WO2009154435A1 - Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido. - Google Patents

Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido. Download PDF

Info

Publication number
WO2009154435A1
WO2009154435A1 PCT/MX2008/000078 MX2008000078W WO2009154435A1 WO 2009154435 A1 WO2009154435 A1 WO 2009154435A1 MX 2008000078 W MX2008000078 W MX 2008000078W WO 2009154435 A1 WO2009154435 A1 WO 2009154435A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid nitrogen
food
equipment
freezing
nitrogen
Prior art date
Application number
PCT/MX2008/000078
Other languages
English (en)
French (fr)
Inventor
Yamil Adiv Maccise Sade
Maurício Rioseco Orihuela
Original Assignee
Yamil Adiv Maccise Sade
Rioseco Orihuela Mauricio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2008358119A priority Critical patent/AU2008358119B2/en
Priority to NZ582369A priority patent/NZ582369A/xx
Priority to JP2011514508A priority patent/JP5345211B2/ja
Priority to BRPI0813052-3A priority patent/BRPI0813052A2/pt
Application filed by Yamil Adiv Maccise Sade, Rioseco Orihuela Mauricio filed Critical Yamil Adiv Maccise Sade
Priority to US12/449,684 priority patent/US20100139293A1/en
Priority to EP08778968.1A priority patent/EP2317256B1/en
Priority to CA2693739A priority patent/CA2693739C/en
Priority to CN2008800256769A priority patent/CN101828084B/zh
Priority to PCT/MX2008/000078 priority patent/WO2009154435A1/es
Priority to KR1020097027332A priority patent/KR101203237B1/ko
Priority to MX2009007002A priority patent/MX2009007002A/es
Publication of WO2009154435A1 publication Critical patent/WO2009154435A1/es
Priority to IL203048A priority patent/IL203048A/en
Priority to EG2010101832A priority patent/EG26642A/en
Priority to HK11100890.8A priority patent/HK1146834A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • F25D3/11Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air with conveyors carrying articles to be cooled through the cooling space
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/37Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals
    • A23L3/375Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals with direct contact between the food and the chemical, e.g. liquid nitrogen, at cryogenic temperature
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • A23B4/08Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals before or during cooling, e.g. in the form of an ice coating or frozen block
    • A23B4/09Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals before or during cooling, e.g. in the form of an ice coating or frozen block with direct contact between the food and the chemical, e.g. liquid N2, at cryogenic temperature
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • A23B7/05Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals other than cryogenics, before or during cooling, e.g. in the form of an ice coating or frozen block
    • A23B7/055Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals other than cryogenics, before or during cooling, e.g. in the form of an ice coating or frozen block with direct contact between the food and the chemical, e.g. liquid nitrogen, at cryogenic temperature

Definitions

  • the present invention relates to the processes of food freezing, and specifically, refers to an equipment for freezing based on liquid nitrogen, of foods confined in a container intended for distribution to the end user, for food preservation so frozen.
  • Food storage for long periods presents several difficulties that have to be solved.
  • Food can be stored at room temperature for a very limited and short period of time, and it is generally not possible to store food for a long period of time even at low temperatures.
  • organisms such as bacteria, fungi, etc.
  • the growth of such organisms in food can depend on the presence of water in food as well as conditions such as storage or surrounding temperature, etc.
  • the growth of organisms, including bacteria accelerates at room temperature or higher, so that the rate of deterioration of food at higher temperatures is increased, decaying in a shorter period of time.
  • Food freezing is a form of conservation that is based on the solidification of the water contained in them. Therefore, one of the factors to consider in the freezing process is the water content of the product. Depending on the amount of water you have the latent heat of freezing. Other factors are the initial and final temperature of the product as they are determinants in the amount of heat that must be extracted from the product. In food, freezing is defined as the intense application of cold capable of stopping the bacteriological and enzymatic processes that destroy food.
  • the freezing of a food consists in the decrease of the temperature (sensible heat) and later change of phase of liquid to solid (latent heat), of water, since this is its largest component (50 to 90%).
  • the freezing in food is more complex than that of pure water, due to the structures that make up the food: lipids, proteins, fiber, starches, sugars and water, which modify the parameters of freezing.
  • part of the water decreases its temperature to the freezing point (0 0 C) and begins to form small ice cores, "freezing seeds”. Ice begins to form around these nuclei and, depending on the freezing rate, the ice crystals can be elongated, softened at their ends, large, small or formed inside or outside the cell. Depending on the freezing speed, various phenomena can occur, such as:
  • Protein denaturation When the product has slowly frozen or when there have been temperature fluctuations during storage, the ice crystals that are formed grow by extracting water bound to proteins, from such that they become disorganized and are then unable to recover said water during defrosting, so that this water, when lost, drags the water-soluble nutrients. This process changes the texture of the food, producing a hardening and even decreasing its solubility and nutritional value.
  • Starch retraction Starch is formed by linear chains of glucose, called amylose, and by complex branched structures called amylopectin. Starch granules in a cold suspension tend to swell, retaining water, and at a certain temperature they gelatinize by thickening the liquid. When this gel is allowed to stand, the linear chains of amylose are added as if they crystallize and release some of the water previously retained in its structure, in a process called syneresis. Therefore, it is convenient to select starches with a very low proportion of amylose in frozen foods. For example, rice has a 16% amylose ratio, 24% corn and sorghum and tapioca do not contain amylose.
  • Lipid contraction A solid state lipid is called fat, while if it is liquid it is called oil. The change of state from solid to liquid depends on the melting temperature of the lipid. When a food is frozen, the oils solidify and can contract.
  • Cryogenic Cryogenic fluids, nitrogen or carbon dioxide are used, which replace the cold air to achieve the freezing effect.
  • Drying Approximately 80% of the total weight of an animal and even more than one plant, corresponds to water. Water is the major component of food derived from animals and plants. When a food is frozen, water is transformed into ice and a drying effect occurs.
  • Crystallization In order for crystallization to occur more easily, the existence of an insoluole particle or salt that acts as a crystallization nucleus is needed. The lower the temperature, the more easily the phenomenon occurs, forming a greater number of crystalline aggregates and, consequently, the size of the crystals is smaller. On the contrary, at a temperature close to the melting point, the nucleation is slow, the crystalline nuclei are few and, therefore, relatively large crystals result. When studying the forms of the ice crystals under a microscope, it is observed that rapid freezing produces small, more or less rounded crystals while slow freezing results in larger, elongated or needle crystals. This slow freezing results in the breakage of the fibers and cell walls, losing the food part of its properties.
  • the size of the crystals varies in one area or another of the food. In the peripheral areas the crystals form quickly and they are small in size, while inside the heat transfer is more difficult and the crystals grow more slowly reaching a larger size. As the temperature decreases, a point is reached where the remaining water together with the solutes that have been concentrated solidify together at a saturation point called the eutectic point. This point is many times lower than many commercial freezers are capable of, allowing small amounts of non-frozen water to remain, allowing some microorganisms to survive, although their growth and reproduction is not possible.
  • Freezing rate The quality of a frozen product depends on the speed at which it is frozen. This speed is defined as the minimum distance between the surface and the critical point divided by the time in which the critical point has passed from 0 0 C to -15 ° C. In this way, a freezing process is described as:
  • Blast Frieza In this equipment that circulates the cold air at high speed in a room in which the arrangement of pallets has been made by default. Almost all products can be frozen with this equipment, but the product must be frozen once packed to prevent dehydration or burning. It is also used to freeze meat in carcass which is transported through rails. Fluidized bed: This equipment is used for small products (they were originally designed for the processing of peas). In this equipment the air gusts are projected from the bottom to the top, practically suspending the product, rotating it, to make a homogeneous and fast freezing. The biggest problem with this equipment is that bursts of air can damage or burn the product due to the high air velocity and cold intensity.
  • Freezer spin This system is one of the most modern mechanical systems and the most efficient. Here turbulence is generated from fans that are designed to generate a uniform cold. The product rotates in a spiral band and cools in periods of 45 min. at 1 hr. Because the air flow is not direct, it damages the product in a lesser way. It is the mechanical system with the lowest losses due to dehydration (from 1 to 2%) . Being a spiral system does not need large space. The only drawback for this type of equipment is usually the initial cost per acquisition and installation. • Fast:> 5cm / h, in the immersion in liquid nitrogen. Very fast freezing is carried out with liquid nitrogen at very low temperatures (-196 0 C), either by immersion or by sprinkling, depending on the characteristics of the food.
  • IQF Individually Quick Frozen
  • This type of freezing allows to maintain the quality of the products better than the others because: o Creates microcrystals of ice that do not deform the cell avoiding the loss of texture and dehydration, maintaining the quality of the product. o The product does not deform when there are no air bursts, nor adhere to the band
  • Recrystallization During storage there is a tendency for small crystals to join together forming larger ones. This is because small crystals are more unstable than large crystals because they have more energy on the surface per unit mass. This phenomenon is more pronounced if the product is stored at temperatures close to 0 ° C. The lower the temperature, the lower the effects, being considered almost negligible below -60 0 C.
  • the cold burn is a great superficial drying in a frozen food, produced by the previous dehydration. It appears on the surface of the fabric as dark spots when the pigments of the most superficial layers are concentrated and oxidized. There are also white-gray areas due to the holes left by the ice after sublimation. If the phenomenon is maintained for long enough, the surface layers sponge and the lower ones begin to dehydrate. If the burn is small, the phenomenon is reversible by exposure to moisture and rehydration. This is checked by cooking a slightly burned area. If the burn has been on the contrary more deep, there have been oxidations, chemical changes that are no longer reversible. It is important, therefore, the use of suitable packaging capable of reducing this loss of water between 4 and 20 times. The cold burn causes a significant decrease in the product and a loss of value of the product because its organoleptic quality is reduced.
  • cryogenic freezing in food Although it provides the best quality, safety and shelf life in them, has been and is rarely used due to the high costs of gases, equipment and facilities.
  • the present invention aims to provide equipment for ultrafast freezing of food by direct contact dosed with liquid nitrogen. It is another object of the present invention, to provide equipment for ultrafast freezing of food, so as to maintain its original properties and taste without modification by defrosting them after being stored in a cold store for a prolonged period of time.
  • Another object of the present invention is to provide ultrafast cryogenic freezing equipment for food.
  • Still another object of the present invention is to provide an equipment for ultrafast freezing of food in which an exact dose of liquid nitrogen is used for said food.
  • Still another object of the present invention is to provide equipment for ultrafast freezing of foods with highly competitive costs.
  • UFGF ultra fast gravity freezing
  • An advantage of the equipment of the invention is that it does not produce elongated crystals in the product because it uses dosed liquid nitrogen that quickly and with high precision comes into contact with the food, freezing the water molecules and creating microcrystals that because of their size do not damage cell membranes; This kind of freezing is achieved thanks to the rapidity with which liquid nitrogen comes into contact with the food (at -196 ° C or -325 ° F and by the dosage of liquid nitrogen in the exact amount required by the amount of food What is it for?
  • the equipment of the invention provides a series of advantages in providing a real ultrafast freeze, it does not need large spaces to be installed, it is light, reasonably lower in cost compared to conventional tunnels equivalent in capacity to processing that freezes by spraying gas, in which it is the gas and not the liquid that makes contact with the surface of the food to be frozen, which retards freezing and generates ice crystals of sizes that could damage the food cell.
  • UFGF technology is effective and optimizes the quality of the food, preserving its original properties such as vitamins, minerals, proteins, keeping them unchanged during the freezing, transfer and storage process, under appropriate conditions, so that the nutritional properties of the food They remain intact.
  • the UFGF equipment does not require high acquisition, installation and operation area investments compared to the high cost of conventional cryogenic freezing equipment, such as the gas spray tunnel or the immersion tub, whose costs are up to 10 times greater than in the equipment of the invention.
  • the incidence of the cost of cryogenic freezing either by spraying or by immersion ranges from 15% to 50%, and in the UFGF equipment from 5% to 25% depending on the food to be frozen, the production line in the case of sprinkling and Immersion is intermittent, in the UFCF equipment is continuous, the cost of overtime is avoided, and excess staff.
  • Figure 1 is a schematic representation of the front view of a preferred embodiment of the equipment of the invention.
  • Figure 2a is a schematic representation of the right side view of the preferred embodiment of the equipment of the invention of Figure 1.
  • Figure 2b is a schematic representation of a top view of the bottom of the liquid nitrogen containment tank of the equipment of the invention of Figures 1 and 2a.
  • FIG 3 is a schematic representation of the phase separator of the preferred embodiment of the equipment of the invention of Figure 1.
  • Figure 4 is a schematic representation of the front view of the preferred embodiment of the equipment of the invention of Figure 1, showing the main components.
  • Figure 5 is a schematic representation of the front view of the preferred embodiment of the equipment of the invention of Figure 1, showing the main control components.
  • Figure 6 is a schematic representation of the right side view of the preferred embodiment of the equipment of the invention of Figure 1, showing the main control components.
  • Figure 7 is a schematic representation of the installation of the preferred embodiment of the equipment of the invention.
  • Figure 8 is a perspective view of a container capable of being used for freezing with the equipment of the invention.
  • Figure 9 is a schematic representation of the container of Figure 8, showing the identification of the corresponding discharge nozzles considered for the dispensing test of the equipment of the invention.
  • Figure 10 is a graph showing the variation in the amount of liquid nitrogen dispensed, as a function of dispensing time, for a homogeneity test of liquid nitrogen dispensing per nozzle.
  • Figure 11 is a graph showing the distribution of temperatures at two points of an article processed with the equipment of the invention, as a function of time, during and after the application of liquid nitrogen.
  • the present invention relates to equipment for freezing items, preferably food, whether raw or prepared, in portion groups Individuals accommodated and confined inside a package for sale to the public.
  • FIGS 1 and 2 schematically illustrate an embodiment of the equipment of the invention, denoted in its entirety by numeral (100), and comprising a phase separator (110), a liquid nitrogen dispensing zone (120), dispensing control means (130), a band (140) for the transport of the material to be frozen to and from the equipment, a cold chamber (150) tunnel type, and a gas nitrogen outlet to the atmosphere (160).
  • FIG. 2 shows in greater detail, in a schematic representation, the dispensing zone (120) of the liquid nitrogen, comprising a tank (121) with walls (123) isolated in vacuo, to define a container (122) of ; 'liquid at atmospheric pressure, thanks to the presence of an open to the atmosphere (125) located in the cover (124) covering the tank opening (121) output nitrogen between the lid and the tank, if necessary, a seal is used to prevent nitrogen leaks to the work area where Find staff
  • the tank (121) has a bottom in which a plurality of outlet ports for liquid nitrogen are located;
  • Figure 2b illustrates a preferred embodiment in which there are 8 outputs, denoted by the numbers (126a), (126b), (126c), (126d), (126e),
  • Figure 2b illustrates the preferred mode of equipment, offering eight useful liquid nitrogen outlets
  • the equipment can be designed to meet the user's requirements, adding or subtracting holes or modifying the geometry of their distribution, to accommodate the container of food to be frozen; It is also possible, as will be described later, to use only a subset of the total available holes, for a given application.
  • control means (130) of the dispensing this part being insulated with high density polyurethane foam inside. It can be seen that in the lower part of the illustration there are four projections that represent the nozzles (131a), (131b), (131c) and (13Id) that correspond to the holes (126a), (126b), (126c) and
  • each nozzle is in turn associated with a cryogenic needle valve operated by a solenoid (not illustrated in this view), each cryogenic valve controlled by an actuator, preferably pneumatic (132a), (132b), (132c) and ( 132d) respectively, in the illustrated view.
  • control means are complemented with devices for the detection, transmission, visualization and control of other variables, such as the level indicator
  • phase separator (110) has a liquid nitrogen feed from a storage tank (not illustrated) by means of a head (111), through a cryogenic control valve (112) to a discharge (113) that allows liquid nitrogen to enter the chamber
  • liquid nitrogen is maintained at ambient pressure by allowing the gas to exit through the outlet (115), maintaining an adequate level of liquid nitrogen to feed it, through the lower duct (116) to the section of dispensed (120); finally the liquid nitrogen is passed to the dispensing zone (120) through the pipeline (117).
  • liquid nitrogen is dispensed from the tank at atmospheric pressure (121) by simple flow through gravity of liquid nitrogen through the holes
  • the level of liquid nitrogen in the tank (121) determines the hydrostatic pressure on the bottom of the tank and therefore, the amount of nitrogen that passes into the nozzles (131) from the holes (126) per unit of time, hence It is important to keep track of that level, as indicated below.
  • nozzles (131) for the discharge of liquid nitrogen flowing by the action of gravity from the tank (121) that is at atmospheric pressure, from which it exits through the holes located at its bottom (126); the passage of liquid nitrogen to the nozzles (131) is prevented by the action of the cryogenic valves (135), preferably of the needle type and with its active elements made of stainless steel;
  • the cryogenic valves are positioned with the rod in a horizontal position, so that the liquid nitrogen flow vertically when the cryogenic valve is operated
  • each cryogenic valve (135) is calibrated to discharge an amount of liquid nitrogen per unit of time and is actuated by a pneumatic actuator (132) that has air supplies (134) for opening and closing; the air supply to the actuators is offered by a 5-way solenoid valve (133).
  • the operation of the 5-way solenoid valves (133) is based on successive opening and closing periods, electrically controlled by means of a time controller (200), or "timer" in which the operator can select the opening time .
  • Figure 5 illustrates the power lines with a double continuous line, for example, the main supply line (210) and the operation lines of the 5-way valves (220); the pneumatic supply lines (136) to the 5-way solenoid valves (133) are shown crossed by oblique lines.
  • the control means also include a general switch (230) and an actuator (240) for the cryogenic valve (112) for feeding liquid nitrogen from the head (111) from a tank storage (indicated by numeral (500) of Figure 7 for reference only).
  • the time control (200) is set manually and the start of each freezing cycle of a container is also started manually once the operator places said container in position below the set of nozzles
  • the bottom of the tank (121) is level, so that the height of the liquid nitrogen is uniform at any point, ensuring a uniform hydrostatic pressure, as demonstrated in the comparative tests performed to determine the possible differential of flow delivered between the eight nozzles of the test equipment.
  • the level of liquid nitrogen in the tank (121) is maintained with minimal variation, thanks to the level regulator (310).
  • the test consisted of dispensing liquid nitrogen through eight nozzles in an arrangement that corresponds to the operation of the equipment with food to be frozen contained in a tray-type container (600) such as that shown in Figure 8, which is described in the international patent application published under the number WO2007 / 011199 (Maccise, 2007), the nozzles being located on the center of each cavity and numbered according to the template (700) shown in Figure 9.
  • Table 1 The results are shown in table 1, below:
  • the container in question which carries the items to be frozen, should be shaped so that each portion of food (or individual item) is confined to a cavity sufficiently narrow to ensure that the item is located at the center of each cavity and with This ensures that each nozzle is located just above that center.
  • the cavity can be of any shape but preferably one in which the article to be processed fits comfortably.
  • the equipment of the invention is complemented by a conveyor (140), for example, of the type of rollers, which extends from a distance, before the body of the equipment, sufficient to accommodate the container, it is dragged to its position under the nozzles (131) for freezing and subsequently transported to the next section of the process of the food.
  • a conveyor for example, of the type of rollers, which extends from a distance, before the body of the equipment, sufficient to accommodate the container, it is dragged to its position under the nozzles (131) for freezing and subsequently transported to the next section of the process of the food.
  • thermocouple ⁇ l in the center of the roll and a thermocouple "2" on the inner wall of the outermost layer of the roll. Details are indicated in table 2, below it should be noted that the sampled roll was frozen in the same container with 6 more rolls so the data shown Table 2 indicates values for 7 integer rolls.
  • a predefined dose of liquid nitrogen is applied, appropriate for freezing the entire roll of the characteristics of the ingredients used in its preparation, for a period of 25 seconds with the results shown in Figure 11, appreciating the great impact on temperature and in the time in which it descends to temperatures below -170 degrees Celsius and the ascending time which is delayed until reaching a temperature of -21 degrees Celsius in a 15-minute period of time exposing the product to an ambient temperature of 7 degrees Celsius which makes the product have adequate time for it to be handled until the end of its process without physical changes.
  • the conveyor (140) is used to generate an insulated cold chamber in its walls (150) within which the production of an atmosphere rich in nitrogen gas and very poor in oxygen is allowed, at a temperature low enough to allow liquid nitrogen in contact with the treated object to continue cooling it (depending on the characteristics of the product itself), maintaining the temperature distribution profiles in the frozen article.
  • the conveyor (140) is provided with a slit (160) through which nitrogen gas is attracted formed by the thermal shock between the liquid leaving the nozzles (131) and the surrounding air or with the surface of the article to be frozen and the container; this suction (provided by an extractor that connects to the outlet duct (190) of the chamber (150)) forms a curtain at the entrance of the chamber (150) and preventing the diffusion of nitrogen gas to the areas occupied by the personnel ; The nitrogen gas produced is also guided along the chamber
  • the cold chamber (150) is also limited at the distal end to the freezing point by a slot (170) that performs the same function as the one (160) described above.
  • the nitrogen gas is extracted through a duct (190) that It is connected to an extractor (not illustrated) to be released into the atmosphere.
  • FIG. 7 is a schematic diagram illustrating the installation required for the operation of the equipment (100) of the invention, including the liquid nitrogen tank (500), a valve train (510) for regulating the flow of nitrogen liquid up to the feed head (111) to the phase separator, and the necessary insulation (520) to reduce cold losses by transfer to the environment. Note that with the equipment of the invention and with an installation as illustrated, the amount of liquid nitrogen required is reduced, as well as personnel, facilities and physical space, reducing the associated costs.
  • the equipment proposed in the present invention is comparable in performance, and improves that of equipment currently existing in the market and conventionally used for the same type of activities, such as equipment based on immersion tubs.
  • the results shown in the following table were obtained:
  • the location of the holes and therefore, of the associated nozzles can be modified "at the factory" to respond to particular applications It is also possible to modify the geometry of the vertical wall of the tank to adopt the cylindrical shape, or regular prism with a flat base, without this having an appreciable effect on the distribution profiles of the liquid nitrogen to the nozzles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Vacuum Packaging (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

La presente invención se refiere a un equipo para el congelamiento ultrarrápido de alimentos contenidos en un empaque con múltiples cavidades para su venta al público, mediante la aplicación de un chorro de nitrógeno liquido, en una cantidad suficiente para producir el congelamiento ultrarrápido del alimento. El nitrógeno liquido se dispensa desde un depósito a presión atmosférica, aislado al vacio, a través de una pluralidad de boquillas por gravedad al centro de la superficie superior de cada cavidad, produciendo una breve inmersión en la cavidad individual; el nitrógeno gaseoso producido se emplea para formar una atmósfera prácticamente libre de oxigeno y suficientemente fria para mantener el proceso de congelación después del dispensado. El proceso disminuye la cantidad de nitrógeno liquido requerida comparada con otros procesos de congelación, asi como el personal, instalaciones y espacio físico necesarios para su instalación y operación, reduciendo los costos asociados.

Description

EQUIPO PARA LA CONGELACIÓN ULTRARRÁPIDA DE ALIMENTOS POR CONTACTO DIRECTO DOSIFICADO CON NITRÓGENO LÍQUIDO.
CAMPO TÉCNICO
La presente invención se relaciona con los procesos de congelamiento de alimentos, y específicamente, se refiere a un equipo para la congelación a base de nitrógeno liquido, de alimentos confinados en un contenedor destinado para la distribución al usuario final, para la conservación de los alimentos asi congelados.
ANTECEDENTES DE LA INVENCIÓN
El almacenamiento de alimentos durante periodos largos presenta varias dificultades que tienen que ser solucionadas. Los alimentos se pueden almacenar a la temperatura ambiente por un periodo de tiempo muy limitado y corto, y por lo general, no es posible almacenar los alimentos durante un largo periodo de tiempo incluso a baja temperatura. Para permitir el almacenamiento de alimentos por periodos de tiempo relativamente prolongados, y particularmente en temperatura ambiente y en algunos casos a baja temperatura, se requiere prevenir el deterioro de los alimentos causado por el crecimiento de organismos, tales como bacterias, hongos, etc. El crecimiento de tales organismos en alimentos puede depender de la presencia de agua en los alimentos asi como de condiciones tales como la temperatura de almacenamiento o de los alrededores, etc. El crecimiento de organismos incluyendo bacterias, se acelera a temperatura ambiente o superior, de modo que se incrementa la velocidad de deterioro de los alimentos a temperaturas más altas, decayendo en un periodo de tiempo más corto.
Por ello los alimentos se almacenan a baja temperatura, en la cual los organismos tienen poca probabilidad de crecer, la multiplicación de organismos puede ser controlada y el deterioro de alimentos puede ser prevenido. Sin embargo, el almacenaje de alimentos en dicha baja temperatura puede causar nuevos problemas sobre los alimentos, al momento del deshielo de los alimentos congelados o refrigerados, como será descrito más abajo.
Actualmente, la mejor opción para mantener los alimentos frescos o crudos por cierto periodo de tiempo sin causar deterioro es congelarlos o refrigerarlos y mantenerlos en conservación en una cámara frigorífica.
La congelación de alimentos es una forma de conservación que se basa en la solidificación del agua contenida en estos. Por ello uno de los factores a tener en cuenta en el proceso de congelación es el contenido de agua del producto. En función de la cantidad de agua se tiene el calor latente de congelación. Otros factores son la temperatura inicial y final del producto pues son determinantes en la cantidad de calor que se debe extraer del producto. En alimentación se define la congelación como la aplicación intensa de frió capaz de detener los procesos bacteriológicos y enzimáticos que destruyen los alimentos.
La congelación de un alimento consiste en la disminución de la temperatura (calor sensible) y posterior cambio de fase de líquido a sólido (calor latente) , del agua, puesto que ésta es su mayor componente (del 50 al 90 %) . La congelación en los alimentos es más compleja que la del agua pura, debido a las estructuras que conforman el alimento: lípidos, proteínas, fibra, almidones, azúcares y agua, que modifican los parámetros de congelación.
En el primer paso de la congelación parte del agua disminuye su temperatura hasta el punto de congelación (00C) y comienza a formar pequeños núcleos de hielo, "semillas de congelación". Alrededor de estos núcleos se comienza a formar el hielo y dependiendo de la velocidad de congelación, los cristales de hielo pueden ser alargados, suavizados en sus extremos, grandes, pequeños o formarse en el interior o exterior de la célula. Dependiendo de la velocidad de congelación se pueden presentar diversos fenómenos como:
Desnaturalización proteica: Cuando el producto se ha congelado lentamente o cuando ha habido fluctuaciones de temperatura durante el almacenamiento, los cristales de hielo que se forman crecen extrayendo agua ligada a las proteínas, de tal forma que éstas se desorganizan siendo luego incapaces de recuperar dicha agua durante la descongelación, de manera que esta agua al perderse arrastra los nutrientes hidrosolubles . Este proceso cambia la textura del alimento, produciendo un endurecimiento e incluso disminuyendo su solubilidad y valor nutritivo.
Retracción del almidón: El almidón está formado por cadenas lineales de glucosa, llamadas amilosa, y por estructuras ramificadas complejas llamadas amilopectina. Los granulos de almidón en una suspensión fria tienden a hincharse, reteniendo agua, y a una cierta temperatura gelatinizan espesando el liquido. Cuando este gel se deja reposar, las cadenas lineales de amilosa se agregan como si cristalizaran y liberan parte del agua previamente retenida en su estructura, en un proceso llamado sinéresis. Por ello conviene seleccionar en los alimentos congelados almidones con muy baja proporción de amilosa. Por ejemplo el arroz tiene una proporción de amilosa del 16%, el maiz del 24% y el sorgo y la tapioca no contienen amilosa. Contracción de los lípidos: Un lípido en estado sólido se denomina grasa, mientras que si está liquido se llama aceite. El cambio de estado de sólido a liquido depende de la temperatura de fusión del lipido. Al congelar un alimento los aceites se solidifican y pueden llegar a contraerse.
Los alimentos con bajo porcentaje de humedad tienen un punto inicial de congelación menor, debido a que los solutos disminuyen la presión de vapor. No se puede congelar el 100 % del agua, pues sólo el agua denominada libre (que representa cerca del 75 % del total) es la que se llega a congelar durante el proceso.
Tipos de congelación:
• Por aire: una corriente de aire frió extrae el calor del producto hasta que se consigue la temperatura final.
• Por contacto: una superficie fria en contacto con el producto que extrae el calor • Criogénico: Se utilizan fluidos criogénicos, nitrógeno o dióxido de carbono, que sustituyen al aire frió para conseguir el efecto congelador.
Efectos de la congelación
Desecación: Aproximadamente el 80% del peso total de un animal e incluso más de una planta, corresponde al agua. El agua es el componente mayoritario de los alimentos que derivan de animales y plantas. Al congelar un alimento, el agua se transforma en hielo y se produce un efecto de desecación.
Nucleación: Al congelar un alimento a presión atmosférica normal, su temperatura desciende a 0°C, en ese momento el agua comienza convertirse en hielo. Permanece un cierto tiempo a esta temperatura y cuando la cristalización es completa, la temperatura sigue descendiendo hasta que se equilibra con la temperatura ambiental. Este periodo durante el cual no ha habido disminución de temperatura es el tiempo necesario para extraer el calor latente de congelación (80 cal/g) . Durante este periodo el efecto del frió se equilibra con el calor liberado por el agua al estar ésta sometida a un cambio de estado. La temperatura se mantiene constante, y da en una gráfica un tramo horizontal cuya longitud depende de la velocidad a la que se disipa el calor. En este periodo hay un equilibrio entre la formación de cristales y su fusión. Al inicio de este tramo horizontal se observa una ligera depresión que indica el sobreenfriamiento que sufre el agua antes del inicio de la cristalización (esto es más apreciable en volúmenes pequeños como células y microorganismos) . Esto ocurre cuando hay una gran velocidad de eliminación de calor y asegura que, cuando se inicie la formación de cristales, será rápida. Dado que el agua en los alimentos no es pura sino que está formada por una solución de sales, azúcares y proteínas solubles, además de un complejo de moléculas proteicas que están en suspensión coloidal, su punto de congelación es más bajo. Este descenso es proporcional al nivel de concentración de los elementos disueltos. Los alimentos más comunes se congelan entre 0 y -4°C. A esta zona se la conoce como zona de máxima formación de cristales. Al convertirse el agua en hielo, se incrementa de manera gradual la concentración de elementos disueltos en el agua restante lo que origina un mayor descenso del punto de congelación.
Cristalización: Para que la cristalización se produzca más fácilmente se necesita la existencia de alguna partícula o sal insoluole que actúe como núcleo de cristalización. Cuanto menor es la temperatura, más fácilmente ocurre el fenómeno, formándose un mayor número de agregados cristalinos y, consecuentemente, el tamaño de los cristales es menor. Por el contario a una temperatura próxima al punto de fusión, la nucleación es lenta, los núcleos cristalinos son pocos y, por tanto, resultan cristales relativamente grandes. Al estudiar al microscopio las formas de los cristales de hielo se observa que la congelación rápida produce cristales pequeños más o menos redondeados mientras que la congelación lenta da lugar a cristales mayores, alargados o en agujas. Esta congelación lenta tiene como consecuencia la rotura de las fibras y paredes celulares perdiendo el alimento parte de sus propiedades. En alimentos sólidos o de viscosidad elevada el tamaño de los cristales varia en una zona u otra del alimento. En las zonas periféricas los cristales se forman rápidamente y son de pequeño tamaño, mientras que en el interior la transferencia de calor es más difícil y los cristales crecen más lentamente alcanzando un mayor tamaño. Al ir reduciendo la temperatura se alcanza un punto en el que agua restante conjuntamente con los solutos que han ido concentrándose se solidifican juntos en un punto de saturación llamado punto eutéctico. Este punto es muchas veces inferior al que son capaces de alcanzar muchos congeladores comerciales, lo que permite que queden pequeñas cantidades de agua no congelada que permite sobrevivir a algunos microorganismos, aunque no es posible su crecimiento y reproducción.
Cambios de volumen: El paso de agua a hielo comporta un aumento de volumen cercano al 9%. Debido a este fenómeno los alimentos más ricos en agua se expanden más que aquellos cuyo contenido es menor. Esto puede dar lugar a fracturas o agrietamientos. Es importante tenerlo en cuenta a la hora de fabricar el envase si este puede ir muy ajustado.
Velocidad de congelación: La calidad de un producto congelado depende de la velocidad a la que éste es congelado. Dicha velocidad se define como la distancia minima entre la superficie y el punto critico dividida por el tiempo en el que el punto critico ha pasado desde 00C a -15°C. De este modo, se califica un proceso de congelación como:
• Lenta: < lcm/h, por ejemplo un congelador doméstico con el aire inmóvil a -18 0C. Se realiza básicamente en cuartos frios, que han sido construidos y equipados para operar a bajas temperaturas. El equipo ofrece una capacidad de refrigeración extra, además de ser equipado con ventiladores para la circulación de aire. Estos sistemas tienen una velocidad de congelación baja, y se utilizan para productos como: margarinas y cortes de carne o canales en los cuales no se necesita de gran calidad. Las dificultades en este tipo de congelación son: la deshidratación (entre 5 a 10 %) y las quemaduras por frió en el producto. Además existen problemas con el balance del frió, pues cuando se llega a saturar la cámara, el sistema se sobrecarga y no alcanza la temperatura de congelación deseada. Media: 1-5 cm/h, en un túnel de aire frió a 20 km/h y -40 °C. Son equipos diseñados con gran eficiencia en la circulación de aire, alcanzan velocidades de transferencia de calor muy altas, y tienen pérdidas por deshidratación de que van del 2 al 6% del peso del producto. El equipo debe ser seleccionado de acuerdo a las características del proceso y del producto. En este tipo de congelación se encuentran integrados los equipos: Blast Freezer, de Lecho Fluidizado y Giro Freezer.
Blast Freezer. En este equipo que hace circular el aire frió a alta velocidad en un cuarto en el cual se ha realizado el acomodo de tarimas en forma predeterminada. Casi todos los productos pueden ser congelados con este equipo, pero debe realizarse la congelación del producto, una vez empacado para evitar que se deshidrate o queme. También es utilizado para congelar carne en canal la cual es transportada a través de rieles. Lecho fluidizado: Estos equipos se utilizan para productos de pequeñas dimensiones (fueron diseñados originalmente para el procesado de chícharos) . En este equipo se proyectan las ráfagas de aire de la parte inferior a la parte superior, prácticamente suspendiendo el producto, haciéndolo girar, para realizar una congelación homogénea y rápida. El mayor problema de este equipo es que las ráfagas de aire pueden dañar o quemar al producto por la alta velocidad del aire y la intensidad del frió .
Giro Freezer. Este sistema es de los más modernos sistemas mecánicos y de los más eficientes. Aqui se genera la turbulencia a partir de ventiladores que están diseñados para generar un frió uniforme. El producto gira en una banda en espiral y se enfria en periodos que corren de 45 min. a 1 hr. Debido a que el flujo de aire no es directo daña en una menor manera el producto. Es el sistema mecánico con menores pérdidas por deshidratación (de 1 a 2%) . Al ser un sistema en espiral no necesita gran espacio. El único inconveniente para este tipo de equipos suelen ser el costo inicial por adquisición e instalación. • Rápida: > 5cm/h, en la inmersión en nitrógeno liquido. La congelación muy rápida se realiza con nitrógeno liquido a temperaturas muy bajas (-1960C) , ya sea por inmersión o por aspersión, dependiendo de las características del alimento. Con esta congelación se obtiene la calidad IQF (Individually Quick Frozen) , en la cual, las piezas de alimento se separan y no se adhieren a la banda. Este tipo de congelación permite mantener la calidad de los productos mejor que los otros debido a que: o Crea microcristales de hielo que no deforman la célula evitando las pérdidas de textura y deshidratación, manteniendo la calidad del producto . o El producto no se deforma al no existir ráfagas de aire, ni adherirse a la banda
Efecto del almacenamiento: Se ha demostrado que la temperatura de -18 °C es un nivel adecuado y seguro para conservar los alimentos congelados. Los microorganismos no pueden crecer a esta temperatura y la acción de los enzimas es muy lenta, pero el propio almacenamiento produce alteraciones en el alimento:
Recristalización: Durante el almacenamiento hay una tendencia de los pequeños cristales a unirse entre ellos formando otros de mayor tamaño. Esto se debe a que los pequeños cristales resultan más inestables que los grandes al poseer más energia en la superficie por unidad de masa. Este fenómeno es más acentuado si se almacena el producto a temperaturas cercanas a 0°C. Cuanto más baja es la temperatura, menores son los efectos, considerándose casi despreciables por debajo de -600C.
Quemadura por frió: Cualquier entrada de aire caliente al interior de la cámara de congelación da lugar a un gradiente de temperatura entre el aire frió interno y el caliente que penetra. Cuando el aire se calienta aumenta su capacidad de absorción de humedad. En una cámara de congelación, la única fuente de humedad disponible es el hielo contenido en los alimentos congelados. El aire caliente toma la humedad de los alimentos protegidos deficientemente, desecándolos. Luego, esta humedad es depositada al enfriarse el aire en las superficies frias del congelador. A la formación de hielo a partir de la humedad del aire, sin pasar por el estado liquido se llama sublimación.
La quemadura por frió es una gran desecación superficial en un alimento congelado, producido por la deshidratación anterior. Aparece en la superficie del tejido como manchas de color oscuro al ir concentrándose y oxidándose los pigmentos de las capas más superficiales. También aparecen zonas blanco-grisáceas debidas a los huecos dejados por el hielo después de su sublimación. Si el fenómeno se mantiene durante suficiente tiempo, las capas superficiales se van esponjando y empiezan a deshidratarse las inferiores. Si la quemadura es pequeña, el fenómeno es reversible por exposición a la humedad y rehidratación. Esto se comprueba sometiendo a cocción una zona ligeramente quemada. Si la quemadura has sido por el contrario más profunda, se han producido oxidaciones, cambios quimicos que ya no son reversibles. Es importante, pues, la utilización de un embalaje adecuado capaz de reducir entre 4 y 20 veces ésta pérdida de agua. La quemadura por frió causa una merma importante en el producto y una pérdida de valor del mismo porque se disminuye su calidad organoléptica.
Antes y en la actualidad la congelación criogénica en alimentos aunque proporciona la mejor calidad, inocuidad y vida de anaquel en ellos, ha sido y es poco utilizada debido a los altos costos de los gases, equipos e instalaciones.
OBJETIVOS DE LA INVENCIÓN
A la luz de las limitaciones que presentan los desarrollos hasta ahora propuestos en el arte previo, la presente invención tiene por objeto, proporcionar un equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno liquido. Es otro objeto de la presente invención, proveer de un equipo para la congelación ultrarrápida de alimentos, de manera que mantengan sus propiedades y sabor originales sin modificación al descongelarlos después de su conservación en una cámara frigorífica durante un periodo prolongado de tiempo.
Otro objeto de la presente invención es proporcionar un equipo de congelación criogénica ultrarrápida para alimentos.
Es aún otro objeto de la invención, proveer de un equipo para la congelación ultrarrápida de alimentos en el que los alimentos puedan ser introducidos al proceso en porciones individuales confinadas en un contenedor propio para su exhibición y puesta a la venta.
Es todavía otro objeto de la presente invención, proveer de un equipo para la congelación ultrarrápida de alimentos que permita el establecimiento de un proceso de linea continua de producción ya que el alimento a congelar puede estar contenido en su empaque final previo al sellado. Es otro objeto de la presente invención, proveer de un equipo para la congelación ultrarrápida de alimentos con máxima eficiencia en el gasto del nitrógeno liquido empleado.
Es otro objeto de la presente invención, proporcionar un equipo de congelación ultrarrápida de alimentos, en donde la congelación se obtenga mediante una rápida y precisa dosificación del nitrógeno liquido directamente al producto a congelar.
Aún otro objeto de la presente invención es proveer de un equipo para la congelación ultrarrápida de alimentos en que se emplea una dosis exacta de nitrógeno liquido para dicho alimento.
Todavia otro objeto de la presente invención es proveer de un equipo para la congelación ultrarrápida de alimentos con costos altamente competitivos.
Estos y otros objetos y ventajas de la presente invención se harán evidentes a la luz de la descripción que sigue, misma σue se acomoaña de una serie de fiσuras oara las modalidades Dreferidas de la invención, σue deben entenderse son elaboradas con fines ilustrativos v no limitativos de las enseñanzas de la invención.
BREVE DESCRIPCIÓN DE IA INVF.κrrτnN
A la luz de los desarrollos previos, especialmente en el campo de la conservación de alimentos por congelación, se hace necesario el desarrollo de un equipo capaz de reducir costos de congelación criogénica para hacerla costeable por aquellas empresas que congelan alimentos con el fin de ofrecer máxima calidad, inocuidad y vida de anaquel al mercado, el equipo materia de la invención, en adelante referido como UFGF (ultra rápida congelación por gravedad) se desarrolló para obtener alta eficiencia en el gasto de nitrógeno liquido basándose en la dosificación rápida y precisa del nitrógeno liquido al producto a congelar obteniendo costos altamente competitivos . El equipo UFGF de la invención representa una gran mejora a la tecnología que aplican los métodos actualmente conocidos para congelar alimentos los cuales no proporcionan la calidad y la vida de anaquel de producto congelado que proporciona el equipo de la invención.
Una ventaja del equipo de la invención es que no produce cristales alargados en el producto debido a que utiliza nitrógeno liquido dosificado que rápidamente y con alta precisión se pone en contacto con el alimento, congelando las moléculas de agua y creando microcristales que por su tamaño no dañan las membranas de las células; esta clase de congelación se logra gracias a la rapidez con que el nitrógeno liquido se pone en contacto con el alimento (a -196°C o -325°F y por la dosificación del nitrógeno liquido en la cantidad exacta requerida por la cantidad de alimento a que se destina.
El equipo de la invención proporciona una serie de ventajas al proveer una congelación ultrarrápida real, no necesita de grandes espacios para instalarse, es ligero, de costo razonablemente inferior comparado con los túneles convencionales equivalentes en capacidad de procesamiento que congelan por aspersión de gas, en los que es el gas y no el liquido el que hace contacto con la superficie del alimento a congelar, lo que retarda la congelación y genera cristales de hielo de tamaños que podrían dañar la célula del alimento.
La tecnología de UFGF es efectiva y optimiza la calidad del alimento conservando sus propiedades originales como son sus vitaminas, minerales, proteínas, manteniéndolas sin cambios durante el proceso de congelación, traslado y almacenamiento, bajo condiciones adecuadas, por lo que las propiedades nutritivas del alimento se mantienen intactas .
El equipo UFGF no requiere de altas inversiones de adquisición, instalación y área de operación comparado con el alto costo de los equipos de congelación criogénica convencionales, tales como el túnel por aspersión de gas o la tina de inmersión , cuyos costos son de hasta 10 veces mayores que en el equipo de la invención. La incidencia del costo de congelación criogénica ya sea por aspersión o por inmersión va desde un 15% al 50%, y en el equipo UFGF del 5% al 25% dependiendo del alimento a congelar, la linea de producción en el caso de aspersión e inmersión es intermitente, en el equipo UFCF es continua, se evita el costo de horas extras, y exceso de personal.
Comparando las áreas de instalación y operación de equipos de aspersión y el de la invención, éste solamente requiere de 2 a 6 m2, mientras que el túnel de aspersión requiere de un mínimo de 40 m2.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Para una mejor comprensión de las ventajas del sistema de la invención, se presentan ahora una serie de dibujos y figuras que pretenden mostrar de manera ilustrativa las características de una modalidad preferida del sistema, sin pretender ser limitativas del mismo. La Figura 1 es una representación esquemática de la vista frontal de una modalidad preferida del equipo de la invención.
La Figura 2a es una representación esquemática de la vista lateral derecha de la modalidad preferida del equipo de la invención de la figura 1.
La Figura 2b es una representación esquemática de una vista superior del fondo del tanque de contención del nitrógeno liquido del equipo de la invención de las figuras 1 y 2a.
La Figura 3 es una representación esquemática del separador de fases de la modalidad preferida del equipo de la invención de la figura 1.
La Figura 4 es una representación esquemática de la vista frontal de la modalidad preferida del equipo de la invención de la figura 1, mostrando los componentes principales . La Figura 5 es una representación esquemática de la vista frontal de la modalidad preferida del equipo de la invención de la figura 1, mostrando los componentes principales de control.
La Figura 6 es una representación esquemática de la vista lateral derecha de la modalidad preferida del equipo de la invención de la figura 1, mostrando los componentes principales de control.
La Figura 7 es una representación esquemática de la instalación de la modalidad preferida del equipo de la invención.
La Figura 8 es una vista en perspectiva de un contenedor capaz de ser utilizado para la congelación con el equipo de la invención.
La Figura 9 es una representación esquemática del contenedor de la Figura 8, mostrando la identificación de las boquillas de descarga correspondientes consideradas para la prueba de dispensado, del equipo de la invención. La Figura 10 es una gráfica que muestra la variación en la cantidad de nitrógeno liquido dispensado, en función del tiempo de dispensado, para una prueba de homogeneidad de dispensado de nitrógeno liquido por boquilla.
La Figura 11 es una gráfica que muestra la distribución de temperaturas en dos puntos de un articulo procesado con el equipo de la invención, en función del tiempo, durante y posterior a la aplicación de nitrógeno liquido.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La siguiente descripción será referida a los dibujos acompañantes antes descritos, que deben entenderse como ilustrativos de la modalidad preferida de la invención, y no limitativos del alcance del concepto inventivo. Los elementos comunes en las figuras, tienen las mismas referencias numéricas en todas ellas.
La presente invención se refiere a un equipo para el congelamiento de artículos, preferentemente alimentos, ya sean crudos o preparados, en grupos de porciones individuales acomodadas y confinadas al interior de un empaque para su venta al público.
Las Figuras 1 y 2 ilustran de manera esquemática una modalidad del equipo de la invención, denotado en su totalidad por el numeral (100), y que comprende un separador de fases (110), una zona de dispensado del nitrógeno liquido (120) , medios de control del dispensado (130), una banda (140) para el transporte del material a congelar hacia y desde el equipo, una cámara fria (150) tipo túnel, y una salida de nitrógeno gas a la atmósfera (160) .
En la Figura 2 se muestra con mayor detalle, en una representación esquemática, la zona de dispensado (120) del nitrógeno liquido, que comprende un tanque (121) con paredes (123) aisladas al vacio, para definir un contenedor (122) de nitrógeno ' liquido a presión atmosférica, gracias a la presencia de una salida abierta a la atmósfera (125) localizada en la tapa (124) que cubre la boca del tanque (121) ; entre la tapa y el tanque, de ser necesario, se emplea un sello para evitar fugas de nitrógeno hacia la zona de trabajo donde se encuentre personal. El tanque (121) tiene un fondo en el cual se localizan una pluralidad de orificios de salida para el nitrógeno liquido; en la Figura 2b se ilustra una modalidad preferida en la que hay 8 salidas, denotadas por los números (126a), (126b), (126c), (126d) , (126e) ,
(126f), (126g) y (126h) , situados en dos hileras paralelas de cuatro orificios cada una y correspondiéndose por pares.
Si bien la Figura 2b ilustra la modalidad preferida del equipo, ofreciendo ocho salidas útiles de nitrógeno liquido , en la práctica el equipo puede ser diseñado para satisfacer los requerimientos del usuario, adicionando o restando orificios o modificando la geometría de la distribución de los mismos, para acomodarse a la del contenedor de los alimentos a congelar; también es posible, como se describirá más adelante, emplear solo un subconjunto del total de orificios disponibles, para una aplicación determinada.
Retornando a la Figura 2a, por debajo del tanque (121), y formando parte de la zona de dispensado, se encuentran los medios de control (130) del dispensado, ésta parte encontrándose aislada con espuma de poliuretano de alta densidad en su interior. Se aprecia que en la parte inferior de la ilustración sobresalen 4 proyecciones que representan las boquillas (131a), (131b), (131c) y (13Id) que corresponden a los orificios (126a), (126b), (126c) y
(126d), respectivamente, detrás de estas boquillas, hay otro juego idéntico, correspondientes a los orificios paralelos (126e), (126f) , (126g) y (126h) . Cada boquilla está asociada a su vez con una válvula criogénica de aguja operada por un solenoide (no ilustradas en esta vista) , controlada cada válvula criogénica por un actuador, preferentemente de tipo neumático (132a) , (132b), (132c) y (132d) respectivamente, en la vista ilustrada.
Los medios de control se complementan con dispositivos para la detección, transmisión, visualización y control de otras variables, tales como el indicador de nivel
(300) de nitrógeno en el tanque (121), el regulador de nivel de nitrógeno liquido (310) , y el medidor de flujo de nitrógeno gas (320) . La alimentación del nitrógeno liquido al tanque (121) se realiza desde el separador de fases (110) a través del orificio de alimentación (128) en la zona superior del tanque (121) .
Con referencia ahora al separador de fases (110), ilustrado esquemáticamente en mayor detalle en la Figura 3, éste cuenta con una alimentación de nitrógeno liquido desde un tanque de almacenamiento (no ilustrado) por medio de un cabezal (111) , a través de una válvula criogénica de control (112) hasta una descarga (113) que permite la entrada del nitrógeno liquido a la cámara
(114) donde el nitrógeno liquido se mantiene a la presión ambiente al permitir la salida del gas a través de la salida (115), manteniendo un nivel adecuado de nitrógeno liquido para alimentarlo, por medio del ducto inferior (116) a la sección de dispensado (120); finalmente se pasa el nitrógeno liquido a la zona de dispensado (120) por el ducto (117) .
En la zona de dispensado (120), ilustrada en la Figura 4, el nitrógeno liquido se dispensa desde el tanque a presión atmosférica (121) por el simple flujo por gravedad del nitrógeno liquido a través de los orificios
(126) en el fondo (127) del tanque (121), hacia una pluralidad de boquillas (131) que permiten el paso del nitrógeno liquido directamente al centro de la superficie superior de cada articulo a congelar, que en el caso de alimentos, corresponde con una porción individual. El nivel de nitrógeno liquido en el tanque (121) determina la presión hidrostática sobre el fondo del mismo y por ende, la cantidad de nitrógeno que pasa hacia las boquillas (131) desde los orificios (126) por unidad de tiempo, de ahi que es importante mantener un control de dicho nivel, como se indica más adelante.
Para que el congelamiento sea eficiente, es necesario que el dispensado del nitrógeno liquido se realice en la cantidad suficiente para asegurar el congelamiento de la porción de alimento; la determinación de la cantidad a dispensar dependerá de la naturaleza y de las propiedades del producto a congelar, que como se ha descrito previamente, son criticas en el caso de alimentos, a fin de asegurar que sus cualidades nutricionales y organolépticas no se alteren durante el proceso o durante la conservación en cámaras frias. Al ser sumamente critico este aspecto, el equipo ha sido dotado con un sistema de control muy preciso de la cantidad de nitrógeno que se permite que llegue al articulo o artículos a congelar; asi, en las Figuras 4 a 7 se ilustra esquemáticamente dicho sistema de control.
Con referencia a la Figura 4, se ilustran los elementos básicos del sistema de control de nitrógeno liquido; los elementos que se describen son comunes a cada una de las salidas de liquido, por lo que se referirán en conjunto por su número principal, por ejemplo (131) , sin referir a la referencia literal que las diferencia por su posición,
(131a), (131b), etc. asi, se tienen una pluralidad de boquillas (131) para la descarga del nitrógeno liquido que fluye por la acción de la gravedad desde el tanque (121) que se encuentra a presión atmosférica, del que sale a través de los orificios localizados en su fondo (126); el paso del nitrógeno liquido hasta las boquillas (131) se impide por la acción de las válvulas criogénicas (135), preferentemente del tipo de aguja y con sus elementos activos fabricados de acero inoxidable; las válvulas criogénicas se posicionan con el vastago en posición horizontal, de manera que el nitrógeno liquido fluya verticalmente cuando se opera la válvula criogénica
(135); cada válvula criogénica (135) es calibrada para descargar una cantidad de nitrógeno liquido por unidad de tiempo y es accionada por un actuador neumático (132) que tiene suministros de aire (134) para la apertura y el cierre; la provisión de aire a los actuadores la ofrece una válvula solenoide de 5 vias (133) .
La operación de las válvulas solenoide de 5 vias (133) se basa en periodos sucesivos de abertura y cierre, controlados eléctricamente por medio de un controlador de tiempo (200) , o "timer" en el que el operador puede seleccionar el tiempo de abertura. En la Figura 5 se ilustran las lineas eléctricas con una doble linea continua, por ejemplo, la de alimentación principal (210) y las de operación de las válvulas de 5 vias (220) ; las lineas neumáticas de alimentación (136) a las válvulas solenoide de 5 vias (133) se representan cruzadas por lineas oblicuas. Los medios de control incluyen además un interruptor general (230) y un actuador (240) para la válvula criogénica (112) de alimentación de nitrógeno liquido desde el cabezal (111) proveniente de un tanque de almacenamiento (indicado con el numeral (500) de la Figura 7 solo como referencia) .
En una modalidad simple del equipo, el control de tiempo (200) se fija manualmente y el inicio de cada ciclo de congelamiento de un contenedor también se inicia manualmente una vez que el operador coloca dicho contenedor en posición debajo del conjunto de boquillas
(131) . El inicio del timer (200) y por ende, de la descarga de nitrógeno liquido se efectúa por presión del botón accionador (250) .
Obsérvese que el fondo del tanque (121) se encuentra a nivel, de manera que la altura del nitrógeno liquido sea uniforme en cualquier punto, asegurando una presión hidrostática también uniforme, como se ha demostrado en las pruebas comparativas realizadas para determinar el posible diferencial de flujo entregado entre las ocho boquillas del equipo de prueba. El nivel de nitrógeno liquido en el tanque (121) se mantiene con una mínima variación, gracias al regulador de nivel (310) . La prueba consistió en el dispensado de nitrógeno liquido a través de ocho boquillas en un arreglo que corresponde a la operación del equipo con alimentos a congelar contenidos en un contenedor tipo charola (600) tal como el mostrado en la Figura 8, que es descrito en la solicitud internacional de patente publicada bajo el número WO2007/011199 (Maccise, 2007), siendo las boquillas localizadas sobre el centro de cada cavidad y numeradas de acuerdo a la plantilla (700) mostrada en la Figura 9. Los resultados se muestran en la tabla 1, a continuación:
Tabla 1. Prueba de homogeneidad en la cantidad de nitrógeno liquido dispensado por las ocho boquillas del equipo de prueba.
Figure imgf000037_0001
NITRÓGENO LIQUIDO DISPENSADO (kg X 1000) POR LA BOQUIL
TIEMPO (S) 1 2 3 4 5 6 7 8
8 59 0 60 .0 59. 0 60.0 60. 0 59.0 60 0 59.
9 65. 0 66 .0 66. 0 67.0 66. 0 67.0 68 0 67.
10 75 0 75 .0 76. 0 76.0 76. 0 76.0 77 0 77.
Se observa de la tabla anterior que las mediciones reflejan uniformidad de dispensado, en la gráfica de la Figura 10 se aprecian las mínimas variaciones en los volúmenes dispensados.
El contenedor en cuestión, que transporta los artículos a ser congelados, debiera estar conformado de manera que cada porción de alimento (o artículo individual) sea confinado a una cavidad suficientemente estrecha como para asegurar que el artículo se localice al centro de cada cavidad y con ello se garantice que cada boquilla se localice justamente sobre tal centro. La cavidad puede ser de cualquier forma pero preferentemente una en la que se acomode holgadamente el artículo a ser procesado.
Para colocar el contenedor en su posición, y como se ilustra en la Figura 1, el equipo de la invención se complementa con un transportador (140), por ejemplo, del tipo de rodillos, que se extiende desde una distancia, antes del cuerpo del equipo, suficiente para acomodar al contenedor, éste se arrastra hasta su posición debajo de las boquillas (131) para su congelamiento y posteriormente las transporta hacia la siguiente sección del proceso de los alimentos.
En un ensayo para determinar el perfil de temperaturas producido por el paso a través de la cámara (150) con aislamiento en sus paredes, se congelaron muestras de rollos enteros de "sushi", colocando un termopar λλl" en el centro del rollo y un termopar "2" en la pared interior de la capa más exterior del rollo. Los detalles se indican en la tabla 2, a continuación cabe señalar que el rollo muestreado fue congelado en un mismo contenedor con 6 rollos más por lo que los datos mostrados en la tabla 2 indican valores para 7 rollos enteros.
Tabla 2. Parámetros de prueba del ejemplo
Figure imgf000039_0001
Figure imgf000040_0001
Se aplica una dosis predefinida de nitrógeno liquido, apropiada para el congelamiento del rollo entero de las características de los ingredientes empleados en su elaboración, por un lapso de 25 segundos con los resultados mostrados en la Figura 11, apreciándose el gran impacto en la temperatura y en el tiempo en que desciende a temperaturas menores a -170 grados centígrados y el tiempo ascendente el cual es retardado hasta llegar a una temperatura de -21 grados centígrados en un íapso de tiempo de 15 minutos exponiendo el producto a una temperatura ambiente de 7 grados centígrados lo que hace que el producto tenga un tiempo adecuado para que pueda ser manipulado hasta la terminación de su proceso sin cambios físicos.
En la modalidad preferida de la invención, el transportador (140) se aprovecha para generar una cámara fria aislada en sus paredes (150) dentro de la cual se permite la producción de una atmósfera rica en nitrógeno gas y muy pobre en oxigeno, a una temperatura suficientemente baja como para permitir que el nitrógeno liquido en contacto con el objeto tratado pueda continuar enfriéndolo (en función de las características del propio producto) , manteniendo los perfiles de distribución de temperatura en el articulo congelado.
El transportador (140) se dota con una rendija (160) por la que se atrae el nitrógeno gas formado por el choque térmico entre el liquido que sale de las boquillas (131) y el aire circundante o con la superficie del articulo a congelar y el contenedor; esta succión (provista por un extractor que se conecta al ducto de salida (190) de la cámara (150) ) forma una cortina a la entrada de la cámara (150) e impidiendo la difusión del nitrógeno gas a las áreas ocupadas por el personal; el nitrógeno gas producido, también es guiado a lo largo de la cámara
(150) por encima y por debajo (180) de los contenedores ya congelados, como se indica por las flechas; la cámara fria (150) se limita también en el extremo distal al punto de congelamiento por una ranura (170) que realiza la misma función que la (160) antes descrita. El nitrógeno gas es extraído a través de un ducto (190) que se conecta a un extractor (no ilustrado) para ser liberados a la atmósfera.
La Figura 7 es un diagrama, esquemático que ilustra la instalación requerida para la operación del equipo (100) de la invención, incluyendo el tanque de depósito de nitrógeno liquido (500) , un tren de válvulas (510) para regular el flujo de nitrógeno liquido hasta el cabezal de alimentación (111) al separador de fases, y el aislamiento necesario (520) para disminuir las pérdidas de frió por transferencia al medio ambiente. Obsérvese que con el equipo de la invención y con una instalación como la ilustrada, se disminuye la cantidad de nitrógeno liquido requerida, asi como el personal, instalaciones y espacio fisico, reduciendo los costos asociados.
Desde el punto de vista funcional, el equipo propuesto en la presente invención es comparable en desempeño, y mejora el de equipos actualmente existentes en el mercado y usados convencionalmente para el mismo tipo de actividades, tal como los equipos basados en tinas de inmersión. En pruebas realizadas para comparar el rendimiento, se obtuvieron los resultados mostrados en la tabla siguiente:
Tabla 3. Análisis comparativo del uso de Nitrógeno liquido para una misma base de producto procesado
Figure imgf000043_0001
Algunas de las ventajas que se han determinado para el equipo de la invención son, entre otras, desde el punto de vista del alimento procesado:
• Mejora notablemente la calidad en cualquier alimento congelado debido a que el nitrógeno liquido entra en contacto directo con el alimento a congelar.
• Las propiedades nutrimentales quedan intactas en el alimento, y debido a la baja temperatura criogénica y rapidez de congelación el alimento queda absolutamente inocuo. • La vida de anaquel incrementa substancialmente comparada con cualquier otro tipo de congelación, conservando características y propiedades originales de los alimentos. • Crea micro cristales de hielo que no perjudican la membrana de la célula del alimento, conservando asi las características y propiedades originales de los alimentos .
• Permite dispensar dosis precisas de nitrógeno liquido requeridas por el alimento para su congelación.
• Por la ultra rápida dosificación, la congelación del alimento se reduce notablemente a tiempos del orden de unos pocos segundos en función de la velocidad de la transferencia de calor del alimento y cantidad del alimento.
• Permite establecer una linea continua de producción debido a que el alimento a congelar puede estar contenido en su empaque final. • Ofrece una alta seguridad al no tener riesgo de contacto directo por parte de los operadores con el nitrógeno liquido. • Reducción significativa de merma de producto al eliminar el contacto ya que se congela en su empaque final .
Ventajas en cuanto a la Inversión requerida:
• Reduce notablemente la inversión debido a que el costo del equipo y su instalación representan entre el 30% y 40% del costo de inversión de los equipos actuales . • Reduce el tamaño del espacio de operación a utilizar hasta un 80% de los que requieren los equipos actuales
Ventajas en relación a costos de operación:
• Reduce el costo de congelación debido a que el gasto del nitrógeno liquido a utilizar es dosificado con precisión para evitar gasto excesivo por pérdidas al ambiente, principalmente. • Reducción significativa de mermas de producto al disminuir el manejo del mismo e incrementar eficiencia y productividad en la congelación debido a la exactitud en la dosificación de nitrógeno liquido según sea necesario.
La descripción de la invención que antecede, se basa para fines ilustrativos en una modalidad preferida, en la que el equipo cuenta con ocho boquillas para el dispensado del nitrógeno liquido, sin embargo, será claro para una persona con conocimientos en el campo técnico que es posible realizar modificaciones a dicha modalidad preferida, de manera que pueda adaptarse el equipo a condiciones de operación especificas para cada usuario particular. Por ejemplo, en la modalidad ilustrada de ocho boquillas, es posible el cierre temporal de algunas de ellas, para operar solamente un número menor, digamos 4. De manera similar, un equipo originalmente equipado para el manejo de una docena de boquillas podria adaptarse para un número menor, por ejemplo 10, 8, 6, 4 o 2, sin que sea limitativo que se disminuyan en pares.
Debido a que la carga hidrostática en el fondo del tanque de la zona de dispensado es uniforme, la localización de los orificios y por ende, de las boquillas asociadas puede ser modificada "de fábrica" para responder a aplicaciones particulares. También es posible modificar la geometría de la pared vertical del tanque para adoptar la forma cilindrica, o de prisma regular de base plana, sin que esto tenga efecto apreciable sobre los perfiles de distribución del nitrógeno liquido hacia las boquillas .
También es claro que las operaciones manuales descritas con relación al equipo ilustrado en la modalidad preferida pueden ser reemplazadas por controles automáticos que permitirían el establecimiento de lineas de producción de alto volumen.
Estas y otras modificaciones que pueden ser evidentes para un técnico en la materia, debieran ser consideradas dentro del alcance de la presente invención a la luz de las reivindicaciones siguientes.

Claims

REIVINDICACIONESUna vez descrita la invención, lo que se considera novedoso y por tanto se reclama su propiedad, es:
1. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido que comprende: a. un separador de fases, b. una zona de dispensado de nitrógeno liquido, c. medios de control del dispensado, d. un transportador del material a congelar hacia y desde el equipo, e. una cámara fria tipo túnel, y f . una salida de nitrógeno gas a la atmósfera, dicho equipo caracterizado porque: el nitrógeno liquido proveniente de un tanque de alimentación se alimenta al separador de fases a presión atmosférica donde la fase gaseosa se ventila a la atmósfera y el nitrógeno liquido se alimenta y es mantenido en un tanque de depósito aislado y a presión atmosférica en la zona de dispensado antes de ser dispensado al producto a congelar; el flujo del nitrógeno liquido desde el tanque de depósito hacia el producto a congelar se realiza a través de una pluralidad de boquillas por el simple efecto de la gravedad, y es controlado por los medios de control que permiten la dosificación de la cantidad de nitrógeno liquido a dispensar; el nitrógeno liquido es dispensado directamente sobre el producto a congelar confinado preferentemente en su empaque final, el cual una vez que recibe el dispensado de nitrógeno liquido, se transporta fuera de la zona de dispensado mediante un transportador que se encuentra cubierto por material aislante para formar una cámara fria tipo túnel en que el nitrógeno remanente alrededor del producto se gasifica para formar una atmósfera fria; finalmente, a la salida de la cámara fria, el nitrógeno gaseoso se ventila a la atmósfera y el producto continúa su proceso de empaque y almacenamiento .
2. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 1, caracterizado porque el nitrógeno liquido que se alimenta al separador de fases proviene de una linea a presión que se alimenta al separador, en donde se produce la separación de fases por disminución de la presión hasta la presión atmosférica.
3. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 2, caracterizado porque la fase gaseosa en el separador de fases se ventila a la atmósfera.
4. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 1, caracterizado porque el nitrógeno liquido proveniente de la separación de fases se alimenta por gravedad a un tanque de depósito aislado en la zona de dispensado.
5. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 4, caracterizado porque el tanque de depósito en la zona de dispensado tiene paredes dobles con aislamiento por vacio.
6. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 4, caracterizado porque el tanque de depósito en la zona de dispensado presenta fondo plano.
7. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 6, caracterizado porque dicho fondo del tanque de depósito en la zona de dispensado presenta una pluralidad de orificios de salida que comunican con una pluralidad de boquillas de dispensado correspondientes.
8. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 7, caracterizado porque dichos orificios se distribuyen por parejas en una disposición tal que cada orificio se localice sobre el centro de cada cavidad conteniendo el alimento a congelar en un contenedor con múltiples pares de cavidades.
9. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 7, caracterizado porque los orificios de salida se distribuyen en el fondo del tanque en una disposición tal que cada orificio se localice solamente sobre el centro de cada cavidad conteniendo el alimento a congelar en un contenedor con múltiples cavidades.
10. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 7, caracterizado porque cada orificio en el fondo del tanque de depósito comunica con una boquilla para el dispensado del nitrógeno liquido al alimento por congelar, a través de una válvula para el control de paso de fluido.
11. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 10, caracterizado porque la salida de nitrógeno por cada boquilla puede ser inactivada de manera que solo se permita el dispensado del nitrógeno liquido a través de aquellas boquillas localizadas sobre el centro de una cavidad conteniendo alimento a congelar en un contenedor con múltiples cavidades.
12. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 11, caracterizado porque el flujo por unidad de tiempo que pasa a través de cada conjunto de orificio, válvula criogénica y boquilla es idéntico en todos ellos.
13. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 12, caracterizado porque la cantidad de nitrógeno liquido que se dispensa por cada boquilla se determina por el tiempo que la válvula criogénica permanece abierta.
14. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 10, caracterizado porque las válvulas criogénicas de control de fluido preferentemente son del tipo de válvulas criogénicas de aguja.
15. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 10, caracterizado porque las válvulas criogénicas de control de fluido preferentemente son fabricadas de acero inoxidable.
16. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 10, caracterizado porque cada una de las válvulas criogénicas de control de fluido es accionada por un actuador neumático individual .
17. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 15, caracterizado porque cada una de las válvulas criogénicas de control de fluido se posiciona con el vastago en posición horizontal, de manera que el nitrógeno liquido fluya verticalmente cuando se opera la válvula criogénica.
18. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 11, caracterizado porque cada actuador neumático individual a su vez es accionado por una válvula solenoide neumática de cinco vias .
19. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 1, caracterizado porque los medios de control de dispensado incluyen: a) un interruptor para el accionamiento de la válvula criogénica de alimentación del nitrógeno liquido al separador de fases; b) un interruptor general de encendido/apagado del equipo; c) un "timer" para el control de tiempo de flujo de nitrógeno líquido a las boquillas; d) un botón accionador manual; e) un indicador del nivel del nitrógeno liquido en el tanque de la zona de dispensado; f) un regulador de nivel del nitrógeno líquido en el tanque de la zona de dispensado; y g) un medidor de flujo de nitrógeno gaseoso.
20. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno líquido, de conformidad con la reivindicación 19, caracterizado porque en un ciclo de operación, se fija el tiempo de descarga del nitrógeno líquido en el "timer", y al oprimir el botón accionador, se transmite una señal que opera cada válvula solenoide neumática de cinco vías asociada con cada válvula criogénica de dosificación, para abrirla durante el tiempo determinado en el "timer" y cerrarla al término de dicho tiempo, dispensando una cantidad precisa de nitrógeno líquido por cada boquilla.
21. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno líquido, de conformidad con la reivindicación 1, caracterizado porque el transportador del material a congelar se extiende desde un punto antes de la zona de dispensado, pasa por la zona de dispensado y se aleja de ella en dirección opuesta para llevar el material a congelar a través de la zona de dispensado para su congelamiento y conducirlo a la siguiente etapa de su procesamiento, tal como el sellado del empaque .
22. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 21, caracterizado porque el transportador es preferentemente una banda del tipo de rodillos.
23. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 21, caracterizado porque en la longitud del transportador por debajo de la zona de dispensado y posterior a ella, se forma una cámara fria aislada al rodear dicho transportador con paredes aislantes, para permitir la producción de una atmósfera rica en nitrógeno gas.
24. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 21, caracterizado porque el transportador presenta una rendija en el limite anterior de la zona de dispensado y otra en la zona próxima a su extremo terminal, por las que se extrae el nitrógeno gas formado.
25. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 21, caracterizado porque la succión en las rendijas de la entrada y la salida forman una cortina a la entrada y a la salida de la cámara impidiendo la difusión del nitrógeno gaseoso a las áreas ocupadas por el personal.
26. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno liquido, de conformidad con la reivindicación 21, caracterizado porque el gas nitrógeno producido en la cámara es guiado a lo largo de la cámara por encima y por debajo de la banda del transportador.
27. Un equipo para la congelación ultrarrápida de alimentos por nitrógeno líquido, de conformidad con la reivindicación 21, caracterizado porque el nitrógeno gaseoso se extrae de la cámara fría por un extractor que se conecta al ducto de salida de la cámara.
PCT/MX2008/000078 2008-06-19 2008-06-19 Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido. WO2009154435A1 (es)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP08778968.1A EP2317256B1 (en) 2008-06-19 2008-06-19 Equipment for ultra-rapid freezing of foods through direct metered contact with liquid nitrogen
JP2011514508A JP5345211B2 (ja) 2008-06-19 2008-06-19 滴下した液体窒素の直接接触による超高速食品冷凍装置
BRPI0813052-3A BRPI0813052A2 (pt) 2008-06-19 2008-06-19 " equipamento para o congelamento ultra-rápido de alimentos por nitrogênio líquido
CN2008800256769A CN101828084B (zh) 2008-06-19 2008-06-19 通过与液氮按剂量直接接触的超快食品冷冻设备
US12/449,684 US20100139293A1 (en) 2008-06-19 2008-06-19 Ultrafast food freezing equipment by direct contact with dosed liquid nitrogen
NZ582369A NZ582369A (en) 2008-06-19 2008-06-19 Ultra-rapid freezing of foods through tunnel type cold chamber, liquid nitrogen being dispensed through nozzles by gravity effect
CA2693739A CA2693739C (en) 2008-06-19 2008-06-19 Equipment for ultra-rapid freezing of foods through direct metered contact with liquid nitrogen
AU2008358119A AU2008358119B2 (en) 2008-06-19 2008-06-19 Equipment for ultra-rapid freezing of foods through direct metered contact with liquid nitrogen.
PCT/MX2008/000078 WO2009154435A1 (es) 2008-06-19 2008-06-19 Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido.
KR1020097027332A KR101203237B1 (ko) 2008-06-19 2008-06-19 액체 질소와의 직접 계량 접촉을 통해 식품을 초고속 냉동하는 장치
MX2009007002A MX2009007002A (es) 2008-06-19 2009-06-26 Equipo para la congelacion ultrarrapida de alimetos por contacto directo dosificado con nitrogeno liquido.
IL203048A IL203048A (en) 2008-06-19 2009-12-30 Equipment for very fast freezing of food through direct contact with liquid nitrogen in a fixed dose
EG2010101832A EG26642A (en) 2008-06-19 2010-10-31 High-speed freezing equipment for food by direct contact with liquid nitrogen dose
HK11100890.8A HK1146834A1 (en) 2008-06-19 2011-01-28 Equipment for ultra-rapid freezing of foods through direct metered contact with liquid nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2008/000078 WO2009154435A1 (es) 2008-06-19 2008-06-19 Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido.

Publications (1)

Publication Number Publication Date
WO2009154435A1 true WO2009154435A1 (es) 2009-12-23

Family

ID=41434240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000078 WO2009154435A1 (es) 2008-06-19 2008-06-19 Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido.

Country Status (13)

Country Link
US (1) US20100139293A1 (es)
EP (1) EP2317256B1 (es)
JP (1) JP5345211B2 (es)
KR (1) KR101203237B1 (es)
CN (1) CN101828084B (es)
AU (1) AU2008358119B2 (es)
BR (1) BRPI0813052A2 (es)
CA (1) CA2693739C (es)
EG (1) EG26642A (es)
HK (1) HK1146834A1 (es)
IL (1) IL203048A (es)
NZ (1) NZ582369A (es)
WO (1) WO2009154435A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547800A (zh) * 2016-01-27 2016-05-04 浙江大学 用于显微观察冰晶形态的冷冻系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448660B2 (en) 2011-10-03 2019-10-22 Kerry Luxembourg S.à.r.l. Metering the disposition of a food product into cavities forming a pellet
US20130084368A1 (en) * 2011-10-03 2013-04-04 Karl Linck Metering the Disposition of a Food Product into Cavities Forming a Pellet
JP6078227B2 (ja) * 2011-10-17 2017-02-08 大陽日酸株式会社 急速凍結装置及び急速凍結方法
US9648898B2 (en) 2012-09-13 2017-05-16 Kerry Luxembourg S.à.r.l. Metering the disposition of a food product into cavities forming a pellet
CN103016951B (zh) * 2012-11-26 2014-11-26 上海裕达实业公司 一种残液排空装置
CN103070221B (zh) * 2013-01-11 2015-03-18 浙江大学舟山海洋研究中心 一种快速冻结带鱼和带鱼制品的方法
KR101307923B1 (ko) * 2013-02-08 2013-09-12 (주)대성후드텍 냉동 제품 파쇄 해빙 장치
CN103673446B (zh) * 2013-12-19 2015-09-23 科威嘉尼(北京)科技有限公司 一种平衡气流的隧道式液氮冷冻设备
CN103940168A (zh) * 2014-04-15 2014-07-23 上海东富龙科技股份有限公司 速冻设备及其工艺
US20160030607A1 (en) * 2014-08-04 2016-02-04 Michael D. Newman Heat flux control for liquid nitrogen sprays
CN104886234B (zh) * 2015-06-30 2018-03-27 温州科技职业学院 一种果蔬液氮预冷装置
JP6805447B2 (ja) * 2016-12-22 2020-12-23 株式会社前川製作所 液体分注装置及び液体分注方法
JP6865031B2 (ja) * 2016-12-22 2021-04-28 株式会社前川製作所 液体分注装置及び液体分注方法
EP3700347A1 (en) * 2017-10-26 2020-09-02 GEA Food Solutions Bakel B.V. Treatment of insects
CN107883630A (zh) * 2017-12-12 2018-04-06 广州鲜之源生态冷链技术有限公司 一种菜肴的液氮制冷装置及制冷方法
CN108719449B (zh) * 2018-05-31 2021-07-20 华南理工大学 一种真空低温氮气快速均匀冷冻果蔬的方法和设备
ES2964198T3 (es) * 2019-11-26 2024-04-04 Air Liquide Expulsión de un fluido refrigerante
CN111595079B (zh) * 2020-05-15 2021-11-23 Tcl家用电器(合肥)有限公司 固定装置和冰箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171625A (en) * 1977-11-02 1979-10-23 Formax, Inc. Cryogenic freezing tunnel
US20040099005A1 (en) * 2002-08-20 2004-05-27 The Boc Group Inc. New Providence Nj Flow enhanced tunnel freezer
US20060070393A1 (en) * 2004-10-01 2006-04-06 Robert Muscato Apparatus and method for freezing food products
US20060283196A1 (en) * 2005-06-16 2006-12-21 Uwe Rosenbaum Process and apparatus for continuous cooling of pumpable material with a liquid cryogen
WO2007011199A2 (es) 2005-07-21 2007-01-25 Yamil Adiv Maccise Sade Charola para la descongelación de productos alimenticios con microondas
EP1808086A2 (de) * 2006-01-11 2007-07-18 Messer France S.A.S. Vorrichtung zum Kühlen von Produkten

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1500863A (fr) * 1966-06-17 1967-11-10 Commissariat Energie Atomique Perfectionnements aux chalumeaux oxy-acétyléniques
JPS49115756U (es) * 1973-01-29 1974-10-03
US3914953A (en) * 1974-05-01 1975-10-28 Air Prod & Chem Cryogenic fragmentation freezer
FR2302479A1 (fr) * 1975-02-25 1976-09-24 Air Liquide Dispositif pour la distribution controlee de fluide cryogenique
US4128164A (en) * 1977-11-02 1978-12-05 Formax, Inc. Constant-tension conveyor drive for thermal processing apparatus
JPS61122461A (ja) * 1984-11-16 1986-06-10 株式会社日立製作所 極低温弁
US4865088A (en) * 1986-09-29 1989-09-12 Vacuum Barrier Corporation Controller cryogenic liquid delivery
SE459764B (sv) * 1987-08-06 1989-07-31 Frigoscandia Contracting Ab Frystunnel med nivaahaallning av kylmediet medelst ett braeddavlopp
JPH05272659A (ja) * 1992-01-30 1993-10-19 Toshiba Corp 冷媒用弁装置および弁機構
US5203998A (en) * 1992-06-17 1993-04-20 Benian Filter Company, Inc. Permanent backwashable filter structure
GB9303212D0 (en) * 1993-02-17 1993-03-31 Air Prod & Chem Method and apparatus for freezing
JP3827398B2 (ja) * 1997-03-31 2006-09-27 嘉之 和田 液化ガスの分配装置
FR2766738B1 (fr) * 1997-08-01 1999-09-03 Air Liquide Procede et dispositif de pulverisation sequentielle d'un liquide cryogenique, procede et installation de refroidissement en comportant application
JP3263652B2 (ja) * 1998-03-05 2002-03-04 住友重機械工業株式会社 放射光源の安定化方法、装置及び放射光源
US5950437A (en) * 1998-03-11 1999-09-14 Mve, Inc. System and method for charging insulated containers with cryogenic liquids
FR2783311B1 (fr) * 1998-09-14 2000-10-06 Air Liquide Procede et appareil de congelation de produits en ligne
JP2000161828A (ja) * 1998-11-27 2000-06-16 Iwatani Internatl Corp 磁気シートの冷却設備
US6182715B1 (en) * 2000-01-18 2001-02-06 Alex R. Ziegler Liquid nitrogen injection system with flexible dosing arm for pressurization and inerting containers on production lines
KR200215910Y1 (ko) 2000-09-14 2001-03-15 대성산소주식회사 폐쇄식 냉동기 및 액체 질소를 이용한 식품급속 동결장치
US7281550B2 (en) * 2003-07-14 2007-10-16 Cryotech International, Inc. Liquid delivery system with horizontally displaced dispensing point
DE102004020194A1 (de) * 2004-04-22 2005-11-17 Linde Ag Vorrichtung zum Gefrieren und/oder Kühlen von Gegenständen in einem mit einem Ventilator ausgestatteten Kühlraum
DE102006045266A1 (de) * 2006-09-22 2008-04-03 Linde Ag Vorrichtung zum Kühlen und/oder Frosten von Stoffen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171625A (en) * 1977-11-02 1979-10-23 Formax, Inc. Cryogenic freezing tunnel
US20040099005A1 (en) * 2002-08-20 2004-05-27 The Boc Group Inc. New Providence Nj Flow enhanced tunnel freezer
US20060070393A1 (en) * 2004-10-01 2006-04-06 Robert Muscato Apparatus and method for freezing food products
US20060283196A1 (en) * 2005-06-16 2006-12-21 Uwe Rosenbaum Process and apparatus for continuous cooling of pumpable material with a liquid cryogen
WO2007011199A2 (es) 2005-07-21 2007-01-25 Yamil Adiv Maccise Sade Charola para la descongelación de productos alimenticios con microondas
EP1808086A2 (de) * 2006-01-11 2007-07-18 Messer France S.A.S. Vorrichtung zum Kühlen von Produkten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2317256A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547800A (zh) * 2016-01-27 2016-05-04 浙江大学 用于显微观察冰晶形态的冷冻系统

Also Published As

Publication number Publication date
BRPI0813052A2 (pt) 2015-08-18
JP5345211B2 (ja) 2013-11-20
KR101203237B1 (ko) 2012-11-20
EP2317256A4 (en) 2014-01-01
CA2693739C (en) 2014-04-08
AU2008358119A1 (en) 2009-12-23
NZ582369A (en) 2013-03-28
EP2317256B1 (en) 2017-04-19
HK1146834A1 (en) 2011-07-15
KR20100028585A (ko) 2010-03-12
CN101828084B (zh) 2013-03-06
CA2693739A1 (en) 2009-12-23
JP2011524972A (ja) 2011-09-08
AU2008358119B2 (en) 2013-04-04
US20100139293A1 (en) 2010-06-10
EP2317256A1 (en) 2011-05-04
EG26642A (en) 2014-04-20
IL203048A (en) 2014-01-30
CN101828084A (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2009154435A1 (es) Equipo para la congelación ultrarrápida de alimentos por contacto directo dosificado con nitrógeno líquido.
CN103692948B (zh) 一种水产品无水保活运输车及运输方法
CN102226632A (zh) 一种集真空、微波、冰温技术实施干燥的装置及方法
ES2788058T3 (es) Sistema de maduración en seco que emplea oxígeno
US20110027439A1 (en) Method for freezing fruit and vegetable produce
EP1286586B1 (en) Methods and apparatus for freezing tissue
WO2013021086A2 (es) Método, instalación y dispositivo para un tratamiento de secado, curado y conservación de alimentos sólidos o semisólidos
AU2001262531A1 (en) Methods and apparatus for freezing tissue
ES2459345T3 (es) Método para la producción de alimentos congelados
CN104973342B (zh) 一种糖醋生姜保鲜系统
CN105020956B (zh) 一种便携式低温冷藏箱
CN106440630A (zh) 充冷式冰温冷库
RU2467262C2 (ru) Установка для сверхбыстрой заморозки пищевых продуктов путем прямого контакта с дозированным жидким азотом
ES2307425B1 (es) Instalacion para la confirmacion de granulos congelados a partir de liquidos alimentarios.
CN105300005B (zh) 一种静风冰鲜冷库
CN202470573U (zh) 柔性冰囊
ES2922560B2 (es) Contenedor para procesado por alta presion a temperaturas moderadas
ES2328891B1 (es) Metodo para la congelacion de productos hortofruticolas.
Habok et al. Modification and testing of a liquid nitrogen refrigerated container for the distribution of fresh red meat
Jeyamkondan et al. A NITROGEN REFRIGERATED, JACKETED CONTAINER FOR DISTRIBUTION OF RETAIL–READY MEAT
Vintilă et al. Research on freezing behaviour of some strawberry fruit grown in Romania.
CN103053673A (zh) 杨梅冰点利用
WO2017192026A1 (es) Aparato para deshidratar materia orgánica
BRPI1105419A2 (pt) Dispositivo para monitoramento de baixas temperaturas
ES1076736U (es) Dispositivo de control de congelación de productos alimenticios.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880025676.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/007002

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2243/MUMNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12449684

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20097027332

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 582369

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2693739

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008358119

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009144129

Country of ref document: RU

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011514508

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008358119

Country of ref document: AU

Date of ref document: 20080619

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008778968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008778968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: a200912702

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 12010502672

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0813052

Country of ref document: BR

Free format text: IDENTIFIQUE E COMPROVE QUE O SIGNATARIO DA PETICAO NO 018100002713 DE 27/01/2010 E O DA FIDELIZACAO DA PROCURACAO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS."

ENP Entry into the national phase

Ref document number: PI0813052

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100127