WO2010001690A1 - 二酸化炭素改質方法 - Google Patents

二酸化炭素改質方法 Download PDF

Info

Publication number
WO2010001690A1
WO2010001690A1 PCT/JP2009/060426 JP2009060426W WO2010001690A1 WO 2010001690 A1 WO2010001690 A1 WO 2010001690A1 JP 2009060426 W JP2009060426 W JP 2009060426W WO 2010001690 A1 WO2010001690 A1 WO 2010001690A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide reforming
catalyst
group
carbon
Prior art date
Application number
PCT/JP2009/060426
Other languages
English (en)
French (fr)
Inventor
佐藤 秀人
斉藤 芳則
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN200980126050.1A priority Critical patent/CN102076604B/zh
Priority to EP09773268.9A priority patent/EP2301889B1/en
Priority to JP2010518971A priority patent/JP5141765B2/ja
Publication of WO2010001690A1 publication Critical patent/WO2010001690A1/ja
Priority to US12/971,552 priority patent/US8518301B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a carbon dioxide reforming method, and more specifically, carbon dioxide reforming used to obtain a synthesis gas containing hydrogen and carbon monoxide by reforming a hydrocarbon-based source gas in the presence of carbon dioxide. On quality methods.
  • hydrocarbon gases are generated from technical fields such as petroleum refining and petrochemistry, but they are not necessarily efficiently used as raw material gases for various substances. In fact, there is a demand for a method for converting to a more effective substance.
  • Patent Documents 1 and 2 As a catalyst used for carbon dioxide reforming of hydrocarbons, a catalyst in which nickel, ruthenium, or rhodium is supported on a carrier such as alumina or silica is known (see Patent Documents 1 and 2).
  • This invention is made
  • the carbon dioxide reforming method of the present invention comprises: A carbon dioxide reforming method in which a hydrocarbon-based source gas is reformed with carbon dioxide to produce a synthesis gas containing carbon monoxide and hydrogen, Selected from the group consisting of at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr, and Ba, a catalytic metal that promotes the decomposition reaction of the hydrocarbon-based source gas, and Ca, Sr, and Ba Using a carbon dioxide reforming catalyst comprising at least one alkaline earth metal and a composite oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo, It is characterized by carbon dioxide reforming of a hydrocarbon-based source gas under a pressure condition of 3 atm (0.304 MPa) or more.
  • the composite oxide may be ATiO 3 , AAl 2 O 4 , AZrO 3 , AFe 2 O 4 , A 3 W 2 O 9 , A 2 WO 5 , AMoO 4 ( A is preferably at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba.
  • the catalyst metal it is desirable to use at least one selected from the group consisting of Ni, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, and Mo.
  • the carbon dioxide reforming method of the present invention includes at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr, and Ba, a catalyst metal that promotes a decomposition reaction of a hydrocarbon-based raw material gas, Containing at least one alkaline earth metal selected from the group consisting of Sr, Ba, and a complex oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo
  • the carbon dioxide reforming catalyst is used to perform the carbon dioxide reforming of the hydrocarbon-based raw material gas. Therefore, the carbon dioxide reforming operation is performed under a pressure condition of 3 atm (0.304 MPa) or more. Even when it is performed, carbon deposition can be efficiently performed while suppressing carbon deposition in the reforming step.
  • carbon dioxide reforming of a hydrocarbon-based source gas under pressurized conditions can be performed more efficiently than when carbon dioxide reforming is performed at atmospheric pressure while suppressing carbon deposition.
  • a pressurized synthesis gas containing carbon monoxide and hydrogen can be generated very efficiently from a hydrocarbon-based source gas.
  • the pressurized synthesis gas obtained by the carbon dioxide reforming method of the present invention can be used for the synthesis of DME (dimethyl ether) or liquid fuel or alcohol by the OXO synthesis process (synthetic process by oxo method). It can be particularly meaningfully used as a raw material in producing a substance that is subjected to a synthesis process under conditions.
  • the above-mentioned catalyst used in the carbon dioxide reforming method of the present invention causes the following reaction by circulating hydrocarbons such as methane and carbon dioxide at a high temperature of, for example, 800 ° C. to 1100 ° C. It acts as a catalyst when CH 4 ⁇ C + 2H 2 (1) C + CO 2 ⁇ 2CO (2) CH 4 + CO 2 ⁇ 2H 2 + 2CO (3)
  • the carbon dioxide reforming catalyst of the present invention has an effect of promoting the reaction of the formula (2) as compared with the conventional catalyst using an oxide such as alumina or silica as a carrier.
  • the carbon generated by the reaction of the formula (1), which is generated and promoted by the function of the metal, can be removed by the reaction of the formula (2).
  • carbon dioxide reforming can be efficiently performed while suppressing carbon deposition in the reforming step.
  • the composite oxide is selected from the group consisting of ATiO 3 , AAl 2 O 4 , AZrO 3 , AFe 2 O 4 , A 3 W 2 O 9 , A 2 WO 5 , AMoO 4 (A is Ca, Sr and Ba).
  • a composite oxide for example, BaAl 2 O 4 ) represented by at least one kind of alkaline earth metal
  • the sintering of carbonate is suppressed, and a hydrocarbon-based source gas and The reaction from carbon dioxide to carbon monoxide and hydrogen can be promoted.
  • the type of catalyst metal used for the carbon dioxide reforming catalyst there are no particular restrictions on the type of catalyst metal used for the carbon dioxide reforming catalyst, and various metals can be used.
  • Ni, Rh, Ru, Ir, Pd, Pt By using at least one selected from the group consisting of Re, Co, Fe, and Mo, the carbon dioxide reforming reaction can be performed efficiently, and the present invention can be made more effective.
  • carbon dioxide reforming catalysts A, B and C were prepared as catalysts used in the carbon dioxide reforming method of the present invention.
  • ⁇ Carbon dioxide reforming catalyst A> BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 2.0: 1.0, and NiO was further added and mixed so that the ratio was 2% by weight.
  • a binder was added to this mixture and granulated into a sphere having a diameter of 2 to 5 mm.
  • the obtained granulated body was fired in air at 1100 ° C. for 1 hour to obtain a mixture of Ba 2 TiO 4 and NiO.
  • This mixture is baked in a 20% CO 2, 80% N 2 stream at 700 ° C. for 1 h to obtain a BaCO 3 , BaTiO 3 , NiO mixture, which is BaCO 3 and BaTiO 3.
  • a carbon dioxide reforming catalyst A having a molar ratio of 1.0: 1.0 was obtained.
  • the mixture decomposes all of Ba 2 TiO 4 into BaCO 3 and BaTiO 3 , resulting in a molar ratio of BaCO 3 and BaTiO 3 of 1.0: 1. It was confirmed that a catalyst having a mixture of 0.0 was obtained.
  • NiO functions as a catalytic metal that promotes carbon dioxide reforming of the hydrocarbon-based source gas, at least a part of which is reduced in the carbon dioxide reforming process of the hydrocarbon-based source gas. is there.
  • a binder was added to this mixture and granulated into a sphere having a diameter of 2 to 5 mm.
  • the obtained granulated body was fired in air at 1100 ° C. for 1 hour to obtain a mixture of Sr 2 TiO 4 and NiO.
  • This mixture is calcined in a 20% CO 2, 80% N 2 stream at 700 ° C. for 1 h to obtain a mixture of SrCO 3 , SrTiO 3 , and NiO, which is SrCO 3 and SrTiO 3.
  • a carbon dioxide reforming catalyst B having a molar ratio of 1.0: 1.0 was obtained.
  • NiO functions as a catalytic metal that promotes carbon dioxide reforming of the hydrocarbon-based source gas, at least a part of which is reduced in the carbon dioxide reforming process of the hydrocarbon-based source gas. is there.
  • This mixture is baked in a 20% CO 2, 80% N 2 stream under the conditions of 700 ° C. and 1 h, thereby reforming carbon dioxide, which is a mixture of BaCO 3 , BaAl 2 O 4 , and NiO. Catalyst C was obtained.
  • the mixture decomposes all of Ba 3 Al 2 O 6 into BaCO 3 and BaAl 2 O 4 , resulting in a molar ratio of BaCO 3 and BaAl 2 O 4 . It was confirmed that a catalyst having a 2.0: 1.0 mixture was obtained.
  • NiO functions as a catalytic metal that promotes carbon dioxide reforming of the hydrocarbon-based source gas, at least a part of which is reduced in the carbon dioxide reforming process of the hydrocarbon-based source gas. is there.
  • ⁇ Comparative Carbon Dioxide Reforming Catalyst D> contains an alkaline earth metal, a composite oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo, and a catalytic metal.
  • a carbon dioxide reforming catalyst D without a metal carbonate was prepared as follows. BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 1.0: 1.0, and NiO was further added and mixed at a ratio of 2% by weight.
  • a binder was added to this mixture and granulated into a sphere having a diameter of 2 to 5 mm.
  • the obtained granulated body was calcined in air at 1000 ° C. for 1 hour to obtain a carbon dioxide reforming catalyst (comparative catalyst) D which is a mixture of BaTiO 3 and NiO.
  • an alkaline earth metal carbonate and a catalyst metal are contained, but at least one selected from the group consisting of an alkaline earth metal and Ti, Al, Zr, Fe, W, and Mo.
  • a carbon dioxide reforming catalyst F containing no complex oxide containing components was prepared as follows.
  • NiO was added to BaCO 3 at a ratio of 2% by weight and mixed.
  • a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm.
  • This granulated body was calcined in air at 900 ° C. for 1 hour to obtain a carbon dioxide reforming catalyst (comparative catalyst) F which is a mixture of BaCO 3 and NiO.
  • the obtained carbon dioxide reforming catalyst F was a mixture of BaCO 3 and NiO.
  • this test apparatus includes a stainless steel reaction tube 1 having an inner diameter of 22 mm and a length of 300 mm provided with an external heater 2, a gas inlet 4 for supplying gas to the reaction tube 1, a reaction A gas outlet 5 for discharging gas from the tube 1 and a pressure regulator 6 for adjusting the pressure in the reaction tube are provided.
  • the reaction tube 1 is filled with 10 cc of the carbon dioxide reforming catalysts A to E (the carbon dioxide reforming catalyst is indicated by reference numeral 3 in FIG. 1) manufactured as described above.
  • the gas obtained from the outlet of the reaction tube was introduced into the analyzer, and the gas concentrations were measured to calculate the conversion rates of CH 4 and CO 2 . Further, after the test was completed, the carbon dioxide reforming catalyst was taken out and sieved to collect the precipitated carbon.
  • the reaction tube 1 is filled with 10 cc of the carbon dioxide reforming catalysts A to E manufactured as described above (in FIG. 1, the carbon dioxide reforming catalyst is indicated by reference numeral 3).
  • the heater 2 is heated to 900 ° C., and the pressure regulator 6 adjusts the pressure in the reaction tube 1 to a predetermined pressure (3 atm (0.304 MPa), 5 atm (0.507 MPa), 8 atm (0.811 MPa).
  • Tables 1 to 3 show the results of the carbon dioxide reforming test when the carbon dioxide reforming catalysts A, B, and C were used, that is, the methane conversion rate, the carbon dioxide conversion rate, and the precipitated carbon amount.
  • the methane conversion rate is a ratio of methane (CH 4 ) subjected to the reforming process reacting with carbon dioxide to become carbon monoxide and hydrogen.
  • CO 2 conversion is the ratio of reforming the utilized carbon dioxide (CO 2) of the carbon dioxide has been subjected to the reforming step (CO 2).
  • the amount of precipitated carbon is the amount of carbon recovered by taking out the carbon dioxide reforming catalyst after screening and screening.
  • Table 1 shows the results of the carbon dioxide reforming test using the carbon dioxide reforming catalyst A
  • Table 2 shows the results of the carbon dioxide reforming test using the carbon dioxide reforming catalyst B
  • Table 3 shows the results of the carbon dioxide reforming test using the carbon dioxide reforming catalyst C.
  • FIG. 2 shows the relationship between the pressure in the reaction tube and the methane conversion rate.
  • the alkaline earth metal carbonate has a catalytic function for promoting the reaction of the above formula (2).
  • the performance of the catalyst F is inferior to that of the catalysts A to C.
  • the alkaline earth metal carbonate alone is sintered during the reaction, and the catalytic function of Ni, that is, the reaction of the above formula (1) is promoted. This is thought to be due to the failure to fully perform the functions to be performed.
  • the composite oxide containing an alkaline earth metal and Ti or Al functions to prevent the alkaline earth metal carbonate from being sintered.
  • the carbon dioxide reforming reaction for generating carbon monoxide and hydrogen can be promoted.
  • the inventors of the present application include at least one of Zr, Fe, W and Mo in addition to those containing Ti or Al as a composite oxide having a function of preventing the alkaline earth metal carbonate from being sintered. And specifically AZrO 3 , AFe 2 O 4 , A 3 W 2 O 9 , A 2 WO 5 , AMoO 4 (A is at least one alkaline earth selected from the group consisting of Ca, Sr and Ba) (Metal) is confirmed. As in the case of the catalysts A to C, a mixture of an alkaline earth metal carbonate and these complex oxides is used as another complex oxide (specifically, A 2 ZrO 4 , A 2) as a precursor. Fe 2 O 5 , A 2 WO 5 , A 3 WO 6 , A 2 MoO 5 ) can be obtained by absorbing carbon dioxide.
  • At least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr, and Ba a catalyst metal that promotes the decomposition reaction of the hydrocarbon-based source gas, and Ca, Sr, and Ba.
  • Carbon dioxide reforming containing at least one alkaline earth metal selected from the group consisting of and a composite oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo It was confirmed that by using the catalyst for use, a high reaction conversion rate can be realized by performing carbon dioxide reforming while suppressing and preventing carbon deposition under pressure.
  • the present invention is not limited to the above-described embodiments, and includes the operating conditions in the carbon dioxide reforming step, the composition of the carbon dioxide reforming catalyst, for example, the alkaline earth constituting the carbon dioxide reforming catalyst. It is possible to add various applications and modifications within the scope of the invention with respect to the types and content ratios of similar metals, composite oxides and catalytic metals.
  • the present invention is a technique for producing a synthesis gas containing hydrogen and carbon monoxide by reforming carbon dioxide from a hydrocarbon-based raw material gas, in particular, a reaction process in the production process is performed under pressure, and synthesis under pressure is performed. It can be suitably used in the technical field for producing substances such as DME and liquid fuel produced by using the oxo method, which are desirably supplied with gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

 炭素の析出を抑制しつつ、炭化水素系の原料ガスと二酸化炭素とを加圧下で反応させ、効率的に水素および一酸化炭素を含む合成ガスを得ることを可能にする。  Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属と、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種の成分を含む複合酸化物とを含有する二酸化炭素改質用触媒を用い、3気圧(0.304MPa)以上の圧力条件下で炭化水素系の原料ガスの二酸化炭素改質を行う。  複合酸化物を、ATiO3,AAl24,AZrO3,AFe24,A329,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)とする。

Description

二酸化炭素改質方法
 本発明は、二酸化炭素改質方法に関し、詳しくは、炭化水素系の原料ガスを二酸化炭素の存在下に改質して、水素および一酸化炭素を含む合成ガスを得るために用いられる二酸化炭素改質方法に関する。
 近年、二酸化炭素は地球温暖化の主要原因物質であることから排出の削減、有効利用が緊急の課題とされている。
 また、石油精製や石油化学などの技術分野からは種々の炭化水素系ガスが発生するが、必ずしも効率よく、種々の物質の原料ガスなどとして利用することができておらず、炭化水素系ガスをより有効な物質に変換する方法が求められているのが実情である。
 このような状況の下で、炭化水素と二酸化炭素とを反応させて水素および一酸化炭素を含む合成ガスを製造する方法として、還元剤として機能する、メタンなどの飽和炭化水素と二酸化炭素とを触媒の存在下に反応させて、工業的に有用な合成ガスである水素と一酸化炭素に変換する方法(炭化水素の二酸化炭素改質)が知られている。
 そして、炭化水素の二酸化炭素改質に用いられる触媒としては、アルミナやシリカなどの担体にニッケル,ルテニウム,ロジウムを担持した触媒が知られている(特許文献1および2参照)。
 しかしながら、上述のアルミナやシリカなどの担体に、ニッケル,ルテニウム,ロジウムを担持した触媒を用いた場合には、触媒上に炭素が析出しやすく、析出した炭素により触媒表面が覆われて活性が低下したり、触媒粒子間の空隙が埋まることによる反応管の閉塞が生じたりするという問題点がある。
 また、製造した合成ガスの用途として考えられるDME(ジメチルエーテル)の合成や、OXO合成プロセス(オキソ法による合成プロセス)による液体燃料やアルコールの製造工程において、合成プロセスは一般に加圧条件下で行われる。したがって、二酸化炭素改質により得られる合成ガスを再加圧するプロセスを省くためには、二酸化炭素改質も加圧条件下で行われることが望ましい。
 しかしながら、上述の、アルミナやシリカなどの担体にニッケル,ルテニウム,ロジウムなどを担持した従来の触媒を使用した場合は、加圧条件での運転は、大気圧条件での運転にも増して炭素の著しい析出を招くという問題点がある。
特開平8-231204号公報 特開平9-168740号公報
 本発明は、上記実情に鑑みてなされたものであり、炭素の析出を抑制しつつ、炭化水素系ガスと二酸化炭素とを加圧下で反応させ、効率的に水素および一酸化炭素を生成させる(二酸化炭素改質を行う)ことが可能な二酸化炭素改質方法を提供することを目的とする。
 上記課題を解決するために、本発明の二酸化炭素改質方法は、
 炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを生成させる二酸化炭素改質方法であって、
 Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属と、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種の成分を含む複合酸化物とを含有する二酸化炭素改質用触媒を用い、
 3気圧(0.304MPa)以上の圧力条件下で炭化水素系の原料ガスの二酸化炭素改質を行うこと
 を特徴としている。
 また、本発明の二酸化炭素改質方法においては、前記複合酸化物が、ATiO3,AAl24,AZrO3,AFe24,A329,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)であることが望ましい。
 また、触媒金属としては、Ni,Rh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moからなる群より選ばれる少なくとも1種を用いることが望ましい。
 本発明の二酸化炭素改質方法は、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属と、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種の成分を含む複合酸化物とを含有する二酸化炭素改質用触媒を用いて、炭化水素系の原料ガスの二酸化炭素改質を行うようにしているので、3気圧(0.304MPa)以上の圧力条件下で二酸化炭素改質の操作を行う場合にも、改質工程における炭素析出を抑制して、効率よく二酸化炭素改質を行うことが可能になる。
 すなわち、上記の触媒を用いて、加圧条件下で炭化水素系の原料ガスを二酸化炭素改質することにより、炭素の析出を抑制しつつ、大気圧で二酸化炭素改質を行う場合よりも効率よく、炭化水素を二酸化炭素と水素に改質することが可能になる。
 したがって、本発明によれば、炭化水素系の原料ガスから、一酸化炭素と水素を含む加圧状態の合成ガスを極めて効率よく生成させることが可能になる。そして、本発明の二酸化炭素改質方法により得られる加圧状態の合成ガスは、DME(ジメチルエーテル)の合成や、OXO合成プロセス(オキソ法による合成プロセス)による液体燃料やアルコールの製造など、加圧条件下で合成プロセスが実施される物質を製造する際の原料として特に有意義に用いることができる。
 なお、本発明の二酸化炭素改質方法において用いられている上述の触媒は、例えば、800℃~1100℃の高温において、炭化水素であるメタンと二酸化炭素を流通させることにより、以下の反応を生じさせる場合の触媒として働く。
  CH4 ⇒ C + 2H2            (1)
  C + CO2 ⇒ 2CO            (2)
  CH4 + CO2 ⇒ 2H2 + 2CO     (3)
 メタン(CH4)の二酸化炭素改質反応においては、式(1)のCH4の分解反応および式(2)のCOを生成する反応が進行し、結果として式(3)により二酸化炭素改質反応が表される。
 従来のアルミナやシリカなどの酸化物を担体とした触媒では、式(1)の反応に比べて式(2)の反応速度が遅れる傾向があり、炭素析出が発生する。
 これに対し、本発明の二酸化炭素改質用触媒は、上述の従来のアルミナやシリカなどの酸化物を担体とした触媒に比べて、式(2)の反応を促進する効果があり、主として触媒金属の機能により生起し、促進される、式(1)の反応によって発生した炭素を、式(2)の反応により除去することが可能になる。その結果、加圧条件下で二酸化炭素改質を行った場合にも、改質工程における炭素析出を抑制して、効率よく二酸化炭素改質を行うことができる。その結果、一酸化炭素と水素とを含む、加圧状態の合成ガスを効率よく生成させることが可能になる。
 また、複合酸化物として、ATiO3,AAl24,AZrO3,AFe24,A329,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)で表される複合酸化物(例えばBaAl24)を含有させるようにした場合、炭酸塩が焼結することを抑制し、炭化水素系の原料ガスと二酸化炭素から一酸化炭素と水素への反応を促進させることが可能になる。
 また、本発明においては、二酸化炭素改質用触媒に用いる触媒金属の種類に特別の制約はなく、種々の金属を用いることが可能であるが、Ni,Rh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moからなる群より選ばれる少なくとも1種を用いることにより、効率よく二酸化炭素改質反応を行わせることが可能になり、本発明をより実効あらしめることができる。
本発明の実施例において二酸化炭素改質試験に用いた試験装置の構成を示す図である。 本発明の実施例で行った二酸化炭素改質試験における、反応管の圧力とメタン転化率との関係を示す図である。
 1     反応管
 2     ヒーター
 3     二酸化炭素改質用触媒
 4     反応管のガス入口
 5     反応管のガス出口
 6     圧力調整器
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。
 本発明の二酸化炭素改質方法において用いられる触媒として、以下の二酸化炭素改質用触媒A,B,Cを作製した。
<二酸化炭素改質用触媒A>
 BaCO3とTiO2を、モル比2.0:1.0となるように秤量し、さらに2重量%の割合となるようにNiOを加えて混合した。
 次に、この混合物にバインダーを加えて直径2~5mmの球状に造粒した。得られた造粒体を空気中にて1100℃、1hの条件で焼成し、Ba2TiO4とNiOの混合体を得た。
 この混合体を、20%CO2、80%N2気流中にて、700℃、1hの条件で焼成することにより、BaCO3,BaTiO3,NiOの混合体であって、BaCO3とBaTiO3のモル比が1.0:1.0である二酸化炭素改質用触媒Aを得た。
 なお、焼成前後の試料重量変化およびXRD測定結果から、混合体はBa2TiO4の全てがBaCO3とBaTiO3へと分解し、結果としてBaCO3とBaTiO3のモル比が1.0:1.0の混合体である触媒が得られていることを確認した。
 また、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。
<二酸化炭素改質用触媒B>
 SrCO3とTiO2を、モル比2.0:1.0となるように秤量し、さらに2重量%の割合となるようにNiOを加えて混合した。
 次に、この混合物にバインダーを加えて直径2~5mmの球状に造粒した。得られた造粒体を空気中にて1100℃、1hの条件で焼成し、Sr2TiO4とNiOの混合体を得た。
 この混合体を、20%CO2、80%N2気流中にて、700℃、1hの条件で焼成することにより、SrCO3,SrTiO3,NiOの混合体であって、SrCO3とSrTiO3のモル比が1.0:1.0である二酸化炭素改質用触媒Bを得た。
 なお、焼成前後の試料重量変化およびXRD測定結果から、混合体はSr2TiO4の全てがSrCO3とSrTiO3へと分解し、結果としてSrCO3とSrTiO3のモル比が1.0:1.0の混合体である触媒が得られていることを確認した。
 また、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。
<二酸化炭素改質用触媒C>
 BaCO3とAl23を、モル比3.0:1.0となるように秤量し、さらに2重量%の割合となるようにNiOを加えて混合した。
 次に、この混合物にバインダーを加えて直径2~5mmの球状に造粒した。得られた造粒体を空気中にて1100℃、1hの条件で焼成し、Ba3Al26とNiOの混合体を得た。
 この混合体を、20%CO2、80%N2気流中にて、700℃、1hの条件で焼成することにより、BaCO3,BaAl24,NiOの混合体である二酸化炭素改質用触媒Cを得た。
 なお、焼成前後の試料重量変化およびXRD測定結果から、混合体はBa3Al26の全てがBaCO3とBaAl24へと分解し、結果としてBaCO3とBaAl24のモル比が2.0:1.0の混合体である触媒が得られていることを確認した。
 また、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。
<比較用の二酸化炭素改質用触媒D>
 比較のため、アルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分を含む複合酸化物と、触媒金属とを含有するが、アルカリ土類金属の炭酸塩をしない二酸化炭素改質用触媒Dを以下のようにして作製した。
 BaCO3とTiO2をモル比1.0:1.0となるように秤量し、さらに2重量%の割合でNiOを加えて混合した。
 次に、この混合物にバインダーを加えて直径2~5mmの球状に造粒した。得られた造粒体を空気中にて1000℃、1hの条件で焼成し、BaTiO3とNiOの混合体である二酸化炭素改質用触媒(比較用の触媒)Dを得た。
 なお、造粒体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Dが、BaTiO3とNiOの混合体であることを確認した。
<市販のメタン改質用触媒E> 
 比較のため、NiOとアルミナを主成分とする市販のメタン改質用触媒Eを準備した。
<比較用の二酸化炭素改質用触媒F>
 さらに、比較のため、アルカリ土類金属の炭酸塩と、触媒金属とを含有するが、アルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分を含む複合酸化物を含有しない二酸化炭素改質用触媒Fを以下のようにして作製した。
 BaCO3にNiOを2重量%となるような割合で加えて混合した。
 次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。この造粒体を空気中において、900℃、1hの条件で焼成し、BaCO3とNiOの混合体である二酸化炭素改質用触媒(比較用の触媒)Fを得た。
 なお、造粒体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Fが、BaCO3とNiOの混合体であることを確認した。
[二酸化炭素改質試験および特性の評価]
 上述のようにして作製した本発明の要件を満たす二酸化炭素改質用触媒A~Cと、比較例の触媒DおよびEを用いて、操作圧力を大気圧(0.101MPa)、3気圧(0.304MPa)、5気圧(0.507MPa)、8気圧(0.811MPa)と異ならせて、炭化水素系の原料ガスの二酸化炭素改質試験を行った。
 なお、二酸化炭素改質試験は図1に示す試験装置を用いて行った。この試験装置は、図1に示すように、外部にヒーター2を備えた内径22mm、長さ300mmのステンレス製の反応管1と、反応管1にガスを供給するためのガス入口4と、反応管1からガスを排出させるためのガス出口5と、反応管内の圧力を調整するための圧力調整器6とを備えている。
<大気圧((0.101MPa)における改質試験>
 図1の試験装置の、反応管1に、上記のようにして製造した二酸化炭素改質用触媒A~E(図1では二酸化炭素改質用触媒を符号3で示している)を10cc充填し、ヒーター2により900℃に加熱し、反応管1の入口4から40NL/hの割合で、メタンと二酸化炭素の混合ガス(CH4:CO2=1:1(容積比))を原料ガスとして8時間流通させた。
 そして、試験中は反応管の出口から得られたガスを分析装置に導入し、ガス濃度を測定することによりCH4およびCO2の転化率を算出した。また試験終了後は二酸化炭素改質用触媒を取り出し、ふるい分けを行うことで析出した炭素を回収した。
<加圧(3気圧、5気圧、8気圧)下における改質試験>
 図1の試験装置を用い、反応管1に、上記のようにして製造した二酸化炭素改質用触媒A~E(図1では二酸化炭素改質用触媒を符号3で示している)を10cc充填し、ヒーター2により900℃に加熱するとともに、圧力調整器6により反応管1内の圧力が所定の圧力(3気圧(0.304MPa)、5気圧(0.507MPa)、8気圧(0.811MPa))となるように調節しつつ、反応管1の入口4から40NL/hの割合で、メタンと二酸化炭素の混合ガス(CH4:CO2=1:1(容積比))を原料ガスとして8時間流通させた。
 そして、試験中は反応管の出口から得られたガスを分析装置に導入し、ガス濃度を測定することによりCH4およびCO2の転化率を算出した。また試験終了後は二酸化炭素改質用触媒を取り出し、ふるい分けを行うことで析出した炭素を回収した。
<結果および評価>
 二酸化炭素改質用触媒A,B,Cを用いた場合における、二酸化炭素改質試験の結果、すなわち、メタン転化率、二酸化炭素転化率、析出炭素量を表1~3に示す。
 なお、メタン転化率は、改質工程に供されたメタン(CH4)が二酸化炭素と反応して、一酸化炭素と水素になった割合である。
 また、CO2転化率は、改質工程に供された二酸化炭素(CO2)のうちの改質に利用された二酸化炭素(CO2)の割合である。
 また、析出炭素量は、試験終了後に二酸化炭素改質用触媒を取り出し、ふるい分けを行って回収した炭素の量である。
 なお、表1は二酸化炭素改質用触媒Aを用いた二酸化炭素改質試験の結果を、また、表2は二酸化炭素改質用触媒Bを用いた二酸化炭素改質試験の結果を、さらに、表3は二酸化炭素改質用触媒Cを用いた二酸化炭素改質試験の結果を示している。
また、図2に反応管の圧力とメタン転化率との関係を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の要件を満たす二酸化炭素改質用触媒A,B,Cを用いて二酸化炭素改質を行った場合、表1~3、および、図2に示すように、大気圧(0.101MPa)で二酸化炭素改質した場合よりも、3気圧(0.304MPa)の加圧条件下で二酸化炭素改質した場合の方が、CH4およびCO2の転化率が高くなることが確認された。メタン転化率が80%以上に向上することの意義は大きいと考えられる。
 また、炭素析出は、本発明の要件を満たす二酸化炭素改質用触媒A,B,Cを用いた場合には、大気圧(0.101MPa)から8気圧(0.811MPa)までいずれの圧力条件下においても認められないことが確認された。
 一方、比較例の二酸化炭素改質用触媒Dの場合、大気圧における改質試験で、5gを超える炭素の析出が認められ、加圧下ではさらに炭素の析出量が著しく多くなり好ましくないことが確認された。
 また、比較例の二酸化炭素改質用触媒Fを用いた場合、大気圧における改質試験では炭素の析出は認められなかったものの、CH4およびCO2の転化率がいずれも数%と低く、触媒A~Cを用いた場合に比べて、著しく劣っていた。よって、加圧下での改質試験は行わなかった。
 触媒Fと触媒Dの比較から、アルカリ土類金属の炭酸塩は、上記の式(2)の反応を促進する触媒機能を有すると考えられる。
 触媒Fの性能が触媒A~Cより劣っているのは、アルカリ土類金属の炭酸塩のみでは反応中に焼結が進み、Niの有する触媒機能、すなわち、上記式(1)の反応を促進する機能を十分に発揮させることができなかったことによるものと考えられる。
 これに対し、触媒A~Cでは、アルカリ土類金属とTiまたはAlを含む複合酸化物がアルカリ土類金属の炭酸塩の焼結を防ぐ機能を果たすため、炭化水素系の原料ガスと二酸化炭素から一酸化炭素と水素を生成させる二酸化炭素改質反応を促進させることが可能になる。
 また、本願発明者等は、アルカリ土類金属の炭酸塩の焼結を防ぐ機能を有する複合酸化物として、TiまたはAlを含むものの他に、Zr、Fe,WおよびMoの少なくともいずれかを含むもの、具体的には、AZrO3,AFe24,A329,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)があることを確認している。アルカリ土類金属の炭酸塩と、これらの複合酸化物の混合物は、触媒A~Cの場合と同様に、前駆体である別の複合酸化物(具体的には、A2ZrO4,A2Fe25,A2WO5,A3WO6,A2MoO5)に炭酸ガスを吸収させることによって得ることができる。
 また、市販のメタン改質用触媒Eを用いた場合、大気圧での試験開始から1h程で析出した炭素により反応管が閉塞したため試験を停止した。また、大気圧でも炭素の析出が著しかったことから、加圧下での試験は行わなかった。
 以上の結果から、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属と、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種の成分を含む複合酸化物とを含有する二酸化炭素改質用触媒を用いることにより、加圧下で、炭素の析出を抑制、防止しつつ、二酸化炭素改質を行って、高い反応転化率を実現できることが確認された。
 また、二酸化炭素改質により得られる一酸化炭素と水素を含む合成ガスの用途として考えられる、DME(ジメチルエーテル)の合成や、OXO合成プロセス(オキソ法による合成プロセス)を用いた液体燃料やアルコールの製造工程においては、一般に合成圧力が高いほど転化率が増加することが知られているが、本発明によれば、加圧状態の合成ガスを得ることが可能になるため、本発明を実施することにより得られる一酸化炭素および水素を含む合成ガスは、それらの用途に特に有意義に用いることができる。
 なお、本発明は上記の実施例に限定されるものではなく、二酸化炭素改質工程における操作条件をはじめ、二酸化炭素改質用触媒の組成、例えば、二酸化炭素改質用触媒を構成するアルカリ土類金属、複合酸化物、触媒金属の種類や含有割合などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
 上述のように、本発明によれば、加圧下で、炭素の析出を抑制、防止しつつ、二酸化炭素改質を行って、高い反応転化率を実現することができる。
 したがって、本発明は、炭化水素系の原料ガスから二酸化炭素改質により水素および一酸化炭素を含む合成ガスを製造する技術、特に製造工程における反応プロセスが加圧下で行われ、加圧状態の合成ガスが供給されることが望ましい、DMEや、オキソ法を用いて製造される液体燃料などの物質を製造する技術分野に好適に用いることができる。

Claims (3)

  1.  炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを生成させる二酸化炭素改質方法であって、
     Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属と、Ca,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種の成分を含む複合酸化物とを含有する二酸化炭素改質用触媒を用い、
     3気圧(0.304MPa)以上の圧力条件下で炭化水素系の原料ガスの二酸化炭素改質を行うこと
     を特徴とする二酸化炭素改質方法。
  2.  前記複合酸化物が、ATiO3,AAl24,AZrO3,AFe24,A329,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)であることを特徴とする、請求項1記載の二酸化炭素改質方法。
  3.  前記触媒金属が、Ni,Rh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moからなる群より選ばれる少なくとも1種であることを特徴とする請求項1または2記載の二酸化炭素改質方法。
PCT/JP2009/060426 2008-07-04 2009-06-08 二酸化炭素改質方法 WO2010001690A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980126050.1A CN102076604B (zh) 2008-07-04 2009-06-08 二氧化碳重整方法
EP09773268.9A EP2301889B1 (en) 2008-07-04 2009-06-08 Carbon dioxide reforming process
JP2010518971A JP5141765B2 (ja) 2008-07-04 2009-06-08 二酸化炭素改質方法
US12/971,552 US8518301B2 (en) 2008-07-04 2010-12-17 Carbon dioxide reforming process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-175500 2008-07-04
JP2008175500 2008-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/971,552 Continuation-In-Part US8518301B2 (en) 2008-07-04 2010-12-17 Carbon dioxide reforming process

Publications (1)

Publication Number Publication Date
WO2010001690A1 true WO2010001690A1 (ja) 2010-01-07

Family

ID=41465793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060426 WO2010001690A1 (ja) 2008-07-04 2009-06-08 二酸化炭素改質方法

Country Status (5)

Country Link
US (1) US8518301B2 (ja)
EP (1) EP2301889B1 (ja)
JP (1) JP5141765B2 (ja)
CN (1) CN102076604B (ja)
WO (1) WO2010001690A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021125A (ja) * 2010-07-16 2012-02-02 Tokyo Gas Co Ltd ガス化ガス中タールの分解除去システム
WO2013187436A1 (ja) * 2012-06-13 2013-12-19 株式会社村田製作所 改質用触媒、その製造方法、および合成ガスの製造方法
WO2014189006A1 (ja) * 2013-05-21 2014-11-27 株式会社村田製作所 炭化水素系ガスの改質用触媒およびそれを用いた炭化水素系ガスの改質方法
JP2017024957A (ja) * 2015-07-27 2017-02-02 Jfeスチール株式会社 炭化水素の二酸化炭素改質方法、炭化水素の二酸化炭素改質装置ならびに一酸化炭素および水素の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106642A1 (de) 2011-07-05 2013-01-10 Linde Ag Verfahren zur Synthesegaserzeugung
CN105073952B (zh) 2012-12-18 2017-05-24 巴斯夫欧洲公司 用于利用高炉气、缔合气体和/或生物气体的方法
CN104918882B (zh) 2012-12-21 2019-03-01 巴斯夫欧洲公司 平行制备氢气、一氧化碳和含碳产物的方法
CN104437603A (zh) * 2014-11-12 2015-03-25 沈阳化工大学 一种二氧化碳直接制备二甲醚催化剂的方法
CN105964265B (zh) * 2016-06-27 2018-07-03 陕西科技大学 一种磁铅石型ch4-co2重整催化剂的制备方法
CN108554411B (zh) * 2018-05-10 2020-02-21 陕西师范大学 加压二氧化碳重整甲烷制合成气的复合载体负载镍基催化剂
US11247897B2 (en) * 2019-12-23 2022-02-15 Saudi Arabian Oil Company Base oil production via dry reforming
GB202005728D0 (en) * 2020-04-20 2020-06-03 Univ Oxford Innovation Ltd Process and catalyst
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression
CN115180593B (zh) * 2022-06-17 2024-01-19 北京化工大学 一种光驱动的碳酸盐炼制共热耦合烃类重整制高附加值产品的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231204A (ja) 1994-12-27 1996-09-10 Sekiyu Sangyo Kasseika Center 二酸化炭素改質反応による水素及び一酸化炭素の製造法
JPH09168740A (ja) 1995-12-20 1997-06-30 Sekiyu Sangyo Kasseika Center 二酸化炭素改質化触媒及びこれを用いた改質化法
JP2002059006A (ja) * 2000-08-23 2002-02-26 National Institute Of Advanced Industrial & Technology 水素の製造用触媒及び水素の製造方法
JP2003505238A (ja) * 1999-07-28 2003-02-12 マルコニ キャスウェル リミテッド 炭化水素燃料処理装置用触媒
JP2005046808A (ja) * 2003-07-31 2005-02-24 Seimi Chem Co Ltd 水素生成触媒
JP2006061760A (ja) * 2004-08-24 2006-03-09 Toda Kogyo Corp 炭化水素分解用触媒及び該炭化水素分解用触媒を用いた水素の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522024A (en) * 1967-06-22 1970-07-28 Phillips Petroleum Co Hydrocarbon reforming
FR2679217B1 (fr) * 1991-07-18 1994-04-01 Institut Francais Petrole Procede et dispositif pour la fabrication de gaz de synthese et application.
CN1552518A (zh) * 2003-06-02 2004-12-08 浙江大学 甲烷二氧化碳重整及甲烷部分氧化耦合催化剂及其制备方法
JP4759242B2 (ja) 2003-12-18 2011-08-31 千代田化工建設株式会社 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
US7767619B2 (en) * 2004-07-09 2010-08-03 Sud-Chemie Inc. Promoted calcium-aluminate supported catalysts for synthesis gas generation
WO2006137211A1 (ja) * 2005-06-24 2006-12-28 Murata Manufacturing Co., Ltd. 燃料電池用改質装置
CN101479215B (zh) * 2006-06-23 2013-05-29 埃克森美孚化学专利公司 从甲烷生产芳族烃与合成气
CN101583421A (zh) * 2007-01-09 2009-11-18 株式会社村田制作所 二氧化碳重整用催化剂及其制造方法
CN102802789B (zh) * 2009-06-12 2014-10-15 株式会社村田制作所 烃类气体重整用催化剂、其制造方法及合成气体的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231204A (ja) 1994-12-27 1996-09-10 Sekiyu Sangyo Kasseika Center 二酸化炭素改質反応による水素及び一酸化炭素の製造法
JPH09168740A (ja) 1995-12-20 1997-06-30 Sekiyu Sangyo Kasseika Center 二酸化炭素改質化触媒及びこれを用いた改質化法
JP2003505238A (ja) * 1999-07-28 2003-02-12 マルコニ キャスウェル リミテッド 炭化水素燃料処理装置用触媒
JP2002059006A (ja) * 2000-08-23 2002-02-26 National Institute Of Advanced Industrial & Technology 水素の製造用触媒及び水素の製造方法
JP2005046808A (ja) * 2003-07-31 2005-02-24 Seimi Chem Co Ltd 水素生成触媒
JP2006061760A (ja) * 2004-08-24 2006-03-09 Toda Kogyo Corp 炭化水素分解用触媒及び該炭化水素分解用触媒を用いた水素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2301889A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021125A (ja) * 2010-07-16 2012-02-02 Tokyo Gas Co Ltd ガス化ガス中タールの分解除去システム
WO2013187436A1 (ja) * 2012-06-13 2013-12-19 株式会社村田製作所 改質用触媒、その製造方法、および合成ガスの製造方法
WO2014189006A1 (ja) * 2013-05-21 2014-11-27 株式会社村田製作所 炭化水素系ガスの改質用触媒およびそれを用いた炭化水素系ガスの改質方法
JP2017024957A (ja) * 2015-07-27 2017-02-02 Jfeスチール株式会社 炭化水素の二酸化炭素改質方法、炭化水素の二酸化炭素改質装置ならびに一酸化炭素および水素の製造方法

Also Published As

Publication number Publication date
JP5141765B2 (ja) 2013-02-13
EP2301889A4 (en) 2011-10-26
CN102076604A (zh) 2011-05-25
US20110089378A1 (en) 2011-04-21
JPWO2010001690A1 (ja) 2011-12-15
US8518301B2 (en) 2013-08-27
EP2301889A1 (en) 2011-03-30
CN102076604B (zh) 2014-11-12
EP2301889B1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5141765B2 (ja) 二酸化炭素改質方法
JP4420127B2 (ja) 二酸化炭素改質用触媒およびその製造方法
JP5327323B2 (ja) 炭化水素系ガス改質用触媒、その製造方法、および合成ガスの製造方法
EP2476484B1 (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
JP5402683B2 (ja) 逆シフト反応用触媒、その製造方法、および合成ガスの製造方法
EP3804850B1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
JP5531462B2 (ja) 二酸化炭素改質用触媒、その製造方法、二酸化炭素改質用触媒の担体、改質器、および合成ガスの製造方法
JP2024500507A (ja) メタン改質用触媒及びその製造方法
JP7318734B2 (ja) 炭化水素改質触媒および炭化水素改質装置
EP3988206A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming device
EP4070885A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming device
JP2011183346A (ja) 水素製造用触媒、その製造方法および水素製造方法
JP5242086B2 (ja) 水素製造エタノール改質触媒及び水素製造方法
JP2015229125A (ja) 炭化水素改質触媒の前処理方法、炭化水素改質触媒、および炭化水素改質方法
JP2014195782A (ja) 水素製造用触媒及び水素製造用触媒の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126050.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518971

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009773268

Country of ref document: EP