WO2010006476A1 - 心肌肽、其制备方法及用途 - Google Patents

心肌肽、其制备方法及用途 Download PDF

Info

Publication number
WO2010006476A1
WO2010006476A1 PCT/CN2008/071647 CN2008071647W WO2010006476A1 WO 2010006476 A1 WO2010006476 A1 WO 2010006476A1 CN 2008071647 W CN2008071647 W CN 2008071647W WO 2010006476 A1 WO2010006476 A1 WO 2010006476A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
amino acid
gly
myocardial
peptide
Prior art date
Application number
PCT/CN2008/071647
Other languages
English (en)
French (fr)
Inventor
陈玉松
李恕
王日升
梁强
曾峥
钱小红
曹东
梁慧敏
Original Assignee
大连珍奥药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连珍奥药业有限公司 filed Critical 大连珍奥药业有限公司
Priority to JP2011517731A priority Critical patent/JP5373077B2/ja
Priority to EP08773191.5A priority patent/EP2314600B1/en
Priority to US13/054,229 priority patent/US8940865B2/en
Priority to PCT/CN2008/071647 priority patent/WO2010006476A1/zh
Priority to KR1020117003285A priority patent/KR101505239B1/ko
Publication of WO2010006476A1 publication Critical patent/WO2010006476A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4716Muscle proteins, e.g. myosin, actin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • Cardiomyopeptide preparation method and use thereof
  • the present invention relates to polypeptides, in particular two active polypeptides, processes for their preparation and their use. Background technique
  • Myocardial protection has been a hot spot in intracardiac and surgical research in recent years. Recent data suggest that many changes occur in ischemic and hypoxic cardiomyocytes, including intracellular calcium overload, free radical production, membrane damage, ATP (adenosine triphosphate) levels, oxygen depletion, and so on.
  • the existing various cardiovascular disease treatment drugs do not directly regulate myocardial growth, differentiation, and repair. effect.
  • conversion enzyme inhibitors which block growth factor production, inhibit protein synthesis, and alleviate the effect of hypertrophy
  • foreign countries have begun to pay attention to the use of drugs to induce the protective ability of the heart muscle itself, such as the study of transduction genes to promote cardiomyocyte regeneration, Cardiotrophin and Myotrophin.
  • various mechanisms of transmission are triggered by extracellular signals to regulate the proliferation or remodeling of myocardium and vascular cells. But all of these studies are in animal testing or preclinical research.
  • ZL94102798 discloses a cardiomyocyte growth stimulating peptide and a preparation method thereof, and the heart of a healthy young mammal is selected, mechanically mashed, deep frozen at -20 ° C - dissolved and heated at 60-100 ° C, and then -20 ° C Deep-frozen-dissolved and centrifuged at 3000 rpm, and subjected to a negative pressure cut-off column-sterilization-packing-lyophilization-packaging to obtain a polypeptide active material having a molecular weight of less than 20,000 Daltons.
  • ZL94102799 discloses a cardiomyocyte growth stimulating peptide (GMGSP) having DNA synthesis and protein synthesis stimulating primary cultured cardiomyocytes, which is prepared from the heart of healthy juvenile mammals and is stable in the range of pH 2-9; Heating at 95-100 ° C for 10 minutes, 60-70 ° C for 30 minutes, the biological activity does not change; in a variety of proteolytic enzymes, 37 ° C 2 hours under the condition of loss of biological activity; in aqueous solution 22 ° C -30 ° C can be The polymer was formed but the biological activity was not changed obviously; under the condition of adding 3%-8% mannitol lyophilized sealing, it was stored at room temperature for 1.5 years, stored at 4 ° C for 2 years, stored at -20 ° C for 3 years, and the biological activity did not change; HPLC analysis showed that the GMGSP consisted of four components, the relative peaks and retention times of each component were: 10.4% (2.88 points), 6.4% (3.93 points), 36.3% (5.09 points
  • Each component has biological activity; the two bands shown by SDS-PAGE analysis have a molecular weight of 8500 Da and 10800 Da, respectively, and the number average molecular weight of the HPLC analysis is 9800 Da, and the weight average molecular weight is 10500 Da. Both components have biological activity. .
  • the invention discloses that the myocardial peptide is extracted from the heart of a healthy mammal not including human, wherein the content of the polypeptide is 75%-90%, and the free amino acid is 6%- 15%, ribonucleic acid content of 1% -2%, deoxyribonucleic acid content of 3% -7%, weight average molecular weight of 1000-1000 Daltons.
  • the invention also discloses the use of the cardiomyopeptide for the preparation of a medicament for treating cardiovascular diseases and for myocardial ischemia and reperfusion injury.
  • a method for preparing a myocardial peptide is disclosed in Chinese Patent No.
  • 03137133.7 which comprises: washing and chopping ventricular muscles of healthy mammals excluding humans, adding sterilized distilled water homogenate, and repeatedly freezing the homogenate. Thawing 3-4 times, heating to 65-95 °C to filter the slag, filtering with a plate and frame filter to obtain the crude filtrate, ultrafiltration through a hollow fiber column to obtain a fine filtrate, ultrafiltration with ultrafiltration membrane, intercepting the weight average molecular weight
  • the myocardial peptide solution of less than 1000OOD is concentrated by a reverse osmosis concentration column, finally sterilized by filtration, and freeze-dried to obtain a finished product.
  • the cardiac peptide is extracted from the heart of a healthy mammal that does not include humans, and contains various active ingredients such as a polypeptide, a free amino acid, and a deoxyribonucleic acid.
  • a polypeptide is a chain of proteinaceous compounds composed of various amino acids arranged in a different order. Such compounds tend to have strong physiological and functional specificities. Therefore, these polypeptides are widely used in the preparation of drugs for treating certain diseases.
  • the present invention aims to provide two polypeptides, wherein the sequence of one polypeptide is: Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe, and the molecular weight is 1294.
  • myocardial peptide 75 (abbreviated as myocardial peptide) X);
  • myocardial peptide C a new polypeptide (abbreviated as myocardial peptide C) is formed by sequentially connecting alanine, glycine, and lysine to the end to which tryptophan is linked, and the amino acid sequence is: Lys -Gly-Ala-Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe, having a molecular weight of 1550.91.
  • the polypeptide is extracted from a myocardial peptide solution, and the polypeptide is determined to be active, and the preparation for treating tissue ischemia includes myocardial ischemia, cerebral ischemia, liver ischemia, gastric ischemia, intestinal ischemia, lung ischemia, Significant use in renal ischemic drugs.
  • the technical solution adopted by the present invention is: A polypeptide having an amino acid sequence of: Trp- Ser-Asn-Val-Leu- Arg-Gly-Met-Gly-Gly-Ala-Phe.
  • Alanine, glycine, and lysine are sequentially linked to one end of the above polypeptide to which tryptophan is linked to form a novel polypeptide, and the amino acid is arranged in the following order:
  • Another object of the present invention is to provide a method for extracting cardiac peptide C.
  • a method for extracting myocardial peptide C from a myocardial peptide solution comprising the steps of:
  • the active fraction C is subjected to mass spectrometry, and the amino acid sequence of the active peptide in the fraction C is identified by mass spectrometry data analysis, and the fraction C is the polypeptide.
  • the ammonium sulfate solution of the present invention has a mass percentage concentration of 60-80%, preferably the concentration is
  • the organic solvent described in the step (2) of the present invention is a mixed solution of 60% acetonitrile and 0.1% trifluoroacetic acid.
  • the myocardial peptide solution of the present invention comprises extracted from the heart of a healthy mammal that does not include humans.
  • the polypeptide solution has a polypeptide content of 75% to 90%, a free amino acid content of 6% to 15%, a ribonucleic acid content of less than 2%, a deoxyribonucleic acid content of less than 7.5 %, a molecular weight of less than 10,000 Daltons, or Existing cardiomyopeptin products.
  • a further object of the present invention is to provide a method for chemical synthesis of cardiac peptide C.
  • a chemical synthesis method for preparing cardiac peptide C comprising:
  • amino group of the amino acid of the step (1) of the present invention may be protected by the following groups:
  • each polypeptide or protein is formed by the polymerization of free amino acids through a polypeptide bond.
  • the extension of the polypeptide bond always proceeds from the amino terminus (N-terminus) to the carboxy terminus (C-terminus).
  • the first amino acid at the carboxy end is usually immobilized on the activated resin, then deprotected by the amino group, and the second amino acid at the carboxy end is added to the opposite In the reactor, the two amino acids are mutually reacted to form a peptide bond, and then the third and fourth amino acids are sequentially added according to the amino acid arrangement sequence of the polypeptide until the last amino acid is bound to the peptide chain.
  • Still another object of the present invention is to provide a use of cardiac peptide C for the preparation of a medicament for preventing and/or treating tissue and ischemic agents, preferably for the preparation of a preventive and/or therapeutic myocardial ischemia, cerebral ischemia, hepatic ischemia, stomach
  • tissue and ischemic agents preferably for the preparation of a preventive and/or therapeutic myocardial ischemia, cerebral ischemia, hepatic ischemia, stomach
  • the use of the polypeptide for the preparation of a medicament for preventing and/or treating myocardial ischemic is more preferred.
  • the beneficial effects of the present invention are as follows:
  • the present invention discloses a method for extracting two polypeptides, and discloses two polypeptides and sequences contained in a myocardial peptide solution, and completes chemical synthesis, purification, activity determination and identification of the two polypeptides. .
  • Activity assays indicate that these two polypeptides are active, and animal studies and clinical studies have shown that these two polypeptides play a significant role in the preparation of drugs for the treatment of myocardial ischemia, cerebral ischemia, and hepatic ischemia. At the same time, these two have the characteristics of clear structure, high activity, easy production, low cost and easier to study and explain their mechanism of action.
  • Figure 6 Flow chart of the extraction method of peptide (myocardial peptide C)
  • Figure 7 Effect of prophylactic administration of myocardial peptide C on myocardial infarct size in rats with ischemia-reperfusion, Figure 7-a, sham operation group; Figure 7-b is the model group; Figure 7-c is the positive drug group; 7-d is the CMPC group
  • Figure 8 Effect of therapeutic administration of myocardial peptide C on myocardial infarct size in rats with ischemia-reperfusion, Figure 8-a, sham operation group; Figure 8-b is the model group; Figure 8-c is the positive drug group; 8-d is the CMPC group
  • This example relates to the synthesis of a polypeptide (myocardial peptide C).
  • the sequence of the polypeptide is Lys-Gly-Ala-Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe
  • the carboxyl group of the second amino acid is activated by HBTU [2-(1H-benzotriazolyl)-1,1,3,3-tetramethylsugaraldehyde-hexafluorophosphate] After neutralization of isopropylethylamine, it is added to the resin in which the first amino acid is bound, and the peptide bond is formed after the two amino acids are reacted.
  • the corresponding amino acid is sequentially added, the above washing is repeated, the amino group is deprotected, and the amino acid carboxyl group is activated to carry out 14 peptide reactions, so that the polypeptide chain is continuously extended until the last amino acid is bound to Up to the peptide chain.
  • the synthesized polypeptide is still bound to the resin, and the polypeptide substance is separated from the resin by the separation liquid.
  • the separation liquid may be a mixture of one or more of phenol, thioanisole and trifluoroacetic acid, and the resin containing the polypeptide ( ⁇ ) is immersed in a 10-80 ml separation solution, and stirred at room temperature.
  • the filtrate is then obtained as a mixture of polypeptide materials.
  • the free polypeptide material is precipitated by diethyl ether and can be isolated.
  • the separated polypeptide substance is dissolved in water or 10-40% alkali solution (alkali can be selected from: ammonium hydrogencarbonate, ammonium carbonate, sodium hydrogencarbonate, sodium carbonate), and then by conventional liquid chromatography,
  • alkali can be selected from: ammonium hydrogencarbonate, ammonium carbonate, sodium hydrogencarbonate, sodium carbonate
  • the complete polypeptide material is purified.
  • the purified polypeptide substance can be measured by ultraviolet spectrophotometry and can be re-verified by mass spectrometry to determine whether the amino acid sequence of the synthesized polypeptide substance is correct.
  • This example relates to a method of chemical synthesis of cardiac peptide X.
  • the amino acid sequence of the cardiac muscle peptide C is: Trp- Ser-Asn-Val-Leu- Arg-Gly-Met-Gly-Gly-Ala-Phe.
  • This example relates to a method of chemical synthesis of cardiac peptide C.
  • the method includes the following steps: (1) Deprotection of Fmoc: Take Fmoc-Lys(Boc)-CLTR resin, wash it with dichloromethane for 3 times for 2 min, then drain, add 50% piperidine in dichloromethane at room temperature. 10mL, after 5min reaction, drained, still use the same amount of the above solution for another 30min, then drained, then washed with 8mL ⁇ 10mL of dichloromethane, ethanol and dichloromethane, drained, take a small amount of resin (2mg ⁇ 10 mg) The total amount of amino groups was determined by a free radical method using salicylaldehyde.
  • a small amount of the resin was dried to constant weight, and the amount of residual amino groups was determined by a free amino group method using salicylaldehyde, and the condensation ratio was calculated therefrom.
  • the degree of progress of the reaction was monitored by ninhydrin coloration, and when the resin was colorless and transparent, it indicated that the condensation reaction was completed.
  • step (1) (4) replacing the tree-shaped peptide Fmoc-Lys(Boc)-Wang-R in step (1) with Fmoc-Gly(t-Bu)-Lys(Boc)-R, and Fmoc in step (2) -Gly(t-Bu) is replaced by Fmoc-Ala(Trt), the operations of steps (1) to (3) are repeated, and so on, that is, the resin peptide synthesized in the previous step is used as the amino component of the next synthesis. 14 peptide reactions, all peptide bonds between 15 amino acids are formed;
  • This example relates to the synthesis of a polypeptide (myocardial peptide X)
  • sequence of the polypeptide is Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe
  • This example relates to a method of extracting a polypeptide (myocardial peptide C) from a myocardial peptide solution.
  • phase A is 100% H 2 O + 0.1% TFA
  • phase B is 60% ACN+ 0.1%
  • the active fraction B is concentrated, and then further separated by analytical reversed phase chromatography to collect the active fraction C;
  • Phase A is 100% H 2 O + 0.1% TFA
  • Phase B is 95% ACN + 0.1% TFA
  • This example relates to structural identification and quality detection in the process of extracting a polypeptide (myocardial peptide C) from a myocardial peptide solution.
  • the product was subjected to mass spectrometry using a MALDI-TOF-TOF mass spectrometer (AB-4800, USA), in which MALDI-TOF-stage mass spectrometry uses a positive ion reflection detection mode; secondary tandem mass spectrometry uses a positive ion reflection mode, and the detection results are shown in the figure. 2 is shown.
  • MALDI-TOF-TOF mass spectrometer AB-4800, USA
  • MALDI-TOF-stage mass spectrometry uses a positive ion reflection detection mode
  • secondary tandem mass spectrometry uses a positive ion reflection mode
  • the activity was measured by the "cardiomyocyte culture activity assay” method provided by Dalian Zhenao Pharmaceutical Co., Ltd. Based on the doxorubicin poisoning test of cardiomyocytes in vitro, this method uses 2, 4-diphenyltetrazolium bromide (MTT) as a reaction indicator to observe the myocardial peptide to enhance the activity of mitochondrial dehydrogenase in damaged cardiomyocytes. The role of to determine myocardial protection.
  • MTT 2, 4-diphenyltetrazolium bromide
  • CMPC cardiac peptide C
  • Cardiac Peptide C supplied by Dalian Zhenao Pharmaceutical Co., Ltd., batch number: C1586102; Verapamil injection (Ver): Shanghai Hefeng Pharmaceutical Co., Ltd., Specification: 2ml: 5mg, batch number: 070701; Doxorubicin (Doxorubicin) for Injection: Guangdong Shantou Special Zone Meiji Pharmaceutical Co., Ltd., Specification: 10mg/bottle, batch number: 070202;
  • DMEM medium (high sugar): Gibco, lot number: 1290007;
  • DMEM medium low sugar: Gibco, lot number: 1348529;
  • Type II collagenase Gibco; fetal bovine serum: Tianjin Haoyang Biological Products Technology Co., Ltd., batch number: 04700701-3100
  • SOD superoxide dismutase
  • MDA malondialdehyde
  • CK creatine kinase
  • LDH lactate dehydrogenase
  • Glacial acetic acid Tianjin Baishi Chemical Co., Ltd., Specification: 500ml, Batch No.: 20070712; Absolute ethanol: Tianjin Baishi Chemical Co., Ltd., Specification: 500ml, Batch No.: 20070410 II.
  • the rat guinea ventricle was taken, D-Hank's was washed and cut, and digested with type II collagenase to obtain myocardial cells and fibroblasts, which were cultured with high glucose DMEM (DMEM-H-15) containing 15% fetal calf serum.
  • DMEM-H-15 high glucose DMEM
  • the fibroblasts were removed by differential adherence and chemical methods, and the cardiomyocytes were seeded into 96-well plates.
  • the cell culture method is the same as 1. 1.
  • Model preparation Experimental control group: Cardiomyocytes were cultured with DMEM-H-15; Model group: Add 1 mg/L doxorubicin, culture for 1 h, wash plate twice with DMEM-H-15, add DMEM-H -15 culture; positive control group (Verapamil 2, 0.4, 0.08 mg / L) and different concentrations of test drug group (CMPC 50, 10, 2, 0.4, 0.08, 0.016, 0.0032, 0.00064 mg / L): The cardiomyocytes damaged by doxorubicin for 1 h were washed twice with DMEM-H-15 and then added to each concentration of verapamil injection (Ver) and CMPC (the total volume of each group was 100 ⁇ /well, The drug concentration refers to the final concentration).
  • Cardiomyocyte culture method is the same as 1.1.
  • Model preparation The model of cardiomyocytes cultured for 48-72 h was prepared, and the cells in each well of the culture plate were divided into control group, model group, verapamil group (2, 0.4, 0.08 mg/L final concentration) and CMPC group ( The final concentration was 50, 10, 2, 0.4, 0.08, 0.016, 0.0032 mg/L), and each group was 3 duplicate wells. Except for the control group, the other cells were prepared as follows: After replacing the cardiomyocyte monolayer in the culture plate with low-sugar medium (containing the corresponding concentration of verapamil or CMPC), the plate was placed in a vacuum desiccator.
  • CMPC can significantly improve the survival rate of cardiomyocytes.
  • the protective effect is better when the drug concentration is 0.08-2 mg/L, which is significantly different from the model group.
  • 3 CMPC EC 5 were 0.66, 0.14, and 0.82 mg/L, respectively.
  • the results are shown in Table 2 (protection rate of CMPC for cardiomyocytes is expressed as "%").
  • a total of 70 SD rats of 250-300 g were taken, and 60 of them were randomly divided into 6 groups according to body weight, 10 in each group, and the remaining 10 were used to supplement each group of dead animals.
  • Normal control group sham operation, that is, a line of left anterior descending coronary artery (LAD) was worn, but no ligation;
  • Model group intravenous injection of saline 5 ml/kg 30 min before ligation, ischemia-reperfusion operation See model preparation for details.
  • Positive drug group intravenous infusion of verapamil 1.0 mg/kg 30 min before ligation, ischemia-reperfusion operation with model group;
  • CMPC high, medium and low dose groups intravenous infusion of corresponding concentration of CMPC 30 min before ligation ( 1.8, 0.6, 0.2 mg/kg), ischemia-reperfusion operation Same model group.
  • Model preparation After anesthetized with 6% urethane solution in a 20 ml/kg intraperitoneal injection, the animal was placed in the supine position on the operating table; connected to an electrocardiograph, limb II electrocardiogram; tracheal intubation, animal respirator According to the tidal volume of 6ml/200g and the frequency of 55 times/min, continuous positive pressure ventilation was given at the end of expiration, and the respiratory ratio was 2:1. Open the thoracic surgery at the fourth/five intercostal space on the left sternal border. After removing the pericardium from the ribs, the lower atrial appendage is used as a marker.
  • the 6/0 silk thread is used to connect the left anterior descending coronary artery, and the ligature is placed between the ligature and the blood vessel.
  • Reperfusion was successful by a 1/2 or more decrease in reactive hyperemia and elevation of the S-T segment in the ischemic zone. After reperfusion for 30 min, blood was taken from the abdominal aorta, and serum was prepared for determination of biochemical indicators (determination of CK, LDH, MDA, SOD content according to the kit instructions).
  • the rat heart was dissected, and the blood in the heart chamber was washed with physiological saline. The whole heart was weighed, the fat was removed, and 4-5 pieces of the myocardium were placed in a test tube, and NBT staining was performed at 37 ° C (normal tissue). Staining, ischemic tissue is not stained), photographed. The ischemic myocardium was weighed and the myocardial infarct size (MIS) was calculated as the percentage of ischemic myocardium weight and total wet weight.
  • MIS myocardial infarct size
  • Serum CK and LDH were significantly increased in the model group (PO.01).
  • the positive drug group significantly decreased serum CK and LDH activities (P ⁇ 0.05).
  • the CMPC high-dose group and the CMPC medium-dose group were significantly more significant than the model group.
  • the serum LDH activity of rats was decreased (P ⁇ 0.05).
  • the high dose group of CMPC and the medium dose group of CMPC could significantly reduce CK activity (P ⁇ 0.05).
  • the low dose group of CMPC could decrease the activity of LDH and CK, but there was no significant difference. (P>0.05).
  • the results are shown in Table 3.
  • the serum SOD activity of the model group was significantly decreased (P ⁇ 0.01), and the MDA value was significantly increased (PO.01).
  • the positive drug Ver could significantly increase the serum SOD activity (P ⁇ 0.01) and reduce the MDA activity (PO.05).
  • the CMPC-H, M, L dose groups significantly increased serum SOD activity in coronary artery ligation rats (P ⁇ 0.01, P ⁇ 0.05) and decreased MDA content (P ⁇ 0.01, P ⁇ 0.05). The results are shown in Table 4.
  • the myocardial infarct size of the model group was significantly increased (P ⁇ 0.01).
  • the positive drug group and CMPC prophylactic drug group compared with the model group could significantly reduce the myocardial infarct size (P ⁇ 0.01).
  • Table 5 and Figure 7. Table 5 Effect of prophylactic administration of myocardial peptide C on myocardial infarct size in rats with ischemia-reperfusion ( ⁇ : ⁇ SD)
  • CMPC myocardial ischemia-reperfusion injury in rats
  • the LAD was ligated 5 minutes after ligation, and LAD was ligated for 30 min. After 30 min of reperfusion, the abdominal aorta was harvested and the heart was dissected. The biochemical parameters and myocardial infarct size were measured by the same method.
  • Serum CK and LDH were significantly increased in the model group (PO.01).
  • the positive drug Ver significantly decreased serum CK and LDH activities (P ⁇ 0.05, P ⁇ 0.01).
  • the CMPC-H and M dose groups were compared with the model group.
  • the activity of CK and LDH in serum was significantly decreased (P ⁇ 0.01, P ⁇ 0.05).
  • CMPC-L could decrease the activity of LDH and CK, but there was no significant difference (P>0.05). The results are shown in Table 6.
  • the serum SOD activity of the model group was significantly decreased (P ⁇ 0.05), and the MDA value was significantly increased (PO.01).
  • the positive drug Ver could significantly increase the serum SOD activity (P ⁇ 0.05) and reduce the MDA content (PO.05).
  • CMPC-H and M could significantly increase serum SOD activity (P ⁇ 0.05, P ⁇ 0.01), and CMPC-L increased SOD activity, but there was no significant difference compared with the model group. >0.05); DMC-H, M, L dose groups can reduce MDA content (P ⁇ 0.05), the results are shown in Table 7.
  • Table 7 Effect of therapeutic administration of myocardial peptide C on serum SOD and MDA in rats with ischemia-reperfusion ( ⁇ : ⁇ SD)
  • the myocardial infarct size of the model group was significantly increased (P ⁇ 0.01).
  • the positive drug Ver and CMPC therapeutic groups were significantly lower than the model group (P ⁇ 0.05).
  • the results are shown in Table 8, Figure 8.
  • Table 8 Effect of therapeutic administration of myocardial peptide C on myocardial infarct size in rats with ischemia-reperfusion ( ⁇ : ⁇ SD)
  • myocardial peptide C can increase the activity of mitochondrial dehydrogenase in injured cardiomyocytes, and has a protective effect on injured cardiomyocytes.
  • myocardial peptide c prophylactic and therapeutic administration can significantly reduce serum CK, LDH, MDA levels in ischemia-reperfusion rats, significantly increase SOD content, and in a dose-dependent manner, and can reduce rat myocardial Infarct size, indicating that myocardial peptide C therapeutic and prophylactic administration have protective effects on myocardial ischemia-reperfusion injury in rats.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

心肌肽、 其制备方法及用途 技术领域
本发明涉及多肽类物质, 具体地说两种活性多肽、 其制备方法及其用途。 背景技术
"心肌保护"近年来一直是心脏内、 外科研究的热点。 最近资料表明, 缺血 缺氧的心肌细胞内会发生许多变化, 包括细胞内钙超载, 自由基产生, 膜损害, ATP (adenosine triphosphate, ATP) 水平下降, 氧耗竭等等。
为了干预心肌缺血及保护心肌, 近 20年来研究了许多药物, 如 β -受体阻滞 剂, 钙拮抗剂, 转换酶抑制剂, 各种氧自由基清除剂等, 但其对心肌的保护效果 临床尚未肯定。现有治疗心肌缺血的药物, 还没有一种能绝对减少心肌梗死, 对 抗心肌缺血。
现有的各类心血管病治疗药物, 除转换酶抑制剂具有阻滞生长因子产生, 抑 制蛋白质合成, 减轻心肌肥厚 (Hypertrophy) 的作用外, 其它药物均无直接调 节心肌生长、 分化、 修复的作用。 近年来, 国外已开始重视使用药物方法诱导心 肌自身的保护能力, 如转导基因促进心肌细胞再生等的研究, Cardiotrophin及 Myotrophin的研究。 另一方面, 通过细胞外信号触发各种传递机制, 调控心肌、 血管细胞的增殖或重构。 但是所有这些研究都处于动物试验或临床前研究阶段。
上述研究清楚地证明: 在体外循环心肌保护方法尚未完善的情况下, 设计一 种对机体无损害, 又能于术前、术中及术后保护心肌的药物, 对探索心肌缺血及 再灌注损伤的防治, 提供新的思路和途径, 将有重要意义。
ZL94102798公开了一种心肌细胞生长刺激肽及其制备方法, 选取健康幼年 哺乳动物的心脏, 采用机械方式捣碎、 -20°C深冻 -溶解后加热 60-100°C, 再 -20 °C深冻 -溶解后离心 3000rpm, 经负压截留柱-除菌-分装-冻干-包装, 得到分子量 小于 20000道尔顿的多肽类活性物质。
ZL94102799公开了一种具有刺激原代培养的心肌细胞的 DNA合成和蛋白 质合成的心肌细胞生长刺激肽 (GMGSP), 是从健康幼年哺乳动物的心脏中制备 提取, 在 pH2-9范围内稳定; 在加热 95-100°C 10分钟, 60-70°C30分钟下生物活 性不改变; 在多种蛋白水解酶, 37°C2 小时条件下生物活性丧失; 在水溶液 22 °C-30°C条件下可形成聚合体但生物活性改变不明显; 在加入 3%-8%甘露醇冻干 密封条件下, 室温贮存 1.5年, 4°C贮存 2年, -20°C贮存 3年, 生物活性不改变; HPLC分析表明: 所述 GMGSP由四个组分组成, 各组分相对峰及保留时间分别 为: 10.4%(2.88分), 6.4%(3.93分), 36.3%(5.09分), 7.3%(7.41分), 每个组分均 具有生物活性;经 SDS-PAGE分析显示的两条带分子量分别为 8500Da,10800 Da, HPLC分析数均分子量 9800Da, 重均分子量 10500Da, 2个组分均有生物活性。
在中国发明专利 03141352.8心肌肽及其用途中, 该发明公开了心肌肽是从 不包括人的健康哺乳动物的心脏中提取的, 其中多肽的含量为 75%-90%, 游离 氨基酸为 6%- 15%, 核糖核酸含量为 1%-2%, 脱氧核糖核酸含量为 3%-7%, 重 均分子量为 1000-1000道尔顿。该发明还公开了所述的心肌肽在制备治疗心血管 疾病药物以及心肌缺血和再灌注损伤药物方面的用途。 而在中国发明专利 03137133.7中公开了一种心肌肽的制备方法,其具体方法为: 将不包括人的健康 哺乳动物的心室肌洗净、 切碎, 加灭菌蒸馏水匀浆, 匀浆液反复冷冻、 解冻 3-4 次, 加热至 65-95 °C过滤除渣, 用板框滤器过滤得到粗滤液, 在用中空纤维柱超 滤, 得到精滤液, 用超滤膜超滤, 截留重均分子量小于 lOOOODa的心肌肽溶液, 以反渗透浓縮柱浓縮, 最后经过滤除菌, 冷冻干燥得成品。
但是, 上述研究结果表明, 心肌肽是从不包括人的健康哺乳动物的心脏中提 取的, 其中含有多肽、 游离氨基酸、 脱氧核糖核酸等多种活性成分,
多肽是一类由各种氨基酸,按不同的顺序排列而组成的一种链状的蛋白质类 化合物。此类化合物往往具有很强的生理活性和功能的特异性。 因此, 这些多肽 类物质在制备治疗某些疾病药物中的用途很广泛。
然而至今为止,对于心肌肽中所含的多肽的序列以及用途都没有相关专利及 文献报道。
发明内容
本发明 目 的在于提供两种多肽, 其中一种多肽的序列为: Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe, 分子量为 1294. 75 (简 称心肌肽 X); 在上述多肽的基础上通过在连接有色氨酸的一端依次连接丙氨酸、 甘氨酸、 赖氨酸, 形成一种新的多肽 (简称心肌肽 C), 其氨基酸的排列顺序为: Lys-Gly-Ala-Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe, 分子量为 1550. 91。 所述的多肽心肌肽溶液中提取, 经测定上述多肽具有活性, 而且作为 制备治疗组织器官缺血包括心肌缺血、 脑缺血、 肝缺血、 胃缺血、 肠缺血、 肺缺 血、 肾缺血药方面用途显著。
为了实现上述目的, 本发明采用的技术方案为: 一 种 多 肽 , 所 述 的 多 肽 的 氨 基 酸 的 排 列 顺 序 为 : Trp- Ser- Asn- Val- Leu- Arg- Gly- Met- Gly- Gly- Ala- Phe。
在上述多肽连接有色氨酸的一端依次连接丙氨酸、 甘氨酸、 赖氨酸,形成一 种新的多肽, 其氨基酸的排列顺序为:
Lys- Gly- Ala- Trp- Ser- Asn- Val- Leu- Arg- Gly- Met- Gly- Gly- Ala- Phe。
本发明的另一目的在于提供一种心肌肽 C的提取方法。
为了实现上述目的, 本发明采用的技术方案为:
一种从心肌肽溶液中提取心肌肽 C的方法, 所述的方法包括如下步骤:
( 1 ) 在心肌肽溶液加入硫酸铵溶液, 放置, 离心, 分离上清液和沉淀;
( 2) 取上清液, 过固相萃取小柱, 用有机溶剂洗脱, 收集馏分 A;
( 3)将收集到的馏分 A浓縮, 然后用反相制备色谱分离, 收集有活性的馏分 B;
(4) 将有活性的馏分 B浓縮, 然后用分析型反相色谱进行进一步的分离, 收集 有活性的馏分 C;
( 5) 将有活性的馏分 C进行质谱检测, 通过质谱数据分析, 鉴定馏分 C中有活 性的肽段的氨基酸序列, 所述的馏分 C即为所述的多肽。
本发明所述的硫酸铵溶液的质量百分比浓度为 60-80%, 优选所述的浓度为
70%。
本发明所述的步骤 (2) 中所述的有机溶剂为 60%乙腈和 0. 1%三氟乙酸的混 合溶液。
本发明步骤 (3) 中将馏分 A浓縮至原体积的 1/8-3/4; 利用反相制备色谱分 离的条件为: 流动相: A相为 100%H2O+0.1%TFA, B相为 60%ACN+ 0.1% TFA; 紫外检测器,波长 λ =280ηηι, R=3.0;梯度洗脱: 0-5minO%B, 5-35minO%-100%B, 35-40minl00%B, 40-45minl00%-0%B。
本发明所述的步骤 (4) 中将馏分 B浓縮至 1/8-1/2; 所述的用分析型反相色 谱进行进一步的分离为在色谱条件如下: 流动相: A相为 100%H2O+0.1%TFA, B相为 95%ACN+0.1%TFA; 紫外检测器, 波长 λ =280ηηι, R=3.0; 梯度洗脱: 0-5minO%B, 5-50minO%-100%B, 50-60minl00%B, 60-65min 100%-0%B的条件 下进行。
本发明所述的心肌肽溶液包括从不包括人的健康哺乳动物的心脏中提取的 多肽溶液, 其多肽含量为 75 %〜90%, 游离氨基酸含量为 6 %〜15 %, 核糖核酸 含量小于 2 %, 脱氧核糖核酸含量小于 7. 5 %, 分子量小于 10000道尔顿, 也可 为现有的心肌肽素产品。
本发明的再一目的在于提供一种心肌肽 C的化学合成方法。
为了实现上述目的, 本发明采用的技术方案为:
一种制备心肌肽 C的化学合成方法, 所述的方法包括:
( 1 )分别将色氨酸、 丝氨酸、 天冬酰胺、 缬氨酸、 亮氨酸、 精氨酸、 甘氨 酸、 蛋氨酸、 丙氨酸、 苯丙氨酸、 赖氨酸的氨基用保护基团进行保护;
( 2)先将固相载体溶胀, 再将多肽的氨基酸排列顺序中第一个保护后的氨基 酸固定到该固相载体上,然后将所得产物进行洗涤, 得到连接有第一个保护后的 氨基酸的固相载体;
( 3 )将第二个保护氨基酸加入到结合有第一个氨基酸的固相载体中, 在縮合 剂存在下进行反应形成肽键,然后将氨基酸的氨基的保护基团脱除、并洗涤所得 到的固相载体;
(4) 按照多肽的氨基酸排序, 依次加入相应的保护氨基酸, 重复上述的氨基 的保护基团脱除、洗涤的步骤, 使肽链不断延长, 直到最后一个氨基酸结合到肽 链上为止;
( 5)取分离液浸泡上述步骤(4)所得的结合有多肽的固相载体, 然后经过过 滤后取所得滤液进行沉淀, 得到多肽粗品;
(6) 将所得的多肽粗品进行分离纯化, 获得目标产物。
本发明步骤 (1 ) 所述的氨基酸的氨基可以由以下基团进行保护:
( 1 ) 苄酯基 (Carbobenzoxyl)
(2) 叔-丁氧羰基 (t-Butyloxycarbonyl)
( 3 ) 甲苯磺酰基 (Tosyl)
(4) 9-亚 基甲酉旨基 (Fmoc: 9-Fluorenylmethoxycarbonyl)。
在自然界中每一种多肽或蛋白质都是由游离的氨基酸通过多肽键的形式聚 合而成。 在蛋白质的翻译过程中, 多肽键的延伸总是由氨基端(N-端) 向羧基端 ( C-端)进行。在化学合成开始时, 往往是先将羧基端的第一个氨基酸固定到活 化的树脂上,然后经过氨基基团的去保护, 再将羧基端的第二个氨基酸加入到反 应器中, 二个氨基酸经过相互反应即可形成肽键, 然后依照多肽的氨基酸排列序 列依次加入第三个、第四个氨基酸等等,直到最后一个氨基酸结合到肽链上为止。
本发明还有一目的在于提供心肌肽 C在制备预防和 /或治疗组织器官缺血药 方面的用途, 优选所述多肽在制备预防和 /或治疗心肌缺血、 脑缺血、 肝缺血、 胃缺血、肠缺血、肺缺血或肾缺血药方面的用途, 更优选所述多肽在制备预防和 /或治疗心肌缺血药方面的用途。
本发明的有益效果是: 本发明公开了两种多肽的提取方法, 并且公开了心肌 肽溶液中所含的两种多肽及序列, 完成了这两种多肽的化学合成、纯化、 活性测 定和鉴定。活性测定表明这两种多肽具有活性,经过动物实验以及临床研究表明, 这两种多肽在作为制备治疗心肌缺血、脑缺血以及肝缺血药方面作用显著。 同时 这两种具有结构明确、 活性高、 易生产、成本低和更易于研究阐述其作用机制等 特点。
附图说明
图 1 :分子量为 1294.75 (心肌肽 X)质谱图(4700MS/MS Procursor 1294.75 Spec#l MC[BP=1147.4,4886] )
图 2 :分子量为 1550.91 (心肌肽 C )质谱图(4700MS/MS Procursor 1550.91 Spec#l MC[BP=1403.5,3630] )
图 3 :分子量为 1550. 91 (心肌肽 C )的二级谱 denovo序列匹配 KGAWSNVLRGMGGAF 图 4: 分子量为 1294. 75 (心肌肽 X) 的二级谱 denovo序列匹配 WSNVLRGMGGAF 图 5 : 馏分 C的色谱图
图 6 : 多肽 (心肌肽 C ) 的提取方法具体流程图
图 7 : 心肌肽 C预防性给药对缺血再灌注大鼠心肌梗死面积的影响, 图 7-a,假手 术组; 图 7-b为模型组; 图 7-c为阳性药组; 图 7-d为 CMPC组
图 8 : 心肌肽 C治疗性给药对缺血再灌注大鼠心肌梗死面积的影响, 图 8-a,假手 术组; 图 8-b为模型组; 图 8-c为阳性药组; 图 8-d 为 CMPC组
具体实施方式
实施例 1
本实施例涉及多肽 (心肌肽 C ) 的合成。
所 述 多 肽 的 序 列 为 Lys-Gly-Ala-Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe
1、 合成: 首先将多肽中所含的氨基酸的氨基用氨基保护基团 (9-亚芴基甲酯 基)保护起来 (用量 20-100克 /克), 将 wang树脂用氯乙醚进行溶胀, 所用氯乙 醚的用量为 50-100毫升 /克, 然后将第一个氨基酸加入到该树脂中, 从而使其固 定到树脂上。 经过二氯甲烷洗涤后, 氨基的保护基团可以用六氢吡啶 (用量 10— 80% , 最好 20-40%)脱保护起来。 与此同时, 将第二个氨基酸的羧基经过 HBTU 【2-(1氢-苯并三唑基) -1, 1, 3, 3-四甲基糖醛-六氟合磷酸酯】活化和二异丙基 乙胺中和后,加入到结合有第一个氨基酸的树脂中, 二个氨基酸反应后即可形成 肽键。然后按照多肽物质的氨基酸排序, 依次加入相应的氨基酸, 重复上述的洗 涤, 氨基去保护, 氨基酸羧基的活化等步骤以进行 14次接肽反应, 从而使多肽 链不断延长, 直到最后一个氨基酸结合到肽链上为止。合成后的多肽仍然与树脂 结合在一起, 利用分离液将多肽物质从树脂上游离下来。 分离液可以采用苯酚, 苯硫基甲烷以及三氟乙酸其中的一种或几种的混合物,取 10-80毫升的分离液浸 泡上述结合有多肽类物质 (Π)的树脂,在室温下搅拌 1.5小时,然后经过过滤便可 得到滤液为多肽物质混合液。 游离的多肽物质经过乙醚沉淀后, 即可分离出来。 将分离出来的多肽物质溶解在水或 10-40%的碱溶液中 (碱可以选用: 碳酸氢铵、 碳酸铵、 碳酸氢钠、 碳酸钠), 然后用常规的液相色谱法, 即可将完整的多肽物 质进行纯化。纯化后的多肽物质, 可以通过紫外分光光度法测得其浓度并可通过 质谱分析重新核实所合成的多肽类物质的氨基酸序列是否正确。
实施例 2
本实施例涉及心肌肽 X的化学合成方法。
所 述 心 肌 肽 C 的 氨 基 酸 序 列 为 : Trp- Ser- Asn- Val- Leu- Arg- Gly- Met- Gly- Gly- Ala- Phe。
所用的方法如实施例 1。
实施例 3
本实施例涉及心肌肽 C的化学合成方法。
所 述 多 肽 的 序 列 为
Lys- Gly- Ala- Trp- Ser- Asn- Val- Leu- Arg- Gly- Met- Gly- Gly- Ala- Phe。
所述的方法包括以下步骤: ( 1 ) 脱除保护基 Fmoc: 取 Fmoc-Lys(Boc)-CLTR树脂,用二氯甲烷浸泡洗涤 3次,每次 2min, 然后抽干, 在室温下加入 50%哌啶的二氯甲烷溶液 10mL,反应 5min 后抽干, 仍用上述同样量的溶液再反应 30min,再抽干, 之后依次以 8mL〜10mL 的二氯甲烷、 乙醇和二氯甲烷洗涤, 抽干, 取少量树脂 (2mg〜10mg) 用水杨醛定量自由基法测定总氨基量。
(2)肽键的形成 (DCC-HOBt縮合法): 在上述去 Fmoc保护基的树脂中加入 Fmoc-Gly(t-BU)的二氯甲烷溶液和 1-羟基苯并三氮唑的二氯甲烷溶液,且同时加 入二甲基甲酰胺溶液助溶 30min后,加入 N, N ' —二环己基碳二亚胺的二氯甲烷 溶液 2mL,在 20°C下反应过夜,抽干,洗涤,得树脂肽 Fmoc-Gly(t-Bu)-Lys(Boc)-R。 取少量树脂干燥至恒重, 用水杨醛定量自由氨基法测定残余氨基量,并由此计算 縮合率。 在反应过程中, 用茚三酮显色法监测反应进行程度,当树脂呈无色透明 状时,表示縮合反应已完成。
( 3 ) 未縮合氨基的乙酰化: 用 10mL含 50%醋酐的吡啶溶液于室温下处理 步骤 2)所得的树脂肽 30min, 洗涤, 抽干, 以同样溶液和量再处理一次, 使未縮 合的氨基乙酰化。
( 4 ) 将步骤 ( 1 ) 中 的树月旨肽 Fmoc-Lys(Boc)-Wang-R 换为 Fmoc-Gly(t-Bu)-Lys(Boc)-R,将步骤(2)中的 Fmoc-Gly(t-Bu)换为 Fmoc-Ala(Trt), 重复步骤(1 )〜步骤(3 )的操作,以此类推,即将前一步合成的树脂肽作下一步合 成的氨基组分,进行 14次接肽反应,至 15个氨基酸之间的肽键全部形成;
( 5 )脱除侧链保护基及肽链上的树脂:在最后形成的 12肽树脂中,加入 30mL 二氯甲烷、 三氟乙酸 3.0mL,于 25 °C反应 60min,过滤,滤液保留待用。 将含 50%三 氟乙酸的二氯甲烷溶液 10mL加入滤液,反应 20min,之后用上述溶液洗涤 3次,洗 液与前次滤液归并,经旋转蒸发仪蒸至余液少许,加入大量无水乙醚,析出白色粉 末状物,离心分离除去液相,之后用无水乙醚将粉末研磨 5 次,后真空干燥,称重计 算产率;
( 6 ) 取少量产物进行电泳检测及 RP-HPLC 分析,色谱条件为: Alltech Platinum C18色谱柱; 缓冲液 A为 0.1%的三氟乙酸 (TFA)水溶液; 缓冲液 B为 0.1%的 TFA及 90%的乙睛 (以上皆为体积分率)的水溶液;洗脱梯度为 40min内缓 冲液 B的体积分数从 10%升至 50%;流动相流速为 1.0ml/min检测波长为 214nm。 实施例 4
本实施例涉及多肽 (心肌肽 X) 的合成
多肽的序列为 Trp-Ser-Asn-Val-Leu-Arg-Gly-Met-Gly-Gly-Ala-Phe
所用的方法如实施例 3。
实施例 5
本实施例涉及从心肌肽溶液中提取多肽 (心肌肽 C) 的方法。
( 1 ) 仪器设备
依利特高压液相色谱 P230系统; PF-2的二维液相色谱分离系统(美国戴安 公司) 分析型色谱柱; waters, C18, 4.6 X 250mm, SPE 固相萃取小柱 (waters 公司); C18半制备反相色谱柱(美国热电公司); 真空冰冻干燥机(美国热电公 司); 离心机等。
(2) 实验条件及方法
①在心肌肽溶液加入 70%硫酸铵溶液, 在温度为 4°C的条件下放置过夜, 离 心, 分离上清液和沉淀;
②取上清溶液, 过 SPE固相萃取小柱, 用 60%乙腈和 0. 1%三氟乙酸的混合 溶液洗脱, 收集馏分 A;
③将收集到的馏分 A浓縮,然后用反相制备色谱分离,收集有活性的馏分 B; 色谱条件如下:流动相: A相为 100%H2O+0.1%TFA, B相为 60%ACN+ 0.1%
TFA
紫外检测器, 波长 λ =280ηηι, R=3.0
梯度洗脱: 0-5minO%B, 5-35minO%-100%B, 35-40minl00%B, 40-45min 100%-0%B;
④将有活性的馏分 B浓縮, 然后用分析型反相色谱进行进一步的分离, 收 集有活性的馏分 C;
色谱条件如下:
流动相: A相为 100%H2O+0.1%TFA, B相为 95%ACN+ 0.1% TFA 紫外检测器: 波长 λ =280ηηι, R=3.0
梯度洗脱: 0-5minO%B , 5-50minO%-100%B , 50-60minl00%B , 60-65min 100%-0%Β ⑤将有活性的馏分 C进行质谱检测, 通过质谱数据分析, 如图 2-图 3所示, 鉴定有馏分 C中有活性的肽段的氨基酸序列。
实施例 6
本实施例涉及从心肌肽溶液中提取多肽(心肌肽 C)的过程中的结构鉴定以 及质量检测。
( 1 ) 质谱检测
利用 MALDI-TOF-TOF质谱仪 (美国 AB公司 -4800) 对所得产物进行质谱 检测, 其中 MALDI-TOF—级质谱采用正离子反射检测模式; 二级串联质谱采用 正离子反射模式, 检测结果如图 2所示。
(2) 活性检测
活性测定采用大连珍奥药业公司提供的 "心肌细胞培养活性测定试验"方法 进行。 该方法在体外培养心肌细胞阿霉素中毒试验基础上, 用 2, 4-二苯基溴化 四唑 (MTT) 作为反应指示剂, 以观察心肌肽使受损心肌细胞线粒体脱氢酶活 力增强的作用, 以判定心肌保护作用。
活性测定的结果如下表所示
Figure imgf000011_0001
实施例 7
本实施例涉及心肌肽 C (CMPC)在制备和 /或治疗心肌缺血药方面的用途。 一、 实验材料
1. 试验动物
SD大鼠乳鼠, 2-4日龄, 由沈阳药科大学动物中心提供。
SD大鼠, 体重 200〜300 g, 雌雄各半, 由中国人民解放军军事医学科学院试 验动物中心提供。 动物合格证编号: SCXK (军) 2002-001。
2. 供试药物与试剂
心肌肽 C (CMPC), 由大连珍奥药业有限公司提供, 批号: C1586102; 维拉帕米注射液 (Ver): 上海禾丰制药有限公司, 规格: 2ml:5mg, 批号: 070701; 注射用多柔比星(阿霉素): 广东汕头特区明治医药有限公司, 规格: 10mg/ 瓶, 批号: 070202;
DMEM培养基 (高糖): Gibco, 批号: 1290007;
DMEM培养基 (低糖): Gibco, 批号: 1348529;
II型胶原酶: Gibco; 胎牛血清: 天津市灏洋生物制品科技责任有限公司, 批号: 04700701-3100
四甲基偶氮唑蓝 (MTT ) : Amresco; NBT: Amresco, 规格: lOOmg 乌拉坦: 天津基准化学试剂有限公司, 批号: 20060218 ;
超氧化物歧化酶 (SOD)、 丙二醛 (MDA)、 肌酸激酶 (CK) 和乳酸脱氢酶 ( LDH ) 试剂盒均购自南京建成生物工程研究所, 批号: 20080122;
冰乙酸: 天津市百世化工有限公司, 规格: 500ml, 批号: 20070712; 无水乙醇: 天津市百世化工有限公司, 规格: 500ml, 批号: 20070410 二、 实验方法
1 . 体外试验
1. 1 心肌细胞原代培养
取大鼠乳鼠心室, D-Hank's 清洗后剪碎, 用 II型胶原酶消化, 得到心肌细 胞及成纤维细胞, 用含 15%胎牛血清的高糖 DMEM ( DMEM-H-15 )培养。 通过 差速贴壁及化学方法去除成纤维细胞, 将心肌细胞接种到 96孔板中。
1.2. CMPC抗原代培养心肌细胞阿霉素损伤作用
细胞培养方法同 1. 1。
模型制备: 实验设空白对照组: 心肌细胞用 DMEM-H-15培养; 模型组: 加 入 1 mg/L阿霉素,培养 lh后, 以 DMEM-H-15洗板 2次,加入 DMEM-H-15培养; 阳性对照组 (维拉帕米 2、 0.4、 0.08 mg/L ) 及不同浓度受试药物组 (CMPC 50、 10、 2、 0.4、 0.08、 0.016、 0.0032、 0.00064 mg/L ) : 将阿霉素损伤 lh的心肌细胞 以 DMEM-H-15洗板 2次后分别加入各浓度维拉帕米注射液(Ver)以及 CMPC (上 述各组培养体系总容积均为 100 μΐ/孔, 药物浓度均指终浓度)。 继续培养 24h后 用 MTT法测定心肌细胞内线粒体琥珀酸脱氢酶活力,并计算保护率,求算出 EC5Q 值。 保护率 = (Ax - Amodei) I (Acontroi - Amodei) * 100%; Ax、 Amodel、 Acntr。^、别表 示各给药组、 模型组以及空白对照组的吸光度值。 在阿霉素损伤模型中, CMPC能显著提高心肌细胞的存活率, 药物浓度为 0.016-2 mg/L时其保护效果较好, 与模型组相比有显著性差异。 阿霉素损伤模型 中培养板 1、2、3中 CMPC的 EC5Q分别为 0.15、 0.13、 0.27 mg/L。结果见表 1 ( CMPC 对心肌细胞的保护率以 "%"表示)。
表 1 心肌肽 C对阿霉素损伤的心肌细胞存活率的影响
Figure imgf000013_0001
P < 0.01, * P < 0.05 与模型组对比 ** P < 0.01, # P < 0.05与空白对照组对比
1.3. CMPC抗原代培养心肌细胞缺氧-再给氧损伤作用
心肌细胞培养方法同 1. 1。
模型制备:取培养 48-72h的心肌细胞制备模型,将培养板内各孔细胞分为对 照组、 模型组、 维拉帕米组 (2、 0.4、 0.08 mg/L终浓度) 以及 CMPC组 (终浓度 为 50、 10、 2、 0.4、 0.08、 0.016、 0.0032 mg/L) , 各组为 3个复孔。 除对照组外, 其余细胞按以下方法制备模型: 将培养板中心肌细胞单层换用低糖培养基(内含 相应浓度的维拉帕米或 CMPC )后, 将培养板置于真空干燥器中, 充入氮气, 然 后密闭培养; 缺氧 15h造成心肌细胞损伤; 缺氧后换用高糖 DMEM 培养液(95% 空气 +5%C02) 培养 lh, 造成再给氧损伤。 用 MTT法测定 540nm处的吸光度值, 同上计算保护率, 求算出 EC5()值。
在缺氧复氧损伤模型中, CMPC能显著提高心肌细胞的存活率, 药物浓度为 0.08-2 mg/L时其保护效果较好, 与模型组相比有显著性差异, 培养板 1、 2、 3 中 CMPC的 EC5。分别为 0.66、 0.14、 0.82 mg/L。 结果见表 2 (CMPC对心肌细胞 的保护率以 "%"表示)。
表 2 心肌肽 C对缺氧 -复氧损伤心肌细胞存活率的影响
Figure imgf000014_0001
** P < 0.01, * P < 0.05 与模型组对比 ## P < 0.01, # P < 0.05 与空白对照组对比
2. 体内实验
2. 1. CMPC预防性给药对大鼠心肌缺血-再灌注损伤的保护作用
取 250-300g SD大鼠 70只, 将其中的 60只按体重均衡随机分为 6组, 每组 10 只, 剩余 10只以备补充各组死亡动物。 正常对照组: 行假手术, 即冠脉左前降支 (LAD) 处穿一丝线, 但不予结扎; 模型组: 结扎前 30min经静脉推注生理盐水 5 ml/kg, 缺血-再灌注操作详见模型制备。 阳性药组: 结扎前 30min经静脉推注 维拉帕米 1.0 mg/kg, 缺血-再灌注操作同模型组; CMPC高、 中、 低剂量组: 结 扎前 30min经静脉推注相应浓度 CMPC ( 1.8、 0.6、 0.2 mg/kg), 缺血 -再灌注操作 同模型组。
模型制备: 以 6%乌拉坦溶液按 20 ml/kg腹腔注射麻醉动物后, 将动物仰卧位 固定在手术台上; 连接心电图机, 测肢体 II导联心电图; 气管插管, 接动物人工 呼吸机, 按 6ml/200g潮气量、 55次 /min的频率给与呼气末持续正压通气, 呼吸比 为 2:1。 于胸骨左缘第四 /五肋间隙行开胸术, 分离肋骨去除心包后, 以左心耳下 缘为标志, 用 6/0丝线在冠状动脉左前降支结扎, 在结扎线与血管之间放一小段 直径为 lmm的聚乙烯管; 结扎丝线,使聚乙烯管压迫冠状动脉左前降支造成心肌 缺血。 以局部心肌变苍白和心电图 S-T段抬高表示冠状动脉左前降支结扎成功。 30min后小心取出聚乙烯管造成复灌。通过缺血区反应性充血和抬高的 S-T段下降 1/2以上证实复灌成功。 复灌 30min, 腹主动脉取血, 制备血清, 用于测定生化指 标 (按试剂盒说明书测定 CK、 LDH、 MDA、 SOD含量)。
取血后剖取大鼠心脏, 用生理盐水洗净心腔内积血, 称全心重, 去掉脂肪, 将心肌横切 4-5片置于试管中, 37°C下行 NBT染色 (正常组织染色, 缺血组织不 染色), 拍照。 切下缺血心肌称重, 用缺血心肌重量与全心湿重的百分比计算心 肌梗死面积 (MIS)。
模型组大鼠血清 CK、 LDH显著升高 (PO.01 ); 阳性药组显著降低血清 CK、 LDH活性(P<0.05 ); CMPC高剂量组、 CMPC中剂量组与模型组相比较, 能显著 的降低大鼠血清 LDH活性(P<0.05 ); CMPC高剂量组、 CMPC中剂量组能显著降 低 CK活性(P<0.05 ); CMPC低剂量组可以降低 LDH、 CK的活性, 但无显著性差 异 (P>0.05 )。 结果见表 3。
表 3 心肌肽 C预防性给药对缺血再灌注大鼠血清 CK、 LDH的影响 (JC±SD )
Figure imgf000015_0001
<0,05,**P<0,01 与模型组对比; ##Ρ<0.01与假手术组对比
模型组大鼠血清 SOD活性显著降低 (P<0.01), MDA值显著升高 (PO.01); 阳性药 Ver可以显著升高血清 SOD活性 (P<0.01), 降低 MDA活性 (PO.05); CMPC-H、 M、 L剂量组与模型组比较, 均能显著提高冠脉结扎大鼠血清 SOD活 力 (P<0.01, P<0.05), 降低 MDA含量 (P<0.01, P<0.05)。 结果见表 4。
表 4 心肌肽 C预防给药对缺血再灌注大鼠血清 SOD、 MDA的影响 (JC±SD)
Figure imgf000016_0001
<0.05 <0.01 与模型组对比; ##P<0.01_ 与假手术组对比
模型组大鼠心肌梗死面积显著升高 (P<0.01), 阳性药组、 CMPC各预防性 给药组与模型组比较, 均能非常显著降低大鼠心肌梗死面积 (P<0.01), 结果见 表 5、 图 7。 表 5 心肌肽 C预防性给药对缺血再灌注大鼠心肌梗死面积的影响 (^: ±SD)
Figure imgf000016_0002
<0.05 <0.01 与模型组对比; ##P<0.01 与假手术组对比
2.2 CMPC治疗性给药对大鼠心肌缺血-再灌注损伤的保护作用 结扎 LAD后 5min于尾静脉注射给药, 结扎 LAD30 min后复灌 30 min, 腹主动 脉采血后剖取心脏, 同上法测定生化指标和心肌梗死面积。
模型组大鼠血清 CK、 LDH显著升高 (PO.01); 阳性药 Ver显著降低血清 CK、 LDH活性(P<0.05, P<0.01); CMPC-H、 M剂量组与模型组相比较, 能显著的降 低大鼠血清 CK、 LDH活性 (P<0.01, P<0.05); CMPC-L可以降低 LDH、 CK的活 性, 但无显著性差异 (P>0.05)。 结果见表 6。
表 6 心肌肽 C治疗性给药对缺血再灌注大鼠血清 CK、 LDH的影响 (JC±SD)
Figure imgf000017_0001
<0.05; <0.01 与模型组比较; ##P<0..01_ 与假手术组比较
模型组大鼠血清 SOD活性显著降低 (P<0.05), MDA值显著升高 (PO.01); 阳性药 Ver可以显著升高血清 SOD活性 (P<0.05), 降低 MDA含量 (PO.05); CMPC-H、 M与模型组比较,均能显著提高大鼠血清 SOD活力(P<0.05, P<0.01), CMPC-L有升高 SOD活性趋势,但与模型组比较无显著差异(P>0.05); CMPC-H、 M、 L各剂量组均可以降低 MDA含量 (P<0.05), 结果见表 7。 表 7 心肌肽 C治疗性给药对缺血再灌注大鼠血清 SOD、 MDA的影响 (^: ±SD)
Figure imgf000017_0002
Figure imgf000018_0001
<0.05 <0.01 与模型组进行比较; ##P<0.01 与假手术组进行比较
模型组大鼠心肌梗死面积显著升高 (P<0.01 ), 阳性药 Ver、 CMPC治疗性给 药组与模型组比较,均能非常显著降低大鼠心肌梗死面积(P<0.05 )。结果见表 8、 图 8。 表 8 心肌肽 C治疗性给药对缺血再灌注大鼠心肌梗死面积的影响 (^: ±SD )
Figure imgf000018_0002
*?<0.05; <0.01 与模型组进行比较; ^Ρ^Ο.ΟΙ 与假手术组进行比较
三、 结论
在体外原代培养乳鼠心肌细胞阿霉素损伤以及缺氧 -复氧损伤模型中, 心肌 肽 C可以升高损伤的心肌细胞线粒体脱氢酶的活性, 对损伤的心肌细胞具有一 定的保护作用; 体内心肌肽 c预防性以及治疗性给药均能显著降低缺血再灌注 大鼠血清 CK、 LDH、 MDA含量, 显著升高 SOD含量, 且有一定的剂量依赖性, 并能降低大鼠心肌梗死面积,表明心肌肽 C治疗性和预防性给药对缺血再灌注损 伤的大鼠心肌均具有保护作用。

Claims

权 利 要 求 书
1、 一种多肽, 其特征在于所述的多肽的氨基酸的排列顺序为: Trp- Ser- Asn- Val- Leu- Arg- Gly- Met- Gly- Gly- Ala- Phe。
2、 根据权利要求 1所述的多肽, 其特征在于在所述多肽连接有色氨酸的一端依 次连接丙氨酸、 甘氨酸、 赖氨酸,其氨基酸的排列顺序为:
Lys- Gly- Ala- Trp- Ser- Asn- Val- Leu- Arg- Gly- Met- Gly- Gly- Ala- Phe。
3、 一种从心肌肽溶液中提取权利要求 2所述的多肽的方法, 其特征在于, 所述 的方法包括如下步骤:
( 1 ) 在心肌肽溶液加入硫酸铵溶液, 放置, 离心, 分离上清液和沉淀;
( 2 ) 取上清液, 过固相萃取小柱, 用有机溶剂洗脱, 收集馏分 A;
( 3 )将收集到的馏分 A浓縮, 然后用反相制备色谱分离, 收集有活性的馏分 B;
( 4) 将有活性的馏分 B浓縮, 然后用分析型反相色谱进行进一步的分离, 收集 有活性的馏分 C;
( 5 ) 将有活性的馏分 C进行质谱检测, 通过质谱数据分析, 鉴定馏分 C中有活 性的肽段的氨基酸序列, 所述的馏分 C即为所述的多肽。
4、 根据权利要求 3所述的方法, 其特征在于所述硫酸铵溶液的质量百分比浓度 为 60-80%, 优选所述的浓度为 70%。
5、 根据权利要求 3所述的方法, 其特征在于步骤 (2 ) 中所述的有机溶剂为 60% 乙腈和 0. 1%三氟乙酸的混合溶液。
6、 根据权利要求 3所述的方法, 其特征在于步骤 (3 ) 中将馏分 A浓縮至原体积 的 1/8-3/4; 利用反相制备色谱分离的条件为: 流动相: A相为 100 H2O+0.1 TFA, B相为 60%ACN+ 0.1% TFA; 紫外检测器,波长 λ =280nm, R=3.0; 梯度洗脱: 0-5minO%B, 5-35minO -100 B, 35-40minl00 B, 40-45minl00%-0%B。
7、根据权利要求 3所述的方法,其特征在于步骤(4)中将馏分 B浓縮至 1/8-1/2; 所述的用分析型反相色谱进行进一步的分离为在色谱条件如下: 流动相: A相为 100 H2O+0.1 TFA, B相为 95%ACN+0.1%TFA; 紫外检测器, 波长 λ =280nm, R=3.0; 梯度洗脱: 0-5minO%B, 5-50minO -100 B, 50-60minl00 B , 60-65min 100%-0%B的条件下进行。
8、一种制备权利要求 2所述多肽的化学合成方法, 其特征在于所述的方法包括:
( 1 ) 分别将色氨酸、 丝氨酸、 天冬酰胺、 缬氨酸、 亮氨酸、 精氨酸、 甘氨酸、 蛋氨酸、 丙氨酸、 苯丙氨酸、 赖氨酸的氨基用保护基团进行保护;
( 2 ) 先将固相载体溶胀, 再将多肽的氨基酸排列顺序中第一个保护后的氨基酸 固定到该固相载体上,然后将所得产物进行洗涤, 得到连接有第一个保护后的氨 基酸的固相载体;
( 3 ) 将第二个保护氨基酸加入到结合有第一个氨基酸的固相载体中, 在縮合剂 存在下进行反应形成肽键,然后将氨基酸的氨基的保护基团脱除、并洗涤所得到 的固相载体;
( 4) 按照多肽的氨基酸排序, 依次加入相应的保护氨基酸, 重复上述的氨基的 保护基团脱除、洗涤的步骤, 使肽链不断延长, 直到最后一个氨基酸结合到肽链 上为止;
( 5 )取分离液浸泡上述步骤(4)所得的结合有多肽的固相载体, 然后经过过滤 后取所得滤液进行沉淀, 得到多肽粗品;
( 6 ) 将所得的多肽粗品进行分离纯化, 获得目标产物。
9、 根据权利要求 8所述的化学合成方法, 其特征在于步骤(1 )所述的氨基酸的 氨基可以由以下基团进行保护
( 1 ) 苄酯基 (Carbobenzoxyl)
(2) 叔-丁氧羰基 (t-Butyloxycarbonyl)
( 3 ) 甲苯磺酰基 (Tosyl)
(4) 9-亚 基甲酉旨基 (Fmoc: 9-Fluorenylmethoxycarbonyl)。
10、 权利要求 2所述的多肽在制备预防和 /或治疗组织器官缺血药方面的用途, 优选所述多肽在制备预防和 /或治疗心肌缺血、 脑缺血、 肝缺血、 胃缺血、 肠缺 血、 肺缺血或肾缺血药方面的用途, 更优选所述多肽在制备预防和 /或治疗心肌 缺血药方面的用途。
PCT/CN2008/071647 2008-07-15 2008-07-15 心肌肽、其制备方法及用途 WO2010006476A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011517731A JP5373077B2 (ja) 2008-07-15 2008-07-15 ポリペプチド系物質、その製造方法、組織器官の虚血の予防用薬及び治療用薬
EP08773191.5A EP2314600B1 (en) 2008-07-15 2008-07-15 Myocardial peptide, preparation method and uses thereof
US13/054,229 US8940865B2 (en) 2008-07-15 2008-07-15 Myocardial peptide, preparation method and uses thereof
PCT/CN2008/071647 WO2010006476A1 (zh) 2008-07-15 2008-07-15 心肌肽、其制备方法及用途
KR1020117003285A KR101505239B1 (ko) 2008-07-15 2008-07-15 심근 펩타이드, 이의 제조방법 및 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071647 WO2010006476A1 (zh) 2008-07-15 2008-07-15 心肌肽、其制备方法及用途

Publications (1)

Publication Number Publication Date
WO2010006476A1 true WO2010006476A1 (zh) 2010-01-21

Family

ID=41549989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071647 WO2010006476A1 (zh) 2008-07-15 2008-07-15 心肌肽、其制备方法及用途

Country Status (5)

Country Link
US (1) US8940865B2 (zh)
EP (1) EP2314600B1 (zh)
JP (1) JP5373077B2 (zh)
KR (1) KR101505239B1 (zh)
WO (1) WO2010006476A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065129C (zh) * 1994-03-15 2001-05-02 中国人民解放军第458医院 利心康
CN1552439A (zh) * 2003-06-04 2004-12-08 大连珍奥药业有限公司 心肌肽素及其用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7000898A (en) * 1996-11-01 1998-05-29 Emory University Mouse lacking heart-muscle adenine nucleotide translocator protein and methods
EP1783221A1 (en) * 2000-05-11 2007-05-09 MIGENIX Corp. Production of adenine nucleotide translocator (ANT), novel ANT ligands and screening assays therefor
DK1661907T3 (da) * 2003-06-04 2012-05-07 Dalian Zhen Ao Pharmaceutical Co Ltd Fremgangsmåde til fremstilling af cardiomyopeptidin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065129C (zh) * 1994-03-15 2001-05-02 中国人民解放军第458医院 利心康
CN1552439A (zh) * 2003-06-04 2004-12-08 大连珍奥药业有限公司 心肌肽素及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, R. B. ET AL.: "Therapeutic effect of cardiomyopeptidin on rat cardiac ischemia -reperfusion injury", CHINESE JOURNAL OF PATHOPHYSIOLOGY, vol. 18, no. 5, 2002, pages 556 - 557, XP008141760 *
See also references of EP2314600A4 *

Also Published As

Publication number Publication date
EP2314600A4 (en) 2012-04-25
JP2011527991A (ja) 2011-11-10
JP5373077B2 (ja) 2013-12-18
KR20110045000A (ko) 2011-05-03
KR101505239B1 (ko) 2015-03-23
US20110160432A1 (en) 2011-06-30
EP2314600A1 (en) 2011-04-27
US8940865B2 (en) 2015-01-27
EP2314600B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
CN1976948A (zh) 修饰的Exendins及其应用
JP2819467B2 (ja) 新規なカルジオジラチン断片およびその製造方法
AU2017234460A1 (en) Multi-functional fusion polypeptide, preparation method thereof, and application of same
JPH0729925B2 (ja) 新生物形成病用医薬組成物
JP2625156B2 (ja) 細胞接着活性コア配列の繰り返し構造からなるポリペプチド
JPS60184098A (ja) 新規なペプチド及びこれを有効成分とする利尿剤
CA2405704C (en) Bombesin analogs for treatment of cancer
WO2022148289A1 (zh) 一类用于修复皮肤损伤或黏膜损伤的多肽及其应用
CN101265292B (zh) 多肽类物质、其制备方法及其用途
WO2010006476A1 (zh) 心肌肽、其制备方法及用途
WO2007054030A1 (fr) Modifications polyethylene glycole de thymosine alpha-1
US6921749B1 (en) Polypeptides derived from endostatin exhibiting antiangiogenic activity
CN102304178B (zh) 光滑爪蟾抗肿瘤多肽制备方法及用途
CN116801896A (zh) Bl-8040的组合物
JP3728494B2 (ja) 新規な血清コレステロール低下ペプチド
CN109280079A (zh) 一种蛙来源的创伤修复肽及其合成方法
CZ20032612A3 (cs) HeterokarpinŹ proteinŹ který váže lidský GHRH
CN103012555A (zh) 具有组织保护活性的新多肽的制备方法及在治疗中的应用
JP3723838B2 (ja) 新規な抗脱毛ペプチド
CN116768974A (zh) 用于预防和/或治疗肾纤维化的多肽化合物
CN106554405B (zh) 一种多肽及其用途、制备方法
US6989371B1 (en) Bombesin analogs for treatment of cancer
CN117257915A (zh) 一种红细胞搭便车偶联物及其制备方法和应用
JP2617700B2 (ja) 細胞接着活性コア配列の繰り返し構造からなるポリペプチド
DK171969B1 (da) Tetrapeptid, dets fremstilling og anvendelse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011517731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008773191

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008773191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117003285

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13054229

Country of ref document: US