WO2009153955A1 - 血液浄化装置及びそのプライミング方法 - Google Patents
血液浄化装置及びそのプライミング方法 Download PDFInfo
- Publication number
- WO2009153955A1 WO2009153955A1 PCT/JP2009/002696 JP2009002696W WO2009153955A1 WO 2009153955 A1 WO2009153955 A1 WO 2009153955A1 JP 2009002696 W JP2009002696 W JP 2009002696W WO 2009153955 A1 WO2009153955 A1 WO 2009153955A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- priming
- arterial
- venous
- blood circuit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3643—Priming, rinsing before or after use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3643—Priming, rinsing before or after use
- A61M1/3644—Mode of operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3643—Priming, rinsing before or after use
- A61M1/3644—Mode of operation
- A61M1/3646—Expelling the residual body fluid after use, e.g. back to the body
Definitions
- the present invention relates to a blood purification apparatus for purifying a patient's blood while circulating it extracorporeally, such as dialysis treatment using a dialyzer, and a priming method thereof.
- a blood circuit for circulating the collected patient's blood extracorporeally and returning it to the body is used.
- a blood circuit is, for example, a dialyzer (blood purification means) having a hollow fiber membrane. It is mainly composed of an arterial blood circuit and a venous blood circuit that can be connected to each other. An arterial puncture needle and a venous puncture needle are attached to the tips of the arterial blood circuit and the venous blood circuit, respectively, and are punctured by the patient to perform extracorporeal circulation of blood in dialysis treatment.
- the arterial blood circuit is provided with a squeezed blood pump, and by driving the blood pump, blood is sent from the patient's body to the dialyzer side, while the arterial blood circuit and the venous blood are supplied.
- An arterial drip chamber and a venous drip chamber are connected to the circuit so that blood is returned to the patient's body after defoaming.
- a priming solution supply line for supplying physiological saline at the time of priming or blood return is provided upstream of the blood pump in the arterial blood circuit (that is, the arterial puncture needle side).
- the blood circuit and components such as the drip chamber connected to the blood circuit are primed by flowing and filling physiological saline before dialysis treatment. Blood is returned by replacing the residual blood remaining in the circuit and the like with physiological saline and returning the residual blood to the patient.
- a dialysis apparatus provided with a priming solution supply line is disclosed in Patent Document 1, for example.
- the bubbles in the priming liquid may remain without being discharged to the outside.
- the conventional blood purification apparatus has a problem that a large amount of priming liquid is required and a long time is required for priming.
- the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a blood purification apparatus and a priming method thereof capable of smoothly removing bubbles during priming in a short time.
- the invention according to claim 1 is composed of an arterial blood circuit and a venous blood circuit, a blood circuit capable of extracorporeally circulating a patient's blood from the tip of the arterial blood circuit to the tip of the venous blood circuit, and the blood
- a blood flow path that is interposed between the arterial blood circuit and the venous blood circuit of the circuit to purify blood flowing through the blood circuit, and through which a patient's blood flows through a blood purification film for purifying the blood
- Blood purification means having a dialysate flow path through which the dialysate flows, a blood pump disposed in the arterial blood circuit, and dialysate introduction connected to the dialysate flow path inlet and outlet of the blood purification means
- a dialysate outlet for connecting dialysate from the dialysate flow path, and connecting the tip of the arterial blood circuit and the tip of the venous blood circuit during priming before treatment In the blood purification apparatus, a priming solution filling step of supplying a priming solution into the blood circuit and filling the blood circuit in a state in which the arterial blood circuit tip and the venous blood circuit tip are connected and communicated with each other And, after the priming liquid filling step, a circulation step of circulating the priming liquid filled by flowing the priming liquid filled in the blood circuit by sequentially changing the driving speed of the blood pump. Characterized in that it is carried out.
- the circulation step includes a normal rotation driving state in which the blood pump is driven in a normal rotation direction, a reverse rotation driving state in which the blood pump is driven in a reverse rotation, and the blood pump It is characterized in that it is performed by combining two or more states out of the stop states for stopping the operation.
- the invention according to claim 3 is characterized in that, in the blood purification apparatus according to claim 2, at least two different drive speeds can be set in the forward rotation or the reverse drive state.
- the invention according to claim 4 is the blood purification apparatus according to any one of claims 1 to 3, wherein the artery side drip chamber formed in the middle of the artery side blood circuit, and the air in the artery side drip chamber An arterial overflow line which is extended to open the layer side to the outside and whose flow path can be opened and closed; a venous drip chamber formed in the middle of the venous blood circuit; and a venous drip chamber A venous overflow line that is extended to open the air layer side to the outside and whose flow path can be opened and closed, and a connecting portion between the tip of the arterial blood circuit and the blood pump in the arterial blood circuit
- a priming liquid supply line capable of supplying a priming liquid, and the priming liquid filling step includes the step of filling the static electricity from the blood outlet of the blood purification means.
- the venous blood circuit is supplied from the connecting part of the arterial blood circuit via the connecting part between the distal end of the arterial blood circuit and the distal end of the venous blood circuit by supplying the priming liquid from the priming liquid supply line while maintaining the state.
- a priming fluid is allowed to flow to the venous drip chamber and discharged from the venous overflow line; and the priming fluid supply line is primed while the venous overflow line is closed and the arterial overflow line is opened.
- the priming liquid filled with the venous overflow line and the priming liquid supply line being closed is flowed in the blood circuit.
- the priming liquid filling step and the circulation step allow the priming liquid to flow from the lower side to the upper side of the blood purification means.
- a seventh aspect of the present invention is the blood purification apparatus according to the sixth aspect, wherein the priming solution filling step and the circulation step are arranged such that the blood introduction port of the blood purification means is vertically upward and the blood outlet is vertically downward. It is characterized by being performed.
- the invention according to claim 8 is the blood purification apparatus according to any one of claims 4 to 7, wherein the air bubbles in the blood circuit can be detected in the middle of the arterial blood circuit or the venous blood circuit.
- a detection means is provided, and the air venting by the second circulation step is performed in conjunction with the detection of bubbles by the bubble detection means.
- the invention according to claim 9 is the blood purification apparatus according to any one of claims 1 to 8, wherein the dialysate is introduced from the dialysate introduction line into the dialysate flow path of the blood purification means, By having the dialysate discharged from the dialysate discharge line, there is a gas purge step for filling the dialysate in the flow path, and the gas purge step is automatically performed in the priming solution filling step or the circulation step. It is characterized by.
- the invention described in claim 10 comprises an arterial blood circuit and a venous blood circuit, a blood circuit capable of extracorporeally circulating a patient's blood from the distal end of the arterial blood circuit to the distal end of the venous blood circuit, and the blood A blood flow path that is interposed between the arterial blood circuit and the venous blood circuit of the circuit to purify blood flowing through the blood circuit, and through which a patient's blood flows through a blood purification film for purifying the blood;
- Blood purification means having a dialysate flow path through which the dialysate flows, a blood pump disposed in the arterial blood circuit, and dialysate introduction connected to the dialysate flow path inlet and outlet of the blood purification means A blood line and a dialysate discharge line, and a blood inlet formed in the blood purification means, connected to the arterial blood circuit and introducing blood into the blood flow path, and connected to the venous blood circuit and blood A blood outlet for leading blood out of the passage; a dialysate inlet
- the priming fluid is supplied into the blood circuit and filled in the blood circuit in a state where the tip of the arterial blood circuit and the tip of the venous blood circuit are connected and communicated with each other.
- the invention according to claim 11 is the priming method of the blood purification apparatus according to claim 10, wherein the circulation step includes a normal rotation driving state in which the blood pump is normally driven, a reverse rotation driving state in which the blood pump is reversely driven, It is characterized in that any two or more states among the stopped states in which the blood pump is stopped are combined.
- At least two different driving speeds can be set in the normal rotation or the reverse rotation driving state.
- a thirteenth aspect of the present invention is the blood purification apparatus priming method according to any one of the tenth to twelfth aspects, wherein the arterial drip chamber formed in the middle of the arterial blood circuit, and the arterial drip An arterial overflow line which is extended to open the air layer side of the chamber to the outside and whose flow path can be opened and closed; a venous drip chamber formed in the middle of the venous blood circuit; and the venous side A venous overflow line that is extended to open the air layer side of the drip chamber to the outside and that can be opened and closed, and between the tip of the arterial blood circuit and the blood pump in the arterial blood circuit.
- the blood purification apparatus includes a priming liquid supply line that is connected at a connecting portion and can supply a priming liquid, and the priming liquid filling step A first filling step of normally driving the blood pump by a capacity corresponding to a flow path volume in the venous blood circuit between the blood outlet of the blood purification means and the venous drip chamber; and the blood pump Is stopped, and the priming fluid is supplied from the priming fluid supply line while the venous overflow line is opened, so that the arterial blood circuit tip and the venous blood circuit tip are connected from the connecting portion of the arterial blood circuit.
- a priming solution is circulated to the chamber and discharged from the artery-side overflow line; and the blood pump is driven to rotate in the forward direction from the arterial-side blood circuit connection portion via the blood pump arrangement site.
- a fourth filling step in which a priming solution is circulated to the arterial drip chamber of the arterial blood circuit and discharged from the arterial overflow line.
- the circulation step is performed while flowing the priming liquid filled with the venous overflow line and the priming liquid supply line closed.
- the priming liquid filling step and the circulation step distribute the priming liquid from the lower side to the upper side of the blood purification means. It is characterized by making it.
- the priming liquid filling step and the circulation step are configured such that the blood introduction port of the blood purification means faces upward in the vertical direction and the blood outlet port moves in the vertical direction It is characterized by being installed downward.
- the invention according to claim 17 is the priming method of the blood purification apparatus according to any one of claims 13 to 16, wherein air bubbles in the blood circuit are detected in the middle of the arterial blood circuit or the venous blood circuit.
- An air bubble detecting means is provided, and air bleeding by the second circulation step is performed in conjunction with detection of air bubbles by the air bubble detecting means.
- the invention according to claim 18 is the priming method of the blood purification apparatus according to any one of claims 10 to 17, wherein the dialysate is introduced from the dialysate introduction line into the dialysate flow path of the blood purification means. And having a gas purge step of filling the dialysate in the flow path by discharging the dialysate from the dialysate discharge line, and automatically performing the gas purge step in the priming solution filling step or the circulation step. It is performed.
- a circulation process is performed in which the filled priming liquid is made to flow and circulates in the blood circuit by sequentially changing the driving speed of the blood pump. It is possible to smoothly remove bubbles during priming in a short time.
- the circulation step may be any two or more of a normal rotation driving state in which the blood pump is normally driven, a reverse driving state in which the blood pump is reversely driven, and a stopped state in which the blood pump is stopped. Since these conditions are combined, various priming liquid flow patterns can be set according to the priming situation.
- At least two different driving speeds can be set in the forward or reverse driving state, so that the flow pattern of the priming liquid according to the priming situation can be set more finely. it can.
- the blood pump in the priming liquid filling step, is adjusted by a capacity corresponding to the flow path volume in the venous blood circuit between the blood outlet of the blood purification means and the venous drip chamber. Since the first filling process is performed, the so-called wet type (the blood channel and dialysate channel are pre-filled with a filling solution) or the dry type (the blood channel and dialysate channel are filled with air or the like). No matter which type of blood purification means is connected to the blood circuit, there is no need to change the priming liquid filling step, and the priming liquid filling step can be made common.
- the second circulatory process is performed in which either the arterial overflow line or the venous overflow line is opened to release air. Air bleeding can be performed more reliably.
- the priming liquid filling step and the circulation step cause the priming liquid to flow from the lower side to the upper side of the blood purification means.
- the air in a state of being mixed in can be surely removed.
- the priming liquid filling step and the circulation step are performed with the blood introduction port of the blood purification means being vertically upward and the blood outlet being vertically downward. Even if it is not reversed, the air in the priming liquid can be surely removed.
- the bubble detecting means capable of detecting the bubbles in the blood circuit is disposed in the middle of the arterial blood circuit or the venous blood circuit, and the air is vented by the second circulation step. Since this is performed in conjunction with the detection of bubbles by the bubble detection means, the air can be vented more reliably and smoothly in the circulation step.
- the gas purging step is automatically performed in the priming liquid filling step or the circulation step, so that the priming liquid filling step or the circulation step and the gas purging step can be performed in parallel.
- FIG. 1 is a schematic diagram showing a dialysis device (blood purification device) according to a first embodiment of the present invention.
- Schematic diagram showing a state in which the pre-priming process is performed by the dialysis machine The schematic diagram which shows the state in which the 1st priming process by the dialyzer is performed. The schematic diagram which shows the state in which the 2nd priming process by the dialyzer is performed. The schematic diagram which shows the state in which the 3rd priming process by the dialyzer is performed Schematic diagram showing the state where the circulation process by the dialysis machine is performed. The schematic diagram which shows the state in which the 1st washing
- Schematic diagram showing a dialysis apparatus according to another embodiment of the present invention Schematic diagram showing a dialysis apparatus according to another embodiment of the present invention.
- Schematic diagram showing a dialysis apparatus according to another embodiment of the present invention The schematic diagram which shows the state in which the 1st filling process is performed with the dialysis apparatus (blood purification apparatus) which concerns on the 2nd Embodiment of this invention.
- the schematic diagram which shows the state in which the 2nd filling process by the dialysis device is performed
- the schematic diagram which shows the state in which the 3rd filling process by the dialysis device is performed
- the schematic diagram which shows the state in which the 4th filling process by the dialyzer is performed
- Schematic diagram showing a state in which a gas purge process is performed by the dialysis machine
- the schematic diagram which shows the state in which the 1st circulation process by the dialyzer is performed
- the schematic diagram which shows the state in which the other 1st circulation process by the same dialysis machine is performed
- the schematic diagram which shows the state in which the further other 1st circulation process by the same dialysis apparatus is performed
- the schematic diagram which shows the state in which the further other 1st circulation process by the same dialysis apparatus is performed
- the schematic diagram which shows the state in which the 3rd filling process and 4th filling process by the dialysis apparatus are performed simultaneously.
- the blood purification apparatus includes a dialysis apparatus for performing dialysis treatment. As shown in FIG. 1, a blood circuit including an arterial blood circuit 1 and a venous blood circuit 2, and an arterial blood.
- a dialyzer 3 blood purification means interposed between the circuit 1 and the venous blood circuit 2 to purify blood flowing through the blood circuit; a squeezing blood pump 4 disposed in the arterial blood circuit 1; An arterial drip chamber 5 and a venous drip chamber 6 disposed in the arterial blood circuit 1 and the venous blood circuit 2, respectively, a containing means 7 containing physiological saline as a priming solution, and the containing means 7; It is mainly composed of a priming liquid supply line Lc connecting the arterial blood circuit 1.
- the arterial blood circuit 1 is connected to an arterial puncture needle a via a connector c at its tip, and an iron-type blood pump 4 and an arterial drip chamber 5 for defoaming are disposed in the middle.
- a venous puncture needle b is connected to the distal end of the venous blood circuit 2 via a connector d, and a venous drip chamber 6 is connected midway.
- the blood pump 4 when the blood pump 4 is driven with the patient punctured with the arterial puncture needle a and the venous puncture needle b, the patient's blood passes through the arterial blood circuit 1 and reaches the dialyzer 3, Blood purification is performed by the dialyzer 3, and bubbles are removed in the venous drip chamber 6, and then returned to the patient's body through the venous blood circuit 2. That is, the blood of the patient is purified by the dialyzer 3 while circulating externally from the tip of the arterial blood circuit 1 to the tip of the venous blood circuit 2 of the blood circuit.
- the arterial drip chamber 5 and the venous drip chamber 6 have an arterial overflow line 8 and a venous overflow line 9 extending from each upper portion (air layer side).
- Solenoid valves V3 and V4 are provided. That is, the arterial overflow line 8 and the venous overflow line 9 are extended to open the air layer side of the arterial drip chamber 5 and the venous drip chamber 6 to the outside, and the flow paths thereof are defined by electromagnetic valves V3 and V4. It can be opened and closed.
- the dialyzer 3 includes a blood inlet 3a (blood inlet port), a blood outlet 3b (blood outlet port), a dialysate inlet 3c (dialysate inlet port), and a dialysate outlet 3d (dialysate).
- a blood outlet port 3a is connected to the arterial blood circuit 1, and the blood outlet port 3b is connected to the venous blood circuit 2.
- the dialysate inlet 3c and dialysate outlet 3d are respectively connected to a dialysate inlet line La and a dialysate outlet line Lb extending from the dialyzer body.
- the dual pump (not shown) is disposed across the dialysate introduction line La and the dialysate discharge line Lb in the dialyzer body, and from the patient's blood flowing in the dialyzer 3 to the dialyzer body.
- a water removal pump (not shown) for removing water is provided.
- one end of the dialysate introduction line La is connected to the dialyzer 3 (dialyte introduction port 3c), and the other end is connected to a dialysate supply device (not shown) for preparing a predetermined concentration of dialysate.
- dialysate discharge line Lb is connected to the dialyzer 3 (dialysate outlet 3d) and the other end is connected to a drainage means (not shown), which is supplied from the dialysate supply device. After the dialysate reaches the dialyzer 3 through the dialysate introduction line La, the dialysate is sent to the drainage means through the dialysate discharge line Lb.
- an electromagnetic valve V6 capable of closing and opening the flow path is connected, and in the middle of the dialysate discharge line Lb (with the duplex pump and An electromagnetic valve V5 capable of closing and opening the flow path is connected between the dialyzer 3).
- an electromagnetic valve V1 that can close and open the flow path is also connected in the middle of the artery-side blood circuit 1.
- solenoid valves V1, V5, and V6 are capable of closing and opening the flow paths at the respective locations by opening and closing operations as described above.
- the opening / closing operation is controlled by a control means such as a microcomputer. That is, the control means extends from the solenoid valve V1, V5 and V6 as described above, the solenoid valve V2 disposed in the middle of the priming fluid supply line Lc, and the upper part (air layer side) of the artery side drip chamber 5.
- the electromagnetic valve V3 disposed in the middle of the artery-side overflow line 8 and the electromagnetic valve V4 disposed in the middle of the vein-side overflow line 9 extending from the upper part (air layer side) of the vein-side drip chamber 6 are also electrically connected.
- the opening / closing operation is controllable.
- the storage means 7 (so-called “saline bag”) is made of a flexible transparent container and can store a predetermined volume of physiological saline (priming solution). It is attached to the tip of a pole (not shown).
- the priming liquid supply line Lc is connected to a portion (connecting portion P) between the arterial puncture needle a and the blood pump 4 at the distal end of the arterial blood circuit 1, and the physiological saline (priming liquid) in the storage means 7 is used as blood. It can be supplied in the circuit.
- the dialysis apparatus performs priming before treatment (priming liquid such as physiological saline is flowed through the blood flow path or the dialysis liquid flow path to wash the priming liquid.
- priming liquid such as physiological saline is flowed through the blood flow path or the dialysis liquid flow path to wash the priming liquid.
- the tip of the arterial blood circuit 1 and the tip of the venous blood circuit 2 are connected to communicate with each other (specifically, the connector c and the connector d) As described above, it is formed between the blood pump 4 in the arterial blood circuit 1 and the blood inlet 3a of the dialyzer 3 to supply the priming solution.
- An arterial overflow line 8 and a venous overflow line 9 that can discharge the priming solution supplied from the line Lc are provided.
- the priming process performed by the dialysis apparatus according to the first embodiment will be described.
- the blood introduction port 3a of the dialyzer 3 is in a state facing upward (fixed by a fixing means (not shown)), and the connector c and the connector d are connected to each other.
- the other solenoid valves V3, V5, and V6 are closed while the solenoid valves V2, V1, and V4 are opened.
- the physiological saline (priming solution) in the storage means 7 reaches the venous drip chamber 6 by its own weight (drop pressure) generated by the drop, and extends from the upper part thereof as shown in FIG. It is discharged from the venous overflow line 9. Thereby, the liquid level of the venous drip chamber 6 can be secured.
- This process is referred to as a “pre-priming process” for convenience.
- the electromagnetic valve V4 is closed and the electromagnetic valve V3 is opened.
- the physiological saline (priming solution) in the storage means 7 reaches the artery-side drip chamber 5 and extends from the upper part thereof by its own weight (drop pressure) generated by the drop, as shown in FIG. It will be discharged from the arterial overflow line 8.
- physiological saline (priming fluid) is supplied from the priming fluid supply line Lc, and the physiological saline is caused to flow to the venous blood circuit 2 side by its own weight, and blood is supplied from the blood outlet 3b of the dialyzer 3.
- the physiological saline is filled in the flow path while being discharged from the arterial overflow line 8 through the introduction port 3a (this is referred to as a “first priming step”).
- the blood pump 4 is driven to flow the physiological saline (priming solution) to the side opposite to the first priming step, and the physiological saline is discharged from the arterial overflow line 8. Water is filled in the flow path (this is referred to as a “second priming step”).
- the driving of the blood pump 4 is controlled so that the physiological saline flows from the connecting portion P to both the blood pump 4 side and the vein drip chamber 6 side.
- the first priming step and the second priming step constitute the “priming liquid filling step” in the present invention
- the priming solution is supplied into the blood circuit and filled in the blood circuit in a state where the two tips are connected and communicated.
- the priming liquid filling process of the present invention it is sufficient to supply and fill the priming liquid into the blood circuit, and it may be a process of another form different from the process including the first priming process and the second priming process.
- the liquid level of the discharge artery side drip chamber 5 is securable. Further, through the first priming step and the second priming step, the blood flow paths of the arterial blood circuit 1, the venous blood circuit 2 and the dialyzer 3 are filled with physiological saline.
- the blood pump 4 is stopped, the electromagnetic valves V1 to V4 are closed, and the electromagnetic valves V5 and V6 are opened.
- the dual pump is driven to introduce the dialysate from the dialysate introduction line La into the dialysate flow path, and the dialysate is discharged from the dialysate discharge line Lb via the dialysate outlet 3d.
- the liquid is filled in the flow path (this is referred to as a “third priming step”). By passing through the third priming step, the dialysate flow path is filled with the dialysate.
- the solenoid valves V5 and V6 are closed (the solenoid valves V2, V3 and V4 are also kept closed) and the solenoid valve V1 is opened. Then, the physiological pump is circulated in the closed circuit by driving the blood pump 4. As described above, after the first priming step and the second priming step, the blood pump 4 is driven to circulate the filled priming liquid, thereby circulating the air bubbles remaining in the flow path, and the arterial drip chamber 5. Or can be trapped in the venous drip chamber 6 (this is called a “circulation process”).
- the circulation process according to the present embodiment is after the priming liquid filling process (the process of “supplying and filling the priming liquid into the blood circuit” including the pre-priming process, the first priming process, or the second priming process).
- the filled priming solution is circulated in the blood circuit while flowing.
- the blood pump 4 is driven in the normal rotation driving state (the driving speed is a positive number (plus) state), and the blood pump 4 is driven in the reverse driving state (the driving speed is negative).
- the state or the reverse drive state at least two different drive speeds can be set.
- time T1 when the driving speed of the blood pump 4 is V1 (forward rotation driving) and time T2 when the driving speed is V2 (forward rotation driving) are alternately repeated.
- the priming liquid filled in the priming liquid filling step changes the flow velocity while flowing in one direction. Therefore, compared with the case where the priming solution is made to flow at a constant speed, bubbles attached to the inner wall surface of the blood circuit are more likely to flow together with the priming solution, and the bubbles are transferred to the arterial drip chamber 5 or the venous drip chamber 6. And can be captured.
- the times T1 and T2 may be the same or different from each other.
- the time T3 when the driving speed of the blood pump 4 is V3 (forward rotation driving) and the time T4 when the driving speed is stopped (driving speed is 0) are alternately repeated.
- the priming liquid filled in the priming liquid filling step flows intermittently in one direction. Therefore, compared with the case where the priming solution is made to flow at a constant speed, bubbles attached to the inner wall surface of the blood circuit are more likely to flow together with the priming solution, and the bubbles are transferred to the arterial drip chamber 5 or the venous drip chamber 6. And can be captured.
- the times T3 and T4 may be the same or different from each other.
- a time T5 when the driving speed of the blood pump 4 is V4 (forward rotation driving) and a time T6 when the driving speed is ⁇ V5 (reverse rotation driving) are alternately repeated.
- the priming liquid filled in the priming liquid filling process can flow in one direction and in the opposite direction repeatedly while the priming liquid can flow in one direction as a whole circulation process. It has become.
- the flow in the reverse direction is also performed, so that bubbles attached to the inner wall surface of the blood circuit can be more easily flowed together with the priming solution. Capturing is possible in the drip chamber 5 or the venous drip chamber 6.
- the times T5 and T6 may be the same or different from each other.
- the time T7 when the driving speed of the blood pump 4 is V6 (forward rotation driving), the time T8 when the driving speed is V7 (forward rotation driving), and the driving speed are
- the time T9 for the ⁇ V8 (reverse driving) and the time T10 for the stop state (driving speed 0) are sequentially performed and the pattern is set to be repeatedly performed, the filling is performed in the priming liquid filling process.
- the priming liquid flows in one direction at high speed (V6) and low speed (V7), and then flows in the opposite direction (-V8), and then stops flowing.
- the priming liquid can flow in one direction as a whole circulation process.
- the flow rate is sequentially changed and the flow of the priming liquid in one direction is also performed in the reverse direction, bubbles attached to the inner wall surface of the blood circuit are more likely to flow together with the priming liquid.
- the bubbles can be captured by the arterial drip chamber 5 or the venous drip chamber 6.
- the times T7 to T10 may be the same or different from each other.
- the circulation step can be any of the forward rotation driving state in which the blood pump 4 is driven forward, the reverse rotation driving state in which the blood pump 4 is driven in reverse rotation, and the stopped state in which the blood pump 4 is stopped. It is sufficient if two or more states are combined, and the combination can be arbitrarily set in consideration of the priming situation and the like. Furthermore, it is sufficient that at least two different driving speeds can be set in the forward rotation driving state or the reverse rotation driving state, and three or more driving speeds may be set.
- the driving speeds V1 to V8 may be in a range in which the flow rate of the blood pump 4 can be set (generally 0 to ⁇ 600 mL / min), but the arterial or venous drip chambers 5 and 6 are used. In order to reduce air entrainment in the priming solution, etc., it is preferably set in the range of 0 to ⁇ 400 mL / min.
- the times T1 to T10 the amount of physiological saline for priming described in the package insert (instruction manual) of the dialyzer to be used in consideration of the combination with the above V1 to V8 and the open time of the arterial or venous overflow line
- the (priming liquid amount) is set so as to obtain an air bleeding effect in a desired time.
- the electromagnetic valves V2 and V4 are opened, and the physiological saline (priming solution) in the storage means 7 is supplied from the venous drip chamber 6 while being supplied again into the blood circuit. Excess physiological saline is drained from the venous overflow line 9.
- the electromagnetic valve V1 is closed. Thereby, the path
- the blood pump 4 is stopped, and the electromagnetic valve V1 is opened, so that the physiological saline (priming solution) in the storage means 7 has its own weight (head pressure) generated by the head. Then, it reaches the venous drip chamber 6 and is discharged from the venous overflow line 9 extending from the upper part thereof. Thereby, the path
- the electromagnetic valve V4 is closed, the electromagnetic valve V3 is opened, and the physiological saline (priming solution) in the storage means 7 is caused by its own weight (drop) Pressure) to the arterial drip chamber 5 via the dialyzer 3 and drain from the arterial overflow line 8 extending from the upper part.
- the physiological saline (priming solution) in the storage means 7 is caused by its own weight (drop) Pressure) to the arterial drip chamber 5 via the dialyzer 3 and drain from the arterial overflow line 8 extending from the upper part.
- bubbles remaining in the vicinity of the blood inlet 3a of the dialyzer 3 can be discharged from the arterial overflow line 8 (this is referred to as a “header bubble removal process”).
- the filled priming liquid is caused to flow by sequentially changing the driving speed of the blood pump 4 (including the normal rotation state, the reverse rotation state, and the stop state).
- the circulation step of circulating in the blood circuit is performed, it is possible to smoothly remove the bubbles during priming in a shorter time than in the case of flowing the priming liquid at a constant speed.
- the circulation process is a combination of any two or more states among a forward drive state in which the blood pump 4 is driven forward, a reverse drive state in which the blood pump 4 is driven in reverse, and a stop state in which the blood pump 4 is stopped. Since it is performed, various priming liquid flow patterns can be set according to the priming situation. Furthermore, since at least two different drive speeds can be set in the forward drive state or the reverse drive state, the flow pattern of the priming liquid can be set more finely according to the priming situation.
- treatment is performed through the above-described series of steps (pre-priming step, first priming step, second priming step, third priming step, circulation step, first cleaning step, second cleaning step, header bubble removal step).
- pre-priming step first priming step, second priming step, third priming step, circulation step, first cleaning step, second cleaning step, header bubble removal step.
- it is possible to clean and prime the part through which blood, dialysate, etc. circulate, and to reliably discharge bubbles to the outside.
- the blood introduction port 3a of the dialyzer 3 is directed upward throughout all the priming steps, the upside down operation of the dialyzer 3 is not required, and the priming step is facilitated.
- the dialyzer 3 can be quickly and surely vented.
- the blood pump 4 is driven to circulate the filled priming liquid (through the circulation step), so that the bubble removal can be performed more reliably.
- the site for discharging the priming solution is formed in the arterial overflow line 8 and the venous overflow line 9 extending from the arterial drip chamber 5 disposed in the middle of the arterial blood circuit 1, so that the existing blood Even if it is a circuit, if the overflow line is extended, it can be diverted almost as it is, and it can be set as the blood purification apparatus (dialysis apparatus) based on this invention.
- the artery-side drip chamber 5 that does not have a mesh inside in order to discharge bubbles more smoothly to the outside.
- the arterial drip chamber 5 or the venous drip chamber 6 has a pressure monitor line (a line for detecting air layer side pressure) or the like extending from the upper part thereof, the arterial overflow line 8 and the venous side are provided. It is preferable that the base end of the overflow line 9 is dropped below the pressure monitor line so that it does not flow into the pressure monitor line when the priming solution (saline) overflows.
- the blood purification apparatus is composed of a dialysis apparatus for performing dialysis treatment, as in the first embodiment.
- the arterial blood circuit 1 and the venous blood circuit are provided.
- the blood circuit is composed of a blood circuit composed of 2, a dialyzer 3 (blood purification means), an iron-type blood pump 4, an arterial drip chamber 5 and a venous drip chamber 6, an accommodating means 7, and a priming fluid supply line Lc. It is configured.
- the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- an electromagnetic valve V1 'disposed in the venous blood circuit 2 is disposed instead of or together with the electromagnetic valve V1 in the first embodiment.
- a bubble detecting means capable of detecting bubbles in the venous side blood circuit 2. 10 is disposed. It should be noted that the bubble detection means 10 may be disposed at any part of the arterial blood circuit 1.
- the bubble detection means 10 is called a so-called bubble sensor and is used to detect bubbles in the arterial blood circuit 1 or the venous blood circuit 2.
- the bubble detection means 10 constitutes the arterial blood circuit 1 or the venous blood circuit 2.
- the flexible tube is irradiated with ultrasonic waves, and the presence or absence of bubbles can be detected based on the attenuation or absorption rate.
- other configurations may be used.
- the priming process performed by the dialysis apparatus according to the second embodiment will be described.
- the blood introduction port 3a of the dialyzer 3 is in a state of facing upward (fixed by a fixing means not shown), and the connector c and the connector d are connected to each other.
- the other solenoid valves (V2 to V6) are closed while the solenoid valve V1 ′ is opened.
- the blood pump 4 is driven to rotate forward by a capacity corresponding to the flow path volume in the venous blood circuit 2 between the blood outlet 3b of the dialyzer 3 and the venous drip chamber 6 (this)
- the process is referred to as “first filling process” for convenience.
- the normal rotation drive of the blood pump 4 is a direction in which the blood of a patient can be allowed to flow from the tip of the arterial blood circuit 1 to the tip of the venous blood circuit 2 via the dialyzer 3 when circulating the patient's blood extracorporeally.
- Direction
- the blood pump 4 is stopped and the venous overflow line 9 is opened (the arterial overflow line 8 is closed and the electromagnetic valve V1 ′ is kept open). Is opened, and the priming liquid is supplied from the priming liquid supply line Lc, so that the connecting portion P of the arterial blood circuit 1 and the distal end of the arterial blood circuit 1 and the venous blood circuit 2 are connected (connector c and connector). priming fluid is circulated to the venous drip chamber 6 of the venous blood circuit 2 via the connecting portion to the venous blood circuit 2 and the priming fluid is discharged from the venous overflow line 9 (this step is referred to as “second” for convenience. Called the “filling step”).
- the physiological pump (priming liquid) in the storage means 7 is caused by its own weight (head pressure) generated by the head by stopping the blood pump 4 and opening the electromagnetic valve V2. Then, it reaches the venous drip chamber 6 and is discharged from the venous overflow line 9 extending from the upper part thereof. Thereby, the liquid level of the venous drip chamber 6 can be secured.
- the solenoid valve V4 is closed and the solenoid valve V3 is opened, the venous overflow line 9 is closed, and the arterial overflow line 8 is opened.
- the solenoid valve V2 is opened and the priming fluid is supplied from the priming fluid supply line Lc, so that the connecting portion P between the arterial blood circuit 1 and the distal end of the arterial blood circuit 1 and the distal end of the venous blood circuit 2 is connected.
- the priming fluid is circulated to the arterial drip chamber 5 of the arterial blood circuit 1 through the blood flow path of the connector c and the connector d and the blood flow path of the dialyzer 3, and the priming fluid is supplied to the arterial overflow line 8 (This step is referred to as a “third filling step” for convenience).
- the physiological saline (priming solution) in the storage means 7 is the same as in the second filling step.
- the dead weight (head pressure) generated by the head reaches the artery-side drip chamber 5 and is discharged from the artery-side overflow line 8 extending from the upper part thereof.
- physiological saline (priming liquid) is supplied from the priming liquid supply line Lc, and the physiological saline is caused to flow to the venous blood circuit 2 side by its own weight, so that the dialyzer 3
- the physiological saline is filled in the flow path while being discharged from the blood outlet port 3b through the blood inlet port 3a and the arterial overflow line 8.
- the blood pump 4 is driven to rotate forward again while the electromagnetic valve V1 ′ is closed, and the artery is connected from the connecting portion P of the artery-side blood circuit 1 through the site where the blood pump 4 is disposed.
- the priming fluid is circulated to the arterial drip chamber 5 of the side blood circuit 1, and the priming fluid is discharged from the artery side overflow line 8 (this step is referred to as “fourth filling step” for convenience).
- the first to fourth filling steps constitute the “priming liquid filling step” of the present invention.
- the blood pump 4 is driven forward again to cause the physiological saline (priming solution) to flow to the opposite side of the second filling step and the third filling step, and the artery side overflow line.
- the physiological saline is filled in the flow path while being discharged from 8.
- the electromagnetic pump V1 ′ is kept open, and the blood pump 4 so that the physiological saline flows from the connecting portion P to both the blood pump 4 side and the venous drip chamber 6 side as shown in FIG.
- the drive speed may be controlled.
- the blood pump 4 is stopped and the electromagnetic valves V5 and V6 are opened while the electromagnetic valves V1 'and V2 to V4 are closed.
- the dual pump is driven to introduce the dialysate from the dialysate introduction line La into the dialysate flow path, and the dialysate is discharged from the dialysate discharge line Lb via the dialysate outlet 3d.
- the liquid is filled in the flow path (this is called a “gas purge process”). Through this gas purge step, the dialysate flow path is filled with dialysate.
- the gas purge process may be performed after the first to fourth filling processes (priming filling process) are completed, or may be performed after the circulation process described later is completed. Further, the gas purging process may be automatically performed simultaneously with the process at any timing during the first to fourth filling processes (priming liquid filling process) or the circulation process.
- the fourth filling step (priming liquid filling step) or the circulation step and the gas purge step can be performed in parallel.
- the electromagnetic valves V2 to V6 are closed while the electromagnetic valve V1 'is open, and the blood pump 4 is driven in reverse.
- the priming liquid filled with the arterial overflow line 8, the venous overflow line 9 and the priming liquid supply line Lc in a closed state flows while the blood circuit (arterial blood circuit 1 and venous blood circuit 2) flows.
- This process is referred to as a “first circulation process” for the sake of convenience).
- the residual air in the blood circuit and the dialyzer 3 can be quickly sent out by changing the driving speed of the blood pump 4 sequentially to perform circulation. Trapping (capturing) can be performed in the extended drip chambers 5 and 6 on the side of the artery or vein.
- the “gas purge step” may be performed simultaneously with the first circulation step.
- the blood pump 4 is stopped and the electromagnetic valves V1 ', V2 and V4 are opened.
- the venous overflow line 9 can be opened while the priming liquid supply line Lc is open, so that the priming liquid is discharged from the venous overflow line 9 to release the contained air.
- This step is referred to as a “second circulation step” for convenience.
- the second circulation step the residual air in the blood circuit and the dialyzer 3 can be quickly sent out by changing the driving speed of the blood pump 4 sequentially, and the overflow line extends. Trapping (capturing) can be performed by the provided drip chambers 5 and 6 on the side of the artery or vein.
- the second circulation step opens the arterial overflow line 8 while closing the venous overflow line 9 and opens the arterial overflow line 8.
- the air may be vented or, as shown in FIG. 25, the arterial overflow line 8 is opened while the blood pump 4 is driven to rotate forward (at this time, the solenoid valve V1 ′ is closed as shown in FIG. 25).
- the air may be opened from the artery-side overflow line 8.
- the first circulation step and the second circulation step constitute the “circulation step” of the present invention.
- the second circulation step is performed in which one of the arterial overflow line 8 and the venous overflow line 9 is opened to release air. Air bleeding in the circulation process can be performed more reliably.
- the bubble detecting means 10 capable of detecting bubbles in the blood circuit is disposed in the middle of the venous blood circuit 2 (which may be the arterial blood circuit 1), In order to utilize this, it is preferable that the air venting by the second circulation step is performed in conjunction with the bubble detection by the bubble detection means 10. Thereby, the air bleeding in the circulation process can be performed more reliably and smoothly.
- the blood pump 4 is rotated forward by a volume corresponding to the flow path volume in the venous blood circuit 2 between the blood outlet 3b of the dialyzer 3 and the venous drip chamber 6. Since the first filling step to be driven is performed, in the case of a so-called wet type (the blood channel and the dialysate channel are pre-filled with the filling solution), the vein drip from the blood outlet 3b with the filling solution in the dialyzer 3 The blood flow path to the chamber 6 can be filled (air in the blood circuit enters the dialyzer 3 from the blood introduction port 3a).
- the blood flow path from the priming liquid supply line Lc to the blood outlet 3b communicates with the priming liquid and the dialyzer filling liquid, so that the blood circuit originally The amount of air (air) that is present can be sent to the dialyzer 3 to a minimum, and the time required for the circulation process after the air removal can be shortened.
- the dialyzer 3 In the case of a dry type (the blood flow path and the dialysate flow path are filled with air or the like), the dialyzer 3 is originally filled with air (air) or the like. None happens as a filling process. Therefore, no matter which form of dialyzer (blood purification means) is connected to the blood circuit, there is no need to change the priming liquid filling step, and the priming liquid filling step can be made common.
- the first to fourth filling steps (priming liquid filling step) and the circulation step (first and second circulation steps) are performed from the lower side to the upper side of the dialyzer 3 (specifically, Since the priming liquid is circulated (from the blood outlet 3b to the blood inlet 3a), the dialyzer 3 is filled with the priming liquid without reversing the dialyzer 3, and the air in the priming liquid is reliably supplied. Can be removed. Furthermore, according to this embodiment, since the drip chamber and the dialyzer 3 are not moved (determined), the solenoid valves V1 to V6, the blood pump 4, the dialysate supply device, etc. are controlled by the control means (not shown). It is possible to carry out the filling and circulation process continuously and automatically.
- the comparative example is a conventional so-called “automatic priming method”.
- the dialyzer Wet type, membrane cross section 1.5 m 2
- blood circuit general-purpose product
- the prepriming step is omitted, and the venous drip chamber 6 has a venous overflow line as shown in FIG. It may not be provided.
- the process shown in FIG. 3 is omitted, and the blood pump 4 is set at a predetermined speed so that the first priming process and the second priming process are performed simultaneously as shown in FIG. In this case, it is possible to more quickly remove bubbles in the dialyzer 3 during priming than in the case where the first priming step and the second priming step are sequentially performed.
- physiological saline as a priming liquid is supplied from the storage means 7 by its own weight.
- a physiological saline is provided by installing liquid feeding means such as a pump in the priming liquid supply line Lc. May be supplied.
- a priming fluid supply line Lc is extended from the dialysate introduction line La to the arterial blood circuit 1 (position between the connector c and the blood pump 4), and as a priming fluid in the blood circuit.
- the dialysate may be supplied.
- a filter is interposed in the priming liquid supply line Lc.
- the priming solution may be other (for example, various electrolyte solutions).
- the site for discharging the priming solution extends from the arterial overflow line 8 and the venous drip chamber 6 that extend from the arterial drip chamber 5 disposed in the middle of the arterial blood circuit 1.
- the venous overflow line 9 it is formed between the blood pump 4 in the arterial blood circuit 1 and the blood inlet 3a of the dialyzer 3 to discharge the priming liquid supplied from the priming liquid supply line Lc.
- the flow path 8 branched from an arbitrary position in the middle of the arterial blood circuit 1 without including the arterial drip chamber. It may be formed into '.
- the flow path 8 ′ can be extended by a branch pipe such as a T pipe, a Y pipe, or a three-way cock, and may be connected to an access port such as a rubber button.
- V1 to V6 are solenoid valves, but any means can be used as long as each line can be opened and closed.
- any means can be used as long as each line can be opened and closed.
- the solenoid valve with a low opening / closing frequency can reduce the cost of the entire blood purification apparatus by using manual clamping means.
- the present invention is applied to a dialysis apparatus used at the time of dialysis treatment, but is used in other apparatuses that can purify the patient's blood while circulating it outside the body (for example, blood filtration dialysis, blood filtration, AFBF).
- the present invention may be applied to blood purification devices, plasma adsorption devices, and the like.
- the tip of the artery side blood circuit and the tip of the vein side blood circuit are connected and communicated.
- the priming liquid filling process for supplying the priming liquid into the blood circuit and filling the blood circuit, and the priming liquid filled by sequentially changing the driving speed of the blood pump after the priming liquid filling process As long as it is a blood purification device and a priming method thereof in which a circulation step of circulating the blood in the blood circuit is performed, it can be applied to other forms and uses.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
Abstract
【課題】プライミング時の気泡抜きをスムーズ且つ短時間で行わせることができる血液浄化装置及びそのプライミング方法を提供する。 【解決手段】治療前のプライミング時、動脈側血液回路先端と側血液回路先端とを接続して連通可能とされた血液浄化装置において、動脈側血液回路先端と静脈側血液回路先端とが接続して連通された状態で、血液回路内にプライミング液を供給して当該血液回路内で充填させるプライミング液充填工程と、該プライミング液充填工程後、血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程とが行われるものである。
Description
本発明は、ダイアライザを使用した透析治療など、患者の血液を体外循環させつつ浄化するための血液浄化装置及びそのプライミング方法に関するものである。
一般に、透析治療時においては、採取した患者の血液を体外循環させて再び体内に戻すための血液回路が用いられており、かかる血液回路は、例えば中空糸膜を具備したダイアライザ(血液浄化手段)と接続し得る動脈側血液回路及び静脈側血液回路から主に構成されている。これら動脈側血液回路及び静脈側血液回路の各先端には、動脈側穿刺針及び静脈側穿刺針が取り付けられ、それぞれが患者に穿刺されて透析治療における血液の体外循環が行われることとなる。
このうち、動脈側血液回路には、しごき型の血液ポンプが配設されており、当該血液ポンプを駆動させることにより患者の体内から血液をダイアライザ側に送り込む一方、動脈側血液回路及び静脈側血液回路には、動脈側ドリップチャンバ及び静脈側ドリップチャンバが接続されており、除泡した後に患者の体内に血液が戻されるようになっている。
また、動脈側血液回路における血液ポンプより上流側(即ち、動脈側穿刺針側)には、プライミングや返血時等に生理食塩水を供給するためのプライミング液供給ライン(生理食塩水ライン)がT字管等を介して接続されており、透析治療前に、血液回路や該血液回路に接続されたドリップチャンバ等構成要素に生理食塩水を流し充填させてプライミングを行うとともに、透析治療後に血液回路などに残留した残留血液と生理食塩水とを置換して、当該残留血液を患者に戻すことにより返血を行うよう構成されている。尚、プライミング液供給ラインを具備した透析装置は、例えば特許文献1に開示されている。
しかしながら、上記従来の血液浄化装置においては、血液回路内にプライミング液を供給して充填させた際、当該プライミング液内の気泡が外部に排出されず残存する虞があり、その残存した気泡を外部に排出して除去するためには、比較的長時間に亘ってプライミング液を供給し続ける必要があった。
即ち、プライミング液を血液回路内で充填させる際、例えば血液回路の内壁面に付着した気泡は、プライミング液を定速で流した場合、プライミング液と一緒に流動しにくく残存しやすくなっていたので、その残存した気泡を例えばオーバーフローラインから排出すべく比較的長時間に亘りプライミング液を供給し続ける、もしくは操作者が外部から振動を与える等して気泡を目視で追って排出する必要があったのである。従って、従来の血液浄化装置においては、プライミング液が大量に必要とされるとともに、プライミングに要する時間が長時間となってしまうという不具合があった。
本発明は、このような事情に鑑みてなされたもので、プライミング時の気泡抜きをスムーズ且つ短時間で行わせることができる血液浄化装置及びそのプライミング方法を提供することにある。
請求項1記載の発明は、動脈側血液回路及び静脈側血液回路から成るとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させ得る血液回路と、該血液回路の動脈側血液回路及び静脈側血液回路の間に介装されて当該血液回路を流れる血液を浄化するとともに、血液を浄化するための血液浄化膜を介して患者の血液が流れる血液流路及び透析液が流れる透析液流路が形成された血液浄化手段と、前記動脈側血液回路に配設された血液ポンプと、該血液浄化手段の透析液流路入口及び出口に接続された透析液導入ライン及び透析液排出ラインと、前記血液浄化手段にそれぞれ形成され、前記動脈側血液回路と接続されて血液流路に血液を導入する血液導入口、及び前記静脈側血液回路と接続されて血液流路から血液を導出する血液導出口と、前記血液浄化手段にそれぞれ形成され、前記透析液導入ラインと接続されて透析液流路に透析液を導入する透析液導入口、及び前記透析液排出ラインと接続されて透析液流路から透析液を導出する透析液導出口とを具備し、治療前のプライミング時、前記動脈側血液回路先端と静脈側血液回路先端とを接続して連通可能とされた血液浄化装置において、前記動脈側血液回路先端と静脈側血液回路先端とが接続して連通された状態で、前記血液回路内にプライミング液を供給して当該血液回路内で充填させるプライミング液充填工程と、該プライミング液充填工程後、前記血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程とが行われることを特徴とする。
請求項2記載の発明は、請求項1記載の血液浄化装置において、前記循環工程は、前記血液ポンプを正転駆動させる正転駆動状態、前記血液ポンプを逆転駆動させる逆転駆動状態、前記血液ポンプを停止する停止状態、のうち任意2以上の状態が組み合わされて行われることを特徴とする。
請求項3記載の発明は、請求項2記載の血液浄化装置において、前記正転または前記逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされたことを特徴とする。
請求項4記載の発明は、請求項1~3の何れか1つに記載の血液浄化装置において、前記動脈側血液回路の途中に形成された動脈側ドリップチャンバと、該動脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた動脈側オーバーフローラインと、前記静脈側血液回路の途中に形成された静脈側ドリップチャンバと、該静脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた静脈側オーバーフローラインと、前記動脈側血液回路における当該動脈側血液回路先端と血液ポンプとの間の連結部にて接続され、プライミング液を供給可能なプライミング液供給ラインとを具備するとともに、前記プライミング液充填工程は、前記血液浄化手段の血液導出口から前記静脈側ドリップチャンバまでの間の前記静脈側血液回路における流路容積に相当する容量だけ前記血液ポンプを正転駆動させる第1充填工程と、前記血液ポンプを停止させた後、静脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部を介して前記静脈側血液回路の静脈側ドリップチャンバまでプライミング液を流通させ、当該静脈側オーバーフローラインから排出させる第2充填工程と、静脈側オーバーフローラインを閉状態及び動脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部、及び血液浄化手段の血液流路を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第3充填工程と、前記血液ポンプを正転駆動させ、前記動脈側血液回路の連結部から当該血液ポンプの配設部位を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第4充填工程とを有することを特徴とする。
請求項5記載の発明は、請求項4記載の血液浄化装置において、前記循環工程は、前記静脈側オーバーフローライン及びプライミング液供給ラインを閉状態として充填されたプライミング液を流動させつつ当該血液回路内で循環させる第1循環工程と、前記プライミング液供給ラインを開状態としつつ前記動脈側オーバーフローライン、静脈側オーバーフローラインの何れかを開状態としてエア抜きする第2循環工程とを有することを特徴とする。
請求項6記載の発明は、請求項4又は請求項5記載の血液浄化装置において、前記プライミング液充填工程及び循環工程は、前記血液浄化手段の下方から上方に向かってプライミング液を流通させることを特徴とする。
請求項7記載の発明は、請求項6記載の血液浄化装置において、前記プライミング液充填工程及び循環工程は、前記血液浄化手段の血液導入口を垂直方向上向き、血液導出口を垂直方向下向きに設置して行うことを特徴とする。
請求項8記載の発明は、請求項4~7の何れか1つに記載の血液浄化装置において、前記動脈側血液回路又は静脈側血液回路の途中に当該血液回路中の気泡を検出し得る気泡検出手段が配設されるとともに、前記第2循環工程によるエア抜きは、当該気泡検出手段による気泡の検出と連動して行われることを特徴とする。
請求項9記載の発明は、請求項1~8の何れか1つに記載の血液浄化装置において、前記透析液導入ラインから前記血液浄化手段の透析液流路に透析液を導入するとともに、その透析液を前記透析液排出ラインから排出させることにより、当該透析液をその流路内で充填させるガスパージ工程を有するとともに、前記プライミング液充填工程又は循環工程において当該ガスパージ工程が自動的に行われることを特徴とする。
請求項10記載の発明は、動脈側血液回路及び静脈側血液回路から成るとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させ得る血液回路と、該血液回路の動脈側血液回路及び静脈側血液回路の間に介装されて当該血液回路を流れる血液を浄化するとともに、血液を浄化するための血液浄化膜を介して患者の血液が流れる血液流路及び透析液が流れる透析液流路が形成された血液浄化手段と、前記動脈側血液回路に配設された血液ポンプと、該血液浄化手段の透析液流路入口及び出口に接続された透析液導入ライン及び透析液排出ラインと、前記血液浄化手段にそれぞれ形成され、前記動脈側血液回路と接続されて血液流路に血液を導入する血液導入口、及び前記静脈側血液回路と接続されて血液流路から血液を導出する血液導出口と、前記血液浄化手段にそれぞれ形成され、前記透析液導入ラインと接続されて透析液流路に透析液を導入する透析液導入口、及び前記透析液排出ラインと接続されて透析液流路から透析液を導出する透析液導出口とを具備し、治療前のプライミング時、前記動脈側血液回路先端と静脈側血液回路先端とを接続して連通可能とされた血液浄化装置のプライミング方法において、前記動脈側血液回路先端と静脈側血液回路先端とが接続して連通された状態で、前記血液回路内にプライミング液を供給して当該血液回路内で充填させるプライミング液充填工程と、該プライミング液充填工程後、前記血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程とが行われることを特徴とする。
請求項11記載の発明は、請求項10記載の血液浄化装置のプライミング方法において、前記循環工程は、前記血液ポンプを正転駆動させる正転駆動状態、前記血液ポンプを逆転駆動させる逆転駆動状態、前記血液ポンプを停止する停止状態、のうち任意2以上の状態が組み合わされて行われることを特徴とする。
請求項12記載の発明は、請求項11記載の血液浄化装置のプライミング方法において、前記正転または前記逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされたことを特徴とする。
請求項13記載の発明は、請求項10~12の何れか1つに記載の血液浄化装置のプライミング方法において、前記動脈側血液回路の途中に形成された動脈側ドリップチャンバと、該動脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた動脈側オーバーフローラインと、前記静脈側血液回路の途中に形成された静脈側ドリップチャンバと、該静脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた静脈側オーバーフローラインと、前記動脈側血液回路における当該動脈側血液回路先端と血液ポンプとの間の連結部にて接続され、プライミング液を供給可能なプライミング液供給ラインとを前記血液浄化装置が具備するとともに、前記プライミング液充填工程は、前記血液浄化手段の血液導出口から前記静脈側ドリップチャンバまでの間の前記静脈側血液回路における流路容積に相当する容量だけ前記血液ポンプを正転駆動させる第1充填工程と、前記血液ポンプを停止させた後、静脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部を介して前記静脈側血液回路の静脈側ドリップチャンバまでプライミング液を流通させ、当該静脈側オーバーフローラインから排出させる第2充填工程と、静脈側オーバーフローラインを閉状態及び動脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部、及び血液浄化手段の血液流路を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第3充填工程と、前記血液ポンプを正転駆動させ、前記動脈側血液回路の連結部から当該血液ポンプの配設部位を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第4充填工程とを有することを特徴とする。
請求項14記載の発明は、請求項13記載の血液浄化装置のプライミング方法において、前記循環工程は、前記静脈側オーバーフローライン及びプライミング液供給ラインを閉状態として充填されたプライミング液を流動させつつ当該血液回路内で循環させる第1循環工程と、前記プライミング液供給ラインを開状態としつつ前記動脈側オーバーフローライン、静脈側オーバーフローラインの何れかを開状態としてエア抜きする第2循環工程とを有することを特徴とする。
請求項15記載の発明は、請求項13又は請求項14記載の血液浄化装置のプライミング方法において、前記プライミング液充填工程及び循環工程は、前記血液浄化手段の下方から上方に向かってプライミング液を流通させることを特徴とする。
請求項16記載の発明は、請求項15記載の血液浄化装置のプライミング方法において、前記プライミング液充填工程及び循環工程は、前記血液浄化手段の血液導入口を垂直方向上向き、血液導出口を垂直方向下向きに設置して行うことを特徴とする。
請求項17記載の発明は、請求項13~16の何れか1つに記載の血液浄化装置のプライミング方法において、前記動脈側血液回路又は静脈側血液回路の途中に当該血液回路中の気泡を検出し得る気泡検出手段が配設されるとともに、前記第2循環工程によるエア抜きは、当該気泡検出手段による気泡の検出と連動して行われることを特徴とする。
請求項18記載の発明は、請求項10~17の何れか1つに記載の血液浄化装置のプライミング方法において、前記透析液導入ラインから前記血液浄化手段の透析液流路に透析液を導入するとともに、その透析液を前記透析液排出ラインから排出させることにより、当該透析液をその流路内で充填させるガスパージ工程を有するとともに、前記プライミング液充填工程又は循環工程において当該ガスパージ工程が自動的に行われることを特徴とする。
請求項1、10の発明によれば、プライミング液充填工程後、血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程が行われるので、プライミング時の気泡抜きをスムーズ且つ短時間で行わせることができる。
請求項2、11の発明によれば、循環工程は、血液ポンプを正転駆動させる正転駆動状態、血液ポンプを逆転駆動させる逆転駆動状態、血液ポンプを停止する停止状態、のうち任意2以上の状態が組み合わされて行われるので、プライミング状況に応じたプライミング液の流動パターンを種々設定することができる。
請求項3、12の発明によれば、正転または逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされたので、プライミング状況に応じたプライミング液の流動パターンをよりきめ細かく設定することができる。
請求項4、13の発明によれば、プライミング液充填工程において、血液浄化手段の血液導出口から静脈側ドリップチャンバまでの間の静脈側血液回路における流路容積に相当する容量だけ血液ポンプを正転駆動させる第1充填工程を経るので、所謂ウェットタイプ(血液流路及び透析液流路が充填液で予め充填されたもの)或いはドライタイプ(血液流路及び透析液流路が空気等で満たされたもの)の何れの形態の血液浄化手段が血液回路に接続されても、プライミング液充填工程を変える必要がなく、当該プライミング液充填工程を共通化させることができる。
請求項5、14の発明によれば、プライミング液供給ラインを開状態としつつ動脈側オーバーフローライン、静脈側オーバーフローラインの何れかを開状態としてエア抜きする第2循環工程を有するので、循環工程におけるエア抜きをより確実に行わせることができる。
請求項6、15の発明によれば、プライミング液充填工程及び循環工程は、血液浄化手段の下方から上方に向かってプライミング液を流通させるので、当該血液浄化手段を反転しなくてもプライミング液中に混入した状態のエアを確実に抜くことができる。
請求項7、16の発明によれば、プライミング液充填工程及び循環工程は、血液浄化手段の血液導入口を垂直方向上向き、血液導出口を垂直方向下向きに設置して行うので、当該血液浄化手段を反転しなくてもプライミング液中のエアを確実に抜くことができる。
請求項8、17の発明によれば、動脈側血液回路又は静脈側血液回路の途中に当該血液回路中の気泡を検出し得る気泡検出手段が配設されるとともに、第2循環工程によるエア抜きは、当該気泡検出手段による気泡の検出と連動して行われるので、循環工程におけるエア抜きを更に確実且つスムーズに行わせることができる。
請求項9、18の発明によれば、プライミング液充填工程又は循環工程において当該ガスパージ工程が自動的に行われるので、プライミング液充填工程又は循環工程とガスパージ工程とを並行して行わせることができる。
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
第1の実施形態に係る血液浄化装置は、透析治療を行うための透析装置から成り、図1に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化手段)と、動脈側血液回路1に配設されたしごき型の血液ポンプ4と、動脈側血液回路1及び静脈側血液回路2にそれぞれ配設された動脈側ドリップチャンバ5及び静脈側ドリップチャンバ6と、プライミング液としての生理食塩水を収容した収容手段7と、該収容手段7と動脈側血液回路1とを連結したプライミング液供給ラインLcとから主に構成されている。
第1の実施形態に係る血液浄化装置は、透析治療を行うための透析装置から成り、図1に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化手段)と、動脈側血液回路1に配設されたしごき型の血液ポンプ4と、動脈側血液回路1及び静脈側血液回路2にそれぞれ配設された動脈側ドリップチャンバ5及び静脈側ドリップチャンバ6と、プライミング液としての生理食塩水を収容した収容手段7と、該収容手段7と動脈側血液回路1とを連結したプライミング液供給ラインLcとから主に構成されている。
動脈側血液回路1には、その先端にコネクタcを介して動脈側穿刺針aが接続されるとともに、途中にしごき型の血液ポンプ4及び除泡のための動脈側ドリップチャンバ5が配設されている一方、静脈側血液回路2には、その先端にコネクタdを介して静脈側穿刺針bが接続されるとともに、途中に静脈側ドリップチャンバ6が接続されている。そして、動脈側穿刺針a及び静脈側穿刺針bを患者に穿刺した状態で、血液ポンプ4を駆動させると、患者の血液は、動脈側血液回路1を通ってダイアライザ3に至った後、該ダイアライザ3によって血液浄化が施され、静脈側ドリップチャンバ6で除泡がなされつつ静脈側血液回路2を通って患者の体内に戻る。即ち、患者の血液を血液回路の動脈側血液回路1の先端から静脈側血液回路2の先端まで体外循環させつつダイアライザ3にて浄化するのである。
然るに、動脈側ドリップチャンバ5及び静脈側ドリップチャンバ6には、各上部(空気層側)から動脈側オーバーフローライン8、静脈側オーバーフローライン9が延びており、各オーバーフローライン8、9には、それぞれ電磁弁V3、V4が配設されている。即ち、動脈側オーバーフローライン8及び静脈側オーバーフローライン9は、動脈側ドリップチャンバ5及び静脈側ドリップチャンバ6の空気層側を外部に開放すべく延設され、その流路が電磁弁V3、V4により開閉可能とされている。
ダイアライザ3は、その筐体部に、血液導入口3a(血液導入ポート)、血液導出口3b(血液導出ポート)、透析液導入口3c(透析液導入ポート)及び透析液導出口3d(透析液導出ポート)が形成されており、このうち血液導入口3aには動脈側血液回路1が、血液導出口3bには静脈側血液回路2がそれぞれ接続されている。また、透析液導入口3c及び透析液導出口3dは、透析装置本体から延設された透析液導入ラインLa及び透析液排出ラインLbとそれぞれ接続されている。
ダイアライザ3内には、複数の中空糸(不図示)が収容されており、この中空糸が血液を浄化するための血液浄化膜を構成している。而して、ダイアライザ3内には、血液浄化膜を介して患者の血液が流れる血液流路及び透析液が流れる透析液流路が形成されている。そして、血液浄化膜を構成する中空糸には、その外周面と内周面とを貫通した微小な孔(ポア)が多数形成されて中空糸膜を形成しており、該膜を介して血液中の老廃物等が透析液内に透過し得るよう構成されている。
複式ポンプ(不図示)は、透析装置本体内で透析液導入ラインLa及び透析液排出ラインLbに跨って配設されているとともに、当該透析装置本体には、ダイアライザ3中を流れる患者の血液から水分を除去するための除水ポンプ(不図示)が配設されている。更に、透析液導入ラインLaの一端がダイアライザ3(透析液導入口3c)に接続されるとともに、他端が所定濃度の透析液を調製する透析液供給装置(不図示)に接続されている。また、透析液排出ラインLbの一端は、ダイアライザ3(透析液導出口3d)に接続されるとともに、他端が排液手段(不図示)と接続されており、透析液供給装置から供給された透析液が透析液導入ラインLaを通ってダイアライザ3に至った後、透析液排出ラインLbを通って排液手段に送られるようになっている。
透析液導入ラインLaの途中(複式ポンプとダイアライザ3との間)には、その流路を閉塞及び開放し得る電磁弁V6が接続されているとともに、透析液排出ラインLbの途中(複式ポンプとダイアライザ3との間)には、その流路を閉塞及び開放し得る電磁弁V5が接続されている。尚、動脈側血液回路1の途中においても、その流路を閉塞及び開放し得る電磁弁V1が接続されている。
これら電磁弁V1、V5及びV6(後述する電磁弁V2~V4も同様)は、上述のように開閉動作により、配設された各々の部位における流路を閉塞及び開放し得るものであり、その開閉動作がマイコン等の制御手段にて制御されるよう構成されている。即ち、制御手段は、上記の如く電磁弁V1、V5及びV6の他、プライミング液供給ラインLcの途中に配設された電磁弁V2、動脈側ドリップチャンバ5の上部(空気層側)から延びた動脈側オーバーフローライン8の途中に配設された電磁弁V3、及び静脈側ドリップチャンバ6の上部(空気層側)から延びた静脈側オーバーフローライン9の途中に配設された電磁弁V4とも電気的に接続されており、その開閉動作が制御可能とされている。
収容手段7(所謂「生食バッグ」と称されるもの)は、可撓性の透明な容器から成り、生理食塩水(プライミング液)を所定容量収容し得るもので、例えば透析装置本体に突設されたポール(不図示)の先端に取り付けられている。プライミング液供給ラインLcは、動脈側血液回路1先端における動脈側穿刺針aと血液ポンプ4の間の部位(連結部P)に接続され、収容手段7内の生理食塩水(プライミング液)を血液回路内に供給し得るものである。
ここで、本実施形態に係る透析装置(血液浄化装置)は、治療前のプライミング(生理食塩水等のプライミング液を血液の流路或いは透析液の流路で流して洗浄し、当該プライミング液を血液の流路或いは透析液の流路に予め満たしておく作業)時、動脈側血液回路1先端と静脈側血液回路2先端とを接続して連通(具体的には、コネクタcとコネクタdとを接続して互いの流路を連通)可能とされるとともに、既述のように、動脈側血液回路1における血液ポンプ4とダイアライザ3の血液導入口3aとの間に形成されてプライミング液供給ラインLcから供給されたプライミング液を排出させ得る動脈側オーバーフローライン8及び静脈側オーバーフローライン9を具備している。
以下、第1の実施形態に係る透析装置で行われるプライミング工程について説明する。
プライミング時、図2に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定手段により固定)とし、且つ、コネクタcとコネクタdとを接続して互いの流路を連通させた後、電磁弁V2、V1及びV4を開状態としつつ他の電磁弁(V3、V5及びV6)を閉状態とする。
プライミング時、図2に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定手段により固定)とし、且つ、コネクタcとコネクタdとを接続して互いの流路を連通させた後、電磁弁V2、V1及びV4を開状態としつつ他の電磁弁(V3、V5及びV6)を閉状態とする。
而して、収容手段7内の生理食塩水(プライミング液)は、その落差により生じる自重(落差圧)で、同図に示すように、静脈側ドリップチャンバ6まで至り、その上部から延設された静脈側オーバーフローライン9から排出されることとなる。これにより、静脈側ドリップチャンバ6の液面レベルを確保することができる。この工程を、便宜上、「予プライミング工程」と呼ぶ。
そして、図3に示すように、電磁弁V4を閉状態とするとともに電磁弁V3を開状態とする。このときも、収容手段7内の生理食塩水(プライミング液)は、その落差により生じる自重(落差圧)で、同図に示すように、動脈側ドリップチャンバ5まで至り、その上部から延設された動脈側オーバーフローライン8から排出されることとなる。このように、プライミング液供給ラインLcから生理食塩水(プライミング液)を供給するとともに、当該生理食塩水をその自重にて静脈側血液回路2側へ流動させ、ダイアライザ3の血液導出口3bから血液導入口3aを経て動脈側オーバーフローライン8から排出させつつ当該生理食塩水をその流路内で充填させているのである(これを「第1プライミング工程」と呼ぶ)。
その後、図4で示すように、血液ポンプ4を駆動させて当該生理食塩水(プライミング液)を上記第1プライミング工程とは反対側へ流動させ、動脈側オーバーフローライン8から排出させつつ当該生理食塩水をその流路内で充填させる(これを「第2プライミング工程」と呼ぶ)。このとき、連結部Pから血液ポンプ4側及び静脈側ドリップチャンバ6側の両方を生理食塩水が流れるよう血液ポンプ4の駆動が制御されている。
ここで、上記第1プライミング工程及び第2プライミング工程(予プライミング工程を含んでもよい)は、本発明における「プライミング液充填工程」を成しており、動脈側血液回路1先端と静脈側血液回路2先端とが接続して連通された状態で、血液回路内にプライミング液を供給して当該血液回路内で充填させる工程である。本発明のプライミング液充填工程においては、血液回路内にプライミング液を供給して充填させれば足り、第1プライミング工程や第2プライミング工程を含む工程とは異なる他の形態の工程としてもよい。
尚、第1プライミング工程及び第2プライミング工程においては、動脈側オーバーフローライン8から生理食塩水を排出しているため、排出動脈側ドリップチャンバ5の液面レベルを確保することができる。また、第1プライミング工程及び第2プライミング工程を経ることにより、動脈側血液回路1、静脈側血液回路2及びダイアライザ3の血液流路内は、生理食塩水で満たされた状態となっている。
更に、図5で示すように、血液ポンプ4を停止させるとともに電磁弁V1~V4を閉状態とし、電磁弁V5、V6を開状態とする。このとき、複式ポンプを駆動させて透析液導入ラインLaから透析液流路に透析液を導入するとともに、その透析液を透析液導出口3dを介して透析液排出ラインLbから排出させつつ当該透析液をその流路内で充填させる(これを「第3プライミング工程」と呼ぶ)。この第3プライミング工程を経ることにより、透析液流路内は、透析液で満たされた状態となる。
上記第3プライミング工程の終了後、図6に示すように、電磁弁V5、V6を閉状態(電磁弁V2、V3及びV4の閉状態も維持される)とするとともに、電磁弁V1を開状態とし、血液ポンプ4を駆動させることにより、閉鎖回路内で生理食塩水を循環させる。このように、第1プライミング工程及び第2プライミング工程の後、血液ポンプ4を駆動させ、充填されたプライミング液を循環させることにより、流路内に残った気泡も循環させ、動脈側ドリップチャンバ5や静脈側ドリップチャンバ6でトラップ(捕捉)させるようにすることができる(これを「循環工程」と呼ぶ)。
ここで、本実施形態に係る循環工程は、プライミング液充填工程(予プライミング工程、第1プライミング工程又は第2プライミング工程等を含む「血液回路内にプライミング液を供給して充填させる」工程)後、血液ポンプ4の駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させるようになっている。
具体的には、循環工程は、血液ポンプ4を正転駆動させる正転駆動状態(駆動速度が正の数(プラス)の状態)、血液ポンプ4を逆転駆動させる逆転駆動状態(駆動速度が負の数(マイナス)の状態)、血液ポンプ4を停止する停止状態(駆動速度が0の状態)、のうち任意2以上の状態が組み合わされて行われるべき工程であり、更には、正転駆動状態又は逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされている。以下、本実施形態に係る循環工程につき、図10~図13に基づき例示する。
例えば、図10に示すように、循環工程において、血液ポンプ4の駆動速度がV1(正転駆動)となる時間T1と、駆動速度がV2(正転駆動)となる時間T2とが交互に繰り返すよう設定した場合、プライミング液充填工程にて充填されたプライミング液は、一方向に流動しつつ流速が変化することとなる。従って、一定速度でプライミング液を流動させた場合に比べ、血液回路の内壁面に付着した気泡がプライミング液と共に流動させ易くなっており、その気泡を動脈側ドリップチャンバ5又は静脈側ドリップチャンバ6にて捕捉可能とされている。尚、時間T1とT2とは同じ、或いは互いに異ならせてもよい。
例えば、図11に示すように、循環工程において、血液ポンプ4の駆動速度がV3(正転駆動)となる時間T3と、停止状態(駆動速度が0)となる時間T4とが交互に繰り返すよう設定した場合、プライミング液充填工程にて充填されたプライミング液は、一方向に間欠的に流動することとなる。従って、一定速度でプライミング液を流動させた場合に比べ、血液回路の内壁面に付着した気泡がプライミング液と共に流動させ易くなっており、その気泡を動脈側ドリップチャンバ5又は静脈側ドリップチャンバ6にて捕捉可能とされている。尚、時間T3とT4とは同じ、或いは互いに異ならせてもよい。
例えば、図12に示すように、循環工程において、血液ポンプ4の駆動速度がV4(正転駆動)となる時間T5と、駆動速度が-V5(逆転駆動)となる時間T6とが交互に繰り返すよう設定した場合、プライミング液充填工程にて充填されたプライミング液は、一方向への流動と逆方向への流動とが繰り返し行われつつ循環工程全体としてプライミング液が一方向に流動し得るようになっている。この場合、プライミング液の一方向への流動に加え、逆方向への流動も行われるため、血液回路の内壁面に付着した気泡がプライミング液と共により流動させ易くなっており、その気泡を動脈側ドリップチャンバ5又は静脈側ドリップチャンバ6にて捕捉可能とされている。尚、時間T5とT6とは同じ、或いは互いに異ならせてもよい。
例えば、図13に示すように、循環工程において、血液ポンプ4の駆動速度がV6(正転駆動)となる時間T7と、駆動速度がV7(正転駆動)となる時間T8と、駆動速度が-V8(逆転駆動)となる時間T9と、停止状態(駆動速度が0)となる時間T10とが順次行われ、そのパターンが繰り返し行われるよう設定した場合、プライミング液充填工程にて充填されたプライミング液は、一方向への流動のうち、高速(V6)、低速(V7)にて一方向への流動がなされた後、逆方向への流動(-V8)がなされ、その後、流動が停止するようになっており、循環工程全体としてプライミング液が一方向に流動し得るようになっている。この場合、流動速度を逐次変化させるとともに、プライミング液の一方向への流動に加え、逆方向への流動も行われるため、血液回路の内壁面に付着した気泡がプライミング液と共により流動させ易くなっており、その気泡を動脈側ドリップチャンバ5又は静脈側ドリップチャンバ6にて捕捉可能とされている。尚、時間T7~T10は同じ、或いは互いに異ならせてもよい。
而して、既述したように、循環工程は、血液ポンプ4を正転駆動させる正転駆動状態、血液ポンプ4を逆転駆動させる逆転駆動状態、血液ポンプ4を停止する停止状態、のうち任意2以上の状態が組み合わされて行われれば足り、組み合わせについてはプライミングの状況等を勘案して任意設定することができる。更に、正転駆動状態又は逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされていれば足り、3つ以上の駆動速度が設定されるものであってもよい。
なお、図10~13において駆動速度V1~V8は、血液ポンプ4の流量設定ができる範囲(一般的には0~±600mL/min)でよいが、動脈側または静脈側ドリップチャンバ5、6部などにおけるプライミング液中へのエア巻き込みを軽減するため、好ましくは0~±400mL/minの範囲で設定する。時間T1~T10については、前記V1~V8との組み合わせおよび動脈側または静脈側のオーバーフローライン開放時間などを勘案し、使用するダイアライザの添付文書(取扱説明書)に記載されたプライミング用生理食塩水量(プライミング液量)を所望する時間でなおかつエア抜き効果が得られるよう設定する。これらの設定は、本発明の開示により、具体的な数値を示さなくとも当業者ならば容易に想定し得るものである。
続いて、図7に示すように、電磁弁V2及びV4を開状態とし、収容手段7内の生理食塩水(プライミング液)を再び血液回路内へ供給させつつ静脈側ドリップチャンバ6から延設された静脈側オーバーフローライン9から過剰な生理食塩水を排出させる。尚、電磁弁V1は閉状態とされている。これにより、収容手段7内の新鮮な生理食塩水にて、連結部Pから動脈側ドリップチャンバ5、ダイアライザ3を介して静脈側ドリップチャンバ6に至る経路を確実に洗浄することができる(これを「第1洗浄工程」と呼ぶ)。
そして、図8に示すように、血液ポンプ4を停止させ、電磁弁V1を開状態とすることにより、収容手段7内の生理食塩水(プライミング液)を、その落差により生じる自重(落差圧)にて、静脈側ドリップチャンバ6まで至らせ、その上部から延設された静脈側オーバーフローライン9から排出させる。これにより、収容手段7内の新鮮な生理食塩水にて、連結部Pからダイアライザ3を介さず静脈側ドリップチャンバ6に至る経路を確実に洗浄することができる(これを「第2洗浄工程」と呼ぶ)。
そして最後に、図9に示すように、電磁弁V4を閉状態とするとともに、電磁弁V3を開状態とし、収容手段7内の生理食塩水(プライミング液)を、その落差により生じる自重(落差圧)にて、ダイアライザ3を経由して動脈側ドリップチャンバ5まで至らせ、その上部から延設された動脈側オーバーフローライン8から排出させる。これにより、ダイアライザ3の血液導入口3a近傍に残留した気泡を動脈側オーバーフローライン8から排出させることができる(これを「ヘッダ気泡抜き工程」と呼ぶ)。
上記のように、本実施形態によれば、プライミング液充填工程後、血液ポンプ4の駆動速度を逐次変化(正転状態、逆転状態及び停止状態含む)させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程が行われるので、プライミング液を一定の速度で流動させるものに比べ、プライミング時の気泡抜きをスムーズ且つ短時間で行わせることができる。
また、循環工程は、血液ポンプ4を正転駆動させる正転駆動状態、血液ポンプ4を逆転駆動させる逆転駆動状態、血液ポンプ4を停止する停止状態、のうち任意2以上の状態が組み合わされて行われるので、プライミング状況に応じたプライミング液の流動パターンを種々設定することができる。更に、正転駆動状態又は逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされたので、プライミング状況に応じたプライミング液の流動パターンをよりきめ細かく設定することができる。
また、上記一連の工程(予プライミング工程、第1プライミング工程、第2プライミング工程、第3プライミング工程、循環工程、第1洗浄工程、第2洗浄工程、ヘッダ気泡抜き工程)を経ることにより、治療の際に血液や透析液等が流通する部位の洗浄・プライミングを行うことができ、気泡を確実に外部へ排出させることができる。更に、本実施形態においては、全てのプライミング工程に亘り、ダイアライザ3の血液導入口3aが上方を向いた状態にて行われるので、当該ダイアライザ3の上下反転作業を不要とし、プライミング工程を容易に自動化させることができるとともに、ダイアライザ3における素早く且つ確実な気泡抜きを行わせることができる。
また、第1プライミング工程及び第2プライミング工程の後、血液ポンプ4を駆動させ、充填されたプライミング液を循環させる(循環工程を経る)ので、気泡除去をより確実に行わせることができる。更に、プライミング液を排出させる部位は、動脈側血液回路1の途中に配設された動脈側ドリップチャンバ5から延びた動脈側オーバーフローライン8及び静脈側オーバーフローライン9に形成されたので、既存の血液回路であってもオーバーフローラインを延設すればほぼそのまま流用して本発明に係る血液浄化装置(透析装置)とすることができる。
本実施形態において、気泡をよりスムーズに外部に排出すべく、少なくとも動脈側ドリップチャンバ5は、内部にメッシュを具備していないものを使用するのが好ましい。また、動脈側ドリップチャンバ5や静脈側ドリップチャンバ6がその上部から圧モニタライン(空気層側の圧力を検出するためのライン)等が延設されている場合、動脈側オーバーフローライン8及び静脈側オーバーフローライン9の基端を当該圧モニタラインより下方まで落とし込み、プライミング液(生理食塩水)のオーバーフロー時、当該圧モニタライン側へ流れ込まないよう構成するのが好ましい。
次に、本発明に係る第2の実施形態について説明する。
第2の実施形態に係る血液浄化装置は、第1の実施形態と同様、透析治療を行うための透析装置から成り、図17~23に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、ダイアライザ3(血液浄化手段)と、しごき型の血液ポンプ4と、動脈側ドリップチャンバ5及び静脈側ドリップチャンバ6と、収容手段7と、プライミング液供給ラインLcとから主に構成されている。尚、第1の実施形態と同様の構成要素には、同一の符号を付すこととし、それらの詳細な説明を省略する。
第2の実施形態に係る血液浄化装置は、第1の実施形態と同様、透析治療を行うための透析装置から成り、図17~23に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、ダイアライザ3(血液浄化手段)と、しごき型の血液ポンプ4と、動脈側ドリップチャンバ5及び静脈側ドリップチャンバ6と、収容手段7と、プライミング液供給ラインLcとから主に構成されている。尚、第1の実施形態と同様の構成要素には、同一の符号を付すこととし、それらの詳細な説明を省略する。
尚、本実施形態においては、第1の実施形態における電磁弁V1に代えて又は当該電磁弁V1と共に、静脈側血液回路2に配設された電磁弁V1’が配設されている。また、静脈側血液回路2における静脈側ドリップチャンバ6より下流側(静脈側ドリップチャンバ6と電磁弁V1との間の位置)には、静脈側血液回路2中の気泡を検出し得る気泡検出手段10が配設されている。尚、動脈側血液回路1の何れかの部位に気泡検出手段10を配設してもよい。
気泡検出手段10は、所謂気泡センサと呼ばれ、動脈側血液回路1又は静脈側血液回路2内の気泡を検知するためのもので、例えば、動脈側血液回路1又は静脈側血液回路2を構成する可撓性チューブに超音波を照射し、その減衰若しくは吸収率に基づき気泡の有無を検知可能なものが挙げられるが、他の構成のものであってもよい。
以下、第2の実施形態に係る透析装置で行われるプライミング工程について説明する。
プライミング時、図17に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定手段により固定)とし、且つ、コネクタcとコネクタdとを接続して互いの流路を連通させた後、電磁弁V1’を開状態としつつ他の電磁弁(V2~V6)を閉状態とする。
プライミング時、図17に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定手段により固定)とし、且つ、コネクタcとコネクタdとを接続して互いの流路を連通させた後、電磁弁V1’を開状態としつつ他の電磁弁(V2~V6)を閉状態とする。
そして、同図に示すように、ダイアライザ3の血液導出口3bから静脈側ドリップチャンバ6までの間の静脈側血液回路2における流路容積に相当する容量だけ血液ポンプ4を正転駆動させる(この工程を、便宜上、「第1充填工程」と呼ぶ。)。ここで、血液ポンプ4の正転駆動とは、透析治療において患者の血液を体外循環させる際、動脈側血液回路1先端からダイアライザ3を介して静脈側血液回路2先端まで流動させ得る方向(順方向)の駆動をいう。
その後、図18に示すように、血液ポンプ4を停止させ、静脈側オーバーフローライン9を開状態(動脈側オーバーフローライン8の閉状態、及び電磁弁V1’の開状態は維持)としつつ電磁弁V2を開状態としてプライミング液供給ラインLcからプライミング液を供給させることにより、動脈側血液回路1の連結部Pから動脈側血液回路1先端と静脈側血液回路2先端との接続部(コネクタcとコネクタdとの接続部)を介して静脈側血液回路2の静脈側ドリップチャンバ6までプライミング液を流通させ、そのプライミング液を当該静脈側オーバーフローライン9から排出させる(この工程を、便宜上、「第2充填工程」と呼ぶ。)。
即ち、第2充填工程においては、血液ポンプ4を停止させて電磁弁V2を開状態することにより、収容手段7内の生理食塩水(プライミング液)は、その落差により生じる自重(落差圧)で、静脈側ドリップチャンバ6まで至り、その上部から延設された静脈側オーバーフローライン9から排出されることとなる。これにより、静脈側ドリップチャンバ6の液面レベルを確保することができるのである。
その後、図19に示すように、血液ポンプ4を停止状態としたまま電磁弁V4を閉状態及び電磁弁V3を開状態とし、静脈側オーバーフローライン9を閉状態及び動脈側オーバーフローライン8を開状態としつつ電磁弁V2を開状態としてプライミング液供給ラインLcからプライミング液を供給させることにより、動脈側血液回路1の連結部Pから動脈側血液回路1先端と静脈側血液回路2先端との接続部(コネクタcとコネクタdとの接続部)、及びダイアライザ3の血液流路を介して動脈側血液回路1の動脈側ドリップチャンバ5までプライミング液を流通させ、そのプライミング液を当該動脈側オーバーフローライン8から排出させる(この工程を、便宜上、「第3充填工程」と呼ぶ。)。
即ち、同図に示すように、電磁弁V4を閉状態とするとともに電磁弁V3を開状態とすることにより、第2充填工程と同様、収容手段7内の生理食塩水(プライミング液)は、その落差により生じる自重(落差圧)で、動脈側ドリップチャンバ5まで至り、その上部から延設された動脈側オーバーフローライン8から排出されることとなる。このように、第3充填工程においては、プライミング液供給ラインLcから生理食塩水(プライミング液)を供給するとともに、当該生理食塩水をその自重にて静脈側血液回路2側へ流動させ、ダイアライザ3の血液導出口3bから血液導入口3aを経て動脈側オーバーフローライン8から排出させつつ当該生理食塩水をその流路内で充填させているのである。
その後、図20に示すように、電磁弁V1’を閉状態としつつ血液ポンプ4を再び正転駆動させ、動脈側血液回路1の連結部Pから当該血液ポンプ4の配設部位を介して動脈側血液回路1の動脈側ドリップチャンバ5までプライミング液を流通させ、そのプライミング液を当該動脈側オーバーフローライン8から排出させる(この工程を、便宜上、「第4充填工程」と呼ぶ。)。尚、上記第1~4充填工程は、本発明の「プライミング液充填工程」を構成するものである。
即ち、同図で示すように、血液ポンプ4を再び正転駆動させて当該生理食塩水(プライミング液)を上記第2充填工程及び第3充填工程とは反対側へ流動させ、動脈側オーバーフローライン8から排出させつつ当該生理食塩水をその流路内で充填させるになっているのである。尚、このとき、電磁弁V1’の開状態を維持し、図26に示すように、連結部Pから血液ポンプ4側及び静脈側ドリップチャンバ6側の両方を生理食塩水が流れるよう血液ポンプ4の駆動速度を制御するよう構成してもよい。
更に、図21で示すように、電磁弁V1’及びV2~V4を閉状態としつつ血液ポンプ4を停止させるとともに電磁弁V5、V6を開状態とする。このとき、複式ポンプを駆動させて透析液導入ラインLaから透析液流路に透析液を導入するとともに、その透析液を透析液導出口3dを介して透析液排出ラインLbから排出させつつ当該透析液をその流路内で充填させる(これを「ガスパージ工程」と呼ぶ)。このガスパージ工程を経ることにより、透析液流路内は、透析液で満たされた状態となる。
かかるガスパージ工程は、第1~第4充填工程(プライミング充填工程)が終了した後に行われるものであってもよく、或いは後述する循環工程が終了した後に行われるものであってもよい。また、第1~第4充填工程(プライミング液充填工程)又は循環工程の途中における任意タイミングで当該工程と同時に当該ガスパージ工程が自動的に行われるよう構成してもよく、その場合、第1~第4充填工程(プライミング液充填工程)又は循環工程とガスパージ工程とを並行して行わせることができる。
その後、図22に示すように、電磁弁V1’を開状態としつつ電磁弁V2~V6を閉状態とし、血液ポンプ4を逆転駆動させる。これにより、動脈側オーバーフローライン8、静脈側オーバーフローライン9及びプライミング液供給ラインLcを閉状態として充填されたプライミング液を流動させつつ当該血液回路(動脈側血液回路1及び静脈側血液回路2)内で循環させることができる(この工程を、便宜上、「第1循環工程」と呼ぶ。)。この第1循環工程において、血液ポンプ4の駆動速度を逐次変化させて循環を行うことで当該血液回路およびダイアライザ3内の残留エアを速やかに送り出すことができ、送り出されたエアは、オーバーフローラインが延設された動脈側または静脈側のドリップチャンバ5、6でトラップ(捕捉)することができる。然るに、上述したように、図27に示すように、当該第1循環工程と同時に「ガスパージ工程」を行うようにしてもよい。
かかる第1循環工程後、図23に示すように、血液ポンプ4を停止させるとともに、電磁弁V1’、V2及びV4を開状態とする。これにより、プライミング液供給ラインLcを開状態としつつ静脈側オーバーフローライン9を開状態とすることができるので、当該静脈側オーバーフローライン9からプライミング液を排出して含有するエアを逃がす「エア抜き」を行うことができる(この工程を、便宜上、「第2循環工程」と呼ぶ。)。
第2循環工程において、血液ポンプ4の駆動速度を逐次変化させて循環を行うことで当該血液回路およびダイアライザ3内の残留エアを速やかに送り出すことができ、送り出されたエアは、オーバーフローラインが延設された動脈側または静脈側のドリップチャンバ5、6でトラップ(捕捉)することができる。尚、第2循環工程は、上記の如き工程の他、例えば図24に示すように、静脈側オーバーフローライン9を閉状態としつつ動脈側オーバーフローライン8を開状態とし、当該動脈側オーバーフローライン8からエア抜きを行ってもよく、或いは図25に示すように、血液ポンプ4を正転駆動させつつ動脈側オーバーフローライン8を開状態とし(このとき、電磁弁V1’は同図の如く閉状態とされる他、開状態とされてもよい)、当該動脈側オーバーフローライン8からエア抜きを行ってもよい。
上記第1循環工程及び第2循環工程は、本発明の「循環工程」を構成するものである。このように、本実施形態によれば、プライミング液供給ラインLcを開状態としつつ動脈側オーバーフローライン8、静脈側オーバーフローライン9の何れかを開状態としてエア抜きする第2循環工程を有するので、循環工程におけるエア抜きをより確実に行わせることができる。
また、本実施形態においては、静脈側血液回路2(動脈側血液回路1であってもよい)の途中に当該血液回路中の気泡を検出し得る気泡検出手段10が配設されているので、これを利用すべく、第2循環工程によるエア抜きが、当該気泡検出手段10による気泡の検出と連動して行われるよう構成するのが好ましい。これにより、循環工程におけるエア抜きを更に確実且つスムーズに行わせることができる。
本実施形態によれば、プライミング液充填工程において、ダイアライザ3の血液導出口3bから静脈側ドリップチャンバ6までの間の静脈側血液回路2における流路容積に相当する容量だけ血液ポンプ4を正転駆動させる第1充填工程を経るので、所謂ウェットタイプ(血液流路及び透析液流路が充填液で予め充填されたもの)の場合は、ダイアライザ3内の充填液で血液導出口3bから静脈側ドリップチャンバ6までの血液流路を満たすことができる(血液導入口3aからはダイアライザ3内に血液回路内の空気(エア)が入る)。
続く第2充填工程で静脈側ドリップチャンバ6がプライミング液で満たされれば、プライミング液供給ラインLcから血液導出口3bまでの血液流路はプライミング液およびダイアライザ充填液で連通するので血液回路内に元々存在した空気(エア)をダイアライザ3に送り込む量は最小にでき、エア抜きを目的とした後の循環工程の時間短縮を図ることが可能である。
ドライタイプ(血液流路及び透析液流路が空気等で満たされたもの)の場合は、ダイアライザ3内が元々空気(エア)等で満たされているので、第1充填工程を実施しても充填工程としては何も起こらない。したがって何れの形態のダイアライザ(血液浄化手段)が血液回路に接続されても、プライミング液充填工程を変える必要がなく、当該プライミング液充填工程を共通化させることができる。
また、本実施形態によれば、第1~第4充填工程(プライミング液充填工程)及び循環工程(第1及び第2循環工程)は、ダイアライザ3の下方から上方に向かって(具体的には、血液導出口3bから血液導入口3aに向かって)プライミング液を流通させるので、当該ダイアライザ3を反転しなくてもダイアライザ3内をプライミング液で満たし、プライミング液に混入した状態のエアを確実に抜くことができる。更に、本実施形態によれば、ドリップチャンバおよびダイアライザ3を移動(判定)することがないので、電磁弁V1~V6、血液ポンプ4、透析液供給装置などを制御手段(不図示)によって制御し、充填および循環工程を連続的に自動で行うことが可能である。
第2の実施形態に基づき図17~27の如く、第1~4充填工程、第1~2循環工程およびガスパージ工程を連続して行うシステムを構築した。比較例は従来の所謂「自動プライミング方法」である。以下に、実施例と比較例との比較を図28に基づき説明する。
生理食塩水1000mL入りを使用し、ダイアライザ(Wetタイプ、膜断面1.5m2)および血液回路(汎用品)は同じ条件でプライミングに要する時間の比較を行った。実施例においては、エア抜きが良好に行えるので循環工程に要する時間が短縮でき、さらにダイアライザ3のガスパージ工程を循環工程に掛け合わせることによってプライミングに要する時間が大幅に短縮可能であった。
生理食塩水1000mL入りを使用し、ダイアライザ(Wetタイプ、膜断面1.5m2)および血液回路(汎用品)は同じ条件でプライミングに要する時間の比較を行った。実施例においては、エア抜きが良好に行えるので循環工程に要する時間が短縮でき、さらにダイアライザ3のガスパージ工程を循環工程に掛け合わせることによってプライミングに要する時間が大幅に短縮可能であった。
以上、本実施形態について説明したが、本発明はこれらに限定されるものではなく、例えば予プライミング工程を省略することとし、図14に示すように、静脈側ドリップチャンバ6が静脈側オーバーフローラインを具備しないものとしてもよい。また、第1の実施形態においては、図3で示される工程を省略するとともに、図4で示すように、第1プライミング工程と第2プライミング工程とが同時に行われるよう、血液ポンプ4を所定速度で駆動させるのが好ましく、この場合、当該第1プライミング工程と第2プライミング工程とを順次行わせるものに比べ、プライミング時のダイアライザ3における気泡抜きをより素早く行わせることができる。
また更に、本実施形態においては、収容手段7からプライミング液としての生理食塩水をその自重にて供給しているが、プライミング液供給ラインLcにポンプ等の送液手段を設置して生理食塩水を供給してもよい。さらに、図15に示すように、透析液導入ラインLaから動脈側血液回路1(コネクタcから血液ポンプ4の間の位置)までプライミング液供給ラインLcを延設させ、血液回路内にプライミング液としての透析液を供給するようにしてもよい。尚、この場合、プライミング液供給ラインLcにフィルタを介在させて構成するのが好ましい。然るに、プライミング液は、他のもの(例えば種々の電解質液等)としてもよい。
また、本実施形態においては、プライミング液を排出させる部位は、動脈側血液回路1の途中に配設された動脈側ドリップチャンバ5から延びた動脈側オーバーフローライン8及び静脈側ドリップチャンバ6から延びた静脈側オーバーフローライン9に形成されているが、動脈側血液回路1における血液ポンプ4とダイアライザ3の血液導入口3aとの間に形成されてプライミング液供給ラインLcから供給されたプライミング液を排出させ得るものであれば、何れの箇所に形成されていてもよく、例えば図16に示すように、動脈側ドリップチャンバを具備せず、動脈側血液回路1の途中における任意位置から分岐した流路8’に形成されたものであってもよい。この場合、流路8’は、T管やY管、3方活栓などの分岐管にて延設可能であるとともに、ゴムボタンなどのアクセスポートに連結させる等してもよい。
尚、本実施形態においては、V1~V6を電磁弁としたが、各ラインを開閉可能であれば手段は問わない。例えば、動脈側オーバーフローライン8に電磁弁を設けず、充填工程・循環工程は常に開状態にしておき、循環工程終了後、鉗子やワンタッチクランプなど手動で閉状態にすることも可能である。このように開閉頻度の少ない電磁弁は手動のクランプ手段を使用することで血液浄化装置全体のコストを抑えることも可能である。また、本実施形態においては、透析治療時に用いられる透析装置に適用しているが、患者の血液を体外循環させつつ浄化し得る他の装置(例えば血液濾過透析法、血液濾過法、AFBFで使用される血液浄化装置、血漿吸着装置など)に適用してもよい。
治療前のプライミング時、動脈側血液回路先端と静脈側血液回路先端とを接続して連通可能とされた血液浄化装置において、動脈側血液回路先端と静脈側血液回路先端とが接続して連通された状態で、血液回路内にプライミング液を供給して当該血液回路内で充填させるプライミング液充填工程と、該プライミング液充填工程後、血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程とが行われる血液浄化装置及びそのプライミング方法であれば、他の形態及び用途のものにも適用することができる。
1 動脈側血液回路
2 静脈側血液回路
3 ダイアライザ(血液浄化手段)
4 血液ポンプ
5 動脈側ドリップチャンバ
6 静脈側ドリップチャンバ
7 収容手段
8 動脈側オーバーフローライン
9 静脈側オーバーフローライン
La 透析液導入ライン
Lb 透析液排出ライン
Lc プライミング液供給ライン
2 静脈側血液回路
3 ダイアライザ(血液浄化手段)
4 血液ポンプ
5 動脈側ドリップチャンバ
6 静脈側ドリップチャンバ
7 収容手段
8 動脈側オーバーフローライン
9 静脈側オーバーフローライン
La 透析液導入ライン
Lb 透析液排出ライン
Lc プライミング液供給ライン
Claims (18)
- 動脈側血液回路及び静脈側血液回路から成るとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させ得る血液回路と、
該血液回路の動脈側血液回路及び静脈側血液回路の間に介装されて当該血液回路を流れる血液を浄化するとともに、血液を浄化するための血液浄化膜を介して患者の血液が流れる血液流路及び透析液が流れる透析液流路が形成された血液浄化手段と、
前記動脈側血液回路に配設された血液ポンプと、
該血液浄化手段の透析液流路入口及び出口に接続された透析液導入ライン及び透析液排出ラインと、
前記血液浄化手段にそれぞれ形成され、前記動脈側血液回路と接続されて血液流路に血液を導入する血液導入口、及び前記静脈側血液回路と接続されて血液流路から血液を導出する血液導出口と、
前記血液浄化手段にそれぞれ形成され、前記透析液導入ラインと接続されて透析液流路に透析液を導入する透析液導入口、及び前記透析液排出ラインと接続されて透析液流路から透析液を導出する透析液導出口と、
を具備し、治療前のプライミング時、前記動脈側血液回路先端と静脈側血液回路先端とを接続して連通可能とされた血液浄化装置において、
前記動脈側血液回路先端と静脈側血液回路先端とが接続して連通された状態で、前記血液回路内にプライミング液を供給して当該血液回路内で充填させるプライミング液充填工程と、
該プライミング液充填工程後、前記血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程と、
が行われることを特徴とする血液浄化装置。 - 前記循環工程は、前記血液ポンプを正転駆動させる正転駆動状態、前記血液ポンプを逆転駆動させる逆転駆動状態、前記血液ポンプを停止する停止状態、のうち任意2以上の状態が組み合わされて行われることを特徴とする請求項1記載の血液浄化装置。
- 前記正転または前記逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされたことを特徴とする請求項2記載の血液浄化装置。
- 前記動脈側血液回路の途中に形成された動脈側ドリップチャンバと、
該動脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた動脈側オーバーフローラインと、
前記静脈側血液回路の途中に形成された静脈側ドリップチャンバと、
該静脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた静脈側オーバーフローラインと、
前記動脈側血液回路における当該動脈側血液回路先端と血液ポンプとの間の連結部にて接続され、プライミング液を供給可能なプライミング液供給ラインと、
を具備するとともに、
前記プライミング液充填工程は、
前記血液浄化手段の血液導出口から前記静脈側ドリップチャンバまでの間の前記静脈側血液回路における流路容積に相当する容量だけ前記血液ポンプを正転駆動させる第1充填工程と、
前記血液ポンプを停止させた後、静脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部を介して前記静脈側血液回路の静脈側ドリップチャンバまでプライミング液を流通させ、当該静脈側オーバーフローラインから排出させる第2充填工程と、
静脈側オーバーフローラインを閉状態及び動脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部、及び血液浄化手段の血液流路を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第3充填工程と、
前記血液ポンプを正転駆動させ、前記動脈側血液回路の連結部から当該血液ポンプの配設部位を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第4充填工程と、
を有することを特徴とする請求項1~3の何れか1つに記載の血液浄化装置。 - 前記循環工程は、
前記静脈側オーバーフローライン及びプライミング液供給ラインを閉状態として充填されたプライミング液を流動させつつ当該血液回路内で循環させる第1循環工程と、
前記プライミング液供給ラインを開状態としつつ前記動脈側オーバーフローライン、静脈側オーバーフローラインの何れかを開状態としてエア抜きする第2循環工程と、
を有することを特徴とする請求項4記載の血液浄化装置。 - 前記プライミング液充填工程及び循環工程は、前記血液浄化手段の下方から上方に向かってプライミング液を流通させることを特徴とする請求項4又は請求項5記載の血液浄化装置。
- 前記プライミング液充填工程及び循環工程は、前記血液浄化手段の血液導入口を垂直方向上向き、血液導出口を垂直方向下向きに設置して行うことを特徴とする請求項6記載の血液浄化装置。
- 前記動脈側血液回路又は静脈側血液回路の途中に当該血液回路中の気泡を検出し得る気泡検出手段が配設されるとともに、前記第2循環工程によるエア抜きは、当該気泡検出手段による気泡の検出と連動して行われることを特徴とする請求項4~7の何れか1つに記載の血液浄化装置。
- 前記透析液導入ラインから前記血液浄化手段の透析液流路に透析液を導入するとともに、その透析液を前記透析液排出ラインから排出させることにより、当該透析液をその流路内で充填させるガスパージ工程を有するとともに、前記プライミング液充填工程又は循環工程において当該ガスパージ工程が自動的に行われることを特徴とする請求項1~8の何れか1つに記載の血液浄化装置。
- 動脈側血液回路及び静脈側血液回路から成るとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させ得る血液回路と、
該血液回路の動脈側血液回路及び静脈側血液回路の間に介装されて当該血液回路を流れる血液を浄化するとともに、血液を浄化するための血液浄化膜を介して患者の血液が流れる血液流路及び透析液が流れる透析液流路が形成された血液浄化手段と、
前記動脈側血液回路に配設された血液ポンプと、
該血液浄化手段の透析液流路入口及び出口に接続された透析液導入ライン及び透析液排出ラインと、
前記血液浄化手段にそれぞれ形成され、前記動脈側血液回路と接続されて血液流路に血液を導入する血液導入口、及び前記静脈側血液回路と接続されて血液流路から血液を導出する血液導出口と、
前記血液浄化手段にそれぞれ形成され、前記透析液導入ラインと接続されて透析液流路に透析液を導入する透析液導入口、及び前記透析液排出ラインと接続されて透析液流路から透析液を導出する透析液導出口と、
を具備し、治療前のプライミング時、前記動脈側血液回路先端と静脈側血液回路先端とを接続して連通可能とされた血液浄化装置のプライミング方法において、
前記動脈側血液回路先端と静脈側血液回路先端とが接続して連通された状態で、前記血液回路内にプライミング液を供給して当該血液回路内で充填させるプライミング液充填工程と、
該プライミング液充填工程後、前記血液ポンプの駆動速度を逐次変化させることにより充填されたプライミング液を流動させつつ当該血液回路内で循環させる循環工程と、
が行われることを特徴とする血液浄化装置のプライミング方法。 - 前記循環工程は、前記血液ポンプを正転駆動させる正転駆動状態、前記血液ポンプを逆転駆動させる逆転駆動状態、前記血液ポンプを停止する停止状態、のうち任意2以上の状態が組み合わされて行われることを特徴とする請求項10記載の血液浄化装置のプライミング方法。
- 前記正転または前記逆転駆動状態は、少なくとも異なる2つの駆動速度が設定可能とされたことを特徴とする請求項11記載の血液浄化装置のプライミング方法。
- 前記動脈側血液回路の途中に形成された動脈側ドリップチャンバと、
該動脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた動脈側オーバーフローラインと、
前記静脈側血液回路の途中に形成された静脈側ドリップチャンバと、
該静脈側ドリップチャンバの空気層側を外部に開放すべく延設され、その流路が開閉可能とされた静脈側オーバーフローラインと、
前記動脈側血液回路における当該動脈側血液回路先端と血液ポンプとの間の連結部にて接続され、プライミング液を供給可能なプライミング液供給ラインと、
を前記血液浄化装置が具備するとともに、
前記プライミング液充填工程は、
前記血液浄化手段の血液導出口から前記静脈側ドリップチャンバまでの間の前記静脈側血液回路における流路容積に相当する容量だけ前記血液ポンプを正転駆動させる第1充填工程と、
前記血液ポンプを停止させた後、静脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部を介して前記静脈側血液回路の静脈側ドリップチャンバまでプライミング液を流通させ、当該静脈側オーバーフローラインから排出させる第2充填工程と、
静脈側オーバーフローラインを閉状態及び動脈側オーバーフローラインを開状態としつつ前記プライミング液供給ラインからプライミング液を供給させることにより、前記動脈側血液回路の連結部から前記動脈側血液回路先端と静脈側血液回路先端との接続部、及び血液浄化手段の血液流路を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第3充填工程と、
前記血液ポンプを正転駆動させ、前記動脈側血液回路の連結部から当該血液ポンプの配設部位を介して前記動脈側血液回路の動脈側ドリップチャンバまでプライミング液を流通させ、当該動脈側オーバーフローラインから排出させる第4充填工程と、
を有することを特徴とする請求項10~12の何れか1つに記載の血液浄化装置のプライミング方法。 - 前記循環工程は、
前記静脈側オーバーフローライン及びプライミング液供給ラインを閉状態として充填されたプライミング液を流動させつつ当該血液回路内で循環させる第1循環工程と、
前記プライミング液供給ラインを開状態としつつ前記動脈側オーバーフローライン、静脈側オーバーフローラインの何れかを開状態としてエア抜きする第2循環工程と、
を有することを特徴とする請求項13記載の血液浄化装置のプライミング方法。 - 前記プライミング液充填工程及び循環工程は、前記血液浄化手段の下方から上方に向かってプライミング液を流通させることを特徴とする請求項13又は請求項14記載の血液浄化装置のプライミング方法。
- 前記プライミング液充填工程及び循環工程は、前記血液浄化手段の血液導入口を垂直方向上向き、血液導出口を垂直方向下向きに設置して行うことを特徴とする請求項15記載の血液浄化装置のプライミング方法。
- 前記動脈側血液回路又は静脈側血液回路の途中に当該血液回路中の気泡を検出し得る気泡検出手段が配設されるとともに、前記第2循環工程によるエア抜きは、当該気泡検出手段による気泡の検出と連動して行われることを特徴とする請求項13~16の何れか1つに記載の血液浄化装置のプライミング方法。
- 前記透析液導入ラインから前記血液浄化手段の透析液流路に透析液を導入するとともに、その透析液を前記透析液排出ラインから排出させることにより、当該透析液をその流路内で充填させるガスパージ工程を有するとともに、前記プライミング液充填工程又は循環工程において当該ガスパージ工程が自動的に行われることを特徴とする請求項10~17の何れか1つに記載の血液浄化装置のプライミング方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008156604A JP2009297339A (ja) | 2008-06-16 | 2008-06-16 | 血液浄化装置及びそのプライミング方法 |
JP2008-156604 | 2008-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009153955A1 true WO2009153955A1 (ja) | 2009-12-23 |
Family
ID=41415438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002696 WO2009153955A1 (ja) | 2008-06-16 | 2009-06-15 | 血液浄化装置及びそのプライミング方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090312686A1 (ja) |
JP (1) | JP2009297339A (ja) |
WO (1) | WO2009153955A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102939119A (zh) * | 2010-02-10 | 2013-02-20 | 日机装株式会社 | 血液净化装置及其预冲方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502004007297D1 (de) * | 2004-11-24 | 2008-07-10 | Lifebridge Medizintechnik Ag | Vorrichtung zur Bereitstellung eines extrakorporalen Blutkreislaufs |
US8834399B2 (en) * | 2010-12-07 | 2014-09-16 | Zoll Lifebridge Gmbh | Cardiopulmonary apparatus and methods for preserving organ viability |
JP2011136003A (ja) * | 2009-12-28 | 2011-07-14 | Nikkiso Co Ltd | 血液浄化装置及びそのプライミング方法 |
US8501009B2 (en) | 2010-06-07 | 2013-08-06 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Fluid purification system |
JP5558260B2 (ja) * | 2010-08-11 | 2014-07-23 | 東レ・メディカル株式会社 | 血液処理器のプライミングシステム |
EP2719409B1 (de) * | 2010-12-07 | 2016-04-13 | ZOLL LifeBridge GmbH | Verfahren zur Befüllung und Entlüftung einer Vorrichtung zur extrakorporalen Blutbehandlung mit schrittweiser Flutung eines Filters |
EP2974757B1 (de) * | 2010-12-07 | 2019-07-31 | ZOLL LifeBridge GmbH | System zur befüllung und entlüftung einer vorrichtung zur extrakorporalen blutbehandlung |
CN107335104A (zh) * | 2010-12-07 | 2017-11-10 | 措尔生命桥梁有限责任公司 | 使过滤器逐步注满的用于体外血液治疗的装置的填充和排气的方法及系统 |
CN102091381B (zh) * | 2011-01-07 | 2012-10-10 | 重庆山外山科技有限公司 | 一种血液净化用电磁阀 |
WO2012125457A1 (en) * | 2011-03-11 | 2012-09-20 | Fenwal, Inc. | Membrane separation devices, systems and methods employing same and data management systems and methods |
JP2012192100A (ja) * | 2011-03-17 | 2012-10-11 | Nikkiso Co Ltd | 血液浄化装置 |
JP2012231985A (ja) * | 2011-05-02 | 2012-11-29 | Nipro Corp | 透析装置と透析装置のプライミング方法 |
DE102011108786A1 (de) * | 2011-07-29 | 2013-01-31 | Fresenius Medical Care Deutschland Gmbh | Verfahren zum Ermitteln wenigstens eines Parameters eines extrakorporalen Blutkreislaufs sowie Vorrichtungen |
CN104379186B (zh) * | 2012-08-09 | 2016-05-04 | 日机装株式会社 | 血液净化装置及其预充方法 |
WO2014124180A2 (en) | 2013-02-06 | 2014-08-14 | Nxstage Medical, Inc. | Fluid circuit priming methods, devices, and systems |
JP5808062B2 (ja) * | 2013-11-11 | 2015-11-10 | 日機装株式会社 | 血液浄化装置及びそのプライミング方法 |
JP2015188571A (ja) * | 2014-03-28 | 2015-11-02 | 日機装株式会社 | 留置針用キャップ、キャップ付体外循環用留置針、血液回路、および、血液回路のプライミング方法 |
ES2864727T3 (es) * | 2014-04-29 | 2021-10-14 | Outset Medical Inc | Sistema y métodos de diálisis |
JP6805165B2 (ja) | 2015-04-07 | 2020-12-23 | ネクステージ メディカル インコーポレイテッド | 血液処理装置のプライミングセット |
JP6516559B2 (ja) | 2015-05-21 | 2019-05-22 | 日機装株式会社 | 血液浄化装置 |
JP6813484B2 (ja) | 2015-06-24 | 2021-01-13 | 日機装株式会社 | 血液浄化装置 |
JP6111351B1 (ja) | 2016-01-25 | 2017-04-05 | 日機装株式会社 | 血液浄化装置 |
WO2018035520A1 (en) | 2016-08-19 | 2018-02-22 | Outset Medical, Inc. | Peritoneal dialysis system and methods |
JP6998112B2 (ja) | 2016-09-12 | 2022-01-18 | 日機装株式会社 | 血液浄化装置 |
JP6826852B2 (ja) | 2016-09-23 | 2021-02-10 | 日機装株式会社 | 血液浄化装置 |
US11420037B2 (en) * | 2017-08-04 | 2022-08-23 | Fresenius Medical Care Holdings, Inc. | Infusion methods for extracoporeal systems |
JP6464238B1 (ja) * | 2017-09-07 | 2019-02-06 | 日機装株式会社 | 血液浄化装置及びその気泡の排出方法 |
CN113577423B (zh) * | 2021-07-13 | 2024-05-31 | 健帆生物科技集团股份有限公司 | 血液净化设备的预冲方法、血液净化设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001245970A (ja) * | 2000-03-03 | 2001-09-11 | Nipro Corp | 血液回路のプライミング処理方法 |
JP2004187990A (ja) * | 2001-12-18 | 2004-07-08 | Kita Kyushu Biophysics Kenkyusho:Kk | 自動血液透析装置および該装置を使用したプライミング方法。 |
WO2006073166A1 (ja) * | 2005-01-07 | 2006-07-13 | Jms Co. | 自動プライミング方法 |
JP2007167108A (ja) * | 2005-12-19 | 2007-07-05 | Jms Co Ltd | 血液透析装置 |
JP2007275213A (ja) * | 2006-04-05 | 2007-10-25 | Nikkiso Co Ltd | 血液回路のプライミング方法 |
JP2008012210A (ja) * | 2006-07-10 | 2008-01-24 | Toray Medical Co Ltd | 血液透析装置のプライミング方法および装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6187198B1 (en) * | 1997-10-21 | 2001-02-13 | Dsu Medical Corporation | Automatic priming of connected blood sets |
-
2008
- 2008-06-16 JP JP2008156604A patent/JP2009297339A/ja active Pending
-
2009
- 2009-06-08 US US12/480,096 patent/US20090312686A1/en not_active Abandoned
- 2009-06-15 WO PCT/JP2009/002696 patent/WO2009153955A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001245970A (ja) * | 2000-03-03 | 2001-09-11 | Nipro Corp | 血液回路のプライミング処理方法 |
JP2004187990A (ja) * | 2001-12-18 | 2004-07-08 | Kita Kyushu Biophysics Kenkyusho:Kk | 自動血液透析装置および該装置を使用したプライミング方法。 |
WO2006073166A1 (ja) * | 2005-01-07 | 2006-07-13 | Jms Co. | 自動プライミング方法 |
JP2007167108A (ja) * | 2005-12-19 | 2007-07-05 | Jms Co Ltd | 血液透析装置 |
JP2007275213A (ja) * | 2006-04-05 | 2007-10-25 | Nikkiso Co Ltd | 血液回路のプライミング方法 |
JP2008012210A (ja) * | 2006-07-10 | 2008-01-24 | Toray Medical Co Ltd | 血液透析装置のプライミング方法および装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102939119A (zh) * | 2010-02-10 | 2013-02-20 | 日机装株式会社 | 血液净化装置及其预冲方法 |
US8858487B2 (en) | 2010-02-10 | 2014-10-14 | Nikkiso Company Limited | Blood purification apparatus and priming method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2009297339A (ja) | 2009-12-24 |
US20090312686A1 (en) | 2009-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009153955A1 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5294985B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP6685374B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5808062B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5205036B2 (ja) | 血液浄化装置 | |
JP5247864B2 (ja) | 血液浄化装置 | |
JP4656427B2 (ja) | プライミング液用ドリップチャンバの液面調整方法 | |
CN107708764B (zh) | 血液净化装置以及灌注方法 | |
JP5319381B2 (ja) | 血液浄化装置及びその気泡除去方法 | |
JP2013248334A (ja) | 血液浄化装置及びそのプライミング方法 | |
JP2011136003A (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5192241B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP6462077B1 (ja) | 血液浄化装置及びその気泡の排出方法 | |
JP2009268762A (ja) | 血液浄化装置及びその血液浄化手段の判別方法 | |
JP2009285128A (ja) | 血液浄化装置及びそのプライミング液用ドリップチャンバの液溜まり形成方法 | |
JP6464238B1 (ja) | 血液浄化装置及びその気泡の排出方法 | |
JP6636770B2 (ja) | 血液浄化装置 | |
JP6266695B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP2009153640A (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5404458B2 (ja) | 血液浄化装置及び血液浄化装置における血液回路内の液体排出方法 | |
JP6762772B2 (ja) | 血液浄化装置及びその接続確認方法 | |
JP2006255394A (ja) | 血液浄化装置及びそのプライミング方法 | |
JP6462076B1 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5929912B2 (ja) | 血液浄化装置および血液浄化装置の自動プライミング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09766403 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09766403 Country of ref document: EP Kind code of ref document: A1 |