WO2010000169A1 - 硅片线切割方法及其装置 - Google Patents

硅片线切割方法及其装置 Download PDF

Info

Publication number
WO2010000169A1
WO2010000169A1 PCT/CN2009/072132 CN2009072132W WO2010000169A1 WO 2010000169 A1 WO2010000169 A1 WO 2010000169A1 CN 2009072132 W CN2009072132 W CN 2009072132W WO 2010000169 A1 WO2010000169 A1 WO 2010000169A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wheel
slot
steel wire
cutting
wire
Prior art date
Application number
PCT/CN2009/072132
Other languages
English (en)
French (fr)
Inventor
周俭
Original Assignee
内蒙古晟纳吉光伏材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古晟纳吉光伏材料有限公司 filed Critical 内蒙古晟纳吉光伏材料有限公司
Publication of WO2010000169A1 publication Critical patent/WO2010000169A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D57/00Sawing machines or sawing devices not covered by one of the preceding groups B23D45/00 - B23D55/00
    • B23D57/003Sawing machines or sawing devices working with saw wires, characterised only by constructional features of particular parts
    • B23D57/0053Sawing machines or sawing devices working with saw wires, characterised only by constructional features of particular parts of drives for saw wires; of wheel mountings; of wheels

Definitions

  • the present invention relates to a silicon single crystal rod slicing process, and more particularly to a silicon wafer cutting method and apparatus for processing silicon chips using a wire cutting system. Background technique
  • the cutting edge is embedded on the inner circumference of the circular metal thin substrate, and the outer circumference of the blade is fixed on the rotating shaft.
  • the outer cylindrical edge slicer used in the early days, it can use a thinner blade (according to the diameter of the required machining, the appropriate cutter head and blade are used.
  • a 200 mm diameter silicon single crystal rod is required.
  • the 34in cutter head has a blade thickness of about 380 ⁇ , and the metal substrate thickness of the knife is less than 200 ⁇ ), so that a thinner wafer can be cut with a smaller cutting cost, a smaller machining allowance and a higher precision.
  • Wire cutting technology refers to the use of a steel wire (typically 120 ⁇ ) on a wire-cutting device, which is formed by winding 2 or 4 guide wheels in sequence (the wire is engraved with precision wire grooves).
  • the mortar nozzles on both sides of the single crystal rod spray the mortar cutting fluid on the "steel wire mesh", and the rotation of the guide wheel drives the "steel wire mesh” to bring the mortar into the single crystal rod, and the steel wire presses the grinding sand against the single crystal rod. Grinding is performed on the surface, and the single crystal rod is moved down slowly at the same time and pushed through the "wire mesh". After several hours of grinding and cutting, the silicon single crystal rod can be cut once. A number of silicon wafers of the same thickness.
  • the wire cutting device mainly comprises a guide wheel 1 engraved with a wire groove, a wire mesh 2 wound on the guide wheel 1, a table 3 carrying a silicon single crystal rod 5, and a mortar nozzle. 4.
  • the wire cutting technology is used for slicing, which has high production efficiency, small slit loss, small surface damage and high surface processing precision (warp degree can reach Warp ⁇ l(Vm), so it is more suitable for slicing of large diameter silicon single crystal.
  • a silicon single crystal having a diameter of 200 mm is used, and the thickness of the slice is 800 ⁇ m, and the film is about 13.4 pieces per kilogram of the single crystal.
  • the cutting cost is about $ 1.51 per piece, and the output of the wire cutter is about 5 of the inner circular cutting machine. More than double, the cutting operation cost of the wire cutting machine will be less than 20% of the operating cost of the inner circular cutting machine.
  • the wire grooves engraved on the guide wheel of the wire cutting system are evenly distributed, which determines that the wire mesh wound on the guide wheel is evenly distributed, and the spacing of the wires is consistent.
  • the diameter of the steel wire is gradually reduced due to the continuous wear of the steel wire.
  • the diameter of the steel wire is reduced by at least 20 ⁇ m.
  • the loss of the slit becomes smaller, and the less cut portion is added to the thickness of the slice.
  • the thickness of the slice is inevitably gradually decreased as the diameter of the wire becomes smaller.
  • One object of the present invention is to provide an improved silicon wafer wire cutting method which reduces the diameter of a steel wire by a slot pitch of the guide wheel to ensure that the silicon single crystal rod is cut into several thicknesses at a time.
  • the same silicon wafers increase the number of slices and increase economic efficiency.
  • Another object of the present invention is to provide a silicon wafer wire cutting device which implements the above-described silicon wafer wire cutting method.
  • the basic idea of adopting the technical solution of the present invention is: a silicon wire cutting method, which is formed by sequentially winding two or four wire guide grooves around a steel wire to form a steel wire mesh, for silicon
  • the single crystal rod is subjected to grinding processing, and is characterized in that: by using the principle that the diameter of the steel wire is reduced during the cutting process, the steel wire mesh wound on the guide wheel is started from the steel wire winding guide wheel, The method of gradually encrypting in sequence, grinding the silicon single crystal rod, so that the gradually encrypting amount of the steel wire mesh compensates for the increase of the thickness of the cut silicon wafer due to the diameter reduction after the steel wire is worn, thereby the silicon
  • the single crystal rod is cut into hundreds of silicon wafers of exactly the same thickness at one time, and the number of the cut silicon wafers is correspondingly increased under the same conditions as the
  • a device for cutting a silicon wafer comprising a wire guide groove, a wire mesh wound on the guide wheel, wherein: the slot pitch on the guide wheel is unequal slot pitch
  • the unequal slot pitch is started from the wire winding guide wheel and decreases in the longitudinal direction of the guide wheel.
  • the slot pitch on the guide wheel is not equal, and is along the length direction of the guide wheel, starting from the first slot of the steel wire wound around the guide wheel, and the slot pitch of the adjacent two slots
  • the reduced groove spacing is adapted to the diameter of the steel wire after it has been worn by its previous groove.
  • the slot pitches on the guide wheels are not equal, or may be unequal slot slots along the length of the guide wheels, and the number of segments is two or more segments, and each segment has several openings. Slots with equal slot spacing, and phase The slot pitch on the adjacent two sections is gradually reduced from the first section of the steel wire wound around the guide wheel, and the reduced slot pitch of each section is adapted to the diameter of the steel wire after the wear of the previous section. .
  • the slot pitch on the guide wheel is not equal, and is a slot pitch which is unequal in the length along the length of the guide wheel.
  • the slot pitch on the adjacent two segments is guided by the steel wire.
  • the first segment of the wheel begins to decrease in turn, with a number of slots with equal slot pitches on each segment.
  • the slot pitch on the guide wheel is not equal, and is a slot pitch which is unequal in 8 segments along the length of the guide wheel.
  • the slot pitch on the adjacent two segments is guided by the steel wire.
  • the first segment on the wheel (1) begins to decrease in turn, with a number of slots with equal slot pitches on each segment.
  • the present invention has the following advantageous effects as compared with the prior art.
  • the silicon wafer wire cutting method and device thereof have the method of gradually encrypting the steel wire mesh wound on the guide wheel, and changing the wire groove on the guide wheel to an unequal slot pitch, the slotting The groove distance is sequentially decreased along the length of the guide wheel, so that under the condition that the length of the guide groove is the same, the number of the groove is increased due to the reduction of the slot pitch, and the wire mesh wound on the guide wheel Density also increases, and the use of this encrypted wire mesh to perform wire cutting clearly increases the number of wafers cut compared to the prior art, increasing yield while increasing economics.
  • the gradually decreasing slot pitch is adapted to the amount of wear of the steel wire, that is, the amount of encryption of the wire mesh is compensated for the diameter reduction after the steel wire is worn.
  • the increase in the thickness of the cut silicon wafer not only increases the number of slices, increases the economic efficiency, but also improves the quality of the slice, so that the silicon single crystal rod is once cut into several wafers of exactly the same thickness.
  • the groove pitch is reduced in three stages in turn due to the improvement of the wafer cutting groove distance of the guide wheel, which can be cut more than once per machine.
  • the film, calculated for each piece at 58 yuan, has 1080 chips per month, which can increase the total revenue by 62,640 yuan.
  • the guide wheel groove pitch is reduced in 8 segments in turn.
  • One machine can cut 26 pieces per machine at a time, each piece is calculated at 58 yuan, more per month.
  • the number of silicon wafers is 28,080, which can increase the total revenue by 1,628,640.
  • the silicon wafer wire cutting method and the device thereof improve the slot pitch of the guide wheel from the original equal slot pitch to the unequal slot pitch, and sequentially decrease along the length of the guide wheel to make the slot Increasing, correspondingly encrypting the wire mesh wound around the guide wheel, using the wire mesh net encryption method and the device thereof, performing wire cutting on the silicon single crystal rod, significantly increasing the number of slices and compared with the prior art Quality and economic benefits are very significant.
  • FIG. 3 is a schematic view of a prior art silicon wafer cutting device after cutting
  • Figure 4 is a schematic view showing the improvement of the groove pitch of the silicon wafer cutting guide wheel according to the embodiment of the present invention.
  • Fig. 5 is a view showing the improvement of the groove pitch of the wafer cutting guide wheel in the embodiment 2 of the present invention. detailed description
  • a silicon wafer wire cutting method of the present invention is formed by sequentially winding two or four wire guide grooves 1 through a steel wire.
  • the steel wire mesh 2 is used for grinding the silicon single crystal rod 5.
  • the main feature of the present invention is the use of the principle that the steel wire is worn during the cutting process and the diameter is reduced, and the steel wire wound on the guide wheel 1 is applied.
  • the net 2, starting from the steel wire winding guide wheel, is gradually engraved in sequence, and the silicon single crystal rod 5 is ground, so that the gradually encrypted amount of the wire net 2 is compensated for the diameter reduction after the steel wire is worn.
  • the thickness of the silicon wafer to be cut is increased, so that the silicon single crystal rod is once cut into hundreds of silicon wafers having the same thickness, and the cutting is increased correspondingly under the same length as the existing guide wheel.
  • the number of silicon wafers is provided by sequentially winding two or four wire guide grooves 1 through a steel wire.
  • the steel wire mesh 2 is used for grinding the silicon single crystal rod 5.
  • the device for implementing the above silicon wafer wire cutting method is based on the device shown in Figs. 2 and 3, and the guide wheel is mainly modified to adapt to the requirements of the wire mesh network encryption.
  • the device mainly comprises a guide wheel 1 for opening a wire slot, and a wire mesh 2 wound around the guide wheel 1.
  • the slotted groove on the guide wheel 1 is equidistant from the original.
  • the main feature of the present invention is that the guide wheel is The slot pitch on 1 is changed to an unequal slot pitch, which is started from the wire winding guide wheel and sequentially decreases along the length of the guide wheel, so that the guide is wound around the guide
  • the wire mesh on the wheel trough is gradually encrypted.
  • the unequal slot pitch on the guide wheel 1 is along the length of the guide wheel, starting from the first slot of the steel wire wound around the guide wheel 1, and the adjacent two slots
  • the slot pitch is sequentially reduced, and the reduced slot pitch is adapted to the diameter of the steel wire after its previous slot is worn.
  • the unequal slot pitch on the guide wheel 1 is an unequal slot pitch along the length of the guide wheel, and the number of segments is two or more segments, in each segment. There are several slotes with the same slot pitch, and the slot slots on the adjacent two segments are successively reduced from the first segment of the steel wire wound around the guide wheel 1, and the slot pitch of each segment is reduced. It is compatible with the diameter of the steel wire after its previous section is worn.
  • This second embodiment is a preferred embodiment of the invention.
  • the unequal slot slots are set in sections on the guide wheel, and the following two specific Embodiments, to further illustrate the improvement and beneficial effects on the pitch of the guide wheel in the silicon wire cutting device.
  • the slot pitch on the guide wheel 1 is not equal, and is a slot pitch which is unequal in three sections along the length direction of the guide wheel, and the slot pitch on the adjacent two sections.
  • the first section starting from the steel wire around the guide wheel 1 is successively reduced, and each of the segments has a plurality of slots with equal slot pitches.
  • the slot length L1 is divided into three unequal slot slots, that is, the slot pitch of the first segment A > the slot of the second segment B Groove Distance > The slot pitch of the third segment C.
  • the slotted slots on the first paragraph A, the second paragraph B, and the third paragraph C are equal.
  • the slotting method is divided into three sections, the slot distances of the slots on each section are equal, and the slot spacing of the first section A is 0.335mm.
  • the distance between the groove of the second section B is 0.333 mm, and the distance of the slot of the third section C is 0.33 mm. Since the slot pitch is reduced in three steps, the number of bus slots is increased to 932, and the number of slot slots is increased by 6, so that the number of slices is increased by six.
  • the slice thickness deviation is correspondingly reduced.
  • the number of wafers cut once and one more is more than 6 pieces of silicon wafers, and the additional one adds 58 yuan, which is an increase of 348 yuan per knife. 31,320 yuan.
  • the slot pitch on the guide wheel 1 is not equal, and is a slot pitch which is unequal in 8 segments along the length of the guide wheel, and a slot pitch on the adjacent two segments.
  • the first section of the steel wire wound around the guide wheel 1 is sequentially reduced, and each of the segments has a plurality of slots with the same slot pitch.
  • the slotting method is divided into 8 sections, the slot distance of each slot is equal, the 1st section A slot slot distance 0.335mm, the second slot B slot pitch is 0.334mm, the third slot C slot pitch is 0.333mm, the fourth segment D slot slot is 0.332mm, the fifth segment E slot slot is 0.331 Mm, the slot pitch of the sixth segment F is 0.33 mm, the slot pitch of the seventh segment G is 0.329 mm, and the slot pitch of the eighth segment H is 0.328 mm. Since the slot slot distance is reduced in 8 segments, the number of bus slots is increased to 2475, and the number of slot slots is increased by 26, thus increasing the number of slices by 26 pieces. The slice thickness deviation is correspondingly reduced.
  • the number of wafers cut once and one time is more than 26 pieces of silicon wafers, and the additional one adds 58 yuan, which is an increase of 1508 yuan per knife.
  • the monthly income can increase by at least 135720. yuan.
  • the number of wafers cut per month is 28,080, and the total monthly revenue is 1,628,640.
  • the above-described silicon wafer cutting method and apparatus thereof the structure of the slotted groove of the guide wheel, is improved, and the diameter of the steel wire is reduced during the cutting process, and the diameter is reduced by the prior art.
  • the evenly spaced equidistant slot pitch is changed to an unevenly distributed unequal slot pitch, which in turn decreases in the longitudinal direction of the guide wheel, causing the slot to increase, correspondingly winding
  • the wire mesh network on the guide wheel is encrypted, and the method and device for gradually encrypting the wire mesh are used to cut the silicon single crystal rod, thereby effectively increasing the number and quality of the slice, and the economic benefit is remarkably improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

硅片线切割方法及其装置
技术领域
本发明涉及一种硅单晶棒切片工艺,尤其是采用线切割系统来加工硅切片的硅片 线切割方法及其装置。 背景技术
目前, 对小直径硅单晶棒大多仍采用内圆切片机进行切割加工, 它的刀刃是镶嵌 在圆形金属薄基片的内圆周上, 刀片的外圆固定在旋转轴上。 它与早期采用的外圆 刀刃式切片机相比, 它可以使用更加薄的刀刃 (视所需加工的直径大小不同而选用 相适应的刀头和刀片,例如切割直径 200mm硅单晶棒需使用 34in刀头,其刀刃厚度 约为 380μηι,刀的金属基片厚度不到 200μηι) , 故可采用比较小的切割耗量、 较小的 加工余量和较高的精度切出更薄的晶片。
随着 IC工艺、 技术的不断发展, 为了提高硅切片的加工精度和减少切口材料的 损耗及提高生产效率, 目前, 在直径大于 100mm的硅切片加工中, 尤其是在对直径 大于 200mm以上的硅单晶棒切片加工中, 已广泛采用线切割系统来加工硅切片。
线切割技术是指在线切割装置上采用通过一根钢线(典型的为 120μηι), 顺序缠 绕 2或 4个导轮而形成的 "钢丝线网" (导轮上刻有精密的线槽) , 单晶棒两侧的 砂浆喷嘴将砂浆切削液喷在 "钢丝线网"上, 导轮的旋转驱动 "钢丝线网"将砂浆 带到单晶棒里, 钢丝将研磨砂紧压在单晶棒的表面上进行研磨式的切割, 单晶棒同 时慢速地往下运动被推过 "钢丝线网" , 经过几个小时的磨削切割加工, 可使这根 硅单晶棒一刀一次被切割成许多相同厚度的硅片。
如图 1、 图 2和图 3所示, 线切割装置主要包括刻有线槽的导轮 1, 缠绕在导轮 1上的钢丝线网 2, 承载硅单晶棒 5的工作台 3, 砂浆喷嘴 4。
采用线切割技术进行切片加工其生产效率高、切缝损耗小、表面损伤小、表面加 工精度高 (翘曲度可达到 Warp< l(Vm),故更适合大直径硅单晶的切片加工。
以加工直径 200mm硅单晶为例, 切片厚度为 800μηι, 每公斤单晶出片约为 13.4 片, 其切割成本每片约为 $ 1. 51美元, 线切割机的产量约是内圆切割机的 5倍以上, 线切割机的切割运行成本将可低于内圆切割机运行成本的 20%以上。 但是, 上述线切割方法中, 线切割系统的所述导轮上刻有的线槽是均匀分布的, 这就决定了该导轮上所缠绕的钢丝线网也是均匀分布的, 钢丝的间距是固定不变的。 这样, 在硅片线切割过程中, 由于钢线在不断的磨损, 使钢线的直径逐渐变小, 一 般一次一刀切割完成一根硅单晶棒后, 钢线直径至少要减少 20μηι。 由于钢线直径的 减小, 其切缝的损耗变小, 少切的部分就加在了切片的厚度上, 相对于切片来说, 切片的厚度也就必然随钢丝直径的逐渐变小而逐渐增加, 因切缝变小使该节省的材 料并未得到利用, 而是浪费到了切片的厚度上, 并致使一刀一次切割成的每片切片 的厚度不相同, 而存在较大的厚度偏差。
因此, 在切割硅片的加工方法和装置上需要改进, 有鉴于此, 特提出本发明。 发明内容
本发明的一个目的是, 提供一种改进的硅片线切割方法, 将钢线减少的直径, 通 过导轮开槽槽距变小, 确保将硅单晶棒一刀一次被切割成数个厚度完全相同的硅片, 提高切片数量, 增加经济效益。
本发明的另一个目的是, 提供一种实施上述硅片线切割方法的硅片线切割装置。 为解决上述技术问题, 本发明采用技术方案的基本构思是: 一种硅片线切割方 法, 通过一根钢线来回顺序缠绕 2或 4个开有线槽的导轮而形成钢丝线网, 对硅单 晶棒进行磨削加工, 其特征在于: 利用钢丝在切割过程中的磨损而直径变小的原理, 对所述缠绕在导轮上的钢丝线网, 采用自钢线缠绕导轮开始, 按顺序逐渐加密的方 法, 对硅单晶棒进行磨削加工, 使该钢丝线网的逐渐加密量补偿因钢线磨损后的直 径减小而导致被切割硅片厚度的增加量, 从而将该硅单晶棒一刀一次切割成数百个 厚度完全相同的硅片, 在与现有导轮开槽长度相同的条件下, 相应地增加切割硅片 的数量。
一种硅片线切割方法的装置, 包括开有线槽的导轮, 缠绕在导轮上的钢丝线网, 其特征在于: 所述导轮上的开槽槽距为不相等的开槽槽距, 该不相等的开槽槽距是 自钢线缠绕导轮开始, 沿导轮的长度方向上依次减小。
其中, 所述导轮上的开槽槽距不相等, 是沿导轮长度方向上, 自钢线绕在导轮上 的第一个线槽开始, 相邻两个线槽的开槽槽距依次减小, 该减小的槽距与钢线经其 前一线槽磨损后的直径大小相适应。
所述导轮上的开槽槽距不相等, 也可以是沿导轮长度方向上, 分段设置不相等的 开槽槽距, 其分段数量为两段以上, 在每一段上有数个开槽槽距相等的线槽, 而相 邻两段上的开槽槽距, 自钢线绕在导轮上的第一段开始依次减小, 每段减小的开槽 槽距与钢线经其前一段磨损后的直径大小相适应。
所述导轮上的开槽槽距不相等, 是沿导轮长度方向上, 分 3 段不相等的开槽槽 距, 在相邻两段上的开槽槽距, 自钢线绕在导轮上的第一段开始依次减小, 在每一 段上有数个开槽槽距相等的线槽。
所述导轮上的开槽槽距不相等,是沿导轮长度方向上,分 8段不相等的开槽槽距, 在相邻两段上的开槽槽距, 自钢线绕在导轮 (1 ) 上的第 1段开始依次减小, 在每一 段上有数个开槽槽距相等的线槽。
采用上述技术方案后, 本发明与现有技术相比具有以下有益效果。
本发明一种硅片线切割方法及其装置,由于对缠绕在导轮上的钢丝线网采用逐渐 加密的方法, 将导轮上的线槽改为不相等的开槽槽距, 该开槽槽距沿导轮长度方向 上依次减小, 使在导轮开槽长度相同的条件下, 由于开槽槽距的减小, 便增加了线 槽的数量, 缠绕在导轮上的钢丝线网密度也随之而增加, 采用这种加密的钢丝线网 实施线切割, 显然比现有技术增加了切割硅片的数量, 在提高产量的同时也增加了 经济效益。 由于对导轮上开槽槽距的改进, 使逐渐减小的槽距与钢线的磨损量相适 应, 也就是说使钢丝线网的加密量补偿了因钢线磨损后的直径减小而导致被切割硅 片厚度的增加量, 不但可以提高切片数量, 增加经济效益, 还可提高切片质量, 使 硅单晶棒一刀一次被切割成数个厚度完全相同的硅片。
例如, 使用本申请人现有的 2台瑞士 MEYER BURGER DS265型线切割机, 由 于导轮的硅片切割槽距改进后, 槽距分 3段依次减小, 一刀一次每台机器可多切 6 片, 每片按 58元计算, 每月多切硅片数为 1080片, 可增加总收益 62640元。
使用本申请人现有的 12台瑞士 MEYER BURGER DS264型线切割机, 导轮槽距 分 8段依次减小, 一刀一次每台机器可多切 26片, 每片按 58元计算, 每月多切硅 片数为 28080片, 可增加总收益 1628640元。
总之, 本发明硅片线切割方法及其装置, 对导轮开槽槽距的改进, 由原来的等槽 距改为不相等的槽距, 沿导轮长度方向上依次减小, 使线槽增加, 相应地使绕在导 轮上的钢丝线网加密, 采用这种钢丝线网加密的方法及其装置, 对硅单晶棒进行线 切割, 与现有技术相比明显提高了切片数量和质量, 经济效益十分显著。 附图说明
图 1是现有技术钢丝网切割硅单晶棒示意图; 图 2是现有技术硅片切割装置切割前示意图;
图 3是现有技术硅片切割装置切割后示意图;
图 4是本发明实施例 1硅片切割导轮槽距改进的示意图;
图 5是本发明实施例 2硅片切割导轮槽距改进的示意图。 具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的描述。
如图 1、 图 2、 图 3、 图 4和图 5所示, 本发明一种硅片线切割方法, 是通过一 根钢线来回顺序缠绕 2或 4个开有线槽的导轮 1而形成钢丝线网 2,对硅单晶棒 5进 行磨削加工, 本发明的主要特点是利用钢线在切割过程中的磨损而直径变小的原理, 对所述缠绕在导轮 1上的钢丝线网 2, 采用自钢线缠绕导轮开始, 按顺序逐渐加密的 方法, 对硅单晶棒 5进行磨削加工, 使该钢丝线网 2的逐渐加密量补偿因钢线磨损 后的直径减小而导致被切割硅片厚度的增加量, 从而将该硅单晶棒一刀一次切割成 数百个厚度完全相同的硅片, 在与现有导轮开槽长度相同的条件下, 相应地增加切 割硅片的数量。
本发明一种实施上述硅片线切割方法的装置,是在如图 2和图 3所示装置的基础 上, 主要对其导轮进行了改进, 使之适应钢丝线网加密的要求。 该装置主要包括开 有线槽的导轮 1, 缠绕在导轮 1上的钢丝线网 2, 该导轮 1上开槽槽距原来是等距离 的, 本发明的主要特征是将所述导轮 1 上的开槽槽距改为不相等的开槽槽距, 该不 相等的开槽槽距是自钢丝缠绕导轮开始, 沿导轮的长度方向上依次减小, 从而使缠 绕在该导轮线槽上的钢丝线网呈逐渐加密状。 对导轮上不相等的开槽槽距有以下两 种实施方式:
第一种实施方式, 所述导轮 1上不相等的开槽槽距, 是沿导轮长度方向上, 自钢 线绕在导轮 1 上的第一个线槽开始, 相邻两线槽的开槽槽距依次减小, 该减小的槽 距与钢线经其前一线槽磨损后的直径相适应。
第二种实施方式, 所述导轮 1上不相等的开槽槽距, 是沿导轮长度方向上分段设 置不相等的开槽槽距, 其分段数量为两段以上, 在每一段上有数个开槽槽距相等的 线槽, 而相邻两段上的开槽槽距自钢线绕在导轮 1 上的第一段开始依次减小, 每段 减小的开槽槽距与钢线经其前一段磨损后的直径大小相适应。 该第二种实施方式是 本发明优选的技术方案。
在第二种实施方式中, 在导轮上分段设置不相等的开槽槽距,还有如下两个具体 实施例, 以更进一步说明硅片线切割装置中对导轮槽距的改进和有益效果。
实施例 1
如图 4所示, 所述导轮 1上的开槽槽距不相等, 是沿导轮长度方向上, 分 3段不 相等的开槽槽距, 在相邻两段上的开槽槽距, 自钢线绕在导轮 1 上的第一段开始依 次减小, 在每一段上有数个开槽槽距相等的线槽。 如图 4所示, 在导轮 1的长度方 向上,按开槽长度 L1分为 3段不相等的开槽槽距, 即第一段 A的开槽槽距〉第二段 B的开槽槽距〉第三段 C的开槽槽距。 第 1段 A、 第 2段 B、 第 3段 C上的开槽槽 距分别相等。
本申请人根据上述技术特征, 在如下型号的硅片线切割装置上进行了改进: A. 现有瑞士 MEYER BURGER DS265型机导轮槽距结构:
开槽长度 Ll=310mm, 总槽数 925个, 开槽槽距 0.335mm。
B. 经改进增加槽距数量:
使用瑞士 MEYER BURGER DS265型机, 在开槽长度 Ll=310mm的条件下, 开 槽方法分 3段开槽, 各段上开槽的槽距分别相等, 第 1段 A开槽槽距为 0.335mm, 第 2段 B开槽槽距为 0.333mm, 第 3段 C开槽槽距为 0.33mm。 由于开槽槽距分 3 段依次减小, 使总线槽数增加到 932个, 增加槽距数 6个, 因而增加切片数量 6片。 切片厚度偏差相应减小。
C. 经济效益
使用一台瑞士 MEYER BURGER DS265型线切割机, 一刀一次切割硅片的数量 多出了硅片 6片, 多出一片增加效益 58元, 即一刀一次增加效益 348元, 每月可增 加效益至少为 31320元。
按本申请人现有的两台瑞士 MEYER BURGER DS265型线切割机计算, 每月可 多切出 1080片, 每月增加总收益 62640元。
实施例 2
如图 5所示, 所述导轮 1上的开槽槽距不相等, 是沿导轮长度方向上, 分 8段不 相等的开槽槽距, 在相邻两段上的开槽槽距, 自钢线绕在导轮 1上的第 1段开始依 次减小, 在每一段上有数个开槽槽距相等的线槽。
本申请人根据上述技术特征, 在如下型号的硅片线切割装置上进行了改进:
A. 现有瑞士 MEYER BURGER DS264型机导轮槽距结构:
开槽长度 L2=820mm, 总槽数 2448个, 开槽槽距 0.335mm。
B. 经改进增加槽距数量: 使用瑞士 MEYER BURGER DS264型机, 在开槽长度 L2=820mm的条件下, 参 阅图 5, 开槽方法分 8段开槽, 各段开槽的槽距分别相等, 第 1 段 A开槽槽距为 0.335mm, 第 2段 B开槽槽距为 0.334mm, 第 3段 C开槽槽距为 0.333mm, 第 4段 D开槽槽距为 0.332mm,第 5段 E开槽槽距为 0.331mm,第 6段 F开槽槽距为 0.33mm, 第 7段 G开槽槽距为 0.329mm, 第 8段 H开槽槽距为 0.328mm。 由于开槽槽距分 8 段依次减小, 使总线槽数增加到 2475个, 增加槽距数 26个, 因而增加切片数量 26 片。 切片厚度偏差相应减小。
C. 经济效益
使用一台瑞士 MEYER BURGER DS264型线切割机, 一刀一次切割硅片的数量 多出了硅片 26片, 多出一片增加效益 58元, 即一刀一次增加效益 1508元, 每月可 增加收益至少 135720元。
按本申请人现有的 12台瑞士 MEYER BURGER DS264型机计算,每月多切硅片 数 28080片, 每月增加总收益为 1628640元。
总而言之, 上述本发明硅片切割方法及其装置, 对导轮开槽槽距的结构, 经过改 进后, 利用钢线在切割过程中的磨损而直径变小的原理, 由现有技术导轮上的均匀 分布的等距离的槽距, 改为不均匀分布的不相等的开槽槽距, 该开槽槽距在导轮的 长度方向上依次减小, 使线槽增加, 相应地使缠绕在导轮上的钢丝线网加密, 采用 这种钢丝线网逐渐加密的方法及其装置, 对硅单晶棒进行线切割, 有效地提高了切 片的数量和质量, 使经济效益显著提高。

Claims

权 利 要 求 书
1.一种硅片线切割方法, 通过一根钢线来回顺序缠绕 2或 4个开有线槽的导轮而形 成钢丝线网, 对硅单晶棒进行磨削加工, 其特征在于: 利用钢丝在切割过程中的 磨损而直径变小的原理, 对所述缠绕在导轮上的钢丝线网, 采用自钢线缠绕导轮 开始, 按顺序逐渐加密的方法, 对硅单晶棒进行磨削加工, 使该钢丝线网的逐渐 加密量补偿因钢线磨损后的直径减小而导致被切割硅片厚度的增加量, 从而将该 硅单晶棒一刀一次切割成数百个厚度完全相同的硅片, 在与现有导轮开槽长度相 同的条件下, 相应地增加切割硅片的数量。
2.—种硅片线切割的装置, 包括开有线槽的导轮 (1 ), 缠绕在导轮 (1 ) 上的钢丝线 网 (2), 其特征在于: 所述导轮 (1 ) 上的开槽槽距为不相等的开槽槽距, 该不相 等的开槽槽距是自钢线缠绕导轮开始, 沿导轮的长度方向上依次减小。
3.根据权利要求 2所述的硅片线切割的装置, 其特征在于: 所述导轮 (1 ) 上的开槽 槽距不相等, 是沿导轮长度方向上, 自钢线绕在导轮 (1 ) 上的第一个线槽开始, 相邻两个线槽的开槽槽距依次减小, 该减小的槽距与钢线经其前一线槽磨损后的 直径大小相适应。
4.根据权利要求 2所述的硅片线切割的装置, 其特征在于: 所述导轮 (1 ) 上的开槽 槽距不相等, 是沿导轮长度方向上, 分段设置不相等的开槽槽距, 其分段数量为 两段以上, 在每一段上有数个开槽槽距相等的线槽, 而相邻两段上的开槽槽距, 自钢线绕在导轮 (1 ) 上的第一段开始依次减小, 每段减小的开槽槽距与钢线经其 前一段磨损后的直径大小相适应。
5.根据权利要求 2或 4所述的硅片线切割的装置, 其特征在于: 所述导轮 (1 ) 上的 开槽槽距不相等, 是沿导轮长度方向上, 分 3段不相等的开槽槽距, 在相邻两段 上的开槽槽距, 自钢线绕在导轮 (1 ) 上的第一段开始依次减小, 在每一段上有数 个开槽槽距相等的线槽。
6.根据权利要求 2或 4所述的硅片线切割的装置, 其特征在于: 所述导轮 (1 ) 上的 开槽槽距不相等, 是沿导轮长度方向上, 分 8段不相等的开槽槽距, 在相邻两段 上的开槽槽距, 自钢线绕在导轮 (1 ) 上的第 1段开始依次减小, 在每一段上有数 个开槽槽距相等的线槽。
1
PCT/CN2009/072132 2008-07-01 2009-06-04 硅片线切割方法及其装置 WO2010000169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810132919.0 2008-07-01
CN2008101329190A CN101618519B (zh) 2008-07-01 2008-07-01 硅片线切割方法及其装置

Publications (1)

Publication Number Publication Date
WO2010000169A1 true WO2010000169A1 (zh) 2010-01-07

Family

ID=41465488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072132 WO2010000169A1 (zh) 2008-07-01 2009-06-04 硅片线切割方法及其装置

Country Status (2)

Country Link
CN (1) CN101618519B (zh)
WO (1) WO2010000169A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110561629A (zh) * 2019-08-27 2019-12-13 大连昊霖智能装备有限公司 一种单晶硅棒开方机中双棒加工用切割头
CN113635465A (zh) * 2021-07-30 2021-11-12 隆基绿能科技股份有限公司 一种硅片切割方法
EP3943265A1 (de) * 2020-07-21 2022-01-26 Siltronic AG Verfahren und vorrichtung zum gleichzeitigen abtrennen einer vielzahl von scheiben von einem werkstück
CN115847639A (zh) * 2022-12-19 2023-03-28 江苏茂硕新材料科技有限公司 一种用于切割硅片的金刚线用温度测量装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879759A (zh) * 2010-04-01 2010-11-10 浙江硅宏电子科技有限公司 一种多线切割机的主辊开槽方法
CN101954674A (zh) * 2010-05-26 2011-01-26 山东舜亦新能源有限公司 一种改良的薄膜硅片切割方法
CN101973082B (zh) * 2010-08-20 2015-01-28 上海汉虹精密机械有限公司 一种定位精确的单晶切方机
CN102059748A (zh) * 2010-12-13 2011-05-18 天津市环欧半导体材料技术有限公司 一种使用直径0.11mm钢线切割硅片的工艺
CN102059749A (zh) * 2010-12-13 2011-05-18 天津市环欧半导体材料技术有限公司 一种使用直径0.1mm钢线切割硅片的工艺
JP5590001B2 (ja) 2011-10-04 2014-09-17 信越半導体株式会社 ワークの切断方法及びワイヤソー
CN102950659A (zh) * 2012-10-18 2013-03-06 江西赛维Ldk太阳能高科技有限公司 一种硅块切割装置
CN103072211B (zh) * 2013-02-17 2016-04-06 英利集团有限公司 一种线锯切割方法
CN103496043A (zh) * 2013-10-16 2014-01-08 内蒙古中环光伏材料有限公司 一种太阳能硅片线切割槽轮
CN108527507A (zh) * 2018-05-17 2018-09-14 海南汇帑实业投资有限公司 植物纤维果片(椰纤果)分片、颗粒切割机械及生产工艺
CN111516160B (zh) * 2020-05-11 2022-06-17 福建晶安光电有限公司 一种多线切割机
CN112355811B (zh) * 2020-11-03 2023-04-04 自贡硬质合金有限责任公司 一种非连贯环槽的加工方法
CN114872209A (zh) * 2021-12-13 2022-08-09 广东金湾高景太阳能科技有限公司 一种提高硅片厚度集中度的切割加工方法
CN114734543A (zh) * 2022-04-29 2022-07-12 江苏美科太阳能科技股份有限公司 一种大尺寸超薄硅片的切割方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249701A (ja) * 1997-03-17 1998-09-22 Super Silicon Kenkyusho:Kk インゴットのワイヤソー切断方法及び装置
CN1938136A (zh) * 2004-03-30 2007-03-28 索拉克斯有限公司 用于切割超薄硅片的方法和装置
CN1953835A (zh) * 2004-05-18 2007-04-25 Rec斯坎沃佛股份有限公司 砂线切割
CN201235584Y (zh) * 2008-07-01 2009-05-13 内蒙古晟纳吉光伏材料有限公司 硅片线切割装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180328A (zh) * 1996-02-28 1998-04-29 东京制纲株式会社 钢丝式切断加工装置及方法
TW383249B (en) * 1998-09-01 2000-03-01 Sumitomo Spec Metals Cutting method for rare earth alloy by annular saw and manufacturing for rare earth alloy board
JP4083152B2 (ja) * 2004-07-29 2008-04-30 日本碍子株式会社 ワイヤーソー装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249701A (ja) * 1997-03-17 1998-09-22 Super Silicon Kenkyusho:Kk インゴットのワイヤソー切断方法及び装置
CN1938136A (zh) * 2004-03-30 2007-03-28 索拉克斯有限公司 用于切割超薄硅片的方法和装置
CN1953835A (zh) * 2004-05-18 2007-04-25 Rec斯坎沃佛股份有限公司 砂线切割
CN201235584Y (zh) * 2008-07-01 2009-05-13 内蒙古晟纳吉光伏材料有限公司 硅片线切割装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANQ CONG: "New Semiconductor Material Cutting Equipment-Multi wire saw", EQUIPMENT FOR ELECTRONIC PRODUCTS MANUFACTURING, no. 4, 20 April 2004 (2004-04-20), pages 63 - 64 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110561629A (zh) * 2019-08-27 2019-12-13 大连昊霖智能装备有限公司 一种单晶硅棒开方机中双棒加工用切割头
EP3943265A1 (de) * 2020-07-21 2022-01-26 Siltronic AG Verfahren und vorrichtung zum gleichzeitigen abtrennen einer vielzahl von scheiben von einem werkstück
WO2022017803A1 (de) * 2020-07-21 2022-01-27 Siltronic Ag Verfahren und vorrichtung zum gleichzeitigen abtrennen einer vielzahl von scheiben von einem werkstück
TWI817164B (zh) * 2020-07-21 2023-10-01 德商世創電子材料公司 從工件同時切割多個切片的方法和設備
CN113635465A (zh) * 2021-07-30 2021-11-12 隆基绿能科技股份有限公司 一种硅片切割方法
CN115847639A (zh) * 2022-12-19 2023-03-28 江苏茂硕新材料科技有限公司 一种用于切割硅片的金刚线用温度测量装置
CN115847639B (zh) * 2022-12-19 2023-09-01 江苏茂硕新材料科技有限公司 一种用于切割硅片的金刚线用温度测量装置

Also Published As

Publication number Publication date
CN101618519A (zh) 2010-01-06
CN101618519B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2010000169A1 (zh) 硅片线切割方法及其装置
CN201235584Y (zh) 硅片线切割装置
CN103722625B (zh) 一种利用金刚石线切割大直径碳化硅单晶的方法和设备
TWI507282B (zh) 從工件同時切割多個切片之設備和方法
TWI620840B (zh) 碳化矽晶棒切片設備及碳化矽晶棒的切片方法
WO2007026512A1 (ja) ウエーハの表面のナノトポグラフィを改善する方法及びワイヤソー装置
JPH05192816A (ja) シームレス帯ループ及びワイヤループの製造方法及び装置、そして帯鋸及びワイヤ鋸内で切断工具として用いるその用途
CN104972569A (zh) 使用锯切线来从工件切分出晶片的方法
EP2925474B1 (en) Structured saw wire maintaining crimp property under slicing tension
KR20160048787A (ko) 잉곳의 절단방법 및 와이어 쏘
WO2017119030A1 (ja) インゴットの切断方法
JP3273163B2 (ja) マルチワイヤソー
TW201421562A (zh) 用於在意外中斷之後恢復工件的線鋸鋸切處理的方法
JP5530946B2 (ja) 半導体材料から成る結晶から多数のウェハを切断する方法
EP2919936B1 (en) Saw wire having asymmetrical crimps
CN103395131B (zh) 多线切割机导轮线槽及其加工方法
JP2003200379A (ja) 金属箔スリット加工装置
JP2013202743A (ja) ウエーハスライス用ソーワイヤの製造方法およびウエーハスライス用ソーワイヤ
JP6705399B2 (ja) ウェーハの製造方法
JP5527987B2 (ja) ワイヤーソー装置と基板の製造方法
JP2000141364A (ja) インゴット切断方法およびワイヤソー装置
JP3810125B2 (ja) ワイヤーソー及び円柱形ワークを切断する方法
WO2005015626A1 (ja) 半導体ウエハをスライスするための単結晶塊の製造方法
JP5988365B2 (ja) ウエーハ表面のうねり減少方法およびその装置
KR102044722B1 (ko) 자리바꿈 메인롤러가 별도로 구비되는 멀티 와이어를 이용한 와이어 쏘우장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771939

Country of ref document: EP

Kind code of ref document: A1