WO2009151066A1 - 動力工具 - Google Patents

動力工具 Download PDF

Info

Publication number
WO2009151066A1
WO2009151066A1 PCT/JP2009/060560 JP2009060560W WO2009151066A1 WO 2009151066 A1 WO2009151066 A1 WO 2009151066A1 JP 2009060560 W JP2009060560 W JP 2009060560W WO 2009151066 A1 WO2009151066 A1 WO 2009151066A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
clutch
power transmission
gear
shaft
Prior art date
Application number
PCT/JP2009/060560
Other languages
English (en)
French (fr)
Inventor
学 徳永
竜 橋本
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to US12/996,858 priority Critical patent/US8667694B2/en
Priority to RU2010153862/02A priority patent/RU2494854C2/ru
Priority to CN200980121598.7A priority patent/CN102159366B/zh
Priority to EP09762496.9A priority patent/EP2295207B1/en
Publication of WO2009151066A1 publication Critical patent/WO2009151066A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/12Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of drives for circular saw blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked

Definitions

  • the present invention relates to a technique for improving a parallel shaft transmission mechanism used in a power tool.
  • An electric tool provided with a parallel shaft transmission mechanism is disclosed in, for example, Japanese Patent Publication No. 01-58031.
  • the parallel-shaft transmission mechanism described in the above publication is mounted on the drive shaft so that the first and second drive gears having different numbers of teeth are movable on the driven shaft parallel to the drive shaft so as to be movable in the long axis direction.
  • First and second driven gears having different numbers of teeth, and the first and second driven gears are slid along the driven shaft for meshing engagement with the first and second drive gears.
  • the rotational speed of the motor is shifted to two stages, high speed and low speed, and transmitted to the tip tool.
  • This invention is made in view of this point, and it aims at providing the technique which contributes to the improvement of the smoothness of a speed change operation
  • a preferred embodiment of a power tool according to the present invention has a power source and a speed change mechanism, and has a configuration in which a tip tool driven from the power source through the speed change mechanism performs a predetermined machining operation. It is said.
  • the “power tool” in the present invention is a woodworking or metalworking circular saw or electric cutter for cutting a workpiece with a rotating saw blade, and grinding or grinding the workpiece with a rotating sanding disk.
  • Various power tools such as a sander to perform, a diamond core drill used for drilling relatively large diameters, and a hedge trimmer that reciprocates the two upper and lower blades linearly in opposite directions to perform hedge cutting work, etc. Widely encompass.
  • the speed change mechanism includes first and second rotating shafts arranged in parallel to each other, and a drive gear and a driven gear which are engaged with each other and transmit torque of the first rotating shaft to the second rotating shaft.
  • the first and second gear trains have a combination of one unit and different gear ratios.
  • a torque transmission path via the first gear train is defined as the first power transmission path
  • a torque transmission path via the second gear train is defined as the second power transmission path.
  • a first clutch that performs power transmission and power cutoff on the first power transmission path and a second clutch that performs power transmission and power cutoff on the second power transmission path are further provided.
  • the first and second gear trains remain engaged with each other by switching between the power transmission state and the power cut-off state of the first and second clutches according to the load applied to the tip tool.
  • the transmission path is switched between the first power transmission path and the second power transmission path.
  • the “power source” in the present invention typically corresponds to an electric motor, but preferably includes a prime mover such as an air motor or an engine other than the electric motor.
  • the transmission path is switched between the first power transmission path and the second power transmission path in the meshing engagement state of the first and second gear trains” means that they are meshed with each other.
  • a mode in which the transmission path is switched between the first power transmission path and the second power transmission path with the position of the gear to be engaged fixed, that is, one clutch is switched to the power transmission state. This is the case in which when the other clutch is switched, the other clutch is switched to the power cut-off state, and when the other clutch is switched to the power cut-off state, the other clutch is switched to the power transmission state.
  • one of the first and second power transmission paths in the present invention is set as a power transmission path for high speed and low torque, and the other is set as a power transmission path for low speed and high torque. Is done.
  • the transmission path can be switched between the first power transmission path and the second power transmission path while the position of the gear train to be engaged and engaged is fixed, the speed change operation is smoothly performed. Therefore, the smoothness of the shifting operation can be improved.
  • the gear is slid by switching the gear meshing by sliding the gear along the shaft as in the conventional transmission mechanism, there is rattling due to the clearance between the shaft and the gear fitting surface. Wear tends to occur and there is a problem with the durability of the gear.
  • the gear ratio (reduction ratio) of the first gear train that is a component of the first power transmission path in the present invention and the gear ratio of the second gear train that is a component of the second power transmission path are as follows. Are set to be different from each other.
  • the gear ratio is small, for example, processing is performed at high speed and low torque using the first power transmission path, and when the load is large, the gear ratio is large.
  • the machining operation can be performed at a low speed and a high torque using the second power transmission path.
  • either one of the 1st and 2nd clutch is comprised by the sliding meshing clutch switched between a power transmission state and a power interruption state, and the other is
  • the one-way clutch is configured to transmit only rotation in one direction, and the one-way clutch is configured to transmit power when the sliding engagement clutch is switched to the power cut-off state.
  • the power transmission path can be switched by the combination of the sliding mesh clutch and the one-way clutch. Switching of the transmission path between the first power transmission path and the second power transmission path, that is, shifting is realized, and a rational transmission mechanism can be constructed.
  • the 1st rotating shaft is defined as a front
  • the 2nd rotating shaft is defined as an output shaft
  • the type meshing clutch is provided on the front shaft.
  • the load acting on the sliding engagement clutch can be reduced by providing the sliding engagement clutch on the front shaft rotating at a higher speed and lower torque than the output shaft. This is effective in improving the protection or durability of the clutch.
  • the front shaft is disposed inside the output shaft which is the final shaft.
  • the 1st rotating shaft is defined as a front
  • the 2nd rotating shaft is defined as an output shaft
  • the one-way clutch is generally configured between a shaft and a gear, and the gear on the output shaft on the deceleration side is set to have a larger diameter than the gear on the front shaft. Therefore, by providing the one-way clutch on the output shaft, it is easy to secure the arrangement space for the one-way clutch, and a design advantage can be obtained.
  • a power tool main body that houses the power source and the speed change mechanism, a base that is disposed below the power tool main body and can be placed on the workpiece,
  • the tip tool is configured as a saw blade that cuts the workpiece by being rotationally driven by a power source via a speed change mechanism.
  • FIG. 1 is a side view showing the overall configuration of the circular saw 101 according to the present embodiment
  • FIG. 2 is a side sectional view showing the overall configuration of the circular saw 101
  • FIG. 3 shows the overall configuration of the circular saw 101. It is sectional drawing seen from the front.
  • the circular saw 101 according to the present embodiment is generally a base that is placed on a workpiece (not shown for convenience) and moved in the cutting direction. 111 and a circular saw main body 103 disposed above the base 111.
  • the circular saw body 103 corresponds to the “power tool body” in the present invention.
  • the circular saw body 103 accommodates a blade case 104 that covers substantially the upper half of a disk-shaped blade (saw blade) 113 that rotates in a vertical plane, a motor housing 105 that houses a drive motor 115, and a speed change mechanism 117.
  • the gear housing 107 and the handgrip 109 that the operator grips and operates the circular saw 101 are mainly configured.
  • the blade 113 corresponds to the “tip tool” in the present invention
  • the drive motor 115 corresponds to the “power source” in the present invention.
  • a safety cover 106 covering the lower half of the blade 113 is rotatably attached to the blade case 104.
  • the lower edge portion of the blade 113 including the safety cover 106 protrudes to the lower surface side through an opening 111a (see FIG. 3) formed in the base 111.
  • the handgrip 109 is connected to the upper side of the gear housing 107 and includes a trigger switch 109a that energizes and drives the drive motor 115 by pulling.
  • the blade 113 is rotationally driven via the speed change mechanism 117 when the drive motor 115 is energized.
  • a battery 108 is detachably attached to the end of the hand grip 109.
  • the drive motor 115 according to the present embodiment is a motor with a brake, and a rare earth motor is used. Moreover, as the battery 108, it is preferable to use a lithium ion battery of 42 volts or less.
  • the speed change mechanism 117 includes an input shaft 121 coaxially connected to the motor shaft 116 of the drive motor 115, a blade mounting shaft 125 as an output shaft to which the blade 113 is mounted, and the input shaft 121 and the blade mounting shaft.
  • the intermediate shafts 123 arranged between the two are parallel triaxial types arranged parallel to each other, and the power transmission path is automatically changed from high speed low torque to low speed high according to the load acting on the blade 113. It is configured as a two-stage switching type that switches to torque.
  • the intermediate shaft 123 corresponds to the “first rotating shaft” and “front shaft” in the present invention
  • the blade mounting shaft 125 corresponds to the “second rotating shaft” and “output shaft” in the present invention.
  • 4 and 5 are developed cross-sectional views of the parallel triaxial transmission mechanism 117.
  • FIG. 4 shows a state where the power transmission path is switched to the high speed and low torque side
  • FIG. 5 shows that the power transmission path is the low speed and high torque. The state switched to the side is shown.
  • the blade mounting shaft 125 is referred to as an output shaft.
  • the transmission mechanism 117 has a first power transmission path in which the torque of the input shaft 121 is transmitted from the pinion gear 131 to the output shaft 125 via the first intermediate gear 132, the intermediate shaft 123, the second intermediate gear 133, and the first driven gear 134.
  • the gear ratio (reduction ratio) between the second intermediate gear 133 and the first driven gear 134 is set smaller than the gear ratio (reduction ratio) between the third intermediate gear 135 and the second driven gear 136.
  • the first power transmission path P1 is defined as a high-speed and low-torque power transmission path
  • the second power transmission path P2 is defined as a low-speed and high-torque power transmission path.
  • the first power transmission path P1 and the second power transmission path P2 are indicated by thick lines with arrows.
  • the second intermediate gear 133 and the first driven gear 134 constitute the “first gear train” in the present invention
  • the third intermediate gear 135 and the second driven gear 136 constitute the “second gear train” in the present invention. Is configured.
  • the input shaft 121, the intermediate shaft 123, and the output shaft 125 in the speed change mechanism 117 are rotatably supported by the gear housing 107 through bearings 121a, 123a, and 125a, respectively.
  • a pinion gear 131 as a drive gear is formed integrally with the input shaft 121.
  • the first intermediate gear 132 and the third intermediate gear 135 are arranged in parallel on one end side of the intermediate shaft 123 (on the drive motor 115 side and on the left side in the drawing), and the intermediate shaft 123 via a common key 137.
  • the first intermediate gear 132 is always meshed and engaged with the pinion gear 131, and the third intermediate gear 135 is always meshed with the second driven gear 136 provided on one end side of the output shaft 125.
  • the second intermediate gear 133 is attached to the other end side of the output shaft 125 (on the blade 113 side, the right side in the figure) via a bearing 138 and is disposed on the other end side of the output shaft 125.
  • the first driven gear 134 integrated with the output shaft 125 is always meshed and engaged via the key 139.
  • the output shaft 125 At the initial stage of the cutting operation with a small load acting on the blade 113 during the cutting operation of the workpiece by the blade 113, the output shaft 125, i.
  • the load applied to the blade 113 reaches a certain value or more as the cutting operation progresses, it is automatically switched to the second power transmission path P2 of low speed and high torque.
  • Such switching from the first power transmission path P1 to the second power transmission path P2 is realized by providing a sliding engagement clutch 141 on the intermediate shaft 123 and a one-way clutch 145 on the output shaft 125.
  • the sliding engagement clutch 141 and the one-way clutch 145 correspond to “first and second clutches” in the present invention.
  • FIGS. 6 to 10 The configuration of the sliding engagement clutch 141 is shown in FIGS. 6 to 10 in addition to FIGS. 6 is an external view of the sliding engagement clutch 141, and FIG. 7 is a cross-sectional view taken along line AA of FIG. 8 shows the drive side clutch member 142, FIG. 9 shows the driven side clutch member 143, and FIG. 10 shows the torque ring 152.
  • the sliding engagement clutch 141 includes a driving side clutch member 142 and a driven side clutch member 143 that are arranged opposite to each other in the major axis direction of the intermediate shaft 123, and a driving side clutch member 142.
  • the main component is a clutch spring 144 that presses and urges the driven clutch member 143 toward the driven clutch member 143.
  • each of the driving side clutch member 142 and the driven side clutch member 143 has a plurality of (for example, three) substantially trapezoidal chevron-shaped cams 142a and 143a on the side surfaces facing each other.
  • the angle cams 142a and 143a mesh with each other to transmit torque (see FIGS. 4 and 6), and the meshing engagement is released to stop torque transmission (FIG. 5). reference).
  • the drive side clutch member 142 is fitted to the intermediate shaft 123 in a loose fit. That is, it is slidably attached to the intermediate shaft 123 in the circumferential direction and the long axis direction, and is rotationally driven via a torque ring 152 as a torque transmission member press-fitted and fixed to the intermediate shaft 123.
  • the torque ring 152 includes a plurality of (three) projecting portions 152 a that project in the outer diameter direction at circumferentially equal positions.
  • a housing space 153 having a shape substantially corresponding to the outer shape of the torque ring 152 is formed on the side surface of the drive-side clutch member 142 where the chevron cam 142 a is formed.
  • the torque ring 152 is formed in the housing space 153. It is housed so that it cannot move in the circumferential direction. Therefore, when the torque ring 152 is rotated together with the intermediate shaft 123, the driving side clutch member 142 is in the radial direction of the engagement recess 153a (see FIG. 8) that engages with the protrusion 152a of the torque ring 152 in the accommodation space 153.
  • the wall surface, that is, the torque transmission surface 153b is pressed in the circumferential direction to rotate integrally.
  • the driven clutch member 143 is integrated with the second intermediate gear 133.
  • the drive-side clutch member 142 is in a position where the mountain cam 142a is engaged with and engaged with the mountain cam 143a of the driven clutch member 143 by a clutch spring 144 formed of a compression coil spring as an elastic member, that is, power transmission. Energized to position.
  • the clutch spring 144 is arranged in a resilient manner between the drive side clutch member 142 and the first intermediate gear 132.
  • FIG. 11A shows a state in which the sliding mesh clutch 141 changes from the power transmission state to the power cutoff state.
  • the sliding engagement clutch 141 When the sliding engagement clutch 141 is switched to the power cut-off state, the one-way clutch 145 is operated, and the power transmission path is changed from the first power transmission path P1 having high speed and low torque to the second power transmission path P2 having low speed and high torque. And can be switched.
  • the configuration of the one-way clutch 145 is shown in FIGS. 15 and 16.
  • 15 is a side view showing each member provided on the output shaft 125
  • FIG. 16 is a cross-sectional view taken along the line CC in FIG.
  • the one-way clutch 145 mainly includes an outer ring 146 that rotates together with the second driven gear 136, and a plurality of needle rollers 147 and a spring 148 that are interposed between the outer ring 146 and the output shaft 125.
  • the needle rollers 147 are rotatably disposed in cam grooves 146a formed at a predetermined interval in the circumferential direction of the outer ring 146, and are urged toward the meshing position of the cam surface 146b by a spring 148.
  • the speed change mechanism 117 configured as described above, when the drive motor 115 is stopped, the sliding mesh clutch 141 is moved closer to the driven clutch member 143 by the urging force of the clutch spring 144. It has been moved to the side. In other words, the angle cams 142a and 143a of both clutch members 142 and 143 are held in a power transmission state in which the clutches 142a and 143a mesh with each other. In this state, when the drive motor 115 is energized to cut the workpiece, the torque of the drive motor 115 is transmitted to the output shaft 125 via the first power transmission path P1.
  • the blade 113 is driven to rotate at high speed and low torque through the pinion gear 131, the first intermediate gear 132, the intermediate shaft 123, the sliding mesh clutch 141, the second intermediate gear 133, the first driven gear 134, and the output shaft 125.
  • the outer ring 146 of the one-way clutch 145 is also rotated from the intermediate shaft 123 via the third intermediate gear 135 and the second driven gear 136.
  • the rotational speed of the output shaft 125 is higher than the rotational speed of the outer ring 146. Is high speed, the outer ring 146 rotates idly.
  • the work for cutting the workpiece by the blade 113 starts at a high speed and a low torque using the first power transmission path P1.
  • the sliding mesh clutch 141 is switched to the power cut-off state. Change. That is, as shown in FIG. 11A, the drive-side clutch member 142 has a long-axis direction component acting on the drive-side clutch member 142 via the cam surfaces (slopes) of the angle cams 142a and 143a. The clutch is separated from the driven clutch member 143 against the urging force, and the meshing engagement of the angle cams 142a and 143a is released.
  • the workpiece when the load acting on the blade 113 is small, the workpiece is cut at high speed and low torque using the first power transmission path P1 having a small reduction ratio.
  • the cutting operation can be performed at low speed and high torque using the second power transmission path P2 having a large gear ratio.
  • the torque transmission path is automatically switched from the high-speed and low-torque first power transmission path P1 to the low-speed and high-torque second power transmission path P2 according to the load acting on the blade 113.
  • the drive motor 115 can be prevented from burning and the amount of cutting work per charge of the battery 108 can be improved.
  • the second power is transmitted from the first power transmission path P1 in a state where the meshing engagement of each gear in the gear train constituting the transmission mechanism 117 is maintained, that is, the position of each gear is fixed. Since the transmission path P2 can be switched, the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123 and the one-way clutch 145 is provided on the output shaft 125, the operation of the sliding engagement clutch 141 is controlled. Only by this, switching of the use transmission path from the first power transmission path P1 to the second power transmission path P2 is realized, and a rational speed change mechanism 117 can be constructed.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123 that rotates at a higher speed and lower torque than the output shaft 125, the load acting on the sliding engagement clutch 141 can be reduced. This is effective in improving the protection or durability of the clutch.
  • the intermediate shaft 123 is disposed closer to the center of the gear housing 107 when viewed from the arrangement of the shafts with respect to the gear housing 107. For this reason, it is possible to suppress an increase in the size of the gear housing 107 by disposing the sliding engagement clutch 141 that is larger in the radial direction than the one-way clutch 145 on the intermediate shaft 123.
  • the maximum cutting depth of the circular saw 101 (the amount of protrusion of the lower edge portion of the blade 111 from the lower surface of the base 111) is determined by the operator pressing the handgrip 109 downward in FIG.
  • the maximum cutting depth provided in the gear housing 107 is omitted for the sake of convenience. Is regulated by abutting against the stopper of the base 111. Therefore, for example, when the sliding engagement clutch 141 having a large outer diameter is provided on the output shaft 125, the distance from the center of the output shaft 125 to the lower end surface 107L of the gear housing 107 increases, which affects the maximum cutting ability. To do.
  • the sliding engagement clutch 141 is provided on the intermediate shaft 123, the output shaft 125 to the lower end surface 107L of the gear housing 107 are provided. Since the distance can be set small, the maximum cutting ability is not affected.
  • the one-way clutch 145 is provided on the output shaft 125.
  • the second driven gear 136 on the output shaft 125 on the deceleration side is set to have a larger diameter than the third intermediate gear 135 on the intermediate shaft 123. Therefore, by providing the one-way clutch 145 between the output shaft 125 and the second driven gear 136, it is easy to secure an arrangement space for the one-way clutch 145, and the one-way clutch 145 can be easily incorporated. .
  • the speed change mechanism 117 includes a latch mechanism that holds the switched engagement clutch 141 after the sliding engagement clutch 141 is once switched to the power cut-off state, and a disconnection mechanism. After the work is stopped (when the drive motor 115 is stopped), a reset mechanism for returning to the initial state, that is, the power transmission state is provided.
  • the latch mechanism 151 When the drive side clutch member 142 in the sliding engagement clutch 141 moves to the power cut-off position, the latch mechanism 151 moves the drive-side clutch member 142 to the power cut-off position, more specifically, the angle cam 142a of the drive-side clutch member 142. Is provided as a mechanism for holding the driven side clutch member 143 at a position separated from the angle cam 143a (position facing the gap).
  • the latch mechanism 151 is composed mainly of the torque ring 152 described above.
  • the forward direction of the engaging recess 153a with which the protrusion 152a of the torque ring 152 engages is upwardly inclined.
  • a slope 153c is formed which is inclined at.
  • 11B shows the operation of the torque ring 152 as a latch member.
  • the surface of the protrusion 152a facing the inclined surface 153c is formed as an inclined surface or an arcuate curved surface.
  • the protrusion 152a of the torque ring 152 is engaged with the engagement recess as described above. It is engaged with the torque transmission surface 153b of 153a and held in a torque transmission state.
  • the torque ring 152 moves relative to the drive side clutch member 142 in the circumferential direction, and the protrusion 152a of the torque ring 152 rides on the end of the inclined surface 153c (see the second step from the top in FIG. 11).
  • the drive-side clutch member 142 is pushed in the major axis direction by the riding-up operation of the protrusion 152a. That is, a force is applied to the driving side clutch member 142 in a direction (long axis direction) in which the angle cam 142a is separated from the angle cam 143a of the driven clutch member 143, thereby assisting the separation of the angle cams 142a, 143a. .
  • the protrusion 152a that rides on the slope 153c is engaged with a stopper surface 153d that stands upright in front of the slope 153c, and then the torque ring 152 and the drive-side clutch member 142 rotate together.
  • This state is shown in the lowermost part of FIG. That is, when the driving side clutch member 142 is switched from the power transmission state to the power cutoff state, the torque ring 152 is a power that causes the angle cam 142a of the driving side clutch member 142 to be separated from the angle cam 143a of the driven side clutch member 143.
  • the position is moved further backward than the blocking position, that is, moved to an isolation position where a predetermined gap in the major axis direction is ensured between the angle cams 142a and 143a and held at the isolation position.
  • the torque ring 152 is returned (reset) to the initial position, and thereby, the holding of the power cut-off state of the sliding engagement clutch 141 is automatically released. That is, a reset mechanism using the brake of the drive motor 115 and the inertia of the drive side clutch member 142 is configured.
  • the drive-side clutch member 142 is moved to the power transmission position by the urging force of the clutch spring 144 to prepare for the next cutting operation.
  • the speed change mechanism 117 when the drive motor 115 is activated, if the mass of the blade 113 is large and the inertia is large, the sliding engagement clutch 141 malfunctions, that is, the power transmission state is changed to the power cutoff state. There is a possibility of shifting to.
  • the speed change mechanism 117 according to the present embodiment includes a speed change restriction mechanism 161 that restricts the speed change at the time of activation.
  • FIGS. 12 is a cross-sectional view taken along line BB in FIG. 6,
  • FIG. 13 is a perspective view of the driving side clutch member 142 viewed from the clutch spring mounting side, and
  • FIG. 14 is a perspective view of the stopper 162.
  • the shift restriction mechanism 161 according to the present embodiment is mainly configured by a plurality of (for example, three) stoppers 162 radially arranged on the drive side clutch member 142 and a compression coil spring 163 as an elastic member.
  • Each stopper 162 and compression coil spring 163 are housed in a stopper housing recess 164 formed at a circumferentially equal position on the side of the clutch spring mounting surface side (opposite to the angle cam 142a) of the drive side clutch member 142, and in the radial direction. It can be moved.
  • Each stopper 162 has a distal end on the inner diameter side opposed to the outer peripheral surface of the intermediate shaft 123 and is pressed and urged toward the intermediate shaft 123 by a compression coil spring 163.
  • a circumferential annular groove 165 is formed in a region facing the stopper 162.
  • each stopper 162 When the driving side clutch member 142 is placed at the power transmission position, the distal end portion in the radial direction of each stopper 162 enters the annular groove 165 on the outer periphery of the intermediate shaft 123 from the radial direction and is engaged in a resilient manner. Accordingly, the driving side clutch member 142 is held at the power transmission position. This state is shown in FIGS.
  • a cover member 167 that covers the stopper 162 and the compression coil spring 163 housed in the stopper housing recess 164 is attached to the side surface of the drive side clutch member 142. Also, it functions as a spring receiving member that supports one end of the clutch spring 144.
  • the shift restriction mechanism 161 is configured as described above.
  • the sliding engagement clutch 141 is in a power transmission state.
  • the stopper 162 is engaged with the annular groove 165 of the intermediate shaft 123.
  • the drive motor 115 is started, the movement of the drive side clutch member 142 in the long axis direction is restricted by the stopper 162 that engages with the annular groove 165 of the intermediate shaft 123, and the drive side clutch member 142.
  • the malfunctioning of the sliding mesh clutch 141 at the time of starting the motor can be prevented.
  • the stopper 162 is moved outward against the urging force of the compression coil spring 163 by the centrifugal force acting on the stopper 162 rotating together with the drive side clutch member 142. It moves and escapes from the annular groove 165 (see FIG. 5). As a result, the movement restriction by the stopper 162 of the drive side clutch member 142 is released, and switching from the power transmission state to the power cut-off state according to the load applied to the blade 113 of the drive side clutch member 142 is allowed.
  • the speed change restriction mechanism 161 in the circular saw 101 having a large inertia of the blade 113, a malfunction occurs in which the speed change mechanism 117 shifts due to the inertia of the blade 113 when the drive motor 115 is started.
  • the advantage of the speed change mechanism 117 can be fully utilized.
  • a speed regulation mechanism 161 is not limited to the circular saw 101, and the mass of the tip tool is large, such as a grinder used for polishing and grinding work and a diamond core drill used for drilling a relatively large diameter. This is particularly effective for power tools.
  • FIG. 17 shows a state where the torque limiter 154 is assembled to the output shaft 125.
  • the output shaft 125 is divided into two in the major axis direction into a base side shaft portion 125A to which the first and second driven gears 134 and 136 are attached and a tip side shaft portion 125B to which the blade 113 is attached. They are connected by a torque limiter 154 interposed in the divided part.
  • the base-side shaft portion 125A and the distal-end-side shaft portion 125B of the output shaft 125 are arranged coaxially via a circular protrusion and a circular recess that are fitted in a loosely fitting manner, and have flanges 125Aa and 125Ba facing each other. I have.
  • the torque limiter 154 applies a biasing force in a direction in which the friction plate 155 sandwiched between the flange portion 125Aa of the base side shaft portion 125A and the flange portion 125Ba of the distal end side shaft portion 125B and the both flange portions 125Aa and 125Ba are pressed against each other.
  • a maximum transmission torque is determined by the plate spring 156.
  • FIGS. 18 and 19 are developed sectional views showing the structure of the speed change mechanism 117.
  • FIG. 18 and 19 are developed sectional views showing the structure of the speed change mechanism 117.
  • the sliding engagement clutch 141 is mounted on the output shaft 125.
  • the second intermediate gear 133 arranged on the intermediate shaft 123 is fixed to the intermediate shaft 123 by the key 139, and the first intermediate gear 133 is always engaged with and engaged with the second intermediate gear 133.
  • the driven gear 134 is rotatably supported on the output shaft 125 via a bearing 138.
  • the sliding engagement clutch 141 is composed mainly of the driving side clutch member 142, the driven side clutch member 143, and the clutch spring 144 as in the case of the first embodiment described above. The power transmission direction is reversed from the case of the first embodiment configured to be disposed on the intermediate shaft 123.
  • the clutch member 143 that rotates together with the first driven gear 134 is the driving side
  • the clutch member 142 that rotates together with the output shaft 125 via the torque ring 152 is the driven side.
  • the clutch spring 144 is interposed between the driven-side clutch member 142 and the second driven gear 136 to which the one-way clutch 145 is assembled, and biases the driven-side clutch member 142 in the direction in which the driven-side clutch member 142 approaches the driving-side clutch member 143. is doing.
  • the torque of the drive motor 115 is such that the pinion gear 131 of the input shaft 121, the first intermediate gear 132, the intermediate shaft 123, the second intermediate gear 133, the first driven gear 134, the sliding gear.
  • the power is transmitted to the blade 113 via the first power transmission path P1 constituted by the dynamic meshing clutch 141 and the output shaft 125, and the blade 113 is driven to rotate at high speed and low torque. This state is shown in FIG.
  • the driven clutch member 142 When a load exceeding the switching set value determined by the clutch spring 144 is applied to the blade 113, the driven clutch member 142 is moved from the power transmission position to the power cutoff position against the clutch spring 144. As a result, the angle cam 142a of the driven clutch member 142 is separated from the angle cam 143a of the drive side clutch member 143, and the meshing engagement is released. Then, the torque of the drive motor 115 is constituted by the pinion gear 131, the first intermediate gear 132, the intermediate shaft 123, the third intermediate gear 135, the second driven gear 136, the one-way clutch 145, and the output shaft 125 of the input shaft 121. The power is transmitted to the blade 113 via the second power transmission path P2, and the blade 113 is driven to rotate at low speed and high torque. This state is shown in FIG.
  • the state where the meshing engagement of each gear in the gear train constituting the transmission mechanism 117 is maintained that is, the position of each gear is fixed.
  • the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
  • the transmission mechanism 117 has been described in the case of the three-axis parallel type, the transmission mechanism 117 is also applicable to a two-axis type constituted by two parallel axes of an input shaft and an output shaft.
  • the one-way clutch 145 is also provided on the intermediate shaft 123 side.
  • this Embodiment demonstrated in the case of the rechargeable circular saw 101 as an example of a power tool it is not restricted to this.
  • power tools other than cutting tools such as sanding disks and grinders that grind or grind workpieces with a rotating sanding disk or grindstone, or drivers and wrench used for tightening operations, or various drills that perform drilling operations
  • various power tools such as a hedge trimmer that reciprocally moves the upper and lower two blades in a straight line in opposite directions to perform hedge cutting work and the like can be widely applied.
  • the load applied to the tip tool is different due to a difference in the size of the tip tool used for work or a difference in the work material. It is valid.
  • the latch mechanism 151 that holds the switched state is provided.
  • the latch mechanism 151 is not provided. You may change to
  • FIG. 4 is a developed cross-sectional view of a parallel three-axis transmission mechanism, showing a state where the power transmission path is switched to the high speed and low torque side.
  • FIG. 4 is a developed cross-sectional view of a parallel three-axis transmission mechanism, showing a state where the power transmission path is switched to the low speed and high torque side. It is an external view of a sliding mesh clutch.
  • FIG. 7 is a sectional view taken along line AA in FIG. 6.
  • FIG. 7 is a sectional view taken along line BB in FIG. 6. It is the perspective view which looked at the drive side clutch member from the clutch spring mounting side. It is a perspective view which shows a stopper. It is a side view which shows each member provided in the output shaft.
  • FIG. 7 is a developed cross-sectional view showing a parallel triaxial transmission mechanism according to a second embodiment of the present invention, showing a state where a power transmission path is switched to a high speed and low torque side.
  • FIG. 6 is a developed cross-sectional view showing a parallel triaxial transmission mechanism, showing a state where the power transmission path is switched to the low speed and high torque side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sawing (AREA)
  • Drilling And Boring (AREA)
  • Portable Power Tools In General (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Structure Of Transmissions (AREA)

Abstract

動力源(115)と、変速機構(117)と先端工具(113)を有する動力工具において、変速機構(117)は、互いに平行に配置された第1及び第2の回転軸(123,125)と、第1のギア列及び第1のクラッチ(141)を備えた第1の動力伝達経路(P1)と、第2のギア列及び第2のクラッチ(145)を備えた第2の動力伝達経路(P2)と、を有する。先端工具(113)に加わる負荷に応じた、第1及び第2のクラッチ(141,145)の動力伝達状態と動力遮断状態の間での切替わりによって第1及び第2のギア列の噛合い係合状態のままで第1の動力伝達経路(P1)と第2の動力伝達経路(P2)間で伝達経路の切替えがなされる構成とした。

Description

動力工具
 本発明は、動力工具に用いられる平行軸式変速機構の改良技術に関する。
 平行軸式変速機構を備えた電動工具が、例えば、特公平01-58031号公報に開示されている。上記公報に記載の平行軸式変速機構は、駆動軸上に固定した互いに歯数の異なる第1及び第2の駆動ギアと、駆動軸と平行な被動軸上に長軸方向に移動可能に取付けられた互いに歯数の異なる第1及び第2の被動ギアとを備え、第1及び第2の被動ギアを被動軸上に沿ってスライドさせて第1及び第2の駆動ギアに対する噛み合い係合を切替えることによってモータの回転速度を高速と低速の2段に変速して先端工具に伝達する構成である。
 従来の平行軸式変速機構によれば、駆動ギアに対する被動ギアの相対位置を変えて変速する際、駆動ギアと被動ギアの噛み合い係合が円滑に行なわれ難いものであり、変速動作の円滑性という点で、なお改良の余地がある。
 本発明は、かかる点に鑑みてなされたものであり、平行軸式の変速機構を備えた動力工具において、変速動作の円滑性の向上に資する技術を提供することを目的とする。
 上記課題を達成するため、本発明に係る動力工具の好ましい形態は、動力源と、変速機構を有し、動力源から変速機構を介して駆動される先端工具に所定の加工作業を遂行させる構成とされる。本発明における「動力工具」は、回転運動する鋸刃によって被加工材の切断作業を行なう木工用あるいは金工用の丸鋸や電動カッター、回転運動するサンディングディスクによって被加工材に研磨あるいは研削作業を行なうサンダー、比較的大径の穴明け作業に用いられるダイヤコアドリル、上下2枚のブレードを互いに逆方向に直線状に往復移動させ、生垣の刈り込み作業等を遂行するヘッジトリマ等、各種の動力工具を広く包含する。
 本発明に係る動力工具の好ましい形態によれば、変速機構を有する。変速機構は、互いに平行に配置された第1及び第2の回転軸と、互いに噛合い係合されるとともに第1の回転軸のトルクを第2の回転軸に伝達する駆動ギアと被動ギアの組み合わせを1単位とし、かつ互いにギア比が異なる第1及び第2のギア列を有する。そして、第1のギア列を経由するトルクの伝達経路が第1の動力伝達経路として定められ、第2のギア列を経由するトルクの伝達経路が第2の動力伝達経路として定められている。また、第1の動力伝達経路上において動力伝達と動力遮断を行う第1のクラッチ、及び第2の動力伝達経路上において動力伝達と動力遮断を行う第2のクラッチを更に有する。そして、先端工具に加わる負荷に応じた、第1及び第2のクラッチの動力伝達状態と動力遮断状態の間での切替わりによって第1及び第2のギア列の噛合い係合状態のままで第1の動力伝達経路と第2の動力伝達経路間で伝達経路の切替えがなされる構成とした。
 なお、本発明における「動力源」としては、典型的には、電動モータがこれに該当するが、電動モータ以外のエアーモータ、エンジン等の原動機を好適に包含する。また、本発明における「第1及び第2のギア列の噛み合い係合状態のままで第1の動力伝達経路と第2の動力伝達経路間で伝達経路の切替えがなされる」とは、互いに噛み合い係合するギアの位置を固定したままの状態で、第1の動力伝達経路と第2の動力伝達経路間での伝達経路の切替わりが行なわれる態様、すなわち一方のクラッチが動力伝達状態に切替わったときに、他方のクラッチが動力遮断状態に切替わり、また一方のクラッチが動力遮断状態に切替わったときに、他方のクラッチが動力伝達状態に切替わる態様がこれに該当する。また、本発明における第1及び第2の動力伝達経路は、典型的には、そのいずれか一方が高速低トルク用の動力伝達経路として設定され、他方が低速高トルク用の動力伝達経路として設定される。
 本発明によれば、噛み合い係合するギア列の位置を固定したままで、第1の動力伝達経路と第2の動力伝達経路間で伝達経路を切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。
 特に、従来の変速機構のように、ギアを軸に沿ってスライドさせてギアの噛み合いを切替えることで変速する構成の場合であれば、軸とギアの嵌合面のクリアランスによるがたつきがあり、摩耗を生じ易く、ギアの耐久性に問題がある。また、ギアの噛み合いを切替える際、ギアが切り離される間際、及びギアが噛み合う初期に、歯面の微小な領域でトルクを受けることから、歯の欠けあるいは摩耗といった強度上の問題が生ずることになり、更には、噛み合うときには、歯の干渉によって異音が発生するといった問題もある。しかしながら、本発明によれば、ギアを常時噛み合い式とすることで、ギアの噛み合いを切替える従来方式に見受けられる上記の各問題を解決することができる。
 また、本発明における第1の動力伝達経路の構成要素である第1のギア列のギア比(減速比)と、第2の動力伝達経路の構成要素である第2のギア列のギア比は、互いに異なるように設定される。このため、例えば先端工具に作用する負荷が小さい状態では、ギア比の小さい、例えば第1の動力伝達経路を用いて高速低トルクで加工作業を行い、負荷が大きい状態では、ギア比の大きい、第2の動力伝達経路を用いて低速高トルクで加工作業を行なうことができる。
 本発明に係る動力工具の更なる形態によれば、第1及び第2のクラッチのいずれか一方は、動力伝達状態と動力遮断状態の間で切替えられる摺動式噛み合いクラッチによって構成され、他方が一方向への回転のみを伝達可能なワンウェイクラッチによって構成されており、当該ワンウェイクラッチは、摺動式噛み合いクラッチが動力遮断状態に切替わったときに動力を伝達するように構成されている。
 本発明によれば、摺動式噛み合いクラッチとワンウェイクラッチとの組み合わせにより動力伝達経路の切替えを可能としたので、摺動式噛み合いクラッチが動力伝達状態と動力遮断状態の間で切替わることで第1の動力伝達経路と第2の動力伝達経路間での伝達経路の切替え、すなわち変速が実現されることになり、合理的な変速機構を構築することができる。
 本発明に係る動力工具の更なる形態によれば、第1の回転軸が出力軸の前段に配置された前段軸として定められ、第2の回転軸が出力軸として定められており、摺動式噛み合いクラッチは、前段軸上に設けられている。このように、本発明によれば、摺動式噛み合いクラッチを出力軸よりも高速低トルクで回転する前段軸上に設けたことにより、摺動式噛み合いクラッチに作用する負荷を小さくできる。このため、クラッチの保護あるいは耐久性を向上する上で有効となる。また、ギアハウジングに対する軸の配置から見て、一般に前段軸は最終軸である出力軸よりも内側に配置される。従って、ワンウェイクラッチに比べて径方向に大型の摺動式噛み合いクラッチを前段軸に配置することで、ギアハウジングの大型化を抑えることが可能になる。このことは、動力工具が、例えば丸鋸の場合であれば、出力軸(最終軸)からギアハウジングの下端面までの距離を小さく設定することが可能となり、最大切り込み能力に影響しない。
 本発明に係る動力工具の更なる形態によれば、第1の回転軸が出力軸の前段に配置された前段軸として定められ、第2の回転軸が出力軸として定められており、ワンウェイクラッチは、出力軸上に設けられている。ワンウェイクラッチは、一般に軸とギアとの間に配置される構成であり、そして減速側である出力軸上のギアが前段軸上のギアよりも大径に設定される。このことから、ワンウェイクラッチを出力軸上に設ける構成とすることで、ワンウェイクラッチの配置スペースが確保し易く、設計上の有利さが得られる。
 本発明に係る動力工具の更なる形態によれば、動力源及び変速機構を収容する動力工具本体と、動力工具本体の下方に配置されるとともに、被加工材上に載置可能なベースと、を有する。そして先端工具は、動力源により変速機構を介して回転駆動されることで被加工材を切断する鋸刃として構成されている。本発明によれば、変速動作の円滑性の高い平行軸式の変速機構を備えた切断工具(丸鋸)を提供することができる。
 以上のように、本発明によれば、平行軸式の自動変速機構を備えた動力工具において、変速動作の円滑性の向上に資する技術が提供されることとなった。
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態につき、図面を参照しつつ説明する。本実施の形態は、動力工具の一例としてバッテリを搭載した充電式の丸鋸を用いて説明する。図1は本実施の形態に係る丸鋸101の全体構成を示す側面図であり、図2は丸鋸101の全体構成を示す側断面図であり、図3は丸鋸101の全体構成を示す正面から見た断面図である。図1~図3に示すように、本実施の形態に係る丸鋸101は、概括的に見て、被加工材(便宜上図示を省略する)上に載置されて切断方向に移動されるベース111と、当該ベース111の上方に配置される丸鋸本体部103を主体として構成される。丸鋸本体部103は本発明における「動力工具本体」に対応する。
 丸鋸本体部103は、鉛直面内で回転される円板状のブレード(鋸刃)113の概ね上半分を覆蓋するブレードケース104、駆動モータ115を収容するモータハウジング105、変速機構117を収容するギアハウジング107、及び作業者が把持して丸鋸101を操作するハンドグリップ109を主体として構成される。ブレード113は、本発明における「先端工具」に対応し、駆動モータ115は、本発明における「動力源」に対応する。
 ブレードケース104には、ブレード113の下半分を覆うセーフティカバー106が回動自在に付設されている。そして当該セーフティカバー106を含めたブレード113の下縁部が、ベース111に形成された開口111a(図3参照)を通して下面側に突出されている。セーフティカバー106は、被加工材を切断するべくベース111の前端部(図2において右側)を被加工材上に載置して前方(図1及び図2において右方向)へ移動させたとき、当該被加工材によって前端部を押されることで退避し、ブレードケース104内に収容される。ハンドグリップ109は、ギアハウジング107の上方に連接されるとともに、引き操作することによって駆動モータ115を通電駆動するトリガスイッチ109aを備えている。ブレード113は、駆動モータ115が通電駆動されると、変速機構117を介して回転駆動される。またハンドグリップ109の端部には、バッテリ108が着脱自在に装着される。なお、本実施の形態に係る駆動モータ115は、ブレーキ付きモータであって、また希土類モータが用いられている。また、バッテリ108としては、42ボルト以下のリチウムイオンバッテリを用いることが好ましい。
 次に変速機構117につき、図4及び図5を参照して説明する。本実施の形態に係る変速機構117は、駆動モータ115のモータ軸116に同軸で接続された入力軸121、ブレード113が取付けられる出力軸としてのブレード取付軸125、及び入力軸121とブレード取付軸125の間に配置された中間軸123が、互いに平行に配置された平行3軸式であり、ブレード113に作用する負荷の大きさに応じて自動的に動力伝達経路が高速低トルクから低速高トルクに切替わる2段切替式として構成される。中間軸123は、本発明における「第1の回転軸」及び「前段軸」に対応し、ブレード取付軸125は、本発明における「第2の回転軸」及び「出力軸」に対応する。図4及び図5は平行3軸式の変速機構117の展開断面図であり、図4は動力伝達経路が高速低トルク側に切替えられた状態を示し、図5は動力伝達経路が低速高トルク側に切替えられた状態を示す。なお、以下の説明では、ブレード取付軸125を出力軸という。
 変速機構117は、入力軸121のトルクがピニオンギア131から第1中間ギア132、中間軸123、第2中間ギア133、第1被動ギア134を経て出力軸125に伝達される第1動力伝達経路P1と、入力軸121のトルクがピニオンギア131から第1中間ギア132、中間軸123、第3中間ギア135、第2被動ギア136を経て出力軸125に伝達される第2動力伝達経路P2を有する。そして、第2中間ギア133と第1被動ギア134のギア比(減速比)が第3中間ギア135と第2被動ギア136のギア比(減速比)よりも小さく設定されている。これにより、第1動力伝達経路P1が高速低トルクの動力伝達経路として定められ、第2動力伝達経路P2が低速高トルクの動力伝達経路として定められている。第1動力伝達経路P1及び第2動力伝達経路P2が矢印付き太線によって示される。第2中間ギア133と第1被動ギア134により、本発明における「第1のギア列」が構成され、第3中間ギア135と第2被動ギア136により、本発明における「第2のギア列」が構成される。
 変速機構117における、入力軸121、中間軸123及び出力軸125は、それぞれ軸受121a,123a,125aを介してギアハウジング107に回転自在に支持される。駆動ギアとしてのピニオンギア131は、入力軸121に一体に形成されている。第1中間ギア132と第3中間ギア135は、中間軸123上の一端側(駆動モータ115側であって、図示左側)に並列に配置されるとともに、共通のキー137を介して中間軸123と一体化されており、第1中間ギア132がピニオンギア131に常時に噛み合い係合され、第3中間ギア135が出力軸125上の一端側に設けられた第2被動ギア136と常時に噛み合い係合する構成とされる。第2中間ギア133は、出力軸125上の他端側(ブレード113側であって、図示右側)に軸受138を介して相対回転可能に取付けられており、出力軸125の他端側に配置されるとともにキー139を介して当該出力軸125と一体化された第1被動ギア134と常時に噛み合い係合している。
 本実施の形態に係る丸鋸101においては、ブレード113による被加工材の切断作業時において、ブレード113に作用する負荷が小さい切断作業の初期段階では、出力軸125、すなわちブレード113を、高速低トルクの第1動力伝達経路P1によって回転駆動し、切断作業の進行に伴いブレード113に加わる負荷が一定値以上に達したときには、自動的に低速高トルクの第2動力伝達経路P2に切替わるように構成される。このような第1動力伝達経路P1から第2動力伝達経路P2への切替わりは、中間軸123上に摺動式噛み合いクラッチ141を設け、出力軸125上にはワンウェイクラッチ145を設けることで実現されている。摺動式噛み合いクラッチ141及びワンウェイクラッチ145は、本発明における「第1及び第2のクラッチ」に対応する。
 摺動式噛み合いクラッチ141の構成が図4及び図5の他、図6~図10に示される。図6は摺動式噛み合いクラッチ141の外観図であり、図7は図6のA-A線断面図である。また図8は駆動側クラッチ部材142を示し、図9は被動側クラッチ部材143を示し、図10はトルクリング152を示している。摺動式噛み合いクラッチ141は、図6に示すように、中間軸123の長軸方向において、互いに対向状に配置された駆動側クラッチ部材142及び被動側クラッチ部材143と、駆動側クラッチ部材142を被動側クラッチ部材143に向けて押圧付勢するクラッチバネ144を主体として構成される。駆動側クラッチ部材142と被動側クラッチ部材143は、図8及び図9に示すように、互いに対向する側面にそれぞれ周方向に複数(例えば3個)の略台形状の山形カム142a,143aを有し、それら山形カム142a,143aが互いに噛み合い係合することによってトルクを伝達し(図4及び図6参照)、噛み合い係合が解除することでトルク伝達が遮断される構成とされる(図5参照)。
 駆動側クラッチ部材142は、中間軸123に遊嵌状に嵌合されている。すなわち、中間軸123に対し周方向及び長軸方向に摺動自在に取付けられており、当該中間軸123に圧入固定されたトルク伝達部材としてのトルクリング152を介して回転駆動される構成とされる。トルクリング152は、図10に示すように、周方向等分位置に外径方向に突出する複数(3個)のトルク伝達部としての突部152aを備えている。駆動側クラッチ部材142の山形カム142aが形成されている方の側面には、トルクリング152の外形形状に概ね対応する形状の収容空間153が形成されており、当該収容空間153にトルクリング152が周方向への相対移動不能に収容されている。従って、中間軸123と共にトルクリング152が回転されると、駆動側クラッチ部材142は、収容空間153における当該トルクリング152の突部152aと係合する係合凹部153a(図8参照)の径方向の壁面、すなわちトルク伝達面153bを周方向に押圧されることで一体状に回転する。一方、被動側クラッチ部材143は、第2中間ギア133に一体化されている。
 駆動側クラッチ部材142は、弾性部材としての圧縮コイルバネからなるクラッチバネ144によって、山形カム142aが被動側クラッチ部材143の山形カム143aに噛み合い係合して動力伝達状態とされる位置、すなわち動力伝達位置へと付勢されている。なお、クラッチバネ144は、駆動側クラッチ部材142と第1中間ギア132の間に弾発状に配置されている。
 第1動力伝達経路P1によってブレード113が回転駆動されている状態において、当該ブレード113にクラッチバネ144の付勢力を超える一定値以上の負荷が作用すると、山形カム142a,143aの斜面に作用する長軸方向成分の力で駆動側クラッチ部材142が被動側クラッチ部材143から離間する方向へと移動(後退動作)される。すなわち、駆動側クラッチ部材142は、動力解除位置へと移動され、山形カム142a,143aの噛み合い係合が解除されて動力遮断状態とされる。図11(A)には摺動式噛み合いクラッチ141が動力伝達状態から動力遮断状態に変化する態様が示される。そして、摺動式噛み合いクラッチ141が動力遮断状態に切替わると、ワンウェイクラッチ145が作動し、動力伝達経路が高速低トルクの第1動力伝達経路P1から低速高トルクの第2動力伝達経路P2へと切り替えられる。
 次にワンウェイクラッチ145につき説明する。ワンウェイクラッチ145の構成が図15及び図16に示される。図15は出力軸125に設けられた各部材を示す側面図であり、図16は図15におけるC-C線断面図である。ワンウェイクラッチ145は、第2被動ギア136と共に回転する外輪146と、外輪146と出力軸125の間に介在される複数の針状ころ147及びバネ148を主体として構成されている。針状ころ147は、外輪146の周方向に所定間隔で形成されたカム溝146a内に転動可能に配置され、バネ148によってカム面146bの噛み合い位置に向かって付勢されている。
 従って、第1被動ギア134と共に外輪146が出力軸125に対して図16において右回りに回転されると、バネ148の付勢力によって針状ころ147がカム面146bと出力軸125との間に噛み込み、楔作用によって出力軸125を駆動する。この状態が図16に示される。一方、出力軸125が外輪146よりも高速で回転するときには、外輪146が出力軸125に対し相対的に図示左回りに回転することになる。このため、針状ころ147は、カム面146bから離れ、外輪146が出力軸125に対し空転する。つまり、摺動式噛み合いクラッチ141が動力伝達状態にあるときは、外輪146が出力軸125に対し相対的に図示左回りに回転されるため、ワンウェイクラッチ145は、空転し、動力伝達をしない。
 上記のように構成された変速機構117によれば、駆動モータ115の停止状態では、摺動式噛み合いクラッチ141は、クラッチバネ144の付勢力で駆動側クラッチ部材142が被動側クラッチ部材143と接近する側へと移動されている。すなわち、両クラッチ部材142,143の山形カム142a,143aが互いに噛み合い係合する動力伝達状態に保持されている。かかる状態で、被加工材の切断作業を行なうべく駆動モータ115が通電駆動されると、駆動モータ115のトルクは、第1動力伝達経路P1を経て出力軸125に伝達される。すなわち、ピニオンギア131、第1中間ギア132、中間軸123、摺動式噛み合いクラッチ141、第2中間ギア133、第1被動ギア134及び出力軸125を経てブレード113が高速低トルクで回転駆動される。
 このとき、中間軸123から第3中間ギア135及び第2被動ギア136を経てワンウェイクラッチ145の外輪146も回転されるが、前述したように、外輪146の回転速度よりも出力軸125の回転速度が高速であるため、外輪146は空転する。
 上記のように、ブレード113による被加工材の切断作業は、第1動力伝達経路P1を使用しての高速低トルクで開始する。そして、切断作業が進行し、ブレード113に作用する負荷が摺動式噛み合いクラッチ141のクラッチバネ144にて設定される切替設定値を超えると、当該摺動式噛み合いクラッチ141が動力遮断状態に切替わる。すなわち、図11の(A)に示すように、駆動側クラッチ部材142に対し山形カム142a,143aのカム面(斜面)を経て作用する長軸方向成分で駆動側クラッチ部材142がクラッチバネ144の付勢力に抗して被動側クラッチ部材143から離間され、山形カム142a,143aの噛み合い係合が解除される。かくして、摺動式噛み合いクラッチ141が動力遮断状態に切替わり、出力軸125の回転速度がワンウェイクラッチ145の外輪146の回転速度を下回ると、バネ148の付勢力によって針状ころ147がカム面146bと出力軸125との間に噛み込み、楔作用によって出力軸125を駆動する。これにより駆動モータ115のトルクの伝達経路が第1動力伝達経路P1から第2動力伝達経路P2に切替わり、ブレード113は、ピニオンギア131と第1中間ギア13のギア比、及び第3中間ギア135と第2被動ギア136とのギア比で定められた低速高トルクで回転駆動される。
 上記のように、本実施の形態によれば、ブレード113に作用する負荷が小さい状態では、減速比の小さい第1動力伝達経路P1を使用して高速低トルクで被加工材の切断作業を遂行し、一方、ブレード113に大きな負荷が加わる状態では、ギア比の大きい第2動力伝達経路P2を使用して低速高トルクで切断作業を行なうことができる。
 このように、ブレード113に作用する負荷に応じてトルクの伝達経路が高速低トルクの第1動力伝達経路P1から低速高トルクの第2動力伝達経路P2に自動的に切替わる構成としたことにより、変速機構を有しない丸鋸に比べて、駆動モータ115の焼損防止が図れるとともに、バッテリ108の1充電当たりの切断作業量を向上することができる。
 特に、本実施の形態においては、変速機構117を構成するギア列における各ギアの噛み合い係合を保持した状態、すなわち各ギアの位置を固定した状態で、第1動力伝達経路P1から第2動力伝達経路P2に切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。
 また、本実施の形態によれば、中間軸123上に摺動式噛み合いクラッチ141を設ける一方、出力軸125上にワンウェイクラッチ145を設けているため、摺動式噛み合いクラッチ141の動作をコントロールすることのみで第1動力伝達経路P1から第2動力伝達経路P2への使用伝達経路の切替えが実現されることになり、合理的な変速機構117を構築することができる。
 また、本実施の形態では、摺動式噛み合いクラッチ141を出力軸125よりも高速低トルクで回転する中間軸123上に設けたので、摺動式噛み合いクラッチ141に作用する負荷を小さくできる。このため、クラッチの保護あるいは耐久性を向上する上で有効となる。また、ギアハウジング107に対する各軸の配置から見て、中間軸123はギアハウジング107の中央寄りに配置される。このため、ワンウェイクラッチ145に比べて径方向に大型の摺動式噛み合いクラッチ141を中間軸123上に配置することで、ギアハウジング107の大型化を抑えることが可能になる。
 ところで、丸鋸101の最大切り込み深さ(ベース111下面からのブレード111の下縁部の突出量)は、図2において、作業者が、ハンドグリップ109を下向きに押し下げて丸鋸本体部103を、ベース111の前端部に設定された回動軸(便宜上図示を省略する)を回動支点にして回動させたとき、便宜上図示を省略するが、ギアハウジング107に設けられた最大切り込み深さの規制部がベース111のストッパに当接することで規定される。従って、例えば外径の大きい摺動式噛み合いクラッチ141を出力軸125に設けたときは、出力軸125の中心からギアハウジング107の下端面107Lまでの距離が大きくなってしまい、最大切り込み能力に影響する。つまり最大切り込み能力が低下することになるが、本実施の形態によれば、中間軸123に摺動式噛み合いクラッチ141を設ける構成としたことにより、出力軸125からギアハウジング107の下端面107Lまでの距離を小さく設定することが可能なため、最大切り込み能力に影響しない。
 一方、ワンウェイクラッチ145は、出力軸125上に設けている。減速側である出力軸125上の第2被動ギア136は、中間軸123上の第3中間ギア135よりも大径に設定される。このことから、ワンウェイクラッチ145を出力軸125と第2被動ギア136の間に設ける構成とすることで、ワンウェイクラッチ145の配置スペースが確保し易く、ワンウェイクラッチ145を容易に組み込むことが可能になる。
 ところで、ブレード113に加わる負荷に応じて自動的に摺動式噛み合いクラッチ141の切替えを行なう構成の場合、ブレード113に加わる負荷がクラッチバネ144にて設定される切替設定値の周辺で変動した場合、摺動式噛み合いクラッチ141が頻繁に切替わることになる。そこで、かかる課題を解決するべく、本実施形態に係る変速機構117は、摺動式噛み合いクラッチ141が一旦動力遮断状態に切替わった後は、当該切替わった状態に保持するラッチ機構、及び切断作業の停止後(駆動モータ115の停止時)には、初期状態すなわち動力伝達状態に戻すリセット機構を有している。
 以下、ラッチ機構151につき、主に図7、図8、及び図10、図11を参照して説明する。ラッチ機構151は、摺動式噛み合いクラッチ141における駆動側クラッチ部材142が動力遮断位置へと移動した際に、当該駆動側クラッチ部材142を動力遮断位置、詳しくは駆動側クラッチ部材142の山形カム142aが被動側クラッチ部材143の山形カム143aから引き離された位置(隙間を置いて対向する位置)に保持する機構として備えられる。ラッチ機構151は、前述のトルクリング152を主体として構成されている。
 トルクリング152を収容するべく形成された駆動側クラッチ部材142の収容空間153において、トルクリング152の突部152aが係合する係合凹部153aの回転方向前方領域には、前方に向かって上り勾配で傾斜する斜面153cが形成されている。そして、トルクリング152は、駆動側クラッチ部材142が動力伝達位置から動力遮断位置側へと移動して動力遮断状態とされる際、収容空間153から脱出して斜面153c上に乗り上げることによって駆動側クラッチ部材142の山形カム142aを被動側クラッチ部材143の山形カム143aから引き離すように構成されている。このときの動作態様が図11に示される。図11における(A)がクラッチの動作を示し、(B)がラッチ部材としてのトルクリング152の動作を示している。なお、トルクリング152の突部152aの斜面153cへの乗り上げを円滑化するべく、突部152aの斜面153cとの対向面は、斜面あるいは円弧状の曲面で形成されている。
 図11の最上段に示すように、駆動側クラッチ部材142が動力伝達位置に置かれた山形カム142a,143aの噛み合い係合状態では、前述のようにトルクリング152の突部152aが係合凹部153aのトルク伝達面153bと係合し、トルク伝達状態に保持されている。かかる状態において、クラッチバネ144にて設定された一定値以上の負荷がブレード113に作用し、駆動側クラッチ部材142が動力遮断位置に向かって後退動作すると、中間軸123に固定されているトルクリング152が駆動側クラッチ部材142に対し長軸方向、すなわち収容空間153から抜け出る(浮き上がる)方向に相対移動する。これにより、トルクリング152の突部152aが係合凹部153aから抜け出し、トルク伝達面153bから外れると、トルクを受けなくなった駆動側クラッチ部材142とトルクリング152との間に回転速度差が生じる。このため、トルクリング152が駆動側クラッチ部材142に対し周方向に相対移動し、トルクリング152の突部152aが斜面153cの端部に乗り上げる(図11の上から2段目参照)。この突部152aの乗り上げ動作により、駆動側クラッチ部材142が長軸方向に押される。すなわち、駆動側クラッチ部材142に対し山形カム142aを被動側クラッチ部材143の山形カム143aから切り離す方向(長軸方向)に力が加えられ、これにより、山形カム142a,143aの切り離しがアシストされる。その結果、山形カム142a,143aのカム面に作用する負荷が軽減されることになる。このことは、山形カム142a,143aの摩耗を低減することが可能となり、ひいてはクラッチバネ144にて設定される切替設定値の変動を抑制できる。
 駆動側クラッチ部材142が更に後退動作し、山形カム142a,143aの噛み合い係合が解除されると、トルクリング152が駆動側クラッチ部材142に対し周方向に更に相対移動する。このため、突部152aが斜面153cに更に乗り上げる。すなわち、この乗り上げによる山形カム142a,143aの切り離しのアシストは、当該山形カム142a,143aの噛み合い係合の解除後も継続される。これにより駆動側クラッチ部材142が被動側クラッチ部材143から更に離間され、山形カム142a,143a間に長軸方向の隙間が生ずる。斜面153cに乗り上げた突部152aは、斜面153c前方に直立するストッパ面153dに係止し、その後、トルクリング152と駆動側クラッチ部材142は一体となって回転する。この状態が図11(B)の最下段に示される。
 すなわち、トルクリング152は、駆動側クラッチ部材142が動力伝達状態から動力遮断状態へと切替わる際、当該駆動側クラッチ部材142の山形カム142aが被動側クラッチ部材143の山形カム143aから離間する動力遮断位置よりも更に後退移動された位置、つまり山形カム142a,143a間に長軸方向の所定の隙間が確保される隔離位置へと移動させて当該隔離位置に保持する。このように、摺動式噛み合いクラッチ141は、一旦動力遮断側に切替わると、その後ブレード113に加わる負荷の如何に拘わらず動力遮断状態を保持するため、ブレード113に加わる負荷がクラッチバネ144にて設定される切替設定値の周辺で変動した場合であっても、第2動力伝達経路P2を使用しての低速高トルクでの安定した切断作業を遂行することが可能となる。また、駆動側クラッチ部材142が隔離位置へと移動されて当該隔離位置に保持されることで、山形カム142a,143a間に長軸方向に一定の隙間が確保されるので、確実な動力遮断状態が得られ、山形カム142a,143aの当接による異音あるいは振動の発生を防止できる。
 一方、切断作業後、駆動モータ115の通電駆動を停止すると、当該駆動モータ115のブレーキが作動する。これにより回転速度が減速される中間軸123と一体に回転するトルクリング152と、慣性トルクによって回転速度を維持しようとする駆動側クラッチ部材142の間には回転速度差が生じ、両部材が周方向に相対的に回動する。この周方向の相対回動は、トルクリング152の突部152aが駆動側クラッチ部材142の斜面153cから下りる方向である。このため、突部152cが収容空間153の係合凹部153aに嵌り込む。すなわち、トルクリング152は、初期位置へと復帰(リセット)することになり、これにより摺動式噛み合いクラッチ141の動力遮断状態の保持が自動的に解除される。つまり、駆動モータ115のブレーキ及び駆動側クラッチ部材142の慣性を利用したリセット機構が構成されている。なお、トルクリング152による動力遮断状態保持が解除されると、駆動側クラッチ部材142は、クラッチバネ144の付勢力によって動力伝達位置へと移動され、次の切断作業に備える。
 本実施の形態に係る変速機構117の場合、駆動モータ115が起動する際、ブレード113の質量が大きく、慣性が大きいと、摺動式噛み合いクラッチ141が誤動作、すなわち、動力伝達状態から動力遮断状態に切替わり、変速する可能性がある。このような不具合を解決するべく本実施の形態に係る変速機構117は、起動時の変速を規制する変速規制機構161を備えている。
 以下、変速規制機構161につき、主に図12~14を参照して説明する。図12は図6におけるB-B線断面図であり、図13は駆動側クラッチ部材142をクラッチバネ装着側から見た斜視図であり、図14はストッパ162を示す斜視図である。本実施の形態に係る変速規制機構161は、駆動側クラッチ部材142に放射状に配置された複数(例えば3個)のストッパ162及び弾性部材としての圧縮コイルバネ163を主体として構成されている。
 各ストッパ162及び圧縮コイルバネ163は、駆動側クラッチ部材142のクラッチバネ装着面側(山形カム142aと反対側)の側面周方向等分位置に形成されたストッパ収容凹部164に収容され、径方向に移動可能とされている。各ストッパ162は、内径側の先端部が中間軸123の外周面と対向するとともに、圧縮コイルバネ163によって中間軸123側に向かって押圧付勢されている。中間軸123の外周面には、ストッパ162と対向する領域に周方向の環状溝165が形成されている。そして、駆動側クラッチ部材142が動力伝達位置に置かれたとき、各ストッパ162の径方向の先端部が中間軸123外周の環状溝165に径方向から突入されて弾発状に係合され、これにより駆動側クラッチ部材142を動力伝達位置に保持する構成とされる。この状態が図12及び図4に示される。
 なお、圧縮コイルバネ163は、ストッパ162に設けたガイドピン166によって動作の安定化が図られている。また、駆動側クラッチ部材142の側面には、図4及び図5に示すように、ストッパ収容凹部164に収容されたストッパ162及び圧縮コイルバネ163を覆うカバー部材167が取付けられ、このカバー部材167は、クラッチバネ144の一端を支持するバネ受け部材としても機能している。
 本実施の形態に係る変速規制機構161は、上記のように構成されている。駆動モータ115の停止状態では、摺動式噛み合いクラッチ141が動力伝達状態にある。このため、ストッパ162が中間軸123の環状溝165に係合されている。従って、駆動モータ115の起動時においては、中間軸123の環状溝165に係合するストッパ162によって駆動側クラッチ部材142の長軸方向の移動が規制されることになり、当該駆動側クラッチ部材142は、山形カム142aが被動側クラッチ部材143の山形カム143aと噛み合い係合する動力伝達位置に保持される。これにより、モータ起動時の摺動式噛み合いクラッチ141の誤動作を防止することができる。
 しかして、駆動モータ115が起動し、回転数が上昇すると、それに伴い駆動側クラッチ部材142とともに回転するストッパ162に作用する遠心力によって当該ストッパ162が圧縮コイルバネ163の付勢力に抗して外側に移動し、環状溝165から脱出する(図5参照)。これにより駆動側クラッチ部材142のストッパ162による移動規制が解除され、駆動側クラッチ部材142のブレード113に加わる負荷に応じた動力伝達状態から動力遮断状態への切替わりが許容される。
 このように、本実施の形態に係る変速規制機構161によれば、ブレード113の慣性が大きい丸鋸101において、駆動モータ115の起動時にブレード113の慣性で変速機構117が変速するといった誤動作が発生せず、これにより変速機構117の利点を十分に活用することが可能になる。また、このような変速規制機構161は、丸鋸101に限らず、研磨、研削作業に用いられるグラインダや比較的大径の穴明け作業に用いられるダイヤコアドリルのように、先端工具の質量が大きい動力工具において特に有効である。
 低速高トルクでの切断作業中には、ブレード113に過大な負荷が作用する可能性がある。そこで、このような過大な負荷が作用した場合に備えて出力軸125上には、トルクリミッター154が設定されている。図17には出力軸125にトルクリミッター154が組み付けられた状態が示される。出力軸125は、その長軸方向において、第1及び第2被動ギア134,136が取付けられる基部側軸部125Aと、ブレード113が取り付けられる先端側軸部125Bとに2分割されるとともに、当該分割部位に介在されたトルクリミッター154によって接続されている。
 出力軸125の基部側軸部125Aと先端側軸部125Bは、互いに遊嵌状に嵌合する円形突起と円形凹部を介して同軸上に配置されるとともに、互いに対向する鍔部125Aa,125Baを備えている。トルクリミッター154は、基部側軸部125Aの鍔部125Aaと先端側軸部125Bの鍔部125Ba間に挟み込まれた摩擦板155と、両鍔部125Aa,125Baが互いに押し付け合う方向に付勢力を作用する板バネ156により構成されており、板バネ156によって最大伝達トルクが定められている。
 このように、最終軸である出力軸125上のトルクリミッター154によって最大伝達トルクが管理されるため、切断作業中において、ブレード113に過大な負荷が作用した場合には、摩擦板155が鍔部125Aa,125Baに対して滑ることで過大な負荷に対応することができる。
(本発明の第2の実施形態)
 次に本発明の第2の実施形態につき、図18及び図19を参照して説明する。本実施の形態は、出力軸125上に摺動式噛み合いクラッチ141を設け、出力軸125上で変速を行う構成としたものであり、この構成以外については、前述した第1の実施形態と同様に構成される。従って、図18及び図19に示された各構成部材については、同一符号を付してその説明を省略あるいは簡略化する。なお、図18及び図19は変速機構117の構成を示す展開断面図である。
 摺動式噛み合いクラッチ141は、出力軸125上に取付けられている。このような配置構成としたことにより、中間軸123上に配置される第2中間ギア133が当該中間軸123にキー139によって固定され、当該第2中間ギア133と常時に噛み合い係合する第1被動ギア134は、出力軸125に軸受138を介して回転自在に支持される。
 また、摺動式噛み合いクラッチ141は、駆動側クラッチ部材142と被動側クラッチ部材143とクラッチバネ144を主体として構成されることについては、前述した第1の実施形態の場合と同様であるが、中間軸123上に配置する構成とした第1の実施形態の場合とは、動力の伝達方向が逆転している。つまり、第1被動ギア134と共に回転するクラッチ部材143が駆動側とされ、トルクリング152を介して出力軸125と共に回転するクラッチ部材142が被動側となる。そしてクラッチバネ144は、被動側クラッチ部材142と、ワンウェイクラッチ145が組み付けられる第2被動ギア136との間に介在され、当該被動側クラッチ部材142を駆動側クラッチ部材143に接近させる方向に付勢している。
 従って、ブレード113に加わる負荷が小さい状態では、駆動モータ115のトルクは、入力軸121のピニオンギア131、第1中間ギア132、中間軸123、第2中間ギア133、第1被動ギア134、摺動式噛み合いクラッチ141及び出力軸125によって構成される第1動力伝達経路P1を経てブレード113に伝達され、ブレード113は、高速低トルクで回転駆動される。この状態が図18に示される。
 そして、クラッチバネ144にて定められる切替設定値を超える負荷がブレード113に作用すると、被動側クラッチ部材142がクラッチバネ144に抗して動力伝達位置から動力遮断位置へ移動される。これにより被動側クラッチ部材142の山形カム142aが駆動側クラッチ部材143の山形カム143aから離間して噛み合い係合が解除される。すると、駆動モータ115のトルクは、入力軸121のピニオンギア131、第1中間ギア132、中間軸123、第3中間ギア135、第2被動ギア136、ワンウェイクラッチ145及び出力軸125によって構成される第2動力伝達経路P2を経てブレード113に伝達され、ブレード113は、低速高トルクで回転駆動される。この状態が図19に示される。
 上記のように、本実施の形態においても、前述した第1の実施形態と同様、変速機構117を構成するギア列における各ギアの噛み合い係合を保持した状態、すなわち各ギアの位置を固定した状態で、第1動力伝達経路P1から第2動力伝達経路P2に切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。
 なお、本実施の形態に係る変速機構117は、3軸平行式の場合で説明したが、入力軸と出力軸との2本の平行軸から構成される2軸式であっても成立する。また、ワンウェイクラッチ145を中間軸123側に設けても成立する。また、本実施の形態は、動力工具の例として充電式の丸鋸101の場合で説明したが、これに限られるものではない。丸鋸であっても、バッテリの代わりにAC電源を用いる形式の丸鋸、あるいは図示のような手持式のほか、ベースに設置されたテーブル上に被加工材を載せて切断作業を行なう卓上丸鋸や卓上スライド丸鋸に適用できるし、木工用、金工用のいずれにも適用することが可能である。また丸鋸以外の切断工具、例えば、電動カッターに適用することが可能であるし、レシプロソーやジクソー等のように先端工具が直線往復運動を行なう切断工具に適用することが可能である。更には切断工具以外の動力工具、例えば回転運動するサンディングディスクや砥石によって被加工材に研磨あるいは研削作業を行なうサンダーやグラインダ、あるいは締め付け作業に用いられるドライバやレンチ、または穴明け作業を行なう各種ドリル、更には上下2枚のブレードを互いに逆方向に直線状に往復移動させ、生垣の刈り込み作業等を遂行するヘッジトリマ等、各種の電動工具を広く適用可能である。
 更にまた、サンダーやダイヤコアドリル等のように、一台の動力工具において、作業に用いる先端工具の寸法の相違や被加工材の相違等により、先端工具に加わる負荷が相違する動力工具に用いると有効である。
 また、本実施の形態では、摺動式噛み合いクラッチ141が一旦動力遮断状態に切替わった後は、当該切替わった状態に保持するラッチ機構151を設けたが、当該ラッチ機構151を有しない構成に変更してもよい。
本発明の第1の実施形態に係る丸鋸の全体構成を示す側面図である。 丸鋸の全体構成を示す側断面図である。 丸鋸の全体構成を示す正面から見た断面図である。 平行3軸式の変速機構の展開断面図であり、動力伝達経路が高速低トルク側に切替えられた状態を示す。 平行3軸式の変速機構の展開断面図であり、動力伝達経路が低速高トルク側に切替えられた状態を示す。 摺動式噛み合いクラッチの外観図である。 図6のA-A線断面図である。 摺動式噛み合いクラッチにおける駆動側クラッチ部材を示す斜視図である。 摺動式噛み合いクラッチにおける被動側クラッチ部材を斜視図である。 摺動式噛み合いクラッチにおけるトルクリングを示す斜視図である。 摺動式噛み合いクラッチの動作を説明する図であり、(A)は山形カムの動作態様を示し、(B)はラッチ部材としてのトルクリングの動作態様を示す。 図6のB-B線断面図である。 駆動側クラッチ部材をクラッチバネ装着側から見た斜視図である。 ストッパを示す斜視図である。 出力軸に設けられた各部材を示す側面図である。 図15のC-C線断面図である。 変形例を示す展開断面図である。 本発明の第2の実施形態に係る平行3軸式の変速機構を示す展開断面図であり、動力伝達経路が高速低トルク側に切替えられた状態を示す。 同じく平行3軸式の変速機構を示す展開断面図であり、動力伝達経路が低速高トルク側に切替えられた状態を示す。
101 丸鋸(動力工具)
103 丸鋸本体部(動力工具本体)
104 ブレードケース
105 モータハウジング
106 セーフティカバー
107 ギアハウジング
107L 下端面
108 バッテリ
109 ハンドグリップ
109a トリガ
111 ベース
111a 開口
113 ブレード
115 駆動モータ(動力源)
116 モータ軸
117 変速機構
121 入力軸
121a 軸受
123 中間軸(第1の回転軸)
123a 軸受
125 出力軸(第2の回転軸)
125a 軸受
125A 基部側軸部
125B 先端側軸部
125Aa 鍔部
125Bb 鍔部
131 ピニオンギア
132 第1中間ギア
133 第2中間ギア
134 第1被動ギア
135 第3中間ギア
136 第2被動ギア
137 キー
138 軸受
139 キー
141 摺動式噛み合いクラッチ(第1のクラッチ)
142 駆動側クラッチ部材
142a 山形カム
143 被動側クラッチ部材
143a 山形カム
144 クラッチバネ
145 ワンウェイクラッチ(第2のクラッチ)
146 外輪
146a カム溝
146b カム面
147 針状ころ
148 バネ
151 ラッチ機構
152 トルクリング
152a 突部
153 収容空間
153a 係合凹部
153b トルク伝達面
153c 斜面
153d ストッパ面
154 トルクリミッター
155 摩擦板
156 板バネ
161 変速規制機構
162 ストッパ
163 圧縮コイルバネ
164 ストッパ収容凹部
165 環状溝
166 ガイドピン
167 カバー部材

Claims (5)

  1.  動力源と、変速機構を有し、前記動力源から前記変速機構を介して駆動される先端工具に所定の加工作業を遂行させる動力工具であって、
     前記変速機構は、互いに平行に配置された第1及び第2の回転軸と、互いに噛合い係合されるとともに前記第1の回転軸のトルクを第2の回転軸に伝達する駆動ギアと被動ギアの組み合わせを1単位とし、かつ互いにギア比が異なる第1及び第2のギア列を有し、前記第1のギア列を経由するトルクの伝達経路が第1の動力伝達経路として定められ、前記第2のギア列を経由するトルクの伝達経路が第2の動力伝達経路として定められており、前記第1の動力伝達経路上において動力伝達と動力遮断を行う第1のクラッチ、及び前記第2の動力伝達経路上において動力伝達と動力遮断を行う第2のクラッチを更に有し、
     前記先端工具に加わる負荷に応じた、前記第1及び第2のクラッチの動力伝達状態と動力遮断状態の間での切替わりによって、前記第1及び第2のギア列の噛合い係合が維持された状態のままで、前記第1の動力伝達経路と第2の動力伝達経路間で伝達経路の切替えがなされる構成としたことを特徴とする動力工具。
  2.  請求項1に記載の動力工具であって、
     前記第1及び第2のクラッチのいずれか一方は、前記第1の回転軸上または第2の回転軸上において、互いに対向状に配置されて噛み合い係合可能とされた駆動側クラッチ部材と被動側クラッチ部材によって構成されるとともに、前記駆動側クラッチ部材と被動側クラッチ部材のいずれか一方が、互いに噛み合い係合して動力伝達状態とされる動力伝達位置と、前記噛み合い係合を解除して動力遮断状態とされる動力遮断位置の間で長軸方向にスライド動作する摺動式噛み合いクラッチによって構成されており、いずれか他方は、一方向への回転のみを伝達可能なワンウェイクラッチによって構成されており、当該ワンウェイクラッチは、前記摺動式噛み合いクラッチが動力遮断状態に切替わったときに動力を伝達するように構成されていることを特徴とする動力工具。
  3.  請求項2に記載の動力工具であって、
     前記第1の回転軸が出力軸の前段に配置された前段軸として定められ、前記第2の回転軸が出力軸として定められており、前記摺動式噛み合いクラッチは、前記前段軸上に設けられていることを特徴とする動力工具。
  4.  請求項2に記載の動力工具であって、
     前記第1の回転軸が出力軸の前段に配置された前段軸として定められ、前記第2の回転軸が出力軸として定められており、前記ワンウェイクラッチは、前記出力軸上に設けられていることを特徴とする動力工具。
  5.  請求項1~4のいずれか1つに記載の動力工具であって、
     前記動力源及び前記変速機構を収容する動力工具本体と、
     前記動力工具本体の下方に配置されるとともに、被加工材上に載置可能なベースと、を有し、
     前記先端工具は、前記動力源により前記変速機構を介して回転駆動されることで被加工材を切断する鋸刃として構成されていることを特徴とする動力工具。
PCT/JP2009/060560 2008-06-10 2009-06-09 動力工具 WO2009151066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/996,858 US8667694B2 (en) 2008-06-10 2009-06-09 Power tool
RU2010153862/02A RU2494854C2 (ru) 2008-06-10 2009-06-09 Приводной инструмент
CN200980121598.7A CN102159366B (zh) 2008-06-10 2009-06-09 动力工具
EP09762496.9A EP2295207B1 (en) 2008-06-10 2009-06-09 Power tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008151996A JP5017185B2 (ja) 2008-06-10 2008-06-10 動力工具
JP2008-151996 2008-06-10

Publications (1)

Publication Number Publication Date
WO2009151066A1 true WO2009151066A1 (ja) 2009-12-17

Family

ID=41416772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060560 WO2009151066A1 (ja) 2008-06-10 2009-06-09 動力工具

Country Status (6)

Country Link
US (1) US8667694B2 (ja)
EP (1) EP2295207B1 (ja)
JP (1) JP5017185B2 (ja)
CN (1) CN102159366B (ja)
RU (1) RU2494854C2 (ja)
WO (1) WO2009151066A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD668922S1 (en) 2012-01-20 2012-10-16 Milwaukee Electric Tool Corporation Powered cutting tool
WO2013176217A1 (ja) * 2012-05-24 2013-11-28 株式会社マキタ 作業工具
US9339938B2 (en) 2010-10-08 2016-05-17 Milwaukee Electric Tool Corporation Powered cutting tool

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559335B1 (en) * 2011-08-16 2014-08-13 Black & Decker Inc. A drive train for a hedge trimmer, a hedge trimmer and a method of controlling a hedge trimmer
US9757806B2 (en) * 2011-10-20 2017-09-12 Makita Corporation Hand-held cutting tools
JP2014148006A (ja) * 2013-02-01 2014-08-21 Makita Corp 電動工具及び携帯用マルノコ
CN105081456B (zh) * 2014-04-23 2018-05-22 宝时得机械(张家港)有限公司 台式曲线锯
EP3212369A4 (en) * 2014-10-30 2018-05-16 Robert Bosch GmbH Lower blade guard for a circular saw
AU2017213819B2 (en) 2016-02-03 2019-12-05 Milwaukee Electric Tool Corporation Systems and methods for configuring a reciprocating saw
CN109538708B (zh) * 2018-12-14 2023-12-22 辛集市宇泰机械有限公司 用于汽车的变速箱
WO2024015612A1 (en) * 2022-07-14 2024-01-18 Milwaukee Electric Tool Corporation Power tool with automatic shifting mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540254U (ja) * 1978-09-08 1980-03-14
JPS5554640U (ja) * 1978-10-03 1980-04-12
JPS5654344U (ja) * 1979-09-29 1981-05-12
JPS62174151U (ja) * 1986-04-25 1987-11-05
JPH058031B2 (ja) 1985-06-03 1993-02-01 Taito Kk
JPH07217709A (ja) * 1994-02-02 1995-08-15 Sanwa Seiki Co Ltd 変速装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1396512A (en) * 1919-03-08 1921-11-08 Pierce Arrow Motor Car Company Change-speed-gear transmission
US3713217A (en) * 1971-04-26 1973-01-30 American Standard Inc Door latch cut-out forming
DE7141263U (de) * 1971-11-02 1973-04-19 Bosch R Gmbh Elektrowerkzeug insbesondere elektrische schlagbohrmaschine
US3858317A (en) * 1973-12-13 1975-01-07 Clancy B Ford Pipe cutting adapter for power drills
JPS62174151A (ja) 1986-01-29 1987-07-30 Manabu Harada スクリ−ン印刷機
US4710071A (en) * 1986-05-16 1987-12-01 Black & Decker Inc. Family of electric drills and two-speed gear box therefor
JP3242676B2 (ja) * 1991-06-26 2001-12-25 セイコーエプソン株式会社 インクジェットヘッド
US5239758A (en) * 1992-04-20 1993-08-31 Lindell Lester G Hand drill powered mini chain saw
RU2084329C1 (ru) 1993-08-31 1997-07-20 Акционерное общество открытого типа Томский электромеханический завод Пневматический молоток
GB9621202D0 (en) * 1996-10-11 1996-11-27 Black & Decker Inc Mode change switch
DE10261743A1 (de) 2002-12-30 2004-07-22 Robert Bosch Gmbh Handkreissägemaschine B27B
TW558475B (en) * 2003-02-25 2003-10-21 Power Network Industry Co Ltd Power transmission device capable of automatic gear shifting
CN100400940C (zh) 2004-02-02 2008-07-09 杨斌彬 不间断动力的齿轮变速器
JP4359716B2 (ja) 2004-10-21 2009-11-04 株式会社マキタ 締付け工具
JP4593387B2 (ja) * 2005-07-04 2010-12-08 株式会社マキタ 電動工具
JP4628988B2 (ja) * 2006-04-14 2011-02-09 本田技研工業株式会社 平行軸式変速機
US7854274B2 (en) * 2007-11-21 2010-12-21 Black & Decker Inc. Multi-mode drill and transmission sub-assembly including a gear case cover supporting biasing
US7798245B2 (en) * 2007-11-21 2010-09-21 Black & Decker Inc. Multi-mode drill with an electronic switching arrangement
US8172004B2 (en) * 2009-08-05 2012-05-08 Techtronic Power Tools Technology Limited Automatic transmission for a power tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540254U (ja) * 1978-09-08 1980-03-14
JPS5554640U (ja) * 1978-10-03 1980-04-12
JPS5654344U (ja) * 1979-09-29 1981-05-12
JPH058031B2 (ja) 1985-06-03 1993-02-01 Taito Kk
JPS62174151U (ja) * 1986-04-25 1987-11-05
JPH07217709A (ja) * 1994-02-02 1995-08-15 Sanwa Seiki Co Ltd 変速装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2295207A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339938B2 (en) 2010-10-08 2016-05-17 Milwaukee Electric Tool Corporation Powered cutting tool
US9757868B2 (en) 2010-10-08 2017-09-12 Milwaukee Electric Tool Corporation Powered cutting tool
USD668922S1 (en) 2012-01-20 2012-10-16 Milwaukee Electric Tool Corporation Powered cutting tool
WO2013176217A1 (ja) * 2012-05-24 2013-11-28 株式会社マキタ 作業工具

Also Published As

Publication number Publication date
CN102159366B (zh) 2014-03-12
US8667694B2 (en) 2014-03-11
RU2494854C2 (ru) 2013-10-10
EP2295207A4 (en) 2012-02-29
US20110154670A1 (en) 2011-06-30
JP2009297799A (ja) 2009-12-24
JP5017185B2 (ja) 2012-09-05
EP2295207A1 (en) 2011-03-16
EP2295207B1 (en) 2016-01-13
CN102159366A (zh) 2011-08-17
RU2010153862A (ru) 2012-07-20

Similar Documents

Publication Publication Date Title
JP5017185B2 (ja) 動力工具
WO2009151059A1 (ja) 動力工具
WO2009151064A1 (ja) 丸鋸
JP5378964B2 (ja) 動力工具
JP5017187B2 (ja) 動力工具
JP5566840B2 (ja) 回転工具
JP5017188B2 (ja) 動力工具
WO2012081589A1 (ja) 動力工具
JP5435900B2 (ja) 丸鋸
JP5017186B2 (ja) 動力工具
JP5435899B2 (ja) 丸鋸
CN101774167B (zh) 多功能电动切割角磨机
US7594856B2 (en) Overload clutch device, clutch disk, and driving toothed wheel
WO2018061556A1 (ja) 電動工具
JP7185472B2 (ja) 電動工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121598.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010153862

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12996858

Country of ref document: US