WO2009157088A1 - 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 - Google Patents
電子放出素子の製造法及びそのための記憶媒体又は記録媒体 Download PDFInfo
- Publication number
- WO2009157088A1 WO2009157088A1 PCT/JP2008/061753 JP2008061753W WO2009157088A1 WO 2009157088 A1 WO2009157088 A1 WO 2009157088A1 JP 2008061753 W JP2008061753 W JP 2008061753W WO 2009157088 A1 WO2009157088 A1 WO 2009157088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- vacuum
- electron emission
- base member
- reduced pressure
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/24—Manufacture or joining of vessels, leading-in conductors or bases
- H01J9/26—Sealing together parts of vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/86—Vessels; Containers; Vacuum locks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/10—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
- H01J31/12—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
- H01J31/123—Flat display tubes
- H01J31/125—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
- H01J31/127—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/40—Closing vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2329/00—Electron emission display panels, e.g. field emission display panels
- H01J2329/02—Electrodes other than control electrodes
- H01J2329/04—Cathode electrodes
- H01J2329/0407—Field emission cathodes
- H01J2329/041—Field emission cathodes characterised by the emitter shape
- H01J2329/0413—Microengineered point emitters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2329/00—Electron emission display panels, e.g. field emission display panels
- H01J2329/02—Electrodes other than control electrodes
- H01J2329/04—Cathode electrodes
- H01J2329/0407—Field emission cathodes
- H01J2329/0439—Field emission cathodes characterised by the emitter material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2329/00—Electron emission display panels, e.g. field emission display panels
- H01J2329/02—Electrodes other than control electrodes
- H01J2329/04—Cathode electrodes
- H01J2329/0407—Field emission cathodes
- H01J2329/0439—Field emission cathodes characterised by the emitter material
- H01J2329/0471—Borides
Definitions
- the present invention relates to a production method for producing a crystalline electron-emitting device by a sputtering method using a target having a sintered body of a low work function substance, particularly a lanthanum boride compound, and a computer storage medium or recording medium therefor.
- Patent Documents 1, 2, and 3 a thin film of a lanthanum boride compound such as LaB 6 is known as a secondary electron generating film.
- a crystalline thin film of a lanthanum boride compound using a sputtering method.
- Patent Document 4 it is also known to use a sintered body of a lanthanum boride compound such as LaB 6 as a target used in the sputtering method.
- JP-A-1-286228 JP-A-3-232959 Japanese Patent Laid-Open No. 3-101033 JP-A-6-248446
- the lanthanum boride compound thin film is oxidized when it is exposed to the atmosphere after film formation by a sputtering apparatus.
- this oxidized lanthanum boride compound thin film is used for an electron-emitting device such as FED (Field Emission Display) or SED (Surface-Conduction Electro-emitter Display), sufficient brightness as a display device is not obtained. Was the current situation.
- An object of the present invention is to provide an electron-emitting device having sufficient luminance using a lanthanum boride compound thin film.
- a first substrate having a phosphor disposed thereon is prepared, a first step in which the first substrate is disposed in a vacuum or a reduced pressure space, a second step in which an electron emission base member is disposed on the second substrate, and the second step.
- the first substrate having undergone the first step and the second substrate having undergone the fourth step are made to face each other while maintaining a vacuum or a reduced pressure space from the step and the fourth step, and the first substrate and the second substrate Seal with a sealing material and vacuum Is a method for producing an electron emission device having a fifth step, to create a vacuum container.
- the present invention provides a first step of preparing a first substrate on which a phosphor is arranged, and arranging the first substrate in a vacuum or a reduced pressure space, a second step of arranging an electron emission base member on the second substrate, and the second step.
- a third step in which a first region including the electron emission base member is opened and a mask that shields a second region including the electron emission base member is disposed in a state in which a vacuum or a reduced pressure space is maintained.
- a crystalline thin film of a lanthanum boride compound such as LaB 6 can be sealed in a vacuum vessel without being oxidized, thereby realizing a high-luminance display device.
- FIG. 1 It is a schematic diagram which shows the 1st example of the magnetron sputtering apparatus used for the manufacturing method of the thin film of this invention. It is a schematic sectional drawing of the electron generator of this invention. It is a flowchart figure of this invention. It is a block diagram of the present invention. It is a top view of the mask used by this invention. It is a model perspective view of the electron-emitting element manufactured by this invention.
- Substrate preparation chamber 4 Take-out chamber 5, 51, 52, 53, 54, 55 Gate valve 11 Target 12 Substrate 13, 15, 42, 43 Substrate holder 14 Sputtering gas introduction system 16 Heating mechanism 17 Plasma electrode 18 Gas source introduction system for plasma source 19 High frequency power supply system for sputtering 191, 221, 502 Blocking capacitor 192, 222, 503 Matching circuit 193, 223, 504 High frequency power supply 194 DC power supply for sputtering (first DC bias power supply) 20 (For annealing) Substrate bias power supply (third DC power supply) 21 Substrate bias power supply (second DC power supply) 22 High frequency power supply system for plasma source 23, 501 Low frequency cut filter for cutting low frequency component from high frequency power supply 193 24 High frequency cut filter 101 Cathode 102 Magnetic field generator 103 Magnetic field region 201, 207 Glass substrate 202 Cathode electrode 203 LaB 6 thin film 204 Vacuum space 205 An
- FIG. 1 is a schematic view showing a first example of a magnetron sputtering apparatus used in the method for producing a thin film of the present invention.
- 1 is a first container
- 2 is a second container (annealing unit) vacuum-connected to the first container
- 3 is a substrate preparation chamber
- 4 is a take-out chamber
- 5 is a gate valve
- 11 is a sputtering target
- 12 is a substrate.
- 13 is a substrate holder (first substrate holder) for holding the substrate 12
- 14 is a sputtering gas introduction system
- 15 is a substrate holder (second substrate holder)
- 16 is a heating mechanism
- 17 is a plasma electrode
- 18 is plasma.
- Source gas introduction system 19 is a sputtering high frequency power supply system
- 101 is a cathode to which the target 11 can be attached
- 102 is a magnetic field generator
- 103 is a magnetic field region
- 191 is a blocking capacitor
- 192 is a matching circuit
- 193 is a high frequency power supply
- 194 is a sputtering bias power source
- 20 is a substrate bias power source (third DC power source) (for annealing)
- 21 is a substrate via.
- a power source (second DC power source), 22 is a high frequency power source system for plasma source, 221 is a blocking capacitor, 222 is a matching circuit, 223 is a high frequency power source, 23 is a low frequency component from the high frequency power source 193, and This is a low-frequency cut filter (filter).
- Reference numeral 24 denotes a high-frequency cut filter that cuts high-frequency components (for example, high-frequency components such as 1 KHz or higher, particularly 1 MHz) included in DC power from the DC power sources 21 and 194.
- a target 11 containing a boron atom (B) such as LaB 6 and a lanthanum atom (La) is used.
- the substrate 12 is placed on the holder 13 in the first container 1, the substrate 12 is opposed to the cathode 101, and the container is evacuated and heated (heated to a temperature during subsequent sputtering). Heating is performed by the heating mechanism 16. Then, after introducing a plasma source gas (helium gas, argon gas, krypton gas, xenon gas) from the sputtering gas introduction system 14 to a predetermined pressure (0.01 Pa to 50 Pa, preferably 0.1 Pa to 10 Pa). Then, film formation is started using the sputtering power source 19.
- a plasma source gas helium gas, argon gas, krypton gas, xenon gas
- high frequency power (frequency is 0.1 MHz to 10 GHz, preferably 1 MHz to 5 GHz, input power is 100 watts to 3000 watts, preferably 200 watts to 2000 watts) is applied from the high frequency power source 193.
- plasma is generated, and DC power (voltage) is set to a predetermined voltage ( ⁇ 50 volts to ⁇ 1000 volts, preferably ⁇ 10 volts to ⁇ 500 volts) by the first direct current power supply 194 to form a sputter film. I do.
- a DC power (voltage) is applied to the substrate holder 13 at a predetermined voltage (0 to ⁇ 500 volts, preferably ⁇ 10 to ⁇ 100 volts) from the second DC power source 21 on the substrate 12 side.
- the direct current power (first direct current power) from the first direct current power supply 194 may be input before the high frequency power from the high frequency power supply 193 is applied, or may be input simultaneously with the application of the high frequency power. It may be continued after the end.
- the positions at which the DC power and / or high-frequency power from the second DC power supply 21 and / or the sputtering high-frequency power supply 19 are input to the cathode 101 are preferably a plurality of points symmetrical to the center point of the cathode 101.
- a position symmetric with respect to the center point of the cathode 101 can be set as a plurality of direct current power and / or high frequency power input positions.
- the magnetic field generator 102 formed of a permanent magnet or an electromagnet is disposed behind the cathode 101 and can expose the surface of the target 11 to the magnetic field 103. Further, it is desirable that the magnetic field 103 does not reach the surface of the substrate 12, but the magnetic field 103 reaches the surface of the substrate 12 as long as the wide single crystal domain of the lanthanum boride compound film is not narrowed. You may do it.
- the high frequency cut filter 24 provided on the first DC power supply 194 side used in the present invention can protect the first DC power supply 194 as another effect.
- the S pole and the N pole of the magnetic field generating means 102 can be arranged with opposite polarities in the direction perpendicular to the plane of the cathode 103. At this time, adjacent magnets have opposite polarities in the horizontal direction with respect to the plane of the cathode 103. In addition, the S pole and the N pole of the magnetic field generating means 102 can be disposed with opposite polarities in the horizontal direction with respect to the plane of the cathode 103. Also at this time, adjacent magnets have opposite polarities in the horizontal direction with respect to the plane of the cathode 103.
- the magnetic field generating means 102 can swing in the horizontal direction with respect to the surface of the cathode 101 or the target 11.
- the filter 23 used in the present invention can cut low frequency components (frequency components of 0.01 MHz or less, particularly 0.001 MHz or less) from the high frequency power source 193.
- the average area of the single crystal domain can be widened by applying DC power (voltage) from the second DC power supply 21 on the substrate 12 side to the substrate holder 13.
- the second DC power (voltage) may be pulse waveform power having a DC component (DC component with respect to the ground) on a time average.
- reference numeral 208 denotes an electron source in which a molybdenum film (cathode electrode) 202 on which a conical protrusion 209 (Spindt type electron emission base member) is formed and a LaB 6 film 203 covering the protrusion 209 of the molybdenum film is formed. It is a substrate.
- a phosphor substrate 210 includes a glass substrate 207, a phosphor film 206 thereon, and an anode electrode 204 made of a thin aluminum film.
- a space 204 between the electron source substrate 208 and the phosphor substrate 210 is a vacuum space.
- the electron emission base member is not limited to the above, but is an SED type electron emission base member using a thin film (PdO thin film, crystalline carbon thin film, etc.) in which a nanoscale gap is formed by a forming process. May be.
- a thin film PdO thin film, crystalline carbon thin film, etc.
- FIG. 3 shows a flowchart of the present invention.
- Step 301 is a step of preparing a first glass substrate provided with a phosphor film that emits fluorescence by receiving electron irradiation.
- the phosphor layer three kinds of phosphors emitting red fluorescence, green fluorescence and blue fluorescence are arranged.
- the arrangement of the phosphors is not limited to this, although the red phosphor, the green phosphor, and the blue phosphor are linearly arranged in the signal line direction of the matrix wiring composed of the scanning lines and the signal lines.
- the glass substrate further includes a conductive film (aluminum film, titanium film, barium film, etc.) serving as an anode electrode for accelerating electrons from an electron source, and a black matrix body (for example, a black resin matrix) for partitioning pixels. , Metal matrix, etc.) and spacer material can be disposed.
- a conductive film aluminum film, titanium film, barium film, etc.
- a black matrix body for example, a black resin matrix
- spacer material can be disposed.
- Step 302 is a step of bringing the first glass substrate into a first vacuum chamber in which a first vacuum or reduced pressure space (hereinafter, both “vacuum” and “reduced pressure space” are referred to as “vacuum”) is formed.
- a first vacuum or reduced pressure space hereinafter, both “vacuum” and “reduced pressure space” are referred to as “vacuum”.
- a normal load lock chamber not shown
- a gate valve not shown
- Step 303 is a step of preparing a second glass substrate provided with an electron emission base member.
- the electron emission base member is disposed at the intersection of the scanning line and the signal line on the equivalent circuit, and is used for matrix driving. Although the electron emission base member itself has an electron emission effect, the electron emission efficiency is greatly improved by the low work function material film in the subsequent process.
- the one-section electron emission base member constitutes one sub-pixel with the one-section phosphor film.
- One pixel is composed of three color pixels of one red subpixel, one green subpixel, and one blue subpixel.
- a matrix array in which the one pixel is arranged in a plurality of columns along a plurality of rows can be provided.
- metal film wiring (aluminum wiring, copper wiring, silver wiring, etc.) for scanning lines and metal film wiring (aluminum wiring, copper wiring, silver wiring, etc.) for signal lines are formed. .
- the second glass substrate used in the present invention can preferably be provided with an antistatic film for charging a charge generated during the manufacturing process or during the operation as a display device.
- an antistatic film a titanium oxide film, a tin oxide film, an indium oxide film, an indium / tin oxide film (ITO film), or the like can be used.
- a spacer material or a sealing material can be provided in advance on the second glass substrate used in the present invention.
- Step 304 carries the second glass substrate into a second vacuum chamber of a second vacuum.
- a known load lock chamber (not shown) and a gate valve (not shown) can be used for loading.
- Step 305 is a step of providing the mask 52 of FIG. 5 on the second glass substrate in the second vacuum chamber of the second vacuum.
- the mask 52 opens the first region including the electron emission base member and shields the second region not including the electron emission base member.
- the second glass substrate is masked using this mask 52.
- a stainless steel mask or an aluminum mask is preferably used, but is not limited thereto.
- the mask 52 can use a vacuum chuck mechanism or an electrostatic chuck mechanism in order to maintain confidentiality with the second glass substrate.
- Step 306 uses a sputtering apparatus (such as a magnetron sputtering apparatus or a high-frequency RF magnetron sputtering apparatus shown in FIG. 1) using a third chamber of a third vacuum, and boron lanthanum such as LaB 6 on the second glass substrate.
- a sputtering apparatus such as a magnetron sputtering apparatus or a high-frequency RF magnetron sputtering apparatus shown in FIG. 1
- boron lanthanum such as LaB 6
- the second glass substrate is provided with a boron lanthanum compound film such as LaB 6 on the entire surface or a part of the second glass substrate.
- the electron emission base member is a low work function material film.
- the mask 52 is detached from the second glass substrate and removed.
- the LaB 6 film is not formed in the second region not including the electron emission base member.
- unnecessary light emission due to electrons generated from the LaB 6 film in the second region which is an unnecessary electron source other than the pixels, does not occur during display. For this reason, it is possible to obtain a display with high display quality without display contrast reduction and flickering light.
- a CeB 6 film, a BaLaB 6 film, a carbon-containing LaB 6 film, or the like can be used as the low work function material film.
- Step 307 carries the first glass substrate of Step 302 and the second glass substrate of Step 306 into the fourth chamber of the fourth vacuum while maintaining the vacuum state.
- the first vacuum, the third vacuum, and the fourth vacuum are vacuum-connected by a gate valve (not shown).
- the first glass substrate and the second glass substrate are opposed to each other at a predetermined interval in the fourth chamber, and the positions of the phosphor film in one section and the electron emission base member in the section are precisely matched.
- Seal with sealant The predetermined interval is determined by a spacer material provided in advance.
- the spacer material may be a columnar body or a plate-shaped body, and is arranged at predetermined intervals.
- the sealing material is provided in advance on the first glass substrate or the second glass substrate, and can be sealed to create a vacuum between the first glass substrate and the second glass substrate.
- a low-melting-point metal for example, iridium or tin
- an organic resin adhesive can be preferably used as the sealing material.
- step 308 the first glass substrate and the second glass substrate are held by a well-known electrostatic chuck or vacuum chuck, and the two substrates are subjected to a vacuum baking process with a sufficient distance between them, or barium. A getter material such as titanium can be applied. Thereafter, the two substrates are brought close to an interval determined by the spacer material, and thereafter, the above-described sealing process is performed to manufacture a vacuum display panel.
- FIG. 4 is a block diagram of the present invention.
- 401 is a vacuum mask mounting chamber for performing steps 304 and 305
- 402 is a magnetron sputtering apparatus for performing step 306
- 403 is a vacuum assembly apparatus for performing steps 307 and 308,
- 404 and 405 are first and second loads.
- Lock chambers 406, 407, 408, and 409 are gate valves
- 410 is a computer
- 411 is an arithmetic circuit unit
- 413 is a storage unit
- 414, 415, 416, 417, 418, and 419 are control bus lines.
- the first glass substrate provided with the phosphor film is carried into the second load lock chamber 405, the chamber 405 is evacuated, the gate valve 409 is opened, and a chamber device for carrying in the phosphor substrate in a vacuum. It is carried into 403.
- the second glass substrate provided with the electron emission base member is carried into the first load lock chamber 404, the inside of the chamber 401 is evacuated, the gate valve 406 is opened, and the second glass substrate is placed in the vacuum chamber 401. Position.
- a mask (shown in FIG. 5) 52 having an opening corresponding to a region including the electron emission base member is disposed on the second glass substrate.
- the second glass substrate is carried into the magnetron sputtering apparatus 402 with the gate valve 407 opened and the mask 52 held.
- the magnetron sputtering apparatus 402 can perform step 306 and provide a LaB 6 film in a region including the electron emission base member.
- the computer 410 has a storage unit 421 and can control all the steps 301 to 308 described above.
- the storage unit 421 can use a recording medium such as a hard disk medium, a magneto-optical disk medium, and a floppy (registered trademark) disk medium, or a nonvolatile memory (storage medium) such as a flash memory or an MRAM.
- the data from can also be temporarily stored.
- the storage unit 421 stores a control program that controls all the steps from step 301 to step 308.
- the stored control program data is processed by an arithmetic circuit unit (CPU: central processing circuit) 411, and the processed data is illustrated through control bus lines 413, 414, 415, 416, 417, 418, 419 and 420. It is transmitted as follows.
- CPU central processing circuit
- a time control unit 412 for example, generating a control signal using a clock from a radio clock
- all the steps 301 to 308 can be precisely controlled. it can.
- a generally used permanent magnet can be used as the magnet unit used for magnetron sputtering.
- FIG. 6 is a schematic perspective view of an example of an electron-emitting device obtained by the manufacturing method of the present invention.
- reference numeral 601 denotes a glass support substrate, which is a display-side substrate on the display viewing side.
- Reference numeral 601 denotes a three-primary color phosphor matrix composed of the above-described red phosphor, green phosphor and blue phosphor.
- the present invention is not limited to the three primary colors, and other colors (for example, complementary color-related colors, orange, yellowish green, etc.) can be added to the three primary colors.
- Reference numeral 603 denotes the black matrix described above.
- Reference numeral 604 denotes a metal film such as aluminum, titanium, or barium that serves as an anode electrode, and is set to a film thickness that transmits a high voltage of 300 to 2000 volts and transmits an electron beam.
- Reference numeral 605 denotes a spacer material for maintaining the vacuum thickness of the vacuum vessel.
- the spacer material 605 is made of glass, ceramic, metal oxide, metal, or the like. Further, the spacer material may be a plate-like object in addition to the columnar object as shown in FIG.
- Reference numeral 606 denotes a back substrate, which is preferably a glass material, but may be formed of a ceramic material, a metal oxide material, or a metal material.
- Reference numeral 607 denotes an insulating film, which is formed of silicon oxide, titanium oxide, and various insulating organic resin materials.
- Reference numeral 608 denotes a scanning line, and various metals (for example, aluminum, copper, silver, etc.) are used.
- Reference numeral 609 denotes a signal line, and various metals (for example, aluminum, copper, silver, etc.) are used.
- the scanning line 608 and the signal line 609 are interlayer-insulated by an insulating film 607.
- Reference numeral 610 denotes a hole in which an electron-emitting device is formed. In the hole 610, the electron-emitting device shown in FIG. Further, the hole is not limited to the Spindt-type electron-emitting device shown in FIG. 2, but may be an SCE-type electron-emitting device.
- the scanning line 608 and the signal line 609 are matrix driven by a scanning side driving circuit (not shown) and a signal side driving circuit (not shown), respectively.
- a scanning signal is applied to the scanning line 608, and an image signal synchronized with the scanning signal is applied to the signal line 609 to display an image.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Cold Cathode And The Manufacture (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
2 第二容器
3 基板仕込室
4 取り出し室
5、51、52、53、54、55 ゲートバルブ
11 ターゲット
12 基板
13、15、42、43 基板ホルダー
14 スパッタガス導入系
16 加熱機構
17 プラズマ電極
18 プラズマソース用ガス導入系
19 スパッタリング用高周波電源系
191、221、502 ブロッキングコンデンサ
192、222、503 整合回路
193、223、504 高周波電源
194 スパッタリング用直流電源(第一直流バイアス電源)
20 (アニール用)基板バイアス電源(第三直流電源)
21 基板バイアス電源(第二直流電源)
22 プラズマソース用高周波電源系
23、501 高周波電源193からの低周波成分をカットする低周波カットフィルター
24 高周波カットフィルター
101 カソード
102 磁場発生装置
103 磁場領域
201、207 ガラス基板
202 カソード電極
203 LaB6薄膜
204 真空空間
205 アノード電極
206 蛍光体膜
208 電子源基板
209 突起
210 蛍光体基板
211 直流電源
401 真空マスク装着装置
402 マグネトロンスパッタリング装置
403 真空組立装置
404 第1ロードロックチャンバ
405 406 407 408 409 ゲートバルブ
410 コンピュタ
411 演算回路部
413、414,415,416,417,418、419、420 制御バスライン
421 記憶部
412 時間制御部
51 マスク開口部
52 マスク
601 表示側基板
602 三原色蛍光体マトリクス
603 ブラックマトリクス
604 アノード電極
605 スペーサ材
606 背面基板
607 絶縁物膜
608 走査線
609 信号線
610 電子放出素子を内部に配置したホール
電子放出ベース部材を含まない第2領域にはLaB6膜が形成されない。この結果、表示の時に、画素以外での不要電子源となる第2領域のLaB6膜から発生した電子による不要発光を生じない。このため、これが原因となる表示コントラストの低下やちらつき光の無い高い表示品位の表示を得ることが出来る。
また、本発明は、低仕事関数物質膜として、他に、例えば、CeB6膜、BaLaB6膜やカーボン含有LaB6膜などを用いることができる。
シール材を用いてシールする。上記所定の間隔は、予め設けたスペーサ材によって、決定される。スペーサ材は、柱状体であってもよく、板状体であってもよく、所定の間隔毎に配置される。シール材は、予め、第1ガラス基板又は第2ガラス基板に設けられ、第1ガラス基板と第2ガラス基板との間を真空にするためにシールすることができる。シール材は、好ましくは、低融点金属(例えば、イリジウム、錫)や有機樹脂接着剤などを用いることができる。
Claims (12)
- 蛍光体を配した第1基板を用意し、真空又は減圧空間に配する第1工程、
第2基板に電子放出ベース部材を配する第2工程、
前記第2工程から真空又は減圧空間を維持した状態で、前記電子放出ベース部材を含む第1領域を開口し、前記電子放出ベース部材を含むまない第2領域を遮蔽したマスクを配する第3工程、
前記第3工程から真空又は減圧空間を維持した状態で、低仕事関数物質を有するターゲットを用いたスパッタリング法により、前記第2工程を経た第2基板にスパッタ粒子を堆積させる第4工程、及び
前記第1工程及び前記第4工程から真空又は減圧空間を維持した状態で、前記第1工程を経た第1基板と前記第4工程を経た第2基板とを対向させ、該第1基板と第2基板とをシール材でシールし、真空又は減圧容器を作成する第5工程、
を有する、ことを特徴とする電子放出素子の製造法。 - 前記電子放出ベース部材は、スピント型電子放出素子である、ことを特徴とする請求項1記載の製造法。
- 前記ターゲットは、ホウ素原子(B)及びランタン原子(La)を含有する焼結体を有する、ことを特徴とする請求項1記載の製造法。
- 前記第4工程の堆積物は、ホウ素原子(B)及びランタン原子(La)を含有する結晶性堆積物を有する、ことを特徴とする請求項1記載の製造法。
- 蛍光体を配した第1基板を用意し、真空又は減圧空間に配する第1工程、第2基板に電子放出ベース部材を配する第2工程、前記第2工程から真空又は減圧空間を維持した状態で、前記電子放出ベース部材を含む第1領域を開口し、前記電子放出ベース部材を含むまない第2領域を遮蔽したマスクを配する第3工程、第3工程から真空又は減圧空間を維持した状態で、低仕事関数物質を有するターゲットを用いたスパッタリング法により、前記第2工程を経た第2基板にスパッタ粒子を堆積させる第4工程、及び前記第1工程及び前記第4工程から真空又は減圧空間を維持した状態で、前記第1工程を経た第1基板と前記第4工程を経た第2基板とを対向させ、該第1基板と第2基板とをシール材でシールし、真空又は減圧容器を作成する第5工程を実行するための制御プログラムを有する、ことを特徴とする電子放出素子の製造のための記憶媒体。
- 前記電子放出ベース部材は、スピント型電子放出素子である、ことを特徴とする請求項5記載の記憶媒体。
- 前記ターゲットは、ホウ素原子(B)及びランタン原子(La)を含有する焼結体を有する、ことを特徴とする請求項5記載の記憶媒体。
- 前記第4工程の堆積物は、ホウ素原子(B)及びランタン原子(La)を含有する結晶性堆積物を有する、ことを特徴とする請求項5記載の記憶媒体。
- 蛍光体を配した第1基板を用意し、真空又は減圧空間に配する第1工程、第2基板に電子放出ベース部材を配する第2工程、前記第2工程から真空又は減圧空間を維持した状態で、前記電子放出ベース部材を含む第1領域を開口し、前記電子放出ベース部材を含むまない第2領域を遮蔽したマスクを配する第3工程、第3工程から真空又は減圧空間を維持した状態で、低仕事関数物質を有するターゲットを用いたスパッタリング法により、前記第2工程を経た第2基板にスパッタ粒子を堆積させる第4工程、及び前記第1工程及び前記第4工程から真空又は減圧空間を維持した状態で、前記第1工程を経た第1基板と前記第4工程を経た第2基板とを対向させ、該第1基板と第2基板とをシール材でシールし、真空又は減圧容器を作成する第5工程を実行するための制御プログラムを有する、ことを特徴とする電子放出素子の製造のための記録媒体。
- 前記電子放出ベース部材は、スピント型電子放出素子である、ことを特徴とする請求項9記載の記録媒体。
- 前記ターゲットは、ホウ素原子(B)及びランタン原子(La)を含有する焼結体を有する、ことを特徴とする請求項9記載の記録媒体。
- 前記第4工程の堆積物は、ホウ素原子(B)及びランタン原子(La)を含有する結晶性堆積物を有する、ことを特徴とする請求項9記載の記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200880001000A CN101689452A (zh) | 2008-06-27 | 2008-06-27 | 电子发射装置的制造方法及其存储介质或记录介质 |
PCT/JP2008/061753 WO2009157088A1 (ja) | 2008-06-27 | 2008-06-27 | 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 |
JP2008553562A JP4428723B2 (ja) | 2008-06-27 | 2008-06-27 | 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 |
US12/369,811 US20090325330A1 (en) | 2008-06-27 | 2009-02-12 | Method for manufacturing electron emitting device and memory medium or recording medium therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/061753 WO2009157088A1 (ja) | 2008-06-27 | 2008-06-27 | 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/369,811 Continuation US20090325330A1 (en) | 2008-06-27 | 2009-02-12 | Method for manufacturing electron emitting device and memory medium or recording medium therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009157088A1 true WO2009157088A1 (ja) | 2009-12-30 |
Family
ID=41444164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/061753 WO2009157088A1 (ja) | 2008-06-27 | 2008-06-27 | 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090325330A1 (ja) |
JP (1) | JP4428723B2 (ja) |
CN (1) | CN101689452A (ja) |
WO (1) | WO2009157088A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2009142223A1 (ja) * | 2008-05-22 | 2011-09-29 | キヤノンアネルバ株式会社 | スパッタリング用ターゲット、薄膜の製造法及び表示装置 |
JP5816699B2 (ja) * | 2010-12-20 | 2015-11-18 | ▲海▼洋王照明科技股▲ふん▼有限公司 | 発光素子及びその製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148083A (ja) * | 1994-11-22 | 1996-06-07 | Futaba Corp | フィールドエミッタの表面改質方法 |
JPH11135018A (ja) * | 1997-08-29 | 1999-05-21 | Canon Inc | 画像形成装置の製造方法、製造装置および画像形成装置 |
JP2000156160A (ja) * | 1998-11-19 | 2000-06-06 | Ulvac Japan Ltd | 真空装置、及びプラズマディスプレイ装置の製造方法 |
JP2005005076A (ja) * | 2003-06-11 | 2005-01-06 | Nippon Hoso Kyokai <Nhk> | 電子放出型表示装置の製造方法 |
JP2005327504A (ja) * | 2004-05-12 | 2005-11-24 | Sonac Kk | 電界電子放出素子の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001143608A (ja) * | 1999-11-15 | 2001-05-25 | Sony Corp | 炭素薄膜の加工方法、冷陰極電界電子放出素子の製造方法、及び冷陰極電界電子放出表示装置の製造方法 |
JP4453884B2 (ja) * | 1999-11-24 | 2010-04-21 | 大日本印刷株式会社 | スパッタ用メタルマスクおよびカラーフィルタの製造方法 |
JP3728213B2 (ja) * | 2000-03-16 | 2005-12-21 | キヤノン株式会社 | 画像表示装置の製造法及び製造装置 |
-
2008
- 2008-06-27 WO PCT/JP2008/061753 patent/WO2009157088A1/ja active Application Filing
- 2008-06-27 JP JP2008553562A patent/JP4428723B2/ja not_active Expired - Fee Related
- 2008-06-27 CN CN200880001000A patent/CN101689452A/zh active Pending
-
2009
- 2009-02-12 US US12/369,811 patent/US20090325330A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148083A (ja) * | 1994-11-22 | 1996-06-07 | Futaba Corp | フィールドエミッタの表面改質方法 |
JPH11135018A (ja) * | 1997-08-29 | 1999-05-21 | Canon Inc | 画像形成装置の製造方法、製造装置および画像形成装置 |
JP2000156160A (ja) * | 1998-11-19 | 2000-06-06 | Ulvac Japan Ltd | 真空装置、及びプラズマディスプレイ装置の製造方法 |
JP2005005076A (ja) * | 2003-06-11 | 2005-01-06 | Nippon Hoso Kyokai <Nhk> | 電子放出型表示装置の製造方法 |
JP2005327504A (ja) * | 2004-05-12 | 2005-11-24 | Sonac Kk | 電界電子放出素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20090325330A1 (en) | 2009-12-31 |
JPWO2009157088A1 (ja) | 2011-12-01 |
JP4428723B2 (ja) | 2010-03-10 |
CN101689452A (zh) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chalamala et al. | FED up with fat tubes | |
EP0635865B1 (en) | Field-emission display | |
JP3302313B2 (ja) | 帯電防止膜、及び、画像形成装置とその製造方法 | |
KR20010101872A (ko) | 전자 빔 장치 | |
JP2010157489A (ja) | 電子放出素子の製造方法および画像表示装置の製造方法 | |
JP4428722B2 (ja) | 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 | |
JP4428723B2 (ja) | 電子放出素子の製造法及びそのための記憶媒体又は記録媒体 | |
JP2006066265A (ja) | 画像表示装置 | |
JP2006066272A (ja) | 画像表示装置 | |
US7327080B2 (en) | Hybrid active matrix thin-film transistor display | |
JP2003323855A (ja) | 画像形成装置 | |
US7129630B2 (en) | Display device | |
US20100133089A1 (en) | Magnetron sputtering apparatus and method for manufacturing thin film | |
JPH02299129A (ja) | 画像表示装置の製造方法 | |
KR20060013545A (ko) | 스퍼터 이온 펌프, 그 제조 방법 및 스퍼터 이온 펌프를구비한 화상 표시 장치 | |
JP3478774B2 (ja) | 画像表示装置 | |
JP3581586B2 (ja) | スペーサの製造方法及び電子線装置の製造方法 | |
JPH04132147A (ja) | 画像表示装置の製造方法 | |
KR100464295B1 (ko) | 전계방출표시소자및그제조방법 | |
JP3136415B2 (ja) | 画像表示装置の製造方法 | |
JP2004349021A (ja) | スパッタイオンポンプ、その製造方法、およびスパッタイオンポンプを備えた画像表示装置 | |
JP3938185B2 (ja) | 画像表示装置およびその製造方法 | |
JPH10302633A (ja) | スペーサ及び画像形成装置の製造方法 | |
JP3920811B2 (ja) | スパッタイオンポンプの製造方法 | |
WO2007017990A1 (ja) | 表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880001000.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008553562 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008777665 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08777665 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08777665 Country of ref document: EP Kind code of ref document: A1 |