WO2010004757A1 - 事故点標定方法および事故点標定装置 - Google Patents

事故点標定方法および事故点標定装置 Download PDF

Info

Publication number
WO2010004757A1
WO2010004757A1 PCT/JP2009/003221 JP2009003221W WO2010004757A1 WO 2010004757 A1 WO2010004757 A1 WO 2010004757A1 JP 2009003221 W JP2009003221 W JP 2009003221W WO 2010004757 A1 WO2010004757 A1 WO 2010004757A1
Authority
WO
WIPO (PCT)
Prior art keywords
accident
voltage
point
terminal
current
Prior art date
Application number
PCT/JP2009/003221
Other languages
English (en)
French (fr)
Inventor
高荷英之
杉浦秀昌
大橋未花
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN2009801330434A priority Critical patent/CN102132163B/zh
Priority to US13/003,407 priority patent/US20110184673A1/en
Publication of WO2010004757A1 publication Critical patent/WO2010004757A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead

Definitions

  • the present invention relates to an accident point locating method and an accident point locating device for calculating a distance to an accident point using a current / voltage of a transmission line and a transmission line line constant, and locating the accident point.
  • the conventional accident point locating method which calculates the distance to the accident point by calculating the impedance (resistance) from the current and voltage flowing through the transmission line, and locates the accident point, is the accident point seen from both ends of the target section It implements using the conditions that voltage (vector quantity) is equal (for example, refer nonpatent literature 1).
  • FIG. 19A is a circuit diagram of the transmission line
  • FIG. 19B is a voltage distribution diagram in the length direction of the transmission line
  • FIG. 19C is a relational expression that holds between the voltage and the current.
  • the left side represents the voltage when the accident point 2 (point F) is viewed from the A terminal
  • the right side represents the voltage when the accident point 2 (point F) is viewed from the B terminal.
  • the distance x from the terminal to the accident point 2 (point F) is calculated by the following equation (2).
  • Equation (2) is an equation that holds for the voltage and current vector quantities at both ends, and it is necessary to synchronize the current and voltage captured at both ends. Therefore, a method of synchronizing each terminal using a sampling synchronization signal or a GPS signal is employed (Patent Document 1).
  • Patent Documents 2 and 3 that do not require synchronization of each terminal have the advantage of eliminating the need for a transmission / reception circuit such as a sampling synchronization signal or a GPS signal.
  • a transmission / reception circuit such as a sampling synchronization signal or a GPS signal.
  • an object of the present invention is to provide an accident point locating method and an accident point locating apparatus that can perform the accident locating with high accuracy by simple and direct calculation without requiring synchronization of each terminal.
  • the accident point locating method of the present invention is the accident point locating method for locating the accident point using the voltage, current and transmission line constant of each terminal of the power line to be standardized.
  • the distance from the predetermined end to the accident point is calculated by solving a quadratic equation obtained as a fault point where the square value of the magnitude of the fault point voltage in the accident phase is equal.
  • the accident point locating device of the present invention is an accident point locating device for locating an accident point using the voltage, current and transmission line line constant of each terminal of the power line to be standardized. It is characterized by that.
  • the input processing unit preliminarily sets one or more set values including data input means for performing digital conversion and data storage time on each terminal of the power transmission line to be standardized, and this set value.
  • the data storage means for storing the electric quantity data in the memory when an accident occurs and the data transmission means for transmitting the stored data are provided.
  • the orientation processing unit includes at least one set value including data acquisition means for acquiring data transmitted from the input processing unit installed at each terminal via a transmission medium, and a line constant of the orientation target transmission line.
  • An orientation calculation means for performing an orientation calculation for calculating a distance from a predetermined end to the accident point by solving a quadratic equation, and an orientation result output means for outputting an orientation result of the orientation calculation means.
  • an accident point locating method and an accident point locating device that do not require synchronization at each terminal and can perform an accident point location with high accuracy by simple and direct calculation.
  • the accident point location method of the 2nd Embodiment of this invention is shown, (a) is a circuit diagram of a transmission line, (b) is a figure which shows the voltage change of a transmission line length direction, (c) is between voltage and electric current.
  • the flowchart which shows the processing function of the orientation process part employ
  • (a) is a time series sample data example of the electric current of B terminal
  • (b) shows the time series amplitude value example of the electric current of B terminal.
  • Figure. The block block diagram of the accident point location apparatus for implement
  • the flowchart which shows the processing function of the orientation process part employ
  • (a) is a circuit diagram of a power transmission line
  • (b) is a relational expression formed between voltage and current.
  • the conventional fault point location method is shown, (a) is a circuit diagram of a power transmission line, (b) is a voltage distribution diagram in the length direction of the power transmission line, and (c) is a diagram showing a relational expression established between voltage and current.
  • FIG. 1 is a block configuration diagram of an accident point locating device for realizing an accident point locating method according to a first embodiment of the present invention.
  • FIGS. 2 and 3 are input processing units constituting the accident point locating device, respectively. It is a flowchart which shows the processing function of the orientation processing part.
  • 1 is a two-terminal power transmission line to be standardized
  • CT10A and CT10B are current transformers installed at the A terminal and B terminal of the power transmission line 1, respectively
  • VT10A and VT10B are A terminal and B of the power transmission line 1, respectively. This is a voltage transformer installed at the terminal.
  • the accident point locating device includes input processing units 10A and 10B installed at the A terminal and the B terminal, respectively, and an orientation processing unit 20 connected to these input processing units 10A and 10B via a transmission medium NET. It is configured.
  • the input processing unit 10A installed at the A terminal is composed of, for example, a digital computer such as a microprocessor, and receives data and current from the current transformer CT10A and the voltage transformer VT10A to perform digital conversion 11A.
  • Data storage that stores preset values such as data storage time, accident detection sensitivity, etc., and determines whether or not an accident has occurred based on these settings and stores the electrical quantity data in the memory when an accident occurs Means 12A and data transmission means 13A for transmitting stored data are provided. Since the input processing unit 10B installed at the B terminal is also configured in the same manner as the input processing unit 10A, the same elements as the input processing unit 10A are replaced with the subscript A and the description is omitted.
  • the orientation processing unit 20 is also composed of, for example, a digital computer such as a microprocessor, and includes a data acquisition unit 21 that acquires data transmitted from the data transmission units 13A and 13B of the input processes 10A and 10B, and a transmission line 1 Set values such as the line length L and the transmission line line constant Z (vector quantity) per unit length are set in advance, and the accident point based on these set values and the current and voltage data acquired by the data acquisition means 21 And an orientation result output means 23 for outputting the orientation calculation result of the orientation calculation means 22.
  • a digital computer such as a microprocessor
  • the input process 100 executed as the processing function of the input processing units 10A and 10B will be described with reference to the flowchart shown in FIG.
  • the subscripts A and B are omitted when there is no need to distinguish between the input processing unit on the A terminal side or the input processing unit on the B terminal side.
  • the input processing unit 10 inputs the voltage / current data captured from each terminal in step 101.
  • This step 101 is a processing step executed by the data input means 11 of FIG.
  • step 102 whether or not an accident has occurred is confirmed based on preset values such as data storage time, accident detection sensitivity, etc., and it is determined that an accident has occurred (Y). Store current data.
  • steps 102 and 103 are processing steps executed by the data storage means 12 of FIG.
  • step 104 voltage / current data at the time of occurrence of the accident is transmitted to the orientation processing unit 20.
  • This step 104 is a processing step executed by the data transmission means of FIG.
  • the orientation processing 200 executed as the processing function of the orientation processing unit 20 will be described.
  • the orientation processing unit 20 acquires the data transmitted from the input processing units 10A and 10B in step 201.
  • This step 201 is a processing step executed by the data acquisition means 21 of FIG.
  • step 202 If it is determined that an accident has occurred in step 202 after data is acquired in step 201 (Y), the accident phase is selected in the next step 203, and further, in step 204, the accident phase voltage / phase current data and the transmission line 1 are selected.
  • the orientation calculation is performed using preset values such as the line length L and the transmission line line constant Z (vector quantity) per unit length.
  • This step 205 is a processing step executed by the orientation result output means 23 of FIG.
  • FIG. 4A and 4B are diagrams for explaining the accident location method according to the present embodiment.
  • FIG. 4A is a schematic diagram at the time of a power transmission line accident
  • FIG. 4B is a voltage distribution of the A and B terminals and the accident point F.
  • FIG. 4 and FIG. 4C show relational expressions between the fault point voltage and current, respectively.
  • the voltage V A (vector quantity) and current I A (vector quantity), voltage V B (vector quantity) and current I B (vector quantity) during the accident are sampled by the CT 10B.
  • the input processing units 10A and 10B take in the voltage V A (vector quantity) and current I A (vector quantity), voltage V B (vector quantity) and current I B (vector quantity) with the data input means 11A and 11B, Convert to digital data.
  • the current / voltage data converted into the digital data is stored in the memories of the data storage means 12A and 12B based on the set values such as the data storage time and the accident detection sensitivity.
  • Current data V A , I A , V B , and I B are sent to the orientation processing unit 20 via the data transmission means 13A and 13B.
  • the data acquisition means 21 captures digital data V A , I A , V B , I B at the time of an accident from each of the input processing units 10A, 10B, and per line length L and unit length of the transmission line 1 Based on a set value such as the transmission line constant Z (vector quantity), the orientation calculation means 22 performs the orientation calculation as follows.
  • V B and I B acquired at the B terminal are expressed as complex numbers using an arbitrary phase reference (which can be asynchronous with the A terminal), the following expression (7) is obtained.
  • A, B, and C are expressed by the following equation (14). It is.
  • the accident phase as viewed from both ends using the data transmitted from the input processing unit installed at each terminal and the set values such as the line constant of the power transmission line to be standardized. Since the calculation of the distance from the predetermined end to the accident point is performed by solving the quadratic equation obtained by taking the point where the square of the magnitude of the accident point voltage is the same as the accident point, Thus, the distance x to the accident point can be obtained with high accuracy by simple and direct calculation without synchronization.
  • the block diagram of the accident point locating device for realizing the accident point locating method according to the present embodiment is the same as that of the first embodiment, and the input processing unit 10 is also the same.
  • this embodiment differs from the first embodiment in that it is a part of the processing function of the orientation processing unit 20, the different processing functions of the orientation processing unit 20 will be described mainly.
  • the voltage V A is applied to the A terminal and the B terminal at both ends of the orientation target line 1 regardless of whether the terminals are synchronized or asynchronous.
  • Vector quantity current I A (vector quantity)
  • V B vector quantity
  • current I B vector quantity
  • the line length L and the transmission line constant Z per unit length (vector quantity) are set, and the distance x from the A terminal to the accident point F is obtained using the mode conversion quantity.
  • FIG. 5 is a flowchart showing an orientation process 200 executed as a processing function of the orientation processing unit 20 in the accident location system for realizing the accident location method according to the second embodiment of the present invention.
  • step 201 data is acquired in step 201.
  • This step 201 is a processing step executed by the data acquisition means 21 of FIG.
  • step 202 If it is determined in step 202 that an accident has occurred after acquiring the data in step 201 (Y), mode conversion is performed in the next step 203A, and then in step 204 each phase voltage / phase current data and The orientation calculation is performed using setting values such as line constants.
  • steps 202, 203A and 204 are processing steps executed by the orientation calculation means 22 of FIG.
  • This step 205 is a processing step executed by the orientation result output means 23 of FIG.
  • FIG. 6A and 6B are diagrams for explaining an accident point locating method according to the second embodiment of the present invention.
  • FIG. 6A is a schematic diagram at the time of a transmission line accident
  • FIG. 6B is a voltage of each terminal and the accident point.
  • the distribution diagram and FIG. 6C show the relational expressions that hold between the fault point voltage and current, respectively.
  • the equations (4) and (8) are expressed by the following equations (16) and (17) in the case of an a-phase accident, In the case of a c-phase accident, it will be expressed by a different formula. Therefore, after performing the accident phase selection process, the distance to the accident point is obtained using an equation corresponding to the selected accident phase.
  • equation (21) is obtained.
  • equation (23) is obtained.
  • mode conversion in the case of normal phase amount, it is 1 phase, 2 phase, 3 phase accident, in the case of reverse phase amount, 1 phase, 2 phase accident, in the case of zero phase amount Applicable to single-phase accidents without accident phase selection.
  • the voltage V B (vector quantity) and the current I B (vector quantity) are sampled and the line length L and the transmission line line constant Z (vector quantity) per unit length are used, as in the first embodiment. It is.
  • the mode conversion amount is used as described above, and the distance x from the A terminal to the fault point 2 (F) is the fault point voltage [V F ] m (vector quantity) viewed from both ends. ) Is equal in square value, the above equation (25) is obtained. Then, by eliminating the following equation (27) from the equation (25), a quadratic equation relating to x is obtained. And the distance x to an accident point can be calculated
  • the distance to the accident point can be calculated by simple and direct calculation without synchronizing each terminal. x can be obtained.
  • the mode conversion amount by using the mode conversion amount, there is an advantage that the orientation calculation can be performed without performing the accident phase selection of the a, b, c, ab, bc, ca, and abc phases.
  • a normal phase amount it is a 1-phase, 2-phase, or 3-phase accident.
  • it can be applied without selecting the accident phase. Therefore, the total amount of calculation can be reduced, and accident point location can be performed more efficiently.
  • the block diagram of the accident point locating device for realizing the accident point locating method according to the present embodiment is the same as that of the first and second embodiments, and the input processing unit 10 is also the same.
  • this embodiment is different from the first and second embodiments because it is part of the processing function of the orientation processing unit 20, the different processing functions of the orientation processing unit 20 will be described mainly.
  • the distance x from the A terminal to the accident point F is calculated as a vector based on preset values such as the line length L and the transmission line line constant Z (vector quantity) per unit length. Determined using the amount (phasor amount).
  • FIG. 9 is a flowchart showing an orientation process 200 executed as a processing function of the orientation processing unit 20 in an accident location system for realizing an accident location method according to the third embodiment of the present invention.
  • step 201 data is acquired in step 201.
  • This step 201 is a processing step executed by the data acquisition means 21 of FIG.
  • step 202 If it is determined in step 202 that an accident has occurred (Y) after the data is acquired in step 201, the vector amount (phasor amount) is calculated in the next step 203B.
  • the orientation calculation is performed using the set values such as the current data of each phase and the line constant.
  • step 204 convergence determination is performed by the orientation calculation means 22 in the following step 2041, and the orientation result is output in the next step 205.
  • This step 205 is a processing step executed by the orientation result output means 23 of FIG.
  • FIG. 10 to FIG. 12 are diagrams for explaining the accident location method according to the present embodiment.
  • FIG. 10A shows an example of time-series sample data of the voltage at the A terminal
  • FIG. An example of current sample data is shown
  • FIG. 11A shows an example of time-series sample data of the voltage at the B terminal
  • FIG. 11B shows an example of sample data of the current at the B terminal
  • FIG. 12 shows an example of time-series orientation calculation values.
  • V A vector quantity
  • current I A vector quantity
  • voltage at the A terminal and the B terminal at both ends of the target line 1 regardless of whether each terminal is synchronous or asynchronous.
  • Time series sample data of V B (vector quantity) and current I B (vector quantity) are collected.
  • the A terminal (FIG. 10) and the B terminal (FIG. 11) are asynchronous and have a phase shift of about 45 degrees.
  • the distance x from the A terminal to the fault point 2 (point F) is the fault point voltage V F (vector quantity) seen from both ends. Since the square values of the magnitudes of are equal, the amplitude value and phase of each voltage / current are calculated from the time-series sample data, thereby obtaining an equation (29) described later.
  • a method for deriving the formula (29) will be described.
  • a method for calculating a vector quantity (phasor quantity) from time series sample data of a certain quantity of electricity there is a method using a discrete Fourier transform (DFT).
  • the vector amount (phasor amount) can be calculated by using Equation (28) by using DFT for the time-series sample data V k .
  • V As (vector quantity), I As (vector quantity), V Bs (vector quantity), and I Bs (vector quantity) are vector quantities calculated from time-series sample data.
  • the distance x to the accident point F can be obtained by solving the quadratic equation of x obtained from Expression (29). As shown in FIG. 12, the orientation calculation values are obtained in time series.
  • the time when the calculated orientation value is most stable is determined by convergence judgment, and the final orientation result is obtained.
  • the convergence determination there is a method in which the time point at which the three-point variation is minimized is set as the convergence time point.
  • the third embodiment similarly to the first embodiment and the second embodiment, it is possible to perform the calculation up to the accident point by simple and direct calculation without synchronizing each terminal.
  • the distance x can be determined.
  • the final orientation result is output by the convergence determination of the orientation calculation values calculated in time series, so that it is resistant to transient fluctuations and the orientation accuracy can be further improved.
  • the block configuration diagram of the accident point locating apparatus for realizing the accident point locating method according to the present embodiment is the same as that of the first to third embodiments, and the input processing unit 10 is also the same.
  • the difference of this embodiment from the first to third embodiments is a part of the processing function of the orientation processing unit 20 as shown in FIG. To do.
  • the line length L and the transmission line constant Z per unit length are set, and the distance x from the A terminal to the accident point F is set to the amplitude of the vector quantity (phasor quantity). Alternatively, it is determined using the most stable point of the phasor amount.
  • FIG. 13 is a flowchart showing an orientation process 200 executed as a processing function of the orientation processing unit 20 in an accident location system for realizing the accident location method according to the fourth embodiment of the present invention.
  • step 201 data is acquired in step 201.
  • This step 201 is a processing step executed by the data acquisition means 21 of FIG.
  • step 202 If it is determined in step 202 that an accident has occurred after acquiring data in step 201 (Y), the vector amount (phasor amount) is calculated in the next step 203B, and the amplitude or phasor is further calculated in the next step 203B1.
  • the time point at which the quantity is most stable is determined, and in step 204, the orientation calculation is performed using the set values such as the phase voltage / phase current data at the time point and the line constant.
  • This step 205 is a processing step executed by the orientation result output means 23 of FIG.
  • FIG. 14 and 15 are diagrams for explaining the accident location method according to the present embodiment.
  • FIG. 14 (a) shows an example of time-series sample data of the current at the A terminal
  • FIG. 14 (b) shows the current at the A terminal
  • FIG. 15A shows an example of time series sample data of the current at the B terminal
  • FIG. 15B shows an example of time series amplitude value of the current at the B terminal.
  • V A vector quantity
  • V B Time-series sample data of the vector amount
  • I A vector amount
  • I B vector amount
  • V AT vector quantity
  • I AT vector quantity
  • V BT vector quantity
  • I BT vector quantity
  • the distance x to the accident point at the most stable time of the time-series sample data can be obtained.
  • the most stable time point of the time series sample data there is a method such as a time point at which the variation of the three points of the voltage / current amplitude value or the phasor amount of each time series is minimized.
  • the A terminal (FIG. 14) and the B terminal (FIG. 15) are asynchronous, and the most stable point of amplitude or phasor amount is shifted by about 2 ms.
  • the distance x can be determined.
  • the distance x to the accident point is calculated using the value at the most stable time of the amplitude or the phasor amount, so that it is resistant to transient fluctuations, and the orientation accuracy can be further improved.
  • the orientation target transmission line 1 has two terminals, but in this embodiment, the orientation target transmission line 1 has three terminals having a branch point, and input processing is performed.
  • the configuration of the input processing unit 10 is the same as that of the first embodiment except that the number of units is increased by one. However, some of the processing functions of the orientation processing unit 20 are slightly different because of the branch point.
  • CT10C and VT10C are a current transformer and a voltage transformer installed at the C terminal, respectively.
  • 10c is an input processing unit provided at the C terminal, and is composed of the data input means 11c, the data storage means 12c and the data transmission means 13c in the same manner as the input processing units 10a and 10b provided at the A terminal and the B terminal. It is connected to a transmission medium NET.
  • the orientation processing unit 20 is the same as in the case of FIG.
  • the A terminal and the B terminal at both ends of the orientation target line 1 regardless of whether each terminal is synchronous or asynchronous, Voltage V A (vector quantity) and current I A (vector quantity), voltage V B (vector quantity) and current I B (vector quantity) are sampled, respectively.
  • the voltage V C (vector quantity) and the current I C (vector quantity) are further sampled at the C terminal.
  • step 201 is a processing step executed by the data acquisition means 21 of FIG.
  • step 202 If it is determined in step 202 that an accident has occurred after acquiring data in step 201 (Y), branch point voltage / branch point current is calculated in the next step 206, and each phase voltage is calculated in the next step 204.
  • the orientation calculation is performed using the set values such as the phase current data and the line constant, and in the subsequent step 207, the fault point is determined or the final section is determined.
  • This step 205 is a processing step executed by the orientation result output means 23 of FIG.
  • FIG. 18 is a diagram showing an accident point locating method according to the fifth embodiment of the present invention.
  • FIG. 18 (a) is a circuit diagram of a transmission line
  • FIG. 18 (b) is a relationship established between voltage and current. An expression is shown.
  • the power transmission line 1 branches at a branch point D between the terminals A and B and has a terminal C.
  • V D vector quantity
  • equation (32) By substituting equation (32) into equation (33), a quadratic equation relating to x using the voltage and current at the A terminal, B terminal, and C terminal as parameters is obtained. And the distance x from A terminal to the accident point F can be calculated
  • each terminal is synchronized even in a transmission line having three or more terminals having branch points.
  • the distance x to the accident point can be obtained with high accuracy by simple and direct calculation.

Abstract

 各端子の同期を不要とし、シンプルかつ直接的な計算により、精度良く事故点標定を行うことのできる事故点標定方法を提供する。  送電線の標定対象線路1両端の電圧、電流(ベクトル量)のデータおよび予め設定した送電線線路定数を用いる。所定の一端Aから事故点Fまでの距離xを未知数として、両端から見た事故相の事故点電圧の大きさの2乗値が等しい点を事故点として得られる2次方程式を解くことにより、前記所定の一端から事故点までの距離を算出する。

Description

事故点標定方法および事故点標定装置
 本発明は、送電線の電流・電圧と送電線線路定数を用いて事故点までの距離を計算し、事故点を標定する事故点標定方法および事故点標定装置に関する。
 送電線を流れる電流と電圧からインピーダンス(抵抗)を求め、事故点までの距離を計算し、事故点を標定するようにした従来の事故点標定方法は、標定対象区間の両端から見た事故点電圧(ベクトル量)が等しいという条件を利用して実施している(例えば、非特許文献1参照)。
 図19を参照して従来の事故点標定方法について説明する。図19(a)は送電線の回路図、図19(b)は送電線長さ方向の電圧分布図、図19(c)は電圧、電流間に成り立つ関係式である。
 図19に示す送電線の標定対象線路1において、単位長あたりの送電線線路定数Z(ベクトル量)の線路長Lの両端子A、Bからそれぞれ事故点2(F点)を見たときの電圧VF(ベクトル量)は等しいので、下記の式(1)が成立する。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、左辺がA端子から事故点2(F点)を見たときの電圧、右辺がB端子から事故点2(F点)を見たときの電圧をそれぞれ表しており、A端子から事故点2(F点)までの距離xは下記式(2)によって算出される。
Figure JPOXMLDOC01-appb-M000002
 式(2)は、両端の電圧・電流ベクトル量について成り立つ式であり、両端でそれぞれ取り込んだ電流・電圧の同期をとる必要がある。そのため、サンプリング同期信号やGPS信号を用いて、各端子の同期をとる方法が採られている(特許文献1)。
 さらに、各端子の同期をとる必要のない方法として、式(1)の大きさ(スカラー)に着目した方法もあるが、これは、両端から見た事故点電圧のスカラー量が等しくなる点を仮想事故点から逐次計算していく方法である(特許文献2、3)。
特開平3-282377号公報 特開平2-35379号公報 特開平2-228574号公報
法貴、木谷共著「送電線の故障点標定器」昭和32年オーム社
 上記の特許文献2、3に開示されている各端子の同期を不要とする方法では、サンプリング同期信号やGPS信号などの送受信回路を不要とする利点はあるが、仮想事故点から逐次計算していく方法のため精度を向上させるには、逐次計算の時間間隔を非常に短くする必要があり、事故点標定装置にとって計算が煩雑かつ計算負担が大きくなる問題点がある。
 そこで本発明は、各端子の同期を不要とし、シンプルかつ直接的な計算により、精度良く事故点標定を行うことのできる事故点標定方法および事故点標定装置を提供することを目的とする。
 上記の目的を達成するために、本発明の事故点標定方法は、標定対象送電線の各端子の電圧、電流および送電線線路定数を用いて事故点を標定する事故点標定方法において、両端から見た事故相の事故点電圧の大きさの2乗値が等しい点を事故点として得られる2次方程式を解くことにより所定の一端から事故点までの距離を算出することを特徴とする。
 また、本発明の事故点標定装置は、標定対象送電線の各端子の電圧、電流および送電線線路定数を用いて事故点を標定する事故点標定装置において、入力処理部と標定処理部を設けたことを特徴とする。入力処理部は、標定対象送電線の各端子に、端子電圧および電流を取り込み、ディジタル変換を行うデータ入力手段、データ記憶時間を含む1種以上の設定値を予め設定しておき、この設定値をもとに事故発生時に電気量データをメモリに記憶するデータ記憶手段、記憶したデータを伝送するデータ伝送手段を備える。標定処理部は、伝送媒体を介して前記各端子に設置された前記入力処理部から伝送されてくるデータを取得するデータ取得手段、前記標定対象送電線の線路定数を含む1種以上の設定値を予め設定しておき、この設定値および前記データ取得手段で取得した電流、電圧データを用い、両端から見た事故相の事故点電圧の大きさの2乗値が等しい点を事故点として得られる2次方程式を解くことにより所定の一端から事故点までの距離を算出する標定演算を行う標定演算手段、この標定演算手段の標定結果を出力する標定結果出力手段を備える。
 本発明によれば、各端子で同期をとることを不要とし、シンプルかつ直接的な計算により、精度良く事故点標定を行うことのできる事故点標定方法および事故点標定装置を提供することができる。
本発明の第1ないし第4の実施形態に係る事故点標定方法を実現するための事故点標定装置のブロック構成図。 本発明の第1ないし第4の実施形態で採用した入力処理部の処理機能を示すフローチャート。 本発明の第1の実施形態で採用した標定処理部の処理機能を示すフローチャート。 本発明の第1の実施形態による事故点標定方法を示す図で、(a)は送電線の回路図、(b)は送電線長さ方向の電圧分布図、(c)は電圧、電流間に成り立つ関係式。 本発明の第2の実施形態で採用した標定処理部の処理機能を示すフローチャート。 本発明の第2の実施形態の事故点標定方法を示し、(a)は送電線の回路図、(b)は送電線長さ方向の電圧変化を示す図、(c)は電圧、電流間に成り立つ関係式。 本発明の第2の実施形態の変形例で採用した入力処理部の処理機能を示すフローチャート。 本発明の第2の実施形態の変形例で採用した標定処理部の処理機能を示すフローチャート。 本発明の第3の実施形態で採用した標定処理部の処理機能を示すフローチャート。 本発明の第3の実施形態による事故点標定方法を説明する図で、(a)はA端子の電圧の時系列サンプルデータ例、(b)はA端子の電流のサンプルデータを示す図。 本発明の第3の実施形態による事故点標定方法を説明する図で、(a)はB端子の電圧の時系列サンプルデータ例、(b)はB端子の電流のサンプルデータを示す図。 本発明の第3の実施形態の事故点標定方法を説明する図で、特に、時系列の標定計算値例を示す図。 本発明の第4の実施形態で採用した標定処理部の処理機能を示すフローチャート。 本発明の第4の実施形態の事故点標定方法を説明する図で、(a)はA端子の電流の時系列サンプルデータ例、(b)はA端子の電流の時系列振幅値例を示す図。 本発明の第4の実施形態の事故点標定方法を説明する図で、(a)はB端子の電流の時系列サンプルデータ例、(b)はB端子の電流の時系列振幅値例を示す図。 本発明の第5の実施形態に係る事故点標定方法を実現するための事故点標定装置のブロック構成図。 本発明の第5の実施形態で採用した標定処理部の処理機能を示すフローチャート。 本発明の第5の実施形態の事故点標定方法を示す図で、(a)は送電線の回路図、(b)は電圧、電流間に成り立つ関係式。 従来の事故点標定方法を示し、(a)は送電線の回路図、(b)は送電線長さ方向の電圧分布図、(c)は電圧、電流間に成り立つ関係式を示す図。
 以下、図面を参照して本発明の実施形態について説明する。なお、各実施形態の図に共通する要素には同一符号を付けて説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態による事故点標定方法を実現するための事故点標定装置のブロック構成図であり、図2および図3はそれぞれ事故点標定装置を構成する入力処理部および標定処理部の処理機能を示すフローチャートである。
(構成)
 本実施形態による事故点標定方法の説明をする前に、まず事故点標定装置の概要について図1ないし図3を参照して説明する。
 図1において、1は標定対象の2端子送電線、CT10AおよびCT10Bはそれぞれ送電線1のA端子、B端子に設置された変流器、そしてVT10AおよびVT10Bはそれぞれ送電線1のA端子、B端子に設置された電圧変成器である。
 本発明に係る事故点標定装置は、A端子、B端子にそれぞれ設置された入力処理部10A、10Bと、伝送媒体NETを介してこれら入力処理部10A、10Bに接続された標定処理部20から構成されている。
 A端子に設置された入力処理部10Aは、例えば、マイクロプロセッサ等のディジタルコンピュータで構成されており、変流器CT10Aおよび電圧変成器VT10Aから電流および電圧を取り込み、ディジタル変換を行うデータ入力手段11Aと、データ記憶時間、事故検出感度などの設定値を予め設定しておき、これらの設定値をもとに、事故発生の有無を判定して事故発生時に電気量データをメモリに記憶するデータ記憶手段12Aと、記憶したデータを伝送するデータ伝送手段13Aとを備えている。B端子に設置された入力処理部10Bも入力処理部10Aと同様に構成されているので、入力処理部10Aと同一要素には添字AをBに付け替えて説明は省略する。
 標定処理部20も、例えば、マイクロプロセッサ等のディジタルコンピュータで構成されており、入力処理10Aおよび10Bのデータ伝送手段13A、13Bから伝送されてくるデータを取得するデータ取得手段21と、送電線1の線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)などの設定値を予め設定しておき、これらの設定値およびデータ取得手段21で取得した電流、電圧データに基づいて事故点の標定演算を行う標定演算手段22と、この標定演算手段22の標定演算結果を出力する標定結果出力手段23とを備えている。
 次に、図2に示すフローチャートを参照して入力処理部10Aおよび10Bの処理機能として実行される入力処理100について説明する。なお、入力処理部の説明にあたり、特にA端子側の入力処理部あるいはB端子側の入力処理部として区別して説明する必要のない場合は、添字A,Bを省いて説明する。
 入力処理部10は、入力処理100において、ステップ101で各端子から取り込んだ電圧・電流データを入力する。このステップ101は図1のデータ入力手段11によって実行される処理ステップである。次に、ステップ102で、データ記憶時間、事故検出感度などの予め設定した設定値をもとに事故発生有無を確認し、事故発生有りと判定した場合(Y)、次のステップ103で電圧・電流データを記憶する。これらステップ102および103は、図1のデータ記憶手段12によって実行される処理ステップである。
 そして、次のステップ104で事故発生時の電圧・電流データを標定処理部20へ伝送する。このステップ104は図1のデータ伝送手段によって実行される処理ステップである。
 次に、図3のフローチャートを参照して、標定処理部20の処理機能として実行される標定処理200について説明する。
 標定処理部20は、標定処理200において、ステップ201で入力処理部10A、10Bから伝送されてきたデータを取得する。このステップ201は図1のデータ取得手段21によって実行される処理ステップである。
 ステップ201でデータを取得後、ステップ202で事故発生有りと判定した場合(Y)、次のステップ203で事故相を選別し、さらに、ステップ204で事故相電圧・各相電流データおよび送電線1の線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)などの予め設定した設定値を用いて標定演算を行う。これらステップ202、203および204は、図1の標定演算手段22によって実行される処理ステップである。
 そして、次のステップ205で標定演算結果を出力する。このステップ205は図1の標定結果出力手段23によって実行される処理ステップである。
(作用)
 以上で事故点標定装置を構成する入力処理部10A、10Bおよび標定処理部20について機能説明を終えたので、以下、図4を参照して本実施形態による事故点標定方法について説明する。
 図4は、本実施形態による事故点標定方法を説明する図であり、図4(a)は送電線事故時の模式図、図4(b)はA、B端子並びに事故点Fの電圧分布図、図4(c)は事故点電圧・電流間の関係式をそれぞれ示す。
 図1および図4においては、標定対象線路1のA端子およびB端子の各端子において、端子間のサンプリング同期をとることなく、電圧変成器VT10Aおよび変流器CT10A、電圧変成器VT10Bおよび変流器CT10Bにより、それぞれ事故中の電圧VA(ベクトル量)および電流IA(ベクトル量)、電圧VB(ベクトル量)および電流IB(ベクトル量)を採取する。
 入力処理部10Aおよび10Bは、それぞれデータ入力手段11Aおよび11Bで電圧VA(ベクトル量)と電流IA(ベクトル量)、電圧VB(ベクトル量)と電流IB(ベクトル量)を取り込み、ディジタルデータに変換する。
 そして、ディジタルデータに変換された電流・電圧データを、データ記憶時間、事故検出感度などの設定値をもとに、データ記憶手段12Aおよび12Bのメモリに記憶させ、さらに、この記憶したディジタル電圧・電流データVA、IA、VB、IBをデータ伝送手段13A、13Bを介して標定処理部20に送る。
 標定処理部20では、データ取得手段21により各入力処理部10A、10Bからの事故時のディジタルデータVA、IA、VB、IBを取り込み、送電線1の線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)などの設定値をもとに、標定演算手段22で次のようにして標定演算を行う。
 まず、A端子で取得したVA、IAを、任意の位相基準を用いて複素数表現すると、次の式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 このとき、A端子から見た事故点2(F)の電圧(事故点電圧:VFA)の大きさについて前記式(1)が成立することから、式(1)の2乗値についても問題なく成立する。
 すなわち、式(1)を2乗すると、次の式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
ここで、
Figure JPOXMLDOC01-appb-M000005
とおくと、次の式(6)が成立する。
Figure JPOXMLDOC01-appb-M000006
 次に、B端子で取得したVB、IBを、任意の位相基準(A端子とは非同期で可)を用いて複素数表現すると、次の式(7)となる。
Figure JPOXMLDOC01-appb-M000007
 このとき、B端子から見た事故点Fの電圧(事故点電圧:VFB)の大きさの2乗値は、次の式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
ここで、
Figure JPOXMLDOC01-appb-M000009
とおくと、次の式(10)が成立する。
Figure JPOXMLDOC01-appb-M000010
となる。ところで、式(6)と式(10)とは等しいので、次の式(11)から式(12)を消去すると、式(13)に示すxに関する2次方程式が得られる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
ここで、A,B,Cは次の式(14)で表される。
Figure JPOXMLDOC01-appb-M000014
である。
 式(13)について、2次方程式の解の公式を用いて下記式(15)のように解くことにより、事故点までの距離x(0≦x≦L)を求めることができる。
Figure JPOXMLDOC01-appb-M000015
 以上述べたように第1の実施形態によれば、各端子に設置された入力処理部から伝送されてくるデータおよび標定対象送電線の線路定数などの設定値を用い、両端から見た事故相の事故点電圧の大きさの2乗値が等しい点を事故点として得られる2次方程式を解くことにより所定の一端から事故点までの距離を算出する標定演算を行うようにしたので、端子間で同期をとることなく、シンプルかつ直接的な計算により、事故点までの距離xを精度良く求めることができる。
(第2の実施形態)
 本実施形態による事故点標定方法を実現するための事故点標定装置のブロック構成図は第1の実施形態と同様であり、また、入力処理部10についても同一である。
 本実施形態が第1の実施形態に比べて異なるところは、標定処理部20の処理機能の一部なので、標定処理部20の異なる処理機能について重点的に説明する。
(構成)
 本実施形態においても第1の実施形態と同様、図1の入力処理部10において、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく、それぞれ電圧VA(ベクトル量)および電流IA(ベクトル量)、電圧VB(ベクトル量)および電流IB(ベクトル量)を採取する。
 そして、標定処理部20において、線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)を設定するとともに、A端子から事故点Fまでの距離xを、モード変換量を用いて求める。
 図5は、本発明の第2の実施形態に係る事故点標定方法を実現するための事故点標定装置において、標定処理部20の処理機能として実行される標定処理200を示すフローチャートである。
 図5において、ステップ201でデータを取得する。このステップ201は図1のデータ取得手段21によって実行される処理ステップである。
 ステップ201でデータを取得後、ステップ202で事故発生有りと判定された場合(Y)には、次のステップ203Aでモード変換を行い、次に、ステップ204で各相電圧・各相電流データおよび線路定数などの設定値を用いて標定演算を行う。これらステップ202、203Aおよび204は、図1の標定演算手段22によって実行される処理ステップである。
 そして、次のステップ205で標定結果を出力する。このステップ205は図1の標定結果出力手段23によって実行される処理ステップである。
(作用)
 以上で事故点標定装置を構成する入力処理部10A、10Bおよび標定処理部20について機能説明を終えたので、以下、図6を参照して本実施形態による事故点標定方法について説明する。
 図6は、本発明の第2の実施形態の事故点標定方法を説明する図で、図6(a)は送電線事故時の模式図、図6(b)は各端子並びに事故点の電圧分布図、図6(c)は事故点電圧・電流間に成り立つ関係式をそれぞれ示す。
 前述の第1の実施形態で説明した3相直接法の場合、式(4)、(8)を事故相a、b、c、ab、bc、ca、abcに対して適用することにより、容易に事故点2(F)までの距離を求めることができる。しかし、事故相がa相のときに式(4)、(8)をb相に適用すると、誤差の影響が大きく一般的には演算が困難となる傾向となるため、本実施形態のモード変換を用いない場合には、図3で説明したように事故相選別処理(ステップ203)が一般的には必要となる。
 すなわち、本実施形態のモード変換を用いないとすると、式(4)、(8)は、a相事故の場合は次の式(16)、(17)で表され、また、b相事故、c相事故の場合は、異なる式で表現されることになる。そのため、事故相選別処理を行った上で、選別された事故相に応じた式を用いて事故点までの距離を求めることになる。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 これに対して、本実施形態においては、対称座標法の正相量などのモード変換を用いることによって、事故相選別処理を不要にできるという利点がある。
 以下、具体例として、対称座標法の正相量のモード変換を用いる例を次の式(18)、(19)に示す。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 上記式(19)に次の式(20)で示される対称座標法の正相量のモード変換行列を適用すると、式(21)が得られる。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 また、式(19)に次の式(22)で示されるクラーク変換のα量の変換行列を適用すると、式(23)が得られる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 ここで、モード変換行列適用後を[ ]mと表現すると、次の式(24)となる。
Figure JPOXMLDOC01-appb-M000024
この式(24)は、次の式(25)のように、簡略表現することができる。
Figure JPOXMLDOC01-appb-M000025
 また、式(21)のインピーダンス部に正相インピーダンスZ11、Z12、Z10を適用すると、次の式(26)が得られる。
Figure JPOXMLDOC01-appb-M000026
 モード変換の性質上、正相量の場合には1相、2相、3相事故に対して、逆相量の場合には1相、2相事故に対して、零相量の場合には1相事故に対して、事故相選別を行うことなく適用できる。
 本実施形態は、図6で示したように、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく電圧VA(ベクトル量)と電流IA(ベクトル量)、電圧VB(ベクトル量)と電流IB(ベクトル量)を採取し、線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)を用いる点では、第1の実施形態と同様である。特に、本実施形態では、以上のように、モード変換量を用いており、A端子から事故点2(F)までの距離xは、両端から見た事故点電圧[VF]m(ベクトル量)の大きさの2乗値が等しいことから、上記式(25)が求まる。そして、式(25)から次の式(27)を消去することにより、xに関する2次方程式が得られる。
Figure JPOXMLDOC01-appb-M000027
 そして、得られた2次方程式をxについて解くことにより、事故点までの距離xを求めることができる。
(第2の実施形態の変形例)
 なお、以上説明した第2の実施形態では、電圧・電流のモード変換を標定処理部20で行うようにしたが、本実施形態はこれに限定されるものではなく、入力処理部10のデータ記憶手段12にモード変換機能を持たせて、図7で示すように、入力処理部10による入力処理100において、電圧・電流データを記憶する処理ステップ103の後に、データ記憶手段12により電圧・電流のモードを変換するモード変換処理ステップ105を実施するようにしてもよい。この場合、標定処理部20での電圧・電流のモード変換は不要となるので、図8のように標定処理部20による標定処理200からモード変換処理ステップ203Aを削除する。
(効果)
 以上述べたように、第2の実施形態およびその変形例によれば、第1の実施形態と同様に、各端子の同期をとることなく、シンプルかつ直接的な計算により、事故点までの距離xを求めることができる。しかも、本実施形態では、モード変換量を用いることにより、a、b、c、ab、bc、ca、abc相の事故相選別を行うことなく標定計算できる利点がある。例えば、正相量の場合には1相、2相、3相事故に対して、逆相量の場合には1相、2相事故に対して、零相量の場合には1相事故に対して、事故相選別を行うことなく適用できる。そのため、全体の計算量を少なくすることができ、事故点標定をより効率よく行うことができる。
(第3の実施形態)
 本実施形態による事故点標定方法を実現するための事故点標定装置のブロック構成図は、第1および第2の実施形態と同様であり、また、入力処理部10についても同一である。
 本実施形態が第1、第2の実施形態に比べて異なるところは、標定処理部20の処理機能の一部なので、標定処理部20の異なる処理機能について重点的に説明する。
(構成)
 本実施形態においても第1、第2の実施形態と同様、図1の入力処理部10においては、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく、それぞれ電圧VA(ベクトル量)および電流IA(ベクトル量)、電圧VB(ベクトル量)および電流IB(ベクトル量)を採取する。
 そして、標定処理部20において、線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)などの予め設定した設定値をもとに、A端子から事故点Fまでの距離xを、ベクトル量(フェーザ量)を用いて求める。
 図9は、本発明の第3の実施形態に係る事故点標定方法を実現するための事故点標定装置において、標定処理部20の処理機能として実行される標定処理200を示すフローチャートである。
 図9において、ステップ201でデータを取得する。このステップ201は図1のデータ取得手段21によって実行される処理ステップである。
 ステップ201でデータを取得後、ステップ202で事故発生有りと判定された場合(Y)には、次のステップ203Bでベクトル量(フェーザ量)の算出を行い、さらに、ステップ204で各相電圧・各相電流データおよび線路定数などの設定値を用いて標定演算を行う。これらステップ202、203Bおよび204は、図1の標定演算手段22によって実行される処理ステップである。
 ステップ204の後、続くステップ2041で標定演算手段22により収束判定を行い、そして、さらに次のステップ205で標定結果を出力する。このステップ205は図1の標定結果出力手段23によって実行される処理ステップである。
(作用)
 以上で事故点標定装置を構成する入力処理部10A、10Bおよび標定処理部20について機能説明を終えたので、以下、図10ないし図12を参照して本実施形態による事故点標定方法について説明する。
 図10ないし図12は、本実施形態の事故点標定方法を説明する図であり、特に、図10(a)はA端子の電圧の時系列サンプルデータ例、図10(b)はA端子の電流のサンプルデータ例を示す。図11(a)はB端子の電圧の時系列サンプルデータ例、図11(b)はB端子の電流のサンプルデータ例を示す。図12は時系列の標定計算値例を示す。
 図10、図11に示すように、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく電圧VA(ベクトル量)と電流IA(ベクトル量)、電圧VB(ベクトル量)と電流IB(ベクトル量)の時系列サンプルデータを採取する。なお、図10、図11の図示例ではA端子(図10)とB端子(図11)は非同期であり、約45度の位相ずれが生じている。
 線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)を用いると、A端子から事故点2(F点)までの距離xは、両端から見た事故点電圧VF(ベクトル量)の大きさの2乗値が等しいことから、時系列サンプルデータから各電圧・電流の振幅値および位相を算出することにより、後述する式(29)を得る。
 以下、式(29)を導く方法について説明する。 
 ある電気量の時系列サンプルデータからベクトル量(フェーザ量)を算出する一般例の一つとして、離散フーリエ変換(DFT)を用いる方法がある。 
 ベクトル量(フェーザ量)は、時系列サンプルデータVkに対して、DFTを用いることより、式(28)にて算出できる。
Figure JPOXMLDOC01-appb-M000028
 式(4)、(8)にこれを適用すると、次の式(29)が得られる。
Figure JPOXMLDOC01-appb-M000029
 ここで、VAs(ベクトル量)、IAs(ベクトル量)、VBs(ベクトル量)、IBs(ベクトル量)は時系列サンプルデータから算出したベクトル量である。
 本実施形態においても、既に説明した第1、第2の実施形態と同様に、式(29)から得られるxの2次方程式を解くことにより、事故点Fまでの距離xを求めることができ、図12に示すように時系列的に標定計算値が得られる。
 この結果をもとに、標定計算値が最も安定する時点を収束判定により求め、最終的な標定結果とする。例えば、収束判定としては、3点のばらつきが最小となる時点を収束時点とするなどの方法がある。
 以上述べたように第3の実施形態によれば、第1の実施形態や第2の実施形態と同様に、各端子の同期をとることなく、シンプルかつ直接的な計算により、事故点までの距離xを求めることができる。しかも、本実施形態では、時系列的に算出した標定計算値の収束判定により最終的な標定結果を出力することにより、過渡的な変動に強く、より標定精度を向上させることができる。
(第4の実施形態)
 本実施形態による事故点標定方法を実現するための事故点標定装置のブロック構成図は、第1ないし第3の実施形態と同様であり、また、入力処理部10についても同一である。
 本実施形態が第1ないし第3の実施形態に比べて異なるところは、図13で示すように標定処理部20の処理機能の一部なので、標定処理部20の異なる処理機能について重点的に説明する。
(構成)
 本実施形態においても第1ないし第3の実施形態と同様、図1の入力処理部10において、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく、それぞれ電圧VA(ベクトル量)および電流IA(ベクトル量)、電圧VB(ベクトル量)および電流IB(ベクトル量)を採取する。
 そして、標定処理部20において、線路長Lおよび単位長あたりの送電線線路定数Z(ベクトル量)を設定するとともに、A端子から事故点Fまでの距離xを、ベクトル量(フェーザ量)の振幅またはフェーザ量の最も安定した時点を用いて求める。
 図13は、本発明の第4の実施形態に係る事故点標定方法を実現するための事故点標定装置において、標定処理部20の処理機能として実行される標定処理200を示すフローチャートである。
 図13において、ステップ201でデータを取得する。このステップ201は図1のデータ取得手段21によって実行される処理ステップである。
 ステップ201でデータを取得後、ステップ202で事故発生有りと判定された場合(Y)には、次のステップ203Bでベクトル量(フェーザ量)の算出を行い、さらに次のステップ203B1で振幅またはフェーザ量の最も安定した時点を判定し、続くステップ204で上記時点の各相電圧・各相電流データおよび線路定数などの設定値を用いて標定演算を行う。これらステップ202、203B、203B1および204は、図1の標定演算手段22によって実行される処理ステップである。
 そして、次のステップ205で標定結果を出力する。このステップ205は図1の標定結果出力手段23によって実行される処理ステップである。
(作用)
 以上で事故点標定装置を構成する入力処理部10A、10Bおよび標定処理部20について機能説明を終えたので、以下、図14および図15の波形図を参照して本実施形態による事故点標定方法について説明する。
 図14および図15は、本実施形態の事故点標定方法を説明する図であり、特に図14(a)はA端子の電流の時系列サンプルデータ例、図14(b)はA端子の電流の時系列振幅値例、図15(a)はB端子の電流の時系列サンプルデータ例、図15(b)はB端子の電流の時系列振幅値例を示す図である。
 図14(a)および図15(a)に示すように、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく電圧VA(ベクトル量)、VB(ベクトル量)と電流IA(ベクトル量)、IB(ベクトル量)の時系列サンプルデータを採取する。
 図14(b)、図15(b)に示すように、時系列サンプルデータの最も安定した時点のデータを用いて、線路長Lおよび送電線線路定数Z(ベクトル量)を用いると、A端子から事故点Fまでの距離xは、両端から見た事故点電圧VF(ベクトル量)の大きさの2乗値が等しいことにより、下記式(30)を得る。
Figure JPOXMLDOC01-appb-M000030
 ここで、VAT(ベクトル量)、IAT(ベクトル量)、VBT(ベクトル量)、IBT(ベクトル量)は時系列サンプルデータから求めた最も安定した時点のベクトル量である。
 式(30)から得られるxの2次方程式を解くことにより、時系列サンプルデータの最も安定した時点における事故点までの距離xを求めることができる。
 例えば、時系列サンプルデータの最も安定した時点としては、各時系列の電圧・電流振幅値またはフェーザ量の3点のばらつきが最小となる時点とするなどの方法がある。なお、図14、図15の図示例ではA端子(図14)とB端子(図15)は非同期であり、振幅またはフェーザ量の最も安定した時点は約2msずれている。
 以上述べたように第4の実施形態によれば、第1の実施形態ないし第3の実施形態と同様に、各端子の同期をとることなく、シンプルかつ直接的な計算により、事故点までの距離xを求めることができる。しかも、本実施形態では、振幅またフェーザ量の最も安定した時点の値を用いて事故点までの距離xを算出するので、過渡的な変動に強く、より標定精度を向上させることができる。
(第5の実施形態)
 以上述べた第1ないし第4の実施形態の場合、標定対象送電線1が2端子の場合であったが、本実施形態は標定対象送電線1が分岐点を有する3端子であり、入力処理部が一つ増えた点を除けば、入力処理部10の構成は第1の実施形態と同じである。しかし、分岐点があるがゆえに標定処理部20の処理機能の一部が少し異なる。
 図16において、CT10C、VT10CはそれぞれC端子に設置した変流器、電圧変成器である。10cは、C端子に設けた入力処理部であり、A端子、B端子に設けた入力処理部10a、10bと同様にデータ入力手段11c、データ記憶手段12cおよびデータ伝送手段13cとから構成され、伝送媒体NETに接続されている。標定処理部20は図1の場合と同じである。
 本実施形態においても第1ないし第4の実施形態と同様、図1の入力処理部10においては、標定対象線路1の両端のA端子およびB端子において、各端子の同期、非同期にかかわりなく、それぞれ電圧VA(ベクトル量)および電流IA(ベクトル量)、電圧VB(ベクトル量)および電流IB(ベクトル量)を採取する。本実施形態ではさらに、C端子において、電圧VC(ベクトル量)および電流IC(ベクトル量)を採取する。
 本実施形態の標定処理部20の機能について図17のフローチャートを参照して説明する。
 図17において、ステップ201でデータを取得する。このステップ201は図1のデータ取得手段21によって実行される処理ステップである。
 ステップ201でデータを取得後、ステップ202で事故発生有りと判定された場合(Y)には、次のステップ206で分岐点電圧・分岐点電流の算出を行い、次のステップ204で各相電圧・各相電流データおよび線路定数などの設定値を用いて標定演算を行い、続くステップ207で事故点確定または最終区間の判定を行う。これらステップ202、206、204および207は、図1の標定演算手段22によって実行される処理ステップである。
 そして、次のステップ205で標定演算結果を出力する。このステップ205は図1の標定結果出力手段23によって実行される処理ステップである。
(作用)
 以上で事故点標定装置を構成する入力処理部10A、10Bおよび標定処理部20について機能説明を終えたので、以下、図18を参照して本実施形態による事故点標定方法について説明する。
 図18は、本発明の第5の実施形態の事故点標定方法を示す図であり、特に、図18(a)は送電線の回路図、図18(b)は電圧、電流間に成り立つ関係式を示す。
 本実施形態においては、図18で示すように、送電線1は、端子A、Bの中間の分岐点Dにおいて分岐し、端子Cを有する。標定対象線路1をA端子-D点間としたとき、B端子とC端子から見たD点の分岐点電圧VD(ベクトル量)が等しいことから、B端子とC端子の間の位相差をθとすると、下記式(31)が成り立つ。
Figure JPOXMLDOC01-appb-M000031
 式(31)より、次の式(32)が求められる。
Figure JPOXMLDOC01-appb-M000032
 標定対象線路1のA端子-D点間において、両端の同期、非同期にかかわりない電圧VA(ベクトル量)、VD(ベクトル量)と電流IA(ベクトル量)、ID(ベクトル量)、線路長Lおよび送電線線路定数Z(ベクトル量)を用いると、A端子から事故点Fまでの距離xは、A端子、D点から見た事故点電圧VF(ベクトル量)の大きさの2乗値が等しいことから、下記式(33)となる。
Figure JPOXMLDOC01-appb-M000033
 式(33)に式(32)を代入することにより、A端子、B端子、C端子の電圧、電流をパラメータとするxに関する2次方程式が得られる。そして、その2次方程式をxについて解くことにより、A端子から事故点Fまでの距離xを求めることができる。
 以上述べたように、第5の実施形態によれば、第1の実施形態ないし第4の実施形態と同様に、分岐点を持つ3端子以上の送電線においても、各端子の同期をとることなく、シンプルかつ直接的な計算により、事故点までの距離xを精度良く求めることができる。
 1…標定対象の送電線、2…事故点F、3…分岐点、10…入力処理部、11…データ入力手段、12…データ記憶手段、13…データ伝送手段、20…標定処理部、21…データ取得手段、22…標定演算手段、23…標定結果出力手段。

Claims (6)

  1.  標定対象送電線の各端子の電圧、電流および送電線線路定数を用いて事故点を標定する事故点標定方法において、
     両端から見た事故相の事故点電圧の大きさの2乗値が等しい点を事故点として得られる2次方程式を解くことにより所定の一端から事故点までの距離を算出することを特徴とする事故点標定方法。
  2.  前記事故点電圧としてモード変換した値を用いることを特徴とする請求項1に記載の事故点標定方法。
  3.  前記電圧、電流の時系列サンプル値を用いて計算し、時系列的に算出した標定結果の収束判定を行うことにより最終結果を出力することを特徴とする請求項1に記載の事故点標定方法。
  4.  前記電圧、電流の時系列サンプル値を用いて計算し、時系列サンプル値の最も安定した時点のデータを用いて計算することを特徴とする請求項1に記載の事故点標定方法。
  5.  分岐点を有する3端子以上の送電線において、2端子から見た分岐点電圧が等しいことを利用し、2端子の電圧、電流および送電線線路定数を用いて2端子間の位相差を算出し、算出した位相差と2端子の電圧・電流および送電線線路定数を用いて分岐点の電圧・電流を算出し、端子と分岐点間または分岐点と分岐点間を前記両端とみなして、所定の一端から事故店までの距離を算出することを特徴とする請求項1に記載の事故点標定方法。
  6.  標定対象送電線の各端子の電圧、電流および送電線線路定数を用いて事故点を標定する事故点標定装置において、
     標定対象送電線の各端子に、端子電圧および電流を取り込み、ディジタル変換を行うデータ入力手段、データ記憶時間を含む1種以上の設定値を予め設定しておき、この設定値をもとに事故発生時に電気量データをメモリに記憶するデータ記憶手段、記憶したデータを伝送するデータ伝送手段を備えた入力処理部を設け、
     伝送媒体を介して前記各端子に設置された前記入力処理部から伝送されてくるデータを取得するデータ取得手段、前記標定対象送電線の線路定数を含む1種以上の設定値を予め設定しておき、この設定値および前記データ取得手段で取得した電流、電圧データを用い、両端から見た事故相の事故点電圧の大きさの2乗値が等しい点を事故点として得られる2次方程式を解くことにより所定の一端から事故点までの距離を算出する標定演算を行う標定演算手段、この標定演算手段の標定結果を出力する標定結果出力手段を備えた標定処理部を設けたことを特徴とする事故点標定装置。
PCT/JP2009/003221 2008-07-09 2009-07-09 事故点標定方法および事故点標定装置 WO2010004757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801330434A CN102132163B (zh) 2008-07-09 2009-07-09 事故点标定方法和事故点标定装置
US13/003,407 US20110184673A1 (en) 2008-07-09 2009-07-09 Method and device for fault location

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-179078 2008-07-09
JP2008179078A JP2010019625A (ja) 2008-07-09 2008-07-09 事故点標定方法および事故点標定装置

Publications (1)

Publication Number Publication Date
WO2010004757A1 true WO2010004757A1 (ja) 2010-01-14

Family

ID=41506881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003221 WO2010004757A1 (ja) 2008-07-09 2009-07-09 事故点標定方法および事故点標定装置

Country Status (4)

Country Link
US (1) US20110184673A1 (ja)
JP (1) JP2010019625A (ja)
CN (1) CN102132163B (ja)
WO (1) WO2010004757A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502744A (zh) * 2014-11-26 2015-04-08 国家电网公司 一种带并联电抗器的输电线路单相故障性质判别方法
JP2018163066A (ja) * 2017-03-27 2018-10-18 三菱電機株式会社 故障点標定装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033588A (ja) * 2009-08-05 2011-02-17 Toshiba Corp 事故点標定方法およびそのシステム
CN103105563B (zh) * 2013-01-28 2016-01-20 山东电力集团公司济宁供电公司 一种电力线路故障行波网络定位方法
EP2884291B1 (en) * 2013-12-11 2019-08-21 ABB Schweiz AG Fault location in electrical network
JP6459518B2 (ja) * 2014-02-04 2019-01-30 東京電力ホールディングス株式会社 事故点標定装置
US11150290B2 (en) 2018-08-23 2021-10-19 Schweitzer Engineering Laboratories, Inc. Accurate fault location method based on local and remote voltages and currents
US10656197B2 (en) 2018-08-23 2020-05-19 Schweitzer Engineering Laboratories, Inc. Accurate fault location method based on local measurements and remote currents
CN113721106B (zh) * 2020-05-26 2023-07-14 广东电网有限责任公司电力科学研究院 配电网故障定位方法、装置及设备
CN113191062B (zh) * 2021-04-13 2024-01-09 云南电网有限责任公司昆明供电局 基于多源不完整信息的配电网故障区段定位方法及系统
CN114184884A (zh) * 2021-11-23 2022-03-15 昆明理工大学 一种电网故障行波测距方程自动构造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243790A (ja) * 2000-12-29 2002-08-28 Abb Power Automation Ltd 多数タップ付き負荷を有する送電線上の故障点を標定するシステムと方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2112136C3 (de) * 1971-03-10 1986-02-13 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zum genauen Messen des Fehlerortes bei Leitungskurzschlüssen
JPS5829471B2 (ja) * 1978-10-30 1983-06-22 東京電力株式会社 事故点判別方式
US4455612A (en) * 1982-01-27 1984-06-19 Iowa State University Research Foundation, Inc. Recursive estimation in digital distance relaying system
SE433405B (sv) * 1982-09-14 1984-05-21 Asea Ab Forfarande och anordning for lokalisering av ett felstelle pa en trefasig kraftledning
JP2920981B2 (ja) * 1990-01-17 1999-07-19 関西電力株式会社 2回線送電線の故障点標定方法
JP3211477B2 (ja) * 1993-04-30 2001-09-25 宇部興産株式会社 ジメチルビフェニルジカルボン酸ジアルキルおよびその製法
US5428549A (en) * 1993-05-28 1995-06-27 Abb Power T&D Company Transmission line fault location system
DE4441334C1 (de) * 1994-11-08 1996-07-11 Siemens Ag Verfahren zum Feststellen des Ortes eines Fehlers in einem vorgegebenen Überwachungsbereich eines mehrphasigen elektrischen Energieübertragungsleitungssystems
SE519945C2 (sv) * 2000-12-14 2003-04-29 Abb Ab Fellokaliseringsmetod och anordning för krafttransmissionslinjer
SE525185C2 (sv) * 2002-06-20 2004-12-21 Abb Ab Fellokalisering med hjälp av mätningar av ström och spänning från ena änden av en ledning
CN1228642C (zh) * 2003-08-12 2005-11-23 武汉大学 一种采用多端信号的输电线路精确故障定位方法
CN1322332C (zh) * 2003-10-10 2007-06-20 武汉大学 高压输电线多路高精度gps单端故障定位方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243790A (ja) * 2000-12-29 2002-08-28 Abb Power Automation Ltd 多数タップ付き負荷を有する送電線上の故障点を標定するシステムと方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502744A (zh) * 2014-11-26 2015-04-08 国家电网公司 一种带并联电抗器的输电线路单相故障性质判别方法
JP2018163066A (ja) * 2017-03-27 2018-10-18 三菱電機株式会社 故障点標定装置

Also Published As

Publication number Publication date
CN102132163A (zh) 2011-07-20
US20110184673A1 (en) 2011-07-28
JP2010019625A (ja) 2010-01-28
CN102132163B (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2010004757A1 (ja) 事故点標定方法および事故点標定装置
EP2474076B1 (en) A method of fault phase selection and fault type determination
US7286963B2 (en) Method and device for fault location on three terminal power line
EP3043186B1 (en) Method and system for identifying full parameters of element by fault recorder, and fault locating method
CN101978567B (zh) 数字保护继电装置和数字保护继电装置用数据传输装置
CN102255292B (zh) 一种基于参数识别的高压输电线路距离保护方法
WO2000050908A9 (en) Multi-ended fault location system
EP2544322A1 (en) A method of selecting between internal and external faults in parallel lines using one-end measurements
Ma et al. Location method for interline and grounded faults of double-circuit transmission lines based on distributed parameters
CN107091958B (zh) 一种输电线路参数在线辨识系统及其辨识方法
Meliopoulos et al. Wide area dynamic monitoring and stability controls
CN110214278B (zh) 在输电方案中定位故障的方法
US9621569B1 (en) Method and apparatus for detecting cyber attacks on an alternating current power grid
CN110783895B (zh) 光纤差动保护中快速判断ct断线的方法
JP6804358B2 (ja) 故障点標定装置
Mohagheghi et al. Distributed state estimation based on the supercalibrator concept-laboratory implementation
WO2011016213A1 (ja) 事故点標定方法およびシステム
CN105720565A (zh) 一种基于单侧电流的半波长线路自由波能量保护选相方法
Meliopoulos et al. Phasor data accuracy enhancement in a multi-vendor environment
CN103616580A (zh) 合并单元数据转换角差测试方法
EP4220879A1 (en) Time alignment method of differential protection device, differential protection device and differential protection system
RU2504792C1 (ru) Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
JP4564199B2 (ja) 事故点標定装置
Izykowski et al. Accurate Location of Faults on Three-Terminal Line With Use Of Three-End Unsynchronised Measurements
Džafić et al. A Telegrapher’s equations-based implicit finite difference solution for fault location with current transformer saturation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133043.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 187/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13003407

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09794204

Country of ref document: EP

Kind code of ref document: A1