箔には、必要時に応じて表面粗面化の処理や、接着剤の塗布等の処理を施しておいてもよい。
 また、金属箔の間に誘電体フィルムを形成してもよい。この場合、金属箔上に複合誘電体ペーストを塗布した後、この上に金属箔を載せ、金属箔の間に複合誘電体ペーストを挟んだ状態で乾燥させることにより、金属箔の間に挟まれた状態の誘電体フィルムを形成してもよい。また、金属箔の間に挟まれるように押出成形することにより、金属箔の間に設けられた誘電体フィルムを形成してもよい。
 また、本発明の複合誘電体材料は、前述した有機溶媒を用いてワニスとした後、これにクロス又は不織布を含浸し、乾燥を行うことによりプリプレグとして用いてもよい。用いることができるクロスや不織布の種類は、特に制限されるものではなく、公知のものを使用することができる。クロスとしては、ガラスクロス、アラミドクロス、カーボンクロス、延伸多孔質ポリテトラフルオロエチレン等が挙げられる。また、不織布としては、アラミド不織布、ガラスペーパー等が挙げられる。プリプレグは、回路基板等の電子部品に積層した後、硬化することにより、電子部品に絶縁層を導入することができる。
 本発明の複合誘電体材料は、高い比誘電率を有することから電子部品、特にプリント回路基板、半導体パッケージ、コンデンサー、高周波用アンテナ、無機EL等の電子部品の誘電体層として好適に用いることができる。
 本発明の複合誘電体材料を用いて多層プリント配線板を製造するには、当該技術分野で公知の方法を用いて製造することがでる(例えば、特開2003-192768号公報、特開2005-29700号公報、特開2002-226816号公報、特開2003-327827号公報等参照。)。なお、以下に示す一例は、複合誘電体材料の高分子材料として熱硬化性樹脂を用いた場合の例示である。
 本発明の複合誘電体材料を前述した誘電体フィルムとし、誘電体フィルムの樹脂面で回路基板に加圧、加熱するか、或いは真空ラミネーターを使用してラミネートする。ラミネート後、フィルムから基材を剥離して露出された樹脂層上に、更に金属箔をラミネートし、樹脂を加熱硬化させる。
 また、本発明の複合誘電体材料をプリプレグとしたものの回路基板へのラミネートは、真空プレスにより行うことができる。具体的にはプリプレグの片面を回路基板に接触させ、他面に金属箔をのせてプレスを行うことが望ましい。
 また、本発明の複合誘電体材料をワニスとして用い、回路基板に、スクリーン印刷、カーテンコート、ロールコート、スプレーコート等を用いて塗布・乾燥することにより多層プリント配線板の中間絶縁層を形成することができる。
 本発明において、絶縁層を最外層に持つプリント配線板の場合は、スルーホール及びバイアホール部をドリルまたはレーザーで穴開けを行い、絶縁層表面を粗化剤処理し微細な凹凸を形成する。絶縁層の粗化方法としては、絶縁樹脂層が形成された基板を酸化剤等の溶液中に浸漬する方法や、酸化剤等の溶液をスプレーする方法等の仕様に応じて、実施することができる。粗化処理剤の具体例としては、重クロム酸塩、過マンガン酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、メトキシプロパノール等の有機溶剤、また苛性ソーダ、苛性カリ等のアルカリ性水溶液、硫酸、塩酸等の酸性水溶液、又は各種プラズマ処理等を用いることができる。また、これらの処理は併用して用いてもよい。上記のように、絶縁層が粗化されたプリント配線板上は、次いで蒸着、スパッタリング、イオンプレーティング等の乾式めっき、もしくは無電解・電解めっき等の湿式めっきにより導体層を形成する。このとき、導体層とは逆パターンのめっきレジストを形成し、無電解めっきのみで導体層を形成してもよい。このように導体層が形成された後、アニール処理することにより、熱硬化性樹脂の硬化が進行し導体層のピール強度をさらに向上させることもできる。このようにして、最外層に導体層を形成することができる。
 また、中間絶縁層を形成した金属箔は、真空プレスで積層することにより、多層化できる。中間絶縁層を形成した金属箔は、内層回路が形成されたプリント配線板上に、真空プレスで積層することにより、最外層が導体層のプリント配線板にすることができる。また、本発明の複合誘電体材料を用いたプリプレグは、金属箔と供に、内層回路が形成されたプリント配線板上に、真空プレスで積層することにより、最外層が導体層のプリント配線板にすることができる。コンホーマル工法等で所定のスルーホール及びバイアホール部をドリルまたはレーザーで穴開けを行い、スルーホール及びバイアホール内をデスミア処理し、微細な凹凸を形成する。次に、無電解・電解めっき等の湿式めっきにより、層間の導通を取る。
 さらに、必要に応じてこれらの工程を数回繰り返し、更に、最外層の回路形成が終了した後、ソルダーレジストを、スクリーン印刷法によるパターン印刷・熱硬化、又はカーテンコート・ロールコート・スプレーコートによる全面印刷・熱硬化後レーザーでパターンを形成することにより、所望の多層プリント配線板を得る。
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
<ペロブスカイト型複合酸化物試料>
 改質対象となるペロブスカイト型複合酸化物試料として、固相法により得られた市販の(Ba0.92Ca0.08)(Ti0.71Zr0.29)O3(平均粒径0.76μm、BET比表面積2.17m2/g)を用いた。なお、平均粒径はレーザー光散乱法により求めた。また、ペロブスカイト型複合酸化物4gを純水100mlに分散させて4質量%スラリーを調製し、25℃で1時間100rpmで攪拌後、pHメーターにて上澄み液のpHを測定した結果、pHは9.22であった。
<実施例1:TiO2被覆ペロブスカイト型複合酸化物>
(A工程)
 n-ブタノール150質量部に、ペロブスカイト型複合酸化物試料100質量部を添加し、十分に分散を行ないスラリーを調製した。
(B1工程)
 A工程で得られたスラリーにテトラ-n-ブトキシチタン(加水分解性TiO2前駆体)を4.26質量部となるように攪拌下に添加し、次いで20質量%水酸化テトラメチルアンモニウム水溶液10質量部を添加して90℃で3時間加水分解反応を行った。加水分解反応終了後、常法に従って固液分離後、更に得られた分離ケーキをエタノール300質量部に分散し、1時間攪拌した後再度固液分離し、80℃で20時間乾燥し、解砕を行って、粒子表面にテトラ-n-ブトキシチタンの加水分解生成物が析出したペロブスカイト型複合酸化物を得た。
(C工程)
 B1工程で得られたペロブスカイト型複合酸化物を大気中1000℃で4時間焼成を行い、粒子表面がTiO2で被覆されたペロブスカイト型複合酸化物を得た。得られたTiO2被覆ペロブスカイト型複合酸化物試料の諸物性を表1に示した。なお、このTiO2被覆ペロブスカイト型複合酸化物試料4gを純水100mlに分散させて4質量%スラリーを調製し、25℃で1時間100rpmで攪拌後、pHメーターにて上澄み液のpHを測定した結果、pHは7.50であった。
<実施例2:Al23被覆ペロブスカイト型複合酸化物>
(A工程)
 エタノール150質量部に、ペロブスカイト型複合酸化物試料100質量部を添加し、十分に分散を行ないスラリーを調製した。
(B1工程)
 A工程で得られたスラリーに酢酸アルミニウム(加水分解性Al23前駆体)を4.00質量部(水で4倍希釈)となるように攪拌下に添加し、次いで20質量%水酸化テトラメチルアンモニウム水溶液4.00質量部を添加して60℃で3時間加水分解反応を行った。加水分解反応終了後、常法に従って固液分離後、更に得られた分離ケーキをエタノール300質量部に分散し、1時間攪拌した後再度固液分離し、80℃で20時間乾燥し、解砕を行って、粒子表面に酢酸アルミニウムの加水分解生成物が析出したペロブスカイト型複合酸化物を得た。
(C工程)
 B1工程で得られたペロブスカイト型複合酸化物を大気中900℃で4時間焼成を行い、粒子表面がAl23で被覆されたペロブスカイト型複合酸化物を得た。得られたAl23被覆ペロブスカイト型複合酸化物試料の諸物性を表1に示した。なお、このAl23被覆ペロブスカイト型複合酸化物試料のpHを実施例1と同様に測定した結果、pHは8.22であった。
<実施例3:ZrO2被覆ペロブスカイト型複合酸化物>
 テトラ-n-ブトキシチタンの代わりにテトラ-n-ブトキシジルコニウム(加水分解性ZrO2前駆体)を4.80質量部用い、20質量%水酸化テトラメチルアンモニウム水溶液の添加量を9.60質量部に変えた以外は実施例1と同様にして、ZrO2被覆ペロブスカイト型複合酸化物試料を得た。得られたZrO2被覆ペロブスカイト型複合酸化物試料の諸物性を表1に示した。なお、このZrO2被覆ペロブスカイト型複合酸化物試料のpHを実施例1と同様に測定した結果、pHは8.55であった。
<実施例4:Nd23被覆ペロブスカイト型複合酸化物>
 テトラ-n-ブトキシチタンの代わりに酢酸ネオジム1水和物(加水分解性Nd23前駆体)を2.02質量部(水で8倍希釈)用い、20質量%水酸化テトラメチルアンモニウム水溶液の添加量を4.06質量部に変えた以外は実施例1と同様にして、Nd23被覆ペロブスカイト型複合酸化物試料を得た。得られたNd23被覆ペロブスカイト型複合酸化物試料の諸物性を表1に示した。なお、このNd23被覆ペロブスカイト型複合酸化物試料のpHを実施例1と同様に測定した結果、pHは8.36であった。
<比較例1:シランカップリング剤処理ペロブスカイト型複合酸化物>
 ペロブスカイト型複合酸化物試料100質量部をコーヒーミルに仕込み、撹拌しながらシランカップリング剤(信越化学工業株式会社製;商品名 KBM-403)1.2質量部を1分間かけて添加し、更に2分間攪拌した後、処理した粉末を取り出し、再度コーヒーミルに仕込み2分間攪拌して処理粉末を取り出した。これによりシランカップリング剤の乾燥工程後の固着濃度は0.73質量%と計算される。この処理粉末を80℃にて20時間静置乾燥した。乾燥時にシランカップリング剤は加水分解、脱水縮合工程を経てシランカップリング剤で処理したペロブスカイト型複合酸化物試料を得た。得られたシランカップリング剤処理ペロブスカイト型複合酸化物試料の諸物性を表1に示した。なお、このシランカップリング剤処理ペロブスカイト型複合酸化物試料のpHを実施例1と同様に測定した結果、pHは5.73であった。
<比較例2:Al23被覆ペロブスカイト型複合酸化物>
 焼成温度を650℃に変えた以外は実施例2と同様にして、Al23被覆ペロブスカイト型複合酸化物試料を得た。得られたAl23被覆ペロブスカイト型複合酸化物試料の諸物性を表1に示した。なお、このAl23被覆ペロブスカイト型複合酸化物試料のpHを実施例1と同様に測定した結果、pHは10.40であった。
Figure JPOXMLDOC01-appb-T000002
 なお、表1中の「被覆量」については、実施例2、実施例4及び比較例2は、得られた被覆品を塩酸水溶液に溶解してICP-AESにて直接求めた。実施例1及び実施例3は、加水分解反応後の溶媒より未析出のTi及びZrをICP-AESにて計測し、仕込み添加量から差し引いて求めた。比較例1は、固体全炭素分析測定から熱分解される試料中の炭素量を計測して求めた。
<誘電特性>
 実施例1~4の改質ペロブスカイト型複合酸化物試料及び無処理のペロブスカイト型複合酸化物試料の各9gと、熱硬化性のエポキシ樹脂(ジャパンエポキシレジン社製、商品名:エピコート815、分子量約330、比重1.1、25℃での公称粘度9~12P)3gと、硬化促進剤(1-イソブチル-2-メチルイミダゾール、25℃での公称粘度4~12P)0.24gとを、脱泡機能を備えた攪拌機(THINKY社製、商品名:泡取り練太郎)を用いて混練し、エポキシ樹脂組成物を調製した。なお、混練条件は、撹拌運転5分、脱泡運転5分とした。
 得られたエポキシ樹脂組成物それぞれを120℃、30分で硬化させて複合誘電体試料を作製し、常法に従って誘電特性を評価した。
 実施例1~4の改質ペロブスカイト型複合酸化物試料を用いた複合誘電体試料の誘電特性は、無処理のペロブスカイト型複合酸化物試料を用いたものと同等かそれ以上であることが確認された。
<溶出試験>
 実施例1~4及び比較例1~2の改質ペロブスカイト型複合酸化物試料の各4gを純水100mlに分散させて4質量%スラリーを調製し、25℃で1時間100rpmで攪拌後、次いで、ろ過分離し、ろ液中のBa及びCaの濃度と被覆成分に由来するTi、Al、Zr、Nd及びSiの濃度をICP-AESで定量した。結果を表2に示した。また、無処理のペロブスカイト型複合酸化物試料を比較例3として表2に併記した。
<解砕性評価>
 実施例1~4及び比較例1~2の改質ペロブスカイト型複合酸化物の焼成後試料の各250gをフードミキサーに仕込み、10分間の解砕処理を施した。解砕処理後の試料の平均粒径をレーザー光散乱法により求め、無処理のペロブスカイト型複合酸化物試料の平均粒径を基準として、平均粒径の増加割合が50%以下のものを解砕性◎と評価し、50%を超え100%以下のものを解砕性○と評価し、100%を超え200%以下のものを解砕性△と評価し、200%を超えるものを×と評価した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
 なお、表2中の「被覆成分溶出量」は、ろ液中のTi(実施例1)、Al(実施例2)、Zr(実施例3)、Nd(実施例4)、Si(比較例1)及びAl(比較例2)をそれぞれ測定した値である。
 表2の結果から分かるように、実施例1~4の改質ペロブスカイト型複合酸化物では、誘電特性は改質前と同等以上であるにも関わらず、Ba及びCaの溶出が効果的に抑制されており、なおかつ被覆成分からの被覆成分の溶出も抑制されていた。更には、解砕性も良好であった。特に、実施例2のAl23被覆ペロブスカイト型複合酸化物では、Ba及びCaの溶出が著しく抑制されることが分かった。
<実施例5:Al231次被覆・SiO22次被覆ペロブスカイト型複合酸化物>
(A工程)
 n-ブタノール150質量部に、ペロブスカイト型複合酸化物試料100質量部を添加し、十分に分散を行ないスラリーを調製した。
(B2工程)
 A工程で得られたスラリーに酢酸アルミニウム(加水分解性Al23前駆体)を2質量部(水で3倍希釈)となるように攪拌下に添加し、次いで20質量%水酸化テトラメチルアンモニウム水溶液5質量部を添加して90℃で1時間加水分解反応を行った。
(B3工程)
 B2工程で得られたスラリーにテトラエトキシシラン(加水分解性SiO2前駆体)を2.5質量部となるように攪拌下に添加して、90℃で3時間加水分解反応を行った。加水分解反応終了後、常法に従って固液分離後、更に得られた分離ケーキをエタノール300質量部に分散し、1時間攪拌した後再度固液分離し、80℃で20時間乾燥し、解砕を行って、粒子表面に加水分解生成物が析出したペロブスカイト型複合酸化物を得た。
(C工程)
 B3工程で得られたペロブスカイト型複合酸化物を大気中1000℃で4時間焼成を行い、粒子表面がAl23で1次被覆され、且つSiO2で2次被覆された改質ペロブスカイト型複合酸化物を得た。得られた改質ペロブスカイト型複合酸化物試料の諸物性を表3に示した。なお、この改質ペロブスカイト型複合酸化物試料4gを純水100mlに分散させて4質量%スラリーを調製し、25℃で1時間100rpmで攪拌後、pHメーターにて上澄み液のpHを測定した結果、pHは7.61であった。
<実施例6:Al231次被覆・SiO22次被覆ペロブスカイト型複合酸化物>
 焼成温度を800℃に変えた以外は実施例5と同様にして、改質ペロブスカイト型複合酸化物試料を得た。得られた改質ペロブスカイト型複合酸化物試料の諸物性を表3に示した。なお、この改質ペロブスカイト型複合酸化物試料のpHを実施例5と同様に測定した結果、pHは9.32であった。
<実施例7:(Al23+SiO2)1次被覆・SiO22次被覆ペロブスカイト型複合酸化物>
(A工程)
 n-ブタノール150質量部に、ペロブスカイト型複合酸化物試料100質量部を添加し、十分に分散を行ないスラリーを調製した。
(B2工程)
 A工程で得られたスラリーにテトラエトキシシラン(加水分解性SiO2前駆体)を1質量部、酢酸アルミニウム(加水分解性Al23前駆体)を2質量部(水で3倍希釈)攪拌下に順次添加し、次いで20質量%水酸化テトラメチルアンモニア水溶液5質量部を添加して90℃で1時間加水分解反応を行った。
(B3工程)
 B2工程で得られたスラリーにテトラエトキシシラン(加水分解性SiO2前駆体)を1.5質量部となるように攪拌下に添加して、90℃で3時間加水分解反応を行った。加水分解反応終了後、常法に従って固液分離後、更に得られた分離ケーキをエタノール300質量部に分散し、1時間攪拌した後再度固液分離し、80℃で20時間乾燥し、解砕を行って、粒子表面に加水分解生成物が析出したペロブスカイト型複合酸化物を得た。
(C工程)
 B3工程で得られたペロブスカイト型複合酸化物を大気中1000℃で4時間焼成を行い、粒子表面が(Al23+SiO2)で1次被覆され、且つSiO2で2次被覆された改質ペロブスカイト型複合酸化物を得た。得られた改質ペロブスカイト型複合酸化物試料の諸物性を表3に示した。なお、この改質ペロブスカイト型複合酸化物試料4gを純水100mlに分散させて4質量%スラリーを調製し、25℃で1時間100rpmで攪拌後、pHメーターにて上澄み液のpHを測定した結果、pHは8.10であった。
<比較例4;SiO21次被覆・Al232次被覆したペロブスカイト型複合酸化物>
(A工程)
 n-ブタノール150質量部に、ペロブスカイト型複合酸化物試料100質量部を添加し、十分に分散を行ないスラリーを調製した。
(B2工程)
 A工程で得られたスラリーにテトラエトキシシラン(加水分解性SiO2前躯体)を2.5質量部となるように攪拌下に添加し、次いで20質量%水酸化テトラメチルアンモニウム水溶液5質量部を添加して90℃で1時間加水分解反応を行った。
(B3工程)
 B2工程で得られたスラリーに酢酸アルミニウム(加水分解性Al23前躯体)を2質量部(水で3倍希釈)となるように攪拌下に添加して、90℃で3時間加水分解反応を行った。加水分解反応終了後、常法に従って固液分離後、更に得られた分離ケーキをエタノール300質量部に分散し、1時間攪拌した後再度固液分離し、80℃で20時間乾燥し、解砕を行って、粒子表面に加水分解生成物が析出したペロブスカイト型複合酸化物を得た。
(C工程)
 B3工程で得られたペロブスカイト型複合酸化物を大気中1000℃で4時間焼成を行い、粒子表面がSiO2で1次被覆され、且つAl23で2次被覆された改質ペロブスカイト型複合酸化物を得た。得られた改質ペロブスカイト型複合酸化物試料の諸物性を表4に示した。なお、この改質ペロブスカイト型複合酸化物試料のpHを実施例5と同様に測定した結果、pHは9.28であった。
Figure JPOXMLDOC01-appb-T000004
 なお、表3中の「被覆量」については、実施例5、実施例6、実施例7及び比較例4は、得られた被覆処理粉末を熱王水溶液に溶解してICP-AESにて直接計測し酸化物換算して求めた。
<誘電特性>
 実施例5~7の改質ペロブスカイト型複合酸化物試料及び無処理のペロブスカイト型複合酸化物試料の各9gと、熱硬化性のエポキシ樹脂(ジャパンエポキシレジン社製、商品名:エピコート815、分子量約330、比重1.1、25℃での公称粘度9~12P)3gと、硬化促進剤(1-イソブチル-2-メチルイミダゾール、25℃での公称粘度4~12P)0.24gとを、脱泡機能を備えた攪拌機(THINKY社製、商品名:泡取り練太郎)を用いて混練し、エポキシ樹脂組成物を調製した。なお、混練条件は、撹拌運転5分、脱泡運転5分とした。
 得られたエポキシ樹脂組成物それぞれを120℃、30分で硬化させて複合誘電体試料を作製し、常法に従って誘電特性を評価した。
 実施例5~7の改質ペロブスカイト型複合酸化物試料を用いた複合誘電体試料の誘電特性は、無処理のペロブスカイト型複合酸化物試料を用いたものと比べて、同等以上であることが確認された。
<溶出試験>
 実施例5~7及び比較例1、4の改質ペロブスカイト型複合酸化物試料の各4gを純水100mlに分散させて4質量%スラリーを調製し、25℃で1時間100rpmで攪拌後、次いで、ろ過分離し、ろ液中のBa及びCaの濃度と被覆成分に由来するSi、Alの濃度をICP-AESで計測し、試料からの溶出分として定量した。結果を表4に示した。また、無処理のペロブスカイト型複合酸化物試料を比較例3として表4に併記した。
<解砕性評価>
 実施例5~7及び比較例1、4の改質ペロブスカイト型複合酸化物試料の各250gをフードミキサーに仕込み、10分間の解砕処理を施した。解砕処理後の試料の平均粒径をレーザー光散乱法により求め、無処理のペロブスカイト型複合酸化物試料の平均粒径を基準として、平均粒径の増加割合が100%以下のものを解砕性○と評価し、100%を超え200%以下のものを解砕性△と評価し、200%を超えるものを×と評価した。結果を表4に示した。
<比表面積の経時変化>
 実施例5~7、比較例1、4の改質ペロブスカイト型複合酸化物試料及び無処理のペロブスカイト型複合酸化物試料(比較例3)それぞれを、温度40℃及び湿度90%の環境下に24時間曝露した後、試料のBET比表面積を測定した。曝露前のBET比表面積をS1とし、曝露後のBET比表面積をS2として、比表面積の変化率[%]を式:(S2-S1)/S1×100により求めた。比表面積の変化率が2%以下のものを◎と評価し、2%を超え5%以下のものを○と評価し、5%を超え10%以下のものを△と評価し、10%を超えるものを×と評価した。結果を表4に示した。なお、BET比表面積は、株式会社マウンテック社製Macsorb HM-1201を用いて秤量試料の全表面積を計測し、試料秤量値で規格化したものである。
Figure JPOXMLDOC01-appb-T000005
 以上の結果から分かるように、実施例5~7の改質ペロブスカイト型複合酸化物では、誘電特性は改質前と同等以上であるにも関わらず、Ba及びCaの溶出が効果的に抑制されており、なおかつ被覆成分からの被覆成分の溶出も抑制されていた。更には、比表面積の経時変化が少なく、解砕性も良好であった。
 本発明によれば、誘電特性は改質前と同等以上で、ペロブスカイト型複合酸化物を改質する被覆成分からの被覆成分の溶出も実質的になく、ペロブスカイト型複合酸化物のAサイト金属の溶出を効果的に抑制すると共に、解砕性の良好で、更には比表面積の経時変化も効果的に抑制した改質ペロブスカイト型複合酸化物、その製造方法及びそれを用いた複合誘電体材料を提供することを目的とするができる。

Claims (11)

  1.  ペロブスカイト型複合酸化物の粒子表面を、TiO、Al、ZrO及びNdの群から選択される少なくとも1種で1次被覆した改質ペロブスカイト型複合酸化物であって、前記1次被覆が、加水分解性TiO前駆体、加水分解性Al前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種を加水分解後、700~1200℃で焼成することにより形成されたものであることを特徴とする改質ペロブスカイト型複合酸化物。
  2.  前記1次被覆は、前記ペロブスカイト型複合酸化物に対して0.05質量%~20質量%の割合であることを特徴とする請求項1に記載の改質ペロブスカイト型複合酸化物。
  3.  前記1次被覆が少なくとも加水分解性Al前駆体を700~1200℃で焼成して形成されたAlを含む1次被覆層を有することを特徴とする請求項1記載の改質ペロブスカイト型複合酸化物。
  4.  少なくとも加水分解性Al前駆体を700~1200℃で焼成して形成されたAlを含む1次被覆層上に、更に加水分解性SiO前駆体、加水分解性TiO前駆体、加水分解性ZrO前駆体及び加水分解性Nd前駆体の群から選択される少なくとも1種の加水分解生成物を700~1200℃で焼成することにより形成された2次被覆を有することを特徴とする改質ペロブスカイト型複合酸化物。
  5.  前記1次被覆及び前記2次被覆の合計は、前記ペロブスカイト型複合酸化物に対して酸化物換算で0.05質量%~20質量%の割合であることを特徴とする請求項4に記載の改質ペロブスカイト型複合酸化物。
  6.  前記ペロブスカイト型複合酸化物がABO3型であり、Aサイト元素がBa、Ca、Sr及びMgの群から選択される少なくとも1種であり、Bサイト元素がTi及びZrの群から選択される少なくとも1種であることを特徴とする請求項1~5の何れか一項に記載の改質ペロブスカイト型複合酸化物。
  7.  前記ペロブスカイト型複合酸化物のBET比表面積が、0.5m2/g~12m2/gであることを特徴とする請求項1~6の何れか一項に記載の改質ペロブスカイト型複合酸化物。
  8.  ペロブスカイト型複合酸化物の粒子表面を、TiO、Al、ZrO及びNdの群から選択される少なくとも1種で1次被覆した改質ペロブスカイト型複合酸化物の製造方法であって、
     (A)ペロブスカイト型複合酸化物粒子を溶媒に分散させてスラリーを調製する工程と、
     (B1)前記(A)で得られたスラリーに、加水分解性TiO2前駆体、加水分解性Al23前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に前記前駆体の加水分解反応を行った後、スラリーを乾燥させる工程と、
     (C)前記(B1)で得られた乾燥物を700℃~1200℃で焼成する工程と
    を含むことを特徴とする改質ペロブスカイト型複合酸化物の製造方法。
  9.  ペロブスカイト型複合酸化物の粒子表面を少なくともAl23を含む被覆層で1次被覆し、SiO2、TiO2、ZrO2及びNd23からなる群から選択される少なくとも1種で2次被覆した改質ペロブスカイト型複合酸化物の製造方法であって、
     (A)ペロブスカイト型複合酸化物粒子を溶媒に分散させてスラリーを調製する工程と、
     (B2)前記(A)で得られたスラリーに、少なくとも加水分解性Al23前駆体を添加し、触媒の存在下に前記加水分解性Al23前駆体の加水分解反応を行う工程と、
     (B3)前記(B2)で得られたスラリーに、加水分解性SiO2前駆体、加水分解性TiO2前駆体、加水分解性ZrO2前駆体及び加水分解性Nd23前駆体の群から選択される少なくとも1種を添加し、触媒の存在下に前記前駆体の加水分解反応を行った後、スラリーを乾燥させる工程と、
     (C)前記(B3)で得られた乾燥物を700℃~1200℃で焼成する工程と
    を含むことを特徴とする改質ペロブスカイト型複合酸化物の製造方法。
  10.  前記溶媒が親水性有機溶媒であり、且つ前記触媒が有機アルカリ類であることを特徴とする請求項9又は10に記載の改質ペロブスカイト型複合酸化物の製造方法。
  11.  請求項1~7の何れか1項に記載の改質ペロブスカイト型複合酸化物と高分子材料とを含むことを特徴とする複合誘電体材料。
PCT/JP2009/062861 2008-07-18 2009-07-16 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料 WO2010008041A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801361729A CN102159498B (zh) 2008-07-18 2009-07-16 改性钙钛矿型复合氧化物、其制造方法和复合电介质材料
US12/737,477 US20110183834A1 (en) 2008-07-18 2009-07-16 Modified perovskite type composite oxide, method for preparing the same, and composite dielectric material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008187266A JP5283995B2 (ja) 2008-07-18 2008-07-18 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
JP2008-187266 2008-07-18
JP2008-187262 2008-07-18
JP2008187262A JP5341417B2 (ja) 2008-07-18 2008-07-18 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料

Publications (1)

Publication Number Publication Date
WO2010008041A1 true WO2010008041A1 (ja) 2010-01-21

Family

ID=41550441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062861 WO2010008041A1 (ja) 2008-07-18 2009-07-16 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料

Country Status (4)

Country Link
US (1) US20110183834A1 (ja)
KR (1) KR20110042185A (ja)
CN (1) CN102159498B (ja)
WO (1) WO2010008041A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2542408A1 (en) * 2010-03-02 2013-01-09 Eestor, Inc. Oxide coated ceramic powders

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648744B2 (ja) * 2011-06-22 2015-01-07 株式会社村田製作所 半導体セラミックコンデンサの製造方法
KR101339396B1 (ko) * 2012-03-19 2013-12-09 삼화콘덴서공업주식회사 적층 세라믹 커패시터용 내환원성 저온소성 유전체 세라믹 조성물 및 그의 제조방법
CN103700834B (zh) * 2012-09-27 2016-11-02 清华大学 锂离子电池正极复合材料的制备方法
DE102014225541A1 (de) * 2014-12-11 2016-06-16 Siemens Healthcare Gmbh Detektionsschicht umfassend Perowskitkristalle
DE102014225543B4 (de) * 2014-12-11 2021-02-25 Siemens Healthcare Gmbh Perowskit-Partikel mit Beschichtung aus einem Halbleitermaterial, Verfahren zu deren Herstellung, Detektor, umfassend beschichtete Partikel, Verfahren zur Herstellung eines Detektors und Verfahren zur Herstellung einer Schicht umfassend beschichtete Partikel
CN114213120B (zh) * 2021-11-29 2023-03-07 深圳市信维通信股份有限公司 用于小尺寸mlcc的介质材料及其制备方法与电容器
KR102661174B1 (ko) * 2021-12-16 2024-04-25 인하대학교 산학협력단 세라믹 나노입자 합성방법
CN115319938A (zh) * 2022-08-12 2022-11-11 华中科技大学鄂州工业技术研究院 一种钙钛矿复合厚膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240117A (ja) * 1994-02-25 1995-09-12 Matsushita Electric Works Ltd 複合誘電体及びその製造方法
JPH09202864A (ja) * 1996-01-26 1997-08-05 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液および被膜付基材
JP2002321983A (ja) * 2001-04-27 2002-11-08 Tdk Corp 誘電体セラミック材料の製造方法と誘電体セラミックコンデンサ
JP2003137649A (ja) * 2001-10-25 2003-05-14 Toda Kogyo Corp 誘電体組成物
WO2008087985A1 (ja) * 2007-01-18 2008-07-24 Nippon Chemical Industrial Co., Ltd. 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808697B2 (en) * 2000-11-13 2004-10-26 Toda Kogyo Corporation Spherical tetragonal barium titanate particles and process for producing the same
WO2005093763A1 (ja) * 2004-03-29 2005-10-06 Nippon Chemical Industrial Co., Ltd. 複合誘電体材料用無機誘電体粉末及び複合誘電体材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240117A (ja) * 1994-02-25 1995-09-12 Matsushita Electric Works Ltd 複合誘電体及びその製造方法
JPH09202864A (ja) * 1996-01-26 1997-08-05 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液および被膜付基材
JP2002321983A (ja) * 2001-04-27 2002-11-08 Tdk Corp 誘電体セラミック材料の製造方法と誘電体セラミックコンデンサ
JP2003137649A (ja) * 2001-10-25 2003-05-14 Toda Kogyo Corp 誘電体組成物
WO2008087985A1 (ja) * 2007-01-18 2008-07-24 Nippon Chemical Industrial Co., Ltd. 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2542408A1 (en) * 2010-03-02 2013-01-09 Eestor, Inc. Oxide coated ceramic powders
EP2542408A4 (en) * 2010-03-02 2013-11-06 Eestor Inc CERAMIC POWDERS COATED WITH OXIDE

Also Published As

Publication number Publication date
KR20110042185A (ko) 2011-04-25
CN102159498A (zh) 2011-08-17
CN102159498B (zh) 2013-03-27
US20110183834A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US8247075B2 (en) Modified perovskite complex oxide, method for producing the same and composite dielectric material
US8609748B2 (en) Modified perovskite type composite oxide, method for preparing the same, and composite dielectric material
WO2010008041A1 (ja) 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
JP4747091B2 (ja) 複合誘電体材料
JP5864299B2 (ja) 樹脂組成物
US20100144947A1 (en) Inorganic filler and composite dielectric material using the same
JP5283996B2 (ja) 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
JP5912583B2 (ja) 誘電体セラミック材料及びそれに用いるペロブスカイト型複合酸化物粗粒子の製造方法
JP5362280B2 (ja) 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
JP5774510B2 (ja) 誘電体セラミック材料及びそれに用いるペロブスカイト型複合酸化物粗粒子の製造方法
KR102510234B1 (ko) 개질 페로브스카이트형 복합 산화물 및 그의 제조 방법, 그리고 복합 유전체 재료
JP2010121050A (ja) コア−シェル構造粒子、組成物、誘電体組成物およびキャパシタ
JP5341417B2 (ja) 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
JP5283995B2 (ja) 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136172.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003648

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12737477

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09797965

Country of ref document: EP

Kind code of ref document: A1