WO2010004700A1 - 金属化フィルムコンデンサ - Google Patents

金属化フィルムコンデンサ Download PDF

Info

Publication number
WO2010004700A1
WO2010004700A1 PCT/JP2009/003006 JP2009003006W WO2010004700A1 WO 2010004700 A1 WO2010004700 A1 WO 2010004700A1 JP 2009003006 W JP2009003006 W JP 2009003006W WO 2010004700 A1 WO2010004700 A1 WO 2010004700A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode
metallized
metal thin
dielectric film
Prior art date
Application number
PCT/JP2009/003006
Other languages
English (en)
French (fr)
Inventor
竹岡宏樹
久保田浩
藤井浩
大地幸和
島崎幸博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801266847A priority Critical patent/CN102089838B/zh
Priority to JP2010519629A priority patent/JP5370363B2/ja
Priority to US12/992,946 priority patent/US8451579B2/en
Publication of WO2010004700A1 publication Critical patent/WO2010004700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a metallized film capacitor that is used in various electronic devices, electrical devices, industrial devices, automobiles, and the like, and is particularly suitable for smoothing, filtering, and snubber of a motor drive inverter circuit of a hybrid vehicle.
  • Such an electric motor for HEV has a high operating voltage range of several hundred volts.
  • a capacitor used in connection with such an electric motor a metallized film capacitor having high withstand voltage and low loss electric characteristics has attracted attention.
  • the trend of adopting metalized film capacitors with a very long life is also conspicuous from the demand for maintenance-free in the market.
  • FIG. 9 is a perspective view of a conventional metalized film capacitor 501 described in Patent Document 1.
  • the metallized film 21 has a dielectric film 22 such as a polypropylene film and an electrode coating 23 formed on the surface by metal vapor deposition.
  • the electrode coating 23 extends in the longitudinal direction of the film 21.
  • the electrode coating 23 is not formed on the margin portion 22A.
  • the electrode film 23 is not formed on the slit 22B having the lattice shape.
  • the fuse portion 23B connects the segment portion 23A, which is a unit capacitor that is divided into functional portions.
  • the fuse part 23 ⁇ / b> C connects the vapor deposition electrode of the functional part arranged in the longitudinal direction of the film 21 and separated by the slit 22 ⁇ / b> C and the vapor deposition electrode of the electrode lead-out part.
  • the metallized film 24 has a dielectric film 25 such as a polypropylene film and an electrode coating 26 formed on the surface by metal vapor deposition.
  • the electrode coating 26 extends in the longitudinal direction of the film 21.
  • the electrode coating 26 is not formed on the margin portion 25A.
  • the electrode film 26 is not formed on the slit 25B having the lattice shape.
  • the fuse part 26B is connected to a segment part 26A, which is a unit capacitor into which functional parts are subdivided.
  • the fuse part 26 ⁇ / b> C connects the vapor deposition electrode of the functional part arranged in the longitudinal direction of the film 21 and separated by the slit 25 ⁇ / b> C and the vapor deposition electrode of the electrode lead-out part.
  • the metallized film capacitor 501 includes metallicon electrodes 27 and 28 for leading out external electrodes.
  • the conventional metallized film capacitor 501 is an aggregate of many unit capacitors. Fuse portions 23B, 23C, 26B, and 26C are provided between the unit capacitors and between the functional portion of the capacitor and the electrode lead-out portion. When the fuse parts 23B, 23C, 26B, and 26C are cut at the time of abnormality such as inflow of excessive current, the metallized film capacitor 501 does not break down, and the function of the capacitor is minimized while minimizing its capacitance. Secure.
  • the dielectric films 22 and 25 are generally made of polypropylene (PP) film.
  • the PP film has a low heat resistant temperature of about 110 ° C., and cannot satisfy the severe heat resistant temperature of 150 ° C. required for automobiles.
  • the material of the dielectric films 22 and 25 In order to raise the heat-resistant temperature, as the material of the dielectric films 22 and 25, the main chain of polyethylene naphthalate (PEN), polyphenylene sulfite (PPS), polyethylene terephthalate (PET), etc., ester bond, ether bond, amide bond It is conceivable to improve heat resistance by using a dielectric film containing an inorganic filler in a polymer material having a polar bond such as an imide bond. However, these films have the following problems.
  • the electrode film formed by metal vapor deposition has a self-healing (SH) effect in which when a short-circuit occurs in a defective part of insulation, the metal vapor-deposited electrode around the defective part is evaporated and scattered by the short-circuit energy, and the insulation is restored. . Due to the SH effect, the function of the capacitor is restored even if a part of the electrode film of the capacitor is short-circuited.
  • SH self-healing
  • a dielectric film containing an inorganic filler in a polymer material having a polar bond in the main chain such as polyethylene naphthalate (PEN), polyphenylene sulfite (PPS), polyethylene terephthalate (PET), has a low SH effect, and the capacitor 501 It is difficult to use it instead of PP film.
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfite
  • PET polyethylene terephthalate
  • the metallized film capacitor includes a first dielectric film, a first metal thin film electrode provided on the surface of the first dielectric film, and a second dielectric provided on the first metal thin film electrode. And a second metal thin film electrode provided on the second dielectric film so as to face the first metal thin film electrode with the second dielectric film interposed therebetween.
  • the surface energy of the surface of the first dielectric film is 25 mN / m to 40 mN / m.
  • This metallized film capacitor has high heat resistance and a good self-healing effect.
  • FIG. 1 is an exploded plan view of a metallized film capacitor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the metalized film capacitor shown in FIG. 1 taken along line 2-2.
  • FIG. 3 shows numerical values for obtaining the surface energy of the metallized film capacitor according to the first embodiment.
  • FIG. 4 is a perspective view of the metallized film capacitor according to the first embodiment.
  • FIG. 5 is a plan view of another metallized film of the metallized film capacitor according to the first embodiment.
  • FIG. 6 shows the evaluation results of the metallized film capacitor according to the first embodiment.
  • FIG. 7 is a cross-sectional view of the metallized film of the metallized film capacitor according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the metallized film of the metalized film capacitor according to the third embodiment of the present invention.
  • FIG. 9 is a perspective view of a conventional metallized film capacitor.
  • FIG. 1 is an exploded plan view of a metallized film capacitor 601 according to Embodiment 1 of the present invention.
  • the metallized film capacitor 601 includes metallized films 1 and 1A.
  • FIG. 2 is a cross-sectional view of the metallized film capacitor 601 taken along line 2-2 and shows a cross section of the metallized film 1.
  • the metallized film 1 includes a dielectric film 32 and a metal thin film electrode 4 provided on the surface 32 ⁇ / b> A of the dielectric film 32.
  • the dielectric film 32 includes a base film 33 and a base layer 3 provided on the surface 33 ⁇ / b> A of the base film 33.
  • the underlayer 3 has a surface 3B located on the surface 33A of the base film 33 and a surface 3A opposite to the surface 3B.
  • the underlayer 3 is located on the surface 32A of the dielectric film 32, that is, the surface 3A of the underlayer 3 is the surface 32A of the dielectric film 32.
  • the metal thin film electrode 4 is formed on the surface 32A of the dielectric film 32 by depositing a metal such as aluminum in a desired pattern.
  • the underlayer 3 is in contact with the metal thin film electrode 4.
  • the metallized film 1 has a width in the width direction 601B and extends in a longitudinal direction 601A perpendicular to the width direction 601B.
  • the surface 32A of the dielectric film 32 has a margin portion 5 exposed from the metal thin film electrode 4 at an end 601C in the width direction 601B.
  • the margin part 5 is provided continuously in the longitudinal direction 601A.
  • the metal thin film electrode 4 includes a low resistance portion 4C extending in the longitudinal direction 601A, a plurality of divided electrode portions 4A arranged in the longitudinal direction 601A, and a plurality of divided electrode portions 4A and a plurality of fuses respectively connected to the low resistance portion 4C. Part 4B.
  • the plurality of divided electrode portions 4A are separated from each other by a slit portion 6 exposed from the metal thin film electrode 4 on the surface 32A of the dielectric film 32.
  • the low resistance portion 4C is provided at the end 601D opposite to the end 601C in the width direction 601B of the dielectric film 32, and is thicker than the divided electrode portion 4A and the fuse portion 4B, and therefore lower than the divided electrode portion 4A and the fuse portion 4B.
  • the dielectric film 42 is provided on the surface 4J of the metal thin film electrode 4 (divided electrode portion 4A).
  • the base film 33 according to Embodiment 1 is a film mainly made of polyethylene naphthalate (PEN) having a thickness of 2.0 ⁇ m and a width of 30 mm, and a capacitor 601 for an automobile that requires high heat resistance is obtained.
  • the base film 33 is a heat resistant temperature mainly composed of a polymer material having a polar bond such as an ester bond, an ether bond, an amide bond or an imide bond in the main chain, such as polyphenylene sulfite (PPS) or polyethylene terephthalate (PET). May be a high dielectric film, and a PEN film or a film mainly composed of PEN such as a PEN alloy is particularly preferable.
  • the adhesive strength between a PEN film and a metal thin film formed by metal deposition is strong. Therefore, when the PEN film is used as a metallized film of a metallized film capacitor, the metal thin film electrode is difficult to evaporate and scatter at the time of dielectric breakdown, so that the self-healing (SH) effect for recovering the insulation is lowered.
  • SH self-healing
  • the underlayer 3 is made of a silicon-based material coated on the surface 33A of the base film 33 made of PEN.
  • the surface energy of the surface 32A of the dielectric film 32 becomes 25 mN / m to 40 mN / m by the underlayer 3.
  • the underlayer 3 is made of any one of a silicon-based compound, a fluorine-based compound, and a hydrocarbon-based compound such that the surface energy of the surface 32A is smaller than that of the surface 33A of the base film 33 and is 25 mN / m to 40 mN / m. It may be formed.
  • the surface energy ⁇ l is measured by measuring the contact angle ⁇ of the film with respect to each liquid of water, ethylene glycol, and diiodomethane using a contact angle measuring device, and the Young-Good-Giifalco-Folks (Young-Goods) shown in FIG. -Girifalco-Fowkes).
  • the parameters of each liquid are shown in FIG. 3 quoted from a reference (RJ Good, et al J. Adhension, 1996, vol. 59, pp. 25-37).
  • the metallized film 1 has a width in the width direction 601B and extends in a longitudinal direction 601A perpendicular to the width direction 601B.
  • the surface 32A of the dielectric film 32 has a margin portion 5 exposed from the metal thin film electrode 4 at an end 601C in the width direction 601B.
  • the margin part 5 is provided continuously in the longitudinal direction 601A.
  • the metal thin film electrode 4 includes a low resistance portion 4C extending in the longitudinal direction 601A, a plurality of divided electrode portions 4A arranged in the longitudinal direction 601A, and a plurality of divided electrode portions 4A and a plurality of fuses respectively connected to the low resistance portion 4C. Part 4B.
  • the plurality of divided electrode portions 4A are separated from each other by a slit portion 6 exposed from the metal thin film electrode 4 on the surface 32A of the dielectric film 32.
  • the low resistance portion 4C is provided at the end 601D opposite to the end 601C in the width direction 601B of the dielectric film 32, and is thicker than the divided electrode portion 4A and the fuse portion 4B, and therefore lower than the divided electrode portion 4A and the fuse portion 4B. Has resistance.
  • the width of the fuse portion 4B in the longitudinal direction 601A is narrower than the width of the divided electrode portion 4A in the longitudinal direction 601A.
  • the metallized film 1A includes a dielectric film 42 made of PEN having a thickness of 2.0 ⁇ m and a width of 30 mm, and a metal thin film electrode 8 provided on the surface 42A of the dielectric film 42.
  • the surface 42A of the dielectric film 42 has a margin portion 7 that is provided continuously to the end 601D in the width direction 601B, extends in the longitudinal direction 601A, and is exposed from the metal thin film electrode 8.
  • the metal thin film electrode 8 is provided continuously to the electrode portions 8A facing the plurality of divided electrode portions 4A of the metal thin film electrode 4 via the dielectric film 42 and the end 601C in the width direction 601B of the dielectric film 42.
  • a low resistance portion 9 extending in the longitudinal direction 601A.
  • the low resistance portion 9 is thicker than the electrode portion 8A, and thus has a lower resistance than the divided electrode portion 4A and the fuse portion 4B.
  • the dielectric film 42 of the metallized film 1A has a surface 42B opposite to the surface 42A.
  • the surface 42B is located on the divided electrode portion 4A of the metal thin film electrode 4 of the metallized film 1 and faces the surface 32A of the dielectric film 32 via the divided electrode portion 4A.
  • Each of the plurality of divided electrode portions 4A forms a capacitor so as to face the electrode portion 8A through the dielectric film 42.
  • the fuse portion 4B connects these capacitors in parallel.
  • FIG. 4 is a perspective view of the metallized film capacitor 601 according to the first embodiment.
  • the metallized films 1 and 1A are wound in a state where the metal thin film electrodes 4 of the metallized film 1 are stacked so as to be positioned on the surface 42B of the dielectric film 42 of the metallized film 1A. Yes.
  • the metallized films 1 and 1A may be laminated. Thereby, the electrode portion 8A of the metal thin film electrode 8 of the metallized film 1A is located on the surface 32B opposite to the surface 32A of the dielectric film 32, and the divided electrode portion 4A of the metal thin film electrode 4 is interposed via the dielectric film 32. Opposite to.
  • a metallicon electrode 57 connected to the low resistance portion 4C of the metal thin film electrode 4 is provided at the end 601D of the wound metallized film 1, 1A.
  • a metallicon electrode 58 connected to the low resistance portion 9 of the metal thin film electrode 8 is provided at the end 601C of the wound metallized film 1, 1A.
  • Metallicon electrodes 57 and 58 are formed by spraying metal onto the ends 601C and 601D of the wound metallized films 1 and 1A.
  • FIG. 5 is a plan view of another metal thin film electrode 44 of the metallized film 1 of the metallized film capacitor 601 according to the first embodiment.
  • the metal thin film electrode 44 includes a plurality of divided electrode portions 4D arranged in the longitudinal direction 601A, a plurality of divided electrode portions 4F arranged in the longitudinal direction 601A, a low resistance portion 4C, and a plurality of fuse portions 4E and 4G.
  • Each divided electrode portion 4D and each divided electrode portion 4F are arranged in the width direction 601B.
  • Each fuse part 4E connects the low resistance part 4C and each divided electrode part 4D.
  • Each fuse portion 4G connects each divided electrode portion 4D and each divided electrode 4F.
  • the divided electrode portions 4D and 4F are opposed to the electrode portion 8A shown in FIG. 5 with the dielectric film 42 in the same manner as the divided electrode portion 4A shown in FIG.
  • Each of the plurality of divided electrode portions 4D and 4F is opposed to the electrode portion 8A through the dielectric film 42 to form a capacitor.
  • the fuse parts 4E and 4G connect these capacitors in parallel.
  • the width WA in the longitudinal direction 601A of the fuse portions 4E and 4G is narrower than the width WB in the longitudinal direction 601A of the divided electrode portions 42D and 42F.
  • a sample of the metallized film capacitor 601 of Example 1 having the metal thin film electrode 44 shown in FIG. 5 was prepared, and the withstand voltage was measured.
  • a PEN film was used as the base film 33 and the dielectric film 42, and a sample of the metallized film capacitor of the comparative example provided with the metal thin film electrode 44 formed on the dielectric film 32 without the underlayer 3 was prepared. The withstand voltage was measured.
  • FIG. 6 shows the withstand voltage of the metallized film capacitors of Example 1 and Comparative Example.
  • the width WA of the fuse part 4E was 0.2 mm
  • the width WB of the divided electrode part 4D was 15 mm.
  • the surface energy of the surface 32A of the dielectric film 32 of the sample of Example 1 has several values in the range of 25 mN / m to 40 mN / m
  • the surface energy of the surface of the dielectric film of the comparative example is It was 40 mN / m.
  • the volume of these samples is 100 ⁇ F.
  • the initial withstand voltage yield is a ratio of a sample that does not short-circuit by applying a predetermined voltage at room temperature. In the voltage step-up test, the voltage applied to the sample was increased every predetermined time in an atmosphere of 120 ° C., and the breakdown voltage (BDV), which was the voltage when the capacity became ⁇ 5% of the initial value, was measured. .
  • the metallized film capacitor of Example 1 according to the first embodiment has a higher initial withstand voltage yield than the capacitor of the comparative example that does not include the base layer 3, and the voltage step-up test is performed.
  • the voltage was high and both showed excellent results.
  • a sample in which the surface energy of the underlayer 3 is 25 mN / m to 36 mN / m has a higher withstand voltage.
  • the voltage in the voltage step-up test is slightly low, but this voltage can be increased by changing the pattern of the metal thin film electrode 44.
  • the surface energy of the surface 32A on which the metal thin film electrode 4 (44) of the dielectric film 32 including the base film 33 made of the PEN film is formed has a surface energy of 25 mN / m.
  • the adhesive strength between the dielectric film 32 and the metal thin film electrode 4 (44) can be lowered. Therefore, even when an insulation defect occurs in the metallized film 42 (44) and a short circuit occurs, the metal thin film electrode 4 (44) around the defective part is easily evaporated and scattered. Therefore, the metallized film capacitor 601 has a high SH effect for recovering insulation while having higher heat resistance than the PEN film.
  • FIG. 7 is a sectional view of the metallized film 10 of the metalized film capacitor according to the second embodiment of the present invention.
  • the same parts as those of the metallized film 1 according to the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the metallized film 10 includes a dielectric film 35 instead of the dielectric film 32 of the metallized film 1 according to the first embodiment shown in FIG. 2, and the metal thin film electrode 4 is formed on the surface 35A of the dielectric film 35.
  • the dielectric film 35 has a base film 11 and a surface layer 12 provided on the surface 11A of the base film 11.
  • the surface layer 12 has a surface 12B located on the surface 11A of the base film 11 and a surface 12A opposite to the surface 12B.
  • the surface layer 12 is located on the surface 35A of the dielectric film 35, that is, the surface 12A of the surface layer 12 is the surface 35A of the dielectric film 35.
  • the metal thin film electrode 4 is formed on the surface 35A of the dielectric film 35 by depositing a metal such as aluminum in a predetermined pattern.
  • the base film 11 according to Embodiment 1 is a film mainly composed of polyethylene naphthalate (PEN) having a thickness of 2.0 ⁇ m and a width of 30 mm, and a capacitor 601 for an automobile that requires high heat resistance is obtained.
  • the base film 11 is a heat resistant temperature mainly composed of a polymer material having a polar bond such as an ester bond, an ether bond, an amide bond or an imide bond in the main chain, such as polyphenylene sulfite (PPS) or polyethylene terephthalate (PET). May be a high dielectric film, and a PEN film or a film mainly composed of PEN such as a PEN alloy is particularly preferable.
  • the base film 11 is mixed with an additive material of silicon material.
  • the mixed silicon-based material precipitates (bleeds out) on the surface 11A of the base film 11, whereby the surface layer 12 is formed. Since a material having a surface energy smaller than that of the main material of the base film 11 is used as the additive material, the surface energy of the surface 12A of the surface layer 12, that is, the surface 35A of the dielectric film 35 is 25 to 40 mN / m.
  • the surface layer 12 may be formed by depositing any one additive material of silicon compound, fluorine compound, and hydrocarbon compound such that the surface energy of the surface 35A is 25 mN / m to 40 mN / m. .
  • the metallized film capacitor of Example 2 according to the second embodiment has a higher initial withstand voltage yield than the capacitor of the comparative example that does not include the surface layer 12, and the voltage step-up test is performed.
  • the voltage was high and both showed excellent results.
  • a sample whose surface layer 12 has a surface energy of 25 mN / m to 36 mN / m has a higher withstand voltage.
  • the metallized film capacitor according to the second embodiment has a large SH effect for recovering insulation while having higher heat resistance than the PEN film.
  • FIG. 8 is a sectional view of the metallized film 14 of the metallized film capacitor according to the third embodiment of the present invention.
  • the same parts as those in the metallized film 1 according to Embodiment 1 shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the metallized film 14 includes a dielectric film 36 instead of the dielectric film 32 of the metallized film 1 according to the first embodiment shown in FIG. 2, and the metal thin film electrode 4 is formed on the surface 36A of the dielectric film 36. Yes.
  • the metal thin film electrode 4 is formed on the surface 36A of the dielectric film 36 by depositing a metal such as aluminum in a desired pattern.
  • the dielectric film 36 is made of an alloy having the base film 11 and a silicon-based additive material 17 mixed in the base film 11.
  • the base film 11 is a film mainly made of polyethylene naphthalate (PEN) having a thickness of 2.0 ⁇ m and a width of 30 mm, and an automobile capacitor 601 that requires high heat resistance is obtained.
  • the base film 11 is a heat resistant temperature mainly composed of a polymer material having a polar bond such as an ester bond, an ether bond, an amide bond or an imide bond in the main chain, such as polyphenylene sulfite (PPS) or polyethylene terephthalate (PET). May be a high dielectric film, and a PEN film or a film mainly composed of PEN such as a PEN alloy is particularly preferable.
  • the surface energy of the surface 36A of the dielectric film 36 is 25 to 40 mN / m.
  • the additive material 17 mixed in the base film 11 is formed of any one of a silicon compound, a fluorine compound, and a hydrocarbon compound such that the surface energy of the surface 36A is 25 mN / m to 40 mN / m. Also good.
  • a sample of the metallized film capacitor of Example 3 according to Embodiment 3 having the same structure as that of the metallized film capacitor of Example 1 according to the first embodiment and provided with the dielectric film 36 is manufactured. Was measured. The result is shown in FIG.
  • the metallized film capacitor of Example 3 according to Embodiment 3 has a higher initial withstand voltage yield and a higher voltage in the voltage step-up test, both of which are superior to the capacitor of the comparative example.
  • the results are shown.
  • a sample in which the surface energy of the dielectric film 36 is 25 mN / m to 36 mN / m has a higher withstand voltage.
  • the metallized film capacitor according to Embodiment 3 has a large SH effect for recovering insulation while having higher heat resistance than the PEN film.
  • the metallized film capacitor according to the present invention has high heat resistance and a good self-healing effect, it is useful as a metallized film capacitor requiring particularly high heat resistance such as a capacitor for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 金属化フィルムコンデンサは、第1の誘電体フィルムと、第1の誘電体フィルムの面上に設けられた第1の金属薄膜電極と、第1の金属薄膜電極上に設けられた第2の誘電体フィルムと、第2の誘電体フィルムを介して第1の金属薄膜電極に対向するように第2の誘電体フィルム上に設けられた第2の金属薄膜電極とを備える。第1の誘電体フィルムのその面の表面エネルギーは25mN/m~40mN/mである。この金属化フィルムコンデンサは高い高耐熱性を有し、かつ良好なセルフヒーリング効果を有する。

Description

金属化フィルムコンデンサ
 本発明は各種電子機器、電気機器、産業機器、自動車等に使用され、特に、ハイブリッド自動車のモータ駆動用インバータ回路の平滑用、フィルタ用、スナバ用に最適な金属化フィルムコンデンサに関する。
 近年、環境保護の観点から、あらゆる電気機器がインバータ回路で制御され、省エネルギー化、高効率化が進められている。中でも自動車業界においては、電気モータとエンジンで走行するハイブリッド車(HEV)が市場導入される等、地球環境に優しく、省エネルギー化、高効率化に関する技術の開発が活発化している。
 このようなHEV用の電気モータは使用電圧領域が数百ボルトと高い。このような電気モータに関連して使用されるコンデンサとして、高耐電圧で低損失の電気特性を有する金属化フィルムコンデンサが注目されている。さらに市場におけるメンテナンスフリー化の要望からも極めて寿命が長い金属化フィルムコンデンサを採用する傾向が目立っている。
 そして、この種の金属化フィルムコンデンサは、自動車に搭載されることから高い耐熱性と高耐電圧化が要求され、高耐熱、高耐電圧化のための開発と提案が種々行われている。
 図9は特許文献1に記載されている従来の金属化フィルムコンデンサ501の斜視図である。金属化フィルム21は、ポリプロピレンフィルム等の誘電体フィルム22と、その表面に金属蒸着により形成された電極被膜23とを有する。電極被膜23はフィルム21の長手方向に延びている。マージン部22Aには電極被膜23は形成されていない。格子形状を有するスリット22Bにも電極被膜23は形成されていない。ヒューズ部23Bは、機能部分の細分化された単位コンデンサであるセグメント部23Aを接続している。ヒューズ部23Cは、フィルム21の長手方向に配列されてスリット22Cにより分離された機能部分の蒸着電極と電極引き出し部分の蒸着電極とを接続している。
 金属化フィルム24は、ポリプロピレンフィルム等の誘電体フィルム25と、その表面に金属蒸着により形成された電極被膜26とを有する。電極被膜26はフィルム21の長手方向に延びている。マージン部25Aには電極被膜26は形成されていない。格子形状を有するスリット25Bにも電極被膜26は形成されていない。ヒューズ部26Bは、機能部分の細分化された単位コンデンサであるセグメント部26Aを接続している。ヒューズ部26Cは、フィルム21の長手方向に配列されてスリット25Cにより分離された機能部分の蒸着電極と電極引き出し部分の蒸着電極とを接続している。金属化フィルムコンデンサ501は、外部電極引き出し用のメタリコン電極27、28を備える。
 従来の金属化フィルムコンデンサ501は多数の単位コンデンサの集合体である。それぞれの単位コンデンサ相互間、及びコンデンサの機能部分と電極引き出し部分間にヒューズ部23B、23C、26B、26Cが設けられている。過大電流の流入等の異常時にヒューズ部23B、23C、26B、26Cが切断されることによって、金属化フィルムコンデンサ501は絶縁破壊することなく、その容量の減少を最小限にとどめてコンデンサの機能を確保する。ヒューズ部23B、26Bにより絶縁破壊時の短絡電流を遮断できないような異常時においても、ヒューズ部23C、26Cによりコンデンサの機能部分と電極27、28とを切り離すことによってコンデンサ501の短絡モードの故障を回避できる。
 従来の金属化フィルムコンデンサ501では、誘電体フィルム22、25は一般的にポリプロピレン(PP)フィルムよりなる。PPフィルムは耐熱温度が約110℃程度と低く、自動車用として要求される過酷な耐熱温度の150℃を満足することができない。
 耐熱温度を上げるために、誘電体フィルム22、25の材料として、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイト(PPS)、ポリエチレンテレフタレート(PET)等の主鎖に、エステル結合、エーテル結合、アミド結合、イミド結合のような極性結合を有する高分子材料に無機フィラーを含有した誘電体フィルムを用いることによって耐熱性向上を図ることが考えられる。しかし、これらのフィルムには以下の問題がある。
 金属蒸着により形成された電極被膜は、絶縁の欠陥部分で短絡が生じた場合に短絡のエネルギーで欠陥部分周辺の金属蒸着電極が蒸発・飛散して絶縁が復活するセルフヒーリング(SH)効果を有する。SH効果により、コンデンサの電極被膜間の一部が短絡してもコンデンサの機能が回復する。ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイト(PPS)、ポリエチレンテレフタレート(PET)等の、主鎖に極性結合を有する高分子材料に無機フィラーを含有した誘電体フィルムはこのSH効果が低く、コンデンサ501にPPフィルムの代わりに用いることは困難である。
特開平8-250367号公報
 金属化フィルムコンデンサは、第1の誘電体フィルムと、第1の誘電体フィルムの面上に設けられた第1の金属薄膜電極と、第1の金属薄膜電極上に設けられた第2の誘電体フィルムと、第2の誘電体フィルムを介して第1の金属薄膜電極に対向するように第2の誘電体フィルム上に設けられた第2の金属薄膜電極とを備える。第1の誘電体フィルムのその面の表面エネルギーは25mN/m~40mN/mである。
 この金属化フィルムコンデンサは高い高耐熱性を有し、かつ良好なセルフヒーリング効果を有する。
図1は本発明の実施の形態1による金属化フィルムコンデンサの分解平面図である。 図2は図1に示す金属化フィルムコンデンサの線2-2における断面図である。 図3は実施の形態1による金属化フィルムコンデンサの表面エネルギーを求めるための数値を示す。 図4は実施の形態1による金属化フィルムコンデンサの斜視図である。 図5は実施の形態1による金属化フィルムコンデンサの他の金属化フィルムの平面図である。 図6は実施の形態1による金属化フィルムコンデンサの評価結果を示す。 図7は本発明の実施の形態2による金属化フィルムコンデンサの金属化フィルムの断面図である。 図8は本発明の実施の形態3による金属化フィルムコンデンサの金属化フィルムの断面図である。 図9は従来の金属化フィルムコンデンサの斜視図である。
 (実施の形態1)
 図1は本発明の実施の形態1による金属化フィルムコンデンサ601の分解平面図である。金属化フィルムコンデンサ601は金属化フィルム1、1Aを備える。図2は金属化フィルムコンデンサ601の線2-2における断面図であり、金属化フィルム1の断面を示す。
 図2に示すように、金属化フィルム1は、誘電体フィルム32と、誘電体フィルム32の面32Aに設けられた金属薄膜電極4とを有する。誘電体フィルム32は、ベースフィルム33と、ベースフィルム33の面33Aに設けられて下地層3とを有する。下地層3はベースフィルム33の面33Aに位置する面3Bと、面3Bの反対側の面3Aとを有する。下地層3は誘電体フィルム32の面32Aに位置する、すなわち下地層3の面3Aは誘電体フィルム32の面32Aである。金属薄膜電極4は誘電体フィルム32の面32A上にアルミニウム等の金属を所望のパターンに蒸着することによって形成されている。下地層3は金属薄膜電極4に当接する。
 図1に示すように、金属化フィルム1は幅方向601Bの幅を有し、幅方向601Bと直角の長手方向601Aに延びている。誘電体フィルム32の面32Aは、幅方向601Bの端601Cで金属薄膜電極4から露出するマージン部5を有する。マージン部5は長手方向601Aに連続して設けられている。金属薄膜電極4は、長手方向601Aに延びる低抵抗部4Cと、長手方向601Aに配列された複数の分割電極部4Aと、複数の分割電極部4Aとそれぞれ低抵抗部4Cと接続する複数のヒューズ部4Bとを有する。複数の分割電極部4Aは、誘電体フィルム32の面32Aの金属薄膜電極4から露出するスリット部6で互いに分離されている。低抵抗部4Cは誘電体フィルム32の幅方向601Bの端601Cの反対側の端601Dに設けられており、分割電極部4Aやヒューズ部4Bより厚く、したがって分割電極部4Aやヒューズ部4Bより低い抵抗を有する。すなわち、金属薄膜電極4(分割電極部4A)は、誘電体フィルム32の面32Aに設けられた面4Hと、面4Hの反対側の面4Jとを有する。誘電体フィルム42は金属薄膜電極4(分割電極部4A)の面4Jに設けられている。
 実施の形態1によるベースフィルム33は、厚みが2.0μm、幅が30mmのポリエチレンナフタレート(PEN)を主体とするフィルムであり、高い耐熱性が要求される自動車用のコンデンサ601が得られる。ベースフィルム33は、ポリフェニレンサルファイト(PPS)、ポリエチレンテレフタレート(PET)等の、主鎖にエステル結合、エーテル結合、アミド結合、イミド結合のような極性結合を有する高分子材料を主体とする耐熱温度が高い誘電体フィルムであってもよく、特に好ましくは、PENフィルム、またはPEN系アロイ等のPENを主体としたフィルムである。
 例えばPENフィルムと金属蒸着により形成された金属薄膜との接着力は強い。したがって、PENフィルムを金属化フィルムコンデンサの金属化フィルムに用いた場合には、絶縁破壊時に金属薄膜電極が蒸発・飛散しにくいので、絶縁が回復するセルフヒーリング(SH)効果が低くなる。
 下地層3はPENからなるベースフィルム33の面33Aにコーティングされたシリコン系材料よりなる。下地層3により、誘電体フィルム32の面32Aの表面エネルギーが25mN/m~40mN/mとなる。下地層3は、面32Aの表面エネルギーがベースフィルム33の面33Aよりも小さくかつ25mN/m~40mN/mとなるようなシリコン系化合物、フッ素系化合物、炭化水素系化合物のいずれか1つより形成されてもよい。
 ここで表面エネルギーγは、接触角測定器を用いて、水、エチレングリコール、ジヨードメタンの各液体に対するフィルムの接触角θを測定し、図3に示すヤング-グッド-ギリファルコ-フォークス(Young‐Good‐Girifalco‐Fowkes)の式から求めることができる。ただし、各液体のパラメータは、参考文献(R.J.Good,et al J.Adhension,1996,vol.59,pp.25-37)から引用した図3に示す。
 図1に示すように、金属化フィルム1は幅方向601Bの幅を有し、幅方向601Bと直角の長手方向601Aに延びている。誘電体フィルム32の面32Aは、幅方向601Bの端601Cで金属薄膜電極4から露出するマージン部5を有する。マージン部5は長手方向601Aに連続して設けられている。金属薄膜電極4は、長手方向601Aに延びる低抵抗部4Cと、長手方向601Aに配列された複数の分割電極部4Aと、複数の分割電極部4Aとそれぞれ低抵抗部4Cと接続する複数のヒューズ部4Bとを有する。複数の分割電極部4Aは、誘電体フィルム32の面32Aの金属薄膜電極4から露出するスリット部6で互いに分離されている。低抵抗部4Cは誘電体フィルム32の幅方向601Bの端601Cの反対側の端601Dに設けられており、分割電極部4Aやヒューズ部4Bより厚く、したがって分割電極部4Aやヒューズ部4Bより低い抵抗を有する。ヒューズ部4Bの長手方向601Aの幅は、分割電極部4Aの長手方向601Aの幅より狭い。
 金属化フィルム1Aは、厚みが2.0μm、幅が30mmのPENからなる誘電体フィルム42と、誘電体フィルム42の面42Aに設けられた金属薄膜電極8よりなる。誘電体フィルム42の面42Aは幅方向601Bの端601Dに連続して設けられて長手方向601Aに延びて金属薄膜電極8から露出するマージン部7を有する。金属薄膜電極8は、金属薄膜電極4の複数の分割電極部4Aに誘電体フィルム42を介して対向する電極部8Aと、誘電体フィルム42の幅方向601Bの端601Cに連続して設けられて長手方向601Aに延びる低抵抗部9とを有する。低抵抗部9は電極部8Aより厚く、したがって分割電極部4Aやヒューズ部4Bより低い抵抗を有する。
 金属化フィルム1Aの誘電体フィルム42は、面42Aの反対側の面42Bを有する。面42Bは金属化フィルム1の金属薄膜電極4の分割電極部4A上に位置し、分割電極部4Aを介して誘電体フィルム32の面32Aと対向する。複数の分割電極部4Aのそれぞれは誘電体フィルム42を介して電極部8Aに対向してコンデンサを形成する。ヒューズ部4Bはそれらのコンデンサを並列に接続している。
 図4は実施の形態1による金属化フィルムコンデンサ601の斜視図である。図1に示すように金属化フィルム1の金属薄膜電極4が金属化フィルム1Aの誘電体フィルム42の面42Bに位置するように重ねられた状態で、金属化フィルム1、1Aが巻回されている。金属化フィルム1、1Aは積層されていてもよい。これにより、金属化フィルム1Aの金属薄膜電極8の電極部8Aは誘電体フィルム32の面32Aの反対側の面32Bに位置し、誘電体フィルム32を介して金属薄膜電極4の分割電極部4Aに対向する。巻回された金属化フィルム1、1Aの端601Dには、金属薄膜電極4の低抵抗部4Cに接続されたメタリコン電極57が設けられている。巻回された金属化フィルム1、1Aの端601Cには、金属薄膜電極8の低抵抗部9に接続されたメタリコン電極58が設けられている。メタリコン電極57、58は、巻回された金属化フィルム1、1Aの端601C、601Dに金属を溶射することにより形成されている。
 図5は実施の形態1による金属化フィルムコンデンサ601の金属化フィルム1の他の金属薄膜電極44の平面図である。図5において、図1に示す金属薄膜電極4と同じ部分には同じ参照番号を付し、その説明を省略する。金属薄膜電極44は、長手方向601Aに配列された複数の分割電極部4Dと、長手方向601Aに配列された複数の分割電極部4Fと、低抵抗部4Cと、複数のヒューズ部4E、4Gを備える。各分割電極部4Dと各分割電極部4Fは幅方向601Bに配列されている。各ヒューズ部4Eは低抵抗部4Cと各分割電極部4Dとを接続する。各ヒューズ部4Gは各分割電極部4Dと各分割電極4Fとを接続する。分割電極部4D、4Fは、図1に示す分割電極部4Aと同様に、図5に示す電極部8Aと誘電体フィルム42を介して対向している。複数の分割電極部4D、4Fのそれぞれは誘電体フィルム42を介して電極部8Aに対向してコンデンサを形成する。ヒューズ部4E、4Gはそれらのコンデンサを並列に接続している。ヒューズ部4E、4Gの長手方向601Aの幅WAは、分割電極部42D、42Fの長手方向601Aの幅WBより狭い。
 図5に示す金属薄膜電極44を有する実施例1の金属化フィルムコンデンサ601の試料を作製し、その耐電圧を測定した。ベースフィルム33と誘電体フィルム42としてPENフィルムを用い、下地層3を有していない誘電体フィルム32上に形成された金属薄膜電極44を備えた比較例の金属化フィルムコンデンサの試料を作製し、その耐電圧を測定した。実施例1と比較例の金属化フィルムコンデンサの耐電圧を図6に示す。
 実施例1と比較例の金属化フィルムコンデンサの試料において、ヒューズ部4Eの幅WAは0.2mm、分割電極部4Dの幅WBは15mmとした。また、実施例1の試料の誘電体フィルム32の面32Aの表面エネルギーは25mN/m~40mN/mの範囲のいくつかの値であり、比較例の資料の誘電体フィルムの表面の表面エネルギーは40mN/mであった。これらの試料の容量は100μFである。初期耐電圧歩留まりは、室温で所定の電圧を印加してショートしない試料の割合である。電圧ステップアップ試験は、試料に印加する電圧を120℃の雰囲気で所定の時間毎にアップさせ、容量が初期値の-5%になった時点の電圧であるブレークダウンボルテージ(BDV)を測定した。
 図6から明らかなように、実施の形態1による実施例1の金属化フィルムコンデンサは、下地層3を備えない比較例のコンデンサと比較して初期耐電圧歩留まりが高く、電圧ステップアップ試験での電圧が高く、共に優れた結果を示した。特に、下地層3の表面エネルギーが25mN/m~36mN/mである試料は、更に高い耐電圧を有する。
 表面エネルギーが28mN/m~25mN/mである試料では電圧ステップアップ試験での電圧が若干低いが、金属薄膜電極44のパターンを変更することによってこの電圧を高くすることができる。
 このように実施の形態1による金属化フィルムコンデンサ601は、PENフィルムよりなるベースフィルム33を有する含む誘電体フィルム32の金属薄膜電極4(44)が形成される面32Aの表面エネルギーが25mN/m~40mN/mであり、これにより、誘電体フィルム32と金属薄膜電極4(44)との接着力を低くすることができる。したがって、金属化フィルム42(44)に絶縁欠陥が発生して短絡が生じた場合でも、欠陥した部分の周辺の金属薄膜電極4(44)が蒸発・飛散し易くなる。よって、金属化フィルムコンデンサ601はPENフィルムにより高い耐熱性を有しつつ、絶縁を回復させる大きなSH効果を有する。
 (実施の形態2)
 図7は本発明の実施の形態2による金属化フィルムコンデンサの金属化フィルム10の断面図である。図7において、図1と図2に示す実施の形態1による金属化フィルム1と同じ部分には同じ参照符号を付し、その詳細な説明は省略する。
 金属化フィルム10は、図2に示す実施の形態1による金属化フィルム1の誘電体フィルム32の代わりに誘電体フィルム35を備え、誘電体フィルム35の面35Aに金属薄膜電極4が形成されている。誘電体フィルム35は、ベースフィルム11と、ベースフィルム11の面11Aに設けられて表面層12とを有する。表面層12はベースフィルム11の面11Aに位置する面12Bと、面12Bの反対側の面12Aとを有する。表面層12は誘電体フィルム35の面35Aに位置する、すなわち表面層12の面12Aは誘電体フィルム35の面35Aである。金属薄膜電極4は誘電体フィルム35の面35A上にアルミニウム等の金属を所定のパターンに蒸着することによって形成されている。
 実施の形態1によるベースフィルム11は、厚みが2.0μm、幅が30mmのポリエチレンナフタレート(PEN)を主体とするフィルムであり、高い耐熱性が要求される自動車用のコンデンサ601が得られる。ベースフィルム11は、ポリフェニレンサルファイト(PPS)、ポリエチレンテレフタレート(PET)等の、主鎖にエステル結合、エーテル結合、アミド結合、イミド結合のような極性結合を有する高分子材料を主体とする耐熱温度が高い誘電体フィルムであってもよく、特に好ましくは、PENフィルム、またはPEN系アロイ等のPENを主体としたフィルムである。
 ベースフィルム11にはシリコン系材料の添加材料が混入されている。混入したシリコン系材料がベースフィルム11の面11Aに析出(ブリードアウト)することにより、表面層12が形成されている。添加材料としてベースフィルム11の主材料よりも表面エネルギーの小さい材料を用いているので、表面層12の面12Aすなわち誘電体フィルム35の面35Aの表面エネルギーが25~40mN/mとなる。表面層12は、面35Aの表面エネルギーが25mN/m~40mN/mとなるようなシリコン系化合物、フッ素系化合物、炭化水素系化合物のいずれか1つの添加材料が析出して形成されてもよい。
 実施の形態1による実施例1の金属化フィルムコンデンサと同様の構造を有し、誘電体フィルム35を備えた実施の形態2による実施例2の金属化フィルムコンデンサの試料を作製し、その耐電圧を測定した。その結果を図6に示す。
 図6から明らかなように、実施の形態2による実施例2の金属化フィルムコンデンサは、表面層12を備えない比較例のコンデンサと比較して初期耐電圧歩留まりが高く、電圧ステップアップ試験での電圧が高く、共に優れた結果を示した。特に、表面層12の表面エネルギーが25mN/m~36mN/mである試料は、更に高い耐電圧を有する。
 このように実施の形態2による金属化フィルムコンデンサは、PENフィルムにより高い耐熱性を有しつつ、絶縁を回復させる大きなSH効果を有する。
 (実施の形態3)
 図8は本発明の実施の形態3による金属化フィルムコンデンサの金属化フィルム14の断面図である。図8において、図1と図2に示す実施の形態1による金属化フィルム1と同じ部分には同じ参照符号を付し、その詳細な説明は省略する。
 金属化フィルム14は、図2に示す実施の形態1による金属化フィルム1の誘電体フィルム32の代わりに誘電体フィルム36を備え、誘電体フィルム36の面36Aに金属薄膜電極4が形成されている。金属薄膜電極4は誘電体フィルム36の面36A上にアルミニウム等の金属を所望のパターンに蒸着することによって形成されている。
 誘電体フィルム36は、ベースフィルム11と、ベースフィルム11に混入されたシリコン系材料の添加材料17とを有するアロイよりなる。ベースフィルム11は、厚みが2.0μm、幅が30mmのポリエチレンナフタレート(PEN)を主体とするフィルムであり、高い耐熱性が要求される自動車用のコンデンサ601が得られる。ベースフィルム11は、ポリフェニレンサルファイト(PPS)、ポリエチレンテレフタレート(PET)等の、主鎖にエステル結合、エーテル結合、アミド結合、イミド結合のような極性結合を有する高分子材料を主体とする耐熱温度が高い誘電体フィルムであってもよく、特に好ましくは、PENフィルム、またはPEN系アロイ等のPENを主体としたフィルムである。
 添加材料として、ベースフィルム11の主材料よりも表面エネルギーの小さい材料を用いているので、誘電体フィルム36の面36Aの表面エネルギーが25~40mN/mとなる。ベースフィルム11に混入される添加材料17は、面36Aの表面エネルギーが25mN/m~40mN/mとなるようなシリコン系化合物、フッ素系化合物、炭化水素系化合物のいずれか1つより形成されてもよい。
 実施の形態1による実施例1の金属化フィルムコンデンサと同様の構造を有し、誘電体フィルム36を備えた実施の形態3による実施例3の金属化フィルムコンデンサの試料を作製し、その耐電圧を測定した。その結果を図6に示す。
 図6から明らかなように、実施の形態3による実施例3の金属化フィルムコンデンサは、比較例のコンデンサと比較して初期耐電圧歩留まりが高く、電圧ステップアップ試験での電圧が高く、共に優れた結果を示した。特に、誘電体フィルム36の表面エネルギーが25mN/m~36mN/mである試料は、更に高い耐電圧を有する。
 このように実施の形態3による金属化フィルムコンデンサは、PENフィルムにより高い耐熱性を有しつつ、絶縁を回復させる大きなSH効果を有する。
 本発明による金属化フィルムコンデンサは高い高耐熱性を有し、かつ良好なセルフヒーリング効果を有するので、自動車用のコンデンサ等の特に高い耐熱性が要求される金属化フィルムコンデンサとして有用である。
3  下地層
4  金属薄膜電極(第1の金属薄膜電極)
8  金属薄膜電極(第2の金属薄膜電極)
11  ベースフィルム
12  表面層
17  添加材料
32  誘電体フィルム(第1の誘電体フィルム)
42  誘電体フィルム(第2の誘電体フィルム)
57  メタリコン電極(第1のメタリコン電極)
58  メタリコン電極(第2のメタリコン電極)

Claims (8)

  1. 面を有する第1の誘電体フィルムと、
    前記第1の誘電体フィルムの面に設けられた第1の面と、前記第1の面の反対側の第2の面とを有する第1の金属薄膜電極と、
    前記第1の金属薄膜電極の前記第2の面に設けられた、面を有する第2の誘電体フィルムと、
    前記第2の誘電体フィルムを介して前記第1の金属薄膜電極に対向するように前記第2の誘電体フィルムの前記面に設けられた第2の金属薄膜電極と、
    を備え、前記第1の誘電体フィルムの前記面の表面エネルギーが25mN/m~40mN/mである、金属化フィルムコンデンサ。
  2. 前記第1の誘電体フィルムは、
       面を有するベースフィルムと、
       前記ベースフィルムの前記面に設けられ、かつ前記第1の誘電体フィルムの前記面に位置してシリコン系化合物、フッ素系化合物、炭化水素系化合物のいずれか1つよりなり、かつ前記第1の金属薄膜電極が当接する下地層と、
    を有する、請求項1に記載の金属化フィルムコンデンサ。
  3. 前記下地層は前記ベースフィルムよりも表面エネルギーの小さい材料からなる、請求項2に記載の金属化フィルムコンデンサ。
  4. 前記第1の誘電体フィルムは、
       面を有してかつシリコン系化合物、フッ素系化合物、炭化水素系化合物のいずれか1つの添加材料が混入されたベースフィルムと、
       前記ベースフィルムの前記面に析出した前記添加材料よりなり、かつ前記第1の誘電体フィルムの前記面に位置する表面層と、
    を有する、請求項1に記載の金属化フィルムコンデンサ。
  5. 前記添加材料は前記ベースフィルムの主材料よりも表面エネルギーの小さい材料からなる、請求項4に記載の金属化フィルムコンデンサ。
  6. 前記第1の誘電体フィルムは、シリコン系化合物、フッ素系化合物、炭化水素系化合物のいずれか1つの添加材料が混入されたベースフィルムよりなる、請求項1に記載の金属化フィルムコンデンサ。
  7. 前記添加材料は前記ベースフィルムの主材料よりも表面エネルギーの小さい材料からなる、請求項6に記載の金属化フィルムコンデンサ。
  8. 前記第1の金属薄膜電極に接続された第1のメタリコン電極と、
    前記第2の金属薄膜電極に接続された第2のメタリコン電極と、
    をさらに備えた、請求項1に記載の金属化フィルムコンデンサ。
PCT/JP2009/003006 2008-07-08 2009-06-30 金属化フィルムコンデンサ WO2010004700A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801266847A CN102089838B (zh) 2008-07-08 2009-06-30 金属化薄膜电容器
JP2010519629A JP5370363B2 (ja) 2008-07-08 2009-06-30 金属化フィルムコンデンサ
US12/992,946 US8451579B2 (en) 2008-07-08 2009-06-30 Metalized film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008177744 2008-07-08
JP2008-177744 2008-07-08

Publications (1)

Publication Number Publication Date
WO2010004700A1 true WO2010004700A1 (ja) 2010-01-14

Family

ID=41506828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003006 WO2010004700A1 (ja) 2008-07-08 2009-06-30 金属化フィルムコンデンサ

Country Status (4)

Country Link
US (1) US8451579B2 (ja)
JP (1) JP5370363B2 (ja)
CN (1) CN102089838B (ja)
WO (1) WO2010004700A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153115A (ja) * 2012-01-26 2013-08-08 Toyota Motor Corp 金属化フィルムコンデンサ
JP2019504495A (ja) * 2016-02-04 2019-02-14 株式会社村田製作所 巻回型コンデンサおよびその製造方法
JPWO2018142922A1 (ja) * 2017-02-03 2019-11-07 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサの製造方法、誘電体樹脂フィルム、及び、誘電体樹脂フィルムの製造方法
CN114242456A (zh) * 2021-11-24 2022-03-25 安徽铜峰电子股份有限公司 用于卷制电容器芯子的金属化薄膜和采用该薄膜的电容器
WO2023042905A1 (ja) * 2021-09-17 2023-03-23 東レ株式会社 フィルムコンデンサ用フィルム、金属積層体、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660045B2 (ja) 2009-11-04 2015-01-28 パナソニックIpマネジメント株式会社 金属化フィルムコンデンサ及びこれを用いたケースモールド型コンデンサ
CN102930984B (zh) * 2012-10-22 2015-11-18 奇瑞新能源汽车技术有限公司 一种组合电容模块及应用方法
US10650965B2 (en) * 2016-04-27 2020-05-12 Kyocera Corporation Film capacitor, combination type capacitor, and inverter and electric vehicle using the same
KR102051914B1 (ko) * 2017-09-18 2019-12-06 삼화콘덴서공업 주식회사 금속 증착 필름 커패시터용 박막 금속 증착 필름
EP4080524A4 (en) * 2019-12-27 2024-01-17 Murata Manufacturing Co., Ltd. FILM CAPACITOR AND FILM FOR FILM CAPACITORS
CN111696784B (zh) * 2020-05-13 2023-02-28 中国电力科学研究院有限公司 一种自愈式电容器元件及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129695A1 (ja) * 2006-05-10 2007-11-15 Toray Industries, Inc. 二軸配向ポリアリーレンスルフィドフィルム
JP2007300126A (ja) * 2006-05-05 2007-11-15 General Electric Co <Ge> 高温コンデンサ及びその製造方法
JP2008115417A (ja) * 2006-11-02 2008-05-22 Toray Ind Inc 金属化フィルムの製造方法、及び金属化フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610796A (en) * 1993-02-19 1997-03-11 Electronic Concepts, Inc. Metallized capacitor having increased dielectric breakdown voltage and method for making the same
JP2939494B2 (ja) 1995-03-08 1999-08-25 株式会社指月電機製作所 金属化フィルムコンデンサ
JP3328477B2 (ja) * 1995-10-06 2002-09-24 松下電器産業株式会社 コンデンサ
IT1282594B1 (it) * 1996-02-09 1998-03-31 Icar Spa Ind Condensatori Film dielettrico metallizzato a resistenza variabile e relativo condensatore
DE19856457A1 (de) * 1998-12-03 2000-06-08 Abb Research Ltd Folie für einen Folienkondensator und Folienkondensator
SE515894C2 (sv) * 2000-01-14 2001-10-22 Abb Ab Kondensatorelement för en kraftkondensator, kraftkondensator innefattande dylikt kondensatorelement samt metalliserat band för en kraftkondensator
SE0003565D0 (sv) * 2000-10-04 2000-10-04 Abb Ab Kondensatorelement för en kraftkondensator samt kraftkondensator innefattande ett dylikt kondensatorelement
WO2006112099A1 (ja) 2005-04-08 2006-10-26 Matsushita Electric Industrial Co., Ltd. 金属化フィルムコンデンサと自動車用インバータ平滑用コンデンサ
US7460352B2 (en) * 2006-01-09 2008-12-02 Faradox Energy Storage, Inc. Flexible dielectric film and method for making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300126A (ja) * 2006-05-05 2007-11-15 General Electric Co <Ge> 高温コンデンサ及びその製造方法
WO2007129695A1 (ja) * 2006-05-10 2007-11-15 Toray Industries, Inc. 二軸配向ポリアリーレンスルフィドフィルム
JP2008115417A (ja) * 2006-11-02 2008-05-22 Toray Ind Inc 金属化フィルムの製造方法、及び金属化フィルム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153115A (ja) * 2012-01-26 2013-08-08 Toyota Motor Corp 金属化フィルムコンデンサ
JP2019504495A (ja) * 2016-02-04 2019-02-14 株式会社村田製作所 巻回型コンデンサおよびその製造方法
JPWO2018142922A1 (ja) * 2017-02-03 2019-11-07 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサの製造方法、誘電体樹脂フィルム、及び、誘電体樹脂フィルムの製造方法
JP2021180336A (ja) * 2017-02-03 2021-11-18 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサの製造方法、誘電体樹脂フィルム、及び、誘電体樹脂フィルムの製造方法
CN113972071A (zh) * 2017-02-03 2022-01-25 株式会社村田制作所 薄膜电容器、薄膜电容器的制造方法、电介质树脂膜以及电介质树脂膜的制造方法
US11335502B2 (en) 2017-02-03 2022-05-17 Murata Manufacturing Co., Ltd. Film capacitor, method of producing film capacitor, dielectric resin film, and method of producing dielectric resin film
CN113972071B (zh) * 2017-02-03 2023-09-26 株式会社村田制作所 薄膜电容器、薄膜电容器的制造方法、电介质树脂膜以及电介质树脂膜的制造方法
WO2023042905A1 (ja) * 2021-09-17 2023-03-23 東レ株式会社 フィルムコンデンサ用フィルム、金属積層体、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機
JP2023044670A (ja) * 2021-09-17 2023-03-30 東レ株式会社 フィルムコンデンサ用フィルム、金属積層体、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機
JP7287553B2 (ja) 2021-09-17 2023-06-06 東レ株式会社 フィルムコンデンサ用フィルム、金属積層体、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機
CN114242456A (zh) * 2021-11-24 2022-03-25 安徽铜峰电子股份有限公司 用于卷制电容器芯子的金属化薄膜和采用该薄膜的电容器

Also Published As

Publication number Publication date
CN102089838A (zh) 2011-06-08
CN102089838B (zh) 2012-07-25
US20110090618A1 (en) 2011-04-21
US8451579B2 (en) 2013-05-28
JPWO2010004700A1 (ja) 2011-12-22
JP5370363B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5370363B2 (ja) 金属化フィルムコンデンサ
JP5131193B2 (ja) 金属化フィルムコンデンサ
JP4561832B2 (ja) 金属化フィルムコンデンサと自動車用インバータ平滑用コンデンサ
EP1548767A1 (en) Metallized film capacitor
JP6277436B2 (ja) フィルムコンデンサ
JP4906111B2 (ja) 金属化フィルムコンデンサ
JP3870932B2 (ja) 金属化フィルムコンデンサ
JP4973543B2 (ja) 金属化フィルムコンデンサ
JP5012515B2 (ja) 金属化フィルムコンデンサ
JP2004363431A (ja) 金属化フィルムコンデンサ
CN102084444A (zh) 箔膜自愈式有感电容器
JP5092795B2 (ja) 金属化フィルムコンデンサ
JP5824654B2 (ja) 金属化フィルムコンデンサ
JP2010062410A (ja) 金属化フィルムコンデンサ
WO2020031940A1 (ja) 金属化フィルムおよびフィルムコンデンサ
JP2015177172A (ja) フィルムコンデンサ
JP5934881B2 (ja) 金属化フィルムコンデンサ
JP2013026586A (ja) 金属化フィルムコンデンサ
JP2008078168A (ja) 金属化フィルムコンデンサ
JP2008277671A (ja) 金属化フィルムコンデンサ及びこれに用いるpenフィルム
KR200386902Y1 (ko) 금속 증착된 필름 캐패시터 구조물
JP5903648B2 (ja) 金属化フィルムコンデンサ
JP2011238813A (ja) 金属化フィルムコンデンサ
JP2013080766A (ja) 金属化フィルムコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126684.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12992946

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010519629

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794148

Country of ref document: EP

Kind code of ref document: A1