WO2010006474A1 - 复合式气体流量测量方法及其装置 - Google Patents

复合式气体流量测量方法及其装置 Download PDF

Info

Publication number
WO2010006474A1
WO2010006474A1 PCT/CN2008/001645 CN2008001645W WO2010006474A1 WO 2010006474 A1 WO2010006474 A1 WO 2010006474A1 CN 2008001645 W CN2008001645 W CN 2008001645W WO 2010006474 A1 WO2010006474 A1 WO 2010006474A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas flow
measuring device
flow measuring
sensor
data
Prior art date
Application number
PCT/CN2008/001645
Other languages
English (en)
French (fr)
Inventor
韩怀成
毛巨林
Original Assignee
美新半导体(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美新半导体(无锡)有限公司 filed Critical 美新半导体(无锡)有限公司
Priority to US13/054,733 priority Critical patent/US20110125424A1/en
Priority to EP08800638.2A priority patent/EP2312276A4/en
Priority to JP2011517730A priority patent/JP5425902B2/ja
Publication of WO2010006474A1 publication Critical patent/WO2010006474A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting

Definitions

  • the invention relates to the field of gas flow measurement, in particular to a composite gas flow measuring method and device thereof with wide range ratio, high measuring precision and good reliability. Background technique
  • CN1282417 on January 31, 2001 discloses a flow meter capable of accurately measuring a flow rate over a wide flow range, which is a measurement area for setting a small flow rate in a flow path of a pipe and Large flow measurement area.
  • a rectifying filter that divides the flow path into a plurality of small flow paths and rectifies the flow of the gas is provided.
  • the average flow rates of the gases flowing through the plurality of small flow paths are substantially equal.
  • a portion of the gas reaches a nozzle that is vertically disposed on both sides of the flow sensor for small flow rate, and is accelerated by the action of the nozzle.
  • a flow rate sensor for a small flow rate in a small flow rate region a signal corresponding to a flow rate of a gas that has been accelerated by a small flow path and accelerated by a nozzle, and a large flow rate for a large flow rate measurement area in a small flow rate section
  • the speed sensor outputs a signal corresponding to the flow rate of the gas over a large number of sections.
  • the invention provides a composite gas flow measuring method and a device thereof with wide range ratio and wide application range in order to solve the problems of narrow range and small application range of the current gas flow measuring device.
  • Another object of the present invention is to provide a method and apparatus for measuring a complex gas flow rate with high measurement accuracy and high reliability in order to solve the problems of low measurement accuracy and poor reliability of current gas flow measuring devices.
  • the composite gas flow measuring method is: connecting a bypass pipe on a mechanical gas flow measuring device with a temperature sensor and a pressure sensor, and the bypass pipe is provided MEMS flow sensor, temperature sensor, pressure sensor, mechanical gas flow measuring device and MEMS flow sensor are connected to data processing system, data processing system is connected with data display system, temperature sensor, pressure sensor, mechanical gas flow measuring device and MEMS flow sensor The measured data is processed by the data processing system to display the gas flow data through the data display system.
  • the bypass gas pipe is connected to the mechanical gas flow measuring device, and the MEMS flow sensor is disposed on the bypass pipe, and the measured data of the two flow measuring devices are processed by the data processing system, and finally the gas flow data is displayed by the display system.
  • the combination of the superior MEMS flow sensor not only effectively broadens the turndown ratio of the gas flow measuring device, but also expands the applicable range of the gas flow measuring device, and the data processing system takes into account the measurement data of the two measuring devices in the data processing process. Therefore, the measurement accuracy of the gas flow rate is also improved, and in addition, since the two sets of measuring devices work at the same time, the reliability of the entire gas flow measuring device is greatly improved.
  • the composite gas flow measuring method is a data processing system that comprehensively analyzes the measured data of the mechanical gas flow measuring device after temperature and pressure compensation and the data of the MEMS flow sensor, and when the gas flow rate is small, The data of the MEMS flow sensor shall prevail. When the gas flow rate is large, the data of the mechanical gas flow measuring device shall prevail. In the overlapping range of the mechanical gas flow measuring device and the MEMS flow sensor, the mechanical gas according to the gas flow rate The data of the flow measuring device and the MEMS flow sensor are proportionally weighted and then added.
  • Such a treatment method makes the MEMS flow sensor have a certain degree of compensation in a large flow rate state and a large error generated by the mechanical gas flow measuring device in a small flow rate state, thereby improving the measurement accuracy of the gas flow rate.
  • the data processing system when the mechanical gas flow measuring device has no measurement data, the data processing system is based on the data of the MEMS flow sensor, and when the MEMS flow sensor has no measurement data, the data processing system uses the data of the mechanical gas flow measuring device. Prevail. In the absence of one measurement data, the data processing system takes the remaining measurement data as the standard. This data processing method only processes according to the real-time measurement data.
  • the program structure of the data processing system is simple.
  • a composite gas flow measuring device is connected to a bypass pipe on a mechanical gas flow measuring device with a temperature sensor and a pressure sensor, and a MEMS flow sensor, a temperature sensor, a pressure sensor, and a mechanical gas flow are arranged on the bypass pipe.
  • the measuring device and the MEMS flow sensor are connected to a data processing system, and the data processing system is connected to the data display system.
  • the bypass pipe is connected to the conventional mechanical gas flow measuring device, and the MEMS flow sensor is arranged in the bypass pipe, and the gas flow rate is simultaneously measured by the two measuring devices, and the measured data is based on the two measuring devices.
  • the measurement advantages at different flow rates are integrated through the data processing system, and finally the measurement data is displayed on the data display system.
  • This gas flow measuring mechanism combines a high-stability and high-accuracy mechanical gas flow measuring device with a MEMS flow sensor that has a significant advantage in measuring small flow rates, which not only effectively broadens the gas flow measuring device.
  • the range ratio, and the data processing system takes into account the measurement data of the two sets of measuring devices in the data processing process, thereby improving the measurement accuracy of the gas flow rate.
  • the two sets of measuring devices work simultaneously, the entire gas flow rate is greatly improved. Measuring device reliability.
  • the inlet of the bypass pipe is located on the upstream side of the gas flow of the mechanical gas flow measuring device, and the outlet of the bypass pipe is located on the downstream side of the gas flow of the mechanical gas flow measuring device.
  • the inner diameter of the bypass pipe is 2 to 10 mm.
  • the bypass pipe uses the pressure difference between the inlet and outlet of the main pipe gas to measure the gas flow rate. Therefore, the inlet of the bypass pipe is located on the upstream side of the gas flow of the mechanical gas flow measuring device, and the outlet of the bypass pipe is located in the mechanical gas flow measuring device. The downstream side of the airflow.
  • bypass pipe with a relatively larger inner diameter may be used, and for a smaller diameter main pipe, a bypass pipe having a relatively smaller inner diameter should be used, so that the cross-sectional area of the bypass pipe is far. Far less than the supervisor The track has little effect on the mechanical gas flow measuring device on the main pipe.
  • the upstream side of the gas flow of the mechanical gas flow measuring device is provided with a constant pressure pipe total pressure take-up hole, the outlet end of the constant velocity pipe is connected with the inlet of the bypass pipe, and the outlet of the bypass pipe is located at the mechanical gas flow measurement The downstream side of the airflow of the device.
  • the advantage of the constant velocity tube measurement method is that it can measure the average flow velocity of the cross section inside the tube, is not affected by the flow distortion, thereby improving the measurement accuracy, and also reduces the direct impact and pollution of the impurities in the fluid in the measuring tube on the MEMS flow sensor, and prolongs the The life of the MEMS flow sensor.
  • the mechanical gas flow measuring device is a speed type, differential pressure type gas volume flow measuring device.
  • the composite gas flow measuring device adopts a combined measuring method of a bypass pipe and a MEMS flow sensor in the bypass pipe, and is applicable to all mechanical gas flow measuring devices having a pressure difference between the intake side and the outlet side. .
  • the invention has the beneficial effects that it effectively solves the problem that the current gas flow measuring device has a narrow range and a small application range. At the same time, the problem of low measurement accuracy and poor reliability existing in the current gas flow measuring device is also solved.
  • the invention has simple structure and low cost, and is worthy of being promoted and used by related industries.
  • Figure 1 is a schematic view showing the structure of a composite gas flow measuring device of the present invention.
  • FIG. 2 is a schematic view showing another structure of the composite gas flow measuring device of the present invention. Best way to implement the invention
  • the composite gas flow measurement method of Embodiment 1 is: a bypass gas pipe is connected to a mechanical gas flow measuring device with a temperature sensor and a pressure sensor, and a MEMS flow sensor, a temperature sensor, a pressure sensor, and a mechanical device are disposed on the bypass pipe.
  • the gas flow measuring device and the MEMS flow sensor are connected to the data processing system, and the data processing system is connected to the data display system.
  • the measured data of the temperature sensor, the pressure sensor, the mechanical gas flow measuring device and the MEMS flow sensor are processed by the data processing system.
  • the data display system displays gas flow data.
  • the data processing system performs comprehensive analysis and processing on the measured data of the mechanical gas flow measuring device through temperature and pressure compensation and the data of the MEMS flow sensor.
  • the data of the MEMS flow sensor is taken as the standard, and when the gas flow rate is large Based on the data of the mechanical gas flow measuring device, the data of the mechanical gas flow measuring device and the MEMS flow sensor are proportionally weighted according to the gas flow rate in the overlapping portion of the mechanical gas flow measuring device and the MEMS flow sensor. Then add processing.
  • the mechanical gas flow measuring device has no measurement data
  • the data processing system is based on the data of the MEMS flow sensor.
  • the data processing system is based on the data of the mechanical gas flow measuring device.
  • the composite gas flow measuring device of the first embodiment is shown in FIG. 1.
  • the composite gas flow measuring device is connected to the bypass tube on the vortex gas flow measuring device with the temperature sensor 7 and the pressure sensor 2 on the body 1.
  • the inlet 3 of the bypass pipe 8 is located on the upstream side of the gas flow of the vortex generator 4, the outlet 6 of the bypass pipe is located on the downstream side of the gas flow of the vortex frequency detector 5, and the inner diameter of the bypass pipe 8 is 5 mm, bypass A MEMS flow sensor 9 is provided on the tube 8.
  • the data processing system 10 is connected to the data display system 11.
  • the data processing system 10 is further provided with an input/output interface 12, and the entire composite gas flow measuring device is powered by a dedicated power source.
  • Example 2 Example 2
  • Embodiment 2 uses a mechanical gas flow measuring device or a MEMS flow sensor without measurement data, the data processing system determines the final gas flow data measurement method according to the remaining one measurement data and according to a preset weighting curve, and the rest The method was the same as in Example 1.
  • the composite gas flow measuring device of the second embodiment is shown in FIG. 2.
  • the composite gas flow measuring device is connected to the bypass tube on the vortex gas flow measuring device with the temperature sensor 7 and the pressure sensor 2 on the watch body 1.
  • the averaging tube 14 and the pressure tapping hole 13 are set on the vortex generating body 4 according to the hole position of the averaging tube for the total pressure tube, and the outlet end of the averaging tube 14 is connected with the inlet 3 of the bypass tube 8.
  • the outlet 6 of the bypass pipe 8 is located on the downstream side of the airflow of the vortex frequency detector 5, and the rest is the same as in the first embodiment.
  • the composite gas flow measuring device When the composite gas flow measuring device is used, most of the gas to be measured flows through the mechanical gas flow measuring device of the main pipe, and a small amount of gas flows through the bypass pipe under the pressure difference between the two ends of the main pipe gas measuring, the main pipe
  • the measured flow data of the gas measuring device is converted into the standard volume data by the temperature processing compensation process of the main pipeline pressure and temperature data measured by the data processing system, and the small amount of gas flowing through the bypass pipe is performed by the MEMS flow sensor.
  • Another measurement of the gas flow rate, the measurement data of the MEMS flow sensor can be directly calibrated to the standard volume data, so that the two-way gas flow measurement can achieve the standard measurement, so that the two measurement methods are organically combined.
  • the data processing system measures the measurement characteristics of the two measuring devices at different flow rates. The data is analyzed comprehensively and the final gas flow data is displayed by the display system. Therefore, the wide range ratio, high precision and high reliability of the standard flow measurement are realized, which meets the development trend of modern gas flow quality measurement requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

复合式气体流量测量方法及其装置
技术领域
本发明涉及气体流量测量领域, 尤其是涉及一种量程比宽、 测量精度 高、 可靠性好的复合式气体流量测量方法及其装置。 背景技术
众所周知, 现在用以测量气体流量的方法有很多种, 相应的测试装置 也多种多样, 但每种装置都有其测试的局限性, 比如机械式气体流量测量 装置在气体流速较大的情况下性能稳定, 测量精度也比较高, 但机械式气 体流量测量装置在气体流速较小时误差较大, 例如涡街式的气体流量测量 装置在气体流速小于 5米每秒时几乎无法进行准确的测量, 而热式气体流 量测量装置适合在气体流速较小时的测量, 在气体流速较大时其误差较大。 因此, 单一的气体流量测量装置较难做到宽量程比、 高精度的测量。 公开 日为 2001年 1月 31日、 公开号为 CN1282417的专利文件公开了一种可以 在宽的流量范围上精确测定流量的流量计, 它是在配管的流路内设置小流 量用测量区域和大流量用测量区域。 在小流量用测量区域内, 设置将流路 分割为多个小流路并对气体的流进行整流的整流过滤器。 分别流过多个小 流路的气体的各平均流速基本相等。 气体的一部分, 到达在小流量用流速 传感器的两侧立式设置的喷嘴, 借助于该喷嘴的作用进行加速。 小流量用 测量区域的小流量用流速传感器, 在小流量区段上, 输出与通过小流路并 由喷嘴加速后的气体的流速对应的信号, 大流量用测量区域的大流量用流 速传感器, 在大量区段上, 输出与气体的流速对应的信号。 上述装置虽然 在一定程度上扩展了量程比, 提高了测量精度, 但是该装置结构较为复杂, 制作成本较高, 同时, 该装置在实际应用中, 流态变化的影响也难以完全 消除。 发明的公开
本发明为解决目前气体流量测量装置存在的量程比窄、 适用范围小的 问题而提供一种量程比宽、 适用范围广的复合式气体流量测量方法及其装 置。
本发明的另一个目的是为解决目前气体流量测量装置存在的测量精度 低、 可靠性差的问题而提供一种测量精度高、 可靠性好复合式气体流量测 量方法及其装置。
本发明为达到上述技术目的所采用的具体技术方案为: 复合式气体流 量测量方法是: 在带温度传感器与压力传感器的机械式气体流量测量装置 上并接旁路管,旁路管上设有 MEMS流量传感器,温度传感器、压力传感器、 机械式气体流量测量装置及 MEMS流量传感器均连接数据处理系统, 数据处 理系统连接数据显示系统, 温度传感器、 压力传感器、 机械式气体流量测 量装置及 MEMS流量传感器的所测数据经过数据处理系统处理后通过数据显 示系统显示出气体流量数据。 在机械式气体流量测量装置上并接旁路管, 并旁路管上设置 MEMS流量传感器, 将两种流量测量装置的所测数据通过数 据处理系统处理, 最后通过显示系统显示出气体流量数据, 将在大流速时 稳定性与准确性较高机械式气体流量测量装置与在测量小流速时具有明显 优势的 MEMS流量传感器有机结合, 不但有效展宽了气体流量测量装置的量 程比, 扩展了气体流量测量装置的适用范围, 而且数据处理系统在数据处 理过程中, 综合考虑了两套测量装置的测量数据, 从而也提高了气体流量 的测量精度, 此外, 由于两套测量装置同时工作, 大大提高了整个气体流 量测量装置的可靠性。
作为一种优选方法, 复合式气体流量测量方法是数据处理系统对机械 式气体流量测量装置的所测数据经过温度、压力补偿后与 MEMS流量传感器 的数据进行综合分析处理, 气体流速较小时, 以 MEMS流量传感器的数据为 准, 气体流速较大时, 以机械式气体流量测量装置的数据为准, 在机械式 气体流量测量装置及 MEMS流量传感器的量程重叠部分, 根据气体流速大小 对机械式气体流量测量装置及 MEMS流量传感器的数据按比例加权后进行相 加处理。这样的处理方式, 使得 MEMS流量传感器在流速较大状态以及机械 式气体流量测量装置在流速较小状态下产生的较大误差得到了一定程度的 补偿, 提高了气体流量的测量精度。
作为一种优选方法, 当机械式气体流量测量装置无测量数据时, 数据 处理系统以 MEMS流量传感器的数据为准, MEMS流量传感器无测量数据时, 数据处理系统以机械式气体流量测量装置的数据为准。 在缺少一路测量数 据的情况下, 数据处理系统以剩下的一路测量数据为准, 这种数据处理方 法只根据实时测量数据进行处理, 数据处理系统的程序结构简单。
作为另一种可选方法, 机械式气体流量测量装置或 MEMS流量传感器无 结合事先设定的加权曲线数据进行处理, 数据处理系统需存储事先设定的 加权曲线数据, 程序结构相对复杂。
一种复合式气体流量测量装置, 在带温度传感器与压力传感器的机械 式气体流量测量装置上并接旁路管, 旁路管上设有 MEMS流量传感器, 温度 传感器、压力传感器、 机械式气体流量测量装置及 MEMS流量传感器均连接 数据处理系统, 数据处理系统连接数据显示系统。 在传统的机械式气^ ^流 量测量装置上并接旁路管, 并在旁路管内设置 MEMS流量传感器, 用两种测 量装置对气体流量同时进行测量, 将所测数据根据两种测量装置在不同流 速条件下的测量优势通过数据处理系统进行综合处理, 最后在数据显示系 统上显示出测量数据。 这种气体流量测量机构, 将在大流速时稳定性与准 确性较高机械式气体流量测量装置与在测量小流速时具有明显优势的 MEMS 流量传感器有机结合, 不但有效展宽了气体流量测量装置的量程比, 而且 数据处理系统在数据处理过程中, 综合考虑了两套测量装置的测量数据, 从而也提高了气体流量的测量精度, 此外, 由于两套测量装置同时工作, 大大提高了整个气体流量测量装置的可靠性。
旁路管的进口位于机械式气体流量测量装置的气流上游侧, 旁路管的 出口位于机械式气体流量测量装置的气流下游侧, 作为优选, 旁路管的内 径为 2至 10毫米。旁路管是利用主管道气体进出口的压差进行气体流量测 量的, 因此, 旁路管的进口位于机械式气体流量测量装置的气流上游侧, 旁路管的出口位于机械式气体流量测量装置的气流下游侧。 对于直径较大 的主管道, 可以采用内径相对较大的旁路管, 而对于直径较小的主管道, 则应采用内径相对较小的旁路管, 从而使旁路管的横截面积远远小于主管 道, 使其对主管道上的机械式气体流量测量装置几乎不产生影响。
作为优选, 机械式气体流量测量装置的气流上游侧设有均速管总压取 压孔, 均速管的出口端与旁路管的进口相连接, 旁路管的出口位于机械式 气体流量测量装置的气流下游侧。 均速管测量方式的优点是可以测量管内 截面的平均流速, 不受流态畸变的影响从而提高测量精度, 同时也减少了 测量管内流体中的杂质对 MEMS流量传感器的直接冲击与污染,延长了 MEMS 流量传感器的使用寿命。
作为优选, 机械式气体流量测量装置为速度式、 差压式气体体积流量 测量装置。 复合式气体流量测量装置所采用的并接旁路管、 在旁路管内设 置 MEMS流量传感器的复合测量方式, 适用于所有在进气侧与出气侧之间存 在压差的机械式气体流量测量装置。
本发明的有益效果是: 它有效地解决目前气体流量测量装置存在的量 程比窄, 适用范围小问题。 同时, 也解决了目前气体流量测量装置存在的 测量精度低、 可靠性差的问题, 本发明结构简单、 成本低, 值得相关行业 推广使用。 附图说明
图 1是本发明复合式气体流量测量装置的一种结构示意图。
图 2是本发明复合式气体流量测量装置的另一种结构示意图。 实现本发明的最佳方法
下面通过实施例, 并结合附图对本发明技术方案的具体实施方式作进 一步的说明。
实施例 1
实施例 1 的复合式气体流量测量方法为: 在带温度传感器与压力传感 器的机械式气体流量测量装置上并接旁路管, 旁路管上设有 MEMS流量传感 器, 温度传感器、 压力传感器、 机械式气体流量测量装置及 MEMS流量传感 器均连接数据处理系统, 数据处理系统连接数据显示系统, 温度传感器、 压力传感器、机械式气体流量测量装置及 MEMS流量传感器的所测数据经过 数据处理系统处理后通过数据显示系统显示出气体流量数据。 数据处理系 统对机械式气体流量测量装置的所测数据经过温度、压力补偿启与 MEMS流 量传感器的数据进行综合分析处理, 气体流速较小时, 以 MEMS流量传感器 的数据为准, 气体流速较大时, 以机械式气体流量测量装置的数据为准, 在机械式气体流量测量装置及 MEMS流量传感器的量程重叠部分, 根据气体 流速的大小对机械式气体流量测量装置及 MEMS流量传感器的数据按比例加 权后进行相加处理。 当机械式气体流量测量装置无测量数据时, 数据处理 系统以 MEMS流量传感器的数据为准, MEMS流量传感器无测量数据时,数据 处理系统以机械式气体流量测量装置的数据为准。
实施例 1的复合式气体流量测量装置如图 1所示, 复合式气体流量测 量装置是在表体 1上带温度传感器 7与压力传感器 2的涡街式气体流量测 量装置上并接旁路管 8,旁路管 8的进口 3位于涡旋发生体 4的气流上游侧, 旁路管的出口 6位于涡街频率检测器 5的气流下游侧,旁路管 8的内径为 5 毫米, 旁路管 8上设有 MEMS流量传感器 9。 涡街式气体流量测量装置上的 温度传感器 7、 压力传感器 2、 涡街频率检测器 5及 MEMS流量传感器 9均 连接数据处理系统 10, 数据处理系统 10连接数据显示系统 11, 数据处理 系统 10上还设有输入输出接口 12,整个复合式气体流量测量装置采用专用 电源供电。 实施例 2
实施例 2采用机械式气体流量测量装置或 MEMS流量传感器无测量数据 时, 数据处理系统根据剩下的一路测量数据并按事先设定的加权曲线来确 定最后的气体流量数据的测量方法, 其余的方法和实施例 1相同。
实施例 2的复合式气体流量测量装置如图 2所示, 复合式气体流量测 量装置是在表体 1上带温度传感器 7与压力传感器 2的涡街式气体流量测 量装置上并接旁路管 8,在涡旋发生体 4上按均速管总压取压孔的孔位要求 设置均速管 14及取压孔 13, 均速管 14的出口端与旁路管 8的进口 3相连 接, 旁路管 8的出口 6位于涡街频率检测器 5的气流下游侧, 其余和实施 例 1相同。
复合式气体流量测量装置使用时, 被测气体的绝大部分流经主管道的 机械式气体流量测量装置, 少量的气体在主管道气体测量 置两端的压差 作用下流经旁路管, 主管道气体测量装置的所测流量数据根据同步测得的 主管道压力及温度数据由数据处理系统进行温压补偿处理后转换为标况体 积数据, 流经旁路管的少量气体则通过 MEMS流量传感器进行气体流量的另 一路测量, MEMS流量传感器的测量数据可以直接标定为标况体积数据, 从 而使两路气体流量测量均实现标方测量, 使两种测量方式有机的结合到一 起。 数据处理系统根据两路测量装置在不同流速下的测量特点, 对其所测 数据进行综合分析处理, 并通过显示系统显示出最终气体流量数据。 从而 实现了宽量程比、 高精度、 高可靠性的标况流量测量, 它符合现代气体流 量质量计量要求的发展趋势。

Claims

权 利 要 求
1.一种复合式气体流量测量方法, 其特征是: 在带温度传感器与压力 传感器的机械式气体流量测量装置上并接旁路管, 旁路管上设有 MEMS流量 传感器, 温度传感器、 压力传感器、 机械式气体流量测量装置及 MEMS流量 传感器均连接数据处理系统, 数据处理系统连接数据显示系统, 温度传感 器、 压力传感器、 机械式气体流量测量装置及 MEMS流量传感器的所测数据 经过数据处理系统处理后通过数据显示系统显示出气体流量数据。
2.根据权利要求 1 所述的复合式气体流量测量方法, 其特征在于数据 处理系统对机械式气体流量测量装置的所测数据经过温度、 压力补偿后与 MEMS流量传感器的数据进行综合分析处理,气体流速较小时, 以 MEMS流量 传感器的数据为准, 气体流速较大时, 以机械式气体流量测量装置的数据 为准, 在机械式气体流量测量装置及 MEMS流量传感器的量程重叠部分, 根 据气体流速大小对机械式气体流量测量装置及 MEMS流量传感器的数据按比 例加权后进行相加处理。
3.根据权利要求 1 所述的复合式气体流量测量方法, 其特征在于机械 式气体流量测量装置无测量数据时, 数据处理系统以 MEMS流量传感器的数 据为准, MEMS流量传感器无测量数据时, 数据处理系统以机械式气体流量 测量装置的数据为准。
4.根据权利要求 1 所述的复合式气体流量测量方法, 其特征在于机械 式气体流量测量装置或 MEMS流量传感器无测量数据时, 数据处理系统根据 剩下的一路测量数据并按事先设定的加权曲线来确定最后的气体流量数 据。
5.—种复合式气体流量测量装置, 其特征是: 在带温度传感器与压力 传感器的机械式气体流量测量装置上并接旁路管, 旁路管上设有 MEMS流量 传感器, 温度传感器、 压力传感器、 机械式气体流量测量装置及 MEMS流量 传感器均连接数据处理系统, 数据处理系统连接数据显示系统。
6.根据权利要求 5所述的复合式气体流量测量装置, 其特征在于所述 旁路管的进口位于机械式气体流量测量装置的气流上游侧, 旁路管的出口 位于机械式气体流量测量装置的气流下游侧,旁路管的内径为 2至 10毫米。
7.根据权利要求 5所述的复合式气体流量测量装置, 其特征在于所述 机械式气体流量测量装置的气流上游侧设有均速管总压取压孔, 均速管的 出口端与旁路管的进口相连接, 旁路管的出口位于机械式气体流量测量装 置的气流下游侧。
8.根据权利要求 5或 6或 7所述的复合式气体流量测量装置, 其特征 在于所述的机械式气体流量测量装置为速度式、 差压式气体体积流量测量 装置。
PCT/CN2008/001645 2008-07-17 2008-09-24 复合式气体流量测量方法及其装置 WO2010006474A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/054,733 US20110125424A1 (en) 2008-07-17 2008-09-24 Composite gas fluid flow measuring method and its device
EP08800638.2A EP2312276A4 (en) 2008-07-17 2008-09-24 METHOD FOR FLOW MEASUREMENT OF COMPOUND GAS FLUIDS AND EQUIPMENT THEREFOR
JP2011517730A JP5425902B2 (ja) 2008-07-17 2008-09-24 複合式気体流量測定方法及びその装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810120056.5 2008-07-17
CN2008101200565A CN101354273B (zh) 2008-07-17 2008-07-17 复合式气体流量测量方法及其装置

Publications (1)

Publication Number Publication Date
WO2010006474A1 true WO2010006474A1 (zh) 2010-01-21

Family

ID=40307191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001645 WO2010006474A1 (zh) 2008-07-17 2008-09-24 复合式气体流量测量方法及其装置

Country Status (5)

Country Link
US (1) US20110125424A1 (zh)
EP (1) EP2312276A4 (zh)
JP (1) JP5425902B2 (zh)
CN (1) CN101354273B (zh)
WO (1) WO2010006474A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533696A (ja) * 2010-12-20 2013-08-22 エヌイーシー(チャイナ)カンパニー, リミテッド ダウンリンク送信のスケジューリング方法および装置
CN109682433A (zh) * 2019-01-03 2019-04-26 山东威高集团医用高分子制品股份有限公司 一种氧气流量监测装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272930B2 (ja) * 2009-07-01 2013-08-28 オムロン株式会社 流量測定装置
JP5250875B2 (ja) * 2009-10-20 2013-07-31 Smc株式会社 フローコントローラ
CN102288231B (zh) * 2011-07-27 2012-08-29 江苏伟屹电子有限公司 一种复合涡街发生体
CN102645248B (zh) * 2012-05-18 2013-10-02 中国计量学院 一种自校正的热式-旋进旋涡组合式气体流量测量方法
US9222817B2 (en) * 2013-03-15 2015-12-29 Amphenol Thermometrics, Inc. Systems and methods for hybrid flow sensing
US9322683B2 (en) * 2014-05-12 2016-04-26 Invensys Systems, Inc. Multivariable vortex flowmeter
US9804011B2 (en) * 2014-09-30 2017-10-31 Dieterich Standard, Inc. Flow measurement probe with pitot tube and thermal flow measurement
US20160161307A1 (en) 2014-12-05 2016-06-09 General Electric Company System and method for metering gas
US10760934B2 (en) 2014-12-05 2020-09-01 Natural Gas Solutions North America, Llc Using localized flow characteristics on electronic flow meter to quantify volumetric flow
NL2016877A (en) * 2015-06-18 2016-12-22 Asml Holding Nv An apparatus including a gas gauge and method of operating the same
CN104949096B (zh) * 2015-07-16 2017-03-08 广东美的厨房电器制造有限公司 蒸汽发生系统及液体流量检测方法和装置
CN106840292A (zh) * 2015-12-04 2017-06-13 辽宁思凯科技股份有限公司 Mems热式质量燃气表装置及气体流量测定方法
CN105953848B (zh) * 2016-05-23 2019-07-05 西北工业大学 一种差压线性流量计
WO2017219142A1 (en) * 2016-06-22 2017-12-28 Homebeaver Inc. Fluid flow measuring and control devices and method
CN106352930B (zh) * 2016-08-31 2024-01-26 国家能源投资集团有限责任公司 一种气体流量测试装置及磨煤机容量风测量仪器
CN114569845A (zh) * 2016-09-16 2022-06-03 菲舍尔和佩克尔保健有限公司 具有多个温度点的热敏电阻器流量传感器
CN106248156B (zh) * 2016-10-16 2019-12-06 浙江苍南仪表集团股份有限公司 低功耗自诊断的大量程气体流量测量电路
CN108362907B (zh) * 2018-05-04 2024-03-22 刘冠宏 一种流体速度测量装置
CN109210267A (zh) * 2018-10-17 2019-01-15 天长市海翔自控设备有限公司 一种高性能数字一体化三阀组防爆差压表
CN109490573B (zh) * 2018-11-02 2021-09-17 湖南核三力技术工程有限公司 气力输送中基于管网阻力特性的物料无损流速测量方法与监测装置
AT521899B1 (de) * 2018-12-12 2020-11-15 Avl List Gmbh Messsystem und Verfahren zur Messung eines Massendurchflusses, einer Dichte, einer Temperatur oder einer Strömungsgeschwindigkeit
CN110231173B (zh) * 2019-05-31 2021-02-26 西安航天动力试验技术研究所 一种微小流量供应测量装置
CN110081944B (zh) * 2019-06-05 2024-09-06 浙江埃泰克环境科技有限公司 一种基于实时压力变化的气体测量方法及所用装置
CN110274649B (zh) * 2019-06-13 2020-09-01 武汉大学 一种基于mems技术的热温差型流量传感器及其制备方法
CN112212926B (zh) * 2020-08-07 2022-04-08 北京协同创新研究院 一种基于多孔节流与mems压力传感器的流量测量方法
CN112815143B (zh) * 2021-02-19 2024-08-09 云能科技有限公司 智能阀组及其运行方法
CN113252846B (zh) * 2021-04-30 2023-06-20 西北工业大学 一种面向长时间连续监测的油烟VOCs气体浓度监测方法及设备
CN114577286A (zh) * 2022-04-01 2022-06-03 祎智量芯(江苏)电子科技有限公司 一种降低mems计量功耗的装置及工作方法
CN117889926A (zh) * 2023-12-26 2024-04-16 祎智量芯(江苏)电子科技有限公司 流量测量方法和装置、流量计及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545203A (ja) * 1991-08-12 1993-02-23 Oval Corp スモールボリユームプルーバ
US5398548A (en) * 1993-02-22 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Karman vortex flow meter
CN1282417A (zh) 1997-12-15 2001-01-31 东京瓦斯株式会社 流量计
CN1945232A (zh) * 2006-09-30 2007-04-11 浙江麦姆龙仪表有限公司 管道气流的外引式采样的测量方法及其装置
CN200979422Y (zh) * 2006-12-13 2007-11-21 上海星空自动化仪表有限公司 一种温压补偿的涡街流量计
JP2007309727A (ja) * 2006-05-17 2007-11-29 Oval Corp 副流量計を用いたサーボ型容積流量計

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047462B2 (ja) * 1978-06-02 1985-10-22 株式会社日立製作所 電子制御燃料噴射装置の吸入空気量計測装置
JP2787785B2 (ja) * 1990-07-02 1998-08-20 山武ハネウエル株式会社 流量計および流量測定方法
US5333496A (en) * 1992-03-09 1994-08-02 Fenelon Paul J In-line parallel proportionally partitioned by-pass metering device and method
JP2000002567A (ja) * 1998-06-16 2000-01-07 Ishikawajima Harima Heavy Ind Co Ltd 複合型質量流量計
JP2000065609A (ja) * 1998-08-24 2000-03-03 Yazaki Corp 流量検出方法及びガス流量計
US20020046612A1 (en) * 2000-08-22 2002-04-25 Fugasity Corporation Fluid mass flow meter with substantial measurement range
JP3637278B2 (ja) * 2000-12-20 2005-04-13 Smc株式会社 2センサ式流量計
JP4106409B2 (ja) * 2002-08-29 2008-06-25 東京瓦斯株式会社 熱式流量計
JP4168417B2 (ja) * 2002-11-18 2008-10-22 株式会社山武 流体検出装置
JP2005300187A (ja) * 2004-04-06 2005-10-27 Keyence Corp 分流式流量センサ装置
JP2007057452A (ja) * 2005-08-26 2007-03-08 Oval Corp 流量計
US7343823B2 (en) * 2006-02-17 2008-03-18 Honeywell International Inc. Ultra low pressure drop flow sensor
JP2007271382A (ja) * 2006-03-30 2007-10-18 Sunx Ltd 物理量検出装置、格納ユニット、コントロールユニット及びプログラム記憶媒体
JP5062657B2 (ja) * 2006-07-14 2012-10-31 アズビル株式会社 ヒータ付きセンサチップの異常検出装置及び異常検出方法
US7908096B2 (en) * 2007-09-28 2011-03-15 Siargo Ltd. Integrated micromachined thermal mass flow sensor and methods of making the same
US7654157B2 (en) * 2007-11-30 2010-02-02 Honeywell International Inc. Airflow sensor with pitot tube for pressure drop reduction
US7905139B2 (en) * 2008-08-25 2011-03-15 Brooks Instrument, Llc Mass flow controller with improved dynamic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545203A (ja) * 1991-08-12 1993-02-23 Oval Corp スモールボリユームプルーバ
US5398548A (en) * 1993-02-22 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Karman vortex flow meter
CN1282417A (zh) 1997-12-15 2001-01-31 东京瓦斯株式会社 流量计
JP2007309727A (ja) * 2006-05-17 2007-11-29 Oval Corp 副流量計を用いたサーボ型容積流量計
CN1945232A (zh) * 2006-09-30 2007-04-11 浙江麦姆龙仪表有限公司 管道气流的外引式采样的测量方法及其装置
CN200979422Y (zh) * 2006-12-13 2007-11-21 上海星空自动化仪表有限公司 一种温压补偿的涡街流量计

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533696A (ja) * 2010-12-20 2013-08-22 エヌイーシー(チャイナ)カンパニー, リミテッド ダウンリンク送信のスケジューリング方法および装置
US9030975B2 (en) 2010-12-20 2015-05-12 Nec (China) Co., Ltd. Method and apparatus for scheduling downlink transmission
CN109682433A (zh) * 2019-01-03 2019-04-26 山东威高集团医用高分子制品股份有限公司 一种氧气流量监测装置

Also Published As

Publication number Publication date
CN101354273A (zh) 2009-01-28
EP2312276A1 (en) 2011-04-20
JP5425902B2 (ja) 2014-02-26
EP2312276A4 (en) 2015-07-22
CN101354273B (zh) 2010-07-07
JP2011528104A (ja) 2011-11-10
US20110125424A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2010006474A1 (zh) 复合式气体流量测量方法及其装置
CN201476821U (zh) 带旁通桥路的双通道孔板气体流量测量装置
JP3655569B2 (ja) ガス成分濃度測定方法及び装置
CN101413817B (zh) 双差压节流湿气测量方法
CN106768103B (zh) 一种超声波流量计自动校准时间偏差的方法
CA2489944A1 (en) Venturi augmented flow meter
CN204085645U (zh) 带有自校准结构的气体流量标准装置
CN201402160Y (zh) 具有零点标定功能的皮托管流量计
CN105865587B (zh) 一种发动机流量计的标定方法
CN101034033A (zh) 一种大流量气体管道均速管流量计风洞校验方法
WO2008058872A3 (fr) Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif
CN106052775A (zh) 双比值法湿气液相含率测量装置
CN201476822U (zh) 内置多参数的双通道孔板气体流量测量装置
CN102944271A (zh) 复合式内外文丘里管流量计
CN209639805U (zh) 一种航空航天用气体流量计自动检定装置
CN201242456Y (zh) 一种基于涡街、均速管、旁路管的气体流量组合测量装置
CN211926930U (zh) 天然气计量评价系统
CN101251397A (zh) 旁通式管路流量计
CN109696228A (zh) 一种航空航天用气体流量计自动检定装置及其检定方法
CN105784292A (zh) 一种基于平衡流量计的活塞漏气量测量系统
CN103674146A (zh) 一种基于超声流量计的质量流量计
CN203534679U (zh) 孔板流量计的校正系统
CN209117081U (zh) 一种管道水流量的旁路测量装置
CN217331263U (zh) 空分差压式流量计
CN201662566U (zh) 管式差压流量气阻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011517730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13054733

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2008800638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008800638

Country of ref document: EP