WO2009155742A1 - 一种治疗肺癌的葡聚糖 - Google Patents

一种治疗肺癌的葡聚糖 Download PDF

Info

Publication number
WO2009155742A1
WO2009155742A1 PCT/CN2008/071414 CN2008071414W WO2009155742A1 WO 2009155742 A1 WO2009155742 A1 WO 2009155742A1 CN 2008071414 W CN2008071414 W CN 2008071414W WO 2009155742 A1 WO2009155742 A1 WO 2009155742A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
cells
dextran
polysaccharide
glucan
Prior art date
Application number
PCT/CN2008/071414
Other languages
English (en)
French (fr)
Inventor
谢金魁
张安强
曹建国
Original Assignee
广州康采恩医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州康采恩医药有限公司 filed Critical 广州康采恩医药有限公司
Priority to US13/000,194 priority Critical patent/US8519121B2/en
Priority to PCT/CN2008/071414 priority patent/WO2009155742A1/zh
Priority to JP2011515058A priority patent/JP2011525550A/ja
Priority to EP08757823A priority patent/EP2319873A4/en
Publication of WO2009155742A1 publication Critical patent/WO2009155742A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass

Definitions

  • the present invention relates to a glucose polymer, and more particularly to a glucan for lung cancer. Background technique
  • the malignant tumor of lung cancer has become the number one killer of human health.
  • the incidence of lung cancer has increased with the increase of environmental pollution, and has increased by 11.90% in the past 10 years.
  • 2000 there were more than 10 million new cases of malignant tumors worldwide, and 6.2 million deaths, including 1.239 million new cases of lung cancer, accounting for 12.32% of total cancer cases, and 1.103 million cases of lung cancer deaths, accounting for 17.77% of the total deaths.
  • 1.5 million to 1.8 million people die of lung cancer every year in the world.
  • the lung cancer hazard situation in China is even more serious, calculated at an incidence rate of 83.43 per 100,000 people.
  • Lung cancer a malignant tumor
  • chemotherapy drug therapy
  • 80% of patients lose the opportunity for surgical resection and radiotherapy has local limitations and radiation damage to normal tissues
  • chemical (drug) treatment has universal cytotoxicity and its dose Restrictive; particularly serious side effects on liver, kidney, bone marrow and digestive system, greatly restricting the therapeutic effect of lung cancer.
  • ⁇ PE-40 glycoprotein has direct inhibitory effects on small cell lung cancer and non-small cell lung cancer cells and synergistic effects on chemotherapeutic drugs such as DDP and 5-FU and cytokine T Fa, and No obvious side effects; the overall effect is better than other traditional Chinese medicines, but due to the protein content, there is a problem that the sensitization and stability are difficult to control, which limits the scope of adaptation to some extent.
  • the present invention is intended to be further effective in lung cancer
  • the protein is removed, the polysaccharide is extracted, and the efficacy is maintained. Lycium barbarum polysaccharides achieve therapeutic effects by interfering with the normal metabolism of DNA and RNA in cancer cells, promoting the apoptosis of cancer cells, and suppressing the growth of tumors to nourish blood vessels.
  • KY-1 optimal active crude polysaccharide component of the above polysaccharides was determined by high-throughput cell activity screening technology.
  • the main chain of the glucan of the present invention is composed of the following repeating structural unit, and has a molecular weight of 1.5 million to 2.5 million Daltons.
  • the dextran of the present invention which is extracted from sputum.
  • Previous studies have extracted glucoside protein PE-40 from sputum, which not only directly inhibits small cell lung cancer and non-small cell lung cancer cells, but also various chemotherapeutic drugs such as DDP and 5-FU, and cytokines.
  • TNF-a has synergistic and attenuating effects, and the overall effect is superior to other traditional Chinese medicines.
  • sensitization is difficult to control, which limits the scope of application to some extent.
  • the protein is removed, the polysaccharide is extracted, and the efficacy is maintained.
  • the lycium polysaccharide at this time is a mixed polysaccharide (crude polysaccharide) containing a plurality of polysaccharides, which can interfere with the normal metabolism of DNA and RNA in cancer cells, promote apoptosis of cancer cells, and suppress tumor growth by nourishing blood vessels. Mechanism to achieve the effect of treatment.
  • the dextran of the present invention is further supplemented with a pharmaceutically acceptable pharmaceutical adjuvant to prepare various forms of anti-lung cancer drugs.
  • a pharmaceutically acceptable pharmaceutical adjuvant to prepare various forms of anti-lung cancer drugs.
  • the preparation method of the glucan (KY-1-1) of the present invention includes two main processes of extraction of crude polysaccharide and separation and purification of crude polysaccharide. Crude polysaccharides are prepared by processes such as alcohol precipitation and deproteinization of trichloroacetic acid and their dialysis. The specific confirmation process will be described in detail in the following examples.
  • the glucan of the present invention is a homogenous polysaccharide which is one of the most active sites of the crude polysaccharide found in the present research, and is one of the components which are currently the best against lung cancer.
  • the invention has established that the molecular structure of the glucan lays a foundation for further research on drug synthesis and pharmacological efficacy.
  • Figure 1 is a standard curve of the relationship between the molecular weight of dextran and retention time
  • Figure 2 is a HPLC diagram of the separation of two components of the aqueous phase fraction by chromatography system (S-1000);
  • Figure 3 is a HPLC diagram of the components KY-1 separated by S-400 gel column to obtain two components;
  • Figure 4 is a graph showing the results of HPLC detection of the component KY-1-1;
  • Figure 5 is a graph showing the results of HPLC detection of the component KY-1-2;
  • Figure 6 is a graph showing the results of HPLC detection of the component KY-2
  • Figure 7 is a UV full scan of the component KY-1-1
  • Figure 8 is a gas chromatogram of a monosaccharide in a standard sugar sample
  • Figure 9 is a gas chromatogram of the component KY-1-1
  • Figure 10 is a graph of total ion current after methylation of component KY-1-1;
  • Figure 11 is a mass spectrum with a retention time of 3.44 min;
  • Figure 12 is a 1H NMR spectrum of KY-1-1 at 27 °C
  • Figure 13 is a 13 C nuclear magnetic resonance spectrum of KY-1-1 at 27 °C;
  • Figure 14 is a nuclear magnetic resonance spectrum of 13 C DEPT-135 of KY-1-1 at 27 °C;
  • Figure 15 is a 1H-1H COSY nuclear magnetic resonance spectrum of KY-1-1;
  • Figure 16 is a TOCSY nuclear magnetic resonance spectrum of KY-1-1
  • Figure 17 is a partial NMR spectrum of HMQC of KY-1-1;
  • Figure 18 is a HMBC nuclear magnetic resonance spectrum of KY-1-1
  • Figure 19 is a NOESY partial nuclear magnetic resonance spectrum of KY-1-1. detailed description
  • the glucan provided by the present invention is extracted from the sputum, and it has been proved to have a good anti-lung cancer effect.
  • the extraction method, structure confirmation and efficacy verification of the glucan of the present invention are described in detail below.
  • MATERIALS CVaginulusrete Ferussac, 182i;), belonging to the mollusk, the gastropod, the snail, the stalk, the scorpion, the genus.
  • the above crude extract of fresh sorghum is dissolved in water, mixed with 30% trichloroacetic acid in a volume ratio of 1:10 for 15 min, left to stand for 30 min, centrifuged, and slag is discarded to obtain a supernatant, using tap water, steaming water, flowing Dialysis (membrane with a molecular weight of 10,000 Daltons), concentrated, and lyophilized to obtain a crude polysaccharide (24 g, yield 1.5%, polysaccharide content 19.8%).
  • the crude polysaccharide component is the most effective component.
  • the frozen crude polysaccharide was slowly dissolved at room temperature and centrifuged (12000 r/min, 10 min) to remove the precipitate.
  • the supernatant was dialyzed, de-trichloroacetic acid (1000D dialysis bag) was removed, and the ion-exchange column [DEAE Sepharose fastflow (room temperature, natural pH)] was removed from the retentate, and the water phase fraction was eluted by evaporation of water, and concentrated and concentrated.
  • the rubber column (S-1000) can receive two components, named KY-1 and KY-2.
  • KY-1 was further separated by a gel column (S-400) to obtain the other two components, which were named KY-1-1 and ⁇ -1-2, respectively.
  • KY-1-1 is the Glucan of the invention.
  • Sugar 2. Structure confirmation of glucan in the extract of the present invention
  • HPLC HPLC
  • UV detector (206nm, 280nm)
  • the components KY-1, KY-1-K ⁇ -1-2, ⁇ -2 were analyzed by HPLC (conditions as above) to obtain Figure 2-6 (in Figure 2, 4-6 tubes were KY-1, 13- 16 tubes are KY-2 (red 190 nm, blue 280 nm)).
  • the KY-1-1 component has a high purity and a weak absorption at 280 nm, and the molecular weight is more than 2 million.
  • KY-2 contains at least three components, and the first component has a certain absorption at 280 nm. According to the analysis, KY-1-1 is a homogeneous component, and the rest are mixed components.
  • the sample weighing amount is shown in Table 1. As can be seen from the table, the polysaccharide content of KY-1 is above 90%.
  • the gas chromatograph is equipped with a DB-23 quartz capillary column, 30 mx 0.25 mm x 0.25 ⁇ m. Hydrogen flame ionization detector (FID), high purity nitrogen for carrier gas. Temperature programming: The initial temperature of the column is 120 °C, and it is raised to 240 °C at 15 °C/min for 6.5 min. The inlet temperature is 250 °C and the split ratio is 1:50. Detector temperature 250 °C, hydrogen 35 ml/min, air 350 mL/min, makeup gas 30 mL/min. The column flow rate was 1 mL/min.
  • the completely methylated sample was dissolved in 3 mL of 88% formic acid solution, blocked, and depolymerized at 100 °C for 3 h. 3 mL of methanol was added to the reaction flask, and concentrated under reduced pressure at 40 ° C to dryness, and the mixture was repeated three times.
  • 3 mL of methanol was added to the reaction flask, and concentrated under reduced pressure at 40 ° C to dryness, and the mixture was repeated three times.
  • To the depolymerized polysaccharide sample 4 mL of 2 mol/L trifluoroacetic acid (TFA) was added, and the tube was hydrolyzed at 100 ° C for 6 h, and concentrated under reduced pressure at 40 ° C to evaporate and repeat 5 times.
  • TFA trifluoroacetic acid
  • the fully acid-hydrolyzed sample was dissolved in about 3 mL of distilled water, 20 mg of NaBH4 was added, and the mixture was sealed and allowed to cool at room temperature for 3 h. After neutralization with glacial acetic acid, the pH was between 4 and 5, and the mixture was treated with 3 mL of methanol, and concentrated under reduced pressure and evaporated to dryness 4 to 5 times. Then, it was placed in a P205 vacuum desiccator and vacuumed at room temperature overnight, and then heatd in an oven at 100 ° C for 15 min.
  • the above treated sample was added with 3 mL of acetic anhydride, and sealed, and reacted at 100 ° C for 1 h, then 3 mL of toluene was added, and concentrated under reduced pressure to evaporate and repeat 4 to 5 times.
  • the acetylated product was alternately dissolved in an equal volume of chloroform and distilled water and transferred to a separatory funnel. After sufficient shaking, it was allowed to stand still. After stratification, the upper aqueous solution was removed, and the aqueous layer was washed 4 times with an equal volume of distilled water.
  • Chromatographic conditions Gas-mass spectrometry (GC-MS) equipped with a DB-5MS quartz capillary column, 30 m 0.25 0.25 mm x 0.25 ⁇ . Temperature programming: initial column temperature 80 ° C, hold 1 min, 5 ° C / min to 200 ° C, then 2 ° C / min to 215 ° C, and finally 20 ° C / min to 270 ° C, ⁇ The gas is used as a carrier gas, the inlet temperature is 250 ° C, the split ratio is 1:50, and the column flow rate is 1 mL/min. EI (70 eV), multiplier voltage 350 v, filament current 250 ⁇ , interface temperature 200 °C, ion source temperature 250 °C, mass scan range 42-462 amu, scan rate 2.5 scan/s.
  • GC-MS Gas-mass spectrometry
  • the iH-iH correlation spectrum (1H-1H COSY, 1H-1H correlated spectroscopy) is fully correlated at 60 °C (TOCSY, total correlation) Spectroscopy) heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple bond correlation spectrum (HMBC, heteronuclear multiple-bond) Correlation spectroscopy and Hofer effect spectroscopy were performed.
  • the 27°C spectrum of iH NMR is shown in Fig. 12.
  • ⁇ 5.443 of the anomeric hydrogen region there is mainly a resonance peak of anomeric hydrogen, and there are some small resonance peaks at ⁇ 5.02.
  • This small resonance peak is The resonance peak of the anomeric region, but this residue is present in a small amount in this polysaccharide, possibly due to trace impurities contained in the sample.
  • the formants at the ⁇ 3.50 to 4.41 are heavily overlapped and cannot give accurate information.
  • the 13 C NMR spectrum is shown in Fig. 13. It can be seen from the figure that the anomeric carbon region ⁇ 102.47 is an anomeric carbon signal; at ⁇ 63.21 is the 6-position unsubstituted resonance peak of glucose; there is no anti-fraction at around ⁇ 69.0 The peak (shown in Figure 14) indicates that this component does not contain a 6-substituted residue.
  • the carbon-oxygen signal of sugar is ⁇ 63.21 ⁇ 79.56.
  • the 1H-1H COSY spectrum (shown in Figure 15) and the T0CSY spectrum (shown in Figure 16) can be used to derive the chemical position of hydrogen.
  • the residues in the KY-1-1 repeat unit have related resonance peaks in HI and C4 in the HMBC spectrum (shown in Figure 18), and the NOESY spectrum (as shown in Figure 19) in the NOESY spectrum, residues HI and H4. There are also related formants, indicating that this repeat unit is a glucan linked by a-1, 4 phases.
  • KY-1-1 is a 1,4-linked glucopyranose composed of glucose and configured in a-configuration. Its specific repeating unit structure is:
  • Human lung adenocarcinoma ( ⁇ 549) cells were purchased from the Cell Center of Xiangya School of Medicine, Central South University.
  • Human small cell lung cancer (NCI-H446) cells and Chinese hamster lung epithelial (CHL) cells were purchased from the Shanghai Institute of Cell Biology, Chinese Academy of Sciences.
  • % calf serum RPMI 1640 medium was cultured at 37 ° C in a 5% CO 2 incubator, routinely passaged, and cells in logarithmic growth phase were taken.
  • the electronic analytical balance was weighed into 3.8 g of KY-1-1 and placed in a 10 mL clean vial. After dissolving the appropriate amount of DMSO, it was diluted with physiological saline to 300.0 g/mL lOO.O g/mL 30.0 g/mL 10.0 g/mL and 3.0 g / mL lO g / mL, dispensed in 2mL EP tube, stored in a refrigerator at 4 ° C.
  • Injection cisplatin DDP
  • Qilu Pharmaceutical Co., Ltd. Specification: 10mg/bottle, batch number: 6030052DB
  • dissolved in NS diluted to 100.O g/mL, 10.0 g/mL and 1.0 g/mL.
  • Paclitaxel (TAX), produced by Beijing Sihuan Pharmaceutical Technology Co., Ltd., Specification: 30mg/5ml/branch, batch number: 060830, dissolved in NS, diluted to 100.0 g/mL, 10.0 Mg/mL and 1.0 g/mL.
  • KY-1-1 selectively inhibits the proliferation of human lung cancer cells
  • IR (%) (1 - drug treatment group A mean / control group A mean) X 100% calculation inhibition rate half inhibition concentration IC50 calculated using the CalcusZn program.
  • a single cell suspension of human lung adenocarcinoma (A549) cells and human small cell lung cancer (NCI-H446) cells was prepared at a regulated concentration of 0.3 x 103 cells/mL.
  • Culture system per well Single cell suspension 1.8 mL, test substance or control drug test solution 0.2 ml.
  • the final concentrations of KY-1-1 were O.
  • Colony formation inhibition rate (%) [1 (treatment group colony average / blank control group colony mean)] ⁇ ⁇ %
  • Calculate colony inhibition rate and dish efficiency colony mean / number of cells inoculated xl00% Plate efficiency.
  • the half-inhibitory concentration IC50 was calculated using the CalcusZn program. The above experiment was repeated 2 times.
  • a single cell suspension of human lung adenocarcinoma (A549) cells and human small cell lung cancer (NCI-H446) was prepared by adding 0.5 mL of 0.6% agar medium to each well of a 24-well culture plate at a concentration of 1.6 ⁇ 103. /mL; Upper agar culture system of each group: 1.6 ml of single cell suspension, 0.2 ml of test substance or control drug.
  • the final concentration of KY-1-1 was 0. lMg/mL, 0.3Mg/mL, 1.0Mg/mL, 3.0Mg/mL, 10.0Mg/mL, 30.0 g/mL; DDP (O. lMg/mL) and Tax (O.
  • the blank control group was added with an equal amount of medium; and quickly mixed with 0.2 mL of 3% agar solution heated in a water bath using a spherical graduated pipette.
  • the cells were cultured for 7 days in a C02 incubator. For a colony with a cell number greater than 50 or a diameter greater than 75 ⁇ m, each of the three individuals counted the number of colonies per well under an inverted microscope, and the mean was recorded.
  • Colony formation inhibition rate (%) [1 - (treatment group colony average / blank control group colony mean)] ⁇ ⁇ %
  • Calculate colony inhibition rate and dish efficiency colony mean / number of cells inoculated xl00% Plate efficiency.
  • the half-inhibitory concentration IC50 was calculated using the CalcusZn program. The above experiment was repeated 2 times.
  • KY-1-1 had no significant inhibitory effect on the proliferation of Chinese hamster lung epithelial (CHL) cells, and its IC: value was 411.98 Mg/mL.
  • KY-1-1 significantly inhibited the proliferation of human small cell lung cancer NCI-H446 cells in a dose-dependent manner with an IC 5Q value of 7.22 Mg/mL.
  • KY-1-1 has selective inhibitory effect on human small cell lung cancer (NCI-H446) and low toxicity to normal cells. Its cytotoxicity selection index for human small cell lung cancer NCI-H446 cell line is 57.06 (411.98/7.22). .
  • KY-1-1 significantly inhibited the proliferation of human lung adenocarcinoma (A549) cells in a dose-dependent manner, and its IC 5Q value was 9.44 M g/mL.
  • KY-1-1 has a selective inhibitory effect on human small cell lung cancer (A549) cells, and has low toxicity to normal cells. Its cytotoxicity selection index for human lung adenocarcinoma A549 cell line is 43.64 (411.98/9.44).
  • KY-1-1 3.0 1.01 ⁇ 0.08** 35.96 KY-1-1 10.0 0.80 ⁇ 0.03** 49.08
  • KY-1-1 had a significant inhibitory effect on human lung adenocarcinoma (A549) cells in a dose-dependent manner with an IC 5Q value of 8.94 g/mL.
  • Glucan lOOmg was added to 5% dextrose solution, intravenous drip, and dripped in 30 minutes. 2 times a day, 21 days a course of treatment. Several treatments can be used continuously as appropriate.
  • Dosage 100mg (100mg / ampoules) in 5% glucose solution, intravenous drip, 30 minutes drop.
  • pharmaceutically suitable excipients are added to prepare dosage forms such as tablets, capsules and the like.
  • dosage forms such as tablets, capsules and the like.
  • the above-disclosed examples are merely illustrative of the glucan of the present invention, and the scope of the present invention should not be construed as limiting the scope of the present invention.
  • the equivalent changes made according to the nature of the disclosure of the present invention are still within the scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)

Description

一种治疗肺癌的葡聚糖 技术领域
本发明涉及一种葡萄糖聚合物, 尤其涉及一种抗肺癌用葡聚糖。 背景技术
肺癌这种恶性肿瘤已成为威胁人类健康的头号杀手,肺癌的发病率随着环境污染的 加剧, 近 10年以来以 11.90%的速度上升。 2000年全球恶性肿瘤新发病已超过 1000万 以上, 死亡 620万例, 其中肺癌新发病例 123.9万例, 占癌症总发病例 12.32%, 肺癌死 亡 110.3万例, 占总死亡人数的 17.77%, 均居首位。 目前全球每年有 150万 -180万人死 于肺癌, 我国肺癌危害形势更为严重, 按每 10万人的 83.43发病率计算。 我国每年新发 肺癌病人不下 100万, 每年死于肺癌者已达 60万之多! 肺癌这种恶性肿瘤已成为威胁 人类健康的头号杀手。 因此, 研制有效的防治肺癌的新特药, 已成为国内外医药界的当 务之急, 重点和热点。 当前治疗肺癌的方法与相关药品都存在一定的局限性,如治疗肺癌传统的方法有手 术切除、 放射治疗和化疗 (药物治疗)。 但一旦经临床确诊为肺癌, 80%的病人就失去 了手术切除的机会 而放射治疗存在局部的限制性和射线对正常组织的损伤性; 化学(药 物) 治疗存在普遍性细胞毒性作用及其剂量的限制性; 特别对肝、 肾、 骨髓和消化系统 毒副作用严重, 大大制约了肺癌的治疗效果。 新兴的介入治疗对原发灶有一定的作用, 但难以对付不断散发的转移灶; 现代分子靶向性 (基因) 治疗给肺癌患者带来曙光, 但 其载体构建、 载体与弹头的交链及其在机体分布、 代谢过程中的变化等诸多问题还在探 讨之中。
本发明人先前有研究说明,蛞蝓 PE-40糖蛋白对小细胞肺癌和非小细胞肺癌细胞均 有直接抑制作用和对化疗药物如 DDP和 5-FU以及细胞因子 T F-a有增效作用,而且无 明显毒副作用; 总体效应优于其他中药, 但由于含有蛋白质成份, 存在致敏和稳定性难 以质控的问题, 在一定程度上限制了适应范围。 本发明旨在进一步地, 在对肺癌有效的 蛞蝓糖蛋白基础上, 除去蛋白质, 提取多糖, 并保持药效不减。 蛞蝓多糖是通过干扰癌 细胞内 DNA和 RNA的正常代谢以及促进癌细胞凋亡、阻抑癌灶滋养血管生长的机制来 实现治疗效果的。
现在更进一步地,通过高通量细胞活性筛选技术,确定了上述蛞蝓多糖中最佳活性 蛞蝓粗多糖组分 (KY— 1 )。 并明确了 KY— 1中的成分之一的蛞蝓葡聚糖 (KY— 1一 1 ) 的分子结构。 发明内容
本发明的葡聚糖的主链由下述重复结构单元构成, 分子量为 150万一 250万道尔顿 的葡聚糖。
Figure imgf000004_0001
本发明的葡聚糖, 它是从蛞蝓中提取出来的。 先前有研究, 从蛞蝓提取蛞蝓糖蛋白 PE-40, 所述糖蛋白不仅对小细胞肺癌和非小 细胞肺癌细胞均有直接抑制作用和对多种化疗药物如 DDP 和 5-FU, 以及细胞因子 TNF-a, 有增效减毒作用, 总体效应优于其他中药, 但由于含有蛋白质成份, 存在致敏 性难以质控的问题, 在一定程度上限制了适用的范围。 为了解决这一问题, 后又在蛞蝓 糖蛋白的基础上, 除去蛋白质, 提取多糖, 并保持药效不减。 此时的蛞蝓多糖是一种含 有多种多糖的混合多糖(粗多糖), 该多粗糖可以通过干扰癌细胞内 DNA和 RNA的正 常代谢以及促进癌细胞凋亡、 阻抑癌灶滋养血管生长的机制来达到治疗的效果。 本发明 为了进一步研究上述混合多糖的药用机理和作用效果, 从混合多糖 (粗多糖) 中进一步 分离出来各种组分如 KY-1、 KY-2和 KY-3等, 进一步的从 KY-1 中又分离出来 KY-1 -1 和 KY-1 -2, 经实验验证本发明申请保护的多糖组分 (KY-1 -1 ) 是目前研究获得的具有 最佳的活性和药用效果的 KY-1 中的其中一个均一组分, 并通过科学的实验方法, 确定 了 ΚΥ-1 -1分子结构是一种葡聚糖。 本发明的葡聚糖主要用于制备抗肺癌药物。本发明的葡聚糖再添加药学上可接受的 药物辅料, 可以制成各种形式的抗肺癌药物。 如冻干粉针剂、 注射剂、 片剂、 胶囊剂等 等常见剂型。 本发明的葡聚糖 (KY-1-1 ) 的制备方法包括, 粗多糖的提取和粗多糖的分离纯化两 个主要过程。 粗多糖是通过醇沉和三氯乙酸脱蛋白及其透析等工艺而制备得到的。 其具 体的确认过程将在下面的实施例中详细说明。 本发明的葡聚糖是目前研究发现的蛞蝓粗多糖中活性最强部位的其中一种的均一 多糖, 是目前抗肺癌效果最好的组分之一。 本发明确定了该葡聚糖的分子结构为以后药 物合成和药理药效深入研究奠定了基础。
以下将结合附图详细介绍本发明的葡聚糖的制备方法、 分子结构确定和药效学研
附图说明
图 1是葡聚糖分子量与保留时间关系式的标准曲线;
图 2是水相组分经层析系统 (S-1000) 分离得到两种组分的 HPLC图;
图 3是组分 KY-1再经 S-400凝胶柱分离得到两种组分的 HPLC图;
图 4是组分 KY-1-1的 HPLC检测结果图;
图 5是组分 KY-1-2的 HPLC检测结果图;
图 6是组分 KY-2的 HPLC检测结果图;
图 7是组分 KY-1-1的紫外全扫描图;
图 8是标准糖样中单糖的气相色谱图;
图 9是组分 KY-1-1的气相色谱图;
图 10是组分 KY-1-1甲基化后的总离子流图;
图 11是保留时间为 3.44 min的质谱图;
图 12是 27°C时 KY-1-1的 1H核磁共振图谱; 图 13是 27°C时 KY-1-1的 13C 核磁共振图谱;
图 14是 27°C时 KY-1-1的 13C DEPT-135的核磁共振图谱;
图 15是 KY-1-1的 1H-1H COSY核磁共振图谱;
图 16是 KY-1-1的 TOCSY核磁共振图谱;
图 17是 KY-1-1的 HMQC部分核磁共振图谱;
图 18是 KY-1-1的 HMBC核磁共振图谱;
图 19是 KY-1-1的 NOESY部分核磁共振图谱。 具体实施方式
本发明提供的葡聚糖是从蛞蝓体内提取出来的, 实验证明其具有很好的抗肺癌作 用。 以下详细介绍本发明葡聚糖的提取方法、 结构确认和疗效验证。
一、 本发明葡聚糖的制备方法
1. 粗多糖的提取
材料: 高突足襞蛞蝓全虫 CVaginulus alte Ferussac,182i;), 隶属软体动物门、 腹足纲、 肺螺亚纲、 柄眼目、 足襞蛞愉蝓科、 足襞蛞蝓属。
称取鲜蛞蝓(1604g)加入 1000 mL水、匀浆、 离心 6000 r/min, 15 min, 得上清液, 残渣反复如上操作, 最后上清液合并, 浓缩, 得上清液 lOOO mL, 然后往合并的上清液 中加入乙醇, 调最终浓度为 60%, 静置过夜, 离心, 得沉淀, 冷冻干燥, 得鲜蛞蝓粗提 物 (40g, 得率 2.5%, 多糖含量 16.9 %) 。
将以上鲜蛞蝓粗提物加水溶解, 按照体积比 1 : 10的 30%的三氯乙酸混匀 15min后, 静置 30min, 离心, 弃渣, 得上清液, 用自来水, 蒸熘水, 流动透析 (截流分子量为 1 万 Dalton的膜),浓缩,冷冻干燥,得蛞蝓粗多糖(24g,得率 1.5%, 多糖含量 19.8%)。 经药理活性筛选, 此蛞蝓粗多糖组分是最有效组分。
2、 粗多糖的分离纯化
将冷冻的粗多糖在室温下缓慢溶解, 离心 (12000 r/min, lOmin) 去除沉淀。 上清 液透析、脱三氯乙酸( 1000D透析袋),将截留液上离子交换柱 [DEAE Sepharose fastflow (室温, 自然 pH值)], 蒸熘水洗脱得水相组分, 浓缩后经凝胶柱 (S-1000) 分离可接收 到两种组分, 分别命名为 KY-1和 KY-2。 随后, 将 KY-1经凝胶柱 (S-400) 继续分离 可得到另外两种组分, 分别命名为 KY-1-1和 ΚΥ-1-2。 其中 KY-1-1则为本发明的葡聚 糖。 二、 本发明提取物中葡聚糖的结构确认
1. 纯度检测及多糖分子量的测定
( 1 ) 葡聚糖标准曲线:
称取 Dextran T-2000、 Dextran T-500、 Dextran Τ-70 、 Dextran Τ-40禾口 Dextran T-10 各 O.Olg分别溶于 5mL去离子水中, 用 HPLC ( SHODEX SB-804 凝胶柱, 200nm检测) 测出相应的保留时间。 以保留时间为横坐标, 分子量的对数值为纵坐标, 作葡聚糖标准 曲线 (如图 1所示) , 再从图中拟合出曲线的回归方程曲线的回归方程:
y = -0.6647X + 7.6644
R2 = 0.9961
HPLC的工作参数如下:
一次进样量: 20μ1
流动相: 二次重蒸水
流速: 0.8mL/min
柱温: 40 °C
检测器: 紫外检测器 (206nm、 280nm)
(2) 高效液相色谱 (HPLC)检测
组分 KY-1、 KY-1-K ΚΥ-1-2、 ΚΥ-2经 HPLC (条件同上) 分析, 得到图 2-6 (其 中图 2中, 4-6管为 KY-1 , 13-16管为 KY-2 (红色 190nm, 蓝色 280nm) ) 。 由图可 知, KY-1-1组分纯度较高且 280nm吸收较弱, 分子量大于 200万。 KY-2至少含有三个 组分, 第一个组分在 280nm处有一定的吸收。 经分析可知: KY-1-1为均一组分, 其余 均为混合组分。
2. 多糖含量测定
( 1 ) 标准曲线的绘制
取样品 (105 °C干燥恒重) 的分析纯的无水葡萄糖 0.5000 g, 稀释至 100 ml, 再取 出溶液 l ml 溶于 50 ml容量瓶加蒸熘水定溶至 50 ml。 分别取 0.2 ml、 0.4 ml、 0.6 ml、 0.8 ml、 1.0 ml、 1.2 ml, 每样分别用三支试管, 分别加入蒸熘水至 2 ml, 然后加入苯酚 ( 5%) 1 ml, 再加入 5 ml浓硫酸、 振荡、 放在沸水浴中加热 15 min, 取出放在冰水中 迅速冷却, 然后用紫外分光光度计在 490 nm处测定其吸光值。
(2) 样品的测定
分别取 KY-1、 ΚΥ-2两种样品分别配制成 lmg/ml溶液, 然后依次稀释至 20、 40、 60、 80μ§/ιη1, 取 1ml样品液 1毫升苯酚溶液加 15ml试管中磁力振荡摇匀, 加入 5ml浓 硫酸, 放在沸水浴中加热 15 min, 取出放在冰水中迅速冷却, 然后用紫外分光光度计在 490 nm处检测其吸光值。 查的样品 数
多糖 (%) = l 00%
样品称样量 测定结果如表 1所示, 从表中可以看出, KY-1的多糖含量在 90%以上。
表 1各组分多糖含量的测定
组分类别 吸光度 粗品含量 多糖含量
( g/ml) ( % )
KY-1 0.490 0.622 0.525 60 90.1
KY-2 0.275 0.303 0.303 60 32.3
3、 ΚΥ-1-1的紫外分析
称取样品 3 mg, 用蒸熘水配制成 1 mg/mL的溶液, 在 190〜600 nm下进行紫外全 扫描。 结果显示 (如图 7)在 280 nm和 260 nm处都没有吸收峰, 说明此均一多糖不含 蛋白质和核酸。
4. KY-1-1的糖组成分析
( 1 ) 标准单糖样品的乙酰化
精密称取等摩尔 (2 mmol/L) 的半乳糖、 岩藻糖、 木糖、 鼠李糖、 葡萄糖、 甘露糖 和阿拉伯糖, 分别溶于 3 mL蒸熘水中, 加入 20〜30 mg硼氢化钠(NaBH4), 于室温下, 间歇振荡, 还原 3 h, 然后用冰醋酸中和过量的 NaBH4, 至溶液不再产生气泡为止, pH 在 4〜5之间, 加入 3mL甲醇, 减压浓缩蒸干, 重复 4〜5次, 以除去反应副产物硼酸 及水分, 然后置于真空干燥器中过夜。 次日, 110 °C烘箱中加热 15 min, 充分除去残留 的水分后, 加入 4 mL醋酐, 100 °C反应 l h, 冷却, 然后加入 3 mL甲苯, 减压浓缩蒸 干, 重复 4〜5次, 以除去多余的醋酐。 将乙酰化后的产物用 3 mL氯仿溶解后转移至分 液漏斗, 加入少量蒸熘水充分震荡后, 除去上层水溶液, 如此重复 4次。 氯仿层以适量 的无水硫酸钠干燥, 定容至 10 mL, 进行 GC检测。 结果见图 8, 六种标准单糖都得到 很好的极限分离。
(2) 样品的乙酰化处理
取 2 mg KY-1-1样品, 放入薄壁长试管中, 加入 2 mol/L的三氟乙酸(TFA) 4mL, 在 110 °C水解 2 h。 将水解液低于 40 °C减压蒸干, 然后加入 3 mL甲醇蒸干, 重复上述 操作 4〜5次, 以完全除去 TFA。 然后按照同样方法进行还原、 乙酰化, 用氯仿定容至 5ml, 进行 GC检测。 结果见图 9, 此多糖组分主要含有葡萄糖单糖组分, 另外还含有一 些非糖类杂质, 可能是实验在操作过程中反应的一些副产物未完全除去的缘故。
( 3 ) 仪器测试条件
气相色谱仪(GC)配备 DB-23石英毛细管柱, 30 mx0.25 mmx0.25 μιη 。 氢火焰离 子化检测器(FID ), 高纯氮作载气。程序升温: 柱初温 120 °C, 以 15 °C/min升至 240 °C, 恒 6.5 min。 进样口温度 250 °C, 分流比 1 :50。 检测器温度 250 °C, 氢气 35 ml/min,空气 350 mL/min,尾吹气 30 mL/min。 柱流速为 1 mL/min。
5. KY-1-1的甲基化分析
( 1 ) NaOH-DMSO ( 0.025 g/mL) 试剂的制备
取 0.5 g NaOH溶于 1 mL重蒸水中, 取 0.2 mL NaOH(50%;)与 0.2 mL 甲醇混匀,然 后用 6 mL DMSO稀释, 在旋涡混合器上剧烈振荡 NaOH-DMSO悬液,然后超声波浴 3 〜5 min, 离心收集 NaOH沉淀, 重复三次, 最后 NaOH沉淀悬于 4 mL中备用。
(2) 甲基化步骤
取样品 KY-1-1 2 mg置于带盖的试管中干燥,加 0.5 mL DMSO于试管中,超声波浴 2 min, 然后室温放置 30 min, 在上述试管中加入 0.6 mL NaOH-DMSO悬液和 0.6 ml碘甲 烷, 盖紧盖子, 反复进行超声波浴和旋涡混合器上混合, 7 min后加入 4 mL水到上述混 合物中终止甲基化反应, 甲基化的多糖用等量的氯仿进行萃取, 若分层不好, 可进行短 暂的离心以帮助分层, 上层的水相弃去, 下层的有机相用等量的水萃取 5次。 有机相在 40 °C下减压浓缩。 重复上述操作一次。 DMSO 0.2 mL, NaOH-DMSO 0.2 mL, 碘甲烷 0.3 mL, 水 3 mL。 IR检测。
将已完全甲基化的样品溶于 3 mL 88%的甲酸溶液中, 密塞, 100 °C下解聚 3 h。 向 反应瓶中加入 3 mL甲醇, 40 °C下减压浓缩蒸干, 重复 3次。 向解聚的多糖样品加入 2 mol/L三氟醋酸(TFA) 4 mL, 100 °C下封管水解 6 h, 40 °C下减压浓缩蒸干, 重复 5次。
将完全酸水解的样品溶于 3 mL左右的蒸熘水中, 加入 20 mg NaBH4, 密塞, 于室 温下还原 3 h。 后用冰醋酸中和, pH值在 4〜5之间, 加入 3 mL甲醇处理, 减压浓缩蒸 干, 反复 4〜5次。 然后置于 P205真空干燥器中室温下抽真空过夜, 再于 100 °C烘箱中 力口热 15 min。
上述处理过的样品加入 3 mL醋酐, 密塞, 100°C 反应 l h, 然后加入 3 mL甲苯, 减压浓缩蒸干, 重复 4〜5次。 乙酰化后的产物用等体积的氯仿和蒸熘水交替溶解转移 到分液漏斗中, 充分震荡后, 静止。 分层后, 除去上层水溶液, 再用等体积的蒸熘水洗 涤 4次, 除去水层, 氯仿层用无水硫酸钠干燥, 震荡放置 10 min, 再过滤除去硫酸钠固 体, 减压浓缩蒸干, 再溶于 0.5 mL氯仿, 上 GC-MS。 分析结果如图 10和 11所示, 由 图可知保留时间在 3.44min的碎片离子峰 43, 58, 71, 101, 117, 127, 159, 186, 201 等, 是 1, 4连接的葡聚糖。
(3 ) 色谱条件
色谱条件: 气相-质谱联用(GC-MS)配备 DB-5MS石英毛细管柱, 30 m χ 0.25 mm x 0.25 μιη。 程序升温: 柱初温 80°C, 保持 1 min,以 5°C/min至 200°C, 再以 2°C/min至 215°C, 最后以 20°C/min至 270°C, 氦气作载气, 进样口温度 250°C, 分流比 1 :50, 柱 流速为 1 mL/min。 EI(70 eV),倍增器电压 350 v, 灯丝电流 250 μΑ, 接口温度 200 °C, 离子源温度 250°C, 质量数扫描范围 42-462 amu, 扫描速率 2.5 scan/s。
6. KY-1-1核磁共振分析
取样品 KY-l-1 20 mg溶于 0.5 mL D2O中, 反复冻干 3次后, 溶于 0.5 mL D2O中。 在 500 MHz核磁共振仪测定, 1H NMR (25 °。和 60 "C ) 25 °C时以 ΗϋΟδ4.78为内标, 13C MR的化学位移以饱和的三甲基硅丙烷磺酸钠的重水溶液(D20+DSS)峰的 δ=0.00 ppm为外标。 在 60 °C下对 iH-iH相关谱 (1H-1H COSY, 1H-1H correlated spectroscopy)^全 相关谱 (TOCSY, total correlation spectroscopy) 异核多量子相关谱 (HMQC, heteronuclear multiple quantum coherence)、 异核多键相关谱 (HMBC, heteronuclear multiple-bond correlation spectroscopy)禾口 NOESY谱 (Overhauser effect spectroscopy)进行测定。
iH NMR的 27°C图谱如图 12所示中, 在异头氢区的共振区域 δ 5.443主要有一个异 头氢的共振峰, 在 δ 5.02有一些小的共振峰, 这个小的共振峰是异头区的共振峰但是此 残基在此多糖中含量微量, 可能样品中所含微量杂质所致。 在 δ 3.50〜4.41处共振峰严 重重叠, 不能给出准确信息。
13C NMR谱如图 13所示, 由图可知: 异头碳区 δ 102.47为异头碳信号; 在 δ63.21 处是葡萄糖的 6位未发生取代的共振峰; 在 δ 69.0左右没有出现反峰 (如图 14所示), 说明此组分不含 6位取代的残基。 糖的连氧碳信号在 δ 63.21〜79.56。
1H-1H COSY谱 (如图 15所示)、 T0CSY谱 (如图 16所示) 可以推出氢的化学位 o
移, 碳的化学位移通过 HMQC谱 (如图 17所示) 由已知氢的化学位移推出 (表 2)。
表 2 KY-1-1的化学位移
糖残基 H和 C的化学位移
1 2 3 4 5 6a 6b
→4)-a-D-Glcp H 5.44 3.69 4.01 3.74 3.89 3.79 3.87
C 79.56 73.89 63.17 残基→4)-a-D-Glcp的化学位移都大于 5.00 ppm,并且 H-1在 1H MR谱中是一个单 峰、 2小于 3 Hz, 在 NOESY中 H-1/H-2有交叉峰, 这些都可以表明在异头区域是 a-构型。残基→4)-a-D-Glcp的 C-4的化学位移比未发生取代的单糖残基同位点上的化学 位移向低场移动约 7 ppm, 说明这些位点是发生取代的位点, 这些结果和 GC-MS的分 析结果是一致的。
KY-1-1重复单元中残基在 HMBC谱 (如图 18所示) 中的 HI和 C4有相关共振峰, 和 NOESY谱 (如图 19所示) 在 NOESY谱中, 残基 HI和 H4亦有相关共振峰, 说明 此重复单元是以 a-1,4相连接的葡聚糖。
综上所述, KY-1-1是一个由葡萄糖组成的, 构型为 a-构型的 1,4连接的吡喃型葡聚 糖, 它的具体重复单元结构为:
→4)-a-D-Glcp-(l→4)- a-D-Glcp-(l→
其立体化学结构式为:
Figure imgf000012_0001
三、 KY-1-1的药效学实验
1.材料与方法
(1) 材料
人肺腺癌 (Α549)细胞购于中南大学湘雅医学院细胞中心, 人小细胞肺癌 (NCI-H446) 细胞和中国仓鼠肺上皮 (CHL)细胞购于中科院上海细胞生物研究所, 用含 10%小牛血清 RPMI 1640培养液, 置 37°C, 5%C02培养箱培养, 常规传代, 取对数生长期细胞进行 实验。
电子分析天平称取 3.8g KY-1-1装入 10mL清洁西林瓶中, 适量 DMSO溶解后, 加 入生理盐水分别稀释至 300.0 g/mL lOO.O g/mL 30.0 g/mL 10.0 g/mL和 3.0 g/mL l.O g/mL, 分装于 2mLEP管中, 置于 4°C冰箱中保存。
注射用顺氯氨铂(DDP), 齐鲁制药有限公司, 规格: 10mg/瓶, 批号: 6030052DB, 用 NS溶解, 稀释至 lOO.O g/mL, 10.0 g/mL和 1.0 g/mL。
紫杉醇(TAX), 北京四环医药科技股份有限公司生产, 规格: 30mg/5ml/支, 批号: 060830, 用 NS溶解, 稀释至 100.0 g/mL, 10.0 Mg/mL和 1.0 g/mL。
(2) 方法
1) KY-1-1选择性抑制人肺癌细胞增殖活性
制备人肺腺癌 (A549)细胞, 人小细胞肺癌 (NCI-H446)细胞和中国仓鼠肺上皮 (CHL) 细胞悬液, 调节浓度为 0.5x104个 /mL, 接种于 96孔塑料培养板, 每孔液量为 180μ1, 待细胞贴壁后 (大约 12小时), 分别加入受试物和对照药品实验液 20μΙ7孔, 使 KY-1-1 的终浓度分别为 0.1 g/mL ,0.3 g/mL, 1.0Mg/mL, 3.0Mg/mL, lO.O g/mL和 30.0 g/mL, 顺氯氨铂和紫杉醇终浓度为 0.1 Mg/mL 培养 48 力口入 MTT (5mg/mL MTT: PBS) 20μ1/ 孔, 继续培养 6小时, 吸除各孔培养液, 加入 100μΙ7孔 DMSO, 振摇使紫蓝色沉淀充 分溶解, 用 EXL-800型酶标仪在 570nm波长下测定吸光度值 (A)。 按公式: IR(%)=(1- 药物处理组 A均值 /对照组 A均值) X 100%计算抑制率半数抑制浓度 IC50采用 CalcusZn 程序计算。 受试物的细胞毒性选择指数按公式: SI = IC50(CHL细胞) / IC50(A549细胞 或 NCI-H446)计算。 以上实验重复 2次。
2) KY-1-1对人肺癌细胞锚定依赖性生长的影响
制备人肺腺癌 (A549)细胞和人小细胞肺癌 (NCI-H446)细胞单细胞悬液, 调节浓度为 0.3x103个 /mL。 每孔的培养体系: 单细胞悬液 1.8mL, 受试物或对照药品实验液 0.2ml。 KY-1-1 终浓度分别为 O. l g/mL ,0.3 g/mL, 1.0Mg/mL , 3.0Mg/mL , 10.0Mg/mL 禾口 30.0Mg/mL; DDP (O. l g/mL) 和 Tax (0.1 g/mL), 空白对照组加入等量培养基; 每组 3孔, 接种于 24孔板中, 置 C02培养箱中培养 7天。 每孔加入 95 %的甲醇 0.5mL, 固 定 15min, 吉姆萨染色 10-30min。 以细胞数大于 50个或直径大于 75μιη为一个集落, 由 3人在倒置显微镜下各自计数每孔集落数, 取均数并记录。 按公式: 集落形成抑制率 ( % ) = [1一 (处理组集落均数 /空白对照组集落均数 )]χ ΐοο % 计算集落抑制率和平皿效 率=集落均数 /接种细胞数 xl00% 计算平皿效率。 半数抑制浓度 IC50采用 CalcusZn程 序计算。 以上实验重复 2次。
3 ) KY-1-1对人肺癌细胞锚定非依赖性生长的影响
取 24孔培养板铺底层琼] ¾每孔加入 0.6 %琼脂培养基 0.5mL制备人肺腺癌 (A549) 细胞和人小细胞肺癌 (NCI-H446)的单细胞悬液, 调节浓度为 1.6x103个 /mL; 每组的上 层琼脂培养体系: 单细胞悬液 1.6ml, 受试物或对照药品 0.2ml。 KY-1-1 终浓度分别为 0. lMg/mL ,0.3Mg/mL, 1.0Mg/mL, 3.0Mg/mL, 10.0Mg/mL, 30.0 g/mL; DDP (O. lMg/mL) 和 Tax (O. lMg/mL) 0.2mL, 空白对照组加入等量培养基; 用球形刻度吸管快速与水浴 加热的 3%琼脂液 0.2mL混匀。 立即以 0.5mL/孔接种于已铺底层琼脂的 24孔板中, 每 组设置 3个复孔。 置于 C02培养箱中培养 7天。 以细胞数大于 50个或直径大于 75μιη 为一个集落, 3人各自在倒置显微镜下计数每孔的集落数, 取均数并记录。 按公式: 集 落形成抑制率 (%) = [1— (处理组集落均数 /空白对照组集落均数 )]χ ΐοο % 计算集落抑 制率和平皿效率=集落均数 /接种细胞数 xl00% 计算平皿效率。 半数抑制浓度 IC50采 用 CalcusZn程序计算。 以上实验重复 2次。
4) 统计方法 实验数据用 ±SD表示多组均数之间的比较采用 SPSS 15.0 Evaluation for windows 软件行 One Way ANOVA分析, 方差后分析采用 LSD和 SNK法, 均数的两两比较采用 Student's t检验, 以 PO.05为统计学意义显著性标准。
2.实验步骤和结果
( 1 ) KY-1-1对中国仓鼠肺上皮 (CHL)细胞增殖的影响
如表 3所示, KY-1-1对中国仓鼠肺上皮 (CHL)细胞增殖无明显的抑制作用, 其 IC: 值为 411.98Mg/mL。
表 3 KY-1-1对中国仓鼠肺上皮 (CHL)细胞增殖的影响 (n=9, ±SD)
药物 浓度 (Mg/mL) A570 IR(%) IC50
空白对照组 N.S 1.84±0.06 - —- 溶媒对照组 0.02%DMSO 1.82±0.04 3.41 —-
TAX 0.1 1.25±0.14** 83.13 —-
DDP 0.1 1.41±0.30** 76.35 —-
KY-1-1 0.1 1.80±0.05** 7.25 411.98
KY-1-1 0.3 1.73±0.01* 16.87
KY-1-1 1.0 1.65±0.02** 25.45
KY-1-1 3.0 1.53±0.01** 35.96
KY-1-1 10.0 1.52±0.01** 49.08
KY-1-1 30.0 1.48±0.03** 63.89
* p<0.05 VS 对照; ** p<0.01 VS对照;
(2) KY-1-1对人小细胞肺癌 NCI-H446细胞增殖的影响
如表 4所示, KY-1-1对人小细胞肺癌 NCI-H446细胞增殖具有明显的抑制作用, 呈 剂量依赖性,其 IC5Q值为 7.22 Mg/mL。 KY-1-1对人小细胞肺癌 (NCI-H446)具有选择性抑 制作用, 对正常细胞毒性低, 其对人小细胞肺癌 NCI-H446细胞系的细胞毒性选择指数 为 57.06(411.98/7.22)。
表 4 KY-1-1对人小细胞肺癌 (NCI-H446)细胞增殖的影响 (n=9, ^ ±SD) 药物 浓度 (Mg/mL) A570 IR(%) IC50 空白对照组 N.S 1.63±0.10 - —- 溶媒对照组 0.02%DMSO 1.59±0.10 2.27 —-
TAX 0.1 0.27±0.01** 83.54 —-
DDP 0.1 0.36±0.03** 77.89 —-
KY-1-1 0.1 1.58±0.11 2.55 7.22
KY-1-1 0.3 1.33±0.05** 18.20
KY-1-1 1.0 1.16±0.06** 28.54
KY-1-1 3.0 1.01±0.07** 38.12
KY-1-1 10.0 0.80±0.04** 50.98
KY-1-1 30.0 0.52±0.02** 67.94
p<0.01 VS对照;
(3 ) KY-1-1对人小细胞肺癌 (A549)细胞增殖的影响
如表 5所示, KY-1-1对人肺腺癌 (A549)细胞增殖具有明显的抑制作用, 呈剂量依赖 性., 其 IC5Q值为 9.44Mg/mL。 KY-1-1对人小细胞肺癌 (A549)细胞具有选择性抑制作用, 对正常细胞毒性低, 其对人肺腺癌 A549 细胞系的细胞毒性选择指数为 43.64(411.98/9.44)。
表 5 KY-1-1对人肺腺癌 (A549)细胞增殖的影响 (n=9, ^ ±SD)
药物 浓度 (Mg/mL) A570 IR(%) IC50
空白对照组 N.S 1.57±0.09 - —- 溶媒对照组 0.02%DMSO 1.52±0.10 3.41 —-
TAX 0.1 0.27±0.03** 83.13 —-
DDP 0.1 0.37±0.03** 76.35 —-
KY-1-1 0.1 1.46±0.07** 7.25 9.44
KY-1-1 0.3 1.31±0.12** 16.87
KY-1-1 1.0 1.17±0.11** 25.45
KY-1-1 3.0 1.01±0.08** 35.96 KY-1-1 10.0 0.80±0.03** 49.08
KY-1-1 30.0 0.57±0.05** 63.89
** p<0.01 VS 对照;
(4) KY-1-1对人小细胞肺癌 (NCI-H446)细胞锚定依赖性生长的抑制作用 如表 6所示, KY-1-1对人小细胞肺癌 (NCI-H446)细胞锚定依赖性生长具有明显抑制 作用, 呈剂量依赖性., 其 IC5Q值为 7.01Mg/mL。
表 6 平皿克隆形成法测定 KY-1-1 对 NCI-H446 细胞锚定依赖性生长能力的影响
(n=9, ^ ±SD)
药物 浓度 (Mg/mL) 集落数 (个) IC50(Mg/mL) 空白对照组 N.S 108.22±4.79
溶媒对照组 0.02%DMSO 105.78±5.09 2.26
TAX 0.1 19.11±2.57** 82.34
DDP 0.1 23.33±4.18** 78.44
KY-1-1 0.1 106.56±6.95 1.54 7.01
KY-1-1 0.3 89.11±2.76** 17.66
KY-1-1 1.0 76.89±5.28** 28.95
KY-1-1 3.0 63.78±3.31** 41.07
KY-1-1 10.0 49.78±3.38** 54.00
KY-1-1 30.0 37.67±3.28** 65.19
** p<0.01 vs对照
( 5 ) KY-1-1对人肺腺癌 (A549)细胞锚定依赖性生长能力的抑制作用
如表 7所示, KY-1-1对人肺腺癌 (A549)细胞具有明显的抑制作用, 呈剂量依赖 其 IC5Q值为 8.94 g/mL。
表 7 平皿克隆形成法测定 KY-1-1对 A549细胞锚定依赖性生长能力的影响 (n=9, ±SD)
药物 浓度 (Mg/mL) 集落数 (个) 抑制率(%) IC50(Mg/mL) 空白对照组 N. S 98.78±5.21
溶媒对照组 0.02 %DMSO 96.11±3.95 2.70
TAX 0.1 17.78±2.05** 82.00
DDP 0.1 23.89±4.43 ** 75.82
KY-1-1 0.1 95.56±4.88 3.26 8.94
KY-1-1 0.3 78.67±4.00** 20.36
KY-1-1 1.0 72.22±3.53 ** 26.88
KY-1-1 3.0 63.78±3.31 ** 35.43
KY-1-1 10.0 51.11±2.32** 48.26
KY-1-1 30.0 36.11±6.33 ** 63.44
** p<0.01 vs 对照
( 6 ) KY-1-1对人小细胞肺癌 (NCI-H446)细胞非锚定依赖性生长能力的抑制作用 如表 8所示, KY-1-1对人小细胞肺癌 (NCI-H446)细胞集落形成能力具有明显抑制作 呈剂量依赖性, 其 IC5Q值为 7.60 Mg/mL。
表 8 KY-1-1对人小细胞肺癌 (NCI-H446)细胞集落形成的影响 (n=9, ±SD) 药物 浓度 (Mg/mL) 集落数 (个) 抑制率 (%) IC50(Mg/mL) 空白对照组 NS 70.78±3.38
溶媒对照组 0.02 %DMSO 68.78±3.96 2.83
TAX 0.1 11.00±1.58** 84.46
DDP 0.1 17.00±2.74** 75.98
KY-1-1 0.1 68.22±1.99 3.61 7.60
KY-1-1 0.3 59.33±2.65** 16.17
KY-1-1 1.0 49.78±1.86** 29.67
KY-1-1 3.0 43.22±3.73 ** 38.93
KY-1-1 10.0 34.44±2.51 ** 51.33
KY-1-1 30.0 24.44±2.51 ** 65.46 p<0.01 vs 对照
(7) KY-1-1对人小细胞肺癌 (A549)细胞非锚定依赖性生长能力的抑制作用 如表 9所示, KY-1-1对人肺腺癌 (A549)细胞集落形成能力具有明显抑制作用, 呈剂 量依赖性, 其 IC50值为 9.11 Mg/mLo
表 9 KY-1-1对人肺腺癌细胞集落形成的影响 (n=9, ±SD)
药物 浓度 (Mg/mL) 集落数 (个) IC50(Mg/mL) 空白对照组 NS 61.00±2.74
溶媒对照组 0.02 %DMSO 58.89±3.44 3.46
TAX 0.1 10.00±1.87** 83.61
DDP 0.1 14.00±2.00** 77.05
KY-1-1 0.1 57.44±3.64* 5.83 9.11
KY-1-1 0.3 51.22±4.82** 16.03
KY-1-1 1.0 44.33±3.46** 27.32
KY-1-1 3.0 39.22±2.11 ** 35.70
KY-1-1 10.0 29.78±2.33** 51.18
KY-1-1 30.0 22.89±2.62** 62.48
p<0.05 VS 对照; ** p<0.01 VS 对照; 四、 抗肺癌药物组合物
(一)按如下组分和方法配制: KY-1-1 10g, 甘露醇 1000 g (赋型剂), 加注射用水 加至 1000ml后混匀, 调节 PH为 5.0-5.5,加入 0.05 %活性炭于 40-45 °C脱色 15分钟,先 用 0.45 u m微孔滤膜粗滤, 再用 0.22 u m微孔滤膜滤至澄清, 复测含量和 PH值,分装入 注射用玻璃瓶, 5ml/瓶, 冷冻真空干燥机冻干, 压盖, 常规包装、 贴签、 灭菌即成。 规 格: lOOmg/瓶。
用法与用量: 葡聚糖 lOOmg加入 5%葡萄糖溶液中, 静脉滴注, 30分钟滴完。 每日 2次, 21天一个疗程。 可酌情连续使用数个疗程。
(二) 蛞蝓多糖注射剂的制备方法 按如下组分和方法配制: KY-1-1 10g, 甘露醇 1000 g (赋型剂), 加注射用水加至 1000m后混匀,调节 PH为 5.0-5.5,加入 0.05 %活性炭于 40-45°C脱色 15分钟,先用 0.45 u m微孔滤膜粗滤, 再用 0.22 u m微孔滤膜滤至澄清, 复测含量和 PH值, 无菌分装入 注射用 5ml安瓿内封口, 常规包装、 贴签、 灭菌、 入库。 得到 lOOmg/安瓿的注射液。 规格: lOOmg/安瓿 (5ml/安瓿)
用法用量: 蛞蝓多糖 100mg(100mg/安瓿)加入 5%葡萄糖溶液中, 静脉滴注, 30分 钟滴完。
每日 2次, 21天一个疗程。 可酌情连续使用数个疗程。
在本发明的其他实施例中, 添加药学上合适的辅料, 制备成片剂、 胶囊剂等剂型。 以上所揭示的实施例仅仅用来解释本发明的葡聚糖, 不应以此来限制本发明的保护 范围, 根据本发明的公开内容的本质所作的等同变化, 仍属于本发明的保护范围。

Claims

权利 要 求
、 一种主链由下述重复结构单元构成, 分子量为 150万 -250万道尔顿的葡聚糖
Figure imgf000020_0001
、 如权利要求 1所述的葡聚糖, 其特征在于, 所述葡聚糖是从蛞蝓中提取出来的 ( 、 权利要求 1所述的葡聚糖在制备抗肺癌药物中的应用,
、 一种治疗肺癌的药物组合物, 其含有有效剂量的权利要求 1所述的葡聚糖 t
PCT/CN2008/071414 2008-06-23 2008-06-23 一种治疗肺癌的葡聚糖 WO2009155742A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/000,194 US8519121B2 (en) 2008-06-23 2008-06-23 Dextran for treating lung cancer
PCT/CN2008/071414 WO2009155742A1 (zh) 2008-06-23 2008-06-23 一种治疗肺癌的葡聚糖
JP2011515058A JP2011525550A (ja) 2008-06-23 2008-06-23 肺癌治療用デキストラン
EP08757823A EP2319873A4 (en) 2008-06-23 2008-06-23 DEXTRAN TO TREAT LUNG CANCER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071414 WO2009155742A1 (zh) 2008-06-23 2008-06-23 一种治疗肺癌的葡聚糖

Publications (1)

Publication Number Publication Date
WO2009155742A1 true WO2009155742A1 (zh) 2009-12-30

Family

ID=41443965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071414 WO2009155742A1 (zh) 2008-06-23 2008-06-23 一种治疗肺癌的葡聚糖

Country Status (4)

Country Link
US (1) US8519121B2 (zh)
EP (1) EP2319873A4 (zh)
JP (1) JP2011525550A (zh)
WO (1) WO2009155742A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072012A2 (en) * 2009-12-08 2011-06-16 Vanderbilt University Improved methods and compositions for vein harvest and autografting
CN111269241A (zh) * 2018-12-05 2020-06-12 广西久福生物科技有限公司 一种新型化合物及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546531A (zh) * 2003-12-04 2004-11-17 中国药科大学 一种多糖及其制法和用途
CN1939346A (zh) * 2006-04-27 2007-04-04 广州康采恩医药有限公司 蛞蝓多糖及其生产工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69432926T2 (de) * 1993-02-05 2004-05-13 Epigen, Inc., Wellesley Humanes carcinoma-antigen (hca), hca antikörper, hca immunoassays, aufzeichnungsmethoden und therapy
US6235516B1 (en) * 1996-04-25 2001-05-22 Novartis Ag Biocatalysts with amine acylase activity
CN1189363A (zh) * 1997-01-25 1998-08-05 衡阳医学院第一附属医院 复方蛞蝓及其制作方法
CA2338319A1 (en) * 1998-07-21 2000-02-03 Monsanto Company Clarification of protein precipitate suspensions using anionic polymeric flocculants
CN1562087A (zh) * 2004-04-15 2005-01-12 广州康采恩医药有限公司 治疗肺癌、慢性支气管炎和支气管哮喘的蛞蝓制剂及其制备方法
CN1846784A (zh) * 2005-11-25 2006-10-18 广州康采恩医药有限公司 蛞蝓pe4糖蛋白及其生产工艺
EP1911791A1 (en) * 2006-10-03 2008-04-16 Institut Curie Method for treating surfaces containing Si-H groups

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546531A (zh) * 2003-12-04 2004-11-17 中国药科大学 一种多糖及其制法和用途
CN1939346A (zh) * 2006-04-27 2007-04-04 广州康采恩医药有限公司 蛞蝓多糖及其生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI CHUANWAN ET AL.: "Research Advancement of Polysaccharides", GUANG DONG HUA GONG, vol. 1, 2004, pages 36 - 40, 11, XP008141144 *

Also Published As

Publication number Publication date
EP2319873A4 (en) 2011-06-22
US20110263842A1 (en) 2011-10-27
JP2011525550A (ja) 2011-09-22
EP2319873A1 (en) 2011-05-11
US8519121B2 (en) 2013-08-27

Similar Documents

Publication Publication Date Title
Liu et al. Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells
Tao et al. Structural characterization and immunomodulatory activity of two novel polysaccharides derived from the stem of Dendrobium officinale Kimura et Migo
Wang et al. Structural characterization and in vitro antitumor activity of polysaccharides from Zizyphus jujuba cv. Muzao
Niu et al. Structure and anti-tumor activity of a polysaccharide from Bletilla ochracea Schltr.
Ren et al. A polysaccharide isolated and purified from Platycladus orientalis (L.) Franco leaves, characterization, bioactivity and its regulation on macrophage polarization
CN107011453B (zh) 一种维药恰麻古多糖及其提取方法和应用
Yu et al. Purification of polysaccharide from artificially cultivated Anoectochilus roxburghii (wall.) Lindl. by high‐speed counter current chromatography and its antitumor activity
CN102276754B (zh) 红芪多糖中的硫酸酯葡聚糖及其制备方法和应用
CN111647096B (zh) 一种中性玛咖多糖及其提取方法与应用
WO2009155742A1 (zh) 一种治疗肺癌的葡聚糖
CN108752491A (zh) 超声-微波辅助水提法提取大青叶活性多糖工艺
He et al. Structural characterization and biological evaluation of a new O-acetyl-1, 4-linked-β-d-mannan possessed potential application in hydrophilic polymer materials from Dendrobium devonianum
CN113861301B (zh) 一种非淀粉百合多糖nslp-1及其应用
Zhao et al. An arabinose-rich heteropolysaccharide isolated from Belamcanda chinensis (L.) DC treats liver cancer by targeting FAK and activating CD40
CN110452312B (zh) 一种具有抗消化系统癌症作用的霍山石斛多糖
CN114805626B (zh) 一种抗癌活性多糖及其制备和在制备抗癌药物中的应用
CN104774276B (zh) 一种红豆杉多糖及其制备方法和应用
CN113480674A (zh) 一种黑茶多糖-ⅰ活性成分及其制备方法和在抗癌中应用
WO2005054299A1 (fr) Polysaccharide, sa preparation et son utilisation
NL2032675B1 (en) Inonotus obliquus dextran and preparation method and application thereof
Mo et al. Purification, structural elucidation and in vitro antitumor activity of a novel polysaccharide from sugarcane leaves
WO2014173056A1 (zh) 槐耳多糖蛋白及其制备方法和用途
CN111892662B (zh) 垂盆草均一多糖及制备方法和用途
CN1044856C (zh) 果聚糖同系混合物的药物、生产方法及其用途
CN115558035B (zh) 一种具有免疫调节活性的天麻多糖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008757823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000194

Country of ref document: US