WO2010002085A1 - 두께 또는 표면형상 측정방법 - Google Patents

두께 또는 표면형상 측정방법 Download PDF

Info

Publication number
WO2010002085A1
WO2010002085A1 PCT/KR2009/000250 KR2009000250W WO2010002085A1 WO 2010002085 A1 WO2010002085 A1 WO 2010002085A1 KR 2009000250 W KR2009000250 W KR 2009000250W WO 2010002085 A1 WO2010002085 A1 WO 2010002085A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
thin film
peaks
film layer
waveform
Prior art date
Application number
PCT/KR2009/000250
Other languages
English (en)
French (fr)
Inventor
박희재
안우정
김성룡
이준혁
Original Assignee
에스엔유 프리시젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엔유 프리시젼 주식회사 filed Critical 에스엔유 프리시젼 주식회사
Priority to JP2011516101A priority Critical patent/JP5369357B2/ja
Priority to US12/993,301 priority patent/US8947673B2/en
Priority to CN2009801248181A priority patent/CN102077051B/zh
Publication of WO2010002085A1 publication Critical patent/WO2010002085A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a thickness or surface shape measurement method, and more particularly, to a thickness or surface shape measurement method capable of accurately measuring the thickness of the transparent thin film layer and the surface shape of the thin film layer using a white light scanning interference method.
  • the term 'thin film layer' refers to a base layer, that is, a layer having a very fine thickness formed on the surface of a substrate, and generally having a thickness of several tens of micrometers to several micrometers.
  • a base layer that is, a layer having a very fine thickness formed on the surface of a substrate, and generally having a thickness of several tens of micrometers to several micrometers.
  • it is necessary to precisely control the physical properties of the film including the thickness of the thin film layer which is a factor that greatly affects the characteristics.
  • the thickness of the thin film layer may be determined using a white light interferometer in an optical method.
  • 1 is a view showing an example of a conventional thickness measurement method.
  • the transparent thin film layers 20a and 20b to measure the thickness are stacked on the base layer 10, and the air layer 30 exists above the thin film layers 20a and 20b.
  • the first surfaces 21a and 21b are interfaces between the air layer 30 and the thin film layers 20a and 20b, and the second surfaces 11a and 11b are interfaces between the thin films 20a and 20b and the base layer 10.
  • the thin film layer 20a on the left side is thicker than the thin film layer 20b on the right side.
  • an object of the present invention is to solve such a conventional problem, to provide a simulation interference signal by performing a simulation on a plurality of sample thin film layers having different thicknesses, and the actual interference signal on the thin film layer stacked on the base layer. After acquiring the, compare the actual interference signal with the simulation interference signal and set the thickness of the thin film layer, the interference signal between the interference signal waveform at the interface between the thin film layer and the base layer.
  • the present invention provides a thickness or surface shape measuring method capable of accurately measuring the thickness or surface shape of a thin film layer having a thickness so thin as to occur.
  • the thickness or surface shape measuring method of the present invention assumes a plurality of sample thin film layers having different thicknesses in the thickness or surface shape measuring method of the thin film layer laminated on the base layer using a white light interferometer. And simulating an interference signal for each sample thin film layer to prepare a simulation interference signal corresponding to each thickness; Irradiating white light onto the thin film layer to obtain an actual interference signal with respect to an optical axis direction incident on the thin film layer; Providing a plurality of expected thicknesses that can be the thickness of the thin film layer from the actual interference signal; Comparing the simulation interference signal having a thickness corresponding to the expected thickness with the actual interference signal; And determining the thickness of the simulation interference signal substantially equal to the actual interference signal as the thickness of the thin film layer.
  • the preparing of the plurality of expected thicknesses may include selecting two or more peaks from the actual interference signal, and determining the number of peaks between the two peaks. To prepare the expected thickness.
  • the step of providing the plurality of expected thicknesses comprises: a first signal generated by the interference phenomenon at the interface between the air layer and the thin film layer; Dividing the waveform into a second waveform generated by an interference phenomenon at the interface between the thin film layer and the base layer; Selecting peaks from the first waveform and the second waveform, respectively; And extracting the expected thickness using the number of peaks between the peak of the first waveform and the peak of the second waveform.
  • the selecting of the peak comprises: setting a peak having the highest value among the peaks of the second waveform as a reference peak; And selecting a plurality of peaks from the first waveform, wherein extracting the expected thickness comprises combining the peaks of the first waveform with the reference peak and for each of the combined cases. Calculating the number of peaks between the peak of the first waveform and the reference peak; And calculating the expected thickness using the number of peaks.
  • the selecting of the peaks includes: selecting a plurality of peaks in the first waveform and selecting a plurality of peaks in the second waveform.
  • the extracting of the expected thickness may include combining the peaks of the first waveform and the peaks of the second waveform, and between the peaks of the first waveform and the peak of the second waveform for each combined case. Calculating the number of peaks of; And calculating the expected thickness using the number of peaks.
  • the expected thickness is the following equation, Is calculated by.
  • d can is the expected thickness
  • N is the number of peaks
  • is the equivalent wavelength of the white light
  • n is the refractive index of the thin film layer.
  • the position of the first waveform peak corresponding to the determined thickness of the thin film layer in the optical axis direction incident on the thin film layer is set as the surface height of the thin film layer. Doing; And repeating the step of setting the surface height while moving along the thin film layer, obtaining a surface shape of the thin film layer.
  • a limited number of expected thicknesses may be provided to select only a simulation interference signal corresponding to the expected thickness and compare the result with the actual interference signal, thereby reducing the time required to finally determine the thickness of the thin film layer.
  • the thickness of the thin film layer is determined by comparing the measured actual interference signal with the simulated interference signal, so that the thickness can be accurately measured even for the thin film layer that is thin enough to cause interference between waveforms at different interfaces. have.
  • the surface shape which means not only the thickness of the thin film layer but also the relative height difference of the thin film layer, can be obtained simultaneously, comprehensive information on the thin film layer can be calculated and visualized.
  • 1 is a view showing an example of a conventional thickness measurement method
  • FIG. 2 is a view showing an example of a white light interferometer for implementing a thickness or surface shape measuring method according to the present invention
  • FIG. 3 is a flow chart of the thickness or surface shape measurement method according to a first embodiment of the present invention
  • FIG. 4 is a diagram illustrating a simulation interference signal for sample thin film layers having different thicknesses.
  • FIG. 5 is a diagram illustrating an actual interference signal obtained by irradiating white light to a thin film layer in the thickness or surface shape measuring method of FIG. 3.
  • FIG. 6 is a diagram for explaining a process of comparing whether a simulation interference signal and an actual interference signal corresponding to each expected thickness are substantially matched.
  • FIG. 7 is a flow chart of a thickness or surface shape measurement method according to a second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an actual interference signal obtained by irradiating white light to a thin film layer in the thickness or surface shape measuring method of FIG. 7.
  • FIG. 2 is a view showing an example of a white light interferometer for implementing the thickness or surface shape measurement method according to the present invention.
  • the interferometer 100 employs a configuration of a mirau interferometer generally used to measure the thickness or surface shape of the transparent thin film layer 20.
  • the interferometer 100 includes a white light source 101, and a lamp of various sources including a halogen lamp may be used as the white light source 101.
  • a gray filter (ND filter, Neutral Density filter) 102 is provided to reduce the brightness of the light incident from the white light source 101 without changing the spectral characteristics.
  • the interferometer 100 includes a condenser lens 103 for concentrating light passing through the gray filter 102. The light passing through the condenser lens 103 passes through a collimator 104 for producing the light in parallel.
  • the light passing through the collimator 104 is divided into the reflected light 53 and the transmitted light 59 by the light splitter 111, and the reflected light 53 is incident to the objective lens 131.
  • the light splitter 111 uses a 50:50 reflectance and transmittance.
  • Light incident from the objective lens 131 is split into the reflected light 57 and the transmitted light 55 by the light splitter 132.
  • the transmitted light 55 is irradiated to the transmissive thin film layer 20 and the base layer 10 as measurement light
  • the reflected light 57 is irradiated to the reference mirror 133 as reference light.
  • the light splitter 132 collects the reference light 57 reflected from the reference mirror 133 and the measurement light 55 reflected by the interface between the thin film layer 20 and the base layer 10 to generate interference light.
  • the reference mirror 133 is for reflecting the reference light 57 incident from the light splitter 132 and entering the light splitter 132 again.
  • the interferometer 100 includes an imaging lens 121 for forming the interference light 59 incident from the light splitter 111 and a detector 122 for detecting the interference signal from the interference light 59.
  • a charge coupled device (CCD) camera having a number of flowers suitable for a region to be measured is used as the detector 122.
  • the interferometer 100 includes a driver 140 for acquiring an interference signal while moving the measurement point at a small interval in the direction intersecting the base layer 10, that is, in the optical axis direction.
  • the barrel 130 accommodating the objective lens 131 is mounted to the driving unit 140, so that the objective lens 131 may move in the optical axis direction due to the operation of the driving unit 140.
  • the vertical optical axis direction A incident on the base layer 10 is defined as the z-axis of FIG. 2. In this way, the objective lens 131 is moved along the z-axis direction at several nm intervals up and down the measurement point to find a position where a strong interference signal is detected through the detector 122.
  • FIG. 3 is a flow chart of a thickness or surface shape measurement method according to a first embodiment of the present invention
  • Figure 4 is a view showing a simulation interference signal for a sample thin film layer of different thickness
  • Figure 5 is a thickness or surface of FIG.
  • FIG. 6 is a view illustrating an actual interference signal obtained by irradiating white light to a thin film layer in a shape measuring method
  • FIG. 6 is a view for explaining a process of comparing whether a simulation interference signal corresponding to each expected thickness and the actual interference signal are substantially matched. to be.
  • the sample thin film layer is not an actual thin film layer but a virtual thin film layer having different thicknesses for performing a simulation.
  • simulating the interference signal for the sample thin film layer it is assumed that the sample thin film layer is the same material as the transparent thin film layer 20 to measure the thickness of the sample thin film layer, so that the physical properties of the thin film layer 20 to measure the thickness, such as a refractive index, The simulation is carried out using the absorption coefficient.
  • the simulation interference signals 151, 152 and 153 are generated for each thickness.
  • the lower limit and the upper limit of the thickness of the simulation interference signals 151, 152 and 153 are determined through the upper limit and the lower limit of the thickness of the thin film layer 20 processed in the process.
  • the thin film layer 20 is irradiated with white light to obtain an actual interference signal 160 in the optical axis direction A incident on the thin film layer 20 (S120).
  • the interference signal 160 actually measured with respect to the thin film layer 20 is illustrated in FIG. 5.
  • the actual interference signal 160 is a change signal of the light intensity of the interference light irradiated toward the thin film layer 20.
  • a plurality of expected thicknesses that may be the thickness of the thin film layer 20 are prepared from the obtained actual interference signal 160.
  • the thickness of the thin film layer 20 may be determined by comparing the obtained actual interference signal 160 with each of the simulation interference signals 151, 152, and 153 without providing the plurality of expected thicknesses.
  • the system is heavily loaded and finds simulation interference signals 151, 152 and 153 that match the actual interference signal 160 and finally determines the thickness of the thin film layer 20.
  • the time required to finally determine the thickness of the thin film layer 20 by selecting only the simulation interference signal (151, 152, 153) corresponding to the expected thickness compared with the actual interference signal 160 Can save.
  • the obtained actual interference signal 160 is divided into a first waveform 161 and a second waveform 162 (S131).
  • the first waveform 161 is generated by the interference phenomenon at the interface between the air layer 30 and the thin film layer 20 and is located in the first half of the actual interference signal 160.
  • the second waveform 162 is generated by the interference phenomenon at the interface between the thin film layer 20 and the base layer 10 and is positioned at the second half of the actual interference signal 160.
  • the peak having the highest value among the peaks of the second waveform 162 is set as the reference peak 163 (S133), and the plurality of peaks 164a, 164b, 164c, and 164d are arranged in the first waveform 161. It is selected (S135). In the present embodiment, four peaks present in the first waveform 161 are selected.
  • the peaks of the first waveform 161 and the reference peak 163 are combined, the number of four cases, that is, the first peak 164a and the reference peak 163, the second peak 164b and the reference peak 163 Four cases, the third peak 164c, the reference peak 163, and the fourth peak 164d and the reference peak 163 are generated.
  • the first peak 164a, the reference peak 163, the second peak 164b, the reference peak 163, the third peak 164c, the reference peak 163, the fourth peak 164d, and the reference peak For each of (163), the number of peaks existing between both peaks is calculated (S137).
  • the estimated thickness is obtained by substituting the number of peaks calculated for each case into the following equation (S139).
  • d can is the expected thickness
  • N is the number of peaks
  • is the equivalent wavelength of white light
  • n is the refractive index of the thin film layer 20.
  • the expected thickness is also generated four.
  • the simulation interference signals 151, 152, 153 having a thickness corresponding to the expected thickness and the actual interference signal 160 are compared substantially (S140).
  • the error function using the least square method is determined to determine both interference signals as "substantial match" when the minimum error function is obtained. Since these methods are well known to those skilled in the art, no further detailed description is omitted. do.
  • the estimated thickness is calculated based on the number of peaks between the third peak 164c and the reference peak 163, and the simulation interference signal 153 and the actual interference signal 160 having a thickness corresponding to the expected thickness are provided.
  • the error function using the least square method is obtained.
  • a simulation interference signal substantially identical to the actual interference signal 160 is selected, and a thickness corresponding to the simulation interference signal is finally determined as the thickness of the thin film layer 20 (S150).
  • the surface shape of the thin film layer 20 can also be obtained simultaneously.
  • the optical axis direction Z incident on the thin film layer 20 is applied. That is, the position of the fourth peak 164d in the z-axis direction may be determined as the interface between the air layer 30 and the thin film layer 20.
  • the x-coordinate (position of the fourth peak in the z-axis direction) of the fourth peak 164d is set as the surface height in the graph of the actual interference signal 160 (S162).
  • the absolute value of the x-coordinate of the fourth peak 164d (the x-coordinate of the individual fourth peak 164d) has no meaning and a plurality of points.
  • the relative difference in the surface heights of the dogs is of significant significance.
  • the relative difference between the surface heights of the thin film layer 20 that is, the surface shape can be obtained as a whole (S164). .
  • the relative difference of the surface height of the thin film layer 20 in the present specification It is defined as a shape.
  • the thickness or surface shape measurement method according to the present embodiment configured as described above does not compare the measured actual interference signal and the simulation interference signal obtained by performing the simulation, respectively, but provides a limited number of expected thicknesses to obtain the expected thickness. By selecting only the corresponding simulation interference signal and comparing it with the actual interference signal, the time required to finally determine the thickness of the thin film layer can be obtained.
  • the thickness of the thin film layer is determined by comparing the measured actual interference signal with the simulated interference signal, so that the thickness can be accurately measured even for the thin film layer that is thin enough to cause interference between waveforms at different interfaces. You can get the effect.
  • the surface shape which means not only the thickness of the thin film layer but also the relative height difference of the thin film layer, can be simultaneously obtained, an effect of calculating and visualizing comprehensive information on the thin film layer can be obtained.
  • Figure 7 is a flow chart of the thickness or surface shape measurement method according to a second embodiment of the present invention.
  • members referred to by the same reference numerals as the members shown in FIGS. 3 to 6 have the same configuration and function, and detailed descriptions thereof will be omitted.
  • the peaks 264a, 264b, 264c, and 264d of the first waveform 261 of the actual interference signal 260 are not set in the second waveform, and the reference peak is not set in the second waveform.
  • a plurality of peaks 263a, 263b, and 263c are selected (S233). In the present embodiment, four peaks are selected in the first waveform 261 and three peaks are selected in the second waveform 262.
  • the number of 12 cases that is, the first peak 264a and the fifth peak 263a, the second peak 264b and the second 5 peak 263a,...
  • a total of 12 cases are generated, such as the first peak 264a and the sixth peak 263b, the second peak 264b, and the sixth peak 263b.
  • the number of peaks existing between both peaks is calculated (S235), and 12 estimated thicknesses are prepared using the number of peaks, and the thickness of the thin film layer 20 can be used.
  • the number of cases may be larger than in the first embodiment of the present invention, but the effect of reducing the risk of incorrectly setting the reference peak may be obtained.
  • the present invention can be used in a thickness or surface shape measurement method capable of accurately measuring the thickness of the transparent thin film layer and the surface shape of the thin film layer using the white light scanning interference method.

Abstract

본 발명은 두께 또는 표면형상 측정방법에 관한 것으로서, 본 발명에 따른 두께 또는 표면형상 측정방법은 백색광 간섭계를 이용하여 기저층 위에 적층된 박막층의 두께 또는 표면형상 측정방법에 있어서, 서로 다른 두께를 가지는 복수의 샘플 박막층을 가정하고 각 샘플 박막층에 대한 간섭신호를 시뮬레이션하여, 각 두께에 대응되는 시뮬레이션 간섭신호를 마련하는 단계; 상기 박막층으로 백색광을 조사하여 상기 박막층에 입사되는 광축 방향에 대한 실제 간섭신호를 획득하는 단계; 상기 실제 간섭신호로부터 상기 박막층의 두께가 될 수 있는 복수의 예상두께를 마련하는 단계; 상기 예상두께에 대응되는 두께를 가지는 시뮬레이션 간섭신호와 상기 실제 간섭신호의 실질적인 일치 여부를 비교하는 단계; 및 상기 실제 간섭신호와 실질적으로 일치하는 시뮬레이션 간섭신호의 두께를 상기 박막층의 두께로 결정하는 단계;를 포함하는 것을 특징으로 한다.

Description

 두께 또는 표면형상 측정방법
본 발명은 두께 또는 표면형상 측정방법에 관한 것으로서, 보다 상세하게는 백색광주사간섭법을 이용하여 투과성 박막층의 두께 및 그 박막층의 표면형상을 정확하게 측정할 수 있는 두께 또는 표면형상 측정방법에 관한 것이다.
반도체 공정 및 FPD 공정에서 품질을 결정하는 여러 요인 가운데 박막층의 두께의 제어가 차지하는 비중이 크기 때문에 이를 공정 중에서 직접 모니터링하는 것이 필수적이라고 할 수 있다. '박막층'이란 기저층 즉, 기판의 표면에 형성시킨 매우 미세한 두께를 가지는 층으로서 일반적으로 두께가 수십 Å ~ 수 ㎛의 범위를 말한다. 이들 박막층을 특정한 용도로 응용하기 위해서는 박막층의 두께, 조성, 조도 및 기타 물리적, 광학적인 특성을 알 필요가 있다. 특히 최근에는 반도체 소자의 집적도를 높이기 위해 기판 위에 초박막층을 다층으로 형성하는 것이 일반적인 추세이다. 이러한 고집적 반도체 소자를 개발하기 위해서는 특성에 커다란 영향을 주는 인자인 박막층의 두께를 포함한 막의 물성을 정확하게 제어해야 한다.
반도체 공정 및 그 밖의 응용공정 등에서 사용하는 박막층의 두께를 측정하는 데에는 여러 가지 방식이 있지만 탐침(stylus)을 이용한 기계적인 방법, 광학적 방법 등이 가장 일반적이다. 광학적 방법 중 백색광 간섭계(white light interferometer)를 사용하여 박막층의 두께를 결정할 수 있다.
도 1은 종래의 두께 측정방법의 일례를 도시한 도면이다.
도 1을 참조하면, 기저층(10)상에 두께를 측정할 투과성 박막층(20a,20b)이 적층되며, 박막층(20a,20b) 상측에는 공기층(30)이 존재한다. 제1면(21a,21b)은 공기층(30)과 박막층(20a,20b)의 경계면이고, 제2면(11a,11b)은 박막층(20a,20b)과 기저층(10)의 경계면이다. 좌측의 박막층(20a)은 우측의 박막층(20b)보다 두껍다.
일반적인 백색광 간섭계를 이용하여 상대적으로 두꺼운 두께의 박막층(20a)을 향해 백색광을 조사하면, 제1면(21a)으로부터 생기는 제1파형(41) 및 제2면(11a)으로부터 생기는 제2파형(42)을 얻을 수 있다. 박막층(20a)의 두께가 두꺼워서 제1파형(41)과 제2파형(42)은 간섭되지 않고 분리되며, 양 파형(41,42)의 최고값을 가지는 피크(peak)를 선택하여 박막층(20a)의 두께를 구할 수 있다.
그러나, 상대적으로 얇은 두께의 박막층(20b)의 경우 위와 같은 방법을 통해 박막층(20b)의 두께를 구하는 것이 불가능하다. 즉, 얇은 두께의 박막층(20b)을 향해 백색광을 조사하면, 제1면(21b)으로부터 생기는 제1파형(43) 및 제2면(11b)으로부터 생기는 제2파형(44) 사이에 간섭 현상이 발생한다. 이와 같이 간섭 현상이 일어나면 제1,2파형 중에 나타난 피크가 실제 보강 간섭에 의한 피크인지 제1파형(43)과 제2파형(44)의 간섭에 의한 피크인지 분명하지 않게 된다. 따라서, 양 파형(43,44)의 최고값을 가지는 피크를 선택하여 박막층(20b)의 두께를 구하는 방법을 사용할 수 없는 문제점이 있다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 서로 다른 두께를 가지는 복수의 샘플 박막층에 대하여 시뮬레이션을 수행하여 시뮬레이션 간섭신호를 마련하고, 기저층 위에 적층된 박막층에 대하여 실제 간섭신호를 획득한 후, 실제 간섭신호와 시뮬레이션 간섭신호의 일치 여부를 비교하여 박막층의 두께를 설정함으로써, 공기층-박막층의 경계면에서의 간섭신호 파형과 박막층-기저층의 경계면에서의 간섭신호 파형 사이에서 간섭 현상이 발생할 정도로 얇은 두께를 가지는 박막층에 대하여 그 두께 또는 표면형상을 정확하게 측정할 수 있는 두께 또는 표면형상 측정방법을 제공함에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 두께 또는 표면형상 측정방법은, 백색광 간섭계를 이용하여 기저층 위에 적층된 박막층의 두께 또는 표면형상 측정방법에 있어서, 서로 다른 두께를 가지는 복수의 샘플 박막층을 가정하고 각 샘플 박막층에 대한 간섭신호를 시뮬레이션하여, 각 두께에 대응되는 시뮬레이션 간섭신호를 마련하는 단계; 상기 박막층으로 백색광을 조사하여 상기 박막층에 입사되는 광축 방향에 대한 실제 간섭신호를 획득하는 단계; 상기 실제 간섭신호로부터 상기 박막층의 두께가 될 수 있는 복수의 예상두께를 마련하는 단계; 상기 예상두께에 대응되는 두께를 가지는 시뮬레이션 간섭신호와 상기 실제 간섭신호의 실질적인 일치 여부를 비교하는 단계; 및 상기 실제 간섭신호와 실질적으로 일치하는 시뮬레이션 간섭신호의 두께를 상기 박막층의 두께로 결정하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 두께 또는 표면형상 측정방법에 있어서, 바람직하게는, 상기 복수의 예상두께를 마련하는 단계는, 상기 실제 간섭신호에서 2개 이상의 피크를 선택하고, 2개의 피크들 사이의 피크 개수를 이용하여 상기 예상두께를 마련한다.
본 발명에 따른 두께 또는 표면형상 측정방법에 있어서, 바람직하게는, 상기 복수의 예상두께를 마련하는 단계는, 상기 실제 간섭신호를, 공기층과 상기 박막층의 경계면에서의 간섭 현상에 의해 생성되는 제1파형과, 상기 박막층과 상기 기저층의 경계면에서의 간섭 현상에 의해 생성되는 제2파형으로 구분하는 단계; 상기 제1파형 및 상기 제2파형에서 각각 피크를 선택하는 단계; 및 상기 제1파형의 피크와 상기 제2파형의 피크 사이의 피크 개수를 이용하여 상기 예상두께를 추출하는 단계;를 포함한다.
본 발명에 따른 두께 또는 표면형상 측정방법에 있어서, 바람직하게는, 상기 피크를 선택하는 단계는, 상기 제2파형의 피크들 중 최고값을 가지는 피크를 기준피크로 설정하는 단계; 및 상기 제1파형에서 복수의 피크를 선택하는 단계;를 포함하고, 상기 예상두께를 추출하는 단계는, 상기 제1파형의 피크들과 상기 기준피크를 조합하고, 조합된 각각의 경우에 대하여 상기 제1파형의 피크와 상기 기준피크 사이의 피크 개수를 산출하는 단계; 및 상기 피크 개수를 이용하여 상기 예상두께를 계산하는 단계;를 포함한다.
본 발명에 따른 두께 또는 표면형상 측정방법에 있어서, 바람직하게는, 상기 피크를 선택하는 단계는, 상기 제1파형에서 복수의 피크를, 상기 제2파형에서 복수의 피크를 선택하는 단계;를 포함하고, 상기 예상두께를 추출하는 단계는, 상기 제1파형의 피크들과 상기 제2파형의 피크들을 조합하고, 조합된 각각의 경우에 대하여 상기 제1파형의 피크와 상기 제2파형의 피크 사이의 피크 개수를 산출하는 단계; 및 상기 피크 개수를 이용하여 상기 예상두께를 계산하는 단계;를 포함한다.
본 발명에 따른 두께 또는 표면형상 측정방법에 있어서, 바람직하게는, 상기 예상두께는 아래의 수학식,
Figure PCTKR2009000250-appb-I000001
에 의해 계산된다. 여기서, dcan 은 상기 예상두께이고, N은 상기 피크 개수이고, λ는 상기 백색광의 등가파장이고, n은 상기 박막층의 굴절률이다.
본 발명에 따른 두께 또는 표면형상 측정방법에 있어서, 바람직하게는, 결정된 박막층의 두께에 대응되는 제1파형의 피크에 대하여, 상기 박막층에 입사되는 광축 방향에 대한 위치를 상기 박막층의 표면높이로 설정하는 단계; 상기 박막층을 따라 이동하면서 상기 표면높이를 설정하는 단계를 반복하며, 상기 박막층의 표면형상을 구하는 단계;를 포함한다.
본 발명에 따르면, 한정된 수의 예상두께들을 마련하여 예상두께에 대응되는 시뮬레이션 간섭신호만을 선택하여 실제 간섭신호와 비교함으로써 최종적으로 박막층의 두께를 결정하는데 소요되는 시간을 절약할 수 있다.
또한, 계측된 실제 간섭신호와 시뮬레이션 간섭신호의 일치 여부를 비교하여 박막층의 두께를 결정함으로써, 서로 다른 경계면에서의 파형 사이에서 서로 간섭이 발생할 정도로 두께가 얇은 박막층에 대해서도 그 두께를 정확하게 측정할 수 있다.
또한, 박막층의 두께뿐만 아니라 박막층의 상대적인 높이 차이를 의미하는 표면형상을 동시에 구할 수 있으므로, 박막층에 대한 종합적인 정보를 산출 및 가시화할 수 있다.
도 1은 종래의 두께 측정방법의 일례를 도시한 도면이고,
도 2는 본 발명에 따른 두께 또는 표면형상 측정방법을 구현하기 위한 백색광 간섭계의 일례를 도시한 도면이고,
도 3은 본 발명의 제1실시예에 따른 두께 또는 표면형상 측정방법의 순서도이고,
도 4는 서로 다른 두께의 샘플 박막층에 대한 시뮬레이션 간섭신호를 나타내는 도면이고,
도 5는 도 3의 두께 또는 표면형상 측정방법에 있어서 박막층에 백색광을 조사하여 획득한 실제 간섭신호를 나타내는 도면이고,
도 6은 각 예상두께에 대응되는 시뮬레이션 간섭신호와 실제 간섭신호의 실질적인 일치 여부를 비교하는 과정을 설명하기 위한 도면이고,
도 7은 본 발명의 제2실시예에 따른 두께 또는 표면형상 측정방법의 순서도이고,
도 8은 도 7의 두께 또는 표면형상 측정방법에 있어서 박막층에 백색광을 조사하여 획득한 실제 간섭신호를 나타내는 도면이다.
이하, 본 발명에 따른 두께 또는 표면형상 측정방법의 실시예들을 첨부된 도면을 참조하여 상세히 설명한다.
도 2는 본 발명에 따른 두께 또는 표면형상 측정방법을 구현하기 위한 백색광 간섭계의 일례를 도시한 도면이다.
도 2를 참조하면, 상기 간섭계(100)는 투과성 박막층(20)의 두께 또는 표면형상을 측정하는데 일반적으로 사용되는 미라우 간섭계의 구성을 채용한다. 상기 간섭계(100)는 백색광원(101)을 구비하며, 백색광원(101)으로는 할로겐 램프 등을 포함한 다양한 소스의 램프가 사용될 수 있다. 백색광원(101)으로부터 입사된 광을 스펙트럼 특성을 바꾸지 않고 단지 휘도만을 줄이기 위하여 회색 필터(ND filter, Neutral Density filter)(102)가 마련된다. 상기 간섭계(100)는 회색 필터(102)를 통과한 광을 집중시키기 위한 집광렌즈(103)를 구비한다. 집광렌즈(103)를 통과한 광은 그 광을 평행광을 만들어 주기 위한 콜리메이터(104)(collimator)를 통과한다.
콜리메이터(104)를 통과한 광은 광분할기(111)에 의해 반사광(53)과 투과광(59)으로 분할되고, 반사광(53)은 대물렌즈(131) 측으로 입사된다. 여기서, 광분할기(111)는 반사율과 투과율이 50:50인 것을 이용한다. 대물렌즈(131)로부터 입사되는 광은 광분할기(132)에 의해 다시 반사광(57)과 투과광(55)으로 분할된다. 상기 투과광(55)은 측정광으로서 투과성 박막층(20) 및 기저층(10) 측으로 조사되고, 상기 반사광(57)은 기준광으로서 기준미러(133)에 조사된다. 상기 광분할기(132)는 기준미러(133)로부터 반사된 기준광(57)과 박막층(20)과 기저층(10)의 경계면에 의해 반사된 측정광(55)를 모아 간섭광을 만들기 위한 것이다. 또한, 상기 기준미러(133)는 광분할기(132)로부터 입사되는 기준광(57)을 반사시켜 다시 광분할기(132)로 입사시키기 위한 것이다.
상기 간섭계(100)는 광분할기(111)로부터 입사되는 간섭광(59)을 결상시키기 위한 결상렌즈(121)와, 간섭광(59)으로부터 간섭신호를 검출하기 위한 검출기(122)를 구비한다. 일반적으로 검출기(122)로는 측정하고자 하는 영역에 적합한 화수 개수를 가지는 CCD(charge coupled device) 카메라가 이용된다.
또한, 상기 간섭계(100)는 측정점을 기저층(10)과 교차하는 방향 즉, 광축 방향으로 미소 간격 이동하면서 간섭신호를 획득하기 위한 구동부(140)를 포함한다. 대물렌즈(131)를 수용하는 경통(130)은 구동부(140)에 장착되어서, 구동부(140)의 작동으로 인해 대물렌즈(131)의 광축 방향으로의 이동이 가능해진다. 여기서, 기저층(10)에 입사되는 수직한 광축 방향(A)을 도 2의 z축으로 정의한다. 이와 같이, 대물렌즈(131)를 z축 방향을 따라 측정점 상하로 수 nm 간격으로 이동하면서 검출기(122)를 통해 강한 간섭신호가 검출되는 위치를 찾게 된다.
이하, 상술한 바와 같이 구성된 간섭계(100)를 이용하여 본 발명에 따른 두께 또는 표면형상 측정방법의 제1실시예에 대하여, 도 3 내지 도 6을 참조하면서 상세히 설명하기로 한다.
도 3은 본 발명의 제1실시예에 따른 두께 또는 표면형상 측정방법의 순서도이고, 도 4는 서로 다른 두께의 샘플 박막층에 대한 시뮬레이션 간섭신호를 나타내는 도면이고, 도 5는 도 3의 두께 또는 표면형상 측정방법에 있어서 박막층에 백색광을 조사하여 획득한 실제 간섭신호를 나타내는 도면이고, 도 6은 각 예상두께에 대응되는 시뮬레이션 간섭신호와 실제 간섭신호의 실질적인 일치 여부를 비교하는 과정을 설명하기 위한 도면이다.
도 4에 도시된 바와 같이, 우선 서로 다른 두께를 가지는 복수의 샘플 박막층을 가정하고 각 샘플 박막층에 대한 간섭신호를 시뮬레이션하여, 각 두께에 대응되는 시뮬레이션 간섭신호(151,152,153)를 마련한다(S110). 여기서, 샘플 박막층은 실제 존재하는 박막층이 아니라 시뮬레이션을 수행하기 위한 서로 다른 두께를 가지는 가상의 박막층이다. 샘플 박막층에 대한 간섭신호를 시뮬레이션할 때는, 샘플 박막층을 실제 그 두께를 측정할 투과성 박막층(20)과 동일한 물질로 가정하여, 두께를 측정할 박막층(20)의 물성치, 예컨대 굴절률(refractive index), 흡수율(absorption coefficient)를 이용하여 시뮬레이션한다.
생성할 시뮬레이션 간섭신호(151,152,153) 두께의 하한과 상한을 미리 설정하고 상한 두께와 하한 두께를 일정 간격으로 분할한 후, 각각의 두께에 대하여 시뮬레이션 간섭신호(151,152,153)를 생성한다. 시뮬레이션 간섭신호(151,152,153) 두께의 하한과 상한은 공정에서 처리되는 박막층(20) 두께의 상한과 하한을 통해 결정된다.
이후, 박막층(20)으로 백색광을 조사하여 박막층(20)에 입사되는 광축 방향(A)에 대한 실제 간섭신호(160)를 획득한다(S120). 박막층(20)에 대하여 실제 측정한 간섭신호(160)는 도 5에 도시된다. 본 실시예에서 실제 간섭신호(160)는 박막층(20)을 향해 조사된 간섭광의 광강도의 변화 신호이다.
이후, 획득된 실제 간섭신호(160)로부터 박막층(20)의 두께가 될 수 있는 복수의 예상두께를 마련한다. 상기 복수의 예상두께를 마련하지 않고, 획득된 실제 간섭신호(160)와 모든 시뮬레이션 간섭신호(151,152,153) 각각의 일치 여부를 비교하면서 박막층(20)의 두께를 결정할 수도 있다. 그러나 모든 시뮬레이션 간섭신호(151,152,153)와 일일이 비교하다 보면, 시스템에 많은 부하가 걸리게 되고 실제 간섭신호(160)와 일치하는 시뮬레이션 간섭신호(151,152,153)를 찾아 최종적으로 박막층(20)의 두께를 결정하는 데에도 많은 시간이 소요되는 문제가 있다. 따라서 본 발명과 같이 복수의 예상두께를 마련함으로써, 예상두께에 대응되는 시뮬레이션 간섭신호(151,152,153)만을 선택하여 실제 간섭신호(160)와 비교함으로써 최종적으로 박막층(20)의 두께를 결정하는데 소요되는 시간을 절약할 수 있다.
복수의 예상두께를 마련하기 위하여, 우선 획득된 실제 간섭신호(160)를 제1파형(161)과 제2파형(162)으로 구분한다(S131). 제1파형(161)은 공기층(30)과 박막층(20)의 경계면에서의 간섭 현상에 의해 생성되는 것으로 실제 간섭신호(160)의 전반부에 위치한다. 제2파형(162)은 박막층(20)과 기저층(10)의 경계면에서의 간섭 현상에 의해 생성되는 것으로 실제 간섭신호(160)의 후반부에 위치한다.
이후, 제2파형(162)의 피크들 중 최고값을 가지는 피크를 기준피크(163)로 설정하고(S133), 제1파형(161)에서 복수의 피크(164a,164b,164c,164d)를 선택한다(S135). 본 실시예에서는 제1파형(161)에 존재하는 4개의 피크를 선택한다. 제1파형(161)의 피크들과 기준피크(163)를 조합하면 4개의 경우의 수, 즉 제1피크(164a)와 기준피크(163), 제2피크(164b)와 기준피크(163), 제3피크(164c)와 기준피크(163) 및 제4피크(164d)와 기준피크(163) 등 총 4개의 경우가 생성된다.
이후, 제1피크(164a)와 기준피크(163), 제2피크(164b)와 기준피크(163), 제3피크(164c)와 기준피크(163) 및 제4피크(164d)와 기준피크(163) 각각에 대하여 양 피크 사이에 존재하는 피크의 개수를 산출한다(S137).
이후, 각 경우에 대하여 산출된 피크의 개수를 아래의 수학식에 대입하여 예상두께를 구한다(S139).
Figure PCTKR2009000250-appb-I000002
여기서, dcan 은 예상두께이고, N은 피크 개수이고, λ는 백색광의 등가파장이고, n은 박막층(20)의 굴절률이다.
본 실시예에서는 제1파형(161)의 피크들과 기준피크(163)를 조합한 경우의 수가 4개이므로, 예상두께 역시 4개가 생성된다.
이후, 도 6에 도시된 바와 같이, 예상두께에 대응되는 두께를 가지는 시뮬레이션 간섭신호(151,152,153)와 실제 간섭신호(160)의 실질적인 일치 여부를 비교한다(S140). 실질적인 일치 여부를 확인하는 과정에서는 최소 자승법을 이용한 오차 함수를 구하여 최소의 오차 함수를 가질 때 양 간섭신호를 "실질적인 일치"로 판정하는데, 이러한 방법은 당업자에게 널리 공지된 것이므로 더 이상의 상세한 설명은 생략한다.
예를 들면, 제3피크(164c)와 기준피크(163) 사이의 피크 개수를 통해 예상두께를 계산하고, 그 예상두께에 대응되는 두께를 가지는 시뮬레이션 간섭신호(153)와 실제 간섭신호(160)의 일치 여부를 판별하는데 있어서 최소 자승법을 이용한 오차 함수를 구한다. 다음으로, 제4피크(164d)와 기준피크(163) 사이의 피크 개수를 통해 예상두께를 계산하고, 그 예상두께에 대응되는 두께를 가지는 시뮬레이션 간섭신호(152)와 실제 간섭신호(160)의 일치 여부를 판별하면 판별하는데 있어서 최소 자승법을 이용한 오차 함수를 구한다. 마찬가지로, 제1피크(164a)와 기준피크(163), 제2피크(164b)와 기준피크(163)의 경우에도 각각 오차 함수를 구하고, 최소의 오차 함수를 가지는 경우를 "실질적인 일치"로 판정한다. 본 실시예에서는 "실질적인 일치"에 해당하는 경우를 제4피크(164d)와 기준피크(163)로 가정하였고, 도시된 도 6에서도 시뮬레이션 간섭신호와 실제 간섭신호를 중첩해 보면, 양 간섭신호가 거의 일치하는 모습을 볼 수 있다.
이후, 실제 간섭신호(160)와 실질적으로 일치하는 시뮬레이션 간섭신호를 선택하고, 그 시뮬레이션 간섭신호에 대응되는 두께를 박막층(20)의 두께로 최종적으로 결정한다(S150).
한편, 실제 간섭신호(160)와 실질적으로 일치하는 시뮬레이션 간섭신호로부터 박막층(20)의 두께를 결정할 때, 박막층(20)의 표면형상도 동시에 구할 수 있다.
도 6에 도시된 바와 같이, 제4피크(164d)와 기준피크(163)의 조합으로부터 얻은 예상두께가 실제 박막층(20)의 두께로 결정되었다면, 박막층(20)에 입사되는 광축 방향(Z), 즉 z축 방향에 대한 제4피크(164d)의 위치를 공기층(30)과 박막층(20)의 경계면으로 판단할 수 있다.
따라서 실제 간섭신호(160) 그래프에서 제4피크(164d)의 x좌표(z축 방향에 대한 제4피크의 위치)를 표면 높이로 설정한다(S162). 이때 z축 방향의 제로(0) 포인트가 절대적인 기준을 의미하는 것이 아니므로, 제4피크(164d)의 x좌표의 절대값(개별적인 제4피크(164d)의 x좌표)은 의미가 없고, 복수 개의 표면 높이들의 상대적인 차이가 중요한 의미를 갖는다.
박막층(20)을 따라 이동하면서 각각의 위치에서 표면 높이를 설정하는 단계를 반복하고, 이를 모두를 연결하게 되면 전체적으로 박막층(20)의 표면 높이들의 상대적인 차이, 즉 표면형상을 구할 수 있다(S164). 이와 같은 박막층(20)의 표면 높이들의 상대적인 차이를 통해, 박막층(20)의 표면이 얼마만큼의 높낮이를 가지며 형성되었는지 가시화할 수 있는데, 박막층(20)의 표면 높이들의 상대적인 차이를 본 명세서에서는 표면형상이라 정의한다.
상술한 바와 같이 구성된 본 실시예에 따른 두께 또는 표면형상 측정방법은, 계측된 실제 간섭신호와 시뮬레이션을 수행해 얻은 시뮬레이션 간섭신호 모두를 각각 비교하는 것이 아니라, 한정된 수의 예상두께들을 마련하여 예상두께에 대응되는 시뮬레이션 간섭신호만을 선택하여 실제 간섭신호와 비교함으로써 최종적으로 박막층의 두께를 결정하는데 소요되는 시간을 절약할 수 있는 효과를 얻을 수 있다.
또한, 계측된 실제 간섭신호와 시뮬레이션 간섭신호의 일치 여부를 비교하여 박막층의 두께를 결정함으로써, 서로 다른 경계면에서의 파형 사이에서 서로 간섭이 발생할 정도로 두께가 얇은 박막층에 대해서도 그 두께를 정확하게 측정할 수 있는 효과를 얻을 수 있다.
또한, 박막층의 두께뿐만 아니라 박막층의 상대적인 높이 차이를 의미하는 표면형상을 동시에 구할 수 있으므로, 박막층에 대한 종합적인 정보를 산출 및 가시화할 수 있는 효과를 얻을 수 있다.
한편, 도 7은 본 발명의 제2실시예에 따른 두께 또는 표면형상 측정방법의 순서도이다. 도 7 및 도 8에 있어서, 도 3 내지 도 6에 도시된 부재들과 동일한 부재번호에 의해 지칭되는 부재들은 동일한 구성 및 기능을 가지는 것으로서, 그들 각각에 대한 상세한 설명은 생략하기로 한다.
본 실시예에서는 제2파형에서 기준피크를 설정하지 않고, 실제 간섭신호(260)의 제1파형(261)에서 복수의 피크(264a,264b,264c,264d)를, 제2파형(262)에서 복수의 피크(263a,263b,263c)를 선택한다(S233). 본 실시예에서는 제1파형(261)에서 4개의 피크를, 제2파형(262)에서 3개의 피크를 선택한다. 제1파형(261)의 피크들과 제2파형(262)의 피크들을 조합하면 12개의 경우의 수, 즉 제1피크(264a)와 제5피크(263a), 제2피크(264b)와 제5피크(263a), … , 제1피크(264a)와 제6피크(263b), 제2피크(264b)와 제6피크(263b) 등 총 12개의 경우가 생성된다.
이후, 각각의 경우에 대하여 양 피크 사이에 존재하는 피크의 개수를 산출하고(S235), 그 피크 개수를 이용하여 12개의 예상두께를 마련하여, 박막층(20)의 두께를 결정하는데 이용할 수 있다.
본 실시예의 경우, 본 발명의 제1실시예와 비교하여 경우의 수가 많을 수 있으나, 기준피크를 잘못 설정할 수 있는 위험성을 줄이는 효과를 얻을 수 있다.
본 발명의 권리범위는 상술한 실시예 및 변형례에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
본 발명은 백색광주사간섭법을 이용하여 투과성 박막층의 두께 및 그 박막층의 표면형상을 정확하게 측정할 수 있는 두께 또는 표면형상 측정방법에 이용될 수 있다.

Claims (7)

  1. 백색광 간섭계를 이용하여 기저층 위에 적층된 박막층의 두께 또는 표면형상 측정방법에 있어서,
    서로 다른 두께를 가지는 복수의 샘플 박막층을 가정하고 각 샘플 박막층에 대한 간섭신호를 시뮬레이션하여, 각 두께에 대응되는 시뮬레이션 간섭신호를 마련하는 단계;
    상기 박막층으로 백색광을 조사하여 상기 박막층에 입사되는 광축 방향에 대한 실제 간섭신호를 획득하는 단계;
    상기 실제 간섭신호로부터 상기 박막층의 두께가 될 수 있는 복수의 예상두께를 마련하는 단계;
    상기 예상두께에 대응되는 두께를 가지는 시뮬레이션 간섭신호와 상기 실제 간섭신호의 실질적인 일치 여부를 비교하는 단계; 및
    상기 실제 간섭신호와 실질적으로 일치하는 시뮬레이션 간섭신호의 두께를 상기 박막층의 두께로 결정하는 단계;를 포함하는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
  2. 제1항에 있어서,
    상기 복수의 예상두께를 마련하는 단계는,
    상기 실제 간섭신호에서 2개 이상의 피크(peak)를 선택하고, 2개의 피크들 사이의 피크 개수를 이용하여 상기 예상두께를 마련하는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
  3. 제2항에 있어서,
    상기 복수의 예상두께를 마련하는 단계는,
    상기 실제 간섭신호를, 공기층과 상기 박막층의 경계면에서의 간섭 현상에 의해 생성되는 제1파형과, 상기 박막층과 상기 기저층의 경계면에서의 간섭 현상에 의해 생성되는 제2파형으로 구분하는 단계;
    상기 제1파형 및 상기 제2파형에서 각각 피크를 선택하는 단계; 및
    상기 제1파형의 피크와 상기 제2파형의 피크 사이의 피크 개수를 이용하여 상기 예상두께를 추출하는 단계;를 포함하는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
  4. 제3항에 있어서,
    상기 피크를 선택하는 단계는,
    상기 제2파형의 피크들 중 최고값을 가지는 피크를 기준피크로 설정하는 단계; 및 상기 제1파형에서 복수의 피크를 선택하는 단계;를 포함하고,
    상기 예상두께를 추출하는 단계는,
    상기 제1파형의 피크들과 상기 기준피크를 조합하고, 조합된 각각의 경우에 대하여 상기 제1파형의 피크와 상기 기준피크 사이의 피크 개수를 산출하는 단계; 및 상기 피크 개수를 이용하여 상기 예상두께를 계산하는 단계;를 포함하는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
  5. 제3항에 있어서,
    상기 피크를 선택하는 단계는,
    상기 제1파형에서 복수의 피크를, 상기 제2파형에서 복수의 피크를 선택하는 단계;를 포함하고,
    상기 예상두께를 추출하는 단계는,
    상기 제1파형의 피크들과 상기 제2파형의 피크들을 조합하고, 조합된 각각의 경우에 대하여 상기 제1파형의 피크와 상기 제2파형의 피크 사이의 피크 개수를 산출하는 단계; 및 상기 피크 개수를 이용하여 상기 예상두께를 계산하는 단계;를 포함하는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
  6. 제4항 또는 제5항에 있어서,
    상기 예상두께는 아래의 수학식,
    Figure PCTKR2009000250-appb-I000003
    에 의해 계산되는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
    여기서, dcan 은 상기 예상두께이고, N은 상기 피크 개수이고, λ는 상기 백색광의 등가파장이고, n은 상기 박막층의 굴절률이다.
  7. 제3항에 있어서,
    결정된 박막층의 두께에 대응되는 제1파형의 피크에 대하여, 상기 박막층에 입사되는 광축 방향에 대한 위치를 상기 박막층의 표면높이로 설정하는 단계;
    상기 박막층을 따라 이동하면서 상기 표면높이를 설정하는 단계를 반복하며, 상기 박막층의 표면형상을 구하는 단계;를 포함하는 것을 특징으로 하는 두께 또는 표면형상 측정방법.
PCT/KR2009/000250 2008-06-30 2009-01-16 두께 또는 표면형상 측정방법 WO2010002085A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011516101A JP5369357B2 (ja) 2008-06-30 2009-01-16 厚さまたは表面形状の測定方法
US12/993,301 US8947673B2 (en) 2008-06-30 2009-01-16 Estimating thickness based on number of peaks between two peaks in scanning white light interferometry
CN2009801248181A CN102077051B (zh) 2008-06-30 2009-01-16 厚度或表面形貌检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080062382A KR101010189B1 (ko) 2008-06-30 2008-06-30 두께 또는 표면형상 측정방법
KR10-2008-0062382 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010002085A1 true WO2010002085A1 (ko) 2010-01-07

Family

ID=41466144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000250 WO2010002085A1 (ko) 2008-06-30 2009-01-16 두께 또는 표면형상 측정방법

Country Status (6)

Country Link
US (1) US8947673B2 (ko)
JP (1) JP5369357B2 (ko)
KR (1) KR101010189B1 (ko)
CN (1) CN102077051B (ko)
TW (1) TWI410603B (ko)
WO (1) WO2010002085A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782129B (zh) * 2011-09-09 2016-09-14 (株)茵斯派托 利用投影光栅振幅的三维形状测量装置及方法
US20140320866A1 (en) * 2011-12-07 2014-10-30 Konica Minolta, Inc Shape Measuring Apparatus
JP5808667B2 (ja) * 2011-12-27 2015-11-10 株式会社Sumco シリカガラスルツボの三次元形状測定方法
US20130289900A1 (en) * 2012-04-26 2013-10-31 Areva Np Inc. Gap Measurement Tool and Method of Use
TWI477736B (zh) * 2013-12-05 2015-03-21 Nat Applied Res Laboratories 多工物件參數光學量測整合裝置與方法
CN105091787B (zh) * 2014-05-06 2018-01-16 北京智朗芯光科技有限公司 实时快速检测晶片基底二维形貌的装置
JP6389081B2 (ja) * 2014-08-07 2018-09-12 Ntn株式会社 形状測定装置、塗布装置および形状測定方法
US9766365B2 (en) 2014-10-27 2017-09-19 Schlumberger Technology Corporation Compensated deep measurements using a tilted antenna
CN105698964A (zh) * 2014-11-26 2016-06-22 北京智朗芯光科技有限公司 一种单透镜型晶片基底温度测量装置
KR101650319B1 (ko) * 2015-03-06 2016-08-24 에스엔유 프리시젼 주식회사 컬러 카메라를 이용한 두께 측정방법 및 두께 측정장치
JP6677407B2 (ja) * 2015-10-20 2020-04-08 国立大学法人 和歌山大学 断層構造の観測方法、観測装置、及びコンピュータプログラム
JP6800800B2 (ja) * 2017-04-06 2020-12-16 株式会社ニューフレアテクノロジー 成長速度測定装置および成長速度検出方法
CN108225209A (zh) * 2017-12-04 2018-06-29 中国特种飞行器研究所 一种立体视觉腐蚀形貌检测装置及检测方法
JP2019152570A (ja) * 2018-03-05 2019-09-12 東芝メモリ株式会社 測定装置
CN109084678B (zh) * 2018-09-03 2021-09-28 深圳中科飞测科技股份有限公司 一种光学检测装置和光学检测方法
US11796311B2 (en) * 2018-07-27 2023-10-24 Skyverse Technology Co., Ltd. Light emitting device, optical detection system, optical detection device and optical detection method
CN108917626A (zh) 2018-08-01 2018-11-30 深圳中科飞测科技有限公司 一种检测装置及检测方法
CN112902900A (zh) * 2021-01-22 2021-06-04 大连理工大学 一种弱刚性平面构件的平行度测量方法
CN112902880A (zh) * 2021-01-22 2021-06-04 大连理工大学 一种平面构件平行度的测量方法和装置
CN112964200A (zh) * 2021-02-02 2021-06-15 西安工业大学 一种透明平板夹角的快速测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144544A (ja) * 1999-11-15 2001-05-25 Advantest Corp 同調周波数フィルタ付き周波数逓倍器
KR20020009512A (ko) * 2000-07-26 2002-02-01 가부시키가이샤 니폰 마크시스 피측정물의 두께 측정방법 및 그 장치
JP2003240515A (ja) * 2002-02-15 2003-08-27 Toray Ind Inc 膜厚測定方法およびシートの製造方法
KR100654177B1 (ko) * 1999-08-27 2006-12-05 토레 엔지니어링 가부시키가이샤 표면형상 측정방법 및 그 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654217B2 (ja) * 1987-08-28 1994-07-20 株式会社日立製作所 干渉膜厚測定方法
US5555472A (en) * 1993-12-22 1996-09-10 Integrated Process Equipment Corp. Method and apparatus for measuring film thickness in multilayer thin film stack by comparison to a reference library of theoretical signatures
CN1808056B (zh) * 2001-09-21 2011-09-14 Kmac株式会社 利用二维检测器测量薄膜特性的装置及测量方法
JP3995579B2 (ja) * 2002-10-18 2007-10-24 大日本スクリーン製造株式会社 膜厚測定装置および反射率測定装置
JP2004144544A (ja) 2002-10-23 2004-05-20 Sumitomo Chem Co Ltd 膜厚の検査方法
EP1604169B1 (en) * 2003-03-06 2020-05-06 Zygo Corporation Method for profiling complex surface structures using scanning interferometry
WO2004079295A2 (en) * 2003-03-06 2004-09-16 Zygo Corporation Profiling complex surface structures using scanning interferometry
JP2004340680A (ja) 2003-05-14 2004-12-02 Toray Eng Co Ltd 表面形状および/または膜厚測定方法及びその装置
US7289225B2 (en) * 2003-09-15 2007-10-30 Zygo Corporation Surface profiling using an interference pattern matching template
JP4216209B2 (ja) * 2004-03-04 2009-01-28 大日本スクリーン製造株式会社 膜厚測定方法および装置
US7522289B2 (en) * 2004-10-13 2009-04-21 Solvision, Inc. System and method for height profile measurement of reflecting objects
JP2006170847A (ja) 2004-12-16 2006-06-29 Canon Inc 形状と材質の測定方法
WO2007033851A1 (de) * 2005-09-22 2007-03-29 Robert Bosch Gmbh Interferometrische schichtdickenbestimmung
US20080246966A1 (en) * 2005-12-14 2008-10-09 Nikon Corporation Surface-Inspecting Apparatus and Surface-Inspecting Method
JP2008014696A (ja) * 2006-07-04 2008-01-24 Dainippon Screen Mfg Co Ltd ムラ検査装置、画像表示装置、ムラ検査方法および画像表示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654177B1 (ko) * 1999-08-27 2006-12-05 토레 엔지니어링 가부시키가이샤 표면형상 측정방법 및 그 장치
JP2001144544A (ja) * 1999-11-15 2001-05-25 Advantest Corp 同調周波数フィルタ付き周波数逓倍器
KR20020009512A (ko) * 2000-07-26 2002-02-01 가부시키가이샤 니폰 마크시스 피측정물의 두께 측정방법 및 그 장치
JP2003240515A (ja) * 2002-02-15 2003-08-27 Toray Ind Inc 膜厚測定方法およびシートの製造方法

Also Published As

Publication number Publication date
CN102077051B (zh) 2012-11-28
KR20100002477A (ko) 2010-01-07
JP5369357B2 (ja) 2013-12-18
TW201000848A (en) 2010-01-01
JP2011526692A (ja) 2011-10-13
KR101010189B1 (ko) 2011-01-21
CN102077051A (zh) 2011-05-25
TWI410603B (zh) 2013-10-01
US8947673B2 (en) 2015-02-03
US20110188048A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2010002085A1 (ko) 두께 또는 표면형상 측정방법
US8797388B2 (en) Mounting accuracy inspection method and inspection apparatus using the inspection method
CN103843123B (zh) 利用光瞳相位信息来测量覆盖的方法及系统
KR100988454B1 (ko) 두께 측정방법
CN106643581A (zh) 玻璃平整度检测仪及检测方法
WO2010110535A2 (ko) 반사도분포곡선의 모델링방법 및 이를 이용하는 두께 측정방법, 두께 측정 반사계
CN103727888B (zh) 彩色滤色片膜厚测量方法及装置
CN111220068B (zh) 一种依据样品空间结构照明的白光干涉测量装置及方法
JPH06174448A (ja) 液晶パネルの位置決め装置及びパターン検査装置
WO2018072446A1 (zh) 非对称式光学干涉测量方法及装置
CN115015112A (zh) 一种缺陷检测装置和方法
CN115950890B (zh) 用于工业检测的谱域光学相干层析成像检测方法及系统
TWI598565B (zh) 測量薄膜厚度的方法
JPH09133517A (ja) 分布測定装置
WO2016107573A1 (zh) 一种预对准测量装置和方法
CN107687933A (zh) 一种变形镜系统高精度刚体位移检测方法及装置
KR101479970B1 (ko) 터치스크린 패널의 ito 패턴 검사용 현미경 및 이를 이용한 터치 스크린 패널의 ito 패턴 검사 방법
CN106933040A (zh) 光刻机拼接照明系统及其调整方法
JPH11211423A (ja) 基板の測定方法
JP3811728B2 (ja) 膜厚取得方法
CN109211117A (zh) 线宽测量系统和线宽测量装置
CN105807580A (zh) 一种工件六自由度位置和姿态测量传感器装置
Ohno et al. One-shot color mapping of a ray direction field for obtaining three-dimensional profiles integrating deep neural networks
CN113916152B (zh) 基于相位偏折术的样品检测装置以及方法
CN213956279U (zh) 一种简易的斜照明式彩色共聚焦测量系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124818.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011516101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12993301

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09773621

Country of ref document: EP

Kind code of ref document: A1