WO2009142274A1 - ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池 - Google Patents

ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池 Download PDF

Info

Publication number
WO2009142274A1
WO2009142274A1 PCT/JP2009/059377 JP2009059377W WO2009142274A1 WO 2009142274 A1 WO2009142274 A1 WO 2009142274A1 JP 2009059377 W JP2009059377 W JP 2009059377W WO 2009142274 A1 WO2009142274 A1 WO 2009142274A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
polymer electrolyte
polymer
Prior art date
Application number
PCT/JP2009/059377
Other languages
English (en)
French (fr)
Inventor
徹 小野寺
中村 大輔
将 金坂
八代 有弘
貴司 山田
昌光 石飛
佐々木 繁
功 海藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2009801286821A priority Critical patent/CN102105506A/zh
Priority to US12/993,675 priority patent/US20110311899A1/en
Priority to DE112009001216T priority patent/DE112009001216T5/de
Publication of WO2009142274A1 publication Critical patent/WO2009142274A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3444Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer useful as a polymer electrolyte for a fuel cell, a polyarylene block copolymer, a polymer electrolyte membrane used for a solid polymer fuel cell, and a fuel cell.
  • a polymer electrolyte containing a polymer having proton conductivity As a material constituting a diaphragm of an electrochemical device such as a primary battery, a secondary battery, or a fuel cell, a polymer electrolyte containing a polymer having proton conductivity is used.
  • fluorine containing Nafion registered trademark of DuPont
  • a polymer having a perfluoroalkylsulfonic acid residue as a super strong acid in the side chain and a main chain of a perfluoroalkane chain as an active ingredient.
  • proton conductive membrane Since a polymer electrolyte is excellent in power generation characteristics when used as a proton conductive membrane for a fuel cell (hereinafter sometimes referred to as “proton conductive membrane”), it has been mainly used conventionally.
  • this fluorine-based polymer electrolyte is very expensive, has low heat resistance, has a high disposal cost, and has low membrane strength and is not practical without any reinforcement
  • a polymer electrolyte fuel cell (hereinafter sometimes abbreviated as “fuel cell”) is a power generation device that generates power through a chemical reaction between hydrogen and oxygen. High expectations are placed in the automotive industry and other fields. In recent years, hydrocarbon polymer electrolytes that are inexpensive and have excellent heat resistance have been attracting attention as polymer electrolyte membrane materials used in fuel cells, in place of conventional fluorine polymer electrolytes.
  • hydrocarbon polymer electrolytes hydrocarbon polymer electrolytes
  • fluorine polymer electrolytes fluorine polymer electrolyte membranes
  • Patent Document 1 contains an antioxidant such as a hindered phenol compound or a hindered amine compound in order to improve the radical resistance of the hydrocarbon polymer electrolyte.
  • an antioxidant such as a hindered phenol compound or a hindered amine compound in order to improve the radical resistance of the hydrocarbon polymer electrolyte.
  • a hydrocarbon-based polymer electrolyte membrane formed from a polyarylene-based polymer composition is disclosed.
  • Patent Document 2 a polyarylene polymer having a flexible group such as a phenoxybenzoyl group as a side chain is sulfonated to sulfonate an aromatic ring of the side chain phenoxybenzoyl group.
  • a polyarylene polymer electrolyte has been proposed, and it is disclosed that such a polyarylene polymer electrolyte has high proton conductivity even in a high temperature region of 100 ° C. or higher.
  • Patent Document 3 discloses a structural unit having a specific structure in which an ion exchange group is directly bonded to an aromatic ring other than an aromatic ring constituting a main chain as a hydrocarbon-based polymer electrolyte, and a weight average in terms of polystyrene.
  • a polymer electrolyte membrane using a polyarylene-based copolymer having a structural unit having a molecular weight of 28200 and having substantially no ion exchange group is disclosed.
  • JP 2003-183526 A US Pat. No. 5,403,675 (9th to 11th columns, FIG. 4) JP 2003-212988 A
  • Patent Document 1 Although the addition of the antioxidant described in Patent Document 1 tends to improve the radical resistance of the polymer electrolyte membrane, there is a risk that characteristics such as proton conductivity required for a fuel cell may deteriorate. . Thus, with conventional hydrocarbon polymer electrolyte membranes, it is extremely difficult to improve radical resistance without relying on the addition of an antioxidant, and even if an antioxidant is added, There is a tendency for the characteristics of to deteriorate.
  • an object of the present invention is to provide a polymer electrolyte membrane having sufficiently high radical resistance without adding an auxiliary agent such as an antioxidant, and a membrane-electrode assembly (MEA) and a fuel cell using the same. There is to do.
  • Another object of the present invention is to provide a polymer and a polyarylene-based block copolymer that are excellent in radical resistance and useful as a polymer electrolyte constituting a polymer electrolyte membrane.
  • the present invention is a polymer electrolyte membrane containing a polymer electrolyte having an ion exchange group, and the polymer electrolyte membrane is immersed in a 5 mmol / L iron (II) chloride tetrahydrate aqueous solution at 25 ° C. for 1 hour. Thereafter, the total area of the peak of the spectrum obtained by measuring the 13 C-solid nuclear magnetic resonance spectrum of the polymer electrolyte membrane after the first immersion treatment that is dried for 12 hours at 25 ° C. and 10 hPa or less is expressed as Sp The polymer electrolyte membrane after the first immersion treatment was immersed in water at 25 ° C. for 1 hour and then dried at 25 ° C.
  • the polymer electrolyte membrane of the present invention preferably contains a copolymer having a structural unit having an ion exchange group and a structural unit having no ion exchange group.
  • a polymer electrolyte membrane is a polymer electrolyte membrane that has excellent radical resistance and can exhibit sufficiently excellent proton conductivity and mechanical strength when used in a fuel cell.
  • the polymer electrolyte is preferably an aromatic polymer electrolyte.
  • the main chain is a polyarylene structure in which a plurality of aromatic rings are substantially linked by a direct bond, and is directly bonded to a part or all of the aromatic rings constituting the main chain.
  • a part of or all of the aromatic ring having a sulfonic acid group and constituting the main chain has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, and a substituent.
  • Patent Document 2 The polyarylene polymer electrolyte as disclosed in Patent Document 2 tends to cause a significant decrease in water resistance when attempting to increase the sulfonic acid group equivalent in order to improve proton conductivity. As a proton conductive membrane for use, it was poor in practical use. In addition, in the production means specifically disclosed in Patent Document 2, it is difficult to increase the sulfonic acid group equivalent responsible for proton conductivity to a certain level or more.
  • the polymer of the present invention has excellent proton conductivity while having high water resistance in addition to excellent radical resistance when used as a polymer electrolyte for fuel cells, particularly as a proton conductive membrane.
  • a film can be formed.
  • the structural unit having an aromatic ring in which the sulfonic acid group is directly bonded in the main chain is preferably 20 mol% or more.
  • the polymer preferably has a structural unit represented by the following formula (A-1).
  • Ar 1 represents a divalent aromatic group, and the aromatic group is a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, a substituted group.
  • the aryloxy group may be substituted with at least one group selected from the group consisting of an acyl group having 2 to 20 carbon atoms which may have a substituent. At least one sulfonic acid group is directly bonded to the aromatic ring constituting the main chain in Ar 1 .
  • A-1 Ar 1 represents a divalent aromatic group, and the aromatic group is a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, a substituted group.
  • the structural unit represented by the formula (A-1) preferably includes a structural unit represented by the following formula (A-2).
  • R 1 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted alkoxy group having 1 to 20 carbon atoms.
  • p is an integer of 1 to 3
  • q is an integer of 0 to 3
  • p + q is an integer of 4 or less.
  • q is 2 or more, a plurality of R 1 may be the same or different.
  • the polyarylene structure is preferably a structure having a direct bond ratio of 80% or more when the total number of bonds between aromatic rings is 100%.
  • the present invention is also obtained by polymerizing a raw material monomer containing a first aromatic monomer represented by the following formula (A-3) and a second aromatic monomer represented by the following formula (A-4). Provide a polymer.
  • Ar 10 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted alkoxy group having 1 to 20 carbon atoms.
  • a divalent aromatic group which may have at least one group selected from the group consisting of 2 to 20 acyl groups
  • Q represents a leaving group, and two Qs may be the same or different It may be.
  • the sulfonic acid group and / or the sulfonic acid precursor group have couple
  • Ar 0 represents a divalent aromatic group, wherein the divalent aromatic group has a fluorine atom or a C 1-20 carbon atom which may have a substituent.
  • Q represents a leaving group, and two Qs may be the same or different.
  • the second aromatic monomer preferably has, as a substituent, an acyl group that may have a substituent.
  • the polymer can be obtained by polymerizing raw material monomers in the presence of a zero-valent transition metal complex.
  • the polymer electrolyte membrane has practical proton conductivity and water resistance
  • the polymer electrolyte membrane has higher proton conductivity and excellent water resistance for the development of a high-performance fuel cell. Development is required.
  • the present inventors have combined the ion exchange group in the block having the ion exchange group. And the sequence thereof, and the block sequence not having the ion-exchange group and the weight average molecular weight are specified, so that the radical resistance is sufficiently excellent, and the proton conductivity is high.
  • the present inventors have found that a polymer electrolyte membrane having excellent water resistance can be obtained.
  • the present invention relates to a block comprising a block having an ion exchange group and a block substantially free from an ion exchange group obtained from a polymer having a weight average molecular weight in terms of polystyrene of 4000 to 25000 which does not substantially have an ion exchange group.
  • a block which is a copolymer and has an ion exchange group contains a structural unit represented by the following formula (B-1) and has substantially no ion exchange group:
  • a polyarylene-based block copolymer comprising the structural unit represented by 2) is provided.
  • Ar 1 represents an arylene group, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • An alkoxy group, an optionally substituted aryl group having 6 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted carbon It may be substituted with at least one group selected from the group consisting of an acyl group of 2 to 20 and a cyano group.
  • At least one ion exchange group is directly bonded to the aromatic ring constituting the main chain in Ar 1 .
  • Ar 2 represents a divalent aromatic group, may have a substituent, an alkyl group having 1 to 20 carbon atoms, and may have a substituent.
  • X 1 represents an oxygen atom (—O—) or a sulfur atom (—S—).
  • polyarylene copolymer of the present invention when used as a polymer electrolyte membrane, in addition to being sufficiently excellent in radical resistance, it has high proton conductivity and excellent water resistance. A membrane can be obtained.
  • the ion exchange group is preferably at least one acid group selected from the group consisting of a sulfonic acid group, a phosphonic acid group, a carboxylic acid group, and a sulfonimide group. .
  • the structural unit represented by the above formula (B-1) is preferably a structural unit represented by the following formula (B-3).
  • R represents an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • k represents an integer of 0 to 3
  • p represents an integer of 1 or 2
  • k + p represents an integer of 4 or less. When k is 2 or more, a plurality of R may be the same or different.
  • the polymer having substantially no ion exchange group is a polymer represented by the following formula (B-4).
  • Ar 21 represents a divalent aromatic group, and a plurality of Ar 21 may be the same or different.
  • the aromatic group may have an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkoxy group having 1 to 20 carbon atoms which may have a substituent, or a substituent.
  • an aryl group having 6 to 20 carbon atoms an aryloxy group having 6 to 20 carbon atoms which may have a substituent, an acyl group having 2 to 20 carbon atoms which may have a substituent, and a cyano group It may be substituted with at least one group selected from the group consisting of X 11 represents an oxygen atom (—O—) or a sulfur atom (—S—), and a plurality of X 11 may be the same or different.
  • Y represents a leaving group, and two Ys may be the same or different.
  • q represents an integer of 4 or more.
  • the hydrophobicity parameter of the polymer represented by the above formula (B-4) is preferably 1.7 to 6.0, and more preferably 2.5 to 4.0.
  • the polyarylene block copolymer preferably has an ion exchange capacity of 1.0 to 7.0 meq / g.
  • Patent Document 3 when a conventional polyarylene polymer electrolyte as disclosed in Patent Document 3 is used for a proton conductive membrane for a polymer electrolyte fuel cell, there is a problem that power generation characteristics under high temperature and low humidification conditions are low. is there.
  • a block having an ion exchange group A block copolymer comprising a block having substantially no exchange group, a bonding form of the ion exchange group of the block having the ion exchange group, a structure of the block having substantially no ion exchange group, and a repeating structure
  • the present invention includes a block having an ion exchange group and a block substantially having no ion exchange group, and the main chain of the block having an ion exchange group is substantially directly linked with a plurality of aromatic rings.
  • the polyarylene structure is a structure in which some or all of the ion exchange groups are directly bonded to the aromatic ring constituting the main chain, and the block having substantially no ion exchange group is Provided is a polyarylene block copolymer having a structure represented by the formula (C-1).
  • Ar 1 and Ar 2 each independently represent an arylene group.
  • the arylene group has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. Substituted with an optionally substituted aryl group having 6 to 20 carbon atoms, an optionally substituted aryloxy group having 6 to 20 carbon atoms, or an optionally substituted acyl group having 2 to 20 carbon atoms May be.
  • X represents a carbonyl group (—C ( ⁇ O) —) or a sulfonyl group (—S ( ⁇ O) 2 —), and Y represents an oxygen atom (—O—) or a sulfur atom (—S—).
  • n represents an integer of 3 to 45.
  • a plurality of Ar 1 , Ar 2 , X and Y may be the same or different.
  • the block having substantially no ion exchange group has a structure represented by the following formula (C-2). [In the formula (C-2), n represents an integer of 3 to 45. ]
  • the block having an ion exchange group preferably has a structure represented by the following formula (C-3).
  • C-3 m represents an integer of 3 or more
  • Ar 3 represents an arylene group.
  • the arylene group has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • An optionally substituted aryl group having 6 to 20 carbon atoms, an optionally substituted aryloxy group having 6 to 20 carbon atoms, or an optionally substituted acyl group having 2 to 20 carbon atoms May be substituted.
  • at least one ion exchange group is directly bonded to the aromatic ring constituting the main chain.
  • a plurality of Ar 3 may be the same as or different from each other.
  • the ion exchange group is preferably at least one acid group selected from the group consisting of a sulfonic acid group, a sulfonimide group, a phosphonic acid group, and a carboxylic acid group.
  • the block having an ion exchange group preferably has a structure represented by the following formula (C-4).
  • m represents an integer of 3 or more.
  • R 1 has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • a group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and an acyl group having 2 to 20 carbon atoms which may have a substituent It represents at least one substituent selected from the above.
  • p is an integer of 0 to 3. When a plurality of R 1 are present, they may be the same or different.
  • the polyarylene block copolymer preferably has an ion exchange capacity of 0.5 meq / g to 5.0 meq / g.
  • the present invention provides a polymer electrolyte containing the polymer or the polyarylene block copolymer, and a polymer electrolyte membrane containing the polymer electrolyte.
  • the present invention also provides a polymer electrolyte composite membrane comprising a porous substrate having a polymer electrolyte in the pores, wherein the polymer electrolyte is the polymer electrolyte of the present invention.
  • the present invention further provides a catalyst composition comprising the above-described polymer electrolyte and a catalyst component.
  • the present invention provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane of the present invention and a catalyst layer formed on the polymer electrolyte membrane.
  • the present invention also provides a membrane-electrode assembly having the polymer electrolyte membrane or the polymer electrolyte composite membrane.
  • the present invention provides a membrane-electrode assembly comprising a polymer electrolyte membrane and a catalyst layer formed on the polymer electrolyte membrane, wherein the catalyst layer is a membrane formed from the catalyst composition.
  • An electrode assembly can be provided.
  • the present invention is a fuel cell comprising a pair of separators, a pair of gas diffusion layers disposed between the pair of separators, and a membrane-electrode assembly disposed between the pair of gas diffusion layers, A fuel cell is provided in which the membrane-electrode assembly is the above-mentioned membrane-electrode assembly.
  • a polymer electrolyte membrane having sufficiently high radical resistance and a membrane-electrode assembly (MEA) and a fuel cell using the polymer electrolyte membrane without sufficiently adding an auxiliary agent such as an antioxidant. can do.
  • MEA membrane-electrode assembly
  • the present invention relates to a fuel cell member (polymer electrolyte for a fuel cell), particularly a polymer capable of exhibiting excellent proton conductivity while having excellent water resistance when used as a proton conductive membrane. Can be provided. Such high proton conductivity and water resistance are expected to be useful even when the polymer of the present invention is applied to a catalyst layer of a fuel cell.
  • a fuel cell provided with a fuel cell member using the polymer of the present invention is extremely useful industrially because it exhibits high power generation efficiency.
  • the present invention also provides a polyarylene block copolymer that exhibits excellent radical resistance and high proton conductivity and excellent water resistance when used as a polymer electrolyte fuel cell member, particularly a polymer electrolyte membrane. provide.
  • the polyarylene block copolymer of the present invention is also suitable for use as a catalyst layer of a polymer electrolyte fuel cell. In particular, when the polymer electrolyte membrane is used in a fuel cell, one showing high power generation efficiency can be obtained.
  • the polyarylene-based block copolymer of the present invention has excellent radical resistance when used as a polymer electrolyte membrane (proton conducting membrane) of a polymer electrolyte fuel cell, and is excellent under high temperature and low humidification conditions.
  • a fuel cell exhibiting power generation characteristics is provided.
  • the operation of the polymer electrolyte fuel cell under high-temperature and low-humidification conditions can improve power generation efficiency, simplify the cooling device, the humidifying device, and the like.
  • the polyarylene block copolymer of the present invention is industrially extremely useful particularly in the use of fuel cells.
  • the polymer electrolyte membrane of the present invention includes a polymer electrolyte having an ion exchange group, and the polymer electrolyte membrane is immersed in a 5 mmol / L iron (II) chloride tetrahydrate aqueous solution at 25 ° C. for 1 hour, and then 25 ° C.
  • Sp is defined as the sum of the peak areas of the spectrum obtained by measuring the 13 C-solid state NMR spectrum of the polymer electrolyte membrane after the first immersion treatment that is dried at 10 hPa or less for 12 hours.
  • Such a polymer electrolyte membrane has a small uneven distribution of water in the membrane, water is uniformly dispersed, and has a sufficiently high radical resistance.
  • the Sp / Snp is 0.42 or less, preferably 0.35 or less, more preferably 0.25 or less, and further preferably 0.10 or less.
  • “Sp / Snp” is defined as “non-uniformity factor (H)” representing the non-uniformity of water in the film.
  • the total peak area of the spectrum is calculated using the trade name “TOPSPIN” manufactured by Bruker BioSpin, Inc., which is software capable of performing spectrum processing.
  • the polymer electrolyte constituting the polymer electrolyte membrane has an ion exchange group exhibiting proton conductivity, and when the polymer electrolyte membrane is produced, H, which is the heterogeneity factor, is represented by the above formula (I). It will not specifically limit if the relationship represented is satisfied, A fluorine-type polymer electrolyte and / or a hydrocarbon-type polymer electrolyte can be used individually or in combination of 2 or more types. Note that the hydrocarbon polymer electrolyte constituting the hydrocarbon polymer electrolyte membrane can further enjoy the effects of the present invention.
  • the radical resistance of the polymer electrolyte membrane is determined by immersing the polymer electrolyte membrane as described above, and measuring the 13 C-solid state NMR spectrum before and after the immersion treatment. ) "Can be used for evaluation.
  • the polymer electrolyte according to the present invention has an acidic ion exchange group (cation exchange group) or a basic ion exchange group (anion exchange group). From the viewpoint of obtaining high proton conductivity, the ion exchange group is preferably a cation exchange group.
  • a polymer electrolyte having a cation exchange group By using a polymer electrolyte having a cation exchange group, a fuel cell having further excellent power generation performance can be obtained.
  • the cation exchange group examples include a sulfonic acid group (—SO 3 H), a carboxyl group (—COOH), a phosphonic acid group (—P (O) (OH) 2 ), a hydroxyphosphoryl group (—P (O) ( OH)-), sulfonylimide group (-SO 2 NHSO 2- ), and phenolic hydroxyl group.
  • a sulfonic acid group or a phosphonic acid group is more preferable, and a sulfonic acid group is particularly preferable.
  • These ion exchange groups may be partially or wholly exchanged with metal ions or quaternary ammonium ions to form a salt, but when used as a fuel cell member, It is preferred that substantially all are in the free acid form.
  • the content of ion exchange groups in the polymer electrolyte greatly affects the ionic conductivity of the polymer electrolyte membrane, but the preferred content depends on the structure of the polymer electrolyte.
  • the amount of ion exchange groups introduced into the polymer electrolyte is preferably 0.5 to 6.0 meq / g, expressed as ion exchange capacity, and 1.5 to 5.0 meq / g. More preferably, it is g.
  • the ion exchange capacity of the polymer electrolyte is 0.5 meq / g or more, water content is high and sufficient ion (proton) conductivity can be obtained.
  • the ion exchange capacity is 6.0 meq / g or less, the water resistance in the case of a polymer electrolyte membrane tends to be improved.
  • the molecular weight of the polymer electrolyte is preferably 5000 to 1000000 and more preferably 15000 to 600000, when expressed in terms of polystyrene-reduced number average molecular weight. If it carries out like this, there exists a tendency for the intensity
  • the number average molecular weight is measured by gel permeation chromatography (GPC).
  • both a fluorine-based polymer electrolyte such as Nafion containing fluorine in the main chain structure and a hydrocarbon polymer electrolyte not containing fluorine in the main chain structure can be applied.
  • Based polymer electrolytes are preferred.
  • the polymer electrolyte may contain a combination of a fluorine-based material and a hydrocarbon-based material, but in this case, it is preferable to include a hydrocarbon-based material as a main component.
  • the hydrocarbon polymer electrolyte is preferably an aromatic polymer electrolyte having an aromatic ring in the main chain, and examples thereof include polyimide-based, polyarylene-based, polyethersulfone-based, and polyphenylene-based polymer electrolytes. These may be contained singly or in combination of two or more. Further, the ion exchange group is preferably directly bonded to the aromatic ring constituting the main chain of the aromatic polymer electrolyte.
  • the polymer electrolyte according to the present invention preferably contains a polymer having a structural unit having an ion exchange group and a structural unit not having an ion exchange group, because of excellent proton conductivity and mechanical strength. . Furthermore, a polymer in which at least one of the structural units having an ion exchange group has an aromatic group and at least one of the structural units having no ion exchange group has an aromatic group is preferable. As such a polymer, a polyarylene polymer is more preferable.
  • the polyarylene polymer has a form in which the aromatic rings constituting the main chain are substantially directly bonded to each other.
  • the bond other than the direct bond is a form in which the aromatic rings are bonded with a divalent atom or a divalent atomic group.
  • the amount of ion exchange groups is such that the proportion of structural units having an aromatic ring directly bonded with ion exchange groups in the main chain when the total of structural units constituting the polyarylene polymer is 100 mol%. It is preferably 20 mol% or more, more preferably 30 mol% or more, and more preferably 50 mol% or more.
  • the polyarylene polymer has a fluorine atom, a C 1-20 alkyl group which may have a substituent, or a substituent on a part or all of the aromatic ring constituting the main chain.
  • An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted aryloxy group having 6 to 20 carbon atoms And at least one group selected from the group consisting of an acyl group having 2 to 20 carbon atoms which may have a group and a substituent (hereinafter, sometimes referred to as “aromatic ring substituent”).
  • Examples of the optionally substituted alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, n -Pentyl group, 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group, 2-ethylhexyl group, nonyl group, dodecyl group, hexadecyl group, octadecyl group, icosyl group, etc.
  • Alkyl groups having 1 to 20 carbon atoms include fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group, etc. Examples thereof include an alkyl group which is substituted and has a total carbon number of 20 or less.
  • Examples of the optionally substituted alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec-butyloxy group, tert- Butyloxy, isobutyloxy, n-pentyloxy, 2,2-dimethylpropyloxy, cyclopentyloxy, n-hexyloxy, cyclohexyloxy, 2-methylpentyloxy, 2-ethylhexyloxy, dodecyl Alkoxy groups having 1 to 20 carbon atoms such as oxy group, hexadecyloxy group, icosyloxy group, and the like, fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group , Naphthyl group, phenoxy group, naphthyl
  • aryl groups such as a phenyl group, a naphthyl group, a phenanthrenyl group, and an anthracenyl group, and these groups include a fluorine atom, a hydroxyl group, and a nitrile.
  • Group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group and the like are substituted, and aryl groups having a total carbon number of 20 or less can be mentioned.
  • a certain aryloxy group is mentioned.
  • Examples of the optionally substituted acyl group having 2 to 20 carbon atoms include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group.
  • an acyl group having a total carbon number of 20 or less an acyl group having a total carbon number of 20 or less.
  • aryl groups such as phenyl group, naphthyl group, phenanthrenyl group, anthracenyl group, aryloxy groups such as phenoxy group, naphthyloxy group, phenanthrenyloxy group, anthracenyloxy group,
  • An acyl group having an aromatic ring such as a benzoyl group, a 1-naphthoyl group, or a 2-naphthoyl group is preferred because the heat resistance of the polymer tends to be good and a more practical fuel cell member can be obtained.
  • the polyarylene polymer has a structural unit having such an aromatic ring substituent and a structural unit having an ion exchange group, and the aromatic ring substituent and the ion exchange group in the same structural unit. And a polyarylene structure having a structural unit in which an ion exchange group is directly bonded to an aromatic ring constituting the main chain, and a polymer comprising such a structural unit, Also good.
  • the structural unit in which the ion exchange group is directly bonded to the aromatic ring constituting the main chain and the structural unit having no ion exchange group are separately provided, and these structural units are copolymerized. Form may be sufficient.
  • the copolymerization mode is not particularly limited, but random copolymerization is preferable in view of ease of polymer production and uniform dispersion of water in the polymer electrolyte membrane.
  • Examples of the structural unit in which the ion exchange group is directly bonded to the aromatic ring constituting the main chain include a structural unit represented by the following general formula (1).
  • Ar 1 represents a divalent aromatic group, and the divalent aromatic group is a fluorine atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent.
  • An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted aryl group having 6 to 20 carbon atoms It may have at least one group selected from the group consisting of an oxy group and an acyl group having 2 to 20 carbon atoms which may have a substituent.
  • Ar 1 is an aromatic group in which at least one ion exchange group is directly bonded to the aromatic ring constituting the main chain. Examples of the arbitrary group that Ar 1 may have, that is, the alkyl group, alkoxy group, aryl group, aryloxy group, and acyl group, are the same as those exemplified as the aromatic ring substituent. .
  • Ar 1 examples include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, 1, 5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, divalent condensed ring aromatic group such as 2,7-naphthalenediyl group, pyridinediyl Groups, divalent aromatic heterocyclic groups such as quinoxalinediyl group and thiophenediyl group.
  • a monocyclic aromatic group is preferable.
  • R 1 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, a substituted group.
  • p is an integer of 1 to 3
  • q is an integer of 0 to 3
  • p + q is 4 or less.
  • p representing the number of bonds of the sulfonic acid group is more preferably 1 or 2.
  • the method for introducing a sulfonic acid group is a method for polymerizing a monomer having a sulfonic acid group in advance, after the prepolymer is produced from the monomer having a site capable of introducing a sulfonic acid group,
  • the method of introducing may be used.
  • the former method is more preferable because the amount of sulfonic acid group introduced and the substitution position can be accurately controlled.
  • a part or all of the sulfonic acid group in this monomer can also be protected by a suitable protective group, and can also be made into a protected sulfonic acid group.
  • what has a sulfonic acid group can also be obtained by deprotecting the protection sulfonic acid group in the obtained polymer.
  • Ar 10 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, a substituted group.
  • 2 represents a divalent aromatic group that may have at least one group selected from the group consisting of acyl groups, and becomes a sulfonic acid group and / or a sulfonic acid group on the aromatic ring constituting the main chain.
  • One or a plurality of the resulting groups (sulfonic acid precursor groups) are bonded.
  • Q represents a group capable of leaving during the condensation reaction, and two Qs may be the same or different.
  • Ar 0 represents a divalent aromatic group
  • the divalent aromatic group is a fluorine atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, or a substituted group.
  • Ar 0 may have, that is, the examples of the alkyl group, alkoxy group, aryl group, aryloxy group, and acyl group are the same as those exemplified as the aromatic ring substituent. Is exemplified.
  • Q represents a group capable of leaving during the condensation reaction, and two Qs may be the same or different.
  • Q each independently represents a group capable of leaving during the condensation reaction, and specific examples thereof include halogen atoms such as chlorine atom, bromine atom and iodine atom, p-toluenesulfonyloxy And a group containing a boron atom represented by the following formula (4b): a group, a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group.
  • R a and R b each independently represent a hydrogen atom or a monovalent organic group, and R a and R b may be bonded to form a ring.
  • Examples of the monomer represented by the general formula (3) include 2,4-dichlorobenzenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, 3,5-dichlorobenzenesulfonic acid, and 2,4-dichloro-5- Methylbenzenesulfonic acid, 2,5-dichloro-4-methylbenzenesulfonic acid, 2,4-dichloro-5-methoxybenzenesulfonic acid, 2,5-dichloro-4-methoxybenzenesulfonic acid, 3,3'-dichloro Biphenyl-2,2′-disulfonic acid, 4,4′-dichlorobiphenyl-2,2′-disulfonic acid, 4,4′-dichlorobiphenyl-3,3′-disulfonic acid, 5,5′-dichlorobiphenyl- 2,2'-disulfonic acid is mentioned.
  • the sulfonic acid group of these monomers may form a salt, and those having a sulfonic acid precursor group instead of the sulfonic acid group can be used.
  • the counter ion is preferably an alkali metal ion, and particularly preferably Li ion, Na ion, or K ion.
  • the sulfonic acid precursor group those capable of becoming a sulfonic acid group by a simple operation such as hydrolysis treatment or oxidation treatment are preferable.
  • the polyarylene-based copolymer according to the present embodiment it is preferable from the viewpoint of polymerization reactivity to use a monomer having a sulfonic acid group in the form of a salt or a monomer having a sulfonic acid precursor group.
  • sulfonic acid precursor group examples include a sulfonic acid ester group (—SO 3 R c ; where R c represents an alkyl group having 1 to 20 carbon atoms) or a sulfonamide group (—SO 2 N (R d ) (R e ); where R d and R e each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic group having 3 to 20 carbon atoms).
  • R d and R e each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic group having 3 to 20 carbon atoms.
  • a form that is protected by forming is preferable.
  • sulfonic acid ester examples include sulfonic acid methyl ester, sulfonic acid ethyl ester group, sulfonic acid n-propyl ester, sulfonic acid isopropyl ester, sulfonic acid n-butyl ester group, sulfonic acid sec-butyl ester group, and sulfonic acid tert.
  • sulfonamide group examples include a sulfonamide group, N-methylsulfonamide group, N, N-dimethylsulfonamide group, N-ethylsulfonamide group, N, N-diethylsulfonamide group, and Nn- Propylsulfonamide group, di-n-propylsulfonamide group, N-isopropylsulfonamide group, N, N-diisopropylsulfonamide group, Nn-butylsulfonamide group, N, N-di-n-butylsulfonamide Group, N-sec-butylsulfonamide group, N, N-di-sec-butylsulfonamide group, N-tertbutylsulfonamide group, N, N-di-tert-butylsulfonamide group, Nn-pentyl Sulfonamide group, N-Neopentyls
  • a mercapto group can be used as the sulfonic acid precursor group.
  • Mercapto groups can be converted to sulfonic acid groups by oxidation using a suitable oxidizing agent.
  • the sulfonic acid precursor group the aforementioned sulfonic acid ester group, amide group, mercapto group, etc. can be used in combination.
  • the monomer represented by the general formula (5) and the monomer represented by the general formula (4) are copolymerized, and the structural unit represented by the following general formula (5a) and the above general formula (4a)
  • the polyarylene is also synthesized by a series of operations such as synthesizing a prepolymer having a structural unit represented by and introducing a sulfonic acid group into an aromatic ring constituting the main chain in the structural unit represented by the general formula (5a)
  • a copolymer can be produced.
  • Ar 2 has the same meaning as described above.
  • Ar 2 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted alkoxy group having 1 to 20 carbon atoms.
  • Group, an aryl group having 6 to 20 carbon atoms which may have a substituent, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and a carbon number which may have a substituent 2 represents a divalent aromatic group which may have at least one aromatic ring substituent selected from the group consisting of 2 to 20 acyl groups, and Ar 2 has a structure capable of introducing at least one sulfonic acid group. It is a divalent aromatic group.
  • divalent aromatic group examples include bivalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, and 1,4-naphthalene.
  • Divalent condensed ring aroma such as diyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group
  • divalent aromatic heterocyclic groups such as an aromatic group, a pyridinediyl group, a quinoxalinediyl group, and a thiophenediyl group.
  • alkyl group, alkoxy group, aryl group, aryloxy group, and acyl group are the same as those of the above aromatic ring substituent.
  • the structure capable of introducing a sulfonic acid group in Ar 2 has a functional group capable of introducing a sulfonic acid group, such as a hydrogen atom directly bonded to an aromatic ring.
  • a functional group capable of introducing a sulfonic acid group such as a hydrogen atom directly bonded to an aromatic ring.
  • the monomer represented by the general formula (5) examples include 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,3-dichloro-4-methoxybenzene, 1,4-dichloro- 3-methoxybenzene, 4,4′-dichlorobiphenyl, 4,4′-dichloro-3,3′-dimethylbiphenyl, 4,4′-dichloro-3,3′-dimethoxybiphenyl, 1,4-dichloronaphthalene, Examples include 1,5-dichloronaphthalene, 2,6-dichloronaphthalene, and 2,7-dichloronaphthalene.
  • monomers in which the chloro group in these monomers is substituted with a group capable of leaving during the condensation reaction exemplified above can also be used.
  • the obtained prepolymer is dissolved or dispersed in concentrated sulfuric acid, or at least partially dissolved in an organic solvent.
  • a method of converting a hydrogen atom into a sulfonic acid group by reacting concentrated sulfuric acid, chlorosulfuric acid, fuming sulfuric acid, sulfur trioxide and the like.
  • Examples of structural units constituting the polyarylene-based copolymer include structural units represented by the following chemical formulas (6-1) to (6-12) as examples having a sulfonic acid group as an ion exchange group.
  • structural unit having an aromatic ring substituent include structural units represented by the following chemical formulas (6-13) to (6-32), respectively.
  • the polymer electrolyte membrane of the present invention is further excellent in radical resistance by using the polyarylene copolymer as described above as the polymer electrolyte.
  • aromatic ring substituents due to these aromatic ring substituents, when the polymer electrolyte membrane of the present invention is used as a fuel cell member such as a proton conductive membrane, the water resistance of the member is highly expressed.
  • aromatic ring substituents aryl groups such as phenyl group, naphthyl group, phenanthrenyl group, anthracenyl group, aryloxy groups such as phenoxy group, naphthyloxy group, phenanthrenyloxy group, anthracenyloxy group,
  • the acyl group has an aromatic ring such as a benzoyl group, 1-naphthoyl group, or 2-naphthoyl group, the heat resistance of the polymer electrolyte membrane tends to be good, and a more practical fuel cell member can be obtained. Therefore, it is preferable.
  • an acyl group having an aromatic ring is particularly useful among such aromatic ring substituents.
  • a polymer electrolyte containing a polymer having such an acyl group as an aromatic ring substituent tends to exhibit better proton conductivity. Although this cause is not certain, it is estimated that the ionic dissociation property of the sulfonic acid group in the polymer is increased due to the electron withdrawing property of the acyl group.
  • the two structural units having the acyl group are adjacent to each other, and the acyl groups in the two structural units are bonded to each other. There may be a rearrangement reaction after bonding to each other. Whether or not such a reaction that the aromatic ring substituents are bonded to each other or a rearrangement reaction is generated after the bonding can be confirmed by, for example, measurement of 13 C-nuclear magnetic resonance spectrum.
  • the polymer electrolyte according to the present invention has a block having an ion exchange group and a block substantially not having an ion exchange group, and the main chain of the block having an ion exchange group is substantially
  • a polyarylene block copolymer having a polyarylene structure in which a plurality of aromatic rings are directly connected may be used.
  • the ion exchange group is directly bonded to the aromatic ring constituting the main chain, and specific examples of such a structural unit include those described above.
  • substantially free of ion exchange groups means that the number of ion exchange groups per repeating unit of the block is approximately 0.1 or less.
  • the “polyarylene structure” is a form in which the aromatic rings constituting the main chain are substantially directly bonded to each other. Specifically, the total number of bonds between the aromatic rings is 100. %, The direct bond ratio is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
  • the bond other than the direct bond is a form in which the aromatic rings are bonded with a divalent atom or a divalent atomic group.
  • n in the general formula (7) represents an integer of 3 or more and 45 or less, preferably 40 or less, more preferably 35 or less, and further preferably 20 or less. Further, n is preferably 6 or more, more preferably 11 or more, and further preferably 15 or more.
  • Ar 3 and Ar 4 in the general formula (7) each independently represent an arylene group.
  • the arylene group include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, Divalent condensed aromatic groups such as, 5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, And divalent aromatic heterocyclic groups such as pyridinediyl group, quinoxalinediyl group, and thiophenediyl group.
  • a divalent monocyclic aromatic group is preferred.
  • Ar 3 and Ar 4 may have at least one substituent selected from the group consisting of the above aromatic ring substituents.
  • X in the general formula (7) represents either a carbonyl group (—C ( ⁇ O) —) or a sulfonyl group (—S ( ⁇ O) 2 —).
  • Y represents either an oxygen atom (—O—) or a sulfur atom (—S—).
  • the block having substantially no ion exchange group is composed of the following general formula (8).
  • n is as defined above.
  • n and Q are as defined above.
  • the polymer electrolyte membrane is manufactured by a coating process in which a solution containing the polymer electrolyte is applied onto a predetermined substrate, and a solvent removal process in which the solvent is removed from the film of the applied solution (coating film). Can do.
  • Application of the solution containing the polymer electrolyte in the coating step onto the substrate can be performed by, for example, a casting method, a dip method, a grade coating method, a spin coating method, a gravure coating method, a flexographic printing method, an inkjet method, or the like. .
  • the solvent removal step the removal of the solvent from the coating film is relatively uniform, and the distribution of the residual solvent amount in the surface of the coating film maintains a more uniform state.
  • the coating conditions in the coating process are optimized.
  • the casting method is a method that has been widely used in the art for the production of polymer electrolyte membranes, and is particularly useful industrially.
  • the above polymer electrolyte is dissolved in a solvent to prepare a polymer electrolyte solution.
  • other components such as other polymers and additives may be added.
  • the material of the base material on which the solution is applied is preferably chemically stable and insoluble in the solvent used. Furthermore, as the substrate, it is more preferable that after the polymer electrolyte membrane is formed, the obtained membrane can be easily washed and the membrane can be easily peeled off. Examples of such a substrate include plates and films made of glass, polytetrafluoroethylene, polyethylene, polyester (polyethylene terephthalate, etc.).
  • the base material it is preferable to use a long one that is seamless in the surface direction.
  • a base material having a seam is used, it is difficult to obtain a coating film having a uniform film thickness, and as a result, there may be a disadvantage that the evaporation of the solvent in the evaporation step is relatively non-uniform in the surface.
  • a long base material is used, a long polymer electrolyte membrane can be easily formed, so that productivity is good and industrially advantageous.
  • a material having no seam is preferable as the base material.
  • a length of at least one direction is preferably 1 m or more, more preferably 5 m or more, and still more preferably 10 m or more. In this way, the productivity of the polymer electrolyte membrane can be further improved.
  • the solvent is not particularly limited as long as it can dissolve the polymer electrolyte and can be removed thereafter.
  • the solvent include aprotic polar solvents such as dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), or dichloromethane, chloroform, 1,2- Chlorinated solvents such as dichloroethane, chlorobenzene and dichlorobenzene, alcohols such as methanol, ethanol and propanol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Are preferably used.
  • aprotic polar solvents such as dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (
  • a solvent can also be used individually by 1 type or in mixture of 2 or more types.
  • DMSO, DMF, DMAc, NMP, or a mixed solvent composed of two or more selected from these is preferably used since the solubility of the polymer electrolyte is high.
  • the thickness (film thickness) of the polymer electrolyte membrane is not particularly limited, but is preferably 1 to 300 ⁇ m, more preferably 5 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m in a practical range as a proton conductive membrane (membrane) for fuel cells. Further preferred. A film having a thickness of 1 ⁇ m or more is preferable because of its excellent practical strength, and a film having a thickness of 300 ⁇ m or less is preferable because the film resistance itself tends to be small.
  • the film thickness can be controlled by the concentration of the polymer electrolyte solution and the coating thickness of the polymer electrolyte membrane precursor on the support substrate.
  • a polymer electrolyte solution may be prepared by adding additives such as plasticizers, stabilizers, mold release agents and the like used in ordinary polymers.
  • additives such as plasticizers, stabilizers, mold release agents and the like used in ordinary polymers.
  • inorganic or organic fine particles are added as a water retention agent in order to facilitate water management in fuel cell applications. Any of these known methods can be used as long as they are not contrary to the object of the present invention.
  • the polymer electrolyte membrane thus obtained may be subjected to a treatment such as irradiation with an electron beam or radiation for the purpose of improving its mechanical strength.
  • the water absorption rate of the polymer electrolyte membrane is high, there is a possibility of damage to the fuel cell due to the water absorption expansion of the membrane when driving the battery fuel, so it is preferably 340% or less. , 300% or less is more preferable, 250% or less is further preferable, and 200% or less is very preferable.
  • the polymer of the present invention has a polyarylene structure in which the main chain is substantially composed of a plurality of aromatic rings connected by direct bonds, and is directly bonded to a part or all of the aromatic rings constituting the main chain. Characterized in that the amount of the sulfonic acid group exceeds 3.0 meq / g in terms of the number of equivalent sulfonic acid groups per unit weight of the polymer, that is, the ion exchange capacity. . The ion exchange capacity is measured by the ion exchange capacity measurement described below. Further, the sulfonic acid group in the present invention means a group represented by —SO 3 H when expressed in the form of a free acid.
  • the polymer used for the measurement is formed into a polymer film by solution casting, and the formed polymer film is cut to an appropriate weight, and the dry weight of the cut polymer film is set at a heating temperature of 105 ° C. Measure using a moisture meter. Next, after immersing this membrane in 5 mL of 0.1 mol / L sodium hydroxide aqueous solution, 50 mL of ion-exchanged water is further added and left for 2 hours.
  • titration was performed by gradually adding 0.1 mol / L hydrochloric acid to the solution in which the polymer film was immersed to determine the neutralization point, and the dry weight and neutralization of the used polymer film (the cut polymer film)
  • the ion exchange capacity (unit: meq / g) of the polymer is calculated from the amount of hydrochloric acid required for.
  • the polymer of the present invention has a fluorine atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent on a part or all of the aromatic ring constituting the main chain.
  • such a fluorine atom an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • a group selected from the group consisting of is called an “aromatic ring substituent”.
  • the polymer of the present invention is a form in which the aromatic rings constituting the main chain are bonded by a substantially direct bond, and the direct bond with respect to the total number of bonds of the aromatic rings constituting the polymer main chain.
  • a higher ratio is preferable because water resistance tends to be improved.
  • the ratio of direct bonds is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
  • the bond other than the direct bond is a form in which the aromatic rings are bonded with a divalent atom or a divalent atomic group.
  • the present inventor believes that the sulfonic acid group in the polymer is directly bonded to the aromatic ring constituting the main chain of the polymer, and is bonded to the aromatic ring constituting the main chain of the polymer by an appropriate linking group. It has been found that it is advantageous in terms of achieving both high proton conductivity and excellent water resistance. Therefore, among the structural units having a sulfonic acid group in the polymer, the larger the proportion of the structural unit in which the sulfonic acid group is directly bonded to the aromatic ring constituting the main chain, the sulfonic acid group equivalent, that is, the ion exchange capacity. Even if it is increased, there is a tendency that a proton conductive membrane excellent in water resistance can be obtained.
  • the amount of sulfonic acid groups is determined so that the ion exchange capacity of the polymer exceeds 3.0 meq / g.
  • the proportion of the structural units having an aromatic ring directly bonded to the sulfonic acid group in the main chain is preferably 20 mol% or more, and 30 mol % Or more, more preferably 50 mol% or more.
  • These sulfonic acid groups may be partially or entirely exchanged with metal ions or quaternary ammonium ions to form a salt, but when used as a fuel cell member, It is preferred that substantially all are in the free acid form.
  • the polymer of the present invention has an aromatic ring substituent in a part or all of the aromatic rings constituting the main chain.
  • the aromatic ring substituent include, for example, an optionally substituted alkyl group having 1 to 20 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec -Butyl group, isobutyl group, n-pentyl group, 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group, 2-ethylhexyl group, nonyl group, dodecyl group, hexadecyl group Alkyl groups having 1 to 20 carbon atoms such as octadecyl group and icosyl group, and these groups include fluorine atom, hydroxyl group, nitrile group, amino
  • Examples of the optionally substituted alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec-butyloxy group, tert-butyloxy group.
  • An amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, a naphthyl group, a phenoxy group, a naphthyloxy group and the like are substituted, and an aryl group having a total carbon number of 20 or less can be mentioned.
  • acyl group having 2 to 20 carbon atoms examples include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, 1-naphthoyl group and 2-naphthoyl group.
  • Acyl groups having 2 to 20 carbon atoms, and these groups include fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group, etc.
  • An acyl group which is substituted and has a total carbon number of 20 or less can be mentioned.
  • aromatic ring substituents due to these aromatic ring substituents, when the polymer of the present invention is used as a fuel cell member such as a proton conductive membrane, the water resistance of the member is highly expressed.
  • aromatic ring substituents aryl groups such as phenyl group, naphthyl group, phenanthrenyl group, anthracenyl group, aryloxy groups such as phenoxy group, naphthyloxy group, phenanthrenyloxy group, anthracenyloxy group,
  • An acyl group having an aromatic ring such as a benzoyl group, a 1-naphthoyl group, or a 2-naphthoyl group is preferred because the heat resistance of the polymer tends to be good and a more practical fuel cell member can be obtained.
  • an acyl group having an aromatic ring is particularly useful among such aromatic ring substituents.
  • the polymer of the present invention having such an acyl group as an aromatic ring substituent tends to develop better proton conductivity. Although this cause is not certain, it is estimated that the ionic dissociation property of the sulfonic acid group in a polymer becomes high by the electron withdrawing property of the acyl group.
  • the two structural units having the acyl group are adjacent to each other, and the acyl groups in the two structural units are bonded to each other. After bonding, a rearrangement reaction may occur.
  • the aromatic ring substituent after bonding may have an alkyl group having 1 to 20 carbon atoms, An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted group having 6 to 20 carbon atoms.
  • An optionally substituted alkoxy group having 1 to 20 carbon atoms an optionally substituted aryl group having 6 to 20 carbon atoms
  • an optionally substituted group having 6 to 20 carbon atoms A case where it corresponds to either an aryloxy group or an optionally substituted acyl group having 2 to 20 carbon atoms is included in the polymer of the present invention.
  • whether or not such a reaction that the aromatic ring substituents are bonded to each other or a rearrangement reaction occurs after the bonding can be confirmed by measuring, for example, a 13 C-nuclear magnetic resonance spectrum. .
  • the polymer of the present invention is a polymer having a polyarylene structure containing such a structural unit having an aromatic ring substituent and a structural unit having a sulfonic acid group, and the same structural unit has an aromatic ring substituent and It may have a polyarylene structure having a sulfonic acid group and a structural unit in which the sulfonic acid group is directly bonded to the aromatic ring constituting the main chain.
  • non-sulfonic acid structural unit a structural unit in which a sulfonic acid group is directly bonded to an aromatic ring constituting the main chain, and a structural unit having no sulfonic acid group (hereinafter referred to as “non-sulfonic acid structural unit”).
  • the structural unit may have an aromatic ring substituent), and these structural units may be copolymerized.
  • the copolymerization mode is not particularly limited, but the copolymerization mode is random copolymerization in that the polymer of the present invention can be produced more easily. Preferably there is.
  • Examples of the structural unit in which the sulfonic acid group is directly bonded to the aromatic ring constituting the main chain include the following formula (A-1).
  • Ar 1 represents a divalent aromatic group.
  • the divalent aromatic group includes a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • Ar 1 is an aromatic group in which at least one sulfonic acid group is directly bonded to the aromatic ring constituting the main chain.
  • a sulfonic acid group is directly bonded to an aromatic ring of a monocyclic aromatic group such as a 1,3-phenylene group or a 1,4-phenylene group.
  • Aromatic groups, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalene group Aromatic groups such as diyl group, 2,7-naphthalenediyl group and other condensed ring aromatic groups in which a sulfonic acid group is directly bonded to an aromatic ring, pyridinediyl group, quinoxaline diyl group, thiophene diyl group and the like
  • An aromatic group in which a sulfonic acid group is directly bonded to the aromatic ring of the aromatic heterocyclic group, or an aromatic group having an aromatic ring substituent can
  • Ar 1 is an aromatic group in which a sulfonic acid group is directly bonded to the monocyclic aromatic group or an aromatic ring of the monocyclic aromatic group, or the monocyclic aromatic group.
  • an aromatic group in which a sulfonic acid group is directly bonded to the aromatic ring of the monocyclic aromatic group and further has an aromatic ring substituent is preferable.
  • Ar 1 includes an aromatic group in which a sulfonic acid group is directly bonded to the aromatic ring of the monocyclic aromatic group, or the monocyclic aromatic group.
  • An aromatic group in which a sulfonic acid group is directly bonded and further has an aromatic ring substituent is preferable.
  • the structural unit represented by the formula (A-1) having a suitable monocyclic aromatic group preferably includes a structural unit represented by the following formula (A-2).
  • a structural unit has the advantage that, in the production of the polymer of the present invention, which will be described later, raw materials that can be easily obtained from the market can be used, or the production itself of the raw materials used in the production of the polymer is easy. is there.
  • the structural unit represented by the formula (A-2) has a small molar weight, the molar weight per sulfonic acid group is also small, so that the ion exchange capacity of the polymer of the present invention is 3.0 meq / g.
  • the structural unit represented by the formula (A-2) is also advantageous in that it can be easily exceeded.
  • R 1 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted alkoxy group having 1 to 20 carbon atoms.
  • An aryl group having 6 to 20 carbon atoms which may have a substituent, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, or 2 carbon atoms which may have a substituent Represents an acyl group of ⁇ 20.
  • p is an integer of 1 to 3
  • q is an integer of 0 to 3
  • p + q is an integer of 4 or less.
  • p representing the number of bonds of the sulfonic acid group is more preferably 1 or 2.
  • examples of the group represented by R 1 in the formula (A-2), that is, an alkyl group, an alkoxy group, an aryl group, and an acyl group are the same as those exemplified as the aromatic ring substituent.
  • R 1 is preferably selected so as not to inhibit the polymerization reaction in the polymer production (polymerization reaction) described later.
  • the polymer of the present invention has an ion exchange capacity exceeding 3.0 meq / g, and the ion exchange capacity is preferably 3.1 meq / g or more, and 3.2 meq. / G or more is more preferable.
  • the upper limit of the ion exchange capacity is determined by the type of structural units constituting the polymer of the present invention, but is preferably 6.0 meq / g or less, and is 5.0 meq / g or less. And more preferred. When the upper limit of the ion exchange capacity is within this range, the production of the polymer itself is easy, and the water resistance can be further improved.
  • the method for measuring the ion exchange capacity is as described above.
  • the molecular weight of the polymer of the present invention is preferably from 5,000 to 1,000,000, particularly preferably from 15,000 to 600,000, expressed as a number average molecular weight in terms of polystyrene.
  • the introduction method of a sulfonic acid group is a method of polymerizing a monomer having a sulfonic acid group (or sulfonic acid precursor group) in advance, a prepolymer is produced from a monomer having a site capable of introducing a sulfonic acid group.
  • a method of introducing a sulfonic acid group into the site where the prepolymer can be introduced may be used.
  • the former method is more preferable because the amount of sulfonic acid group introduced and the substitution position can be accurately controlled.
  • the sulfonic acid group may be in the form of a free acid or in the form of forming a salt. Further, it may be a sulfonic acid precursor group that can be easily converted into a sulfonic acid group by hydrolysis treatment or the like. The details of the sulfonic acid precursor group here will be described later.
  • the polymer of the present invention can be produced, for example, by polymerizing a monomer represented by the following formula (A-3) by a condensation reaction in the presence of a zero-valent transition metal complex.
  • A-3 a monomer represented by the following formula (A-3)
  • Ar 10 has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. From an optionally substituted aryl group having 6 to 20 carbon atoms, an optionally substituted aryloxy group having 6 to 20 carbon atoms, and an optionally substituted acyl group having 2 to 20 carbon atoms.
  • a divalent aromatic group optionally having at least one group selected from the group consisting of a sulfonic acid group and / or a sulfonic acid precursor group bonded to an aromatic ring constituting the main chain .
  • Q represents a leaving group, and two Qs may be the same or different.
  • the resulting polymer is a combination of a sulfonic acid group and an aromatic ring substituent.
  • the first monomer for deriving the structural unit having a sulfonic acid group as shown below, A method of separately preparing the second monomer for deriving the sulfonic acid structural unit and copolymerizing them is preferable because it is simple.
  • Ar 0 represents a divalent aromatic group, wherein the divalent aromatic group is a fluorine atom or an alkyl having 1 to 20 carbon atoms which may have a substituent.
  • the divalent aromatic group is a fluorine atom or an alkyl having 1 to 20 carbon atoms which may have a substituent.
  • aromatic ring substituents are the same as those described above.
  • the definition of Q is the same as in the above formula (A-3), and in the formula (A-4), two Qs may be the same or different from each other.
  • the monomer represented by the formula (A-3) and the monomer represented by the formula (A-4) are copolymerized and, if necessary, the sulfonic acid precursor group is converted into a sulfonic acid group
  • the obtained polymer has a structural unit represented by the formula (A-3a) and a structural unit represented by the formula (A-4a), and Ar 10 and Ar 0 are linked by a direct bond.
  • a polymer having a structure is obtained.
  • Ar 10 has the same meaning as described above.
  • Ar 0 is as defined above.
  • Q in formula (A-3) and formula (A-4) represents a leaving group, and specific examples thereof include, for example, halogen atoms such as chlorine atom, bromine atom and iodine atom, p-toluenesulfonyloxy, etc. Groups, methanesulfonyloxy groups, trifluoromethanesulfonyloxy groups, groups containing boron atoms as shown below, and the like.
  • R a and R b each independently represent a hydrogen atom or an organic group, and R a and R b may be bonded to form a ring.
  • Examples of the monomer represented by the formula (A-3) include 2,4-dichlorobenzenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, 3,5-dichlorobenzenesulfonic acid, and 2,4-dichloro-5.
  • the sulfonic acid group of these monomers may form a salt, and those having a sulfonic acid precursor group instead of the sulfonic acid group can be used.
  • the counter ion is preferably an alkali metal ion, and particularly preferably Li ion, Na ion, or K ion.
  • the sulfonic acid precursor group those capable of becoming a sulfonic acid group by a simple operation such as hydrolysis treatment or oxidation treatment are preferable.
  • a monomer having a sulfonic acid group in the form of a salt or a monomer having a sulfonic acid precursor group it is preferable from the viewpoint of polymerization reactivity to use a monomer having a sulfonic acid group in the form of a salt or a monomer having a sulfonic acid precursor group.
  • sulfonic acid precursor group examples include a sulfonic acid ester group (—SO 3 R c ; where R c represents an alkyl group having 1 to 20 carbon atoms) or a sulfonamide group (—SO 2 N (R d ) (R e ); where R d and R e each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic group having 3 to 20 carbon atoms). Groups that are protected by forming are preferred.
  • sulfonic acid ester group examples include a sulfonic acid methyl ester group, a sulfonic acid ethyl ester group, a sulfonic acid n-propyl ester group, a sulfonic acid isopropyl ester group, a sulfonic acid n-butyl ester group, and a sulfonic acid sec-butyl ester group.
  • sulfonamide group examples include a sulfonamide group, N-methylsulfonamide group, N, N-dimethylsulfonamide group, N-ethylsulfonamide group, N, N-diethylsulfonamide group, and Nn- Propylsulfonamide group, di-n-propylsulfonamide group, N-isopropylsulfonamide group, N, N-diisopropylsulfonamide group, Nn-butylsulfonamide group, N, N-di-n-butylsulfonamide Group, N-sec-butylsulfonamide group, N, N-di-sec-butylsulfonamide group, N-tertbutylsulfonamide group, N, N-di-tert-butylsulfonamide group, Nn-pentyl Sulfonamide group, N-Neopentyls
  • a mercapto group can be used as the sulfonic acid precursor group.
  • Mercapto groups can be readily converted to sulfonic acid groups by oxidation using a suitable oxidizing agent.
  • This method is a method for producing a polymer of the present invention by producing a prepolymer having a site capable of introducing a sulfonic acid group in advance, and introducing a sulfonic acid group into the site where the prepolymer can be introduced.
  • the monomer represented by the following formula (A-5) and, if necessary, a monomer having no sulfonic acid group are copolymerized by a condensation reaction, and then a sulfonic acid group is introduced according to a known method. Can be manufactured.
  • Ar 2 represents a divalent aromatic group that can be converted to Ar 1 in the above formula (A-1) by introducing a sulfonic acid group, Q is as defined above, Two Qs may be the same or different. ]
  • the monomer represented by the formula (A-5) and the monomer represented by the formula (A-4) are copolymerized, and the structural unit represented by the following formula (A-5a) -4a) together with a structural unit represented by formula (A-5a), and introducing a sulfonic acid group into the aromatic ring constituting the main chain in the structural unit represented by formula (A-5a)
  • the polymer of the present invention can also be produced by a series of operations.
  • Ar 2 has the same meaning as described above. ]
  • Ar 2 may be an aromatic group having the above aromatic ring substituent.
  • Ar 2 is a divalent aromatic group having a structure capable of introducing at least one sulfonic acid group.
  • the divalent aromatic group include monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group condensed ring aromatic group, pyridinediyl group And aromatic heterocyclic groups such as quinoxalinediyl group and thiophenediyl group.
  • the structure capable of introducing a sulfonic acid group in Ar 2 has a functional group capable of introducing a sulfonic acid group, such as a hydrogen atom directly bonded to an aromatic ring.
  • a functional group capable of introducing a sulfonic acid group such as a hydrogen atom directly bonded to an aromatic ring.
  • the monomer represented by the formula (A-5) include, for example, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,3-dichloro-4-methoxybenzene, 1,4-dichloro -3-methoxybenzene, 4,4'-dichlorobiphenyl, 4,4'-dichloro-3,3'-dimethylbiphenyl, 4,4'-dichloro-3,3'-dimethoxybiphenyl, 1,4-dichloronaphthalene 1,5-dichloronaphthalene, 2,6-dichloronaphthalene, 2,7-dichloronaphthalene, etc., and the chlorine atom in these monomers is a group other than the chlorine atom among the leaving groups exemplified above.
  • a monomer substituted with a group substituted with can also be used.
  • the obtained prepolymer was dissolved or dispersed in concentrated sulfuric acid, or at least partially dissolved in an organic solvent. Thereafter, a method of converting a hydrogen atom into a sulfonic acid group by reacting concentrated sulfuric acid, chlorosulfuric acid, fuming sulfuric acid, sulfur trioxide and the like can be mentioned.
  • the polymer of the present invention for example, the polymer having the structural unit represented by the above formula (A-3a) and the structural unit represented by the above formula (A-4a)
  • the polymer of the present invention can be produced.
  • Description of polymerization (condensation reaction) for producing a prepolymer for example, a prepolymer having a structural unit represented by the above formula (A-5a) and a structural unit represented by the above formula (A-4a)
  • the polymer of the present invention and the prepolymer capable of producing the polymer of the present invention may be collectively referred to as “polymers”.
  • the polymerization forming the polyarylene structure is a condensation polymerization performed in the presence of a zero-valent transition metal complex.
  • Polymerization in the presence of the zero-valent transition metal complex has the advantage that a polyarylene structure can be formed relatively easily.
  • the zero-valent transition metal complex is a transition metal in which a halogen or a ligand described below is coordinated, and preferably has at least one ligand described below.
  • the zero-valent transition metal complex may be a commercially available product that can be obtained from the market or a synthesized product.
  • the zero-valent transition metal complex may be synthesized by a known method such as a method of reacting a transition metal salt or transition metal oxide with a ligand.
  • the synthesized zero-valent transition metal complex may be used after being purified by an appropriate method, or may be used in situ without being purified.
  • Examples of the ligand include acetate, acetylacetonate, 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N′N′-tetramethylethylenediamine, triphenylphosphine, and tolylyl.
  • Examples include phosphine, tributylphosphine, triphenoxyphosphine, 1,2-bisdiphenylphosphinoethane, and 1,3-bisdiphenylphosphinopropane.
  • the zero-valent transition metal complex examples include a zero-valent nickel complex, a zero-valent palladium complex, a zero-valent platinum complex, and a zero-valent copper complex.
  • a zero-valent nickel complex and a zero-valent palladium complex are preferably used, and a zero-valent nickel complex is more preferably used.
  • Examples of the zerovalent nickel complex include bis (1,5-cyclooctadiene) nickel (0), (ethylene) bis (triphenylphosphine) nickel (0), and tetrakis (triphenylphosphine) nickel.
  • Bis (1,5-cyclooctadiene) nickel (0) is preferably used in terms of reactivity, yield of the obtained polymer and the like and increase in the molecular weight of the obtained polymer and the like.
  • Examples of the zero-valent palladium complex include tetrakis (triphenylphosphine) palladium (0).
  • Zero-valent transition metal complexes may be synthesized and used as described above, or commercially available products may be used.
  • a monovalent or polyvalent transition metal compound can also be produced with a metal valence of zero by the action of a reducing agent such as zinc or magnesium.
  • divalent transition metal compound As the transition metal compound used when generating the zero-valent transition metal complex by the action of the reducing agent.
  • divalent nickel compounds and divalent palladium compounds are preferred.
  • the divalent nickel compound include nickel chloride, nickel bromide, nickel iodide, nickel acetate, nickel acetylacetonate, nickel chloride bis (triphenylphosphine), nickel bromide bis (triphenylphosphine), nickel iodide bis ( Triphenylphosphine), and examples of the divalent palladium compound include palladium chloride, palladium bromide, palladium iodide, and palladium acetate.
  • Examples of the reducing agent include zinc, magnesium, sodium hydride, hydrazine and its derivatives, and lithium aluminum hydride. If necessary, ammonium iodide, trimethylammonium iodide, triethylammonium iodide, lithium iodide, sodium iodide, or potassium iodide can be used in combination.
  • a compound that can be a ligand of the used zero-valent transition metal complex from the viewpoint of improving the yield of the obtained polymer or the like.
  • the compound to be added may be the same as or different from the ligand of the zero-valent transition metal complex used.
  • Examples of the compound that can be a ligand include the compounds exemplified above as the ligand, versatility, economy, reactivity, yield of the obtained polymer, etc., high molecular weight of the obtained polymer, etc.
  • triphenylphosphine and 2,2′-bipyridyl are preferred.
  • 2,2'-bipyridyl is particularly advantageous in terms of improving the yield of polymers and the like and increasing the molecular weight.
  • the addition amount of the ligand is usually about 0.2 to 10 mole times, preferably about 1 to 5 mole times based on the transition metal atom in the zero-valent transition metal complex.
  • the amount of the zero-valent transition metal complex used is the monomer represented by the formula (A-3), the monomer represented by the formula (A-4), and the monomer represented by the formula (A-5) used for the production of polymers and the like. Is 0.1 mol times or more with respect to the total molar amount (hereinafter referred to as “total molar amount of all monomers”). If the amount used is too small, the molecular weight tends to be small, so it is preferably 1.5 mole times or more, more preferably 1.8 mole times or more, and even more preferably 2.1 mole times or more. On the other hand, the upper limit of the amount used is not particularly limited, but if the amount used is too large, the post-treatment may become complicated, and thus it is preferably 5.0 moles or less.
  • the use amount of the transition metal compound and the reducing agent is set so that the generated zero-valent transition metal complex falls within the above range.
  • the amount of the transition metal compound may be 0.01 mol times or more, preferably 0.03 mol times or more with respect to the total molar amount of all monomers.
  • the upper limit of the amount used is not limited, but if the amount used is too large, the post-treatment tends to be complicated, and therefore it is preferably 5.0 mole times or less.
  • the usage-amount of a reducing agent should just be 0.5 mol times or more with respect to the total molar amount of all the monomers, Preferably it is 1.0 mol times or more.
  • the upper limit of the amount used is not limited, but if the amount used is too large, the post-treatment may become complicated, and therefore it is preferably 10 mol times or less.
  • the reaction temperature is usually about 20 ° C. to 200 ° C., preferably about 20 ° C. to 100 ° C.
  • the reaction time is usually about 0.5 to 24 hours.
  • the method of mixing the monomer may be a method of adding one to the other or a method of adding both to the reaction vessel at the same time. When adding, it may be added all at once, but it is preferable to add little by little in consideration of heat generation, and it is also preferable to add in the coexistence of a solvent, and a suitable solvent in this case will be described later.
  • the condensation reaction is preferably carried out in the presence of a solvent from the viewpoint of satisfactorily preventing exothermic heat generation as described above.
  • a solvent examples include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide and the like.
  • Aprotic polar solvents aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, benzene, n-butylbenzene; ether solvents such as tetrahydrofuran, 1,4-dioxane, dibutyl ether, tert-butyl methyl ether; acetic acid Examples include ester solvents such as ethyl, butyl acetate and methyl benzoate; alkyl halide solvents such as chloroform and dichloroethane.
  • the description in parenthesis shows the abbreviation of a solvent, and this abbreviation may be used in the description mentioned later.
  • a solvent in which the polymer etc. can be sufficiently dissolved In order to increase the molecular weight of the polymer to be produced, it is desirable to use a solvent in which the polymer etc. can be sufficiently dissolved. Therefore, tetrahydrofuran, 1,4-dioxane, DMF, which are good solvents for the polymer to be produced, are used. , DMAc, NMP, DMSO, and toluene are preferred. These may be used in combination of two or more. Among these, at least one solvent selected from the group consisting of DMF, DMAc, NMP and DMSO, or a mixture of two or more solvents selected from these is preferably used.
  • the amount of the solvent is not particularly limited, but if the concentration is too low, it may be difficult to recover the produced polymer or the like, and if the concentration is too high, stirring may be difficult.
  • Total weight of monomers (monomers selected from the monomer represented by formula (A-3), the monomer represented by formula (A-4) and the monomer represented by formula (A-5)) used in the production of polymers and the like Based on the above, the amount of the solvent used is determined so that the weight ratio of the solvent is preferably 99.95 to 50% by weight, more preferably 99.9 to 75% by weight.
  • the polymer of the present invention or the prepolymer that can be the polymer of the present invention is obtained, a conventional method can be applied to take out the produced polymer from the reaction mixture.
  • a polymer or the like can be precipitated by adding a poor solvent, and the target product can be taken out by filtration or the like.
  • it can also refine
  • the sulfonic acid group of the produced polymer is in the form of a salt, it is preferable to convert the sulfonic acid group into a free acid form for use as a fuel cell member, and the conversion to the free acid form is usually acidic. It can be carried out by washing with a solution.
  • the acid used include hydrochloric acid, sulfuric acid, and nitric acid, and dilute hydrochloric acid and dilute sulfuric acid are preferable.
  • the protected sulfonic acid group can be converted to a sulfonic acid group in a free acid form for use as a fuel cell member. is necessary.
  • Such conversion to a sulfonic acid group can be carried out by hydrolysis with an acid / base or deprotection reaction with a halide.
  • a base When a base is used, it is possible to form a sulfonic acid group in the form of a free acid by washing the acidic solution as described above.
  • the acid / base used include hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, and potassium hydroxide.
  • halide examples include lithium bromide, sodium iodide, tetramethylammonium chloride, and tetrabutylammonium bromide, preferably lithium bromide and tetrabutylammonium bromide.
  • the conversion rate to the sulfonic acid group can be quantified by the infrared absorption spectrum or the nuclear magnetic resonance spectrum to the extent that the characteristic peak of the sulfonic acid ester group or the sulfonamide group is present.
  • the polymer of the present invention is a copolymer having a structural unit having a sulfonic acid group and a non-sulfonic acid structural unit having an aromatic ring substituent
  • the ion exchange capacity is 3.0 meq / g. It is preferable because it is easier to produce a polymer in excess of
  • preferred examples of the structural unit represented by the above formula (A-3a) and the structural unit represented by the formula (A-4a) are shown below.
  • any of the polymers of the present invention can be suitably used as a fuel cell member.
  • the polymer of the present invention is particularly preferably used as a proton conductive membrane (polymer electrolyte membrane) for electrochemical devices such as fuel cells.
  • a proton conductive membrane polymer electrolyte membrane
  • the polymer of the present invention or the polymer electrolyte containing the polymer of the present invention is converted into a membrane form.
  • This method is not particularly limited, but it is preferable to form a film using a method (solution casting method) in which a film is formed from a solution state.
  • the solution casting method is a method that is usually used in the art for producing a polymer electrolyte membrane, and is particularly useful industrially.
  • This solution casting method is a method of preparing a polymer electrolyte solution by dissolving a polymer of the present invention or a polymer electrolyte containing the polymer of the present invention in a suitable solvent, and supporting substrates such as glass substrates and PET (polyethylene terephthalate) films.
  • This is a method of forming a polymer electrolyte membrane on a supporting substrate by casting a cast film thereon to form a coating film and removing volatile components such as a cast solvent from the coating film.
  • a polymer electrolyte membrane can be obtained by removing a support base material by peeling etc.
  • the solvent (cast solvent) used in the solution casting method is not particularly limited as long as it can sufficiently dissolve the polymer of the present invention and can be removed thereafter, and is a non-proton such as DMF, DMAc, NMP, DMSO.
  • Polar solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene; alcohols such as methanol, ethanol, propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, An alkylene glycol monoalkyl ether such as propylene glycol monoethyl ether is preferably used. These can be used singly, but two or more solvents can be mixed and used as necessary. Among these, DMSO, DMF, DMAc, and NMP are preferable because the solubility of the polymer of the present invention is high.
  • the thickness of the polymer electrolyte membrane thus obtained is preferably 5 to 300 ⁇ m, which is a practical range for use as a proton conducting membrane (diaphragm) for fuel cells.
  • a film having a film thickness of 5 ⁇ m or more is preferable because of its practical strength, and a film having a film thickness of 300 ⁇ m or less is preferable because the film resistance itself tends to be small.
  • the film thickness can be controlled by the weight concentration of the solution and the coating thickness of the coating film on the support substrate.
  • a polymer electrolyte may be prepared by adding additives such as plasticizers, stabilizers, release agents and the like used in ordinary polymers to the polymer of the present invention. Good. It is also possible to prepare a polymer electrolyte by compound-alloying another polymer with the polymer of the present invention by a method such as co-casting in the same solvent. As described above, when a polymer electrolyte is prepared by combining the polymer of the present invention with an additive and / or another polymer, desired characteristics are obtained when the polymer electrolyte is applied to a fuel cell member. To determine the type and amount of additives and / or other polymers.
  • inorganic or organic fine particles as a water retention agent. Any of these known methods can be used as long as they are not contrary to the object of the present invention.
  • the polymer electrolyte membrane thus obtained may be subjected to a treatment such as irradiation with an electron beam or radiation for the purpose of improving its mechanical strength.
  • a porous substrate is impregnated with a polymer electrolyte containing the polymer of the present invention as an active ingredient to be combined.
  • a polymer electrolyte composite membrane (hereinafter referred to as “composite membrane”) can also be formed.
  • a known method can be used as the compounding method.
  • the porous substrate is not particularly limited as long as it satisfies the above-mentioned purpose of use, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
  • an aliphatic polymer, an aromatic polymer, or a fluorine-containing polymer is preferable from the viewpoint of heat resistance and the effect of reinforcing physical strength.
  • the thickness of the porous substrate used is preferably 1 to 100 ⁇ m, more preferably 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m. is there.
  • the pore size of the porous substrate is preferably 0.01 to 100 ⁇ m, more preferably 0.02 to 10 ⁇ m.
  • the porosity of the porous substrate is preferably 20 to 98%, more preferably 40 to 95%.
  • the film thickness of the porous substrate is 1 ⁇ m or more, the effect of reinforcing the strength after compounding or the reinforcing effect of imparting flexibility and durability is more excellent, and gas leakage (cross leak) is less likely to occur. Become. Further, when the film thickness is 100 ⁇ m or less, the electric resistance is further lowered, and the obtained composite membrane is more excellent as a proton conductive membrane for a fuel cell.
  • the pore diameter is 0.01 ⁇ m or more, the filling of the polymer of the present invention becomes easier, and when it is 100 ⁇ m or less, the reinforcing effect is further increased.
  • the porosity is 20% or more, the resistance as the polymer electrolyte membrane becomes smaller, and when it is 98% or less, the strength of the porous substrate itself becomes larger and the reinforcing effect is further improved, which is preferable.
  • a composite membrane using the polymer of the present invention and a polymer electrolyte membrane using the polymer of the present invention can be laminated and used as a proton conducting membrane.
  • the polyarylene block copolymer of the present invention is obtained by polymerizing a polymer having substantially no ion exchange group and having a polystyrene equivalent weight average molecular weight of 4000 to 25000 and a polymer having an ion exchange group.
  • a block copolymer comprising a block having an ion exchange group and a block having substantially no ion exchange group, wherein the block having the ion exchange group is represented by the following formula (B-1)
  • the polyarylene block copolymer characterized in that the block containing a structural unit and having substantially no ion-exchange group contains a structural unit represented by the following formula (B-2): It is characterized by.
  • Ar 1 represents an arylene group
  • Ar 1 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent
  • 1 carbon atom which may have a substituent An aryl group having 6 to 20 carbon atoms which may have a substituent, an aryl group having 6 to 20 carbon atoms which may have a substituent, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and a substituent. It may be substituted with at least one group selected from the group consisting of an acyl group having 2 to 20 carbon atoms and a cyano group. Ar 1 and the group that substitutes for them do not have a fluorine atom.
  • At least one ion exchange group is directly bonded to the aromatic ring constituting the main chain in Ar 1 .
  • a plurality of Ar 1 may be the same as or different from each other.
  • Ar 2 represents a divalent aromatic group, and Ar 2 may have a substituent, an alkyl group having 1 to 20 carbon atoms, or a substituent.
  • X 1 represents a group represented by —O— or a group represented by —S—.
  • the polyarylene block copolymer of the present invention has a fluorine atom content of 5.0% by weight or less, and preferably 2.0% by weight or less.
  • the block having an ion exchange group in the polyarylene block copolymer of the present invention will be described.
  • the block having an ion exchange group is preferably composed of only the repeating unit represented by the above formula (B-1), and the average number of ion exchange groups is 0.5 or more calculated per the repeating unit. It is more preferable that the average number of ion exchange groups per repeating unit is 1.0 or more.
  • the “ion exchange group” is a group related to ion conduction, particularly proton conduction.
  • an acid group is usually used.
  • the acid group include acid groups such as weak acid, strong acid, and super strong acid, and strong acid group and super strong acid group are preferable.
  • acid groups include, for example, weak acid groups such as phosphonic acid groups and carboxylic acid groups; sulfonic acid groups, sulfonimide groups (—SO 2 —NH—SO 2 —R, where R is an alkyl group, aryl group, etc.
  • a strong acid group such as sulfonic acid group and sulfonimide group, which are strong acid groups, are preferably used.
  • the above strong acid group functions as a super strong acid group due to the effect of the electron withdrawing group.
  • These ion exchange groups may be partially or completely exchanged with metal ions or quaternary ammonium ions to form a salt, but when used as a polymer electrolyte membrane for fuel cells, etc. It is preferred that substantially all are in the free acid state.
  • Ar 1 in the above formula (B-1) represents an arylene group.
  • the arylene group include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, Divalent condensed aromatic groups such as, 5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, And divalent aromatic heterocyclic groups such as pyridinediyl group, quinoxalinediyl group, and thiophenediyl group.
  • a divalent monocyclic aromatic group is preferred.
  • Ar 1 may have an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkoxy group having 1 to 20 carbon atoms which may have a substituent, or a substituent. From an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, an acyl group having 2 to 20 carbon atoms which may have a substituent, and a cyano group It may be substituted with at least one group selected from the group consisting of
  • the optionally substituted alkyl group having 1 to 20 carbon atoms includes, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and an isobutyl group.
  • Alkyl groups having 1 to 20 carbon atoms such as hydroxyl groups, nitrile groups, amino groups, methoxy groups, ethoxy groups, isopropyloxy groups, phenyl groups, naphthyl groups, phenoxy groups, naphthyloxy groups, etc. And an alkyl group having a total carbon number of 20 or less.
  • Examples of the optionally substituted alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec-butyloxy group, tert.
  • -Butyloxy group isobutyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 2-ethylhexyloxy group, Alkoxy groups having 1 to 20 carbon atoms such as dodecyloxy group, hexadecyloxy group, icosyloxy group and the like, and hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group. Group, phenoxy group, naphthyloxy group, etc. Is, the total carbon number and an alkoxy group is 20 or less.
  • Examples of the aryl group having 6 to 20 carbon atoms which may have a substituent include an aryl group such as a phenyl group, a naphthyl group, a phenanthrenyl group, and an anthracenyl group, and these groups include a hydroxyl group, a nitrile group, and an amino group.
  • Examples of the acyl group having 2 to 20 carbon atoms which may have a substituent include 2 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group, 1-naphthoyl group, 2-naphthoyl group and the like.
  • ⁇ 20 acyl groups, and these groups are substituted with hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group, etc.
  • the acyl group whose number is 20 or less is mentioned.
  • Ar 1 has at least one ion exchange group in the aromatic ring constituting the main chain.
  • the “main chain” refers to the longest chain forming a polymer. This chain is composed of carbon atoms bonded to each other by a covalent bond. In this case, this chain may be interrupted by a nitrogen atom, an oxygen atom, a sulfur atom, or the like.
  • the block having an ion exchange group includes a structural unit represented by the above formula (B-1).
  • the structural unit represented by the above formula (B-1) is represented by the following formula (1-a): Contains the structure represented.
  • Ar 1 represents the same meaning as described above.
  • m represents an integer of 2 or more, and preferably 3 or more. Further, the range of 5 to 200 is more preferable, and 10 to 100 is more preferable. It is preferable that the value of m is 2 or more because proton conductivity is sufficient as a polymer electrolyte for a fuel cell. If the value of m is 200 or less, it is preferable because production is easier.
  • a preferred example of the structural unit represented by the above formula (B-1) is a structural unit represented by the following formula (B-3).
  • a raw material that can be easily obtained industrially can be used in the production of the polyarylene block copolymer of the present invention described later, or a raw material that is easy to produce. Since it can be used, it is preferable.
  • R represents an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, or a substituent.
  • An aryl group having 6 to 20 carbon atoms which may have, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and an acyl having 2 to 20 carbon atoms which may have a substituent Represents a group or a cyano group.
  • R does not have a fluorine atom.
  • k represents an integer of 0 to 3
  • p represents an integer of 1 or 2
  • k + p is an integer of 4 or less.
  • a plurality of R may be the same as or different from each other.
  • R is an alkyl group having 1 to 20 carbon atoms which may have a substituent, or an alkoxy group having 1 to 20 carbon atoms which may have a substituent, exemplified as the substituent for Ar 1 above.
  • the group is selected from ⁇ 20 acyl groups or cyano groups and does not inhibit the reaction in the polymerization reaction described later.
  • the number k of the substituents is preferably 0 or 1, and particularly preferably k is 0, that is, a repeating unit having no substituent.
  • the structure represented by the formula (1-a) is preferably a structure represented by the following formula (3-a).
  • m, R, p and k represent the same meaning as described above.
  • the block having substantially no ion exchange group may consist only of the structural unit represented by the above formula (B-2) (provided that X 1 may be missing at the end of the block). It is particularly preferable that the number of ion exchange groups is 0.1 or less calculated per repeating unit, and that the number of ion exchange groups per repeating unit is 0, that is, there is substantially no ion exchange group.
  • Ar 2 in the formula (B-2) represents a divalent aromatic group not having a group represented by —O— and / or a group represented by S— in the main chain. That is, a combination of one divalent aromatic group and one group represented by —O— or one group represented by S— present in the main chain is regarded as one structural unit.
  • the divalent aromatic group not having a group represented by —O— and / or a group represented by S— in the main chain preferably has 4 to 40 carbon atoms, and preferably 5 to 30 carbon atoms. Is more preferable, and 6 to 25 is even more preferable.
  • Such a structural unit is preferable because a raw material that can be easily obtained industrially can be used, or a raw material that can be easily manufactured can be used.
  • Examples of the divalent aromatic group that does not have a group represented by —O— and / or a group represented by S— in the main chain include aromatic groups represented by the following formulas (a) to (z): (In the formula, each * represents a bond, and bonds with other substituents are omitted).
  • Ar 2 may be substituted with a group equivalent to Ar 1, and among them, Ar 2 may have a substituent (c), (g), (l), (o) , (P), (s), (v), (w), and a group represented by (x) are preferable.
  • a block having a structural unit is preferable because a raw material that can be easily obtained industrially can be used.
  • Preferred examples of the structural unit represented by the formula (B-2) include structural units represented by the following formula. Such a block having a structural unit is preferable because it is easy to produce and can be produced using raw materials that are easily available industrially.
  • a represents a molar composition ratio, and a is preferably 0.51 to 0.90, more preferably 0.55 to 0.90, and still more preferably 0.60 to 0.85.
  • the block having an ion exchange group contains a structural unit represented by the above formula (B-1).
  • the method for introducing an ion exchange group bonded to the aromatic ring constituting the main chain in Ar 1 is a method in which a monomer having an ion exchange group is polymerized in advance, a polyarylene block is obtained from a monomer having no ion exchange group in advance. It may be a method of introducing an ion exchange group after producing a copolymer precursor. Among these, the former method is more preferable because the amount of ion exchange groups introduced and the substitution position can be accurately controlled.
  • Examples of a method for producing the polyarylene block copolymer of the present invention using a monomer having an ion exchange group include, for example, a monomer represented by the following formula (1-h) in the presence of a transition metal complex, It can be produced by polymerizing a polymer having substantially no ion exchange group represented by the formula (B-4) described later by a condensation reaction.
  • a monomer represented by the following formula (1-h) in the presence of a transition metal complex It can be produced by polymerizing a polymer having substantially no ion exchange group represented by the formula (B-4) described later by a condensation reaction.
  • Ar 10 is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkoxy group having 1 to 20 carbon atoms which may have a substituent, or a substituent. From the group consisting of a preferable aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and an acyl group having 2 to 20 carbon atoms which may have a substituent. It is a divalent arylene group which may have at least one selected group, and an ion exchange group and / or an ion exchange precursor group are bonded to an aromatic ring constituting the main chain.
  • Q represents a leaving group, and two Qs may be the same or different.
  • Ar 10 in the formula (1-h) can be the same group as the specific example of Ar 1 .
  • Ar 10 may be substituted with the same group as the specific example of the substituent of Ar 1 .
  • the above leaving group represents a group leaving during the condensation reaction. Specific examples thereof include, for example, halogen atoms such as chlorine atom, bromine atom and iodine atom, p-toluenesulfonyloxy group, methanesulfonyloxy group, Examples include sulfonyloxy groups such as a trifluoromethanesulfonyloxy group.
  • Examples of the monomer represented by the above formula (1-h) include 2,4-dichlorobenzenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, 3,5 in the case of a sulfonic acid group which is a preferable ion exchange group.
  • the sulfonic acid groups of the monomers exemplified above can be selected by replacing them with ion exchange groups such as carboxylic acid groups and phosphonic acid groups.
  • ion exchange groups such as carboxylic acid groups and phosphonic acid groups.
  • the ion exchange group of the monomer exemplified above may be in the form of a salt, and it is particularly preferable from the viewpoint of polymerization reactivity to use a monomer in which the ion exchange group is in the form of a salt.
  • a salt form an alkali metal salt is preferable, and a Li salt, a Na salt, and a K salt are particularly preferable.
  • ion exchange precursor groups examples include sulfonic acid precursor groups, phosphonic acid precursor groups, and carboxylic acid precursor groups.
  • the ion exchange precursor group is a group that becomes an ion exchange group without changing the structure other than the ion exchange precursor group of the polyarylene-based block copolymer precursor. Preferably, it becomes an ion exchange group through a reaction of 3 steps or less, more preferably 2 steps or less, and still more preferably 1 step.
  • the ion exchange precursor group preferably has a form in which an ester or amide is formed to protect the ion exchange group.
  • sulfonic acid precursor groups which are preferred ion exchange precursor groups, are sulfonate esters (—SO 3 R c ; where R c represents an alkyl group having 1 to 20 carbon atoms) or sulfonamides (—SO 2 N (R d ) (R e ); where R d and R e each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aromatic group having 3 to 20 carbon atoms. .
  • sulfonic acid ester examples include sulfonic acid methyl ester, sulfonic acid ethyl ester, sulfonic acid n-propyl ester, sulfonic acid isopropyl ester, sulfonic acid n-butyl ester, sulfonic acid sec-butyl ester group, and sulfonic acid tert-butyl.
  • examples include sulfonic acid esters such as decyl ester, sulfonic acid n-hexadecyl ester, sul
  • sulfonamide examples include sulfonamide, N-methylsulfonamide, N, N-dimethylsulfonamide, N-ethylsulfonamide, N, N-diethylsulfonamide, Nn-propylsulfonamide, di- n-propylsulfonamide, N-isopropylsulfonamide, N, N-diisopropylsulfonamide, Nn-butylsulfonamide, N, N-di-n-butylsulfonamide, N-sec-butylsulfonamide, N, N-di-sec-butylsulfonamide, N-tertbutylsulfonamide, N, N-di-tert-butylsulfonamide, Nn-pentylsulfonamide, N-neopentylsulfonamide, Nn-hexylsulfone Amide,
  • a mercapto group can be used as the sulfonic acid precursor group.
  • Mercapto groups can be converted to sulfonic acid groups by oxidation using a suitable oxidizing agent.
  • a method for introducing an ion exchange group after producing a polyarylene block copolymer precursor from a monomer having no ion exchange group in advance will be described.
  • a monomer represented by the following general formula (1-i) and a polymer substantially free of an ion exchange group represented by the following general formula (B-4) It can be produced by polymerizing by a condensation reaction.
  • Q-Ar 11 -Q (1-i) In formula (1-i), Ar 11 represents a divalent arylene group that can be converted to Ar 10 in formula (1-h) by introducing an ion exchange group, Q is as defined above, and 2 Two Qs may be the same or different.
  • a monomer represented by the formula (1-i) and a polymer having substantially no ion exchange group represented by the formula (B-4) were copolymerized by a condensation reaction, and the following formula (1-j)
  • the polymer of the present invention can be produced by a series of operations such as introducing an ion exchange group into the aromatic ring constituting the main chain in the structural unit represented by -j).
  • Ar 12 represents a divalent arylene group that can be converted to Ar 1 in Formula (B-1) by introducing an ion exchange group.
  • Ar 11 and Ar 12 have a structure capable of introducing at least one ion exchange group.
  • the structure capable of introducing an ion exchange group in Ar 11 and Ar 12 has a functional group capable of introducing an ion exchange group such as a hydrogen atom directly bonded to an aromatic ring.
  • a hydrogen atom bonded to the aromatic ring can be regarded as a functional group capable of introducing a sulfonic acid group.
  • the monomer represented by the formula (1-i) include 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,3-dichloro-4-methoxybenzene, 1,4-dichloro- 3-methoxybenzene, 4,4′-dichlorobiphenyl, 4,4′-dichloro-3,3′-dimethylbiphenyl, 4,4′-dichloro-3,3′-dimethoxybiphenyl, 1,4-dichloronaphthalene, Examples include 1,5-dichloronaphthalene, 2,6-dichloronaphthalene, and 2,7-dichloronaphthalene.
  • a monomer in which a halogen atom such as a bromine atom or an iodine atom, a sulfonyloxy group such as a p-toluenesulfonyloxy group, a methanesulfonyloxy group, or a trifluoromethanesulfonyloxy group is substituted for a chlorine atom in these monomers Can be used.
  • the obtained polyarylene block copolymer precursor is dissolved or dispersed in concentrated sulfuric acid. Or after at least partially dissolving in an organic solvent, a method of converting a hydrogen atom into a sulfonic acid group by allowing concentrated sulfuric acid, chlorosulfuric acid, fuming sulfuric acid, sulfur trioxide, or the like to act.
  • the polymer having substantially no ion exchange group is preferably a polymer represented by the following formula (B-4).
  • Ar 21 represents a divalent aromatic group not having a group represented by —O— and / or a group represented by S— in the main chain. That is, a combination of one divalent aromatic group and one group represented by —O— or one group represented by S— present in the main chain is regarded as one structural unit.
  • the plurality of Ar 21 may be the same as or different from each other.
  • the aromatic group may have an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkoxy group having 1 to 20 carbon atoms which may have a substituent, or a substituent.
  • aryl group having 6 to 20 carbon atoms an aryloxy group having 6 to 20 carbon atoms which may have a substituent, an acyl group having 2 to 20 carbon atoms which may have a substituent, and a cyano group It may be substituted with at least one group selected from the group consisting of The aromatic group and the group substituted therefor do not have a fluorine atom.
  • X 11 represents a group represented by —O— or a group represented by S—. The plurality of X 11 may be the same as or different from each other.
  • Y represents a leaving group. However, two Y may be the same or different.
  • q represents an integer of 4 or more.
  • Ar 21 may be substituted with a group equivalent to Ar 2 .
  • Q in the formula (B-4) is an integer of 4 or more.
  • q is preferably 7 or more, more preferably 10 or more, in order to improve the shape stability when a polymer electrolyte membrane is formed.
  • 35 or less is preferable, 30 or less is more preferable, and 25 or less is further more preferable.
  • Y in the formula (B-4) represents a leaving group, that is, a group that is eliminated during the condensation reaction.
  • halogen atoms such as chlorine atom, bromine atom and iodine atom
  • p-toluenesulfonyloxy group include halogen atoms such as chlorine atom, bromine atom and iodine atom, and p-toluenesulfonyloxy group.
  • Sulfonyloxy groups such as methanesulfonyloxy group and trifluoromethanesulfonyloxy group.
  • the hydrophobicity parameter of the polymer substantially having no ion exchange group represented by the above formula (B-4) is determined from the log P of each structural unit by the following method.
  • the molar composition ratio of each structural unit of the polymer is determined.
  • the molar composition ratio of the polymer can be determined from the monomer charge ratio. When the monomer charge ratio is unknown, it can be determined from the NMR measurement result of the polymer.
  • the hydrophobic parameter is obtained by calculating LogP of each structural unit and performing weighted average with the molar composition ratio. For example, when the polymer represented by the formula (B-4) has a plurality of types of Ar 21 (when x types of Ar 21 exist, Ar 21-1 , Ar 21-2 ,...
  • Ar 21-x where x is not less than 2 and not more than q + 1.
  • Ar 21-1 -X 11 structural units of each LogP represented by calculated, Ar 21-1, Ar 21-2, by weighted average molar ratio of ⁇ Ar 21-x, hydrophobic A parameter is required.
  • each Ar 21 has a structure represented by — (Ar 21 —O) —.
  • LogP of the unit and the structural unit represented by — (Ar 21 —S) — is calculated, and the weighted average is calculated by the molar composition ratio of the group represented by —O— and the group represented by —S—.
  • the hydrophobicity parameter is determined.
  • the polymer is preferably composed of one kind of polymer.
  • the hydrophobicity parameter is calculated for each polymer, and then the weighted average is calculated based on the mixing weight ratio.
  • the hydrophobicity parameter of the block can be calculated.
  • Preferred examples of the polymer represented by the formula (B-4) include polymers represented by the following formulas (ba) to (bp). Such a polymer is preferable because it can be synthesized using industrially easily available raw materials.
  • b represents a molar composition ratio, and b is preferably 0.50 to 0.90, more preferably 0.55 to 0.90, and still more preferably 0.60 to 0.85.
  • Q is as defined above.
  • the hydrophobicity parameter of the polymer represented by the above formula (B-4) is preferably 1.7 or more, more preferably 2.5 or more, and more preferably 2.7 or more in order to improve water resistance. Further preferred. Moreover, in order to improve proton conductivity, 6.0 or less is preferable, 4.0 or less is more preferable, and 3.4 or less is still more preferable.
  • the polystyrene-equivalent weight average molecular weight of the polymer having substantially no ion exchange group is from 4000 to 25000, preferably from 6000 to 22000, and more preferably from 8000 to 20000.
  • the weight average molecular weight in terms of polystyrene is lower than 4000, the shape stability when used as a polymer electrolyte membrane tends to be lowered, and when it is higher than 25000, the proton conductivity tends to be lowered.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC).
  • the polymerization reaction (condensation reaction) of the present invention will be described.
  • the polyarylene block copolymer of the present invention and the polyarylene block copolymer precursor capable of producing the polyarylene block copolymer of the present invention are combined with “polymer etc. There are times.
  • the zero-valent transition metal complex is a transition metal in which a halogen or a ligand described below is coordinated, and preferably has at least one kind of ligand described below.
  • a commercially available product or a separately synthesized one can be used as the zero-valent transition metal complex.
  • Examples of methods for synthesizing zero-valent transition metal complexes include known methods such as a method of reacting a transition metal salt or transition metal oxide with a ligand.
  • the synthesized zero-valent transition metal complex may be taken out and used, or may be used in situ without being taken out.
  • Examples of the ligand include acetate, acetylacetonate, 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N′N′-tetramethylethylenediamine, triphenylphosphine, and tolylyl.
  • Examples include phosphine, tributylphosphine, triphenoxyphosphine, 1,2-bisdiphenylphosphinoethane, and 1,3-bisdiphenylphosphinopropane.
  • the zero-valent transition metal complex examples include a zero-valent nickel complex, a zero-valent palladium complex, a zero-valent platinum complex, and a zero-valent copper complex.
  • a zero-valent nickel complex and a zero-valent palladium complex are preferably used, and a zero-valent nickel complex is more preferably used.
  • Examples of the zero-valent nickel complex include bis (1,5-cyclooctadiene) nickel (0), (ethylene) bis (triphenylphosphine) nickel (0), and tetrakis (triphenylphosphine) nickel.
  • bis (1,5-cyclooctadiene) nickel (0) is preferably used from the viewpoints of reactivity, yield of the obtained polymer and the like and increase in the molecular weight of the obtained polymer and the like.
  • Examples of the zero-valent palladium complex include tetrakis (triphenylphosphine) palladium (0).
  • Zero-valent transition metal complexes may be synthesized and used as described above, or commercially available products may be used.
  • Examples of the method for synthesizing the zero-valent transition metal complex include known methods such as a method in which the transition metal compound is made zero-valent with a reducing agent such as zinc or magnesium.
  • the synthesized zero-valent transition metal complex may be taken out and used in situ without being taken out.
  • a zero-valent transition metal compound can be used as the transition metal compound to be used, but it is usually preferable to use a divalent one.
  • divalent nickel compounds and divalent palladium compounds are preferred.
  • the divalent nickel compound include nickel chloride, nickel bromide, nickel iodide, nickel acetate, nickel acetylacetonate, nickel chloride bis (triphenylphosphine), nickel bromide bis (triphenylphosphine), nickel iodide bis ( Triphenylphosphine).
  • the divalent palladium compound include palladium chloride, palladium bromide, palladium iodide, and palladium acetate.
  • Examples of the reducing agent include zinc, magnesium, sodium hydride, hydrazine and derivatives thereof, and lithium aluminum hydride. If necessary, ammonium iodide, trimethylammonium iodide, triethylammonium iodide, lithium iodide, sodium iodide, potassium iodide and the like can be used in combination.
  • a compound that can be a ligand of the used zero-valent transition metal complex from the viewpoint of improving the yield of the obtained polymer or the like.
  • the compound to be added may be the same as or different from the ligand of the zero-valent transition metal complex used.
  • Examples of the compound that can be a ligand include the compounds exemplified above as the ligand, versatility, economy, reactivity, yield of the obtained polymer, etc., high molecular weight of the obtained polymer, etc. In this respect, triphenylphosphine and 2,2′-bipyridyl are preferred.
  • 2,2'-bipyridyl is particularly advantageous in terms of improving the yield of polymers and the like and increasing the molecular weight.
  • the addition amount of the ligand is usually about 0.2 to 10 mole times, preferably about 1 to 5 mole times based on the transition metal atom in the zero-valent transition metal complex.
  • the amount of the zero-valent transition metal complex used is the monomer represented by the formula (1-h), the monomer represented by the formula (1-i), and the polymer represented by the formula (B-4) used for the production of polymers and the like. Is 0.1 mol times or more with respect to the total molar amount (hereinafter referred to as “total molar amount of all monomers”). If the amount used is too small, the molecular weight tends to be small, so it is preferably 1.5 mole times or more, more preferably 1.8 mole times or more, and even more preferably 2.1 mole times or more. On the other hand, the upper limit of the amount used is not particularly limited, but if the amount used is too large, the post-treatment may become complicated, and thus it is preferably 5.0 moles or less.
  • the use amount of the transition metal compound and the reducing agent is set so that the generated zero-valent transition metal complex falls within the above range.
  • the amount of the transition metal compound may be 0.01 mol times or more, preferably 0.03 mol times or more with respect to the total molar amount of all monomers.
  • the upper limit of the amount used is not limited, but if the amount used is too large, the post-treatment tends to be complicated, and therefore it is preferably 5.0 mole times or less.
  • the usage-amount of a reducing agent should just be 0.5 mol times or more with respect to the total molar amount of all the monomers, Preferably it is 1.0 mol times or more.
  • the upper limit of the amount used is not limited, but if the amount used is too large, the post-treatment tends to be complicated, and therefore it is preferably 10 mol times or less.
  • the reaction temperature is usually about 0 ° C. to 200 ° C., preferably about 10 ° C. to 100 ° C.
  • the reaction time is usually about 0.5 to 48 hours.
  • a zero-valent transition metal complex, a monomer represented by the formula (1-h) and / or a monomer represented by the formula (1-i), and a polymer represented by the formula (B-4), which are used for production of a polymer or the like May be a method of adding one to the other or a method of adding both to the reaction vessel at the same time.
  • adding it may be added all at once, but it is preferable to add little by little in consideration of heat generation, and it is also preferable to add in the coexistence of a solvent, and a suitable solvent in this case will be described later.
  • the condensation reaction is usually carried out in the presence of a solvent.
  • solvents include aprotic such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide and the like.
  • Polar solvents such as toluene, xylene, mesitylene, benzene, n-butylbenzene; ether solvents such as tetrahydrofuran, 1,4-dioxane, dibutyl ether, tert-butyl methyl ether; ethyl acetate, Examples include ester solvents such as butyl acetate and methyl benzoate; and alkyl halide solvents such as chloroform and dichloroethane.
  • aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, benzene, n-butylbenzene
  • ether solvents such as tetrahydrofuran, 1,4-dioxane, dibutyl ether, tert-butyl methyl ether
  • ethyl acetate examples include ester solvents such as butyl acetate and methyl benzoate; and alkyl halide
  • a solvent in which the polymer etc. can be sufficiently dissolved In order to further increase the molecular weight of the polymer to be produced, it is desirable to use a solvent in which the polymer etc. can be sufficiently dissolved. Therefore, tetrahydrofuran, 1,4-dioxane, DMF, DMAc, which are good solvents for the polymer to be produced, are used. , NMP, DMSO, and toluene are preferred. These may be used in combination of two or more. Among these, at least one solvent selected from the group consisting of DMF, DMAc, NMP, and DMSO, or a mixture of two or more solvents selected from these is preferably used.
  • the amount of the solvent is not particularly limited, but if the concentration is too low, it may be difficult to recover the produced polymer or the like, and if the concentration is too high, stirring may be difficult.
  • monomers used for the production of polymers and the like monomers selected from monomers represented by formula (1-h), monomers represented by formula (1-i) and polymers represented by formula (B-4)
  • the amount of the solvent used is determined so as to be 1 to 999 times by weight, more preferably 3 to 199 times by weight.
  • the produced polymer or the like can be taken out from the reaction mixture by a conventional method.
  • a polymer or the like can be precipitated by adding a poor solvent, and the target product can be taken out by filtration or the like.
  • it can also refine
  • the ion exchange group of the produced polymer is in the form of a salt, it is preferable to convert the ion exchange group into a free acid form for use as a member for a fuel cell.
  • the acid used include hydrochloric acid, sulfuric acid, and nitric acid, preferably dilute hydrochloric acid and dilute sulfuric acid.
  • the protected ion exchange group is converted to an ion exchange group in the form of a free acid for use as a member for a fuel cell.
  • the free acid form can be converted to an ion exchange group by hydrolysis with an acid / base or deprotection reaction with a halide.
  • a base it is possible to obtain an ion exchange group in the form of a free acid by washing the acidic solution as described above.
  • the acid / base used include hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, and potassium hydroxide.
  • halide to be used examples include lithium bromide, sodium iodide, tetramethylammonium chloride, and tetrabutylammonium bromide, preferably lithium bromide and tetrabutylammonium bromide.
  • the conversion rate to an ion exchange group should be determined by the infrared absorption spectrum or nuclear magnetic resonance spectrum to determine how much a peak characteristic of the sulfonic acid ester or sulfonamide exists. Can do.
  • the introduced amount of ion exchange groups in the whole polyarylene block copolymer is preferably 1.5 meq / g or more, more preferably 2.0 meq / g or more, and 2.5 meq / g or more in terms of ion exchange capacity. Further preferred. Moreover, 7.0 meq / g or less is preferable, 6.0 meq / g or less is more preferable, 5.0 meq / g or less is more preferable, 4.0 meq / g or less is especially preferable. It is preferable that the ion exchange capacity indicating the amount of introduced ion exchange groups is 1.0 meq / g or more because proton conductivity becomes higher and functions as a polymer electrolyte for a fuel cell are more excellent. On the other hand, when the ion exchange capacity indicating the amount of introduced ion exchange groups is 7.0 meq / g or less, the water resistance becomes better, which is preferable. The ion exchange capacity is measured by acid-base titration.
  • the polyarylene block copolymer of the present invention preferably has a molecular weight of 50,000 to 2,000,000, particularly preferably 100,000 to 1,000,000, expressed as a weight average molecular weight in terms of polystyrene.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC).
  • any of the polyarylene block copolymers of the present invention can be suitably used as a member for a fuel cell.
  • the polyarylene block copolymer of the present invention is preferably used as a polymer electrolyte of an electrochemical device such as a fuel cell, and particularly preferably used as a polymer electrolyte membrane.
  • the case of the polymer electrolyte membrane will be mainly described.
  • the polymer electrolyte of the present invention is converted into a membrane form.
  • film forming method it is preferable to form into a film using the method (solution casting method) formed into a film from a solution state.
  • the solution casting method is a method that has been widely used in the art as a polymer electrolyte membrane production, and is particularly useful industrially.
  • the polymer electrolyte of the present invention is dissolved in an appropriate solvent to prepare a polymer electrolyte solution, the polymer electrolyte solution is cast on a support substrate, and the solvent is removed to form a film. Is done.
  • a supporting substrate include glass plates and plastic films such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyimide (PI).
  • the solvent (cast solvent) used in the solution casting method is not particularly limited as long as it can sufficiently dissolve the polymer electrolyte of the present invention and can be removed thereafter.
  • NMP, DMAc, DMF, 1, 3 -Aprotic polar solvents such as dimethyl-2-imidazolidinone (DMI) and DMSO;
  • Chlorine solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene;
  • Alcohols such as methanol, ethanol and propanol
  • An alkylene glycol monoalkyl ether such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether or propylene glycol monoethyl ether is preferably used.
  • NMP NMP, DMAc, DMF, and DMI are preferable because the polymer electrolyte of the present invention has high solubility and a polymer electrolyte membrane having high water resistance can be obtained, and NMP is more preferable.
  • the thickness of the polymer electrolyte membrane thus obtained is not particularly limited, but is preferably 5 to 300 ⁇ m in a practical range as a polymer electrolyte membrane (a diaphragm) for fuel cells.
  • a film having a film thickness of 5 ⁇ m or more is preferable because of its practical strength, and a film having a film thickness of 300 ⁇ m or less is preferable because the film resistance itself tends to be small.
  • the film thickness can be controlled by the weight concentration of the solution and the coating thickness of the coating film on the support substrate.
  • additives such as plasticizers, stabilizers, mold release agents and the like used in ordinary polymers are added to the polyarylene block copolymer of the present invention to obtain polymers.
  • An electrolyte may be prepared. It is also possible to prepare a polymer electrolyte by compound-alloying another polymer with the polyarylene block copolymer of the present invention by a method such as co-casting in the same solvent. Thus, when a polymer electrolyte is prepared by combining the polyarylene block copolymer of the present invention with an additive and / or another polymer, the polymer electrolyte is applied to a fuel cell member. Occasionally, the type and amount of additives and / or other polymers are determined so that the desired properties are obtained.
  • inorganic or organic fine particles as a water retention agent in order to facilitate water management. Any of these known methods can be used as long as they are not contrary to the object of the present invention.
  • the polymer electrolyte membrane thus obtained may be subjected to a treatment such as irradiation with an electron beam or radiation for the purpose of improving its mechanical strength.
  • the polymer electrolyte containing the polyarylene block copolymer of the present invention is used as a porous substrate. It is possible to form a polymer electrolyte composite membrane (hereinafter referred to as “composite membrane”) by impregnating into a composite. A known method can be used as the compounding method.
  • the porous substrate is not particularly limited as long as it satisfies the above-mentioned purpose of use, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
  • As the material for the porous substrate an aliphatic polymer and an aromatic polymer are preferable in view of heat resistance and the effect of reinforcing physical strength.
  • the thickness of the porous substrate is preferably 1 to 100 ⁇ m, more preferably 3 to 30 ⁇ m, particularly preferably 5 to 20 ⁇ m. It is.
  • the pore diameter of the porous substrate is preferably 0.01 to 100 ⁇ m, more preferably 0.02 to 10 ⁇ m.
  • the porosity of the porous substrate is preferably 20 to 98%, more preferably 40 to 95%.
  • the film thickness of the porous substrate is 1 ⁇ m or more, the effect of reinforcing the strength after compounding or the reinforcing effect of imparting flexibility and durability is more excellent, and gas leakage (cross leak) is less likely to occur. .
  • the film thickness is 100 ⁇ m or less, the electric resistance becomes lower, and the obtained composite membrane becomes more excellent as a polymer electrolyte membrane for a fuel cell.
  • the pore diameter is 0.01 ⁇ m or more, the filling of the polymer of the present invention becomes easier, and when it is 100 ⁇ m or less, the reinforcing effect is further increased.
  • the porosity is 20% or more, the resistance as the polymer electrolyte membrane becomes smaller, and when it is 98% or less, the strength of the porous substrate itself becomes larger and the reinforcing effect is further improved, which is preferable.
  • a composite membrane using the polymer electrolyte of the present invention and a polymer electrolyte membrane using the polymer electrolyte of the present invention can be laminated and used as a proton conducting membrane.
  • the “block copolymer” refers to a molecular structure in which two or more polymers having different chemical properties are connected by covalent bonds to form a long chain.
  • the polymer is referred to as “block”.
  • a block is a combination of three or more repeating units having the same skeleton. However, when the repeating unit has a divalent group in the main chain, the divalent group at the end of the block may be missing. Examples of the terminal divalent group include an oxygen atom (—O—) and a sulfur atom (—S—).
  • the skeleton means a main chain constituting a polymer and containing no substituent.
  • the above “chemically different polymers” are a polymer having an ion exchange group and a polymer having substantially no ion exchange group.
  • the “ion exchange group” is a group related to ion conduction, particularly proton conduction, when the polyarylene block copolymer of the present invention is used as a membrane, and “having an ion exchange group” is repeated. It means that the average number of ion exchange groups per unit is 0.5 or more, and “substantially free of ion exchange groups” means that the ion exchange groups possessed per repeating unit are generally Meaning an average of 0.1 or less.
  • the block having substantially no ion exchange group has 0.1 or less ion exchange groups calculated per repeating unit, and the number of ion exchange groups per repeating unit is 0. That is, it is particularly preferred that there are substantially no ion exchange groups.
  • a block containing a structure represented by the following formula (C-1) is preferable, and it is preferable that the block consists only of a structure represented by the following formula (C-1).
  • n in the formula (C-1) represents an integer of 3 to 45, preferably 6 or more, and more preferably 11 or more. Moreover, it is preferable in it being 40 or less, and it is more preferable in it being 35 or less. The reason why the above effects are manifested by adjusting n to this range is not necessarily clear, but the present inventor estimates as follows. When the polymer electrolyte membrane using the polymer electrolyte containing the polyarylene block copolymer of the present invention forms a higher order structure having a microphase separation structure composed of a hydrophobic region and a hydrophilic region. Guessed.
  • the microphase separation structure of the polymer electrolyte membrane of the present invention has a smaller period length than known membranes, and it is presumed that moisture necessary for proton conduction is less likely to evaporate from the membrane due to capillary action. Therefore, it is considered that proton conductivity can be easily ensured even under high temperature and low humidification conditions, and good power generation characteristics can be exhibited.
  • n can be determined by 1 H-NMR. If there is a distribution of n in the polymer, it is obtained by taking the average value of n of blocks substantially free of each ion exchange group.
  • Ar 1 and Ar 2 in the above formula (C-1) each independently represent an arylene group.
  • the arylene group include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, Divalent condensed aromatic groups such as, 5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, And divalent aromatic heterocyclic groups such as pyridinediyl group, quinoxalinediyl group, and thiophenediyl group.
  • a divalent monocyclic aromatic group is preferred.
  • Ar 1 and Ar 2 have a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, or a substituent. Substituted with an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and an acyl group having 2 to 20 carbon atoms which may have a substituent. It may be.
  • the optionally substituted alkyl group having 1 to 20 carbon atoms is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group.
  • n-pentyl group 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group, 2-ethylhexyl group, nonyl group, dodecyl group, hexadecyl group, octadecyl group, icosyl Alkyl groups having 1 to 20 carbon atoms, such as groups, and fluorine, hydroxyl, nitrile, amino, methoxy, ethoxy, isopropyloxy, phenyl, naphthyl, phenoxy, naphthyloxy Examples include an alkyl group in which a group or the like is substituted and the total number of carbon atoms is 20 or less.
  • Examples of the optionally substituted alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, a sec-butyloxy group, tert-butyloxy group, isobutyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 2-ethylhexyloxy group
  • An alkoxy group having 1 to 20 carbon atoms such as dodecyloxy group, hexadecyloxy group, icosyloxy group, and the like, fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, Phenyl group, nap
  • aryl groups such as a phenyl group, a naphthyl group, a phenanthrenyl group, and an anthracenyl group, and these groups include a fluorine atom, a hydroxyl group, and a nitrile.
  • Group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group and the like are substituted, and aryl groups having a total carbon number of 20 or less can be mentioned.
  • a certain aryloxy group is mentioned.
  • Examples of the optionally substituted acyl group having 2 to 20 carbon atoms include carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group, 1-naphthoyl group and 2-naphthoyl group. 2 to 20 acyl groups, and these groups are substituted with fluorine atoms, hydroxyl groups, nitrile groups, amino groups, methoxy groups, ethoxy groups, isopropyloxy groups, phenyl groups, naphthyl groups, phenoxy groups, naphthyloxy groups, etc. And an acyl group having a total carbon number of 20 or less.
  • substituent which may have include a fluorine atom, a hydroxyl group, a nitrile group, an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, a naphthyl group, a phenoxy group, and a naphthyloxy group.
  • X in the above formula (C-1) represents either a carbonyl group (—C ( ⁇ O) —) or a sulfonyl group (—S ( ⁇ O) 2 —).
  • Y represents either an oxygen atom (—O—) or a sulfur atom (—S—).
  • the block having substantially no ion exchange group is composed of the following formula (C-2).
  • n has the same meaning as in formula (C-1) above.
  • the block having an ion exchange group according to the polyarylene block copolymer of the present invention has a polyarylene structure in which a plurality of aromatic rings are substantially directly connected, and a part or all of the ion exchange group. Is a structure directly bonded to the aromatic ring constituting the main chain.
  • the block having an ion exchange group of the polyarylene block copolymer of the present invention is a form in which the aromatic rings constituting the main chain are substantially directly bonded to each other. The higher the proportion of direct bonds with respect to the total number of bonds between the constituting aromatic rings, the more preferable is the proton conductivity, which tends to be improved.
  • the polyarylene structure is preferably a structure having a direct bond ratio of 80% or more, and a structure of 90% or more. More preferably, the structure is 95% or more.
  • the bond other than the direct bond is a form in which the aromatic rings are bonded with a divalent atom or a divalent atomic group.
  • the divalent atom include a group represented by —O— or —S—.
  • the divalent atomic group include —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —CH ⁇ CH—, —S ( ⁇ O) 2 —, —C ( ⁇ O) —. The group shown by these is mentioned.
  • the proportion of aromatic rings to which ion exchange groups are directly bonded is preferably 20 mol% or more, more preferably 30 mol% or more, More preferably, it is 50 mol% or more.
  • the main chain of the block or “main chain” refers to the longest chain forming a block in the present invention. This chain is composed of carbon atoms bonded to each other by a covalent bond, and this chain may be interrupted by a nitrogen atom, an oxygen atom, or the like.
  • the aromatic ring constituting the main chain of the block or “the aromatic ring constituting the main chain of the block” means that two of the bonds of the aromatic ring are part of the main chain of the block. Is the aromatic ring that constitutes
  • an acid group is usually used.
  • the acid group include acid groups such as weak acid, strong acid, and super strong acid, and strong acid group and super strong acid group are preferable.
  • acid groups include, for example, weak acid groups such as phosphonic acid groups and carboxylic acid groups; sulfonic acid groups, sulfonimide groups (—SO 2 —NH—SO 2 —R, where R is an alkyl group, aryl group, etc.
  • a strong acid group such as sulfonic acid group and sulfonimide group, which are strong acid groups, are preferably used.
  • the above-described effect of the electron-withdrawing group such as a fluorine atom can be obtained.
  • the strong acid group functions as a super strong acid group.
  • a block represented by the following formula (C-3) is preferable.
  • m represents an integer of 3 or more
  • Ar 3 represents an arylene group.
  • the arylene group has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • An optionally substituted aryl group having 6 to 20 carbon atoms, an optionally substituted aryloxy group having 6 to 20 carbon atoms, or an optionally substituted acyl group having 2 to 20 carbon atoms May be substituted.
  • at least one ion exchange group is directly bonded to the aromatic ring constituting the main chain.
  • a plurality of Ar 3 may be the same as or different from each other.
  • a copolymer block of a block represented by the above formula (C-3) and another repeating structure may have an average of 0.5 or more, calculated by the number of ion exchange groups per repeating unit.
  • the content of the block represented by the formula (C-3) is preferably 50 mol% to 100 mol%, and the fuel cell if it is 70 mol% to 100 mol%
  • proton conductivity is particularly preferable because it is sufficient.
  • m in the formula (C-3) represents an integer of 3 or more, preferably in the range of 5 to 100, more preferably 10 to 100. It is preferable that the value of m is 3 or more because proton conductivity is sufficient as a polymer electrolyte for a fuel cell. If the value of m is 100 or less, it is preferable because production is easier.
  • the block having an ion exchange group is a copolymer block with another repeating structure, the block represented by the above formula (C-3) is included in the copolymer block.
  • Ar 3 in the above formula (C-3) represents an arylene group.
  • the arylene group include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, Divalent condensed aromatic groups such as, 5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, And divalent aromatic heterocyclic groups such as pyridinediyl group, quinoxalinediyl group, and thiophenediyl group.
  • a divalent monocyclic aromatic group is preferred.
  • Ar 3 may have a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, or a substituent.
  • the aryl group having 6 to 20 carbon atoms, the aryloxy group having 6 to 20 carbon atoms which may have a substituent, and the acyl group having 2 to 20 carbon atoms which may have a substituent may be substituted.
  • specific examples thereof include those described above.
  • Preferable examples of the structure represented by the above formula (C-3) include a structure represented by the following formula (C-4).
  • Such a block having a structure is preferable because a raw material which can be easily obtained industrially can be used in the production of the block described later.
  • R 1 has a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
  • a group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and an acyl group having 2 to 20 carbon atoms which may have a substituent It represents at least one substituent selected from the above.
  • p is an integer of 0 to 3. When a plurality of R 1 are present, they may be the same as or different from each other.
  • R 1 examples include specific examples of the alkyl group, alkoxy group, aryl group, aryloxy group, and acyl group.
  • the number p of the substituents is preferably 0 or 1, and particularly preferably p is 0, that is, a repeating unit having no substituent.
  • the ion exchange group introduction amount of the block having ion exchange groups of the polyarylene block copolymer of the present invention is preferably 2.5 meq / g to 10.0 meq / g, more preferably 5 in terms of ion exchange capacity. It is from 0.5 meq / g to 9.0 meq / g, particularly preferably from 5.5 meq / g to 7.0 meq / g.
  • the ion exchange capacity indicating the ion exchange group introduction amount is 2.5 meq / g or more, the ion exchange groups are closely adjacent to each other, and the proton conductivity when the polyarylene block copolymer is obtained is further improved. Since it becomes high, it is preferable. On the other hand, it is preferable that the ion exchange capacity indicating the ion exchange group introduction amount is 10.0 meq / g or less because the production is easier.
  • the amount of ion exchange groups introduced into the entire polyarylene block copolymer is preferably 0.5 meq / g to 5.0 meq / g, more preferably 1.0 meq / g to 4 in terms of ion exchange capacity. .5 meq / g. It is preferable that the ion exchange capacity indicating the amount of introduced ion exchange groups is 0.5 meq / g or more because proton conductivity becomes higher and functions as a polymer electrolyte for a fuel cell are more excellent. On the other hand, when the ion exchange capacity indicating the amount of ion exchange groups introduced is 5.0 meq / g or less, the water resistance becomes better, which is preferable.
  • the molecular weight of the polyarylene block copolymer of the present invention is preferably 5000 to 1000000, and particularly preferably 15000 to 400000, expressed as a number average molecular weight in terms of polystyrene.
  • the number average molecular weight is measured by gel permeation chromatography (GPC).
  • the block having a suitable ion exchange group in the polyarylene-based block copolymer is a block represented by the above formula (C-1), and is an ion exchange bonded to an aromatic ring constituting the main chain in Ar 1 .
  • the method for introducing a group is a method for polymerizing a monomer having an ion exchange group in advance, and a method for introducing an ion exchange group into the block after producing a block from a monomer not having an ion exchange group in advance. Also good.
  • the former method is more preferable because the amount of ion exchange groups introduced and the substitution position can be accurately controlled.
  • Examples of a method for producing the polyarylene block copolymer of the present invention using a monomer having an ion exchange group include a monomer represented by the following formula (C-6) in the presence of a zero-valent transition metal complex. And a block precursor having substantially no ion-exchange group represented by the following formula (C-7) by polymerization through a condensation reaction.
  • Ar 4 represents a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted alkoxy group having 1 to 20 carbon atoms.
  • An aryl group having 6 to 20 carbon atoms which may have a substituent an aryloxy group having 6 to 20 carbon atoms which may have a substituent, and 2 carbon atoms which may have a substituent
  • Q represents a group capable of leaving during the condensation reaction, and a plurality of Q may be the same as or different from each other.
  • Ar 1 , Ar 2 , n, X, and Y are as defined above.
  • Examples of the monomer represented by the formula (C-6) include 2,4-dichlorobenzenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, and 3,5-dichlorobenzene, which are exemplified by sulfonic acid groups that are preferable ion exchange groups.
  • the sulfonic acid group of these monomers may form a salt, and those having a sulfonic acid precursor group instead of the sulfonic acid group can be used.
  • the counter ion is preferably an alkali metal ion, and particularly preferably Li ion, Na ion, or K ion.
  • the sulfonic acid precursor group those capable of becoming a sulfonic acid group by a simple operation such as hydrolysis treatment or oxidation treatment are preferable.
  • a monomer having a sulfonic acid group in the form of a salt or a monomer having a sulfonic acid precursor group it is preferable from the viewpoint of polymerization reactivity to use a monomer having a sulfonic acid group in the form of a salt or a monomer having a sulfonic acid precursor group.
  • the sulfonic acid precursor group examples include a sulfonic acid ester (—SO 3 R c ; where R c represents an alkyl group having 1 to 20 carbon atoms) or a sulfonamide (—SO 2 N (R d ) (R e ) Wherein R d and R e each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic group having 3 to 20 carbon atoms), and the sulfonic acid group forms an ester or an amide.
  • a form that is protected is preferable.
  • sulfonic acid ester examples include sulfonic acid methyl ester, sulfonic acid ethyl ester group, sulfonic acid n-propyl ester, sulfonic acid isopropyl ester, sulfonic acid n-butyl ester group, sulfonic acid sec-butyl ester group, and sulfonic acid tert.
  • sulfonamide examples include sulfonamide, N-methylsulfonamide, N, N-dimethylsulfonamide, N-ethylsulfonamide, N, N-diethylsulfonamide, Nn-propylsulfonamide, di- n-propylsulfonamide, N-isopropylsulfonamide, N, N-diisopropylsulfonamide, Nn-butylsulfonamide, N, N-di-n-butylsulfonamide, N-sec-butylsulfonamide, N, N-di-sec-butylsulfonamide, N-tert-butylsulfonamide, N, N-di-tert-butylsulfonamide, Nn-pentylsulfonamide, N-neopentylsulfonamide, Nn-hexyl Sulfonamide,
  • a mercapto group can be used as the sulfonic acid precursor group.
  • Mercapto groups can be converted to sulfonic acid groups by oxidation using a suitable oxidizing agent.
  • the sulfonic acid groups of the monomers exemplified above can be selected by replacing them with ion exchange groups such as carboxylic acid groups and phosphonic acid groups.
  • ion exchange groups such as carboxylic acid groups and phosphonic acid groups.
  • Q in the above formulas (C-6) and (C-7) represents a group capable of leaving during the condensation reaction. Specific examples thereof include halogen atoms such as chlorine atom, bromine atom and iodine atom, p- Examples include toluenesulfonyloxy group, methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and groups containing boron atoms as shown below.
  • R a and R b each independently represent a hydrogen atom or an organic group, and R a and R b may be bonded to form a ring.
  • An example of a method for producing the polyarylene block copolymer of the present invention by introducing an ion exchange group after polymerization is represented by the following formula (C-8) in the presence of a zero-valent transition metal complex.
  • C-8 By polymerizing a compound and a block precursor substantially free of an ion exchange group represented by the above formula (C-6) by a condensation reaction, and then introducing an ion exchange group according to a known method Can be manufactured.
  • Ar 5 represents an aryl group that can be converted to Ar 3 in formula (C-3) by introducing an ion exchange group, and Q has the same meaning as in formula (C-6).
  • Ar 5 is a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or 2 carbon atoms.
  • Ar 5 is an aryl group having a structure capable of introducing at least one ion-exchange group, although it may be substituted with ⁇ 20 acyl groups.
  • aryl group examples include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4-naphthalenediyl group, Divalent condensed aromatic groups such as, 5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, Examples thereof include heterocyclic groups such as pyridinediyl group, quinoxalinediyl group, and thiophenediyl group.
  • An optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and an optionally substituted carbon group having 6 to 20 carbon atoms may be used as the aryl group.
  • the aryloxy group having 6 to 20 carbon atoms which may have a substituent or the acyl group having 2 to 20 carbon atoms which may have a substituent, the substituent in Ar 3 described above may be used. The thing similar to what was illustrated as is mentioned.
  • the structure capable of introducing an ion exchange group in Ar 5 it indicates that it has a hydrogen atom directly bonded to an aromatic ring or a substituent that can be converted into an ion exchange group.
  • the substituent that can be converted into an ion exchange group is not particularly limited as long as the polymerization reaction is not inhibited, and examples thereof include a mercapto group, a methyl group, a formyl group, a hydroxy group, and a bromo group.
  • the polyarylene block copolymer obtained by polymerization is dissolved or dispersed in concentrated sulfuric acid, or at least partially in an organic solvent.
  • a method of converting a hydrogen atom into a sulfonic acid group by allowing concentrated sulfuric acid, chlorosulfuric acid, fuming sulfuric acid, sulfur trioxide, or the like to act on the resulting solution can be given.
  • these monomers include, for example, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,3-dibromobenzene, 1,4-dibromobenzene, 1,3-diiodobenzene, 1,4 -Diiodobenzene, 1,3-dichloro-4-methoxybenzene, 1,4-dichloro-3-methoxybenzene, 1,3-dibromo-4-methoxybenzene, 1,4-dibromo-3-methoxybenzene, 1 , 3-Diiodo-4-methoxybenzene, 1,4-diiodo-3-methoxybenzene, 1,3-dichloro-4-acetoxybenzene, 1,4-dichloro-3-acetoxybenzene, 1,3-dibromo-4 -Acetoxybenzene, 1,4-dibromo-3-acetoxybenzene, 1,3-
  • the monomer represented by the formula (C-8) has a mercapto group
  • a block having a mercapto group can be obtained at the end of the polymerization reaction, and the mercapto group can be converted into a sulfonic acid group by an oxidation reaction. Can do.
  • Such monomers include 2,4-dichlorobenzenethiol, 2,5-dichlorobenzenethiol, 3,5-dichlorobenzenethiol, 2,4-dibromobenzenethiol, 2,5-dibromobenzenethiol, 3,5-dibromobenzenethiol, 2,4-diiodobenzenethiol, 2,5-diiodobenzenethiol, 3,5-diiodobenzenethiol, 2,5-dichloro-1,4-benzenedithiol, 3 , 5-dichloro-1,2-benzenedithiol, 3,6-dichloro-1,2-benzenedithiol, 4,6-dichloro-1,3-benzenedithiol, 2,5-dibromo-1,4-benzenedithiol 3,5-dibromo-1,2-benzenedithiol, 3,6-dibromo-1,
  • a method for introducing a carboxylic acid group a method for converting a methyl group or a formyl group into a carboxylic acid group by an oxidation reaction, or a method for converting a bromo group to -MgBr by the action of Mg
  • Examples of the known method include making it act and converting it into a carboxylic acid group.
  • typical monomers having a methyl group include 2,4-dichlorotoluene, 2,5-dichlorotoluene, 3,5-dichlorotoluene, 2,4-dibromotoluene, 2,5-dibromotoluene, 3 , 5-dibromotoluene, 2,4-diiodotoluene, 2,5-diiodotoluene, 3,5-diiodotoluene.
  • a bromo group is converted to a phosphonic acid diester group by reacting with a trialkyl phosphite in the presence of a nickel compound such as nickel chloride, and then hydrolyzed to obtain a phosphonic acid group.
  • a nickel compound such as nickel chloride
  • Lewis acid catalyst in the coexistence of acid group or by forming a C—P bond using phosphorus trichloride or phosphorus pentachloride, then converted to phosphonic acid group by oxidation and hydrolysis as necessary.
  • a known method such as a method of converting a hydrogen atom into a phosphonic acid group by reacting phosphoric anhydride at a high temperature.
  • a sulfonimide group introduction method as an example, a known method such as a method of converting the above sulfonic acid group into a sulfonimide group by a condensation reaction, a substitution reaction or the like can be mentioned.
  • Q is a group capable of leaving during the condensation reaction and is equivalent to those exemplified in the above formulas (C-6) and (C-7).
  • preferable examples of the precursor represented by the formula (C-7) include monomers exemplified below.
  • n and Q are as defined above.
  • the zero-valent transition metal complex is a transition metal in which a halogen or a ligand described below is coordinated, and preferably has at least one ligand described below.
  • a commercially available product or a separately synthesized one may be used as the zero-valent transition metal complex.
  • Examples of the method for synthesizing the zero-valent transition metal complex include known methods such as a method of reacting a transition metal salt or transition metal oxide with a ligand.
  • the synthesized zero-valent transition metal complex may be taken out and used, or may be used in situ without being taken out.
  • Examples of the ligand include acetate, acetylacetonate, 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N′N′-tetramethylethylenediamine, triphenylphosphine, and tolylyl.
  • Examples include phosphine, tributylphosphine, triphenoxyphosphine, 1,2-bisdiphenylphosphinoethane, and 1,3-bisdiphenylphosphinopropane.
  • the zero-valent transition metal complex examples include a zero-valent nickel complex, a zero-valent palladium complex, a zero-valent platinum complex, and a zero-valent copper complex.
  • a zero-valent nickel complex and a zero-valent palladium complex are preferably used, and a zero-valent nickel complex is more preferably used.
  • Examples of the zero-valent nickel complex include bis (1,5-cyclooctadiene) nickel (0), (ethylene) bis (triphenylphosphine) nickel (0), and tetrakis (triphenylphosphine) nickel.
  • bis (1,5-cyclooctadiene) nickel (0) is preferably used from the viewpoints of reactivity, yield of the obtained polymer and the like and increase in the molecular weight of the obtained polymer and the like.
  • Examples of the zero-valent palladium complex include tetrakis (triphenylphosphine) palladium (0).
  • Zero-valent transition metal complexes may be synthesized and used as described above, or commercially available products may be used.
  • Examples of the method for synthesizing the zero-valent transition metal complex include known methods such as a method in which the transition metal compound is made zero-valent with a reducing agent such as zinc or magnesium.
  • the synthesized zero-valent transition metal complex may be taken out and used in situ without being taken out.
  • a zero-valent transition metal compound can be used as the transition metal compound to be used, but it is usually preferable to use a divalent one.
  • divalent nickel compounds and divalent palladium compounds are preferred.
  • the divalent nickel compound include nickel chloride, nickel bromide, nickel iodide, nickel acetate, nickel acetylacetonate, nickel chloride bis (triphenylphosphine), nickel bromide bis (triphenylphosphine), nickel iodide bis ( Triphenylphosphine).
  • the divalent palladium compound include palladium chloride, palladium bromide, palladium iodide, and palladium acetate.
  • Examples of the reducing agent include zinc, magnesium, sodium hydride, hydrazine and its derivatives, and lithium aluminum hydride. If necessary, ammonium iodide, trimethylammonium iodide, triethylammonium iodide, lithium iodide, sodium iodide, potassium iodide and the like can be used in combination.
  • a compound that can be a ligand of the used zero-valent transition metal complex from the viewpoint of improving the yield of the obtained polymer or the like.
  • the compound to be added may be the same as or different from the ligand of the zero-valent transition metal complex used.
  • Examples of the compound that can be a ligand include the compounds exemplified above as the ligand, versatility, economy, reactivity, yield of the obtained polymer, etc., high molecular weight of the obtained polymer, etc.
  • triphenylphosphine and 2,2′-bipyridyl are preferred.
  • 2,2'-bipyridyl is particularly advantageous in terms of improving the yield of polymers and the like and increasing the molecular weight.
  • the addition amount of the ligand is usually about 0.2 to 10 mole times, preferably about 1 to 5 mole times based on the transition metal atom in the zero-valent transition metal complex.
  • the amount of the zero-valent transition metal complex used is represented by the monomer represented by the formula (C-6), the precursor represented by the formula (C-7) and the formula (C-8) used for the production of a polymer or the like. It is 0.1 mol times or more with respect to the total molar amount of monomers (hereinafter referred to as “total molar amount of all monomers”). If the amount used is too small, the molecular weight tends to be small, so it is preferably 1.5 mole times or more, more preferably 1.8 mole times or more, and even more preferably 2.1 mole times or more. On the other hand, the upper limit of the amount used is not particularly limited, but if the amount used is too large, the post-treatment may become complicated, and thus it is preferably 5.0 moles or less.
  • the use amount of the transition metal compound and the reducing agent is set so that the generated zero-valent transition metal complex falls within the above range.
  • the amount of the transition metal compound may be 0.01 mol times or more, preferably 0.03 mol times or more with respect to the total molar amount of all monomers.
  • the upper limit of the amount used is not limited, but if the amount used is too large, the post-treatment tends to be complicated, and therefore it is preferably 5.0 mole times or less.
  • the usage-amount of a reducing agent should just be 0.5 mol times or more with respect to the total molar amount of all the monomers, Preferably it is 1.0 mol times or more.
  • the upper limit of the amount used is not limited, but if the amount used is too large, the post-treatment tends to be complicated, and therefore it is preferably 10 mol times or less.
  • the reaction temperature is usually about 20 ° C. to 200 ° C., preferably about 20 ° C. to 100 ° C.
  • the reaction time is usually about 0.5 to 24 hours.
  • the method of mixing the monomers to be mixed may be a method of adding one to the other or a method of adding both to the reaction vessel at the same time. When adding, it may be added all at once, but it is preferable to add little by little in consideration of heat generation, and it is also preferable to add in the coexistence of a solvent, and a suitable solvent in this case will be described later.
  • the condensation reaction is usually carried out in the presence of a solvent.
  • solvents include aprotic such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide and the like.
  • Polar solvents aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, benzene, n-butylbenzene; ether solvents such as tetrahydrofuran, 1,4-dioxane, dibutyl ether, tert-butyl methyl ether; ethyl acetate, Examples include ester solvents such as butyl acetate and methyl benzoate; halogen solvents such as chloroform and dichloroethane.
  • aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, benzene, n-butylbenzene
  • ether solvents such as tetrahydrofuran, 1,4-dioxane, dibutyl ether, tert-butyl methyl ether
  • ethyl acetate examples include ester solvents such as butyl acetate and methyl benzoate; halogen solvents such
  • a solvent in which the polymer etc. is sufficiently dissolved that is, a good solvent for the polymer.
  • a good solvent for the polymer tetrahydrofuran, 1,4-dioxane, DMF, DMAc, NMP, DMSO, and toluene are preferable. These may be used in combination of two or more. Among these, at least one solvent selected from the group consisting of DMF, DMAc, NMP and DMSO, or a mixture of two or more solvents selected from these is preferably used.
  • the amount of the solvent is not particularly limited, but if the concentration is too low, it may be difficult to recover the produced polymer, and if the concentration is too high, stirring may be difficult. 1 times by weight with respect to the monomer used for production (monomer selected from monomer represented by formula (C-6), precursor represented by formula (C-7) and monomer represented by formula (C-8)) It is preferable to determine the amount of the solvent used so that it is 999 times by weight, more preferably 3 times by weight to 199 times by weight.
  • the polyarylene block copolymer of the present invention or the prepolymer which can be the polyarylene block copolymer of the present invention is obtained, but the produced polyarylene block copolymer is obtained from the reaction mixture by a conventional method. It can be taken out.
  • a polyarylene block copolymer or the like can be precipitated by adding a poor solvent, and the target product can be taken out by filtration or the like.
  • the sulfonic acid group of the produced polymer is in the form of a salt, it is preferable to convert the sulfonic acid group into a free acid form for use as a member for a fuel cell.
  • the acid used include hydrochloric acid, sulfuric acid, and nitric acid, and dilute hydrochloric acid and dilute sulfuric acid are preferable.
  • the protected sulfonic acid group is converted into a sulfonic acid group in the form of a free acid for use as a member for a fuel cell. is required. Conversion to a sulfonic acid group in the form of a free acid is possible by, for example, hydrolysis with an acid or base, or deprotection reaction with a halide. When a base is used, the sulfonic acid group in the form of free acid can be obtained by washing the acidic solution as described above. Examples of the acid / base used include hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, and potassium hydroxide.
  • halide to be used examples include lithium bromide, sodium iodide, tetramethylammonium chloride, and tetrabutylammonium bromide, preferably lithium bromide and tetrabutylammonium bromide.
  • the conversion rate to the sulfonic acid group can be calculated by quantifying the degree of presence of a characteristic peak in the sulfonic acid ester or sulfonamide by infrared absorption spectrum or nuclear magnetic resonance spectrum.
  • a typical example of the polyarylene block copolymer of the present invention is exemplified by a block having a suitable ion exchange group represented by the above formula (C-4), and the following structures are exemplified. (In the formula, n and m are as defined above.)
  • any of the polyarylene block copolymers of the present invention shown above can be suitably used as a member for a fuel cell.
  • the polyarylene block copolymer of the present invention is preferably used as a polymer electrolyte for electrochemical devices such as fuel cells.
  • the polymer electrolyte of the present invention is usually used in the form of a membrane, but there is no particular limitation on the method of conversion into a membrane, and for example, a method of forming a membrane from a solution state (solution casting method) is preferably used.
  • a method of forming a membrane from a solution state solution casting method
  • the polymer electrolyte of the present invention is dissolved in an appropriate solvent, the solution is cast on a supporting substrate, and the solvent is removed to form a film.
  • a supporting substrate include glass plates and plastic films such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyimide (PI).
  • the solvent used for the film formation is not particularly limited as long as the polymer electrolyte can be dissolved and can be removed thereafter.
  • Aprotic polar solvents such as DMF, DMAc, NMP, DMSO; dichloromethane, chloroform Chlorinated solvents such as 1,2-dichloroethane, chlorobenzene, dichlorobenzene; alcohols such as methanol, ethanol, propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, etc.
  • An alkylene glycol monoalkyl ether is preferably used. These can be used singly, but two or more solvents can be mixed and used as necessary.
  • DMSO, DMF, DMAc, NMP, and the like are preferable because of high polymer solubility.
  • the thickness of the film is not particularly limited, but is preferably 10 to 300 ⁇ m.
  • a film having a film thickness of 10 ⁇ m or more is preferable because practical strength is more excellent, and a film having a film thickness of 300 ⁇ m or less is preferable because the film resistance is decreased and the characteristics of the electrochemical device tend to be further improved.
  • the film thickness can be controlled by the concentration of the solution and the coating thickness on the substrate.
  • plasticizers, stabilizers, mold release agents, and the like used in ordinary polymers may be added to the polyarylene block copolymer of the present invention.
  • other polymers can be combined with the polyarylene block copolymer of the present invention by a method such as mixing and co-casting in the same solvent.
  • a polymer electrolyte is prepared by combining the polyarylene block copolymer of the present invention with an additive and / or another polymer, the polymer electrolyte is applied to a fuel cell member.
  • the type and amount of additives and / or other polymers are determined so that the desired properties are obtained.
  • inorganic or organic fine particles as a water retention agent. Any of these known methods can be used as long as they are not contrary to the object of the present invention.
  • the polymer electrolyte membrane thus obtained may be subjected to a treatment such as irradiation with an electron beam or radiation for the purpose of improving its mechanical strength.
  • the polymer electrolyte containing the polyarylene block copolymer of the present invention is used as a porous substrate. It is also possible to form a composite film by impregnating with a composite. A known method can be used as the compounding method.
  • the porous substrate is not particularly limited as long as it satisfies the above-mentioned purpose of use, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
  • an aliphatic, aromatic polymer, or fluorine-containing polymer is preferable from the viewpoint of heat resistance and the effect of reinforcing physical strength.
  • the thickness of the porous substrate is preferably 1 to 100 ⁇ m, More preferably, it is 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the pore diameter of the porous substrate is preferably 0.01 to 100 ⁇ m, more preferably 0.02 to 10 ⁇ m.
  • the porosity of the porous substrate is preferably 20 to 98%, more preferably 40 to 95%.
  • the film thickness of the porous substrate is 1 ⁇ m or more, the effect of reinforcing the strength after compounding or the reinforcing effect of imparting flexibility and durability is more excellent, and gas leakage (cross leak) is less likely to occur. . Further, when the film thickness is 100 ⁇ m or less, the electric resistance is further lowered, and the obtained composite membrane is more excellent as a polymer electrolyte membrane of a polymer electrolyte fuel cell.
  • the pore diameter is 0.01 ⁇ m or more, filling of the polyarylene block copolymer of the present invention becomes easier, and when it is 100 ⁇ m or less, the reinforcing effect on the polyarylene block copolymer is further increased.
  • the porosity is 20% or more, the resistance as the polymer electrolyte membrane becomes smaller, and when it is 98% or less, the strength of the porous substrate itself becomes larger and the reinforcing effect is further improved, which is preferable.
  • polymer electrolyte composite membrane and the polymer electrolyte membrane can be laminated and used as a polymer electrolyte membrane of a fuel cell.
  • the membrane-electrode assembly of the present invention (hereinafter sometimes referred to as “MEA”), which is a basic unit of a fuel cell, comprises the polymer electrolyte membrane of the present invention, the polymer electrolyte composite membrane of the present invention, and The polymer electrolyte of the present invention and at least one selected from a catalyst composition containing a catalyst component can be used.
  • the MEA uses a polymer electrolyte membrane or a composite membrane using the polymer or polyarylene block polymer copolymer of the present invention as a proton conducting membrane of MEA, and a catalyst component and a current collector on both sides of the proton conducting membrane. It can manufacture by joining the conductive substance as.
  • the catalyst component is not particularly limited as long as it can activate the oxidation-reduction reaction with hydrogen or oxygen, and a known component can be used, but platinum or platinum alloy fine particles are used as the catalyst component. It is preferable.
  • the fine particles of platinum or platinum-based alloys are often used by being supported on particulate or fibrous carbon such as activated carbon or graphite.
  • J. Org. Electrochem. Soc. Known methods such as those described in Electrochemical Science and Technology, 1988, 135 (9), 2209 can be used.
  • MEA is obtained by forming a catalyst layer on both surfaces of a polymer electrolyte membrane.
  • the obtained MEA is a membrane-electrode having both a gas diffusion layer and a catalyst layer on both sides of the polymer electrolyte membrane.
  • a gas diffusion layer is further formed on the obtained catalyst layer to form a membrane. An electrode-gas diffusion layer assembly is obtained.
  • the polymer of the present invention may be used instead of the perfluoroalkylsulfonic acid resin.
  • a known material can be used for the gas diffusion layer, but a porous carbon woven fabric, carbon non-woven fabric or carbon paper is preferable in order to efficiently transport the raw material gas to the catalyst.
  • a known material can be used for the gas diffusion layer, but a porous carbon woven fabric, carbon non-woven fabric or carbon paper is preferable in order to efficiently transport the raw material gas to the catalyst.
  • the fuel cell having the MEA manufactured in this way can be used in various forms using methanol as well as a form using hydrogen gas or reformed hydrogen gas as fuel.
  • the polymer electrolyte fuel cell of the present invention is excellent in power generation performance and can be provided as a long-life fuel cell.
  • This fuel cell includes the polymer electrolyte membrane of the above-described embodiment. Such a fuel cell is sufficiently excellent in durability and can operate for a long time.
  • FIG. 1 is a diagram schematically showing a cross-sectional configuration of the fuel cell of the present embodiment.
  • the fuel cell 10 includes a catalyst layer 14a, 14b and gas diffusion layers 16a, 16b on both sides of the polymer electrolyte membrane 12 (proton conducting membrane) of the preferred embodiment described above so as to sandwich it.
  • separators 18a and 18b are formed in order.
  • a membrane-electrode assembly (hereinafter abbreviated as “MEA”) 20 is composed of the polymer electrolyte membrane 12 and a pair of catalyst layers 14 a and 14 b sandwiching the polymer electrolyte membrane 12.
  • the catalyst layers 14a and 14b adjacent to the polymer electrolyte membrane 12 are layers that function as electrode layers in the fuel cell, and either one of them is an anode electrode layer and the other is a cathode electrode layer.
  • Such catalyst layers 14a and 14b are composed of a catalyst composition including a catalyst, and more preferably include the above-described polymer electrolyte.
  • the catalyst is not particularly limited as long as it can activate a redox reaction with hydrogen or oxygen, and examples thereof include noble metals, noble metal alloys, metal complexes, and fired metal complex products obtained by firing metal complexes.
  • the catalyst is preferably platinum fine particles, and the catalyst layers 14a and 14b may be formed by supporting fine particles of platinum on particulate or fibrous carbon such as activated carbon or graphite.
  • the gas diffusion layers 16a and 16b are provided so as to sandwich both sides of the MEA 20, and promote the diffusion of the raw material gas into the catalyst layers 14a and 14b.
  • the gas diffusion layers 16a and 16b are preferably made of a porous material having electron conductivity.
  • a porous carbon non-woven fabric or carbon paper is preferable because the raw material gas can be efficiently transported to the catalyst layers 14a and 14b.
  • MEGA membrane-electrode-gas diffusion layer assembly
  • MEGA having the above-described structure is obtained.
  • the formation of the catalyst layer on the gas diffusion layer is performed, for example, by applying a catalyst composition on a predetermined substrate (polyimide, polytetrafluoroethylene, etc.) and drying to form a catalyst layer. It can also be carried out by transferring to the gas diffusion layer by hot pressing.
  • Separator 18a, 18b is formed with the material which has electronic conductivity, As this material, carbon, resin mold carbon, titanium, stainless steel etc. are mentioned, for example. Although not shown, the separators 18a and 18b are preferably provided with grooves serving as flow paths for fuel gas or the like on the catalyst layers 14a and 14b.
  • the fuel cell 10 can be obtained by sandwiching MEGA as described above between a pair of separators 18a and 18b and joining them together.
  • the fuel cell of the present invention is not necessarily limited to the one having the above-described configuration, and may have a different configuration as long as it does not depart from the gist thereof.
  • the fuel cell 10 may be one having the above-described structure sealed with a gas seal body or the like.
  • a plurality of the fuel cells 10 having the above structure can be connected in series to be put to practical use as a fuel cell stack.
  • the fuel cell having such a configuration can operate as a solid polymer fuel cell when the fuel is hydrogen, and as a direct methanol fuel cell when the fuel is an aqueous methanol solution.
  • the obtained polymerization solution was charged into 900 g of 8N nitric acid aqueous solution at room temperature and stirred for 30 minutes.
  • the precipitated crude polymer is filtered, washed with water until the pH of the filtrate exceeds 4, and then further washed with a large amount of methanol to obtain a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl). 18.7 g of a polymer having a group)) was obtained.
  • the above polymer solution was charged into 900 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer was filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeded 4, and dried to obtain 13.1 g of polymer electrolyte A.
  • the polymer electrolyte B had a structure represented by the following chemical formula (9) (subscripts of each repeating unit of the block copolymer, 0.74,. 26 represents a mol composition ratio).
  • the water in the system was azeotropically dehydrated by heating to reflux at a bath temperature of 150 ° C., and the water and toluene produced were distilled off. The bath temperature was then raised to 180 ° C., and the mixture was kept warm for 13 hours. After allowing to cool, the reaction solution was poured into a 37 wt% hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was collected by filtration, washed with ion-exchanged water until neutral, After washing with methanol, it was dried.
  • the obtained polymerization solution was poured into 1200 g of hot water at 70 ° C., and the resulting precipitate was collected by filtration. Water was added to the precipitate so that the total amount of the precipitate and water was 696 g, and further 9.2 g of a 35 wt% sodium nitrite aqueous solution was added. To this slurry solution, 172 g of 65% by weight nitric acid was added dropwise over 30 minutes, and then stirred at room temperature for 1 hour. The slurry solution was filtered, and the collected crude polymer was washed with water until the pH of the filtrate exceeded 1.
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 25.15 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, 630 g of NMP was added under an argon atmosphere, and the mixture was heated and stirred at 80 ° C. for dissolution. To this was added 33 g of activated alumina, and the mixture was kept warm for 1 hour and 30 minutes. Thereafter, 630 g of NMP was added thereto, and activated alumina was removed by filtration. From the resulting solution, NMP was concentrated by distilling off under reduced pressure to obtain a 305 g NMP solution.
  • the crude polymer was immersed and washed four times with 1640 g of hot water (95 ° C.) and dried to obtain 17.71 g of the target polymer electrolyte D.
  • the water in the system was azeotropically dehydrated by heating and refluxing at a bath temperature of 150 ° C., and the water and toluene produced were distilled off. The bath temperature was then raised to 180 ° C., and the mixture was stirred while keeping for 21 hours. After allowing to cool, the reaction solution was poured into a 37 wt% hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was collected by filtration, washed with ion-exchanged water until neutral, After washing with methanol, it was dried.
  • the obtained crude product (77.31 g) was dissolved in NMP, poured into a 37 wt% hydrochloric acid / methanol solution (mixed solution having a weight ratio of 1/1), and the deposited precipitate was collected by filtration, and washed with ion-exchanged water. Washed until dry and dried. 73.34 g of the desired product was obtained.
  • the obtained polymerization solution was poured into 1200 g of hot water at 70 ° C., and the resulting precipitate was collected by filtration. Water was added to the precipitate so that the total amount of the precipitate and water was 696 g, and further 9.2 g of a 35 wt% sodium nitrite aqueous solution was added. To this slurry solution, 172 g of 65% by weight nitric acid was added dropwise over 30 minutes, and then stirred at room temperature for 1 hour. The slurry solution was filtered, and the collected crude polymer was washed with water until the pH of the filtrate exceeded 1.
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 25.31 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, 630 g of NMP was added in an argon atmosphere, and the mixture was heated and stirred at 80 ° C. to dissolve. To this was added 33 g of activated alumina, and the mixture was kept warm for 1 hour and 30 minutes. Thereafter, 630 g of NMP was added thereto, and activated alumina was removed by filtration. From the obtained solution, NMP was distilled off under reduced pressure to concentrate it to give 302 g of NMP solution.
  • the crude polymer was immersed and washed four times with 1650 g of hot water (95 ° C.) and dried to obtain 18.50 g of a polymer electrolyte E.
  • Example 1 Production of polymer electrolyte membrane AM
  • the obtained polymer electrolyte A was dissolved in DMSO at a concentration of 5% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was continuously cast and applied to a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., E5000 grade) having a width of 300 mm and a length of 500 m as a supporting substrate using a slot die. Then, after removing the solvent by drying at 70 ° C. for 1 hour under normal pressure, the polymer electrolyte membrane AM having a film thickness of about 15 ⁇ m was prepared through treatment with hydrochloric acid and washing with ion-exchanged water.
  • PET polyethylene terephthalate
  • Example 2 Production of polymer electrolyte membrane DM
  • the obtained polymer electrolyte D was dissolved in DMSO at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was continuously cast and applied to a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., E5000 grade) having a width of 300 mm and a length of 500 m as a supporting substrate using a slot die. Then, after removing the solvent by drying at 70 ° C. for 1 hour under normal pressure, a polymer electrolyte membrane DM having a film thickness of about 20 ⁇ m was prepared through treatment with hydrochloric acid and washing with ion-exchanged water.
  • PET polyethylene terephthalate
  • Example 3 Production of polymer electrolyte membrane EM
  • the obtained polymer electrolyte E was dissolved in DMSO at a concentration of 8% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was continuously cast and applied to a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., E5000 grade) having a width of 300 mm and a length of 500 m as a supporting substrate using a slot die. Then, after removing the solvent by drying at 70 ° C. for 1 hour under normal pressure, a polymer electrolyte membrane EM having a film thickness of about 20 ⁇ m was prepared through treatment with hydrochloric acid and washing with ion-exchanged water.
  • PET polyethylene terephthalate
  • titration was performed by gradually adding a 0.1 mol / L aqueous hydrochloric acid solution to the solution in which the polymer electrolyte membrane was immersed, and the neutralization point was determined. Then, the ion exchange capacity (unit: meq / g) of the polymer electrolyte membrane was calculated from the dry weight of the polymer electrolyte membrane and the amount of hydrochloric acid required for neutralization.
  • the catalyst ink was applied to a 5.2 cm square at the center of one side of the obtained polymer electrolyte membrane by a spray method. At this time, the distance from the discharge port to the film was 6 cm, and the stage temperature was set to 75 ° C. After eight times of overcoating by the same method, the coated material was left on the stage for 15 minutes, thereby removing the solvent to form an anode catalyst layer.
  • the obtained anode catalyst layer contains 0.6 mg / cm 2 of platinum calculated from its composition and coating weight.
  • catalyst ink was similarly applied to the surface of the polymer electrolyte membrane opposite to the anode catalyst layer to form a cathode catalyst layer containing 0.6 mg / cm 2 of platinum. Thereby, a membrane-electrode assembly was obtained.
  • a fuel cell was manufactured using a commercially available JARI standard cell. That is, on both outer sides of the membrane-electrode assembly, a carbon cloth as a gas diffusion layer and a carbon separator having a gas passage groove cut are disposed in this order, and a current collector and A fuel cell having an effective electrode area of 25 cm 2 was assembled by sequentially arranging end plates and fastening them with bolts.
  • the membrane-electrode assembly was taken out and put into an ethanol / water mixed solution, and further subjected to ultrasonic treatment to remove the catalyst layer. Then, the molecular weight of the remaining polymer electrolyte membrane and the polymer electrolyte membrane that was not subjected to the additional fluctuation test were measured by the method of molecular weight measurement.
  • the weight average molecular weight maintenance rate that is, the weight average molecular weight of the polymer electrolyte membrane subjected to the load fluctuation test, the weight average of the polymer electrolyte membrane not subjected to the load fluctuation test The number divided by molecular weight and multiplied by 100 was used. That is, it can be determined that the higher the weight average molecular weight retention rate, the higher the long-term stability of the polymer electrolyte membrane.
  • the polymer electrolyte membranes of Examples 1 to 3 were excellent in radical resistance.
  • the polymer electrolyte membrane of Comparative Example 1 has low radical resistance, and was evaluated for long-term stability.
  • the retention rate of the weight average molecular weight was 40%, which was inferior in long-term stability (however, In the molecular weight measurement, the mobile phase is changed to dimethylacetamide from the above molecular weight measurement method).
  • IEC ⁇ Ion exchange capacity (IEC) measurement A>
  • the polymer used for the measurement was formed into a film by a solution casting method to obtain a polymer film, and the obtained polymer film was cut to an appropriate weight.
  • the dry weight of the cut polymer film was measured using a halogen moisture meter set at a heating temperature of 105 ° C.
  • the polymer membrane thus dried was immersed in 5 mL of a 0.1 mol / L sodium hydroxide aqueous solution, and then 50 mL of ion-exchanged water was further added and left for 2 hours.
  • titration was performed by gradually adding 0.1 mol / L hydrochloric acid to the solution in which the polymer film was immersed, and the neutralization point was determined.
  • the ion exchange capacity (unit: meq / g) of the polymer was calculated from the dry weight of the cut polymer film and the amount of hydrochloric acid required for neutralization.
  • the polymer electrolyte membrane was cut into a strip-shaped membrane sample having a width of 1.0 cm, and a platinum plate (width: 5.0 mm) was pressed against the surface of the strip-shaped membrane sample so that the interval was 1.0 cm.
  • the strip-shaped film sample pressed against the platinum plate in this way was held in a constant temperature and humidity chamber at 80 ° C. and a relative humidity of 90%, and the AC impedance between the platinum plates at 10 6 to 10 ⁇ 1 Hz was measured. . Then, the obtained value was substituted into the following formula to calculate the proton conductivity ( ⁇ ) (S / cm) of each polymer electrolyte membrane.
  • Example A1 In a flask equipped with an azeotropic distillation apparatus under an argon atmosphere, DMSO 120 ml, toluene 60 mL, sodium 2,5-dichlorobenzenesulfonate 5.0 g (14.4 mmol), 2,5-dichlorobenzophenone 3.6 g (20.0 mmol) ), 13.4 g (86.0 mmol) of 2,2′-bipyridyl was added and stirred. Thereafter, the bath temperature was raised to 150 ° C., and water in the system was azeotropically dehydrated by distilling off toluene, followed by cooling to 65 ° C.
  • the obtained polymer A was dissolved in DMSO at a concentration of 10% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 40 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. 70% water absorption Proton conductivity 1.4 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • Example A2 Under an argon atmosphere, 20.1 g (92.0 mmol) of anhydrous nickel bromide and 220 g of NMP were mixed in the flask, the temperature was raised to 70 ° C., and the mixture was stirred for 1 hour. This was cooled to 60 ° C., 15.8 g (101.2 mmol) of 2,2′-bipyridyl was added, and stirred at the same temperature for 30 minutes to prepare a nickel-containing solution.
  • the precipitated crude polymer is filtered, washed with water until the pH of the filtrate exceeds 4, and then further washed with a large amount of methanol to obtain a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl). 19.1 g of the polymer having the group
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 18.5 g of the polymer having a sulfonic acid precursor group obtained as described above was put in a flask, and the inside of the flask was sufficiently replaced with argon, and 2.4 g of water, 11.7 g (134.7 mmol) of anhydrous lithium bromide and After adding 350 g of NMP and sufficiently dissolving the polymer having a sulfonic acid precursor group, the temperature was raised to 120 ° C., and a conversion reaction into a sulfonic acid group was performed at the same temperature for 12 hours to obtain a polymer solution.
  • the polymer solution was put into 900 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer was filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeded 4, and dried.
  • the polymer thus obtained is designated as Polymer B.
  • the yield of polymer B was 13.0 g.
  • Mn, Mw and IEC of polymer B are shown below.
  • Mn 1.6 ⁇ 10 5
  • Mw 4.0 ⁇ 10 5 IEC 4.2 meq / g
  • the obtained polymer B was dissolved in DMSO at a concentration of 6% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 15 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. Water absorption rate 100% Proton conductivity 4.6 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • Example A3 Under an argon atmosphere, 14.6 g (66.7 mmol) of anhydrous nickel bromide and 180 g of NMP were mixed in the flask, the temperature was raised to 70 ° C., and the mixture was stirred for 1 hour. This was cooled to 60 ° C., 11.5 g (73.5 mmol) of 2,2′-bipyridyl was added, and the mixture was cooled to 40 ° C. with stirring to prepare a nickel-containing solution.
  • the obtained polymerization solution was added to 2000 g of 6N hydrochloric acid aqueous solution at room temperature and stirred for 30 minutes.
  • the precipitated crude polymer is filtered, washed with water until the pH of the filtrate exceeds 4, and then further washed with a large amount of methanol to obtain a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl). 22.5 g of a polymer having the group
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 21.0 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and the inside of the flask was sufficiently replaced with argon, and 54.6 g of water, 13.3 g (134.7 mmol) of anhydrous lithium bromide, and After adding 500 g of NMP and sufficiently dissolving the polymer having a sulfonic acid precursor group, the temperature was raised to 120 ° C., and a conversion reaction into a sulfonic acid group was performed at the same temperature for 12 hours to obtain a polymer solution.
  • the polymer solution was charged into 2100 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer was filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeded 4, and dried.
  • the polymer thus obtained is designated as polymer C.
  • the yield of polymer C was 16.3 g.
  • Mw 7.7 ⁇ 10 5 IEC 4.3 meq / g
  • the obtained polymer C was dissolved in DMSO at a concentration of 4% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 15 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. Water absorption 110% Proton conductivity 3.8 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • the obtained polymer C was dissolved in NMP at a concentration of 4% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 10 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. 90% water absorption Proton conductivity 3.9 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • Example A4 Under an argon atmosphere, 12.5 g (57.2 mmol) of anhydrous nickel bromide and 150 g of NMP were mixed in the flask, the temperature was raised to 70 ° C., and the mixture was stirred for 1 hour. This was cooled to 60 ° C., 9.8 g (62.9 mmol) of 2,2′-bipyridyl was added, and the mixture was cooled to 50 ° C. with stirring to prepare a nickel-containing solution.
  • the obtained polymer D was dissolved in DMSO at a concentration of 4% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 15 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. Water absorption 280% Proton conductivity 3.5 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • the obtained polymer D was dissolved in DMSO at a concentration of 3% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was continuously cast and applied to a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., E5000 grade) having a width of 300 mm and a length of 500 m as a support device using an applicator. After removing the solvent by drying at 70 ° C. for 1 hour under normal pressure, the polymer electrolyte membrane A4 having a film thickness of about 20 ⁇ m was prepared through hydrochloric acid treatment and washing with ion-exchanged water. The proton conductivity of the obtained polymer electrolyte membrane was as follows. Proton conductivity 3.6 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • the obtained polymer electrolyte membrane A4 was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.13.
  • Example A5 Under an argon atmosphere, 10.4 g (47.8 mmol) of anhydrous nickel bromide and 130 g of NMP were mixed in the flask, the temperature was raised to 70 ° C., and the mixture was stirred for 1 hour. This was cooled to 60 ° C., 7.8 g (50.1 mmol) of 2,2′-bipyridyl was added, and the mixture was cooled to 30 ° C. with stirring to prepare a nickel-containing solution.
  • the obtained polymer E was dissolved in DMSO at a concentration of 4% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane A5 having a thickness of about 15 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. 150% water absorption Proton conductivity 4.3 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • the obtained polymer electrolyte membrane A5 was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.04.
  • the obtained polymer E was dissolved in NMP at a concentration of 4% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 10 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. 90% water absorption Proton conductivity 4.6 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • Example A6 Under an argon atmosphere, 13.5 g (61.6 mmol) of anhydrous nickel bromide and 160 g of NMP were mixed in the flask, the temperature was raised to 70 ° C., and the mixture was stirred for 1 hour. This was cooled to 60 ° C., 10.2 g (67.8 mmol) of 2,2′-bipyridyl was added, and the mixture was cooled to 30 ° C. with stirring to prepare a nickel-containing solution.
  • the obtained polymer F was dissolved in DMSO at a concentration of 5% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 10 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. 200% water absorption Proton conductivity 4.0 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • the obtained polymer F was dissolved in DMSO at a concentration of 5% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was continuously cast and applied to a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., E5000 grade) having a width of 300 mm and a length of 500 m as a support device using an applicator. After removing the solvent by drying at 70 ° C. for 1 hour under normal pressure, a polymer electrolyte membrane A6 having a film thickness of about 20 ⁇ m was prepared through treatment with hydrochloric acid and washing with ion-exchanged water.
  • PET polyethylene terephthalate
  • the obtained polymer electrolyte membrane A6 was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.03.
  • Example A7 In a nitrogen atmosphere, 5.5 g (84 mmol) of zinc powder and 172 g of N, N-dimethylacetamide were mixed and adjusted to 80 ° C. A solution consisting of 0.16 g (1.68 mmol) of methanesulfonic acid and 8 g of N, N-dimethylacetamide was added and stirred at 80 ° C. for 2 hours.
  • a polymer having a sulfonic acid precursor group was obtained by the same operation as in Example A3, and then the sulfonic acid precursor group was converted to a sulfonic acid group by the same operation as in Example A3.
  • Polymer G was obtained.
  • the yield of polymer G was 13.3 g.
  • Mn, Mw and IEC of the polymer G are shown below.
  • Mn 1.3 ⁇ 10 5
  • Mw 3.7 ⁇ 10 5 IEC 4.5 meq / g
  • the obtained polymer G was dissolved in DMSO at a concentration of 5% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane A7 having a thickness of about 20 ⁇ m was produced.
  • the water absorption and proton conductivity of the obtained polymer electrolyte membrane were as follows. Water absorption rate 250% Proton conductivity 3.9 ⁇ 10 ⁇ 1 S / cm (80 ° C., relative humidity 90%)
  • the obtained polymer electrolyte membrane A7 was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.06.
  • the polymer of the present invention when used as a polymer electrolyte membrane, particularly as a proton conductive membrane for a fuel cell, can achieve both high ionic conductivity and excellent water resistance, and therefore is preferably used particularly in fuel cell applications. Can do.
  • ⁇ Measurement B of Ion Exchange Capacity (IEC)> A polymer film in which a polymer to be measured was formed by a solution casting method was obtained, and the obtained polymer film was cut to an appropriate weight. The dry weight of the cut polymer film was measured using a halogen moisture meter set at a heating temperature of 110 ° C. Next, the polymer membrane thus dried was immersed in 5 mL of a 0.1 mol / L sodium hydroxide aqueous solution, and then 50 mL of ion-exchanged water was further added and left for 2 hours.
  • ⁇ Measurement of proton conductivity B> It measured by the alternating current method. Two measurement cells each having a carbon electrode attached to one side of silicon rubber (thickness: 200 ⁇ m) having an opening of 1 cm 2 are arranged so that the carbon electrodes are opposed to each other, and directly to the two cells. The terminal of the impedance measuring device was connected. Next, a polymer electrolyte membrane obtained by converting the ion exchange group obtained by the above method into a proton type is set between the two measurement cells, and the resistance between the two measurement cells is measured at a measurement temperature of 23 ° C. The value was measured. Thereafter, the polymer electrolyte membrane was removed and the resistance value was measured again.
  • the membrane resistance in the film thickness direction of the polymer electrolyte membrane was calculated.
  • the proton conductivity in the film thickness direction of the polymer electrolyte membrane was calculated from the obtained membrane resistance value and film thickness.
  • 1 mol / L dilute sulfuric acid was used as a solution to be brought into contact with both sides of the polymer electrolyte membrane.
  • ⁇ Measurement of water absorption B> As an index representing water resistance, the water absorption rate of the polymer electrolyte membrane was measured. The lower the water absorption rate, the better the water resistance. The dried membrane was weighed and the water absorption was calculated from the increase in membrane weight after being immersed in deionized water at 80 ° C. for 2 hours, and the ratio to the dried membrane was determined.
  • Example B1 In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone, 39.43 g (157.5 mmol) of 4,4′-sulfonyldiphenol, potassium carbonate 22.86 g (165.4 mmol), N-methylpyrrolidone 203 mL, and toluene 80 mL were added. Water in the system was azeotropically dehydrated by heating and refluxing toluene at a bath temperature of 150 ° C. for 12 hours, and the generated water and toluene were distilled off. .
  • reaction solution was added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, washed with ion-exchanged water until neutral, and then washed with methanol. After that, it was dried.
  • the obtained crude product (77.31 g) was dissolved in N-methylpyrrolidone, added to a 12N hydrochloric acid / methanol solution (mixed solution having a weight ratio of 1/1), the deposited precipitate was filtered, and neutralized with ion-exchanged water.
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 25.23 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 25.18 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and the inside of the flask was sufficiently replaced with argon, and 2.25 g of water, 10.83 g (124.7 mmol) of anhydrous lithium bromide and After adding 315 g of N-methylpyrrolidone and sufficiently dissolving the polymer having sulfonic acid precursor groups, the bath temperature is raised to 126 ° C., and conversion reaction to sulfonic acid groups is carried out at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was charged into 1260 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer is filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeds 4, and dried to give a polymer represented by the following formula (E-2) 18. 41 g were obtained.
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced.
  • Proton conductivity 0.081 S / cm Water absorption: 118%
  • Example B2 In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 17.60 g (94.52 mmol) of 4,4′-biphenol, 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone, 4,4 ′ -Sulfonyl diphenol 15.77 g (63.01 mmol) Potassium carbonate 22.86 g (165.4 mmol), N-methylpyrrolidone 195 mL and toluene 60 mL were added. Water in the system was azeotropically dehydrated by heating and refluxing toluene at a bath temperature of 150 ° C. for 6 hours.
  • the bath temperature was raised to 180 ° C. and the mixture was stirred for 13 hours. .
  • the reaction solution was added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, washed with ion-exchanged water until neutral, and then washed with methanol. After that, it was dried.
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 26.55 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 26.55 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and the inside of the flask was sufficiently replaced with argon. 2.44 g of water, 11.77 g (135.5 mmol) of anhydrous lithium bromide, and After adding 313 g of N-methylpyrrolidone and sufficiently dissolving the polymer having sulfonic acid precursor groups, the bath temperature was raised to 126 ° C., and the conversion reaction to sulfonic acid groups was performed at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was charged into 1250 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer is filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeds 4, and dried to give a polymer represented by the following formula (E-4) 19.
  • E-4 a polymer represented by the following formula (E-4) 19.
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 7% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C.
  • the polymer electrolyte membrane was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.30.
  • Example B3 In a flask equipped with an azeotropic distillation apparatus, 21.58 g (94.52 mmol) of 2,2-bis (4-hydroxyphenyl) propane and 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone were placed in a nitrogen atmosphere. ), 4.77 ′ (63.01 mmol) of 4,4′-sulfonyldiphenol, 22.86 g (165.4 mmol) of potassium carbonate, 198 mL of N-methylpyrrolidone, and 60 mL of toluene were added.
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 27.18 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 27.18 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and the inside of the flask was sufficiently replaced with argon, 2.43 g of water, 11.71 g (134.8 mmol) of anhydrous lithium bromide, and After adding 335 g of N-methylpyrrolidone and sufficiently dissolving the polymer having sulfonic acid precursor groups, the bath temperature is raised to 126 ° C., and conversion reaction to sulfonic acid groups is carried out at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was charged into 1339 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer was filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeded 4, and dried to give 19.68 g of a polymer represented by the following formula (E-6).
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced.
  • Proton conductivity 0.090 S / cm Water absorption rate: 89%
  • the polymer electrolyte membrane was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.25.
  • Example B4 A flask equipped with an azeotropic distillation apparatus was charged with 35.96 g (157.5 mmol) of 2,2-bis (4-hydroxyphenyl) propane and 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone under a nitrogen atmosphere. ), Potassium carbonate 22.86 g (165.4 mmol), N-methylpyrrolidone 195 mL, and toluene 60 mL were added. Water in the system was azeotropically dehydrated by heating and refluxing toluene at a bath temperature of 150 ° C. for 6 hours, and the generated water and toluene were distilled off.
  • the bath temperature was raised to 180 ° C., and the mixture was stirred while maintaining for 11 hours. .
  • the reaction solution was added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, washed with ion-exchanged water until neutral, and then washed with methanol. After that, it was dried.
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 26.04 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 26.04 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and the inside of the flask was sufficiently replaced with argon, and 2.33 g of water, 11.21 g (129.1 mmol) of anhydrous lithium bromide and After adding 326 g of N-methylpyrrolidone and sufficiently dissolving the polymer having sulfonic acid precursor groups, the bath temperature was raised to 126 ° C., and the conversion reaction to sulfonic acid groups was performed at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was added to 1302 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer is filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeds 4, and dried to give a polymer represented by the following formula (E-8) 15. 47 g was obtained.
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced.
  • the polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a PET film, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced. The obtained polymer electrolyte membrane was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.21.
  • Example B5 In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone, 41.45 g (165.6 mmol) of 4,4′-sulfonyldiphenol, potassium carbonate 24.04 g (173.9 mmol), N-methylpyrrolidone 207 mL, and toluene 80 mL were added. The water in the system was azeotropically dehydrated by heating and refluxing toluene at a bath temperature of 150 ° C., and the generated water and toluene were distilled off.
  • the bath temperature was then raised to 180 ° C., and the mixture was stirred while keeping for 13 hours. After allowing to cool, the reaction solution was added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, washed with ion-exchanged water until neutral, and then washed with methanol. After that, it was dried. 86.40 g of the obtained parent product was dissolved in N-methylpyrrolidone, added to a 12N hydrochloric acid / methanol solution (mixed solution having a weight ratio of 1/1), and the deposited precipitate was filtered and neutralized with ion-exchanged water.
  • the polymer was washed until it was dried and dried to obtain 74.25 g of a polymer represented by the following formula (E-9).
  • the obtained polyarylene block copolymer was dissolved in NMP at a concentration of 10% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced.
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 25.88 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 25.80 g of the polymer having a sulfonic acid precursor group obtained as described above was put in a flask, and the inside of the flask was sufficiently replaced with argon, and 2.30 g of water, 11.10 g (127.8 mmol) of anhydrous lithium bromide, and After adding 323 g of N-methylpyrrolidone and sufficiently dissolving the polymer having a sulfonic acid precursor group, the bath temperature is raised to 126 ° C., and a conversion reaction to a sulfonic acid group is performed at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was charged into 1290 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer is filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeds 4, and dried to give a polymer represented by the following formula (E-10) 18. 10 g was obtained.
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced.
  • Example B6 To a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 18.69 g (100.37 mmol) of 4,4′-biphenol, 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone, 4,4 ′ -16.75 g (66.92 mmol) of sulfonyldiphenol, 24.28 g (175.7 mmol) of potassium carbonate, 199 mL of N-methylpyrrolidone, and 80 mL of toluene were added.
  • the toluene in the system was azeotropically dehydrated by heating and refluxing the toluene at a bath temperature of 150 ° C. for 6 hours, and the generated water and toluene were distilled off. .
  • the reaction solution was added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, washed with ion-exchanged water until neutral, and then washed with methanol. After that, it was dried.
  • the obtained parent product is dissolved in N-methylpyrrolidone, added to 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), and the deposited precipitate is filtered, and then neutralized with ion-exchanged water.
  • the polymer was washed and dried to obtain 69.78 g of a polymer represented by the following formula (E-11).
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 24.50 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 24.50 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and the inside of the flask was sufficiently replaced with argon, and 2.24 g of water, 10.84 g (124.8 mmol) of anhydrous lithium bromide and After adding 306 g of N-methylpyrrolidone and sufficiently dissolving the polymer having sulfonic acid precursor groups, the bath temperature is raised to 126 ° C., and the conversion reaction to sulfonic acid groups is performed at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was charged into 1225 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer is filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeds 4, and dried to give a polymer represented by the following formula (E-12) 14. 87 g was obtained.
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion exchanged water, A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced.
  • the polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a PET film, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced. The obtained polymer electrolyte membrane was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.25.
  • Example B7 In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 22.69 g (99.38 mmol) of 2,2-bis (4-hydroxyphenyl) propane and 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone were obtained. ), 4,58'-sulfonyldiphenol (16.58 g, 66.25 mmol), potassium carbonate (24.04 g, 173.9 mmol), N-methylpyrrolidone (202 mL), and toluene (60 mL) were added.
  • the water in the system was azeotropically dehydrated by heating and refluxing toluene at a bath temperature of 150 ° C. for 7 hours, and the generated water and toluene were distilled off. .
  • the reaction solution was added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, washed with ion-exchanged water until neutral, and then washed with methanol. After that, it was dried.
  • the obtained progenitor product (76.77 g) was dissolved in N-methylpyrrolidone (304 g), added to a 12N hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was filtered, The polymer was washed until dry, and dried to obtain 75.59 g of a polymer represented by the following formula (E-13).
  • the crude polymer solution was filtered, and further washed with water until the pH of the filtrate exceeded 4. Next, water is added to a flask equipped with a condenser until the total weight of the crude polymer and the crude polymer and water reaches 696 g, and a 5% lithium hydroxide aqueous solution is further added. Then, 666 g of methanol was further added, and the mixture was stirred with heating at a bath temperature of 90 ° C. for 1 hour. The crude polymer was filtered, further washed with water and methanol, and dried to obtain 26.29 g of a polymer having a sulfonic acid precursor group (sulfonic acid (2,2-dimethylpropyl) group).
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 26.29 g of the polymer having a sulfonic acid precursor group obtained as described above was put in a flask, and the inside of the flask was sufficiently replaced with argon, and 2.33 g of water, 11.32 g (130.4 mmol) of anhydrous lithium bromide and After adding 329 g of N-methylpyrrolidone and sufficiently dissolving the polymer having a sulfonic acid precursor group, the bath temperature is raised to 126 ° C., and a conversion reaction to a sulfonic acid group is performed at the same temperature for 12 hours to obtain a polymer solution. Got.
  • the polymer solution was added to 1315 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer is filtered, washed several times with a large amount of hydrochloric acid methanol solution, washed with water until the pH of the filtrate exceeds 4, and dried to give a polymer represented by the following formula (E-14) 18. 15 g was obtained.
  • the obtained polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a glass plate, and the solvent was removed by drying at 80 ° C.
  • the polyarylene block copolymer was dissolved in N-methylpyrrolidone at a concentration of 9% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on a PET film, and the solvent was removed by drying at 80 ° C. for 2 hours under normal pressure, followed by treatment with hydrochloric acid and washing with ion-exchanged water. A polymer electrolyte membrane having a thickness of about 20 ⁇ m was produced. The obtained polymer electrolyte membrane was subjected to the first immersion treatment and the second immersion treatment described above, and the 13 C-solid state NMR spectrum was measured.
  • the peak of the 13 C-solid NMR spectrum was integrated in the range of 170 ppm to 100 ppm to obtain the area.
  • the magnetization transfer time was 3 milliseconds, and the number of integrations was 2048.
  • the obtained heterogeneity factor H was 0.29.
  • a block having an ion exchange group obtained by polymerizing a polymer having an ion exchange group and a polymer substantially having no ion exchange group having a weight average molecular weight of 4000 to 25000 in terms of polystyrene,
  • the polyarylene block copolymer in which the block having substantially no exchange group contains the structural unit represented by the above formula (B-2) has excellent water resistance while having high proton conductivity. It became clear that a membrane could be provided.
  • the polymer electrolyte of the present invention is extremely useful industrially because it can provide a fuel cell with excellent power generation efficiency.
  • IEC ⁇ Ion exchange capacity (IEC) measurement C>
  • the membrane in which the ion exchange group was converted to the free acid type (proton type) was further dried at 105 ° C. with a halogen moisture meter, and the absolute dry weight was determined.
  • This membrane was immersed in 5 mL of a 0.1 mol / L aqueous sodium hydroxide solution, 50 mL of ion exchange water was added, and the membrane was allowed to stand for 2 hours. Then, it titrated by adding 0.1 mol / L hydrochloric acid gradually to the solution in which this polymer electrolyte membrane was immersed, and the neutralization point was calculated
  • the ion exchange capacity was determined from the absolute dry weight and the amount of 0.1 mol / L hydrochloric acid required for the neutralization point.
  • Synthesis Example C2 (Block precursor B having no ion exchange group) In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 50.00 g (174.1 mmol) of 4,4′-dichlorodiphenylsulfone, 39.43 g (157.5 mmol) of bis (4-hydroxyphenyl) sulfone, potassium carbonate 22.86 g (165.4 mmol), N-methylpyrrolidone (NMP) 203 mL, and toluene 80 mL were added. The water in the system was azeotropically dehydrated by heating and refluxing at a bath temperature of 150 ° C., and the water and toluene produced were distilled off.
  • NMP N-methylpyrrolidone
  • the bath temperature was then raised to 180 ° C., and the mixture was stirred while keeping for 21 hours. After allowing to cool, the reaction solution was poured into a 37 wt% hydrochloric acid / methanol solution (mixed solution with a weight ratio of 1/1), the deposited precipitate was collected by filtration, washed with ion-exchanged water until neutral, After washing with methanol, it was dried.
  • the obtained crude product (77.31 g) was dissolved in NMP, poured into a 37 wt% hydrochloric acid / methanol solution (mixed solution having a weight ratio of 1/1), and the deposited precipitate was collected by filtration, and washed with ion-exchanged water. Washed until dry and dried. 73.34 g of the desired product was obtained.
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 25.15 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, 630 g of NMP was added under an argon atmosphere, and the mixture was heated and stirred at 80 ° C. for dissolution. To this was added 33 g of activated alumina, and the mixture was kept warm for 1 hour and 30 minutes. Thereafter, 630 g of NMP was added thereto, and activated alumina was removed by filtration. From the resulting solution, NMP was concentrated by distilling off under reduced pressure to obtain a 305 g NMP solution.
  • the crude polymer was immersed and washed four times with 1640 g of hot water (95 ° C.) and dried to obtain 17.71 g of a polyarylene block copolymer represented by the following structure.
  • the obtained polyarylene block copolymer was dissolved in DMSO at a concentration of 9.0% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast-coated on PET, the solvent was removed by drying at 100 ° C.
  • polymer electrolyte membrane C1 having a thickness of about 22 ⁇ m was produced.
  • the obtained polymer electrolyte membrane C1 had an IEC of 2.49 meq / g.
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 25.31 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, 630 g of NMP was added in an argon atmosphere, and the mixture was heated and stirred at 80 ° C. to dissolve. To this was added 33 g of activated alumina, and the mixture was kept warm for 1 hour and 30 minutes. Thereafter, 630 g of NMP was added thereto, and activated alumina was removed by filtration. From the obtained solution, NMP was distilled off under reduced pressure to concentrate it to give 302 g of NMP solution.
  • the crude polymer was immersed and washed four times with 1650 g of hot water (95 ° C.) and dried to obtain 18.50 g of a polyarylene block copolymer represented by the following structure.
  • the obtained polyarylene block copolymer was dissolved in DMSO at a concentration of 9.0% by weight to prepare a polymer electrolyte solution. Thereafter, the obtained polymer electrolyte solution was cast on PET, and the solvent was removed by drying at 115 ° C.
  • polymer electrolyte membrane C2 having a thickness of about 20 ⁇ m was produced.
  • the obtained polymer electrolyte membrane C2 had an IEC of 2.70 meq / g.
  • the sulfonic acid precursor group was converted to a sulfonic acid group as follows. 12.25 g of the polymer having a sulfonic acid precursor group obtained as described above was placed in a flask, and under an argon atmosphere, 110 g of NMP, 1.1 g of water, and 5.13 g (59.7 mmol) of anhydrous lithium bromide were added. The temperature was raised to 0 ° C., and the mixture was stirred while keeping at the same temperature for 13 hours. The obtained reaction solution was put into 610 g of 6N hydrochloric acid and stirred for 1 hour.
  • the precipitated crude polymer was collected by filtration, washed by immersion three times with 600 g of 35% by weight hydrochloric acid / methanol solution (mixed solution having a weight ratio of 1/1), and then washed with water until the pH of the filtrate exceeded 4. Then, the crude polymer was immersed and washed three times with 800 g of hot water (95 ° C.) and dried to obtain 8.89 g of a polyarylene block copolymer represented by the following structure.
  • the obtained polyarylene block copolymer was dissolved in DMSO at a concentration of 12.0% by weight to prepare a polymer electrolyte solution.
  • polymer electrolyte solution was cast-coated on PET, the solvent was removed by drying at 100 ° C. under normal pressure, and then immersed in 2N sulfuric acid, washed with ion-exchanged water, A polymer electrolyte membrane C3 having a thickness of about 27 ⁇ m was produced.
  • the IEC of the obtained polymer electrolyte membrane C3 was 2.82 meq / g.
  • Example C1 (Production of MEA1) The catalyst ink was applied to the 1 cm ⁇ 1.3 cm region at the center of one side of the polymer electrolyte membrane C1 produced above by a spray method. At this time, the distance from the discharge port to the film was set to 6 cm, and the stage temperature was set to 75 ° C. After overcoating in the same manner, the solvent was removed to form an anode catalyst layer. As an anode catalyst layer, 2.1 mg of solid content (platinum weight: 0.6 mg / cm 2 ) was applied. Subsequently, catalyst ink was similarly applied to the other surface to form a cathode catalyst layer, whereby MEA1 was obtained. As a cathode catalyst layer, 2.1 mg of solid content (platinum weight: 0.6 mg / cm 2 ) was applied.
  • Example C2 (MEA2 production) MEA2 was obtained in the same manner as in Example C1, except that the polymer electrolyte membrane C2 was used instead of the polymer electrolyte membrane C1 of Example C1.
  • 2.1mg solids as the anode catalyst layer platinum basis weight: 0.6mg / cm 2
  • solid 2.1mg content as a cathode catalyst layer platinum basis weight: 0.6mg / cm 2 was applied.
  • Example C3 (MEA3 production) MEA3 was obtained in the same manner as in Example C1, except that the polymer electrolyte membrane C3 was used instead of the polymer electrolyte membrane C1 of Example C1.
  • 2.1mg solids as the anode catalyst layer platinum basis weight: 0.6mg / cm 2
  • solid 2.1mg content as a cathode catalyst layer platinum basis weight: 0.6mg / cm 2 was applied.
  • SYMBOLS 10 Fuel cell, 12 ... Polymer electrolyte membrane, 14a, 14b ... Catalyst layer, 16a, 16b ... Gas diffusion layer, 18a, 18b ... Separator, 20 ... Membrane-electrode assembly (MEA).
  • MEA Membrane-electrode assembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

 本発明の高分子電解質膜は、イオン交換基を有する高分子電解質を含み、5mmol/L塩化鉄(II)四水和物水溶液に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第1の浸漬処理を行った後の高分子電解質膜の13C-固体NMRを測定して得られるスペクトルのピークの面積の合計をSpとし、第1の浸漬処理前の高分子電解質膜を水に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第2の浸漬処理を行った後の高分子電解質膜の13C-固体NMRを測定して得られるスペクトルのピークの面積の合計をSnpとしたとき、SpとSnpとが下記式(I)で表される関係を満足する。  Sp/Snp≦0.42 (I)

Description

ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池
 本発明は、燃料電池用高分子電解質として有用なポリマー及びポリアリーレン系ブロック共重合体、固体高分子形燃料電池に用いられる高分子電解質膜並びに燃料電池に関する。
 一次電池、二次電池、あるいは燃料電池等の電気化学デバイスの隔膜を構成する材料として、プロトン伝導性を有する高分子を含む高分子電解質が用いられている。例えば、ナフィオン(デュポン社の登録商標)をはじめとする、側鎖に超強酸としてのパーフルオロアルキルスルホン酸残基を有し、主鎖がパーフルオロアルカン鎖である高分子を有効成分とするフッ素系高分子電解質が、燃料電池用プロトン伝導膜(以下、場合により「プロトン伝導膜」という)として用いた場合に発電特性が優れることから、従来、主に使用されている。しかしながら、このフッ素系高分子電解質は非常に高価であること、耐熱性が低いこと、廃棄コストが高いこと、膜強度が低く何らかの補強をしないと実用的でないこと等の問題が指摘されている。
 固体高分子形燃料電池(以下、「燃料電池」と略記することがある。)は、水素と酸素との化学的反応により発電させる発電装置であり、次世代エネルギーの一つとして電気機器産業や自動車産業等の分野において大きく期待されている。燃料電池に使用される高分子電解質膜材料として、従来のフッ素系高分子電解質に代わって、安価で、耐熱性に優れた炭化水素系高分子電解質が近年注目されてきている。
 ところで、炭化水素系高分子電解質からなる膜(炭化水素系高分子電解質膜)は、フッ素系高分子電解質からなる膜(フッ素系高分子電解質膜)と比較して、燃料電池の長期の運転安定性(以下、「長期安定性」と呼ぶ)が低いことが指摘されている。この長期安定性を妨げる要因としては、様々の原因が推定されているが、その1つとして、電池稼動時に発生する過酸化物(例えば、過酸化水素等)又は該過酸化物から発生するラジカルによる膜の劣化が知られている。それゆえ、高分子電解質膜の過酸化物やラジカルに対する耐久性(以下、「ラジカル耐性」と呼ぶ)を向上させることが、固体高分子形燃料電池の長期安定性に繋がる1つの対策とされている。
 かかるラジカル耐性を向上させた炭化水素系高分子電解質膜として、特許文献1では、炭化水素系高分子電解質のラジカル耐性を改良するためヒンダードフェノール系化合物やヒンダードアミン系化合物等の酸化防止剤を含有するポリアリーレン系重合体組成物から形成された炭化水素系高分子電解質膜が開示されている。
 また、特許文献2には、フェノキシベンゾイル基のような可とう性のある基を側鎖として有するポリアリーレン系高分子をスルホン化することで、側鎖フェノキシベンゾイル基の芳香環をスルホン化せしめたポリアリーレン系高分子電解質が提案され、かかるポリアリーレン系高分子電解質が100℃以上の高温領域でも高いプロトン伝導性を有するとことが開示されている。
 さらに、特許文献3には、炭化水素系高分子電解質として、主鎖を構成する芳香族環以外の芳香環にイオン交換基が直接結合した特定の構造を有する構造単位と、ポリスチレン換算の重量平均分子量が28200のイオン交換基を実質的に有しない構造単位とを有するポリアリーレン系共重合体を用いてなる高分子電解質膜が開示されている。
特開2003-183526号公報 米国特許5403675号(第9~11カラム,図4) 特開2003-212988号公報
 しかしながら、特許文献1に記載の酸化防止剤の添加は、高分子電解質膜のラジカル耐性を向上する傾向にあるものの、燃料電池用として求められるプロトン伝導性等の特性が低下してしまうおそれがある。このように、従来の炭化水素系高分子電解質膜では、酸化防止剤の添加に頼ることなく、ラジカル耐性を向上することは極めて困難であり、仮に酸化防止剤を添加したとしても、ラジカル耐性以外の特性が低下する傾向がある。
 そこで本発明の目的は、酸化防止剤のような補助剤を添加しなくとも、十分に高いラジカル耐性を有する高分子電解質膜並びにこれを用いた膜-電極接合体(MEA)及び燃料電池を提供することにある。また、本発明は、ラジカル耐性に優れ、高分子電解質膜を構成する高分子電解質として有用なポリマー及びポリアリーレン系ブロック共重合体を提供することを目的とする。
 上記目的を達成するため、本発明者らが鋭意検討を行った結果、高分子電解質膜内に含まれる水の分布がラジカル耐性へ関与することを見出し、本発明を完成するに至った。
 すなわち、本発明は、イオン交換基を有する高分子電解質を含む高分子電解質膜であって、高分子電解質膜を5mmol/L塩化鉄(II)四水和物水溶液に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第1の浸漬処理を行った後の高分子電解質膜の13C-固体核磁気共鳴スペクトルを測定して得られるスペクトルのピークの面積の合計をSpとし、第1の浸漬処理前の高分子電解質膜を水に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第2の浸漬処理を行った後の高分子電解質膜の13C-固体核磁気共鳴スペクトルを測定して得られるスペクトルのピークの面積の合計をSnpとしたとき、SpとSnpとが、下記式(I)で表される関係を満足する高分子電解質膜を提供する。
  Sp/Snp≦0.42   (I)
 本発明の高分子電解質膜においては、高分子電解質が、イオン交換基を有する構造単位と、イオン交換基を有しない構造単位とを備える共重合体を含有することが好ましい。このような高分子電解質膜は、ラジカル耐性に優れると共に、燃料電池に使用するうえで十分に優れたプロトン伝導性と機械的強度とを発揮し得る高分子電解質膜となる。
 高分子電解質膜のラジカル耐性をより一層向上する観点から、上記高分子電解質は、芳香族系高分子電解質であることが好ましい。
 本発明は、主鎖が、実質的に複数の芳香環が直接結合で連結してなるポリアリーレン構造であり、該主鎖を構成している芳香環の一部又は全部に直接結合してなるスルホン酸基を有し、さらに該主鎖を構成している芳香環の一部又は全部に、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有し、且つイオン交換容量が3.0meq/gを越えるポリマーを提供する。
 上記特許文献2に開示されているようなポリアリーレン系高分子電解質は、プロトン伝導性の向上を求めてスルホン酸基当量を増加しようとすると、耐水性の著しい低下をもたらす傾向があり、燃料電池用プロトン伝導膜として実用的に乏しいものであった。また、具体的に特許文献2に開示されている製造手段では、プロトン伝導性を担うスルホン酸基当量を一定以上に増加させること自体困難なものであった。
 これに対し本発明のポリマーは、燃料電池用高分子電解質、特にプロトン伝導膜として用いたとき、ラジカル耐性に優れることに加えて、高度の耐水性を有しつつ、優れたプロトン伝導性を有する膜を形成することができる。
 上記ポリマーにおいて、構造単位の合計を100モル%としたとき、スルホン酸基が直接結合している芳香環を主鎖に有する構造単位が20モル%以上であることが好ましい。
 上記ポリマーは、下記式(A-1)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000010
[式(A-1)中、Arは、2価の芳香族基を表し、該芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Arにおける主鎖を構成する芳香環に、少なくとも一つのスルホン酸基が直接結合している。]
 上記ポリマーにおいて、式(A-1)で表される構造単位として、下記式(A-2)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
[式(A-2)中、Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基を表す。pは1以上3以下の整数であり、qは0以上3以下の整数であり、p+qは4以下の整数である。なお、qが2以上である場合、複数存在するRはそれぞれ同一でも異なっていてもよい。]
 上記ポリアリーレン構造は、芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上の構造であることが好ましい。
 本発明はまた、下記式(A-3)で表される第1の芳香族モノマー及び下記式(A-4)で表される第2の芳香族モノマーを含む原料モノマーを重合して得られるポリマーを提供する。
   Q-Ar10-Q   (A-3)
[式(A-3)中、Ar10は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい2価の芳香族基であり、Qは脱離基を表し、2つのQは同一であっても異なっていてもよい。そして、2つのQのうち、いずれかのQが結合している芳香環にスルホン酸基及び/又はスルホン酸前駆基が結合している。]
   Q-Ar-Q   (A-4)
[式(A-4)中、Arは、2価の芳香族基を表し、ここで2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの置換基を有する。Qは脱離基を表し、2つのQは同一であっても異なっていてもよい。]
 上記第2の芳香族モノマーは、置換基を有していてもよいアシル基を置換基として有することが好ましい。
 上記ポリマーは、原料モノマーをゼロ価遷移金属錯体の共存下で重合して得ることができる。
 また、従来の高分子電解質膜は、実用的なプロトン伝導性と耐水性とを有するものの、高性能な燃料電池開発のため、さらに高いプロトン伝導性と優れた耐水性とを有する高分子電解質膜の開発が求められている。
 本発明者等は、イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとを含むポリアリーレン系ブロック共重合体において、該イオン交換基を有するブロックのイオン交換基の結合形態と、そのシーケンスとを特定し、且つ、該イオン交換基を有しないブロックのシーケンスと、重量平均分子量とを特定することにより、ラジカル耐性に十分に優れると共に、高いプロトン伝導性を有し、且つ、優れた耐水性を有する高分子電解質膜が得られることを見出した。
 本発明は、イオン交換基を有するブロックと、イオン交換基を実質的に有しないポリスチレン換算の重量平均分子量が4000~25000のポリマーから得られるイオン交換基を実質的に有しないブロックとを含むブロック共重合体であって、イオン交換基を有するブロックが、下記式(B-1)で表される構造単位を含み、且つ、イオン交換基を実質的に有しないブロックが、下記式(B-2)で表される構造単位を含む、ポリアリーレン系ブロック共重合体を提供する。
Figure JPOXMLDOC01-appb-C000012
[式(B-1)中、Arはアリーレン基を表し、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Arにおいて主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合する。式(B-2)中、Arは2価の芳香族基を表し、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Xは酸素原子(-O-)又は硫黄原子(-S-)を表す。]
 本発明のポリアリーレン系共重合体によれば、高分子電解質膜として用いたときに、ラジカル耐性に十分に優れることに加えて、高いプロトン伝導性を有し、且つ、優れた耐水性を有する膜を得ることができる。
 本発明のポリアリーレン系共重合体において、イオン交換基がスルホン酸基、ホスホン酸基、カルボン酸基及びスルホンイミド基からなる群より選ばれる少なくとも1つの1種以上の酸基であることが好ましい。
 また、上記式(B-1)で表される構造単位が、下記式(B-3)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
[式(B-3)中、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基又はシアノ基を表す。kは0~3の整数を表し、pは1又は2の整数を表し、k+pは4以下の整数を表す。kが2以上である場合、複数存在するRは、それぞれ同一でも異なってもよい。]
  本発明のポリアリーレン系共重合体において、イオン交換基を実質的に有しないポリマーが、下記式(B-4)で表されるポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000014
[式(B-4)中、Ar21は、2価の芳香族基を表し、複数あるAr21は、それぞれ同一でも異なってもよい。該芳香族基は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。X11は酸素原子(-O-)又は硫黄原子(-S-)を表し、複数存在するX11は、それぞれ同一でも異なってもよい。Yは脱離基を表し、2つのYは同一でも異なっていてもよい。qは4以上の整数を表す。]
 上記式(B-4)で表されるポリマーの疎水性パラメータは、1.7~6.0であることが好ましく、2.5~4.0であることがより好ましい。
 上記ポリアリーレン系ブロック共重合体は、イオン交換容量が、1.0~7.0meq/gであることが好ましい。
 さらに、特許文献3で開示されているような従来のポリアリーレン系高分子電解質を高分子電解質形燃料電池用プロトン伝導膜に用いた場合、高温低加湿条件下での発電特性が低いという問題がある。
 本発明者等は、燃料電池のプロトン伝導膜あるいは触媒層に好適な高分子電解質として、より優れた性能を示す高分子を見出すべく鋭意検討を重ねた結果、イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとからなるブロック共重合体であり、該イオン交換基を有するブロックのイオン交換基の結合形態と、該イオン交換基を実質的に有しないブロックの構造及び繰り返し数とを特定することで、ラジカル耐性に優れるだけでなく、高分子電解質形燃料電池を作製した際に高温低加湿条件下での発電特性が向上することを見出した。
 本発明は、イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとをそれぞれ有し、イオン交換基を有するブロックの主鎖が、実質的に複数の芳香環が直接連結してなるポリアリーレン構造を有し、さらにイオン交換基の一部又は全部が、主鎖を構成する芳香環に直接結合している構造であり、イオン交換基を実質的に有しないブロックが、下記式(C-1)で表される構造を有するポリアリーレン系ブロック共重合体を提供する。
Figure JPOXMLDOC01-appb-C000015
[式(C-1)中、Ar及びArは互いに独立にアリーレン基を表す。該アリーレン基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基で置換されていてもよい。Xはカルボニル基(-C(=O)-)又はスルホニル基(-S(=O)-)を表し、Yは酸素原子(-O-)、硫黄原子(-S-)を表す。nは3~45の整数を表す。複数存在するAr、Ar、X及びYは、それぞれ同一でも異なってもよい。]
 上記ポリアリーレン系ブロック共重合体によれば、高分子電解質として用いたときに、ラジカル耐性に優れることに加えて、高温低加湿条件下でも良好な発電特性を示す高分子電解質形燃料電池を作製することができる。
 本発明のポリアリーレン系ブロック共重合体において、イオン交換基を実質的に有しないブロックが下記式(C-2)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000016
[式(C-2)中、nは3~45の整数を表す。]
 また、本発明のポリアリーレン系ブロック共重合体において、イオン交換基を有するブロックが、下記式(C-3)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000017
[式(C-3)中、mは3以上の整数を表し、Arはアリーレン基を表す。ここで該アリーレン基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基で置換されていてもよい。Arは主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合する。複数存在するArは、それぞれ互いに同一でも異なってもよい。]
 上記ポリアリーレン系ブロック共重合体において、イオン交換基がスルホン酸基、スルホンイミド基、ホスホン酸基及びカルボン酸基からなる群より選ばれる少なくとも1つの酸基であることが好ましい。
 上記イオン交換基を有するブロックが、下記式(C-4)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000018
[式(C-4)中、mは3以上の整数を表す。Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの置換基を表す。pは0~3の整数である。Rが複数存在する場合、それぞれ同一でも異なってもよい。]
 上記ポリアリーレン系ブロック共重合体は、イオン交換容量が、0.5meq/g~5.0meq/gであることが好ましい。
 本発明は、上記ポリマー又は上記ポリアリーレン系ブロック共重合体を含む高分子電解質、及び、当該高分子電解質を含有する高分子電解質膜を提供する。
 本発明はまた、孔中に高分子電解質を有する多孔質基材からなる高分子電解質複合膜であって、高分子電解質が、上記本発明の高分子電解質である高分子電解質複合膜を提供する。本発明はさらに、上述の高分子電解質と、触媒成分とを含む触媒組成物を提供する。
 本発明は、上述した本発明の高分子電解質膜と、該高分子電解質膜上に形成された触媒層と、を備える膜-電極接合体を提供する。また、本発明は、上記高分子電解質膜又は高分子電解質複合膜を有する膜-電極接合体を提供する。さらに、本発明は、高分子電解質膜と、該高分子電解質膜上に形成された触媒層とを備える膜-電極接合体であって、触媒層が、上記触媒組成物から形成される膜-電極接合体を提供することができる。
 本発明は、一対のセパレータと、該一対のセパレータ間に配置された一対のガス拡散層と、該一対のガス拡散層間に配置された膜-電極接合体と、を備える燃料電池であって、膜-電極接合体が、上述の膜-電極接合体である燃料電池を提供する。
 本発明によれば、酸化防止剤のような補助剤を添加しなくとも、十分に高いラジカル耐性を有する高分子電解質膜、並びにこれを用いた膜-電極接合体(MEA)及び燃料電池を提供することができる。
 本発明は、燃料電池用部材(燃料電池用高分子電解質)、中でもプロトン伝導膜として用いた場合、ラジカル耐性に優れると共に、高度の耐水性を有しつつ、優れたプロトン伝導性を発現できるポリマーを提供することができる。このような高プロトン伝導性及び耐水性の両性能は、本発明のポリマーを燃料電池の触媒層に適用した場合にも有用であることが期待される。本発明のポリマーを用いてなる燃料電池用部材を備えた燃料電池は高い発電効率を示すことから工業的に極めて有用である。
 また、本発明は、高分子電解質形燃料電池用部材、中でも高分子電解質膜として用いると、ラジカル耐性に優れると共に、高いプロトン伝導性及び優れた耐水性を発現するポリアリーレン系ブロック共重合体を提供する。本発明のポリアリーレン系ブロック共重合体は、高分子電解質形燃料電池の触媒層として用いても好適である。特に、上記高分子電解質膜として燃料電池に用いた場合、高い発電効率を示すものが得られる。
 さらに、本発明のポリアリーレン系ブロック共重合体は、高分子電解質形燃料電池の高分子電解質膜(プロトン伝導膜)として用いるときに、ラジカル耐性に優れると共に、高温低加湿条件下で、良好な発電特性を示す燃料電池を与える。高分子電解質形燃料電池における高温低加湿条件下での運転は、発電効率の向上や、冷却装置や、加湿装置等の簡略化が図られる。このように、本発明のポリアリーレン系ブロック共重合体は、特に燃料電池の用途において、工業的に極めて有用である。
本実施形態の燃料電池の断面構成を模式的に示す図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。
 本発明の高分子電解質膜は、イオン交換基を有する高分子電解質を含み、高分子電解質膜を5mmol/L塩化鉄(II)四水和物水溶液に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第1の浸漬処理を行った後の高分子電解質膜の13C-固体NMRスペクトルを測定して得られるスペクトルのピークの面積の合計をSpとし、第1の浸漬処理前の高分子電解質膜を水に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第2の浸漬処理を行った後の高分子電解質膜の13C-固体NMRスペクトルを測定して得られるスペクトルのピークの面積の合計をSnpとしたとき、SpとSnpとが、下記式(I)で表される関係を満足するものである。
  Sp/Snp≦0.42   (I)
 このような高分子電解質膜は、膜中の水の分布の偏りが小さく、水が均一に分散されており、十分に高いラジカル耐性を有する。上記Sp/Snpは、0.42以下であり、0.35以下であることが好ましく、0.25以下であることがより好ましく、0.10以下であることがさらに好ましい。ここで、本明細書においては、「Sp/Snp」を、膜中の水の不均一性を表す「不均一性因子(H)」とする。なお、スペクトルのピークの面積の合計は、スペクトル処理を行うことのできるソフトであるブルカー・バイオスピン社製、商品名「TOPSPIN」を用いて算出したものである。
 まず、高分子電解質膜を構成する高分子電解質の好適な実施形態について説明する。高分子電解質膜を構成する高分子電解質としては、プロトン伝導性を示すイオン交換基を有し、高分子電解質膜を作製した際に、上記不均一性因子であるHが上記式(I)で表される関係を満足するものであれば特に限定されず、フッ素系高分子電解質及び/又は炭化水素系高分子電解質を単独又は2種以上組み合わせて用いることができる。なお、炭化水素系高分子電解質膜を構成する炭化水素系高分子電解質の方が、本発明の効果を一層享受することができる。
 本実施形態において、高分子電解質膜のラジカル耐性は、上述のようにして高分子電解質膜を浸漬処理して、その前後で、13C-固体NMRスペクトルを測定して「不均一性因子(H)」を算出する評価方法を用いて評価することができる。
 本発明に係る高分子電解質は、酸性のイオン交換基(カチオン交換基)又は塩基性のイオン交換基(アニオン交換基)を有している。高いプロトン伝導性を得る観点から、イオン交換基はカチオン交換基であることが好ましく、カチオン交換基を有する高分子電解質を用いることにより、一層発電性能に優れた燃料電池が得られる。カチオン交換基としては、例えば、スルホン酸基(-SOH)、カルボキシル基(-COOH)、ホスホン酸基(-P(O)(OH))、ヒドロキシホスホリル基(-P(O)(OH)-)、スルホニルイミド基(-SONHSO-)、フェノール性水酸基が挙げられる。これらの中でも、カチオン交換基としては、スルホン酸基又はホスホン酸基がより好ましく、スルホン酸基が特に好ましい。なお、これらのイオン交換基は、部分的に、あるいは全てが、金属イオンや4級アンモニウムイオン等で交換されて塩を形成していてもよいが、燃料電池用部材として使用する際には、実質的に全てが遊離酸の形態であることが好ましい。
 高分子電解質中のイオン交換基の含有量は、高分子電解質膜のイオン伝導性に大きく影響するが、その好適な含有量は、高分子電解質の構造に依存する。例えば、本実施形態においては、高分子電解質のイオン交換基の導入量は、イオン交換容量で表した場合、0.5~6.0meq/gであると好ましく、1.5~5.0meq/gであるとより好ましい。高分子電解質のイオン交換容量が0.5meq/g以上であることにより、含水性が高く十分なイオン(プロトン)伝導性が得られるようになる。また、イオン交換容量が6.0meq/g以下であることにより、高分子電解質膜とした場合の耐水性が良好となる傾向にある。
 また、高分子電解質は、その分子量が、ポリスチレン換算の数平均分子量で表した場合に、5000~1000000であると好ましく、15000~600000であるとより好ましい。こうすれば、高分子電解質膜とした場合の強度が良好となる傾向がある。該数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 高分子電解質としては上述のとおり、主鎖構造にフッ素を含むナフィオンのようなフッ素系高分子電解質や、主鎖構造にフッ素を含まない炭化水素系高分子電解質の両方を適用できるが、炭化水素系高分子電解質が好ましい。なお、高分子電解質は、フッ素系のものと炭化水素系のものを組み合わせて含有してもよいが、この場合、炭化水素系のものを主成分として含むことが好ましい。
 炭化水素系高分子電解質としては、主鎖に芳香環を有する芳香族系高分子電解質が好ましく、例えば、ポリイミド系、ポリアリーレン系、ポリエーテルスルホン系、ポリフェニレン系の高分子電解質が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて含まれていてもよい。さらに、イオン交換基が芳香族高分子電解質の主鎖を構成している芳香環に直接結合していることが好ましい。
 本発明に係る高分子電解質は、プロトン伝導性と機械的強度とに優れることから、イオン交換基を有する構造単位と、イオン交換基を有しない構造単位とを備える重合体を含有することが好ましい。さらに、イオン交換基を有する構造単位の少なくとも1つが芳香族基を有し、且つ、イオン交換基を有しない構造単位の少なくとも1つが芳香族基を有する重合体が好ましい。このような重合体として、ポリアリーレン系重合体がより好適である。
 ここで、ポリアリーレン系重合体とは、主鎖を構成している芳香環同士が実質的に直接結合している形態を有するものである。ポリマー主鎖を構成している芳香環同士の結合の総数に対する直接結合の割合が多いほど、よりラジカル耐性の向上が図れる傾向があるため好ましく、具体的にいうと該芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上であると好ましく、90%以上であるとより好ましく、95%以上であるとさらに好ましい。なお、直接結合以外の結合とは、芳香環同士が2価の原子又は2価の原子団で結合している形態である。
 また、イオン交換基はポリアリーレンの主鎖を構成する芳香環に直接結合している方が、高いプロトン伝導性と、実用的に十分な耐水性とを両立し得る高分子電解質膜を得ることができる。したがって、ポリアリーレン系重合体におけるイオン交換基を有する構造単位中、イオン交換基が主鎖を構成している芳香環に直接結合している構造単位の割合が多いほうが、イオン交換容量を増加させたとしても、耐水性に優れたプロトン伝導膜が得られる傾向がある。イオン交換基の量は、ポリアリーレン系重合体を構成する構造単位の合計を100モル%としたとき、イオン交換基が直接結合している芳香環を主鎖に有するような構造単位の割合が20モル%以上であると好ましく、30モル%以上であるとさらに好ましく、50モル%以上であるとより好ましい。
 また、上記ポリアリーレン系重合体は、主鎖を構成している芳香環の一部又は全部に、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基(以下場合により、「芳香環置換基」という。)を有する。
 置換基を有していてもよい炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、n-ペンチル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、2-メチルペンチル基、2-エチルヘキシル基、ノニル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の炭素数1~20のアルキル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルキル基が挙げられる。
 置換基を有していてもよい炭素数1~20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ基、イコシルオキシ基等の炭素数1~20のアルコキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルコキシ基が挙げられる。
 置換基を有していてもよい炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリール基が挙げられる。
 置換基を有していてもよい炭素数6~20のアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリールオキシ基が挙げられる。
 置換基を有していてもよい炭素数2~20のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の炭素数2~20のアシル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアシル基が挙げられる。
 これら芳香環置換基のなかでも、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の芳香環を有するアシル基であると、ポリマーの耐熱性が良好となる傾向があり、より実用的な燃料電池用部材が得られるため好ましい。
 上記ポリアリーレン系重合体は、このような芳香環置換基を有する構造単位と、イオン交換基を有する構造単位とを有するものであるが、同一の構造単位に芳香環置換基とイオン交換基とを合わせて有し、且つイオン交換基が主鎖を構成する芳香環に直接結合しているような構造単位を有するポリアリーレン構造であってもよく、このような構造単位からなるポリマーであってもよい。
 また、イオン交換基が主鎖を構成している芳香環に直接結合している構造単位と、イオン交換基を有しない構造単位とを別々に有し、これらの構造単位が共重合している形態であってもよい。この場合、共重合様式は特に限定されるものではないが、ポリマー製造上の容易さ及び高分子電解質膜中の水の均一分散性を勘案すると、ランダム共重合であることが好ましい。
 イオン交換基が主鎖を構成している芳香環に直接結合している構造単位としては、例えば、下記一般式(1)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(1)中、Arは2価の芳香族基を示し、この2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい。なお、Arは主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合している芳香族基である。Arが有していてもよい任意の基、すなわち、アルキル基、アルコキシ基、アリール基、アリールオキシ基及びアシル基の例示は、上記芳香環置換基として例示したものと同じものが例示される。
 Arとしては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮合環芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基が挙げられる。これらの中でもArとしては、単環性芳香族基が好ましい。
 好適な単環性芳香族基を有する上記一般式(1)で表される構造単位として、下記一般式(2)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(2)中、Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基を示し、上記芳香環置換基として例示したものと同じものが例示される、また、pは1~3の整数を示し、qは0~3の整数を示し、p+qは4以下の整数であり、qが2又は3である場合、複数存在するRは同一でも異なっていてもよい。さらに、スルホン酸基の結合数を表すpは1又は2であると、より好ましい。
 ここで、上記一般式(2)で表される構造単位を含むポリアリーレン系重合体の好適な製造方法について説明する。
 ここで、スルホン酸基の導入方法は、予めスルホン酸基を有するモノマーを重合する方法であっても、スルホン酸基を導入可能な部位を有するモノマーからプレポリマーを製造した後に、スルホン酸基を導入する方法であってもよい。中でも、前者の方法であると、スルホン酸基の導入量や、置換位置を的確に制御することができるので、より好ましい。なお、予めスルホン酸基を有するモノマーを用いる場合、かかるモノマーにあるスルホン酸基の一部又は全部を、適切な保護基により保護し、保護スルホン酸基にしておくこともできる。そして、保護スルホン酸基を有するモノマーを重合してから、得られた重合体にある保護スルホン酸基を脱保護することで、スルホン酸基を有するものを得ることもできる。
 スルホン酸基を有するモノマーを用いて、ポリアリーレン系重合体を製造する方法としては、例えば、ゼロ価遷移金属錯体の共存下、下記一般式(3)で表されるモノマーを重縮合する方法が挙げられる。
  Q-Ar10-Q    (3)
 式(3)中、Ar10は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい2価の芳香族基を示し、主鎖を構成している芳香環にスルホン酸基及び/又はスルホン酸基になり得る基(スルホン酸前駆基)が1つ又は複数結合している。Qは、縮合反応時に脱離する基を示し、2つのQは同一でも異なっていてもよい。
 また、上記一般式(3)で表されるモノマーと、下記一般式(4)で表されるモノマーとを共重合することで、スルホン酸基を有する構造単位と、非スルホン酸構造単位とを、有する共重合体を得ることができる。
  Q-Ar-Q    (4)
 式(4)中、Arは、2価の芳香族基を示し、この2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有する。ここで、Arが有していてもよい任意の基、すなわち、アルキル基、アルコキシ基、アリール基、アリールオキシ基及びアシル基の例示は、上記芳香環置換基として例示したものと同じでものが例示される。Qは、縮合反応時に脱離する基を示し、2つのQは同一でも異なっていてもよい。
 このように、一般式(3)で表されるモノマーと一般式(4)で表されるモノマーとを共重合し、必要に応じてスルホン酸前駆基をスルホン酸基に転換すれば、式(3a)で表される構造単位と式(4a)で表される構造単位とを有し、Ar10とArとが直接結合で連結されたポリアリーレン構造を有するポリマーを得ることができる。
Figure JPOXMLDOC01-appb-C000021
式(3a)中、Ar10は上記と同義である。
Figure JPOXMLDOC01-appb-C000022
式(4a)中、Arは上記と同義である。
 式(3)及び(4)中、Qは、それぞれ独立に、縮合反応時に脱離する基を示し、その具体例として、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、下記一般式(4b)で表されるホウ素原子を含む基が挙げられる。
式(4b)中、R及びRは、それぞれ独立に水素原子又は1価の有機基を示し、RとRとが結合して環を形成していてもよい。
 一般式(3)で表されるモノマーとしては、例えば、2,4-ジクロロベンゼンスルホン酸、2,5-ジクロロベンゼンスルホン酸、3,5-ジクロロベンゼンスルホン酸、2,4-ジクロロ-5-メチルベンゼンスルホン酸、2,5-ジクロロ-4-メチルベンゼンスルホン酸、2,4-ジクロロ-5-メトキシベンゼンスルホン酸、2,5-ジクロロ-4-メトキシベンゼンスルホン酸、3,3’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-3,3’-ジスルホン酸、5,5’-ジクロロビフェニル-2,2’-ジスルホン酸が挙げられる。また、これらのモノマーの塩素原子が、前述の縮合反応時に脱離する基と置き換わったものも使用可能である。さらに、これらのモノマーのスルホン酸基が塩を形成していてもよく、スルホン酸基の替わりにスルホン酸前駆基を有するものも使用可能である。スルホン酸基が塩を形成している場合、その対イオンはアルカリ金属イオンが好ましく、特に、Liイオン、Naイオン、Kイオンが好ましい。スルホン酸前駆基としては、加水分解処理や酸化処理等の簡便な操作でスルホン酸基になり得るものが好ましい。特に、本実施形態に係るポリアリーレン系共重合体を製造するには、スルホン酸基が塩の形態のモノマー、又はスルホン酸前駆基を有するモノマーを用いることが、重合反応性の観点から好ましい。
 スルホン酸前駆基としては、スルホン酸エステル基(-SO;ここでRは炭素数1~20のアルキル基を表す。)又はスルホンアミド基(-SON(R)(R);ここでR及びRはそれぞれ独立に水素原子、炭素数1~20のアルキル基又は炭素数3~20の芳香族基を表す。)のように、スルホン酸基がエステル又はアミドを形成して保護されているような形態のものが好ましい。スルホン酸エステルとしては、例えば、スルホン酸メチルエステル、スルホン酸エチルエステル基、スルホン酸n-プロピルルエステル、スルホン酸イソプロピルエステル、スルホン酸n-ブチルエステル基、スルホン酸sec-ブチルエステル基、スルホン酸tert-ブチルエステル、スルホン酸n-ペンチルエステル、スルホン酸ネオペンチルエステル、スルホン酸n-ヘキシルエステル、スルホン酸シクロヘキシルエステル、スルホン酸n-ヘプチルエステル、スルホン酸n-オクチルエステル、スルホン酸n-ノニルエステル、スルホン酸n-デシルエステル、スルホン酸n-ドデシルエステル、スルホン酸n-ウンデシルエステル、スルホン酸n-トリデシルエステル、スルホン酸n-テトラデシルエステル、スルホン酸n-ペンタデシルエステル、スルホン酸n-ヘキサデシルエステル、スルホン酸n-ヘプタデシルエステル、スルホン酸n-オクタデシルエステル、スルホン酸n-ノナデシルエステル、スルホン酸n-エイコシルエステルが挙げられ、好ましくはスルホン酸sec-ブチルエステル、スルホン酸ネオペンチルエステル又はスルホン酸シクロヘキシルエステルである。これらのスルホン酸エステルには、重合反応に関与しない置換基で置換されていてもよい。
 また、スルホンアミド基としては、例えば、スルホンアミド基、N-メチルスルホンアミド基、N,N-ジメチルスルホンアミド基、N-エチルスルホンアミド基、N,N-ジエチルスルホンアミド基、N-n-プロピルスルホンアミド基、ジ-n-プロピルスルホンアミド基、N-イソプロピルスルホンアミド基、N,N-ジイソプロピルスルホンアミド基、N-n-ブチルスルホンアミド基、N,N-ジ-n-ブチルスルホンアミド基、N-sec-ブチルスルホンアミド基、N,N-ジ-sec-ブチルスルホンアミド基、N-tertブチルスルホンアミド基、N,N-ジ-tert-ブチルスルホンアミド基、N-n-ペンチルスルホンアミド基、N-ネオペンチルスルホンアミド基、N-n-ヘキシルスルホンアミド基、N-シクロヘキシルスルホンアミド基、N-n-ヘプチルスルホンアミド基、N-n-オクチルスルホンアミド基、N-n-ノニルスルホンアミド基、N-n-デシルスルホンアミド基、N-n-ドデシルスルホンアミド基、N-n-ウンデシルスルホンアミド基、N-n-トリデシルスルホンアミド基、N-n-テトラデシルスルホンアミド基、N-n-ペンタデシルスルホンアミド基、N-n-ヘキサデシルスルホンアミド基、N-n-ヘプタデシルスルホンアミド基、N-n-オクタデシルスルホンアミド基、N-n-ノナデシルスルホンアミド基、N-n-エイコシルスルホンアミド基、N,N-ジフェニルスルホンアミド基、N,N-ビストリメチルシリルスルホンアミド基、N,N-ビス-tert-ブチルジメチルシリルスルホンアミド基、ピロリルスルホンアミド基、ピロリジニルスルホンアミド基、ピペリジニルスルホンアミド基、カルバゾリルスルホンアミド基、ジヒドロインドリルスルホンアミド基、ジヒドロイソインドリルスルホンアミド基が挙げられ、好ましくはN,N-ジエチルスルホンアミド基、N-n-ドデシルスルホンアミド基、ピロリジニルスルホンアミド基、ピペリジニルスルホンアミド基である。これらのスルホンアミド基は、いずれも重合反応に関与しない置換基で置換されていてもよい。
 また、スルホン酸前駆基としてはメルカプト基も使用可能である。メルカプト基は適当な酸化剤を使用して、酸化させることによりスルホン酸基に転換可能である。さらにスルホン酸前駆基としては、前述のスルホン酸エステル基、アミド基、メルカプト基等を組み合わせて使用することも可能である。
 次に、予めスルホン酸基を導入可能な部位を有するプレポリマーを製造し、該プレポリマーにスルホン酸基を導入して、本実施形態に係るポリアリーレン系共重合体を製造する方法に関し説明する。この場合、下記一般式(5)で表されるモノマーと、必要に応じてスルホン酸基を有しないモノマーとを縮合反応により共重合し、その後、公知の方法に準じてスルホン酸基を導入することにより製造し得る。
  Q-Ar-Q    (5)
式(5)中、Arはスルホン酸基を導入することで、上記一般式(1)中のArとなり得る2価の芳香族基を示し、Qは上記と同義であり、2つのQは同一でも異なっていてもよい。
 また、一般式(5)で表されるモノマーと一般式(4)で表されるモノマーとを共重合し、下記一般式(5a)で表される構造単位と、上記一般式(4a)で表される構造単位とを有するプレポリマーを合成し、一般式(5a)で表される構造単位における主鎖を構成する芳香環にスルホン酸基を導入するといった一連の操作によっても、上記ポリアリーレン系共重合体を製造することができる。
Figure JPOXMLDOC01-appb-C000024
式(5a)中、Arは上記と同義である。
 ここで、式(5a)中、Arは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの芳香環置換基を有していてもよい2価の芳香族基を示し、Arは少なくとも一つのスルホン酸基を導入可能な構造を有する2価の芳香族基である。該2価の芳香族基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮合環芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基が挙げられる。なお、アルキル基、アルコキシ基、アリール基、アリールオキシ基及びアシル基の例示は、上記の芳香環置換基の例示と同じである。
 Arにおけるスルホン酸基を導入可能な構造としては、芳香環に直接結合している水素原子等、スルホン酸基を導入可能な官能基を有していることを示す。後述する求電子置換反応によってスルホン酸基を芳香環に導入する場合は、芳香環に結合している水素原子はスルホン酸基を導入可能な官能基と見なすことができる。
 上記一般式(5)で表されるモノマーの具体例としては、例えば、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、1,3-ジクロロ-4-メトキシベンゼン、1,4-ジクロロ-3-メトキシベンゼン、4,4’-ジクロロビフェニル、4,4’-ジクロロ-3,3’-ジメチルビフェニル、4,4’-ジクロロ-3,3’-ジメトキシビフェニル、1,4-ジクロロナフタレン、1,5-ジクロロナフタレン、2,6-ジクロロナフタレン、2,7-ジクロロナフタレンが挙げられる。また、これらのモノマーにおけるクロロ基が上記で例示した縮合反応時に脱離する基に置換わったモノマーも使用することができる。
 一般式(5a)で表される構造単位にスルホン酸基を導入する方法としては、得られたプレポリマーを濃硫酸に溶解又は分散することにより、あるいは有機溶媒に少なくとも部分的に溶解させた後、濃硫酸、クロロ硫酸、発煙硫酸、三酸化硫黄等を反応させることにより、水素原子をスルホン酸基に変換する方法を挙げることができる。
 ここで、ポリアリーレン系共重合体を構成する構造単位の具体例を示す。イオン交換基を有する構造単位は、イオン交換基としてスルホン酸基を有する形で例示すると、下記化学式(6-1)~(6-12)でそれぞれ表される構造単位が挙げられる。
(スルホン酸基を有する構造単位の具体例)
Figure JPOXMLDOC01-appb-C000025
 また、芳香環置換基を有する構造単位の具体例としては、下記化学式(6-13)~(6-32)でそれぞれ表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000026
なお、これらの構造単位の例示において、「-Ph」はフェニル基を表す。
 本発明の高分子電解質膜は、上述のようなポリアリーレン系共重合体を高分子電解質として用いることで、より一層ラジカル耐性に優れるものとなる。
 これらの芳香環置換基により、本発明の高分子電解質膜はプロトン伝導膜等の燃料電池用部材として用いたとき、当該部材の耐水性が高度に発現される。これら芳香環置換基のなかでも、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の芳香環を有するアシル基であると、高分子電解質膜の耐熱性が良好となる傾向があり、より実用的な燃料電池用部材が得られるため好ましい。
 また、本発明者らは、かかる芳香環置換基の中でも芳香環を有するアシル基が特に有用であることを見出している。このようなアシル基を芳香環置換基として有する重合体を含む高分子電解質は、一層良好なプロトン伝導性を発現する傾向がある。この原因は定かではないが、アシル基の電子求引性により、重合体中にあるスルホン酸基のイオン解離性が高くなることが推定される。また、このようなアシル基を芳香環置換基として有する場合、該アシル基を有する2つの構造単位が隣接し、該2つの構造単位にあるアシル基同士が結合したり、このようにしてアシル基同士が結合した後、転位反応を生じたり、する場合がある。また、このように芳香環置換基同士が結合したり、結合後に転位反応を生じたりするような反応が生じたか否かは、例えば13C-核磁気共鳴スペクトルの測定により確認することができる。
 本発明に係る高分子電解質は、あるいは、イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとをそれぞれ有し、該イオン交換基を有するブロックの主鎖が、実質的に複数の芳香環が直接連結してなるポリアリーレン構造であるポリアリーレン系ブロック共重合体であってもよい。さらに、イオン交換基が主鎖を構成している芳香環に直接結合していることが好ましく、そのような構造単位の具体例としては前述のものが挙げられる。ここで「イオン交換基を実質的に有しない」とは、該ブロックの繰り返し単位当りのイオン交換基の数が概ね0.1以下であることを意味する。また、「ポリアリーレン構造」とは、主鎖を構成している芳香環同士が実質的に直接結合で結合されている形態であり、具体的には、該芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上の構造であると好ましく、90%以上の構造であるとより好ましく、95%以上の構造であるとさらに好ましい。なお、直接結合以外の結合とは、芳香環同士が2価の原子又は2価の原子団で結合している形態である。
 該イオン交換基を実質的に含まないブロックとして、下記一般式(7)で示される構造を含むブロックが好ましく、下記一般式(7)で示される構造のみであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000027
ここで、一般式(7)におけるnは3以上、45以下の整数を表し、40以下であると好ましく、35以下であるとより好ましく、20以下であるとさらに好ましい。また、nは6以上であると好ましく、11以上であるとより好ましく、15以上であるとさらに好ましい。
 上記一般式(7)におけるAr、Arは互いに独立にアリーレン基を表す。該アリーレン基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮環系芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基等があげられる。好ましくは2価の単環性芳香族基である。
 また、Ar、Arは上述の芳香環置換基からなる群より選ばれる少なくとも1つの置換基を有していても良い。
 上記一般式(7)におけるXはカルボニル基(-C(=O)-)又はスルホニル基(-S(=O)-)の何れかを表す。また、Yは、酸素原子(-O-)、硫黄原子(-S-)の何れかを表す。
 本発明に係るポリアリーレン系ブロック共重合体としては、イオン交換基を実質的に有しないブロックが、下記一般式(8)からなることが好ましい。
Figure JPOXMLDOC01-appb-C000028
式(8)中、nは上記と同義である。
 ここで、イオン交換基を有するポリアリーレン系重合体と、上記一般式(7)で示される構造を含む重合体とが、共有結合によって連結され長い連鎖になったブロック共重合体の好適な製造方法としては、上記ポリアリーレン系重合体の好適な製造方法において、一般式(4)で表されるモノマーに代えて、下記一般式(7a)で示されるイオン交換基を実質的に有しないブロックの前駆体を用いる方法があげられる。
Figure JPOXMLDOC01-appb-C000029
式(7a)中、Ar、Ar、n、X及びYは上記と同義である。
 また、上記一般式(7a)で示される前駆体の好適な代表例としては、下記一般式(8a)で示されるモノマーがあげられる。式(8a)中、n及びQは上記と同義である。
Figure JPOXMLDOC01-appb-C000030
 次に、上記高分子電解質を含む高分子電解質膜を作製する方法について説明する。高分子電解質膜は、上記高分子電解質を含む溶液を所定の基材上に塗布する塗布工程と、この塗布された溶液の膜(塗工膜)から溶媒を除去する溶媒除去工程により製造することができる。
 塗布工程における高分子電解質を含む溶液の基材上への塗布は、例えば、キャスト法、ディップ法、グレードコート法、スピンコート法、グラビアコート法、フレキソ印刷法、インクジェット法等により行うことができる。なお、上記塗布工程で得られる塗工膜の大きさや厚みは、溶媒除去工程に用いる装置の能力、形状、大きさなどにより、適宜最適化することが重要である。その目安としては、該溶媒除去工程において、塗工膜から溶媒の除去が比較的均一であって、塗工膜の面内における溶媒残存量の分布が、より均一な状態を保持するように、上記塗布工程における塗布条件を最適化する。キャスト法は、高分子電解質膜製造として当分野で、これまで広範に使用されている方法であり、工業的に特に有用である。
 キャスト法による高分子電解質膜の製造において、具体的には、まず、上述の高分子電解質を、溶媒に溶解して高分子電解質溶液を調製する。この際、必要に応じて、その他の高分子、添加剤等の他の成分を添加してもよい。
 溶液を塗布する基材の材質としては、化学的に安定であり、また用いる溶媒に対して不溶であるものが好ましい。さらに、基材としては、高分子電解質膜が形成された後に、得られた膜を容易に洗浄でき、しかもこの膜の剥離が容易であるようなものがより好ましい。このような基材としては、例えば、ガラス、ポリテトラフルオロエチレン、ポリエチレン、ポリエステル(ポリエチレンテレフタレート等)からなる板やフィルム等が挙げられる。
 また、基材としては、その面方向に継ぎ目のない長尺のものを用いることが好ましい。継ぎ目のある基材を用いると、均一な膜厚の塗工膜が得られ難く、結果として蒸発工程における溶媒の蒸発が面内で比較的不均一となる不都合が生じることがある。また、長尺の基材を用いると、長尺の高分子電解質膜を容易に形成することができるようになることから生産性が良好であり、工業的に有利である。また、したがって、上記基材としては継ぎ目を有しないものが好適である。このような基材としては、例えば、少なくとも一方向の長さが1m以上のものが好ましく、5m以上のものがより好ましく、10m以上のものが更に好ましい。こうすれば、高分子電解質膜の生産性を一層良好にすることができる。
 上記溶媒は、高分子電解質が溶解可能であり、その後に除去し得るものであれば、特に制限されない。溶媒として、例えば、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、あるいはジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒、メタノール、エタノール、プロパノール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられる。溶媒は、1種を単独で又は2種以上を混合して用いることもできる。中でも、DMSO、DMF、DMAc、NMP又はこれらから選ばれる2種以上からなる混合溶媒は、高分子電解質の溶解性が高いので、好ましく使用される。
 高分子電解質膜の厚み(膜厚)は、特に制限されないが、燃料電池用プロトン伝導膜(隔膜)としての実用的な範囲で1~300μmが好ましく、5~100μmがより好ましく、5~50μmがさらに好ましい。膜厚が1μm以上の膜では実用的な強度が優れるため好ましく、300μm以下の膜では膜抵抗自体が小さくなる傾向があるので好ましい。膜厚は、高分子電解質溶液の濃度及び支持基材上の上記高分子電解質膜前駆体の塗布厚により制御できる。
 また、膜の各種物性改良を目的として、通常の高分子に使用される可塑剤、安定剤、離型剤等の添加剤を添加して、高分子電解質溶液を調製してもよい。さらに、燃料電池用途においては水管理を容易にするために、無機又は有機の微粒子を保水剤として添加することも知られている。これらの公知の方法はいずれも本発明の目的に反しない限り使用できる。また、このようにして得られた高分子電解質膜に関し、その機械的強度向上等を目的として、電子線・放射線等を照射するといった処理を施してもよい。
 高分子電解質膜の種類にもよるが、高分子電解質膜の吸水率が高いと、電池燃料駆動時に膜の吸水膨張による燃料電池の破損の可能性もあるため、340%以下であることが好ましく、300%以下であることがより好ましく、250%以下であるとさらに好ましく、200%以下であると極めて好ましい。
 本発明のポリマーは、主鎖が実質的に複数の芳香環が直接結合で連結してなるポリアリーレン構造であり、該主鎖を構成している芳香環の一部又は全部に直接結合しているスルホン酸基を有し、そのスルホン酸基の量が、該ポリマーの単位重量当たりにあるスルホン酸基当量数、すなわちイオン交換容量で表して、3.0meq/gを越えることを特徴とする。なお、このイオン交換容量とは下記に示すイオン交換容量測定で測定されたものである。また、本発明でいうスルホン酸基とは遊離酸の形で表した場合、-SOHで表される基を意味する。
[イオン交換容量測定]
 測定に供するポリマーを溶液キャスト法により成膜してポリマー膜とし、形成されたポリマー膜を適当な重量になるように裁断し、裁断したポリマー膜の乾燥重量を加熱温度105℃に設定されたハロゲン水分率計を用いて測定する。次いで、この膜を0.1mol/L水酸化ナトリウム水溶液5mLに浸漬した後、更に50mLのイオン交換水を加え、2時間放置する。その後、ポリマー膜が浸漬された溶液に、0.1mol/Lの塩酸を徐々に加えることで滴定を行って中和点を求め、使用したポリマー膜(裁断したポリマー膜)の乾燥重量と中和に要した塩酸の量から、ポリマーのイオン交換容量(単位:meq/g)を算出する。
 また、本発明のポリマーは、その主鎖を構成している芳香環の一部又は全部に、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有することを特徴とする。以下、このような、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる基を「芳香環置換基」という。
 ここで、上記ポリアリーレン構造について説明する。本発明のポリマーは、主鎖を構成している芳香環同士が実質的に直接結合で結合されている形態であり、ポリマー主鎖を構成している芳香環同士の結合の総数に対する直接結合の割合が多いほど、より耐水性の向上が図れる傾向があるため好ましい。具体的にいうと該芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上であると好ましく、90%以上であるとより好ましく、95%以上であるとさらに好ましい。なお、直接結合以外の結合とは、芳香環同士が2価の原子又は2価の原子団で結合している形態である。
 また、本発明者はポリマーにあるスルホン酸基は、該ポリマーの主鎖を構成する芳香環に直接結合している方が、該ポリマーの主鎖を構成する芳香環に適当な連結基により結合している場合よりも、高度のプロトン伝導性と優れた耐水性とを両立させる点で有利であることを見出した。したがって、該ポリマーにおけるスルホン酸基を有する構造単位中、スルホン酸基が主鎖を構成している芳香環に直接結合している構造単位の割合が多いほうが、スルホン酸基当量、すなわちイオン交換容量を増加させたとしても、耐水性に優れたプロトン伝導膜が得られる傾向がある。スルホン酸基の量は、ポリマーのイオン交換容量が3.0meq/gを越えるようにして決定される。ポリマーを構成する構造単位の合計を100モル%としたとき、スルホン酸基が直接結合している芳香環を主鎖に有するような構造単位の割合が20モル%以上であると好ましく、30モル%以上であるとさらに好ましく、50モル%以上であるとより好ましい。なお、これらのスルホン酸基は、部分的に、あるいは全てが、金属イオンや4級アンモニウムイオンなどで交換されて塩を形成していてもよいが、燃料電池用部材として使用する際には、実質的に全てが遊離酸の形であることが好ましい。
 また、本発明のポリマーは、上述のとおり、主鎖を構成している芳香環の一部又は全部に、芳香環置換基を有する。芳香環置換基としては、例えば、置換基を有していてもよい炭素数1~20のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、n-ペンチル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、2-メチルペンチル基、2-エチルヘキシル基、ノニル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の炭素数1~20のアルキル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルキル基が挙げられる。
 置換基を有していてもよい炭素数1~20のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ基、イコシルオキシ基等の炭素数1~20のアルコキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルコキシ基が挙げられる。
 置換基を有していてもよい炭素数6~20のアリール基としては、例えばフェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリール基が挙げられる。
 置換基を有していてもよい炭素数6~20のアリールオキシ基としては、例えばフェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリールオキシ基が挙げられる。
 置換基を有していてもよい炭素数2~20のアシル基としては、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の炭素数2~20のアシル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアシル基が挙げられる。
 これらの芳香環置換基により、本発明のポリマーはプロトン伝導膜等の燃料電池用部材として用いたとき、当該部材の耐水性が高度に発現される。これら芳香環置換基のなかでも、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の芳香環を有するアシル基であると、ポリマーの耐熱性が良好となる傾向があり、より実用的な燃料電池用部材が得られるため好ましい。
 また、本発明者らは、かかる芳香環置換基の中でも芳香環を有するアシル基が特に有用であることを見出している。このようなアシル基を芳香環置換基として有する本発明のポリマーは、一層良好なプロトン伝導性を発現する傾向がある。この原因は定かではないが、アシル基の電子求引性により、ポリマー中にあるスルホン酸基のイオン解離性が高くなることが推定される。また、このようなアシル基を芳香環置換基として有する場合、該アシル基を有する2つの構造単位が隣接し、該2つの構造単位にあるアシル基同士が結合したり、このようにしてアシル基同士が結合した後、転位反応を生じたりする場合がある。このような芳香環置換基同士が連結した場合であっても、結合後(転位反応後)の芳香環置換基が、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基のいずれかに相当する場合は、本発明のポリマーに包含される。また、このように芳香環置換基同士が結合したり、結合後に転位反応を生じたり、するような反応が生じたか否かは、例えば13C-核磁気共鳴スペクトルの測定により確認することができる。
 本発明のポリマーは、このような芳香環置換基を有する構造単位と、スルホン酸基を有する構造単位と、を含むポリアリーレン構造を有するポリマーであるが、同一の構造単位に芳香環置換基とスルホン酸基とを合わせて有し、且つスルホン酸基が主鎖を構成する芳香環に直接結合しているような構造単位を有するポリアリーレン構造を有していてもよい。
 また、スルホン酸基が主鎖を構成している芳香環に直接結合している構造単位と、スルホン酸基を有しない構造単位(以下、「非スルホン酸構造単位」といい、この非スルホン酸構造単位には芳香環置換基を有していてもよい。)とを有し、これらの構造単位が共重合している形態であってもよい。イオン交換容量が3.0meq/gを越えるようにし易い点と、ポリマー製造上の容易さを合わせて考慮すると、スルホン酸基を有する構造単位と非スルホン酸構造単位とを合わせて有する共重合体が、本発明のポリマーとして特に好ましい。また、本発明のポリマーが、このような共重合体である場合、その共重合様式は特に限定されないが、本発明のポリマーがより容易に製造できる点では、該共重合様式はランダム共重合であることが好ましい。
 スルホン酸基が主鎖を構成している芳香環に直接結合している構造単位としては、例えば、下記式(A-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 式(A-1)中、Arは2価の芳香族基を表す。この2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい。なお、Arは主鎖を構成する芳香環に、少なくとも一つのスルホン酸基が直接結合している芳香族基である。
 式(A-1)における有していてもよい任意の基(芳香環置換基)の例示は、上記芳香環置換基として例示したものと同じである。
 上記式(A-1)におけるArとしては、例えば、1,3-フェニレン基、1,4-フェニレン基等の単環性芳香族基の芳香環にスルホン酸基が直接結合しているような芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の縮合環芳香族基の芳香環にスルホン酸基が直接結合しているような芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の芳香族複素環基の芳香環にスルホン酸基が直接結合しているような芳香族基、又は、ここに例示した芳香族基に、さらに、芳香環置換基を有する芳香族基が挙げられる。これらの中でもArとしては、該単環性芳香族基又は該単環性芳香族基の芳香環にスルホン酸基が直接結合しているような芳香族基、又は該単環性芳香族基又は該単環性芳香族基の芳香環にスルホン酸基が直接結合し、さらに芳香環置換基を有しているような芳香族基が好ましい。さらに、製造上の容易さも考慮すると、Arとしては、該単環性芳香族基の芳香環にスルホン酸基が直接結合しているような芳香族基、又は該単環性芳香族基にスルホン酸基が直接結合し、さらに芳香環置換基を有しているような芳香族基が好ましい。
 好適な単環性芳香族基を有する式(A-1)で示される構造単位として、下記式(A-2)で表される構造単位を含むと好ましい。このような構造単位は、後述する本発明のポリマーの製造において、市場から容易に入手できる原料を用いることができたり、該ポリマーの製造に使用する原料の製造自体が容易だったりするという利点がある。また、式(A-2)で表される構造単位はモル重量が小さいことから、スルホン酸基1個当たりのモル重量も小さくなるので、本発明のポリマーのイオン交換容量を3.0meq/gを越えるようにし易い点でも、式(A-2)で表される構造単位は有利である。
Figure JPOXMLDOC01-appb-C000032
 式(A-2)中、Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基を表す。pは1以上3以下の整数であり、qは0以上3以下の整数であり、p+qは4以下の整数である。なお、qが2以上である場合、複数あるRは同一でも異なっていてもよい。なお、スルホン酸基の結合数を表すpは、1又は2であるとより好ましい。
 なお、式(A-2)におけるRで表される基、すなわち、アルキル基、アルコキシ基、アリール基及びアシル基の例示は上記芳香環置換基として例示したものと同じであり、このようなRは、後述のポリマーの製造(重合反応)において、その重合反応を阻害しないようなものを選択すると好ましい。
 本発明のポリマーは、そのスルホン酸基の量をイオン交換容量で表して3.0meq/gを越えるものであるが、該イオン交換容量は3.1meq/g以上であると好ましく、3.2meq/g以上であるとさらに好ましい。一方、該イオン交換容量の上限は、本発明のポリマーを構成する構造単位の種類によって決定されるものであるが、6.0meq/g以下であることが好ましく、5.0meq/g以下であると、さらに好ましい。該イオン交換容量の上限がこの範囲であると、ポリマーの製造自体も容易であり、より耐水性の向上を図ることができる。なお、該イオン交換容量の測定方法は既述のとおりである。
 また、本発明のポリマーは、その分子量がポリスチレン換算の数平均分子量で表して、5000~1000000であることが好ましく、15000~600000であることが特に好ましい。
 次に、本発明のポリマーを得る上で、好適な製造方法について説明する。
 ここで、スルホン酸基の導入方法は、予めスルホン酸基(又はスルホン酸前駆基)を有するモノマーを重合する方法であっても、スルホン酸基を導入可能な部位を有するモノマーからプレポリマーを製造した後に、該プレポリマーにある、該導入可能な部位にスルホン酸基を導入する方法であってもよい。中でも、前者の方法であると、スルホン酸基の導入量や、置換位置を的確に制御することができるので、より好ましい。また、前者の方法を用いる場合、スルホン酸基は遊離酸の形であっても、塩を形成しているような形であってもよい。また、加水分解処理等によって容易にスルホン酸基に転換し得るスルホン酸前駆基であってもよい。ここでいうスルホン酸前駆基の詳細に関しては後述することにする。
 スルホン酸基を有するモノマーを用いて、本発明のポリマーを製造する方法に関し説明する。本発明のポリマーは、例えば、ゼロ価遷移金属錯体の共存下、下記式(A-3)で示されるモノマーを縮合反応により重合することにより製造し得る。
   Q-Ar10-Q    (A-3)
 ここでAr10は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい2価の芳香族基であり、主鎖を構成している芳香環にスルホン酸基及び/又はスルホン酸前駆基が結合している。Qは脱離基を表し、2つのQは同一であっても異なっていてもよい。
 上記式(A-3)で表されるモノマーのうち、少なくとも1種のモノマーが芳香環置換基を有するようなものを用いた場合、得られるポリマーは、スルホン酸基と芳香環置換基を合わせて有するものとなる。ただし、イオン交換容量が3.0meq/gを越えるようにして、本発明のポリマーを製造するためには、以下に示すようにスルホン酸基を有する構造単位を誘導する第1のモノマーと、非スルホン酸構造単位を誘導する第2のモノマーを別々に準備し、これらを共重合させる方法が簡便であることから好ましい。
 この方法に関し説明すると、上記式(A-3)で表されるモノマーを上記第1のモノマーとし、下記式(A-4)で表される上記第2のモノマーとを共重合させれば、スルホン酸基を有する構造単位と、非スルホン酸構造単位とを、有する共重合体を得ることができる。
   Q-Ar-Q    (A-4)
 式(A-4)中、Arは、2価の芳香族基を表し、ここで2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基(芳香環置換基)を有する。ここで、これらの芳香環置換基の例示も前述したものと同じである。なお、Qの定義は上記式(A-3)と同じであり、式(A-4)においても2つのQは互いに同一であっても異なっていてもよい。
 このように、式(A-3)で表されるモノマーと式(A-4)で表されるモノマーとを共重合し、必要に応じてスルホン酸前駆基をスルホン酸基に転換すれば、得られるポリマーは、式(A-3a)で表される構造単位と式(A-4a)で表される構造単位とを有し、Ar10とArとが直接結合で連結されたポリアリーレン構造を有するポリマーが得られる。
Figure JPOXMLDOC01-appb-C000033
[式(A-3a)中、Ar10は上記と同義である。]
Figure JPOXMLDOC01-appb-C000034
[式(A-4a)中、Arは上記と同義である。]
 式(A-3)及び式(A-4)におけるQは、脱離基を表すが、その具体例としては、例えば、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、下記に示すようなホウ素原子を含む基等が挙げられる。
Figure JPOXMLDOC01-appb-C000035
及びRは、互いに独立に水素原子又は有機基を表し、RとRとが結合して環を形成していてもよい。
 式(A-3)で表されるモノマーとしては、例えば、2,4-ジクロロベンゼンスルホン酸、2,5-ジクロロベンゼンスルホン酸、3,5-ジクロロベンゼンスルホン酸、2,4-ジクロロ-5-メチルベンゼンスルホン酸、2,5-ジクロロ-4-メチルベンゼンスルホン酸、2,4-ジクロロ-5-メトキシベンゼンスルホン酸、2,5-ジクロロ-4-メトキシベンゼンスルホン酸、3,3’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-3,3’-ジスルホン酸、5,5’-ジクロロビフェニル-2,2’-ジスルホン酸が挙げられる。また、これらのモノマーの塩素原子が、上記に例示した脱離基のうち、塩素原子以外の基と置き換わったものも使用可能である。また、これらのモノマーのスルホン酸基が塩を形成していてもよく、スルホン酸基の替わりにスルホン酸前駆基を有するものも使用可能である。スルホン酸基が塩を形成している場合、その対イオンはアルカリ金属イオンが好ましく、特に、Liイオン、Naイオン、Kイオンが好ましい。スルホン酸前駆基としては、加水分解処理や酸化処理等の簡便な操作でスルホン酸基になり得るものが好ましい。特に、本発明のポリマーを製造するには、スルホン酸基が塩の形態のモノマーか、又はスルホン酸前駆基を有するモノマーを用いることが、重合反応性の点から好ましい。
 スルホン酸前駆基としては、スルホン酸エステル基(-SO;ここでRは炭素数1~20のアルキル基を表す。)又はスルホンアミド基(-SON(R)(R);ここでR及びRはそれぞれ独立に水素原子、炭素数1~20のアルキル基又は炭素数3~20の芳香族基を表す。)のように、スルホン酸基がエステル又はアミドを形成して保護されているような基が好ましい。スルホン酸エステル基としては、例えば、スルホン酸メチルエステル基、スルホン酸エチルエステル基、スルホン酸n-プロピルルエステル基、スルホン酸イソプロピルエステル基、スルホン酸n-ブチルエステル基、スルホン酸sec-ブチルエステル基、スルホン酸tert-ブチルエステル基、スルホン酸n-ペンチルエステル基、スルホン酸ネオペンチルエステル基、スルホン酸n-ヘキシルエステル基、スルホン酸シクロヘキシルエステル基、スルホン酸n-ヘプチルエステル基、スルホン酸n-オクチルエステル基、スルホン酸n-ノニルエステル基、スルホン酸n-デシルエステル基、スルホン酸n-ドデシルエステル基、スルホン酸n-ウンデシルエステル基、スルホン酸n-トリデシルエステル基、スルホン酸n-テトラデシルエステル基、スルホン酸n-ペンタデシルエステル基、スルホン酸n-ヘキサデシルエステル基、スルホン酸n-ヘプタデシルエステル基、スルホン酸n-オクタデシルエステル基、スルホン酸n-ノナデシルエステル基、スルホン酸n-エイコシルエステル基などのスルホン酸エステル基が挙げられ、好ましくはスルホン酸sec-ブチルエステル基、スルホン酸ネオペンチルエステル基又はスルホン酸シクロヘキシルエステル基である。これらのスルホン酸エステルには、重合反応に関与しない置換基で置換されていてもよい。
 また、スルホンアミド基としては、例えば、スルホンアミド基、N-メチルスルホンアミド基、N,N-ジメチルスルホンアミド基、N-エチルスルホンアミド基、N,N-ジエチルスルホンアミド基、N-n-プロピルスルホンアミド基、ジ-n-プロピルスルホンアミド基、N-イソプロピルスルホンアミド基、N,N-ジイソプロピルスルホンアミド基、N-n-ブチルスルホンアミド基、N,N-ジ-n-ブチルスルホンアミド基、N-sec-ブチルスルホンアミド基、N,N-ジ-sec-ブチルスルホンアミド基、N-tertブチルスルホンアミド基、N,N-ジ-tert-ブチルスルホンアミド基、N-n-ペンチルスルホンアミド基、N-ネオペンチルスルホンアミド基、N-n-ヘキシルスルホンアミド基、N-シクロヘキシルスルホンアミド基、N-n-ヘプチルスルホンアミド基、N-n-オクチルスルホンアミド基、N-n-ノニルスルホンアミド基、N-n-デシルスルホンアミド基、N-n-ドデシルスルホンアミド基、N-n-ウンデシルスルホンアミド基、N-n-トリデシルスルホンアミド基、N-n-テトラデシルスルホンアミド基、N-n-ペンタデシルスルホンアミド基、N-n-ヘキサデシルスルホンアミド基、N-n-ヘプタデシルスルホンアミド基、N-n-オクタデシルスルホンアミド基、N-n-ノナデシルスルホンアミド基、N-n-エイコシルスルホンアミド基、N,N-ジフェニルスルホンアミド基、N,N-ビストリメチルシリルスルホンアミド基、N,N-ビス-tert-ブチルジメチルシリルスルホンアミド基、ピロリルスルホンアミド基、ピロリジニルスルホンアミド基、ピペリジニルスルホンアミド基、カルバゾリルスルホンアミド基、ジヒドロインドリルスルホンアミド基、ジヒドロイソインドリルスルホンアミド基が挙げられ、好ましくはN,N-ジエチルスルホンアミド基、N-n-ドデシルスルホンアミド基、ピロリジニルスルホンアミド基、ピペリジニルスルホンアミド基が例示される。これらのスルホンアミドは基、いずれも重合反応に関与しない置換基で置換されていてもよい。
 また、スルホン酸前駆基としてはメルカプト基も使用可能である。メルカプト基は適当な酸化剤を使用して、酸化させることによりスルホン酸基に容易に転換可能である。
 次に、本発明のポリマーを製造する別の方法に関し説明する。
 この方法は、予めスルホン酸基を導入可能な部位を有するプレポリマーを製造し、該プレポリマーの上記導入可能な部位にスルホン酸基を導入して、本発明のポリマーを製造する方法である。この場合、下記式(A-5)で表されるモノマーと、必要に応じてスルホン酸基を有しないモノマーを縮合反応により共重合し、その後、公知の方法に準じてスルホン酸基を導入することにより製造し得る。
   Q-Ar-Q    (A-5)
[式(A-5)中、Arはスルホン酸基を導入することで、上記式(A-1)のArとなり得る2価の芳香族基を表し、Qは上記と同義であり、2つのQは同一でも異なっていてもよい。]
 また、式(A-5)で表されるモノマーと式(A-4)で表されるモノマーとを共重合せしめ、下記式(A-5a)で表される構造単位と、上記式(A-4a)で表される構造単位とをともに有するプレポリマーを得、当該プレポリマーの式(A-5a)で表される構造単位における主鎖を構成する芳香環にスルホン酸基を導入するといった一連の操作によっても、本発明のポリマーを製造することができる。
Figure JPOXMLDOC01-appb-C000036
[式(A-5a)中、Arは上記と同義である。]
 ここで、Arは、上記芳香環置換基を有する芳香族基であってもよい。そして、Arは少なくとも一つのスルホン酸基を導入可能な構造を有する2価の芳香族基である。該2価の芳香族基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の縮合環芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の芳香族複素環基等が挙げられる。
 Arにおけるスルホン酸基を導入可能な構造としては、芳香環に直接結合している水素原子等、スルホン酸基を導入可能な官能基を有していることを示す。後述する求電子置換反応によってスルホン酸基を芳香環に導入する場合は、芳香環に結合している水素原子はスルホン酸基を導入可能な官能基(部位)と見なすことができる。なお、式(A-5)で表されるモノマーの具体例としては、例えば1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、1,3-ジクロロ-4-メトキシベンゼン、1,4-ジクロロ-3-メトキシベンゼン、4,4’-ジクロロビフェニル、4,4’-ジクロロ-3,3’-ジメチルビフェニル、4,4’-ジクロロ-3,3’-ジメトキシビフェニル、1,4-ジクロロナフタレン、1,5-ジクロロナフタレン、2,6-ジクロロナフタレン、2,7-ジクロロナフタレン等が挙げられ、これらのモノマーにある塩素原子が、上記に例示した脱離基のうち、塩素原子以外の基に置換わった基に置換わったモノマーも使用することができる。
 式(A-5a)で表される構造単位にスルホン酸基を導入する方法としては、得られたプレポリマーを濃硫酸に溶解あるいは分散することにより、あるいは有機溶媒に少なくとも部分的に溶解させた後、濃硫酸、クロロ硫酸、発煙硫酸、三酸化硫黄などを作用させることにより、水素原子をスルホン酸基に変換する方法を挙げることができる。
 次に、本発明のポリマー(例えば、上記式(A-3a)で表される構造単位と上記式(A-4a)で表される構造単位とを有するポリマー)又は本発明のポリマーを製造できるプレポリマー(例えば、上記式(A-5a)で表される構造単位と上記式(A-4a)で表される構造単位とを有するプレポリマー)を製造するための重合(縮合反応)について説明する。なお、以下の製造方法の説明において、本発明のポリマー及び本発明のポリマーを製造可能なプレポリマーをあわせて「ポリマー等」ということがある。
 ポリアリーレン構造を形成する重合は、ゼロ価遷移金属錯体の共存下に実施される縮合重合である。該ゼロ価遷移金属錯体の共存下で重合を行うと、ポリアリーレン構造を比較的容易に形成できるという利点がある。上記ゼロ価遷移金属錯体は遷移金属にハロゲンや後述の配位子が配位したものであり、後述の配位子を少なくとも一つ有するものが好ましい。該ゼロ価遷移金属錯体は、市場から入手できるような市販品であっても、合成したものであってもよい。該ゼロ価遷移金属錯体の合成は、例えば遷移金属塩や遷移金属酸化物と、配位子と、を反応させる方法等の公知の方法によればよい。合成したゼロ価遷移金属錯体は適当な方法で精製してから使用してもよいし、精製することなく、in situで使用してもよい。
 配位子としては、例えば、アセテート、アセチルアセトナート、2,2’-ビピリジル、1,10-フェナントロリン、メチレンビスオキサゾリン、N,N,N’N’-テトラメチルエチレンジアミン、トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン、1,2-ビスジフェニルホスフィノエタン、1,3-ビスジフェニルホスフィノプロパンが挙げられる。
 ゼロ価遷移金属錯体としては、例えば、ゼロ価ニッケル錯体、ゼロ価パラジウム錯体、ゼロ価白金錯体、ゼロ価銅錯体が挙げられる。これら遷移金属錯体の中でもゼロ価ニッケル錯体、ゼロ価パラジウム錯体が好ましく用いられ、ゼロ価ニッケル錯体がより好ましく用いられる。
 ゼロ価ニッケル錯体としては、例えば、ビス(1,5-シクロオクタジエン)ニッケル(0)、(エチレン)ビス(トリフェニルホスフィン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケルが挙げられ、中でも、ビス(1,5-シクロオクタジエン)ニッケル(0)が、反応性、得られるポリマー等の収率、得られるポリマー等の高分子量化という点では好ましく使用される。ゼロ価パラジウム錯体としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)が挙げられる。
 これらゼロ価遷移金属錯体は、上記のようにして合成して用いてもよいし、市販品として入手できるものを用いてもよい。ゼロ価遷移金属錯体の合成方法では、1価又は多価の遷移金属化合物を亜鉛やマグネシウムなどの還元剤の作用により、金属の原子価をゼロ価として製造することもできる。
 還元剤の作用により、ゼロ価遷移金属錯体を発生させる際に使用される遷移金属化合物は、2価の遷移金属化合物を用いることが好ましい。中でも2価ニッケル化合物、2価パラジウム化合物が好ましい。2価ニッケル化合物としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセテート、ニッケルアセチルアセトナート、塩化ニッケルビス(トリフェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)が挙げられ、2価パラジウム化合物としては塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、パラジウムアセテートが挙げられる。
 還元剤としては、亜鉛、マグネシウム、水素化ナトリウム、ヒドラジン及びその誘導体、リチウムアルミニウムヒドリドが挙げられる。必要に応じて、ヨウ化アンモニウム、ヨウ化トリメチルアンモニウム、ヨウ化トリエチルアンモニウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムを併用することもできる。
 上記遷移金属錯体を用いた縮合反応の際、得られるポリマー等の収率向上の観点から、用いたゼロ価遷移金属錯体の配位子となり得る化合物を添加することが好ましい。添加する化合物は使用したゼロ価遷移金属錯体の配位子と同じであっても異なっていてもよい。
 配位子となりうる化合物の例としては、前述の、配位子として例示した化合物が挙げられ、汎用性、経済性、反応性、得られるポリマー等の収率、得られるポリマー等の高分子量化の点でトリフェニルホスフィン、2,2’-ビピリジルが好ましい。特に、2,2’-ビピリジルを用いると、ポリマー等の収率向上や高分子量化の点で特に有利である。配位子の添加量は、ゼロ価遷移金属錯体にある遷移金属原子基準で、通常0.2~10モル倍程度、好ましくは1~5モル倍程度使用される。
 ゼロ価遷移金属錯体の使用量は、ポリマー等の製造に使用する、式(A-3)で示されるモノマー、式(A-4)で示されるモノマー及び式(A-5)で示されるモノマーの総モル量(以下、「全モノマーの総モル量」という。)に対して、0.1モル倍以上である。使用量が過少であると分子量が小さくなる傾向があるので、好ましくは1.5モル倍以上、より好ましくは1.8モル倍以上、より一層好ましくは2.1モル倍以上用いる。一方、使用量の上限は特に制限はないが、使用量が多すぎると後処理が煩雑になることもあるので、5.0モル倍以下であることが好ましい。
 なお、還元剤を用いて遷移金属化合物からゼロ価遷移金属錯体を合成する場合、生成するゼロ価遷移金属錯体が上記範囲となるように、遷移金属化合物及び還元剤の使用量等を設定すればよく、例えば、遷移金属化合物の量を、全モノマーの総モル量に対して、0.01モル倍以上、好ましくは0.03モル倍以上とすればよい。使用量の上限は限定的ではないが、使用量が多すぎると後処理が煩雑になる傾向があるために、5.0モル倍以下であることが好ましい。また、還元剤の使用量は、全モノマーの総モル量に対して、例えば、0.5モル倍以上、好ましくは1.0モル倍以上とすればよい。使用量の上限は限定されないが、使用量が多すぎると後処理が煩雑になることもあるので、10モル倍以下であることが好ましい。
 また、反応温度は、通常20℃~200℃程度であり、20℃~100℃程度であることが好ましい。反応時間は、通常0.5~24時間程度である。
 ゼロ価遷移金属錯体と、ポリマー等の製造に使用する、式(A-3)で示されるモノマー、式(A-4)で示されるモノマー及び式(A-5)で示されるモノマーから選ばれるモノマーとを混合する方法は、一方を他方に加える方法であっても、両者を反応容器に同時に加える方法であってもよい。加えるに当っては、一挙に加えてもよいが、発熱を考慮して少量ずつ加えることが好ましいし、溶媒の共存下に加えることも好ましく、この場合の好適な溶媒は後述する。
 縮合反応は、既述のように発熱が著しくなることを良好に防止する点で、溶媒存在下に実施することが好ましい。この場合の溶媒としては、例えばN、N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホリックトリアミドなどの非プロトン性極性溶媒;トルエン、キシレン、メシチレン、ベンゼン、n-ブチルベンゼン等の芳香族炭化水素系溶媒;テトラヒドロフラン、1,4-ジオキサン、ジブチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル等のエステル系溶媒;クロロホルム、ジクロロエタン等のハロゲン化アルキル系溶媒が例示される。なお、括弧内の表記は溶媒の略号を示すものであり、後述する表記において、この略号を用いることもある。
 生成するポリマー等の分子量をより高くするためには、ポリマー等が十分に溶解し得る溶媒を用いることが望ましいので、生成するポリマー等に対して良溶媒であるテトラヒドロフラン、1,4-ジオキサン、DMF、DMAc、NMP、DMSO、トルエンの使用が好ましい。これらは2種以上を混合して用いることもできる。中でもDMF、DMAc、NMP及びDMSOからなる群より選ばれる少なくとも1種の溶媒、又はこれらから選ばれる2種以上の溶媒の混合物が好ましく用いられる。
 溶媒量は、特に限定されないが、あまりにも低濃度では、生成したポリマー等を回収しにくくなることもあり、また、あまりにも高濃度では、攪拌が困難になることがあることから、溶媒と、ポリマー等の製造に使用するモノマー(式(A-3)で示されるモノマー、式(A-4)で示されるモノマー及び式(A-5)で示されるモノマーから選ばれるモノマー)との総重量を基準として、溶媒の重量割合が、好ましくは99.95~50重量%、より好ましくは99.9~75重量%となるようにして、溶媒の使用量を決定する。
 かくして本発明のポリマー又は本発明のポリマーになり得るプレポリマーが得られるが、生成したポリマー等の反応混合物からの取り出しは常法が適用できる。例えば、貧溶媒を加えることでポリマー等を析出させ、濾別などにより目的物を取り出すことができる。また、必要に応じて、更に水洗や、良溶媒と貧溶媒を用いての再沈殿など、通常の精製方法により精製することもできる。
 生成したポリマーのスルホン酸基が塩の形態である場合、燃料電池用部材として使用するために、スルホン酸基を遊離酸の形態にすることが好ましく、遊離酸の形への変換は、通常酸性溶液での洗浄により実施することができる。使用される酸としては、例えば、塩酸、硫酸、硝酸などが挙げられ、好ましくは希塩酸、希硫酸である。
 また、スルホン酸基が保護されているようなポリマーを得た場合も、燃料電池用部材として使用するためには、保護されたスルホン酸基を、遊離酸の形のスルホン酸基にすることが必要である。このようなスルホン酸基への変換は、酸・塩基による加水分解、ハロゲン化物による脱保護反応を用いることができる。なお、塩基を使用した場合は、上述したような酸性溶液の洗浄を行えば、遊離酸の形のスルホン酸基にすることが可能である。使用される酸・塩基としては、例えば、塩酸、硫酸、硝酸、水酸化ナトリウム、水酸化カリウムが挙げられる。使用されるハロゲン化物としては、例えば、臭化リチウム、沃化ナトリウム、塩化テトラメチルアンモニウム、臭化テトラブチルアンモニウムが挙げられ、好ましくは臭化リチウムと臭化テトラブチルアンモニウムである。スルホン酸基への変換率は、赤外線吸収スペクトルや核磁気共鳴スペクトルにより、スルホン酸エステル基又はスルホンアミド基に特徴的なピークの存在がどの程度であるかを定量することができる。
 上述したように本発明のポリマーは、スルホン酸基を有する構造単位と、芳香環置換基を有する非スルホン酸構造単位とを各々有する共重合体であると、イオン交換容量が3.0meq/gを越えるようにしてポリマーを製造することがより容易であるために好ましい。ここで、上記式(A-3a)で表される構造単位及び式(A-4a)で表される構造単位に関し、好適なものを以下に例示する。
<式(A-3a)で表される構造単位の具体例>
Figure JPOXMLDOC01-appb-C000037
<式(A-4a)で表される構造単位の具体例>
Figure JPOXMLDOC01-appb-C000038
 なお、これらの構造単位の例示において、「-Ph」はフェニル基を表す。また、「R」は置換基を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよい炭素数6~20のアリール基を表す。
 本発明のポリマーは、いずれも燃料電池用部材として好適に用いることができる。本発明のポリマーは、燃料電池等の電気化学デバイスのプロトン伝導膜(高分子電解質膜)として、特に好ましく使用される。なお、以下の説明においては、プロトン伝導膜の場合を主として説明する。
 この場合は、本発明のポリマー又は本発明のポリマーを含む高分子電解質を膜の形態へ転化する。この方法(成膜法)には特に制限はないが、溶液状態より成膜する方法(溶液キャスト法)を用いて成膜することが好ましい。溶液キャスト法は、高分子電解質膜製造として当分野で、通常使用されている方法であり、工業的に特に有用である。
 この溶液キャスト法とは、本発明のポリマー又は本発明のポリマーを含む高分子電解質を適当な溶媒に溶かして高分子電解質溶液を調製し、ガラス基板、PET(ポリエチレンテレフタレート)フィルム等の支持基材上に流延塗布(キャスト成膜)して塗膜を形成せしめ、該塗膜からキャスト溶媒等の揮発成分を除去することにより支持基材上に高分子電解質膜を製膜する方法である。そして、支持基材を剥離等によって除去することで、高分子電解質膜を得ることができる。
 溶液キャスト法に使用する溶媒(キャスト溶媒)は、本発明のポリマーを十分溶解可能であり、その後に除去し得るものであるならば特に制限はなく、DMF、DMAc、NMP、DMSO等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒;メタノール、エタノール、プロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられる。これらは単独で用いることもできるが、必要に応じて2種以上の溶媒を混合して用いることもできる。中でも、DMSO、DMF、DMAc、NMPが、本発明のポリマーの溶解性が高いので好ましい。
 このようにして得られる高分子電解質膜の厚みは、燃料電池用のプロトン伝導膜(隔膜)としての使用に対する実用的な範囲である5~300μmが好ましい。膜厚が5μm以上の膜では実用的な強度が優れるため好ましく、300μm以下の膜では膜抵抗自体が小さくなる傾向があるので好ましい。膜厚は、上記溶液の重量濃度及び支持基材上の塗膜の塗布厚により制御できる。
 また、膜の各種物性改良を目的として、通常の高分子に使用される可塑剤、安定剤、離型剤等の添加剤を本発明のポリマーに添加して、高分子電解質を調製してもよい。また、同一溶剤に混合共キャストする等の方法により、他のポリマーを本発明のポリマーと複合アロイ化して高分子電解質を調整することも可能である。このように、本発明のポリマーと、添加剤及び/又は他のポリマーとを組み合わせて高分子電解質を調製する場合には、該高分子電解質を燃料電池用部材に適用したときに、所望の特性が得られるようにして、添加剤及び/又は他のポリマーの種類や使用量を決定する。
 さらに燃料電池用途においては水管理を容易にするために、無機あるいは有機の微粒子を保水剤として添加することも知られている。これらの公知の方法はいずれも本発明の目的に反しない限り使用できる。また、このようにして得られた高分子電解質膜に関し、その機械的強度向上等を目的として、電子線・放射線等を照射するといった処理を施してもよい。
 また、本発明のポリマーを用いたプロトン伝導膜の強度や柔軟性、耐久性のさらなる向上のために、本発明のポリマーを有効成分とする高分子電解質を多孔質基材に含浸させ複合化することにより、高分子電解質複合膜(以下、「複合膜」という。)とすることも可能である。複合化方法は公知の方法を使用し得る。
 多孔質基材としては、上述の使用目的を満たすものであれば特に制限は無く、例えば多孔質膜、織布、不織布、フィブリル等が挙げられ、その形状や材質によらず用いることができる。多孔質基材の材質としては、耐熱性の観点や、物理的強度の補強効果を考慮すると、脂肪族系高分子、芳香族系高分子、又は含フッ素高分子が好ましい。
 本発明のポリマーを用いた複合膜を、プロトン伝導膜として使用する場合、使用する多孔質基材の膜厚は、好ましくは1~100μm、さらに好ましくは3~30μm、特に好ましくは5~20μmである。該多孔質基材の孔径は、好ましくは0.01~100μm、さらに好ましくは0.02~10μmである。該多孔質基材の空隙率は、好ましくは20~98%、さらに好ましくは40~95%である。
 該多孔質基材の膜厚が1μm以上であると、複合化後の強度補強の効果あるいは、柔軟性や耐久性を付与するといった補強効果がより優れ、ガス漏れ(クロスリーク)が発生しにくくなる。また、この膜厚が100μm以下であると、電気抵抗がより低くなり、得られた複合膜が燃料電池用プロトン伝導膜として、より優れたものとなる。該孔径が0.01μm以上であると、本発明のポリマーの充填がより容易となり、100μm以下であると、補強効果がより大きくなる。空隙率が20%以上であると、高分子電解質膜としての抵抗がより小さくなり、98%以下であると、多孔質基材自体の強度がより大きくなり補強効果がより向上するので好ましい。
 また、本発明のポリマーを用いてなる複合膜と、本発明のポリマーを用いてなる高分子電解質膜とを積層してプロトン伝導膜として用いることもできる。
 本発明のポリアリーレン系ブロック共重合体は、イオン交換基を実質的に有さず、ポリスチレン換算の重量平均分子量が4000~25000のポリマーと、イオン交換基を有するポリマーとを重合させて得られ、イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとを含むブロック共重合体であって、該イオン交換基を有するブロックが、下記式(B-1)で表される構造単位を含み、且つ、該イオン交換基を実質的に有しないブロックが、下記式(B-2)で表される構造単位を含むことを特徴とするポリアリーレン系ブロック共重合体であることを特徴とする。
Figure JPOXMLDOC01-appb-C000039
 式(B-1)において、Arはアリーレン基を表し、Arは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Arは及びそれらに置換する基はフッ素原子を有しない。Arにおいて主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合する。複数あるArは、それぞれ互いに同一でも異なってもよい。式(B-2)において、Arは2価の芳香族基を表し、Arは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Arは及びそれらに置換する基はフッ素原子を有しない。Xは-O-で示される基又は-S-で示される基を表す。本発明のポリアリーレン系ブロック共重合体は、フッ素原子含有率は5.0重量%以下であり、2.0重量%以下であることが好ましい。
 まず、本発明のポリアリーレン系ブロック共重合体におけるイオン交換基を有するブロックについて説明する。
 イオン交換基を有するブロックは、上記式(B-1)で表される繰り返し単位のみからなることが好ましく、その繰返し単位当たりで計算してイオン交換基が平均0.5個以上であるものであり、繰返し単位当たりのイオン交換基が平均1.0個以上であるとより好ましい。
 上記「イオン交換基」とは、イオン伝導、特にプロトン伝導に係る基である。イオン交換基としては通常酸基が使用される。該酸基としては、弱酸、強酸、超強酸等の酸基があげられるが、強酸基、超強酸基が好ましい。酸基の例としては、例えば、ホスホン酸基、カルボン酸基等の弱酸基;スルホン酸基、スルホンイミド基(-SO-NH-SO-R。ここでRはアルキル基、アリール基等の一価の置換基を表す。)等の強酸基があげられ、中でも、強酸基であるスルホン酸基、スルホンイミド基が好ましく使用される。また、電子吸引性基で該芳香環及び/又はスルホンイミド基の置換基(-R)上の水素原子を置換することにより、電子吸引性基の効果で上記の強酸基を超強酸基として機能させることも好ましい。これらのイオン交換基は、部分的にあるいは全てが、金属イオンや4級アンモニウムイオンなどで交換されて塩を形成していてもよいが、燃料電池用高分子電解質膜などとして使用する際には、実質的に全てが遊離酸の状態であることが好ましい。
 上記式(B-1)におけるArは、アリーレン基を表す。該アリーレン基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮環系芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基等が挙げられる。好ましくは2価の単環性芳香族基である。
 また、Arは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。
 ここで、置換基を有していてもよい炭素数1~20のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、n-ペンチル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、2-メチルペンチル基、2-エチルヘキシル基、ノニル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の炭素数1~20のアルキル基、及びこれらの基にヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルキル基等が挙げられる。
 また、置換基を有していてもよい炭素数1~20のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ基、イコシルオキシ基等の炭素数1~20のアルコキシ基、及びこれらの基にヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルコキシ基等が挙げられる。
 置換基を有していてもよい炭素数6~20のアリール基としては、例えばフェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、及びこれらの基にヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリール基等が挙げられる。
 置換基を有していてもよい炭素数6~20のアリールオキシ基としては、例えばフェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、及びこれらの基にヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリールオキシ基等が挙げられる。
 置換基を有していてもよい炭素数2~20のアシル基としては、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の炭素数2~20のアシル基、及びこれらの基にヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアシル基が挙げられる。
 Arは、主鎖を構成する芳香環に少なくとも一つのイオン交換基を有する。ここで、「主鎖」とは、ポリマーを形成する最も長い鎖のことをいう。この鎖は共有結合により相互に結合した炭素原子から構成されていて、その際、この鎖は、窒素原子、酸素原子、硫黄原子等により中断されていてもよい。
 イオン交換基を有するブロックは、上記式(B-1)で表される構造単位を含み、好ましくは、上記式(B-1)で表される構造単位として、下記式(1-a)で表される構造を含む。式(1-a)中、Arは上記と同じ意味を表す。mは2以上の整数を表し、3以上であることが好ましい。さらに、5~200の範囲がより好ましく、さらに好ましくは10~100である。mの値が2以上であると、燃料電池用の高分子電解質として、プロトン伝導度が十分であるので好ましい。mの値が200以下であれば、製造がより容易であるので好ましい。
Figure JPOXMLDOC01-appb-C000040
 また、上記式(B-1)で示される構造単位の好ましい例としては、下記式(B-3)で表される構造単位があげられる。このような、構造単位を有するブロックは、後述する本発明のポリアリーレン系ブロック共重合体の製造において、工業的に容易に入手できる原料を用いることができる、又は、製造が容易である原料を用いることができるため好ましい。
Figure JPOXMLDOC01-appb-C000041
 式(B-3)中、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基又はシアノ基を表す。Rはフッ素原子を有しない。kは0~3の整数を表し、pは1又は2の整数を表し、k+pは4以下の整数である。複数あるRは、それぞれ互いに同一でも異なってもよい。
 ここで、Rは上記Arの置換基として例示した、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基又はシアノ基から選ばれ、後述の重合反応において、その反応を阻害しない基である。その置換基の数kは、0又は1であると好ましく、特に好ましくはkが0、すなわち置換基を有しない繰返し単位である。
 また、式(1-a)で表される構造は、下記式(3-a)で表される構造であることが好ましい。式中、m、R、p及びkは上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000042
 次に、本発明のポリアリーレン系ブロック共重合体におけるイオン交換基を実質的に有しないブロックについて説明する。
 該イオン交換基を実質的に有しないブロックは、上記式(B-2)で表される構造単位(但し、ブロックの末端においては、Xが欠損していてもよい)のみからなることが好ましく、その繰返し単位当たりで計算してイオン交換基が0.1個以下であるものであり、繰返し単位当たりのイオン交換基が0、すなわちイオン交換基が実質的に皆無であると特に好ましい。
 式(B-2)におけるArは主鎖に-O-で示される基及び/又はS-で示される基を有しない2価の芳香族基を表す。すなわち、2価の芳香族基1つと主鎖に存在する-O-で示される基又はS-で示される基1つとの組合せで、1つの構造単位とみる。該主鎖に-O-で示される基及び/又はS-で示される基を有しない2価の芳香族基としては、炭素数が4~40であることが好ましく、5~30であることがより好ましく、6~25であることがさらに好ましい。このような構造単位は、工業的に容易に入手できる原料を用いることができる、又は、製造が容易である原料を用いることができるため好ましい。また、該主鎖に-O-で示される基及び/又はS-で示される基を有しない2価の芳香族基としては例えば下記式(a)~(z)のような芳香族基が挙げられる(式中、*はそれぞれ結合手を示し、他の置換基との結合手は省略した。)。
Figure JPOXMLDOC01-appb-C000043
 また、Arは、Arと同等の基で置換されていてもよく、中でも、Arとしては置換基を有してもよい上記(c)、(g)、(l)、(o)、(p)、(s)、(v)、(w)、(x)で表される基が好ましい。このような、構造単位を有するブロックは、工業的に容易に入手できる原料を用いることができるため、好ましい。
 式(B-2)で示される構造単位の好ましい例としては、下記式で表される構造単位があげられる。このような、構造単位を有するブロックは製造が容易であり、また、工業的に容易に入手できる原料を用いて製造できるため好ましい。下記式においてaはモル組成比を表し、aは0.51~0.90が好ましく、0.55~0.90がより好ましく、0.60~0.85がさらに好ましい。
Figure JPOXMLDOC01-appb-C000044
 次に、本発明のポリアリーレン系ブロック共重合体の好適な製造方法について説明する。該ポリアリーレン系ブロック共重合体における、イオン交換基を有するブロックは、上記式(B-1)に表される構造単位を含む。Arにおける主鎖を構成する芳香環に結合するイオン交換基の導入方法は、予めイオン交換基を有するモノマーを重合する方法であっても、予めイオン交換基を有しないモノマーからポリアリーレン系ブロック共重合体前駆体を製造した後に、イオン交換基を導入する方法であってもよい。中でも、前者の方法であると、イオン交換基の導入量や、置換位置を的確に制御することができるので、より好ましい。
 イオン交換基を有するモノマーを用いて、本発明のポリアリーレン系ブロック共重合体の製造を行う方法としては、例えば、遷移金属錯体の共存下、下記式(1-h)で示されるモノマーと、後述する式(B-4)で示されるイオン交換基を実質的に有しないポリマーとを縮合反応により重合することにより製造し得る。
  Q-Ar10-Q       (1-h)
 ここでAr10は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい2価のアリーレン基であり、主鎖を構成している芳香環にイオン交換基及び/又はイオン交換前駆基が結合している。Qは、脱離基を表し、2つのQは同一であっても異なっていてもよい。
 式(1-h)におけるAr10としては、Arの具体例と同一の基を挙げることができる。また、Ar10はArの置換基の具体例と同一の基で置換されていてもよい。上記脱離基は、縮合反応時に脱離する基を表すが、その具体例としては、例えば、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等のスルホニルオキシ基が挙げられる。
 上記式(1-h)で示されるモノマーとしては、好ましいイオン交換基であるスルホン酸基の場合で例示すると、2,4-ジクロロベンゼンスルホン酸、2,5-ジクロロベンゼンスルホン酸、3,5-ジクロロベンゼンスルホン酸、2,4-ジブロモベンゼンスルホン酸、2,5-ジブロモベンゼンスルホン酸、3,5-ジブロモベンゼンスルホン酸、2,4-ジヨードベンゼンスルホン酸、2,5-ジヨードベンゼンスルホン酸、3,5-ジヨードベンゼンスルホン酸、2,4-ジクロロ-5-メチルベンゼンスルホン酸、2,5-ジクロロ-4-メチルベンゼンスルホン酸、2,4-ジブロモ-5-メチルベンゼンスルホン酸、2,5-ジブロモ-4-メチルベンゼンスルホン酸、2,4-ジヨード-5-メチルベンゼンスルホン酸、2,5-ジヨード-4-メチルベンゼンスルホン酸、2,4-ジクロロ-5-メトキシベンゼンスルホン酸、2,5-ジクロロ-4-メトキシベンゼンスルホン酸、2,4-ジブロモ-5-メトキシベンゼンスルホン酸、2,5-ジブロモ-4-メトキシベンゼンスルホン酸、2,4-ジヨード-5-メトキシベンゼンスルホン酸、2,5-ジヨード-4-メトキシベンゼンスルホン酸、3,3’-ジクロロビフェニル-2,2’-ジスルホン酸、3,3’-ジブロモビフェニル-2,2’-ジスルホン酸、3,3’-ジヨードビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジブロモビフェニル-2,2’-ジスルホン酸、4,4’-ジヨードビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-3,3’-ジスルホン酸、4,4’-ジブロモビフェニル-3,3’-ジスルホン酸、4,4’-ジヨードビフェニル-3,3’-ジスルホン酸、5,5’-ジクロロビフェニル-2,2’-ジスルホン酸、5,5’-ジブロモビフェニル-2,2’-ジスルホン酸、5,5’-ジヨードビフェニル-2,2’-ジスルホン酸が挙げられる。
 また、他のイオン交換基の場合は、上記に例示したモノマーのスルホン酸基を、カルボン酸基、ホスホン酸基等のイオン交換基に置き換えて、選択することができる。これら他のイオン交換基を有するモノマーも工業的に容易に入手できるか、公知の製造方法を用いて、製造することが可能である。
 さらに上記に例示するモノマーのイオン交換基が塩の形でもよく、特に、イオン交換基が塩の形であるモノマーを用いることが、重合反応性の観点から好ましい。塩の形としては、アルカリ金属塩が好ましく、特に、Li塩、Na塩、K塩の形が好ましい。
 イオン交換前駆基としては、スルホン酸前駆基、ホスホン酸前駆基、カルボン酸前駆基等が挙げられる。イオン交換前駆基とは、ポリアリーレン系ブロック共重合体前駆体のイオン交換前駆基以外の構造を変化させることなくイオン交換基となる基のことである。好ましくは3段階以内、より好ましくは2段階以内、さらに好ましくは1段階の反応を経てイオン交換基となる。
 イオン交換前駆基としては、エステル又はアミドを形成してイオン交換基が保護されているような形態のものが好ましい。好ましいイオン交換前駆基である、スルホン酸前駆基で例示すると、スルホン酸エステル(-SO;ここでRは炭素数1~20のアルキル基を表す。)又はスルホンアミド(-SON(R)(R);ここでR及びRはそれぞれ独立に水素原子、炭素数1~20のアルキル基又は炭素数3~20の芳香族基を表す。)等が挙げられる。
 スルホン酸エステルとしては、例えば、スルホン酸メチルエステル、スルホン酸エチルエステル、スルホン酸n-プロピルルエステル、スルホン酸イソプロピルエステル、スルホン酸n-ブチルエステル、スルホン酸sec-ブチルエステル基、スルホン酸tert-ブチルエステル、スルホン酸n-ペンチルエステル、スルホン酸ネオペンチルエステル、スルホン酸n-ヘキシルエステル、スルホン酸シクロヘキシルエステル、スルホン酸n-ヘプチルエステル、スルホン酸n-オクチルエステル、スルホン酸n-ノニルエステル、スルホン酸n-デシルエステル、スルホン酸n-ドデシルエステル、スルホン酸n-ウンデシルエステル、スルホン酸n-トリデシルエステル、スルホン酸n-テトラデシルエステル、スルホン酸n-ペンタデシルエステル、スルホン酸n-ヘキサデシルエステル、スルホン酸n-ヘプタデシルエステル、スルホン酸n-オクタデシルエステル、スルホン酸n-ノナデシルエステル、スルホン酸n-エイコシルエステルなどのスルホン酸エステルが例示され、好ましくはスルホン酸sec-ブチルエステル、スルホン酸ネオペンチルエステル又はスルホン酸シクロヘキシルエステルである。これらのスルホン酸エステルには、重合反応に関与しない置換基で置換されていてもよい。
 また、スルホンアミドとしては、例えば、スルホンアミド、N-メチルスルホンアミド、N,N-ジメチルスルホンアミド、N-エチルスルホンアミド、N,N-ジエチルスルホンアミド、N-n-プロピルスルホンアミド、ジ-n-プロピルスルホンアミド、N-イソプロピルスルホンアミド、N,N-ジイソプロピルスルホンアミド、N-n-ブチルスルホンアミド、N,N-ジ-n-ブチルスルホンアミド、N-sec-ブチルスルホンアミド、N,N-ジ-sec-ブチルスルホンアミド、N-tertブチルスルホンアミド、N,N-ジ-tert-ブチルスルホンアミド、N-n-ペンチルスルホンアミド、N-ネオペンチルスルホンアミド、N-n-ヘキシルスルホンアミド、N-シクロヘキシルスルホンアミド、N-n-ヘプチルスルホンアミド、N-n-オクチルスルホンアミド、N-n-ノニルスルホンアミド、N-n-デシルスルホンアミド、N-n-ドデシルスルホンアミド、N-n-ウンデシルスルホンアミド、N-n-トリデシルスルホンアミド、N-n-テトラデシルスルホンアミド、N-n-ペンタデシルスルホンアミド、N-n-ヘキサデシルスルホンアミド、N-n-ヘプタデシルスルホンアミド、N-n-オクタデシルスルホンアミド、N-n-ノナデシルスルホンアミド、N-n-エイコシルスルホンアミド、N,N-ジフェニルスルホンアミド、N,N-ビストリメチルシリルスルホンアミド、N,N-ビス-tert-ブチルジメチルシリルスルホンアミド、ピロリルスルホンアミド、ピロリジニルスルホンアミド、ピペリジニルスルホンアミド、カルバゾリルスルホンアミド、ジヒドロインドリルスルホンアミド、ジヒドロイソインドリルスルホンアミドが挙げられ、好ましくはN,N-ジエチルスルホンアミド、N-n-ドデシルスルホンアミド、ピロリジニルスルホンアミド、ピペリジニルスルホンアミドである。これらのスルホンアミドは、いずれも重合反応に関与しない置換基で置換されていてもよい。
 また、スルホン酸前駆基としてはメルカプト基も使用可能である。メルカプト基は適当な酸化剤を使用して、酸化させることによりスルホン酸基に転換可能である。
 次に、予めイオン交換基を有しないモノマーからポリアリーレン系ブロック共重合体前駆体を製造した後に、イオン交換基を導入する方法に関し説明する。この場合、例えば、遷移金属錯体の共存下、下記一般式(1-i)で示されるモノマーと、後述する一般式(B-4)で示されるイオン交換基を実質的に有しないポリマーとを縮合反応により重合することにより製造し得る。
   Q-Ar11-Q    (1-i)
式(1-i)中、Ar11は、イオン交換基を導入することで、上記式(1-h)のAr10となり得る2価のアリーレン基を表し、Qは上記と同義であり、2つのQは同一でも異なっていてもよい。
 式(1-i)で表されるモノマーと、式(B-4)で示されるイオン交換基を実質的に有しないポリマーとを縮合反応によりを共重合せしめ、下記式(1-j)で表される構造単位と、上記式(B-2)で表される構造単位とをともに有するポリアリーレン系ブロック共重合体前駆体を得、当該ポリアリーレン系ブロック共重合体前駆体の式(1-j)で表される構造単位における主鎖を構成する芳香環にイオン交換基を導入するといった一連の操作によって、本発明のポリマーを製造することができる。
Figure JPOXMLDOC01-appb-C000045
式(1-j)中、Ar12はイオン交換基を導入することで、上記式(B-1)のArとなり得る2価のアリーレン基を表す。
 Ar11及びAr12は少なくとも一つのイオン交換基を導入可能な構造を有する。Ar11及びAr12におけるイオン交換基を導入可能な構造としては、芳香環に直接結合している水素原子等、イオン交換基を導入可能な官能基を有していることを示す。求電子置換反応によってスルホン酸基を芳香環に導入する場合は、芳香環に結合している水素原子はスルホン酸基を導入可能な官能基と見なすことができる。なお、式(1-i)で表されるモノマーの具体例としては、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、1,3-ジクロロ-4-メトキシベンゼン、1,4-ジクロロ-3-メトキシベンゼン、4,4’-ジクロロビフェニル、4,4’-ジクロロ-3,3’-ジメチルビフェニル、4,4’-ジクロロ-3,3’-ジメトキシビフェニル、1,4-ジクロロナフタレン、1,5-ジクロロナフタレン、2,6-ジクロロナフタレン、2,7-ジクロロナフタレンが挙げられる。また、これらのモノマー中の塩素原子の代わりに臭素原子、ヨウ素原子等のハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等のスルホニルオキシ基が置換されたモノマーも使用することができる。
 式(1-j)で表される構造単位に好ましいイオン交換基であるスルホン酸基を導入する方法としては、得られたポリアリーレン系ブロック共重合体前駆体を濃硫酸に溶解あるいは分散することにより、あるいは有機溶媒に少なくとも部分的に溶解させた後、濃硫酸、クロロ硫酸、発煙硫酸、三酸化硫黄などを作用させることにより、水素原子をスルホン酸基に変換する方法を挙げることができる。
 次に、上記イオン交換基を実質的に有しないポリマーとしては、下記式(B-4)で表されるポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 式(B-4)中、Ar21は、主鎖に-O-で示される基及び/又はS-で示される基を有しない2価の芳香族基を表す。すなわち、2価の芳香族基1つと主鎖に存在する-O-で示される基又はS-で示される基1つとの組合せで、1つの構造単位とみる。なお、複数あるAr21は、それぞれ互いに同一でも異なってもよい。該芳香族基は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。該芳香族基及びそれに置換する基はフッ素原子を有しない。X11は-O-で示される基又はS-で示される基を表す。複数あるX11は、それぞれ互いに同一でも異なってもよい。Yは脱離基を表す。但し、2つのYは同一でも異なってもよい。qは4以上の整数を表す。ここで、Ar21で表される2価の芳香族基の好ましい例としては、上記Arと同等の基をあげることが出来る。また、Ar21は、Arと同等の基で置換されていてもよい。
 式(B-4)におけるqとしては、4以上の整数である。qは、高分子電解質膜とした際の形状安定性を向上させるために、好ましくは、7以上であり、より好ましくは10以上である。また、プロトン伝導性を高めるために、35以下が好ましく、30以下がより好ましく、25以下がさらに好ましい。
 式(B-4)におけるYは脱離基、すなわち縮合反応時に脱離する基を表すが、その具体例としては、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等のスルホニルオキシ基が挙げられる。
 次に、式(B-4)で表されるポリマーの疎水性パラメータの計算方法について説明する。上記式(B-4)で表されるイオン交換基を実質的に有しないポリマーの疎水性パラメータは、各構造単位のLogPから、以下の方法により求められる。
 まず、該ポリマーの各構造単位のモル組成比を求める。該ポリマーのモル組成比は、モノマー仕込み比から決定できる。モノマー仕込み比が不明な場合、該ポリマーのNMR測定結果から求めることができる。上記式(B-4)で表されるポリマーの構造単位である下記式(B-4-a)で示される構造単位のLogPは、構造単位の2本の結合手を結合し下記式(B-5)で表される化合物として、ChemDraw ver.11(CambridgeSoft社)を用いて計算する。また、構造単位のLogP計算の際、末端基Yは無視し、両末端にあるAr21の内X11を有しない方のAr21についても、X11を持つものとして計算する。上記式(B-4)で表されるポリマーが1種の構造単位のみからなる場合は、その構造単位のLogPが、そのままポリマーの疎水性パラメータとなる。上記式(B-4)で表されるポリマーが、複数種の構造単位からなる場合は、各構造単位のLogPを計算し、モル組成比で加重平均することで、疎水性パラメータが求められる。例えば、上記式(B-4)で表されるポリマーが、複数種類のAr21を有する場合(x種類のAr21が存在する場合、それぞれAr21-1、Ar21-2、・・・Ar21-xとする。但し、xは2以上q+1以下である。)、-(Ar21-1-X11)-、-(Ar21-2-X11)-、・・・-(Ar21-x-X11)-で表される構造単位それぞれのLogPを計算し、Ar21-1、Ar21-2、・・・Ar21-xのモル組成比で加重平均することで、疎水性パラメータが求められる。上記式(B-4)で表されるポリマーが、-O-で示される基及びS-で示される基を有する場合、各Ar21に関して、-(Ar21-O)-で表される構造単位、及び、-(Ar21-S)-で表される構造単位のLogPを計算し、-O-で示される基と-S-で示される基とのモル組成比により加重平均することで、疎水性パラメータが求められる。
 また、該ポリマーは1種のポリマーからなることが好ましいが、異なった構造を有する複数種類のポリマーの混合物である場合、各ポリマーについて疎水性パラメータを算出したのち、混合重量比により加重平均することで、該ブロックの疎水性パラメータを算出することができる。
Figure JPOXMLDOC01-appb-C000047
 例えば、上記式(B-5)で表される化合物として挙げられる、下記式(ca)~(cf)について、LogPの計算値は次図の通りである。
Figure JPOXMLDOC01-appb-C000048
 式(B-4)で表される好ましいポリマーとしては、例えば、下記式(ba)~(bp)のようなポリマーが挙げられる。このような、ポリマーは、工業的に容易に入手できる原料を用いて合成できるため、好ましい。下記式においてbはモル組成比を表し、bは0.50~0.90が好ましく、0.55~0.90がより好ましく、0.60~0.85がさらに好ましい。また、qは上記と同義である。
Figure JPOXMLDOC01-appb-C000049
 本発明における、上記式(B-4)で表されるポリマーの疎水性パラメータとしては、耐水性を高めるために、1.7以上が好ましく、2.5以上がより好ましく、2.7以上が更に好ましい。また、プロトン伝導性を高めるために、6.0以下が好ましく、4.0以下がより好ましく、3.4以下が更に好ましい。
 本発明における、イオン交換基を実質的に有しないポリマーのポリスチレン換算の重量平均分子量としては、4000~25000であり、6000~22000が好ましく、8000~20000がより好ましい。ポリスチレン換算の重量平均分子量が4000より低いと、高分子電解質膜として用いた際の形体安定性が低下する傾向があり、また、25000より高いとプロトン伝導性が低下する傾向がある。該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 次に、本発明の重合反応(縮合反応)について説明する。なお、以下の製造方法の説明において、本発明のポリアリーレン系ブロック共重合体及び本発明のポリアリーレン系ブロック共重合体を製造可能なポリアリーレン系ブロック共重合体前駆体をあわせて「ポリマー等」ということがある。
 縮合反応による重合は、ゼロ価遷移金属錯体の共存下に実施される。上記ゼロ価遷移金属錯体は遷移金属にハロゲンや後述の配位子が配位したものであり、後述の配位子を少なくとも一種類有するものが好ましい。ゼロ価遷移金属錯体は市販品でも別途合成したものでもいずれも使用できる。
 ゼロ価遷移金属錯体の合成方法は、例えば遷移金属塩や遷移金属酸化物と配位子とを反応させる方法等の公知の方法があげられる。合成したゼロ価遷移金属錯体は、取り出して使用してもよいし、取り出すことなく、in situで使用してもよい。
 配位子としては、例えば、アセテート、アセチルアセトナート、2,2’-ビピリジル、1,10-フェナントロリン、メチレンビスオキサゾリン、N,N,N’N’-テトラメチルエチレンジアミン、トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン、1,2-ビスジフェニルホスフィノエタン、1,3-ビスジフェニルホスフィノプロパンが挙げられる。
 ゼロ価遷移金属錯体としては、例えば、ゼロ価ニッケル錯体、ゼロ価パラジウム錯体、ゼロ価白金錯体、ゼロ価銅錯体が挙げられる。これら遷移金属錯体の中でもゼロ価ニッケル錯体、ゼロ価パラジウム錯体が好ましく用いられ、ゼロ価ニッケル錯体がより好ましく用いられる。
 ゼロ価ニッケル錯体としては、例えば、ビス(1,5-シクロオクタジエン)ニッケル(0)、(エチレン)ビス(トリフェニルホスフィン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケルが挙げられる。中でも、ビス(1,5-シクロオクタジエン)ニッケル(0)が、反応性、得られるポリマー等の収率、得られるポリマー等の高分子量化という観点から好ましく使用される。ゼロ価パラジウム錯体としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)が挙げられる。
 これらゼロ価遷移金属錯体は、上記のように合成して用いてもよいし、市販品として入手できるものを用いてもよい。ゼロ価遷移金属錯体の合成方法は例えば、遷移金属化合物を亜鉛やマグネシウムなどの還元剤でゼロ価とする方法などの公知の方法が挙げられる。合成したゼロ価遷移金属錯体は、取り出して使用してもよいし、取り出すことなくin situで使用してもよい。
 還元剤により、遷移金属化合物からゼロ価遷移金属錯体を発生させる場合、使用される遷移金属化合物としては、ゼロ価の遷移金属化合物が用いることもできるが、通常2価のものを用いることが好ましい。中でも2価ニッケル化合物、2価パラジウム化合物が好ましい。2価ニッケル化合物としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセテート、ニッケルアセチルアセトナート、塩化ニッケルビス(トリフェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)が挙げられる。2価パラジウム化合物としては、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、パラジウムアセテートが挙げられる。
 還元剤としては、例えば、亜鉛、マグネシウム、水素化ナトリウム、ヒドラジン及びその誘導体、リチウムアルミニウムヒドリドが挙げられる。必要に応じて、ヨウ化アンモニウム、ヨウ化トリメチルアンモニウム、ヨウ化トリエチルアンモニウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム等を併用することもできる。
 上記遷移金属錯体を用いた縮合反応の際、得られるポリマー等の収率向上の観点から、用いたゼロ価遷移金属錯体の配位子となり得る化合物を添加することが好ましい。添加する化合物は使用したゼロ価遷移金属錯体の配位子と同じであっても異なっていてもよい。配位子となりうる化合物の例としては、前述の、配位子として例示した化合物が挙げられ、汎用性、経済性、反応性、得られるポリマー等の収率、得られるポリマー等の高分子量化の点でトリフェニルホスフィン、2,2’-ビピリジルが好ましい。特に、2,2’-ビピリジルを用いると、ポリマー等の収率向上や高分子量化の点で特に有利である。配位子の添加量は、ゼロ価遷移金属錯体にある遷移金属原子基準で、通常0.2~10モル倍程度、好ましくは1~5モル倍程度使用される。
 ゼロ価遷移金属錯体の使用量は、ポリマー等の製造に使用する、式(1-h)で示されるモノマー、式(1-i)で示されるモノマー及び式(B-4)で示されるポリマーの総モル量(以下、「全モノマーの総モル量」という。)に対して、0.1モル倍以上である。使用量が過少であると分子量が小さくなる傾向があるので、好ましくは1.5モル倍以上、より好ましくは1.8モル倍以上、より一層好ましくは2.1モル倍以上用いる。一方、使用量の上限は特に制限はないが、使用量が多すぎると後処理が煩雑になることもあるので、5.0モル倍以下であることが好ましい。
 なお、還元剤を用いて遷移金属化合物からゼロ価遷移金属錯体を合成する場合、生成するゼロ価遷移金属錯体が上記範囲となるように、遷移金属化合物及び還元剤の使用量等を設定すればよく、例えば、遷移金属化合物の量を、全モノマーの総モル量に対して、0.01モル倍以上、好ましくは0.03モル倍以上とすればよい。使用量の上限は限定的ではないが、使用量が多すぎると後処理が煩雑になる傾向があるために、5.0モル倍以下であることが好ましい。また、還元剤の使用量は、全モノマーの総モル量に対して、例えば、0.5モル倍以上、好ましくは1.0モル倍以上とすればよい。使用量の上限は限定されないが、使用量が多すぎると後処理が煩雑になる傾向があるために、10モル倍以下であることが好ましい。
 また、反応温度は、通常0℃~200℃程度であり、好ましくは10℃~100℃程度である。反応時間は、通常0.5~48時間程度である。
 ゼロ価遷移金属錯体と、ポリマー等の製造に使用する、式(1-h)で示されるモノマー及び/又は式(1-i)で示されるモノマーと、式(B-4)で示されるポリマーとを混合する方法は、一方を他方に加える方法であっても、両者を反応容器に同時に加える方法であってもよい。加えるに当っては、一挙に加えてもよいが、発熱を考慮して少量ずつ加えることが好ましいし、溶媒の共存下に加えることも好ましく、この場合の好適な溶媒は後述する。
 縮合反応は、通常、溶媒存在下に実施される。かかる溶媒としては、例えばN、N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒;トルエン、キシレン、メシチレン、ベンゼン、n-ブチルベンゼン等の芳香族炭化水素系溶媒;テトラヒドロフラン、1,4-ジオキサン、ジブチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル等のエステル系溶媒;クロロホルム、ジクロロエタン等のハロゲン化アルキル系溶媒が例示される。なお、括弧内の表記は溶媒の略号を示すものであり、後述する表記において、この略号を用いることもある。
 生成するポリマー等の分子量をより高くするためには、ポリマー等が十分に溶解し得る溶媒を用いることが望ましいので、生成するポリマー等に対する良溶媒であるテトラヒドロフラン、1,4-ジオキサン、DMF、DMAc、NMP、DMSO、トルエンの使用が好ましい。これらは2種以上を混合して用いることもできる。中でも、DMF、DMAc、NMP及びDMSOからなる群より選ばれる少なくとも1種の溶媒、又はこれらから選ばれる2種以上の溶媒の混合物が好ましく用いられる。
 溶媒量は、特に限定されないが、あまりにも低濃度では、生成したポリマー等を回収しにくくなることもあり、また、あまりにも高濃度では、攪拌が困難になることがあることから、溶媒と、ポリマー等の製造に使用するモノマー類(式(1-h)で示されるモノマー、式(1-i)で示されるモノマー及び式(B-4)で示されるポリマーから選ばれるモノマー類)に対して1重量倍~999重量倍、より好ましくは、3重量倍~199重量倍となるようにして、溶媒の使用量を決定する。
 かくしてポリマー等が得られるが、生成したポリマー等は、常法により反応混合物から取り出すことができる。例えば、貧溶媒を加えることでポリマー等を析出させ、濾別などにより目的物を取り出すことができる。また、必要に応じて、更に水洗や、良溶媒と貧溶媒を用いての再沈殿など、通常の精製方法により精製することもできる。
 生成したポリマーのイオン交換基が塩の形態である場合、燃料電池に係る部材として使用するために、イオン交換基を遊離酸の形態にすることが好ましく、遊離酸への変換は、通常酸性溶液での洗浄により実施することができる。使用される酸としては、例えば、塩酸、硫酸、硝酸が挙げられ、好ましくは希塩酸、希硫酸である。
 また、イオン交換基が保護されているようなプレポリマーを得た場合も、燃料電池に係る部材として使用するために、保護されたイオン交換基を、遊離酸の形態のイオン交換基にすることが必要である。遊離酸の形態のイオン交換基への変換は、酸・塩基による加水分解、ハロゲン化物による脱保護反応により可能である。なお、塩基を使用した場合は、上述したような酸性溶液の洗浄を行えば、遊離酸の形態のイオン交換基にすることが可能である。使用される酸・塩基としては、例えば、塩酸、硫酸、硝酸、水酸化ナトリウム、水酸化カリウムが挙げられる。使用されるハロゲン化物としては、例えば、臭化リチウム、ヨウ化ナトリウム、塩化テトラメチルアンモニウム、臭化テトラブチルアンモニウムが挙げられ、好ましくは臭化リチウムと臭化テトラブチルアンモニウムである。イオン交換基への変換率は、例えば、スルホン酸基の場合、赤外線吸収スペクトルや核磁気共鳴スペクトルにより、スルホン酸エステル又はスルホンアミドに特徴的なピークの存在がどの程度であるかを定量することができる。
 ポリアリーレン系ブロック共重合体全体のイオン交換基の導入量は、イオン交換容量で表して、1.5meq/g以上が好ましく、2.0meq/g以上がより好ましく、2.5meq/g以上がさらに好ましい。また、7.0meq/g以下が好ましく、6.0meq/g以下がより好ましく、5.0meq/g以下がさらに好ましく、4.0meq/g以下が特に好ましい。該イオン交換基導入量を示すイオン交換容量が1.0meq/g以上であると、プロトン伝導性がより高くなり、燃料電池用の高分子電解質としての機能がより優れるので好ましい。一方、イオン交換基導入量を示すイオン交換容量が7.0meq/g以下であると、耐水性がより良好となるので好ましい。該イオン交換容量は、酸塩基滴定により測定される。
 また、本発明のポリアリーレン系ブロック共重合体は、分子量が、ポリスチレン換算の重量平均分子量で表して、50000~2000000であることが好ましく、中でも100000~1500000であることが特に好ましい。該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 本発明のポリアリーレン系ブロック共重合体は、いずれも燃料電池用の部材として好適に用いることができる。本発明のポリアリーレン系ブロック共重合体は、燃料電池等の電気化学デバイスの高分子電解質として好ましく使用され、高分子電解質膜として、特に好ましく使用される。なお、以下の説明においては、上記高分子電解質膜の場合を主として説明する。
 この場合は、本発明の高分子電解質を膜の形態へ転化する。この方法(製膜法)には特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)を用いて製膜することが好ましい。溶液キャスト法は、高分子電解質膜製造として当業分野で、これまで広範に使用されている方法であり、工業的に特に有用である。
 具体的には、本発明の高分子電解質を適当な溶媒に溶かして高分子電解質溶液を調製し、該高分子電解質溶液を支持基材上に流延塗布し、溶媒を除去することにより製膜される。かかる支持基材としては、例えば、ガラス板や、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)等のプラスチックフィルムが挙げられる。
 溶液キャスト法に使用する溶媒(キャスト溶媒)は、本発明の高分子電解質を十分溶解可能であり、その後に除去し得るものであるならば特に制限はなく、NMP、DMAc、DMF、1,3-ジメチル-2-イミダゾリジノン(DMI)、DMSO等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒;メタノール、エタノール、プロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられる。これらは単独で用いることもできるが、必要に応じて2種以上の溶媒を混合して用いることもできる。中でも、NMP、DMAc、DMF、DMIは、本発明の高分子電解質の溶解性が高く、また、耐水性の高い高分子電解質膜が得られるため好ましく、NMPを用いることがより好ましい。
 このようにして得られる高分子電解質膜の厚みは、特に制限はないが、燃料電池用高分子電解質膜(隔膜)としての実用的な範囲で5~300μmが好ましい。膜厚が5μm以上の膜では実用的な強度が優れるため好ましく、300μm以下の膜では膜抵抗自体が小さくなる傾向があるので好ましい。膜厚は、上記溶液の重量濃度及び支持基材上の塗膜の塗布厚により制御できる。
 また、膜の各種物性改良を目的として、通常の高分子に使用される可塑剤、安定剤、離型剤等の添加剤を本発明のポリアリーレン系ブロック共重合体に添加して、高分子電解質を調製してもよい。また、同一溶剤に混合共キャストする等の方法により、他のポリマーを本発明のポリアリーレン系ブロック共重合体と複合アロイ化して高分子電解質を調製することも可能である。このように、本発明のポリアリーレン系ブロック共重合体と、添加剤及び/又は他のポリマーとを組み合わせて高分子電解質を調製する場合には、該高分子電解質を燃料電池用部材に適用したときに、所望の特性が得られるようにして、添加剤及び/又は他のポリマーの種類や使用量を決定する。
 さらに燃料電池用途においては水管理を容易にするために、無機又は有機の微粒子を保水剤として添加することも知られている。これらの公知の方法はいずれも本発明の目的に反しない限り使用できる。また、このようにして得られた高分子電解質膜に関し、その機械的強度向上等を目的として、電子線・放射線等を照射するといった処理を施してもよい。
 また、本発明の高分子電解質を用いた高分子電解質膜の強度や柔軟性、耐久性のさらなる向上のために、本発明のポリアリーレン系ブロック共重合体を含む高分子電解質を多孔質基材に含浸させ複合化することにより、高分子電解質複合膜(以下、「複合膜」という。)とすることも可能である。複合化方法は公知の方法を使用し得る。
 多孔質基材としては、上述の使用目的を満たすものであれば特に制限は無く、例えば多孔質膜、織布、不織布、フィブリル等があげられ、その形状や材質によらず用いることができる。多孔質基材の材質としては、耐熱性の観点や、物理的強度の補強効果を考慮すると、脂肪族系高分子、芳香族系高分子が好ましい。
 本発明の高分子電解質を用いた複合膜を、高分子電解質膜として使用する場合、多孔質基材の膜厚は、好ましくは1~100μm、さらに好ましくは3~30μm、特に好ましくは5~20μmである。多孔質基材の孔径は、好ましくは0.01~100μm、さらに好ましくは0.02~10μmである。多孔質基材の空隙率は、好ましくは20~98%、さらに好ましくは40~95%である。
 多孔質基材の膜厚が1μm以上であると、複合化後の強度補強の効果あるいは、柔軟性や耐久性を付与するといった補強効果がより優れ、ガス漏れ(クロスリーク)が発生しにくくなる。また、該膜厚が100μm以下であると、電気抵抗がより低くなり、得られた複合膜が燃料電池用高分子電解質膜として、より優れたものとなる。該孔径が0.01μm以上であると、本発明のポリマーの充填がより容易となり、100μm以下であると、補強効果がより大きくなる。空隙率が20%以上であると、高分子電解質膜としての抵抗がより小さくなり、98%以下であると、多孔質基材自体の強度がより大きくなり補強効果がより向上するので好ましい。
 また、本発明の高分子電解質を用いてなる複合膜と、本発明の高分子電解質を用いてなる高分子電解質膜とを積層してプロトン伝導膜として用いることもできる。
 本発明において、「ブロック共重合体」とは、化学的に性質の異なる2種以上のポリマーが、共有結合でつながり、長い連鎖になった分子構造のものをいう。本発明では、上記ポリマーを「ブロック」という。ブロックとは、骨格が同一の繰り返し単位が3個以上連結したものである。但し、該繰り返し単位が主鎖に2価の基を有する場合、ブロックの末端の2価の基は欠損していてもよい。末端の2価の基としては、酸素原子(-O-)、硫黄原子(-S-)などが挙げられる。ブロックとして、好ましくは、1種の繰り返し単位が3個以上連結したものである。ここで、該骨格とは、ポリマーを構成する主鎖であって置換基を含まないものをいう。また、上記「化学的に性質の異なる」ポリマーとは、本発明においては、イオン交換基を有するポリマーと、イオン交換基を実質的に有しないポリマーとである。ここで、「イオン交換基」とは、本発明のポリアリーレン系ブロック共重合体を膜として用いたとき、イオン伝導、特にプロトン伝導に係る基であり、「イオン交換基を有する」とは繰り返し単位当たり有しているイオン交換基が、概ね平均0.5個以上であることを意味し、「イオン交換基を実質的に有しない」とは繰り返し単位あたり有しているイオン交換基が概ね平均0.1個以下であることを意味する。
 本発明のポリアリーレン系ブロック共重合体におけるイオン交換基を実質的に有しないブロックについて説明する。
 該イオン交換基を実質的に有しないブロックは、上記のように、その繰り返し単位当たりで計算してイオン交換基が0.1個以下であるものであり、繰り返し単位当たりのイオン交換基が0、すなわちイオン交換基が実質的に皆無であると特に好ましい。
 該イオン交換基を実質的に有しないブロックとして、下記式(C-1)で表される構造を含むブロックが好ましく、下記式(C-1)で示される構造のみからなることが好ましい。
Figure JPOXMLDOC01-appb-C000050
 ここで、式(C-1)におけるnは3~45の整数を表し、6以上であると好ましく、11以上であるとより好ましい。また、40以下であると好ましく、35以下であるとより好ましい。nを該範囲に調整することにより、上記のような効果が発現される理由は必ずしも定かではないが、本発明者は次のように推定している。本発明のポリアリーレン系ブロック共重合体を含む高分子電解質を用いてなる高分子電解質膜は、疎水性領域と親水性領域とからなるミクロ相分離構造を有する高次構造を形成していると推測される。本発明の高分子電解質膜のミクロ相分離構造は、公知の膜に比べ、その周期長が小さく、毛細管現象により、膜からプロトン伝導に必要な水分が蒸散しにくいと推測される。そのため、高温低加湿条件下でもプロトン伝導性を確保しやすく、良好な発電特性を示すことができると考えられる。なお、nはH-NMRによって、求めることができる。ポリマー中のnに分布がある場合、各イオン交換基を実質的に有しないブロックのnの平均値を取ることによって、求められる。
 上記式(C-1)におけるAr及びArは、互いに独立にアリーレン基を表す。該アリーレン基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮環系芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基等があげられる。好ましくは2価の単環性芳香族基である。
 また、Ar及びArは、フッ素原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシ基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、置換基を有してもよい炭素数2~20のアシル基で置換されていてもよい。
 ここで、置換基を有していてもよい炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、n-ペンチル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、2-メチルペンチル基、2-エチルヘキシル基、ノニル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の炭素数1~20のアルキル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルキル基が挙げられる。
 また、置換基を有していてもよい炭素数1~20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ基、イコシルオキシ基等の炭素数1~20のアルコキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルコキシ基が挙げられる。
 置換基を有していてもよい炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリール基が挙げられる。
 置換基を有していてもよい炭素数6~20のアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリールオキシ基が挙げられる。
 置換基を有していてもよい炭素数2~20のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等の炭素数2~20のアシル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアシル基が挙げられる。
 上記炭素数1~20のアルキル基、上記炭素数1~20のアルコキシ基、上記炭素数6~20のアリール基、上記炭素数6~20のアリールオキシ基、上記炭素数2~20のアシル基が有してもよい置換基としては、フッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基が挙げられる。
 上記式(C-1)におけるXはカルボニル基(-C(=O)-)又はスルホニル基(-S(=O)-)の何れかを表す。また、Yは、酸素原子(-O-)又は硫黄原子(-S-)の何れかを表す。
 本発明のポリアリーレン系ブロック共重合体としては、実質的にイオン交換基を有しないブロックが、下記式(C-2)からなることが好ましい。
Figure JPOXMLDOC01-appb-C000051
式(C-2)中、nは上記式(C-1)と同義である。
 本発明のポリアリーレン系ブロック共重合体に係る、イオン交換基を有するブロックは、実質的に複数の芳香環が直接連結してなるポリアリーレン構造を有し、さらにイオン交換基の一部又は全部が、主鎖を構成する芳香環に直接結合している構造である。ここで、上記ポリアリーレン構造について説明する。本発明のポリアリーレン系ブロック共重合体の、イオン交換基を有するブロックは、主鎖を構成している芳香環同士が実質的に直接結合で結合されている形態であり、ブロックの主鎖を構成している芳香環同士の結合の総数に対する直接結合の割合が多いほど、よりプロトン伝導性の向上が図れる傾向があるため好ましい。具体的にいうと、上記ポリアリーレン構造が、該芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上の構造であると好ましく、90%以上の構造であるとより好ましく、95%以上の構造であるとさらに好ましい。なお、直接結合以外の結合とは、芳香環同士が2価の原子又は2価の原子団で結合している形態である。2価の原子としては、例えば、-O-又は-S-で示される基が挙げられる。2価の原子団としては、例えば、-C(CH-、-C(CF-、-CH=CH-、-S(=O)-、-C(=O)-で示される基が挙げられる。
 また、イオン交換基を有するブロックのイオン交換基は該ブロックの主鎖を構成する芳香環に直接結合している方が、高度のプロトン伝導性達成する上で有利であることを見出した。したがって、該ブロックにおけるイオン交換基を有する芳香環のうち、イオン交換基が、主鎖を構成する芳香環に直接結合している割合が多いほうが、プロトン伝導性に優れた高分子電質膜が得られる傾向がある。直接結合で連結した芳香環の合計を100モル%としたとき、イオン交換基が直接結合している芳香環の割合が20モル%以上であると好ましく、30モル%以上であるとさらに好ましく、50モル%以上であるとより好ましい。なお、燃料電池用部材として使用する際には、実質的にイオン交換基の全てが遊離酸の形態であることが好ましい。ここで、「ブロックの主鎖」又は「主鎖」とは、本発明においては、ブロックを形成する最も長い鎖のことをいう。この鎖は共有結合により相互に結合した炭素原子から構成されていて、その際、この鎖は、窒素原子、酸素原子等により中断されていてもよい。また、「ブロックの主鎖を構成する芳香環」又は「ブロックの主鎖を構成している芳香環」とは、芳香族環の有する結合手のうち、2本がブロックの主鎖の一部を構成している芳香環のことをいう。
 上記イオン交換基としては、酸基が通常使用される。該酸基としては、弱酸、強酸、超強酸等の酸基が挙げられるが、強酸基、超強酸基が好ましい。酸基の例としては、例えば、ホスホン酸基、カルボン酸基等の弱酸基;スルホン酸基、スルホンイミド基(-SO-NH-SO-R。ここでRはアルキル基、アリール基等の一価の置換基を表す。)等の強酸基があげられ、中でも、強酸基であるスルホン酸基、スルホンイミド基が好ましく使用される。また、フッ素原子等の電子吸引性基で該芳香環及び/又はスルホンイミド基の置換基(-R)上の水素原子を置換することにより、フッ素原子等の電子吸引性基の効果で上記の強酸基を超強酸基として機能させることも好ましい。これらのイオン交換基は、部分的にあるいは全てが、金属イオンや4級アンモニウムイオンなどで交換されて塩を形成していてもよい。
 本発明のポリアリーレン系ブロック共重合体に係る、イオン交換基を有するブロックとしては、下記式(C-3)で表されるブロックが好適である。
Figure JPOXMLDOC01-appb-C000052
 式(C-3)中、mは3以上の整数を表し、Arはアリーレン基を表す。ここで該アリーレン基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基で置換されていてもよい。Arは主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合する。複数あるArは、それぞれ互いに同一でも異なってもよい。
 さらに、上記式(C-3)で表されるブロックと他の繰り返し構造との共重合ブロックであって、繰り返し単位当たりのイオン交換基数で計算して、平均0.5個以上有するものでもよい。他の繰り返し構造との共重合ブロックの場合、式(C-3)で表されるブロックの含有率は、50モル%~100モル%が好ましく、70モル%~100モル%であると燃料電池用の高分子電解質として、プロトン伝導度が十分であるので特に好ましい。
 ここで、式(C-3)におけるmは3以上の整数を表し、5~100の範囲が好ましく、さらに好ましくは10~100である。mの値が3以上であると、燃料電池用の高分子電解質として、プロトン伝導度が十分であるので好ましい。mの値が100以下であれば、製造がより容易であるので好ましい。また、イオン交換基を有するブロックが他の繰り返し構造との共重合ブロックの場合、該共重合ブロックの中に、上記式(C-3)で表されるブロックを含むものである。
 上記式(C-3)におけるArは、アリーレン基を表す。該アリーレン基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮環系芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基が挙げられる。好ましくは2価の単環性芳香族基である。
 また、Arは、フッ素原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシ基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、置換基を有してもよい炭素数2~20のアシル基で置換されていてもよく、これらの具体例としては、上記のものが挙げられる。
 上記式(C-3)で示される構造の好ましい例としては、下記式(C-4)で表される構造が挙げられる。このような、構造を有するブロックは、後述する該ブロックの製造において、工業的に容易に入手できる原料を用いることができるため、好ましい。
Figure JPOXMLDOC01-appb-C000053
 式(C-4)中、mは上記式(C-3)と同義である。Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの置換基を表す。pは0~3の整数である。Rが複数存在する場合、それぞれ互いに同一でも異なってもよい。
 ここで、Rの具体例としては、上記アルキル基、アルコキシ基、アリール基、アリールオキシ基及びアシル基の具体例が挙げられる。その置換基の数pは、0又は1であると好ましく、特に好ましくはpが0、すなわち置換基を有しない繰り返し単位である。
 本発明のポリアリーレン系ブロック共重合体のイオン交換基を有するブロックのイオン交換基導入量は、イオン交換容量で表して、2.5meq/g~10.0meq/gが好ましく、さらに好ましくは5.5meq/g~9.0meq/gであり、特に好ましくは5.5meq/g~7.0meq/gである。該イオン交換基導入量を示すイオン交換容量が2.5meq/g以上であると、イオン交換基同士が密接に隣接することとなり、ポリアリーレン系ブロック共重合体としたときのプロトン伝導性がより高くなるので好ましい。一方、イオン交換基導入量を示すイオン交換容量が10.0meq/g以下であると、製造がより容易であるので好ましい。
 また、ポリアリーレン系ブロック共重合体全体のイオン交換基の導入量は、イオン交換容量で表して、0.5meq/g~5.0meq/gが好ましく、さらに好ましくは1.0meq/g~4.5meq/gである。該イオン交換基導入量を示すイオン交換容量が0.5meq/g以上であると、プロトン伝導性がより高くなり、燃料電池用の高分子電解質としての機能がより優れるので好ましい。一方、イオン交換基導入量を示すイオン交換容量が5.0meq/g以下であると、耐水性がより良好となるので好ましい。
 また、本発明のポリアリーレン系ブロック共重合体は、分子量が、ポリスチレン換算の数平均分子量で表して、5000~1000000であることが好ましく、中でも15000~400000であることが特に好ましい。該数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 次に、本発明の、好適なポリアリーレン系ブロック共重合体の製造方法について説明する。該ポリアリーレン系ブロック共重合体における、好適なイオン交換基を有するブロックは、上記式(C-1)に表されるブロックであり、Arにおける主鎖を構成する芳香環に結合するイオン交換基の導入方法は、予めイオン交換基を有するモノマーを重合する方法であっても、予めイオン交換基を有しないモノマーからブロックを製造した後に、該ブロックにイオン交換基を導入する方法であってもよい。中でも、前者の方法であると、イオン交換基の導入量や、置換位置を的確に制御することができるので、より好ましい。
 イオン交換基を有するモノマーを用いて、本発明のポリアリーレン系ブロック共重合体の製造を行う方法としては、例えば、ゼロ価遷移金属錯体の共存下、下記式(C-6)で示されるモノマーと、下記式(C-7)で示されるイオン交換基を実質的に有しないブロックの前駆体とを縮合反応により重合することにより製造し得る。
Figure JPOXMLDOC01-appb-C000054
 式(C-6)中、Arは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよいアリール基であり、主鎖を構成している芳香環にイオン交換基及び/又はイオン交換基になり得る基(イオン交換基前駆基)が結合している。Qは、縮合反応時に脱離する基を表し、複数あるQは、それぞれ互いに同一でも異なってもよい。Ar、Ar、n、X及びYは上記と同義である。
 上記式(C-6)で示されるモノマーは、好ましいイオン交換基であるスルホン酸基で例示すると、2,4-ジクロロベンゼンスルホン酸、2,5-ジクロロベンゼンスルホン酸、3,5-ジクロロベンゼンスルホン酸、2,4-ジクロロ-5-メチルベンゼンスルホン酸、2,5-ジクロロ-4-メチルベンゼンスルホン酸、2,4-ジクロロ-5-メトキシベンゼンスルホン酸、2,5-ジクロロ-4-メトキシベンゼンスルホン酸、3,3’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸、4,4’-ジクロロビフェニル-3,3’-ジスルホン酸、5,5’-ジクロロビフェニル-2,2’-ジスルホン酸が挙げられる。これらのモノマーの塩素原子が、前述の縮合反応時に脱離する基と置き換わったものも使用可能である。また、これらのモノマーのスルホン酸基が塩を形成していてもよく、スルホン酸基の替わりにスルホン酸前駆基を有するものも使用可能である。スルホン酸基が塩を形成している場合、その対イオンはアルカリ金属イオンが好ましく、特に、Liイオン、Naイオン、Kイオンが好ましい。スルホン酸前駆基としては、加水分解処理や酸化処理等の簡便な操作でスルホン酸基になり得るものが好ましい。特に、本発明のポリマーを製造するには、スルホン酸基が塩の形態のモノマーか、もしくはスルホン酸前駆基を有するモノマーを用いることが、重合反応性の観点から好ましい。
 スルホン酸前駆基としては、スルホン酸エステル(-SO;ここでRは炭素数1~20のアルキル基を表す。)又はスルホンアミド(-SON(R)(R);ここでR及びRはそれぞれ独立に水素原子、炭素数1~20のアルキル基又は炭素数3~20の芳香族基を表す。)のように、スルホン酸基がエステル又はアミドを形成して保護されているような形態のものが好ましい。スルホン酸エステルとしては、例えば、スルホン酸メチルエステル、スルホン酸エチルエステル基、スルホン酸n-プロピルルエステル、スルホン酸イソプロピルエステル、スルホン酸n-ブチルエステル基、スルホン酸sec-ブチルエステル基、スルホン酸tert-ブチルエステル、スルホン酸n-ペンチルエステル、スルホン酸ネオペンチルエステル、スルホン酸n-ヘキシルエステル、スルホン酸シクロヘキシルエステル、スルホン酸n-ヘプチルエステル、スルホン酸n-オクチルエステル、スルホン酸n-ノニルエステル、スルホン酸n-デシルエステル、スルホン酸n-ドデシルエステル、スルホン酸n-ウンデシルエステル、スルホン酸n-トリデシルエステル、スルホン酸n-テトラデシルエステル、スルホン酸n-ペンタデシルエステル、スルホン酸n-ヘキサデシルエステル、スルホン酸n-ヘプタデシルエステル、スルホン酸n-オクタデシルエステル、スルホン酸n-ノナデシルエステル、スルホン酸n-エイコシルエステルなどのスルホン酸エステルが挙げられ、好ましくはスルホン酸sec-ブチルエステル、スルホン酸ネオペンチルエステル又はスルホン酸シクロヘキシルエステルである。これらのスルホン酸エステルは、重合反応に関与しない置換基で置換されていてもよい。
 また、スルホンアミドとしては、例えば、スルホンアミド、N-メチルスルホンアミド、N,N-ジメチルスルホンアミド、N-エチルスルホンアミド、N,N-ジエチルスルホンアミド、N-n-プロピルスルホンアミド、ジ-n-プロピルスルホンアミド、N-イソプロピルスルホンアミド、N,N-ジイソプロピルスルホンアミド、N-n-ブチルスルホンアミド、N,N-ジ-n-ブチルスルホンアミド、N-sec-ブチルスルホンアミド、N,N-ジ-sec-ブチルスルホンアミド、N-tert-ブチルスルホンアミド、N,N-ジ-tert-ブチルスルホンアミド、N-n-ペンチルスルホンアミド、N-ネオペンチルスルホンアミド、N-n-ヘキシルスルホンアミド、N-シクロヘキシルスルホンアミド、N-n-ヘプチルスルホンアミド、N-n-オクチルスルホンアミド、N-n-ノニルスルホンアミド、N-n-デシルスルホンアミド、N-n-ドデシルスルホンアミド、N-n-ウンデシルスルホンアミド、N-n-トリデシルスルホンアミド、N-n-テトラデシルスルホンアミド、N-n-ペンタデシルスルホンアミド、N-n-ヘキサデシルスルホンアミド、N-n-ヘプタデシルスルホンアミド、N-n-オクタデシルスルホンアミド、N-n-ノナデシルスルホンアミド、N-n-エイコシルスルホンアミド、N,N-ジフェニルスルホンアミド、N,N-ビストリメチルシリルスルホンアミド、N,N-ビス-tert-ブチルジメチルシリルスルホンアミド、ピロリルスルホンアミド、ピロリジニルスルホンアミド、ピペリジニルスルホンアミド、カルバゾリルスルホンアミド、ジヒドロインドリルスルホンアミド、ジヒドロイソインドリルスルホンアミドが挙げられ、好ましくはN,N-ジエチルスルホンアミド、N-n-ドデシルスルホンアミド、ピロリジニルスルホンアミド、ピペリジニルスルホンアミドである。これらのスルホンアミドは、いずれも重合反応に関与しない置換基で置換されていてもよい。
 また、スルホン酸前駆基としてはメルカプト基も使用可能である。メルカプト基は適当な酸化剤を使用して、酸化させることによりスルホン酸基に転換可能である。
 また、他のイオン交換基の場合は、上記に例示したモノマーのスルホン酸基を、カルボン酸基、ホスホン酸基等のイオン交換基に置き換えて、選択することができる。これら他のイオン交換基を有するモノマーも市場から容易に入手できるか、公知の製造方法を用いて、製造することが可能である。
 上記式(C-6)及び(C-7)に示すQは、縮合反応時に脱離する基を表すが、その具体例としては、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、下記に示すようなホウ素原子を含む基が挙げられる。
Figure JPOXMLDOC01-appb-C000055
及びRは、互いに独立に水素原子又は有機基を表し、RとRとが結合して環を形成していてもよい。
 また、イオン交換基の導入を重合後に行い、本発明のポリアリーレン系ブロック共重合体の製造を行う方法として、例えば、ゼロ価遷移金属錯体の共存下、下記式(C-8)で示される化合物と、上記式(C-6)で示されるイオン交換基を実質的に有しないブロックの前駆体を縮合反応により重合し、その後、公知の方法に準じてイオン交換性基を導入することにより製造し得る。
Figure JPOXMLDOC01-appb-C000056
式(C-8)中、Arはイオン交換基を導入することで、上記式(C-3)のArとなりえるアリール基を表し、Qは上記式(C-6)と同義である
 ここで、Arは、フッ素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のアシル基で置換されていてもよいが、Arは少なくともひとつのイオン交換基を導入可能な構造を有する、アリール基である。該アリール基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮環系芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の複素環基が挙げられる。置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基としては、上記のArにおける置換基として例示したものと同様のものが挙げられる。
 Arにおけるイオン交換基を導入可能な構造としては、芳香環に直接結合している水素原子を有しているか、イオン交換基に変換可能な置換基を有していることを示す。イオン交換基に変換可能な置換基としては、重合反応を阻害しない限り特に制限はないが、例えば、メルカプト基、メチル基、ホルミル基、ヒドロキシ基、ブロモ基が挙げられる。
 イオン交換基の導入方法としてスルホン酸基の導入方法を例としてあげると、重合して得られたポリアリーレン系ブロック共重合体を濃硫酸に溶解あるいは分散することにより、あるいは有機溶媒に少なくとも部分的に溶解させた後、濃硫酸、クロロ硫酸、発煙硫酸、三酸化硫黄などを作用させることにより、水素原子をスルホン酸基に変換する方法をあげることができる。これらのモノマーの代表例としては、例えば、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、1,3-ジブロモベンゼン、1,4-ジブロモベンゼン、1,3-ジヨードベンゼン、1,4-ジヨードベンゼン、1,3-ジクロロ-4-メトキシベンゼン、1,4-ジクロロ-3-メトキシベンゼン、1,3-ジブロモ-4-メトキシベンゼン、1,4-ジブロモ-3-メトキシベンゼン、1,3-ジヨード-4-メトキシベンゼン、1,4-ジヨード-3-メトキシベンゼン、1,3-ジクロロ-4-アセトキシベンゼン、1,4-ジクロロ-3-アセトキシベンゼン、1,3-ジブロモ-4-アセトキシベンゼン、1,4-ジブロモ-3-アセトキシベンゼン、1,3-ジヨード-4-アセトキシベンゼン、1,4-ジヨード-3-アセトキシベンゼン、4,4’-ジクロロビフェニル、4,4’-ジブロモビフェニル、4,4’-ジヨードビフェニル、4,4’-ジクロロ-3,3’-ジメチルビフェニル、4,4’-ジブロモ-3,3’-ジメチルビフェニル、4,4’-ジヨード-3,3’-ジメチルビフェニル、4,4’-ジクロロ-3,3’-ジメトキシビフェニル、4,4’-ジブロモ-3,3’-ジメトキシビフェニル、4,4’-ジヨード-3,3’-ジメトキシビフェニルが挙げられる。
 また、上記式(C-8)で示されるモノマーがメルカプト基を有すると、重合反応終了時にメルカプト基を有するブロックを得ることができ、該メルカプト基を、酸化反応によりスルホン酸基に変換することができる。このようなモノマーの代表例としては、2,4-ジクロロベンゼンチオール、2,5-ジクロロベンゼンチオール、3,5-ジクロロベンゼンチオール、2,4-ジブロモベンゼンチオール、2,5-ジブロモベンゼンチオール、3,5-ジブロモベンゼンチオール、2,4-ジヨードロベンゼンチオール、2,5-ジヨードベンゼンチオール、3,5-ジヨードベンゼンチオール、2,5-ジクロロ-1,4-ベンゼンジチオール、3,5-ジクロロ-1,2-ベンゼンジチオール、3,6-ジクロロ-1,2-ベンゼンジチオール、4,6-ジクロロ-1,3-ベンゼンジチオール、2,5-ジブロモ-1,4-ベンゼンジチオール、3,5-ジブロモ-1,2-ベンゼンジチオール、3,6-ジブロモ-1,2-ベンゼンジチオール、4,6-ジブロモ-1,3-ベンゼンジチオール、2,5-ジヨード-1,4-ベンゼンジチオール、3,5-ジヨード-1,2-ベンゼンジチオール、3,6-ジヨード-1,2-ベンゼンジチオール、4,6-ジヨード-1,3-ベンゼンジチオールが挙げられ、さらに上記に例示するモノマーのメルカプト基が保護されたモノマーが挙げられる。
 次に、カルボン酸基の導入方法を例としてあげると、酸化反応により、メチル基、ホルミル基をカルボン酸基に変換する方法や、ブロモ基をMgの作用により-MgBrとした後、二酸化炭素を作用させカルボン酸基に変換する等の公知の方法が挙げられる。ここで、メチル基を有する代表的なモノマーとしては、2,4-ジクロロトルエン、2,5-ジクロロトルエン、3,5-ジクロロトルエン、2,4-ジブロモトルエン、2,5-ジブロモトルエン、3,5-ジブロモトルエン、2,4-ジヨードトルエン、2,5-ジヨードトルエン、3,5-ジヨードトルエンが挙げられる。
 ホスホン酸基の導入方法を例としてあげると、ブロモ基を、塩化ニッケルなどのニッケル化合物の共存下、亜リン酸トリアルキルを作用させてホスホン酸ジエステル基とした後、これを加水分解してホスホン酸基に変換する方法や、ルイス酸触媒の共存下、三塩化リンや五塩化リンなどを用いてC-P結合を形成させ、続いて必要に応じ酸化及び加水分解してホスホン酸基に変換する方法とする方法、高温でリン酸無水物を作用させ、水素原子をホスホン酸基に変換する方法等の公知の方法が挙げられる。
 スルホンイミド基の導入方法を例としてあげると、縮合反応、置換反応等により、前述のスルホン酸基をスルホンイミド基に変換する方法等の公知の方法が挙げられる。
ここで、Qは、縮合反応時に脱離する基であり、上記式(C-6)及び(C-7)で例示したものと同等である。
また、上記式(C-7)で表される前駆体の好適な代表例としては、下記に例示するモノマーがあげられる。この例示の中で、n及びQは上記と同義である。
Figure JPOXMLDOC01-appb-C000057
 縮合反応による重合は、ゼロ価遷移金属錯体の共存下に実施される。上記ゼロ価遷移金属錯体は遷移金属にハロゲンや後述の配位子が配位したものであり、後述の配位子を少なくとも一つ有するものが好ましい。ゼロ価遷移金属錯体は市販品でも別途合成したものいずれを用いてもよい。ゼロ価遷移金属錯体の合成方法は、例えば遷移金属塩や遷移金属酸化物と配位子とを反応させる方法等の公知の方法があげられる。合成したゼロ価遷移金属錯体は、取り出して使用してもよいし、取り出すことなく、in situで使用してもよい。
 配位子としては、例えば、アセテート、アセチルアセトナート、2,2’-ビピリジル、1,10-フェナントロリン、メチレンビスオキサゾリン、N,N,N’N’-テトラメチルエチレンジアミン、トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン、1,2-ビスジフェニルホスフィノエタン、1,3-ビスジフェニルホスフィノプロパンが挙げられる。
 ゼロ価遷移金属錯体としては、例えば、ゼロ価ニッケル錯体、ゼロ価パラジウム錯体、ゼロ価白金錯体、ゼロ価銅錯体が挙げられる。これら遷移金属錯体の中でもゼロ価ニッケル錯体、ゼロ価パラジウム錯体が好ましく用いられ、ゼロ価ニッケル錯体がより好ましく用いられる。
 ゼロ価ニッケル錯体としては、例えば、ビス(1,5-シクロオクタジエン)ニッケル(0)、(エチレン)ビス(トリフェニルホスフィン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケルが挙げられる。中でも、ビス(1,5-シクロオクタジエン)ニッケル(0)が、反応性、得られるポリマー等の収率、得られるポリマー等の高分子量化という観点から好ましく使用される。ゼロ価パラジウム錯体としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)が挙げられる。
 これらゼロ価遷移金属錯体は、上記のように合成して用いてもよいし、市販品として入手できるものを用いてもよい。ゼロ価遷移金属錯体の合成方法は例えば、遷移金属化合物を亜鉛やマグネシウムなどの還元剤でゼロ価とする方法などの公知の方法が挙げられる。合成したゼロ価遷移金属錯体は、取り出して使用してもよいし、取り出すことなくin situ で使用してもよい。
 還元剤により、遷移金属化合物からゼロ価遷移金属錯体を発生させる場合、使用される遷移金属化合物としては、ゼロ価の遷移金属化合物が用いることもできるが、通常2価のものを用いることが好ましい。中でも2価ニッケル化合物、2価パラジウム化合物が好ましい。2価ニッケル化合物としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセテート、ニッケルアセチルアセトナート、塩化ニッケルビス(トリフェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)が挙げられる。2価パラジウム化合物としては塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、パラジウムアセテートが挙げられる。
 還元剤としては、亜鉛、マグネシウム、水素化ナトリウム、ヒドラジン及びその誘導体、リチウムアルミニウムヒドリドが挙げられる。必要に応じて、ヨウ化アンモニウム、ヨウ化トリメチルアンモニウム、ヨウ化トリエチルアンモニウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどを併用することもできる。
 上記遷移金属錯体を用いた縮合反応の際、得られるポリマー等の収率向上の観点から、用いたゼロ価遷移金属錯体の配位子となり得る化合物を添加することが好ましい。添加する化合物は使用したゼロ価遷移金属錯体の配位子と同じであっても異なっていてもよい。
 配位子となりうる化合物の例としては、前述の、配位子として例示した化合物が挙げられ、汎用性、経済性、反応性、得られるポリマー等の収率、得られるポリマー等の高分子量化の点でトリフェニルホスフィン、2,2’-ビピリジルが好ましい。特に、2,2’-ビピリジルを用いると、ポリマー等の収率向上や高分子量化の点で特に有利である。配位子の添加量は、ゼロ価遷移金属錯体にある遷移金属原子基準で、通常0.2~10モル倍程度、好ましくは1~5モル倍程度使用される。
 ゼロ価遷移金属錯体の使用量は、ポリマー等の製造に使用する、式(C-6)で示されるモノマー、式(C-7)で示される前駆体及び式(C-8)で示されるモノマーの総モル量(以下、「全モノマーの総モル量」という。)に対して、0.1モル倍以上である。使用量が過少であると分子量が小さくなる傾向があるので、好ましくは1.5モル倍以上、より好ましくは1.8モル倍以上、より一層好ましくは2.1モル倍以上用いる。一方、使用量の上限は特に制限はないが、使用量が多すぎると後処理が煩雑になることもあるので、5.0モル倍以下であることが好ましい。
 なお、還元剤を用いて遷移金属化合物からゼロ価遷移金属錯体を合成する場合、生成するゼロ価遷移金属錯体が上記範囲となるように、遷移金属化合物及び還元剤の使用量等を設定すればよく、例えば、遷移金属化合物の量を、全モノマーの総モル量に対して、0.01モル倍以上、好ましくは0.03モル倍以上とすればよい。使用量の上限は限定的ではないが、使用量が多すぎると後処理が煩雑になる傾向があるために、5.0モル倍以下であることが好ましい。また、還元剤の使用量は、全モノマーの総モル量に対して、例えば、0.5モル倍以上、好ましくは1.0モル倍以上とすればよい。使用量の上限は限定されないが、使用量が多すぎると後処理が煩雑になる傾向があるために、10モル倍以下であることが好ましい。
 また、反応温度は、通常20℃~200℃程度であり、好ましくは20℃~100℃程度である。反応時間は、通常0.5~24時間程度である。
 ゼロ価遷移金属錯体と、ポリマー等の製造に使用する、式(C-6)で示されるモノマー、式(C-7)で示される前駆体及び式(C-8)で示されるモノマーから選ばれるモノマーとを混合する方法は、一方を他方に加える方法であっても、両者を反応容器に同時に加える方法であってもよい。加えるに当っては、一挙に加えてもよいが、発熱を考慮して少量ずつ加えることが好ましいし、溶媒の共存下に加えることも好ましく、この場合の好適な溶媒は後述する。
 縮合反応は、通常、溶媒存在下に実施される。かかる溶媒としては、例えばN、N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒;トルエン、キシレン、メシチレン、ベンゼン、n-ブチルベンゼン等の芳香族炭化水素系溶媒;テトラヒドロフラン、1,4-ジオキサン、ジブチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル等のエステル系溶媒;クロロホルム、ジクロロエタンなどのハロゲン系溶媒が例示される。なお、括弧内の表記は溶媒の略号を示すものであり、後述する表記において、この略号を用いることもある。
 生成するポリマー等の分子量をより高くするためには、ポリマー等が十分に溶解する溶媒、すなわちポリマー等に対する良溶媒を用いることが望ましい。生成するポリマー等に対する良溶媒としては、テトラヒドロフラン、1,4-ジオキサン、DMF、DMAc、NMP、DMSO、トルエンが好ましい。これらは2種以上を混合して用いることもできる。なかでもDMF、DMAc、NMP及びDMSOからなる群より選ばれる少なくとも1種の溶媒、又はこれらから選ばれる2種以上の溶媒の混合物が好ましく用いられる。
 溶媒量は、特に限定されないが、あまりにも低濃度では、生成したポリマー等を回収しにくくなることもあり、また、あまりにも高濃度では、攪拌が困難になることがあることから、ポリマー等の製造に使用するモノマー(式(C-6)で示されるモノマー、式(C-7)で示される前駆体及び式(C-8)で示されるモノマーから選ばれるモノマー)に対して1重量倍~999重量倍、より好ましくは、3重量倍~199重量倍となるようにして、溶媒の使用量を決定することが好ましい。
 かくして本発明のポリアリーレン系ブロック共重合体又は本発明のポリアリーレン系ブロック共重合体になり得るプレポリマーが得られるが、生成したポリアリーレン系ブロック共重合体等は、常法により反応混合物から取り出すことができる。例えば、貧溶媒を加えることでポリアリーレン系ブロック共重合体等を析出させ、濾別などにより目的物を取り出すことができる。また、必要に応じて、更に水洗や、良溶媒と貧溶媒を用いての再沈殿など、通常の精製方法により精製することもできる。
 生成したポリマーのスルホン酸基が塩の形態である場合、燃料電池に係る部材として使用するために、スルホン酸基を遊離酸の形態にすることが好ましく、遊離酸への変換は、通常酸性溶液での洗浄により実施することができる。使用される酸としては、例えば、塩酸、硫酸、硝酸などがあげられ、好ましくは希塩酸、希硫酸である。
 また、スルホン酸基が保護されているようなプレポリマーを得た場合も、燃料電池に係る部材として使用するために、保護されたスルホン酸基を、遊離酸の形態のスルホン酸基にすることが必要である。遊離酸の形態のスルホン酸基への変換は、例えば、酸又は塩基による加水分解、ハロゲン化物による脱保護反応により可能である。なお、塩基を使用した場合は、上述したような酸性溶液の洗浄を行えば、遊離酸の形態のスルホン酸基にすることが可能である。使用される酸・塩基としては、例えば、塩酸、硫酸、硝酸、水酸化ナトリウム、水酸化カリウムが挙げられる。使用されるハロゲン化物としては、例えば、臭化リチウム、ヨウ化ナトリウム、塩化テトラメチルアンモニウム、臭化テトラブチルアンモニウムが挙げられ、好ましくは臭化リチウム、臭化テトラブチルアンモニウムである。スルホン酸基への変換率は、赤外線吸収スペクトルや核磁気共鳴スペクトルにより、スルホン酸エステル又はスルホンアミドに特徴的なピークの存在がどの程度であるかを定量することにより算出することができる。
 本発明のポリアリーレン系ブロック共重合体の代表例を上記式(C-4)で示した好適なイオン交換基を有するブロックで例示すると、以下の構造があげられる。
Figure JPOXMLDOC01-appb-C000058
(式中、n、mは上記と同義である。)
 上記に示す、本発明のポリアリーレン系ブロック共重合体は、いずれも燃料電池用の部材として好適に用いることができる。本発明のポリアリーレン系ブロック共重合体は、燃料電池等の電気化学デバイスの高分子電解質として好ましく使用される。
 本発明の高分子電解質は、通常、膜の形態で使用されるが、膜へ転化する方法に特に制限はなく、例えば溶液状態より製膜する方法(溶液キャスト法)が好ましく使用される。具体的には、本発明の高分子電解質を適当な溶媒に溶解し、その溶液を支持基材上に流延塗布し、溶媒を除去することにより製膜される。かかる支持基材としては、例えば、ガラス板や、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)等のプラスチックフィルムが挙げられる。製膜に用いる溶媒は、該高分子電解質が溶解可能であり、その後に除去し得るものであるならば特に制限はなく、DMF、DMAc、NMP、DMSO等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒;メタノール、エタノール、プロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられる。これらは単独で用いることもできるが、必要に応じて2種以上の溶媒を混合して用いることもできる。中でも、DMSO、DMF、DMAc、NMP等がポリマーの溶解性が高く好ましい。
 膜の厚みは、特に制限はないが10~300μmが好ましい。膜厚が10μm以上の膜では実用的な強度がより優れるため好ましく、300μm以下の膜では膜抵抗が小さくなり、電気化学デバイスの特性がより向上する傾向にあるので好ましい。膜厚は、溶液の濃度及び基板上への塗布厚により制御できる。
 また、膜の各種物性改良を目的として、通常の高分子に使用される可塑剤、安定剤、離型剤等を本発明のポリアリーレン系ブロック共重合体に添加してもよい。また、同一溶剤に混合共キャストする等の方法により、他のポリマーを本発明のポリアリーレン系ブロック共重合体と複合アロイ化することも可能である。このように、本発明のポリアリーレン系ブロック共重合体と、添加剤及び/又は他のポリマーとを組み合わせて高分子電解質を調製する場合には、該高分子電解質を燃料電池用部材に適用したときに、所望の特性が得られるようにして、添加剤及び/又は他のポリマーの種類や使用量を決定する。
 さらに、燃料電池用途においては水管理を容易にするために、無機又は有機の微粒子を保水剤として添加することも知られている。これらの公知の方法はいずれも本発明の目的に反しない限り使用できる。また、このようにして得られた高分子電解質膜に関し、その機械的強度向上等を目的として、電子線・放射線等を照射するといった処理を施してもよい。
 また、本発明の高分子電解質を用いた高分子電解質膜の強度や柔軟性、耐久性のさらなる向上のために、本発明のポリアリーレン系ブロック共重合体を含む高分子電解質を多孔質基材に含浸させ複合化することにより、複合膜とすることも可能である。複合化方法は公知の方法を使用し得る。
 多孔質基材としては、上述の使用目的を満たすものであれば特に制限は無く、例えば多孔質膜、織布、不織布、フィブリル等があげられ、その形状や材質によらず用いることができる。多孔質基材の材質としては、耐熱性の観点や、物理的強度の補強効果を考慮すると、脂肪族系、芳香族系高分子、又は含フッ素高分子が好ましい。
 本発明のポリアリーレン系ブロック共重合体を用いた高分子電解質複合膜を高分子電解質形燃料電池の高分子電解質膜として使用する場合、多孔質基材の膜厚は、好ましくは1~100μm、さらに好ましくは3~30μm、特に好ましくは5~20μmである。多孔質基材の孔径は、好ましくは0.01~100μm、さらに好ましくは0.02~10μmである。多孔質基材の空隙率は、好ましくは20~98%、さらに好ましくは40~95%である。
 多孔質基材の膜厚が1μm以上であると、複合化後の強度補強の効果あるいは、柔軟性や耐久性を付与するといった補強効果がより優れ、ガス漏れ(クロスリーク)が発生しにくくなる。また、該膜厚が100μm以下であると、電気抵抗がより低くなり、得られた複合膜が高分子電解質形燃料電池の高分子電解質膜として、より優れたものとなる。該孔径が0.01μm以上であると、本発明のポリアリーレン系ブロック共重合体の充填がより容易となり、100μm以下であると、ポリアリーレン系ブロック共重合体への補強効果がより大きくなる。空隙率が20%以上であると、高分子電解質膜としての抵抗がより小さくなり、98%以下であると、多孔質基材自体の強度がより大きくなり補強効果がより向上するので好ましい。
 また、該高分子電解質複合膜と、上記高分子電解質膜とを積層して燃料電池の高分子電解質膜として用いることもできる。
[燃料電池]
 次に本発明の燃料電池について説明する。
 燃料電池の基本的な単位となる、本発明の膜-電極接合体(以下、「MEA」ということがある。)は、本発明の高分子電解質膜、本発明の高分子電解質複合膜、及び、本発明の高分子電解質と、触媒成分とを含む触媒組成物から選ばれる少なくとも1種を用いて製造することができる。MEAは、本発明のポリマー又はポリアリーレン系ブロックポリマー共重合体を用いた高分子電解質膜又は複合膜をMEAのプロトン伝導膜として使用し、該プロトン伝導膜の両面に、触媒成分及び集電体としての導電性物質を接合することにより製造することができる。
 ここで触媒成分としては、水素又は酸素との酸化還元反応を活性化できるものであれば特に制限はなく、公知のものを用いることができるが、白金又は白金系合金の微粒子を触媒成分として用いることが好ましい。白金又は白金系合金の微粒子はしばしば活性炭や黒鉛などの粒子状又は繊維状のカーボンに担持されて用いられることもある。
 カーボンに担持された白金又は白金系合金(カーボン担持触媒)を、本発明の高分子電解質の溶液及び/又は高分子電解質としてのパーフルオロアルキルスルホン酸樹脂のアルコール溶液と共に混合してペースト化したものを、ガス拡散層及び/又は高分子電解質膜及び/又は高分子電解質複合膜に塗布・乾燥することにより触媒層が得られる。具体的な方法としては例えば、J.Electrochem.Soc.:Electrochemical Science and Technology,1988,135(9),2209に記載されている方法等の公知の方法を用いることができる。このようにして、高分子電解質膜の両面に触媒層を形成させることで、MEAが得られる。なお、該MEAの製造において、ガス拡散層となる基材上に触媒層を形成した場合は、得られるMEAは高分子電解質膜の両面にガス拡散層と触媒層とをともに備えた膜-電極-ガス拡散層接合体の形態で得られる。また、ペースト化した触媒組成物を高分子電解質膜に塗布して高分子電解質膜上に触媒層を形成させた場合は、得られた触媒層上にさらにガス拡散層を形成させることで、膜-電極-ガス拡散層接合体が得られる。
 ここで、触媒層の製造用に使用される触媒インクに関し、パーフルオロアルキルスルホン酸樹脂に替えて、本発明のポリマーを使用することもできる。ガス拡散層には公知の材料を用いることができるが、多孔質性のカーボン織布、カーボン不織布又はカーボンペーパーが、原料ガスを触媒へ効率的に輸送するために好ましい。ガス拡散層には公知の材料を用いることができるが、多孔質性のカーボン織布、カーボン不織布又はカーボンペーパーが、原料ガスを触媒へ効率的に輸送するために好ましい。
 このようにして製造されたMEAを有する燃料電池は、燃料として水素ガス又は改質水素ガスを使用する形式はもとより、メタノールを用いる各種の形式で使用可能である。本発明の高分子電解質形燃料電池は、発電性能に優れ、長寿命の燃料電池として提供できる。
 次に、好適な実施形態の燃料電池について説明する。この燃料電池は、上述した実施形態の高分子電解質膜を備えるものである。このような燃料電池は、耐久性に十分に優れるものであり、長時間稼動することが可能となる。
 図1は、本実施形態の燃料電池の断面構成を模式的に示す図である。図1に示すように、燃料電池10は、上述した好適な実施形態の高分子電解質膜12(プロトン伝導膜)の両側に、これを挟むように触媒層14a,14b、ガス拡散層16a,16b及びセパレータ18a,18bが順に形成されている。高分子電解質膜12と、これを挟む一対の触媒層14a,14bとから、膜-電極接合体(以下、「MEA」と略す)20が構成されている。
 高分子電解質膜12に隣接する触媒層14a,14bは、燃料電池における電極層として機能する層であり、これらのいずれか一方がアノード電極層となり、他方がカソード電極層となる。かかる触媒層14a,14bは、触媒を含む触媒組成物から構成されるものであり、上述した高分子電解質を含むものであると更に好適である。
 触媒としては、水素又は酸素との酸化還元反応を活性化できるものであれば特に制限はなく、例えば、貴金属、貴金属合金、金属錯体、金属錯体を焼成してなる金属錯体焼成物等が挙げられる。なかでも、触媒としては、白金の微粒子が好ましく、触媒層14a,14bは、活性炭や黒鉛等の粒子状又は繊維状のカーボンに白金の微粒子が担持されてなるものであってもよい。
 ガス拡散層16a,16bは、MEA20の両側を挟むように設けられており、触媒層14a,14bへの原料ガスの拡散を促進するものである。このガス拡散層16a,16bは、電子伝導性を有する多孔質材料により構成されるものが好ましい。例えば、多孔質性のカーボン不織布やカーボンペーパーが、原料ガスを触媒層14a,14bへ効率的に輸送することができるため、好ましい。
 これらの高分子電解質膜12、触媒層14a,14b及びガス拡散層16a,16bから膜-電極-ガス拡散層接合体(MEGA)が構成されている。このようなMEGAは、例えば、以下に示す方法により製造することができる。すなわち、まず、高分子電解質を含む溶液と触媒とを混合して触媒組成物のスラリーを形成する。これを、ガス拡散層16a,16bを形成するためのカーボン不織布やカーボンペーパー等の上にスプレーやスクリーン印刷方法により塗布し、溶媒等を蒸発させることで、ガス拡散層上に触媒層が形成された積層体を得る。そして、得られた一対の積層体をそれぞれの触媒層同士が対向するように配置し、これらの間に高分子電解質膜12を配置して、これらを圧着する。こうして、上述した構造のMEGAが得られる。なお、ガス拡散層上への触媒層の形成は、例えば、所定の基材(ポリイミド、ポリテトラフルオロエチレン等)の上に触媒組成物を塗布・乾燥して触媒層を形成した後、これをガス拡散層に熱プレスで転写することにより行うこともできる。
 セパレータ18a,18bは、電子伝導性を有する材料で形成されており、かかる材料としては、例えば、カーボン、樹脂モールドカーボン、チタン、ステンレス等が挙げられる。かかるセパレータ18a,18bは、図示しないが、触媒層14a,14b側に、燃料ガス等の流路となる溝が形成されていると好ましい。
 そして、燃料電池10は、上述したようなMEGAを、一対のセパレータ18a,18bで挟み込み、これらを接合することによって得ることができる。
 なお、本発明の燃料電池は、必ずしも上述した構成を有するものに限られず、その要旨を逸脱しない範囲で適宜異なる構成を有していてもよい。例えば、上記燃料電池10は、上述した構造を有するものを、ガスシール体等で封止したものであってもよい。さらに、上記構造の燃料電池10は、直列に複数個接続して、燃料電池スタックとして実用に供することもできる。そして、このような構成を有する燃料電池は、燃料が水素である場合は固体高分子形燃料電池として、また燃料がメタノール水溶液である場合は直接メタノール型燃料電池として動作することができる。
 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
<分子量の測定>
 下記条件でゲルパーミエーションクロマトグラフィー(GPC)による測定を行い、ポリスチレン換算を行うことによって高分子電解質の数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。
(GPC条件)
 測定装置 :島津製作所社製 Prominence GPCシステム
 カラム  :東ソー社製 TSKgel GMHHR-M
 カラム温度:40℃
 移動相溶媒:DMF(LiBrを10mmol/dm含有)
 溶媒流量 :0.5mL/min
[高分子電解質の作製]
(合成例1)
 まず、アルゴン雰囲気下、フラスコに、無水臭化ニッケル19.7g(90.1mmol)とNMP270gとを混合し、内温70℃に昇温し1時間攪拌した。これを60℃に冷却し、2,2’-ビピリジル15.5g(99.1mmol)を加え、同温度で30分間撹拌しニッケル含有溶液を調製した。
 次いで、アルゴン雰囲気下、フラスコに、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)18.0g(60.6mmol)、2,5-ジクロロベンゾフェノン7.4g(29.5mmol)を加え、NMP200gに溶解させて50℃に調製した溶液に、亜鉛粉末11.8g(180.1mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、65℃に昇温して5時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、室温下で8N硝酸水溶液900gに投入し、30分攪拌した。析出した粗ポリマーを濾過し、さらに濾液のpHが4を越えるまで水洗を行ない、その後、大量のメタノールを用いて、さらに洗浄することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有する高分子18.7gを得た。
 上述のようにして得られたスルホン酸前駆基を有する高分子18.0gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.2g、無水臭化リチウム10.5g(121.1mmol)及びNMP340gを加え、スルホン酸前駆基を有する高分子を十分溶解させてから、120℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、高分子溶液を得た。
 上記高分子溶液を6N塩酸900gに投入し、1時間攪拌した。析出した粗高分子を濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより高分子電解質A13.1gを得た。得られた高分子電解質Aの分子量は、Mn=150000及びMw=330000であった。
<合成例2:高分子電解質Bの合成>
 特開2005-206807号公報の実施例2(段落0058、段落0059)記載の方法を参考に、高分子電解質Bを得た。
 得られた高分子電解質Bの高分解能NMR解析の結果、下記化学式(9)で表される構造を有することを確認した(ブロック共重合体の各繰返し単位の添え字、0.74、0.26はmol組成比を表す)。高分子電解質Bの分子量は、Mn=220000及びMw=510000であった。
Figure JPOXMLDOC01-appb-C000059
<合成例3-1:イオン交換基を有しないブロック前駆体DAの合成>
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、ビス(4-ヒドロキシフェニル)スルホン41.45g(165.6mmol)、炭酸カリウム24.04g(173.9mmol)、N-メチルピロリドン(NMP)207mL、トルエン80mLを加えた。バス温150℃で加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、13時間保温撹拌した。放冷後、反応液を37重量%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた粗生成物86.40gをNMPに溶解し、37重%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、乾燥した。目的物74.25gを得た。得られたイオン交換基を有しないブロック前駆体DAの分子量は、Mn=18000、Mw=32000、重合度nは43であった。
<合成例3-2:高分子電解質Dの合成>
 アルゴン雰囲気下、フラスコに無水塩化ニッケル22.19g(171.2mmol)とジメチルスルホキシド(DMSO)221gとを加え、70℃に昇温し、溶解した。これを50℃に冷却し、2,2’-ビピリジル29.42g(188.4mmol)を加え、同温度で保温することで、ニッケル含有溶液を調製した。
 次いで、アルゴン雰囲気下、フラスコに合成例3-1で得られた前駆体DA11.92g、DMSO300gを加え50℃に昇温し、溶解した。得られた溶液に、メタンスルホン酸0.039g(0.40mmol)、亜鉛粉末16.79g(256.8mmol)を加え、30分保温撹拌した。次いで、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.00g(67.3mmol)を加え溶解させた。これに、上記ニッケル含有溶液を注加し、次いで70℃に昇温して2時間保温撹拌し、黒色の重合溶液を得た。
 得られた重合溶液を、70℃の熱水1200gに注加し、生じた沈殿を濾過で集めた。沈殿物に、沈殿物と水との合計が696gになるように水を加え、さらに35重量%亜硝酸ナトリウム水溶液9.2gを加えた。このスラリー溶液に、65重量%硝酸172gを30分かけて滴下し、滴下後、室温で1時間撹拌した。スラリー溶液を濾過し、集めた粗ポリマーを濾液のpHが1を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が698gになるまで水を加え、さらに5重量%水酸化リチウム水溶液を、粗ポリマーと水のスラリー溶液のpHが7.8になるまで加え、さらにメタノール666gを加え、1時間還流させた。粗ポリマーを濾過して集め、水200g、次いで、メタノール280gを用いて浸漬洗浄し、80℃の乾燥機で乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー25.23gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー25.15gをフラスコに入れ、アルゴン雰囲気下、NMP630gを加えて、80℃で加熱撹拌し、溶解させた。これに活性アルミナ33gを加えて1時間30分保温撹拌した。その後、これに630gのNMPを加え、濾過により活性アルミナを除いた。得られた溶液からNMPを減圧留去することで濃縮し、305gのNMP溶液とした。この溶液に水2.2g、無水臭化リチウム10.82g(124.6mmol)を加え、120℃に昇温して、同温度で12時間保温撹拌した。得られた反応溶液を6N塩酸1260gに投入し、1時間攪拌した。析出した粗ポリマーを濾過で集め、1260gの35重量%塩酸/メタノール溶液(重量比1/1の混合溶液)で3回浸漬洗浄した後、濾液のpHが4を越えるまで水洗を行なった。ついで、粗ポリマーを1640gの熱水(95℃)で4回浸漬洗浄し、乾燥することにより目的物である高分子電解質D17.71gを得た。得られた高分子電解質Dの分子量は、Mn=139000、Mw=314000であった。
Figure JPOXMLDOC01-appb-C000060
<合成例4-1:イオン交換基を有しないブロック前駆体EAの合成>
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、ビス(4-ヒドロキシフェニル)スルホン39.43g(157.5mmol)、炭酸カリウム22.86g(165.4mmol)、N-メチルピロリドン(NMP)203mL、トルエン80mLを加えた。バス温150℃で加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、21時間保温撹拌した。放冷後、反応液を37重量%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた粗生成物77.31gをNMPに溶解し、37重量%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、乾燥した。目的物73.34gを得た。得られたイオン交換基を有しないブロック前駆体EAの分子量は、Mn=9700、Mw=16000、重合度nは22であった。
<合成例4-2:高分子電解質Eの合成>
 アルゴン雰囲気下、フラスコに無水塩化ニッケル22.64g(174.7mmol)とジメチルスルホキシド(DMSO)221gとを加え、70℃に昇温し、溶解した。これを50℃に冷却し、2,2’-ビピリジル30.01g(192.1mmol)を加え、同温度で保温することで、ニッケル含有溶液を調製した。
 次いで、アルゴン雰囲気下、フラスコに合成例4-1で得られた前駆体EA11.92g、DMSO300gを加え50℃に昇温し、溶解した。得られた溶液に、メタンスルホン酸0.039g(0.40mmol)、亜鉛粉末17.13g(262.0mmol)を加え、30分保温撹拌した。次いで、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.00g(67.3mmol)を加え溶解させた。これに、上記ニッケル含有溶液を注加し、次いで70℃に昇温して2時間保温撹拌し、黒色の重合溶液を得た。
 得られた重合溶液を、70℃の熱水1200gに注加し、生じた沈殿を濾過で集めた。沈殿物に、沈殿物と水との合計が696gになるように水を加え、さらに35重量%亜硝酸ナトリウム水溶液9.2gを加えた。このスラリー溶液に、65重量%硝酸172gを30分かけて滴下し、滴下後、室温で1時間撹拌した。スラリー溶液を濾過し、集めた粗ポリマーを濾液のpHが1を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が698gになるまで水を加え、さらに5重量%水酸化リチウム水溶液を、粗ポリマーと水のスラリー溶液のpHが8.2になるまで加え、さらにメタノール666gを加え、1時間還流させた。粗ポリマーを濾過して集め、水200g、次いで、メタノール280gを用いて浸漬洗浄し、80℃の乾燥機で乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー25.37gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー25.31gをフラスコに入れ、アルゴン雰囲気下、NMP630gを加えて、80℃で加熱撹拌し、溶解させた。これに活性アルミナ33gを加えて1時間30分保温撹拌した。その後、これに630gのNMPを加え、濾過により活性アルミナを除いた。得られた溶液からNMPを減圧留去することで濃縮し、302gのNMP溶液とした。この溶液に水2.3g、無水臭化リチウム10.89g(125.4mmol)を加え、120℃に昇温して、同温度で12時間保温撹拌した。得られた反応溶液を6N塩酸1270gに投入し、1時間攪拌した。析出した粗ポリマーを濾過で集め、1270gの35重量%塩酸/メタノール溶液(重量比1/1の混合溶液)で3回浸漬洗浄した後、濾液のpHが4を越えるまで水洗を行った。ついで、粗ポリマーを1650gの熱水(95℃)で4回浸漬洗浄し、乾燥することにより高分子電解質E18.50gを得た。得られた高分子電解質Eの分子量は、Mn=137000、Mw=368000であった。
Figure JPOXMLDOC01-appb-C000061
[高分子電解質膜の作製]
(実施例1:高分子電解質膜AMの作製)
 得られた高分子電解質Aを5重量%の濃度でDMSOに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液を、スロットダイを用いて、支持基材として巾300mm、長さ500mのポリエチレンテレフタレート(PET)フィルム(東洋紡績社製、E5000グレード)に連続的に流延塗布して、常圧下、70℃で1時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約15μmの高分子電解質膜AMを作製した。
(実施例2:高分子電解質膜DMの作製)
 得られた高分子電解質Dを9重量%の濃度でDMSOに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液を、スロットダイを用いて、支持基材として巾300mm、長さ500mのポリエチレンテレフタレート(PET)フィルム(東洋紡績社製、E5000グレード)に連続的に流延塗布して、常圧下、70℃で1時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜DMを作製した。
(実施例3:高分子電解質膜EMの作製)
 得られた高分子電解質Eを8重量%の濃度でDMSOに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液を、スロットダイを用いて、支持基材として巾300mm、長さ500mのポリエチレンテレフタレート(PET)フィルム(東洋紡績社製、E5000グレード)に連続的に流延塗布して、常圧下、70℃で1時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜EMを作製した。
(比較例1:高分子電解質膜BMの作製)
 合成例2で得られた高分子電解質Bを10重量%の濃度でDMSOに溶解し、高分子電解質溶液を調製した以外は実施例1と同様の操作を行い、膜厚約30μmの高分子電解質膜BMを得た。
[高分子電解質膜の評価]
 実施例及び比較例で作製した高分子電解質膜の評価を以下に示す条件で行った。結果を表1に示す。
<イオン交換容量(IEC)の測定>
 高分子電解質膜を適当な重量になるように裁断し、加熱温度105℃に設定されたハロゲン水分率計(メトラー・トレド社製ハロゲン水分計HR73)を用いて乾燥重量を求めた。次いで、この高分子電解質膜を0.1mol/L水酸化ナトリウム水溶液5mLに浸漬した後、更に50mLのイオン交換水を加え、2時間放置した。その後、この高分子電解質膜が浸漬された溶液に、0.1mol/Lの塩酸水溶液を徐々に加えることで滴定を行い、中和点を求めた。そして、高分子電解質膜の乾燥重量と中和に要した塩酸の量から、高分子電解質膜のイオン交換容量(単位:meq/g)を算出した。
<吸水率の測定>
 80℃のイオン交換水に2時間浸漬した後の高分子電解質膜の重量をWwetとし、乾燥時の重量をWdryとしたとき、下記式(II)で表されるωを吸水率とした。
  ω(%)=(Wwet-Wdry)/Wdry×100  (II)
乾燥時の膜重量は高分子電解質膜を適当な重量になるように裁断し、加熱温度105℃に設定されたハロゲン水分率計(メトラー・トレド社製ハロゲン水分計HR73)を用いて求めた。
Figure JPOXMLDOC01-appb-T000062
 次に、実施例及び比較例で作製した高分子電解質膜の水均一性評価、ラジカル耐性評価及び長期安定性評価を以下の条件で行った。結果を表2に示す。
<水均一性評価>
(浸漬膜の作製)
 高分子電解質膜に対し、次の2つの処理を別々に行った浸漬膜を作製した。
(第1の浸漬処理)
 3×5cmに切り出した高分子電解質膜を、5mmol/Lの塩化鉄(II)四水和物水溶液5mLに25℃で1時間浸漬させた後、取り出して25℃、減圧度10hPa以下で12時間乾燥させた。乾燥した高分子電解質膜を1mm角に裁断し、13C-固体NMRの測定試料とした。
(第2の浸漬処理)
 3×5cmに切り出した高分子電解質膜を、イオン交換水5mLに25℃で1時間浸漬させた後、取り出して25℃、減圧度10hPa以下で12時間乾燥させた。乾燥した高分子電解質膜を1mm角に裁断し、13C-固体NMRの測定試料とした。
(固体NMR測定)
 13C-固体NMRスペクトルの測定は、ブルカー・バイオスピン社製、商品名「Avance300」を用い、室温において行った。試料を外径4mmの測定用試料管につめ、装置に挿入し、H-13C交差分極マジック角回転法(以下CPMAS法と記載することがある)により、10kHzの回転速度で回転させながら測定を行った。なお、化学シフトの標準にはアダマンタンを用い、アダマンタンのCHの信号を29.5ppmとして補正した。ここで繰り返し待ち時間は4秒、1H核の励起パルス長は4.8マイクロ秒、これは90°パルスに相当する。信号の取り込みは22マイクロ秒間隔で1360点記録した。取り込みの範囲は補正された化学シフトを用いて100ppmを中心にプラスマイナス150ppmとした。
<不均一性因子Hの算出>
 上述の第1の浸漬処理を行った高分子電解質膜及び第2の浸漬処理を行った高分子電解質膜の各々に対し、13C-固体NMRスペクトルを測定して得られるスペクトルのピークの面積の合計を求めた。そして、第1の浸漬処理を行った高分子電解質膜のピーク合計をSpとし、第2の浸漬処理を行った高分子電解質膜のピーク合計をSnpとしたとき、不均一性因子H(Sp/Snp)を算出した。ここで、第2の浸漬処理後にピークが実質的に消失し、Hが0に近づくほど、水分布均一性に優れていることを意味する。
<ラジカル耐性評価(フェントン試験)>
 5×5cmに切り出した高分子電解質膜を、3%過酸化水素と鉄イオンの濃度として16ppmの塩化第一鉄を含む60℃の水溶液400mL中に2時間浸漬した。膜重量は以下の方法で測定した。メトラー・トレド社製ハロゲン水分計HR73を用い、110℃の状態で50秒間測定値が変化しなくなるまで保持し、その測定値を乾燥重量とした。重量維持率(%)はフェントン試験後の膜の乾燥重量をフェントン試験前の膜の乾燥重量で除した値の100倍(%)で定義した。
<長期安定性評価(負荷変動試験)>
(触媒インクの製造)
 市販の5重量%ナフィオン溶液(溶媒:水と低級アルコールの混合物)11.4mLに、白金が担持された白金担持カーボン(SA50BK、エヌ・イー・ケムキャット製、白金含有量;50重量%)を1.00g投入し、さらにエタノールを50.20g、水を7.04g加えた。得られた混合物を1時間超音波処理した後、スターラーで5時間攪拌して触媒インクを得た。
(膜-電極接合体の製造)
 次に、得られた高分子電解質膜の片面の中央部における5.2cm角に、スプレー法により上記の触媒インクを塗布した。この際、吐出口から膜までの距離は6cmとし、ステージ温度は75℃に設定した。同様の方法で8回の重ね塗りを行った後、塗布物をステージ上に15分間放置し、これにより溶媒を除去してアノード触媒層を形成させた。得られたアノード触媒層は、その組成と塗布重量から算出して0.6mg/cmの白金を含有する。続いて、高分子電解質膜のアノード触媒層と反対側の面にも同様に触媒インクを塗布して、0.6mg/cmの白金を含むカソード触媒層を形成した。これにより、膜-電極接合体を得た。
(燃料電池セルの製造)
 市販のJARI標準セルを用いて燃料電池セルを製造した。すなわち、上記の膜-電極接合体の両外側に、ガス拡散層としてカーボンクロスと、ガス通路用の溝を切削加工したカーボン製セパレータとをこの順で配置し、さらにその外側に集電体及びエンドプレートを順に配置し、これらをボルトで締め付けることによって、有効電極面積25cmの燃料電池セルを組み立てた。
(負荷変動試験の実施)
 得られた燃料電池セルを80℃に保ちながら、低加湿状態の水素(70mL/分、背圧0.1MPaG)と低加湿状態の空気(174mL/分、背圧0.05MPaG)をセルに導入し、開回路と一定電流での負荷変動試験を行った。
(長期安定性評価)
負荷変動試験終了後、膜-電極接合体を取り出してエタノール/水の混合溶液に投入し、さらに超音波処理することで触媒層を取り除いた。そして、残った高分子電解質膜の分子量及び付加変動試験を行っていない該高分子電解質膜を上記分子量測定の方法により測定した。長期安定性評価の指標として、重量平均分子量の維持率、すなわち、負荷変動試験を実施した該高分子電解質膜の重量平均分子量を、負荷変動試験を実施していない該高分子電解質膜の重量平均分子量で除して100を掛けた数を用いた。すなわち、重量平均分子量の維持率が高いほど、該高分子電解質膜の長期安定性が高いと判断できる。
Figure JPOXMLDOC01-appb-T000063
 実施例1~3の高分子電解質膜によれば、ラジカル耐性に優れることが確認された。一方、比較例1の高分子電解質膜では、ラジカル耐性が低く、さらに、長期安定性評価をしたところ、重量平均分子量の維持率は40%であり、長期安定性に劣るものであった(ただし、分子量測定において、上記分子量測定方法から移動相をジメチルアセトアミドに変更)。
<吸水率の測定A>
 耐水性を表す指標として、高分子電解質膜の吸水率を測定した。なお、この吸水率は低いほど、耐水性が良好であることを指すものである。乾燥した膜を秤量し、80℃の脱イオン水に2時間浸漬した後の膜重量増加量から吸水量を算出し、乾燥膜に対する比率を求めた。
<イオン交換容量(IEC)の測定A>
 測定に供するポリマーを溶液キャスト法により成膜しポリマー膜を得、得られたポリマー膜を適当な重量になるように裁断した。裁断したポリマー膜の乾燥重量を加熱温度105℃に設定されたハロゲン水分率計を用いて測定した。次いで、このようにして乾燥させたポリマー膜を0.1mol/L水酸化ナトリウム水溶液5mLに浸漬した後、更に50mLのイオン交換水を加え、2時間放置した。その後、ポリマー膜が浸漬された溶液に、0.1mol/Lの塩酸を徐々に加えることで滴定を行い、中和点を求めた。そして、裁断したポリマー膜の乾燥重量と中和に要した塩酸の量から、ポリマーのイオン交換容量(単位:meq/g)を算出した。
<プロトン伝導度の測定A>
 高分子電解質膜を、幅1.0cmの短冊状膜試料に裁断し、この短冊状膜試料の表面に白金板(幅:5.0mm)を間隔が1.0cmになるように押しあてた。このようにして白金板を押し当てた短冊状膜試料を、80℃、相対湿度90%の恒温恒湿槽中に保持し、白金板間の10~10-1Hzにおける交流インピーダンスを測定した。そして、得られた値を、下記式に代入して、各高分子電解質膜のプロトン伝導度(σ)(S/cm)を算出した。
  σ(S/cm)=1/(R×d)
[式中、コール・コールプロット上において、複素インピーダンスの虚数成分が0の時の、複素インピーダンスの実数成分をR(Ω)とする。dは短冊状膜試料の膜厚(cm)を表す。]
実施例A1
 アルゴン雰囲気下、共沸蒸留装置を備えたフラスコに、DMSO120ml、トルエン60mL、2,5-ジクロロベンゼンスルホン酸ナトリウム5.0g(14.4mmol)、2,5-ジクロロベンゾフェノン3.6g(20.0mmol)、2,2’-ビピリジル13.4g(86.0mmol)を入れて攪拌した。その後バス温を150℃まで昇温し、トルエンを加熱留去することで系内の水分を共沸脱水した後、65℃に冷却した。次いで、これにビス(1,5-シクロオクタジエン)ニッケル(0)23.7g(86.0mmol)を加え、70℃で3時間攪拌した。放冷後、反応液を大量の6mol/Lの塩酸に注ぐことにより粗ポリマーを析出させた後濾過した。その後6mol/L塩酸による洗浄・ろ過操作を数回繰り返した後、濾液のpHが4を越えるまで水洗を行ない、得られたポリマーを乾燥した。このようにして得られたポリマーをポリマーAとする。なお、ポリマーAの収量は5.3gであった。ポリマーAのMn、Mw及びIECを以下に示す。
Mn=8.9×10
Mw=2.1×10
IEC      3.2 meq/g
 得られたポリマーAを10重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約40μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      70%
プロトン伝導度  1.4×10-1 S/cm(80℃、相対湿度90%)
実施例A2
 アルゴン雰囲気下、フラスコに無水臭化ニッケル20.1g(92.0mmol)とNMP220gとを混合し、内温70℃に昇温し1時間攪拌した。これを60℃に冷却し、2,2’-ビピリジル15.8g(101.2mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.3mmol)、2,5-ジクロロベンゾフェノン6.2g(24.7mmol)を加え、NMP150gに溶解させて50℃に調整した。得られた溶液に、亜鉛粉末12.0g(183.9mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで65℃に昇温して5時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、室温下で8N硝酸水溶液900gに投入し、30分攪拌した。析出した粗ポリマーを濾過し、さらに濾液のpHが4を越えるまで水洗を行ない、その後、大量のメタノールを用いて、さらに洗浄することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー19.1gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー18.5gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.4g、無水臭化リチウム11.7g(134.7mmol)及びNMP350gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、120℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸900gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥した。このようにして得られたポリマーをポリマーBとする。なお、ポリマーBの収量は13.0gであった。ポリマーBのMn、Mw及びIECを以下に示す。
Mn=1.6×10
Mw=4.0×10
IEC      4.2 meq/g
 得られたポリマーBを6重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約15μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      100%
プロトン伝導度  4.6×10-1 S/cm(80℃、相対湿度90%)
実施例A3
 アルゴン雰囲気下、フラスコに無水臭化ニッケル14.6g(66.7mmol)とNMP180gとを混合し、内温70℃に昇温し1時間攪拌した。これを60℃に冷却し、2,2’-ビピリジル11.5g(73.5mmol)を加え、撹拌しながら40℃に冷却し、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸ジ(2,2-ジメチルプロピル)20.0g(38.2mmol)、2,5-ジクロロベンゾフェノン7.2g(28.7mmol)を加え、NMP380gに溶解させて50℃に調整した。得られた溶液に、亜鉛粉末8.7g(133.7mmol)を加え、撹拌しながら40℃に冷却した。これに、上記ニッケル含有溶液を注ぎ込み、40℃のまま5時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、室温下で6N塩酸水溶液2000gに投入し、30分攪拌した。析出した粗ポリマーを濾過し、さらに濾液のpHが4を越えるまで水洗を行ない、その後、大量のメタノールを用いて、さらに洗浄することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー22.5gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー21.0gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水54.6g、無水臭化リチウム13.3g(134.7mmol)及びNMP500gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、120℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸2100gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥した。このようにして得られたポリマーをポリマーCとする。なお、ポリマーCの収量は16.3gであった。ポリマーCのMn、Mw及びIECを以下に示す。
Mn=3.2×10
Mw=7.7×10
IEC      4.3 meq/g
 得られたポリマーCを4重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約15μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      110%
プロトン伝導度  3.8×10-1 S/cm(80℃、相対湿度90%)
 また、得られたポリマーCを4重量%の濃度でNMPに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約10μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      90%
プロトン伝導度  3.9×10-1 S/cm(80℃、相対湿度90%)
実施例A4
 アルゴン雰囲気下、フラスコに無水臭化ニッケル12.5g(57.2mmol)とNMP150gとを混合し、内温70℃に昇温し1時間攪拌した。これを60℃に冷却し、2,2’-ビピリジル9.8g(62.9mmol)を加え、撹拌しながら50℃に冷却し、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸ジ(2,2-ジメチルプロピル)10.0g(19.1mmol)、1,4-ジクロロ-2-フルオロベンゼン6.3g(38.1mmol)を加え、NMP320gに溶解させて50℃に調整した。得られた溶液に、亜鉛粉末7.5g(114.4mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで65℃に昇温し、その温度で3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液から、実施例A3と同様の操作で、スルホン酸前駆基を有するポリマーを得、次いで、実施例A3と同様の操作で、スルホン酸前駆基をスルホン酸基に変換することで、ポリマーDを得た。ポリマーDのMn、Mw及びIECを以下に示す。
Mn=3.4×10
Mw=7.8×10
IEC      3.9 meq/g
 得られたポリマーDを4重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約15μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      280%
プロトン伝導度  3.5×10-1 S/cm(80℃、相対湿度90%)
 また、得られたポリマーDを3重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液を、アプリケーターを用いて、支持器材として巾300mm、長さ500mのポリエチレンテレフタレート(PET)フィルム(東洋紡績社製、E5000グレード)に連続的に流延塗布して、常圧下、70℃で1時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜A4を作製した。
 得られた高分子電解質膜のプロトン伝導度は下記のとおりであった。
プロトン伝導度  3.6×10-1 S/cm(80℃、相対湿度90%)
 得られた高分子電解質膜A4に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.13であった。
実施例A5
 アルゴン雰囲気下、フラスコに無水臭化ニッケル10.4g(47.8mmol)とNMP130gとを混合し、内温70℃に昇温し1時間攪拌した。これを60℃に冷却し、2,2’-ビピリジル7.8g(50.1mmol)を加え、撹拌しながら30℃に冷却し、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸ジ(2,2-ジメチルプロピル)20.0g(38.2mmol)、2,5-ジクロロ-4’-[(4-フェノキシ)フェノキシ]ベンゾフェノン4.2g(9.6mmol)を加え、NMP270gに溶解させて50℃に調整した。得られた溶液に、亜鉛粉末6.3g(95.5mmol)を加え、撹拌しながら30℃に冷却した。これに、前記ニッケル含有溶液を注ぎ込み、30℃のまま5時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液から、実施例A3と同様の操作で、スルホン酸前駆基を有するポリマーを得、次いで、実施例A3と同様の操作で、スルホン酸前駆基をスルホン酸基に変換することで、ポリマーEを得た。なお、ポリマーEの収量は14.6gであった。ポリマーEのMn、Mw及びIECを以下に示す。
Mn=3.9×10
Mw=9.2×10
IEC      4.6 meq/g
 得られたポリマーEを4重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約15μmの高分子電解質膜A5を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      150%
プロトン伝導度  4.3×10-1 S/cm(80℃、相対湿度90%)
 得られた高分子電解質膜A5に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.04であった。
 得られたポリマーEを4重量%の濃度でNMPに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約10μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      90%
プロトン伝導度  4.6×10-1 S/cm(80℃、相対湿度90%)
実施例A6
 アルゴン雰囲気下、フラスコに無水臭化ニッケル13.5g(61.6mmol)とNMP160gとを混合し、内温70℃に昇温し1時間攪拌した。これを60℃に冷却し、2,2’-ビピリジル10.6g(67.8mmol)を加え、撹拌しながら30℃に冷却し、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸ジ(2,2-ジメチルプロピル)20.0g(38.2mmol)、2,5-ジクロロベンゾフェノン5.9g(23.4mmol)、1,3-ジクロロベンゼン1.6g(10.9mmol)を加え、NMP350gに溶解させて50℃に調整した。得られた溶液に、亜鉛粉末8.1g(123.3mmol)を加え、撹拌しながら30℃に冷却した。これに、上記ニッケル含有溶液を注ぎ込み、30℃のまま5時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液から、実施例A3と同様の操作で、スルホン酸前駆基を有するポリマーを得、次いで、実施例A3と同様の操作で、スルホン酸前駆基をスルホン酸基に変換することで、ポリマーFを得た。なお、ポリマーFの収量は16.4gであった。ポリマーFのMn、Mw及びIECを以下に示す。
Mn=3.6×10
Mw=9.0×10
IEC      4.4 meq/g
 得られたポリマーFを5重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約10μmの高分子電解質膜を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      200%
プロトン伝導度  4.0×10-1 S/cm(80℃、相対湿度90%)
 得られたポリマーFを5重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液を、アプリケーターを用いて、支持器材として巾300mm、長さ500mのポリエチレンテレフタレート(PET)フィルム(東洋紡績社製、E5000グレード)に連続的に流延塗布して、常圧下、70℃で1時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜A6を作製した。
 得られた高分子電解質膜A6に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.03であった。
実施例A7
 窒素雰囲気下、亜鉛粉末5.5g(84mmol)とN,N-ジメチルアセトアミド172gとを混合し、80℃に調整した。メタンスルホン酸0.16g(1.68mmol)とN,N-ジメチルアセトアミド8gから成る溶液を加え、80℃で2時間撹拌した。30℃に冷却後、4,4’-ジクロロビフェニル-2,2’-ジスルホン酸ジ(2,2-ジメチルプロピル)18.0g(31.3mmol)、9,9-ジオクチル-2,7-ジブロモフルオレン5.85g(10.67mmol)、トルエン89g加えた(これを溶液Aとする)。
 窒素雰囲気下、フラスコに無水臭化ニッケル2.75g(12.6mmol)、2,2’-ビピリジル2.95g(18.9mmol)とN,N-ジメチルアセトアミド148gとを混合し、内温65℃に昇温し1時間攪拌した。これを30℃に冷却し、ニッケル含有溶液を調製した(これを溶液Bとする)。
 溶液Bを、溶液Aに注ぎ込み、30℃で2時間撹拌し、黒色の重合溶液を得た。得られた重合溶液から、実施例A3と同様の操作で、スルホン酸前駆基を有するポリマーを得、次いで、実施例A3と同様の操作で、スルホン酸前駆基をスルホン酸基に変換することで、ポリマーGを得た。なお、ポリマーGの収量は13.3gであった。ポリマーGのMn、Mw及びIECを以下に示す。
Mn=1.3×10
Mw=3.7×10
IEC      4.5 meq/g
 得られたポリマーGを5重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜A7を作製した。
 得られた高分子電解質膜の吸水率及びプロトン伝導度は下記のとおりであった。
吸水率      250%
プロトン伝導度  3.9×10-1 S/cm(80℃、相対湿度90%)
 得られた高分子電解質膜A7に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.06であった。
 本発明のポリマーは、高分子電解質膜、特に燃料電池用プロトン伝導膜として用いた場合、高度のイオン伝導度と優れた耐水性とを両立できるため、特に燃料電池の用途において、好適に用いることができる。
<モル組成比及び重合度の測定B>
 H-NMR(600MHz)を測定し、積分比からモル組成比を算出した。重合度についても同様の測定を行い、末端プロトンとその他のプロトンとの積分比から重合度を算出した。
<イオン交換容量(IEC)の測定B>
 測定に供するポリマーを溶液キャスト法により成膜したポリマー膜を得、得られたポリマー膜を適当な重量になるように裁断した。裁断したポリマー膜の乾燥重量を加熱温度110℃に設定されたハロゲン水分率計を用いて測定した。次いで、このようにして乾燥させたポリマー膜を0.1mol/L水酸化ナトリウム水溶液5mLに浸漬した後、更に50mLのイオン交換水を加え、2時間放置した。その後、ポリマー膜が浸漬された溶液に、0.1mol/Lの塩酸を徐々に加えることで滴定を行い、中和点を求めた。そして、裁断したポリマー膜の乾燥重量と中和に要した塩酸の量から、ポリマーのイオン交換容量(単位:meq/g)を算出した。
<プロトン伝導度の測定B>
 交流法で測定した。1cmの開口部を有するシリコンゴム(厚さ200μm)の片面にカーボン電極を貼った測定用セルを2つ準備し、これらをカーボン電極同士が対向するように配置し、上記2つのセルに直接インピーダンス測定装置の端子を接続した。次いで、この2つの測定用セルの間に、上記方法で得られたイオン交換基をプロトン型に変換した高分子電解質膜をセットして、測定温度23℃で、2つの測定用セル間の抵抗値を測定した。その後、高分子電解質膜を除いて再度抵抗値を測定した。そして、高分子電解質膜を有する状態と有しない状態とで得られた2つの抵抗値の差に基づいて、高分子電解質膜の膜厚方向の膜抵抗を算出した。得られた膜抵抗の値と膜厚から、高分子電解質膜の膜厚方向のプロトン伝導度を算出した。なお、高分子電解質膜の両側に接触させる溶液としては、1mol/Lの希硫酸を用いた。
<吸水率の測定B>
 耐水性を表す指標として、高分子電解質膜の吸水率を測定した。なお、この吸水率は低いほど、耐水性が良好であることを指すものである。乾燥した膜を秤量し、80℃の脱イオン水に2時間浸漬した後の膜重量増加量から吸水量を算出し、乾燥膜に対する比率を求めた。
[実施例B1]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、4,4’-スルホニルジフェノール39.43g(157.5mmol)、炭酸カリウム22.86g(165.4mmol)、N-メチルピロリドン203mL、トルエン80mLを加えた。バス温150℃で12時間トルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、21時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた粗生成物77.31gをN-メチルピロリドンに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-1)で表されるポリマー73.34gを得た。
GPC分子量: Mn=10000、Mw=16000
重合度(n): 21
疎水性パラメータ: 2.43
Figure JPOXMLDOC01-appb-C000064
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.64g(174.7mmol)とジメチルスルホキシド221gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル30.01g(192.1mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-1)で表されるポリマー11.92g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末17.13g(262.0mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー25.23gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー25.18gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.25g、無水臭化リチウム10.83g(124.7mmol)及びN-メチルピロリドン315gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1260gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-2)で表されるポリマー18.41gを得た。
 得られたポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=127000、Mw=356000
IEC: 2.81meq/g
プロトン伝導度: 0.081S/cm
吸水率: 118%
Figure JPOXMLDOC01-appb-C000065
[実施例B2]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ビフェノール17.60g(94.52mmol)、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、4,4’-スルホニルジフェノール15.77g(63.01mmol)炭酸カリウム22.86g(165.4mmol)、N-メチルピロリドン195mL、トルエン60mLを加えた。バス温150℃で6時間トルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、13時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた祖生成物79.23gをN-メチルピロリドン317gに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-3)で表されるポリマー73.66gを得た。
GPC分子量: Mn=11000、Mw=18000
モル組成比: 4,4’-ジクロロジフェニルスルホン由来の芳香族残基+4,4’-スルホニルジフェノール由来の芳香族残基/4,4’-ビフェノール由来の芳香族残基=72/28
重合度(n): 25
疎水性パラメータ: 2.51
疎水性パラメータは以下の計算式により2.51と計算された。
(2.43×72)+(2.70×28)/100=2.51
Figure JPOXMLDOC01-appb-C000066
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.45g(173.2mmol)とジメチルスルホキシド220gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル29.76g(190.5mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-3)で表されるポリマー11.92g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末16.99g(259.8mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー26.55gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー26.55gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.44g、無水臭化リチウム11.77g(135.5mmol)及びN-メチルピロリドン313gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1250gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-4)で表されるポリマー19.84gを得た。
 得られたポリアリーレン系ブロック共重合体を7重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=226000、Mw=486000
IEC: 2.78meq/g
プロトン伝導度: 0.088S/cm
吸水率: 101%
Figure JPOXMLDOC01-appb-C000067
 上記高分子電解質膜に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.30であった。
[実施例B3]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、2,2-ビス(4-ヒドロキシフェニル)プロパン21.58g(94.52mmol)、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、4,4’-スルホニルジフェノール15.77g(63.01mmol)炭酸カリウム22.86g(165.4mmol)、N-メチルピロリドン198mL、トルエン60mLを加えた。バス温150℃で7時間トルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、12時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた祖生成物80.54gをN-メチルピロリドン321gに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-5)で表されるポリマー72.89gを得た。
GPC分子量: Mn=7900、Mw=14000
モル組成比: 4,4’-ジクロロジフェニルスルホン由来の芳香族残基+4,4’-スルホニルジフェノール由来の芳香族残基/2,2-ビス(4-ヒドロキシフェニル)プロパン由来の芳香族残基=71/29
重合度(n): 21
疎水性パラメータ: 3.01
疎水性パラメータは以下の計算式により3.01と計算された。
(2.43×71)+(4.43×29)/100=3.01
Figure JPOXMLDOC01-appb-C000068
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.58g(174.2mmol)とジメチルスルホキシド221gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル29.93g(191.6mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-5)で表されるポリマー11.92g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末17.09g(261.3mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー27.18gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー27.18gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.43g、無水臭化リチウム11.71g(134.8mmol)及びN-メチルピロリドン335gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1339gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-6)表されるポリマー19.68gを得た。
 得られたポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=183000、Mw=383000
IEC: 2.78meq/g
プロトン伝導度: 0.090S/cm
吸水率: 89%
Figure JPOXMLDOC01-appb-C000069
 上記高分子電解質膜に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.25であった。
[実施例B4]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、2,2-ビス(4-ヒドロキシフェニル)プロパン35.96g(157.5mmol)、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、炭酸カリウム22.86g(165.4mmol)、N-メチルピロリドン195mL、トルエン60mLを加えた。バス温150℃で6時間トルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、11時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた祖生成物74.16gをN-メチルピロリドン300gに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-7)で表されるポリマー70.95gを得た。
GPC分子量: Mn=6000、Mw=10000
モル組成比: 4,4’-ジクロロジフェニルスルホン由来の芳香族残基+4,4’-スルホニルジフェノール由来の芳香族残基/2,2-ビス(4-ヒドロキシフェニル)プロパン由来の芳香族残基=53/47
重合度(n): 19
疎水性パラメータ: 3.37
疎水性パラメータは以下の計算式により3.37と計算された。
(2.43×53)+(4.43×47)/100=3.37
Figure JPOXMLDOC01-appb-C000070
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.58g(174.2mmol)とジメチルスルホキシド221gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル29.93g(191.6mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-7)で表されるポリマー11.92g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末17.09g(261.3mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー26.04gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー26.04gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.33g、無水臭化リチウム11.21g(129.1mmol)及びN-メチルピロリドン326gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1302gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-8)で表されるポリマー15.47gを得た。
 得られたポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=78000、Mw=279000
IEC: 2.73meq/g
プロトン伝導度: 0.075S/cm
吸水率: 69%
Figure JPOXMLDOC01-appb-C000071
 上記ポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をPETフィルム上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。得られた高分子電解質膜に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.21であった。
[実施例B5]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、4,4’-スルホニルジフェノール41.45g(165.6mmol)、炭酸カリウム24.04g(173.9mmol)、N-メチルピロリドン207mL、トルエン80mLを加えた。バス温150℃でトルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、13時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた祖生成物86.40gをN-メチルピロリドンに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-9)で表されるポリマー74.25gを得た。
 得られたポリアリーレン系ブロック共重合体を10重量%の濃度でNMPに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=18000、Mw=32000
重合度(n): 42
疎水性パラメータ: 2.43
Figure JPOXMLDOC01-appb-C000072
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.19g(171.2mmol)とジメチルスルホキシド221gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル29.42g(188.4mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-9)で表されるポリマー11.92g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末16.79g(256.8mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー25.88gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー25.80gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.30g、無水臭化リチウム11.10g(127.8mmol)及びN-メチルピロリドン323gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1290gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-10)で表されるポリマー18.10gを得た。
 得られたポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=147000、Mw=341000
IEC: 2.61meq/g
プロトン伝導度: 0.062S/cm
吸水率: 95%
Figure JPOXMLDOC01-appb-C000073
[実施例B6]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ビフェノール18.69g(100.37mmol)、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、4,4’-スルホニルジフェノール16.75g(66.92mmol)、炭酸カリウム24.28g(175.7mmol)、N-メチルピロリドン199mL、トルエン80mLを加えた。バス温150℃で6時間トルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、15時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた祖生成物をN-メチルピロリドンに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-11)で表されるポリマー69.78gを得た。
GPC分子量: Mn=23000、Mw=38000
モル組成比: 4,4’-ジクロロジフェニルスルホン由来の芳香族残基+4,4’-スルホニルジフェノール由来の芳香族残基/4,4’-ビフェノール由来の芳香族残基=71/29
重合度(n): 45
疎水性パラメータ: 2.51
疎水性パラメータは以下の計算式により2.51と計算された。
(2.43×71)+(2.70×29)/100=2.51
Figure JPOXMLDOC01-appb-C000074
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.11g(170.6mmol)とジメチルスルホキシド221gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル29.30g(187.6mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-11)で表されるポリマー11.20g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末16.73g(255.9mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー24.50gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー24.50gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.24g、無水臭化リチウム10.84g(124.8mmol)及びN-メチルピロリドン306gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1225gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-12)で表されるポリマー14.87gを得た。
 得られたポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=135000、Mw=269000
IEC: 2.65meq/g
プロトン伝導度: 0.025S/cm
吸水率: 78%
Figure JPOXMLDOC01-appb-C000075
 上記ポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をPETフィルム上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。得られた高分子電解質膜に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.25であった。
[実施例B7]
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、2,2-ビス(4-ヒドロキシフェニル)プロパン22.69g(99.38mmol)、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、4,4’-スルホニルジフェノール16.58g(66.25mmol)、炭酸カリウム24.04g(173.9mmol)、N-メチルピロリドン202mL、トルエン60mLを加えた。バス温150℃で7時間トルエンを加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、14時間保温撹拌した。放冷後、反応液を12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた祖生成物76.77gをN-メチルピロリドン304gに溶解し、12N塩酸/メタノール溶液(重量比1/1の混合溶液)に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥し下記式(E-13)で表されるポリマー75.59gを得た。
GPC分子量: Mn=14000、Mw=26000
モル組成比: 4,4’-ジクロロジフェニルスルホン由来の芳香族残基+4,4’-スルホニルジフェノール由来の芳香族残基/2,2-ビス(4-ヒドロキシフェニル)プロパン由来の芳香族残基=70/30
重合度(n): 39
疎水性パラメータ: 3.03
疎水性パラメータは以下の計算式により3.03と計算された。
(2.43×70)+(4.43×30)/100=3.03
Figure JPOXMLDOC01-appb-C000076
 次に、アルゴン雰囲気下、フラスコに無水塩化ニッケル22.23g(171.6mmol)とジメチルスルホキシド221gとを混合し、内温70℃に昇温し1時間攪拌した。これを50℃に冷却し、2,2’-ビピリジル29.47g(188.7mmol)を加え、同温度で30分撹拌しニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに上記式(E-13)で表されるポリマー11.92g、ジメチルスルホキシド300gを加え50℃に調整した。得られた溶液に、亜鉛粉末16.83g(257.3mmol)、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.0g(67.29mmol)を加え、これに、上記ニッケル含有溶液を注ぎ込み、ついで70℃に昇温して3時間重合反応を行い、黒色の重合溶液を得た。
 得られた重合溶液を、水に投入し、生じた沈殿を濾過した。得られた沈殿物に水、35%亜硝酸ナトリウム水溶液9.2g、69%硝酸160gを加え、室温で1時間撹拌した。粗ポリマー溶液を濾過し、さらに濾液のpHが4を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が696gになるまで水を加え、さらに5%水酸化リチウム水溶液を、粗ポリマー水溶液のpHが7~9になるまで加え、さらにメタノール666gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、水とメタノールを用いてさらに洗浄し、乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー26.29gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー26.29gをフラスコに入れ、アルゴンで十分フラスコ内を置換し、水2.33g、無水臭化リチウム11.32g(130.4mmol)及びN-メチルピロリドン329gを加え、スルホン酸前駆基を有するポリマーを十分溶解させてから、バス温を126℃に昇温して、同温度で12時間スルホン酸基への変換反応を行い、ポリマー溶液を得た。
 上記ポリマー溶液を6N塩酸1315gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、大量の塩酸メタノール溶液で数回洗浄した後、濾液のpHが4を越えるまで水洗を行ない、乾燥することにより下記式(E-14)で表されるポリマー18.15gを得た。
得られたポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をガラス板上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。
GPC分子量: Mn=135000、Mw=325000
IEC: 2.70meq/g
プロトン伝導度: 0.047S/cm
吸水率: 80%
Figure JPOXMLDOC01-appb-C000077
 上記ポリアリーレン系ブロック共重合体を9重量%の濃度でN―メチルピロリドンに溶解し、高分子電解質溶液を調製した。その後、得られた高分子電解質溶液をPETフィルム上に流延塗布し、常圧下、80℃で2時間乾燥させる事により溶媒を除去した後、塩酸処理、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜を作製した。得られた高分子電解質膜に、上述の第1の浸漬処理及び第2の浸漬処理を行い、13C-固体NMRスペクトルの測定を行った。ここで、13C-固体NMRスペクトルのピークを170ppmから100ppmの範囲で積分し、面積を求めた。磁化移動時間は3ミリ秒とし、積算回数は2048回とした。得られた不均一性因子Hは0.29であった。
 上記実施例の評価結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000078
 以上の結果から、イオン交換基を有するポリマーと、ポリスチレン換算の重量平均分子量が4000~25000のイオン交換基を実質的に有しないポリマーとを重合させて得られる、イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとを含むブロック共重合体であって、該イオン交換基を有するブロックが、上記式(B-1)で表される構造単位を含み、且つ、該イオン交換基を実質的に有しないブロックが、上記式(B-2)で表される構造単位を含むポリアリーレン系ブロック共重合体は、高いプロトン伝導性を有しつつ、優れた耐水性を有する膜を提供できることが明らかとなった。本発明の高分子電解質は、発電効率に優れた燃料電池を提供できるため、工業的に極めて有用である。
<イオン交換容量(IEC)の測定C>
 イオン交換基を遊離酸型(プロトン型)に変換した膜をハロゲン水分率計で105℃でさらに乾燥させ、絶乾重量を求めた。この膜を、0.1mol/Lの水酸化ナトリウム水溶液5mLに浸漬した後、50mLのイオン交換水を加え、2時間放置した。その後、この高分子電解質膜が浸漬された溶液に0.1mol/Lの塩酸を徐々に加えることで滴定し、中和点を求めた。絶乾重量と中和点に要する0.1mol/L塩酸の量から、イオン交換容量を求めた。
<重合度nの測定C>
 イオン交換基を有しないブロックの前駆体のH-NMR(600MHz)を測定し、末端プロトンとその他のプロトンとの積分比から重合度nを算出した。
合成例C1(イオン交換基を有しないブロック前駆体A)
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、ビス(4-ヒドロキシフェニル)スルホン41.45g(165.6mmol)、炭酸カリウム24.04g(173.9mmol)、N-メチルピロリドン(NMP)207mL、トルエン80mLを加えた。バス温150℃で加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、13時間保温撹拌した。放冷後、反応液を37重量%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた粗生成物86.40gをNMPに溶解し、37重%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、乾燥した。目的物74.25gを得た。得られたイオン交換基を有しないブロック前駆体Aの分子量は、Mn=18000、Mw=32000、重合度nは43であった。
Figure JPOXMLDOC01-appb-C000079
合成例C2(イオン交換基を有しないブロック前駆体B)
共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’-ジクロロジフェニルスルホン50.00g(174.1mmol)、ビス(4-ヒドロキシフェニル)スルホン39.43g(157.5mmol)、炭酸カリウム22.86g(165.4mmol)、N-メチルピロリドン(NMP)203mL、トルエン80mLを加えた。バス温150℃で加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、バス温を180℃まで昇温し、21時間保温撹拌した。放冷後、反応液を37重量%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、次いでメタノールで洗浄した後、乾燥した。得られた粗生成物77.31gをNMPに溶解し、37重量%塩酸/メタノール溶液(重量比1/1の混合溶液)に注加し、析出した沈殿を濾過で集め、イオン交換水で中性になるまで洗浄し、乾燥した。目的物73.34gを得た。得られたイオン交換基を有しないブロック前駆体Bの分子量は、Mn=9700、Mw=16000、重合度nは22であった。
Figure JPOXMLDOC01-appb-C000080
合成例C3(イオン交換基を有しないブロック前駆体C)
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、ビス(4-ヒドロキシフェニル)スルホン8.00g(32.0mmol)、炭酸カリウム5.30g(38.4mmol)、N,N-ジメチルアセトアミド(DMAc)71mL、トルエン36mLを加えた。次いで、140℃で加熱還流することで系内の水分を共沸脱水し、生成した水とトルエンを留去した後、60℃まで冷却した。これに、4-クロロ-4’-フルオロジフェニルスルホン20.77g(76.7mmol)を加え、120℃まで昇温し、13時間保温撹拌した。放冷後、反応液を濾過して、無機塩を除き、ろ液をメタノールに注加し、析出した沈殿を濾過で集め、乾燥させた。得られた粗生成物をクロロホルム-酢酸エチルで再結晶精製を行い、目的物7.73gを得た。得られたイオン交換基を有しないブロック前駆体Cの重合度nは3であった。
Figure JPOXMLDOC01-appb-C000081
合成例C4
 アルゴン雰囲気下、フラスコに無水塩化ニッケル22.19g(171.2mmol)とジメチルスルホキシド(DMSO)221gとを加え、70℃に昇温し、溶解した。これを50℃に冷却し、2,2’-ビピリジル29.42g(188.4mmol)を加え、同温度で保温することで、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに合成例C1で得られた前駆体A11.92g、DMSO300gを加え50℃に昇温し、溶解した。得られた溶液に、メタンスルホン酸0.039g(0.40mmol)、亜鉛粉末16.79g(256.8mmol)を加え、30分保温撹拌した。次いで、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.00g(67.3mmol)を加え溶解させた。これに、上記ニッケル含有溶液を注加し、次いで70℃に昇温して2時間保温撹拌し、黒色の重合溶液を得た。
 得られた重合溶液を、70℃の熱水1200gに注加し、生じた沈殿を濾過で集めた。沈殿物に、沈殿物と水との合計が696gになるように水を加え、さらに35重量%亜硝酸ナトリウム水溶液9.2gを加えた。このスラリー溶液に、65重量%硝酸172gを30分かけて滴下し、滴下後、室温で1時間撹拌した。スラリー溶液を濾過し、集めた粗ポリマーを濾液のpHが1を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が698gになるまで水を加え、さらに5重量%水酸化リチウム水溶液を、粗ポリマーと水のスラリー溶液のpHが7.8になるまで加え、さらにメタノール666gを加え、1時間還流させた。粗ポリマーを濾過して集め、水200g、次いで、メタノール280gを用いて浸漬洗浄し、80℃の乾燥機で乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー25.23gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー25.15gをフラスコに入れ、アルゴン雰囲気下、NMP630gを加えて、80℃で加熱撹拌し、溶解させた。これに活性アルミナ33gを加えて1時間30分保温撹拌した。その後、これに630gのNMPを加え、濾過により活性アルミナを除いた。得られた溶液からNMPを減圧留去することで濃縮し、305gのNMP溶液とした。この溶液に水2.2g、無水臭化リチウム10.82g(124.6mmol)を加え、120℃に昇温して、同温度で12時間保温撹拌した。得られた反応溶液を6N塩酸1260gに投入し、1時間攪拌した。析出した粗ポリマーを濾過で集め、1260gの35重量%塩酸/メタノール溶液(重量比1/1の混合溶液)で3回浸漬洗浄した後、濾液のpHが4を越えるまで水洗を行なった。ついで、粗ポリマーを1640gの熱水(95℃)で4回浸漬洗浄し、乾燥することにより下記構造で表されるポリアリーレン系ブロック共重合体17.71gを得た。得られた共重合体の分子量は、Mn=139000、Mw=314000であった。
Figure JPOXMLDOC01-appb-C000082
得られたポリアリーレン系ブロック共重合体を9.0重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をPET上に流延塗布し、常圧下、100℃で乾燥させる事により溶媒を除去した後、2N硫酸で浸漬処理し、イオン交換水での洗浄を経て、膜厚約22μmの高分子電解質膜C1を作製した。得られた高分子電解質膜C1のIECは2.49meq/gであった。
合成例C5
アルゴン雰囲気下、フラスコに無水塩化ニッケル22.64g(174.7mmol)とジメチルスルホキシド(DMSO)221gとを加え、70℃に昇温し、溶解した。これを50℃に冷却し、2,2’-ビピリジル30.01g(192.1mmol)を加え、同温度で保温することで、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに合成例C2で得られた前駆体B11.92g、DMSO300gを加え50℃に昇温し、溶解した。得られた溶液に、メタンスルホン酸0.039g(0.40mmol)、亜鉛粉末17.13g(262.0mmol)を加え、30分保温撹拌した。次いで、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)20.00g(67.3mmol)を加え溶解させた。これに、上記ニッケル含有溶液を注加し、次いで70℃に昇温して2時間保温撹拌し、黒色の重合溶液を得た。  得られた重合溶液を、70℃の熱水1200gに注加し、生じた沈殿を濾過で集めた。沈殿物に、沈殿物と水との合計が696gになるように水を加え、さらに35重量%亜硝酸ナトリウム水溶液9.2gを加えた。このスラリー溶液に、65重量%硝酸172gを30分かけて滴下し、滴下後、室温で1時間撹拌した。スラリー溶液を濾過し、集めた粗ポリマーを濾液のpHが1を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が698gになるまで水を加え、さらに5重量%水酸化リチウム水溶液を、粗ポリマーと水のスラリー溶液のpHが8.2になるまで加え、さらにメタノール666gを加え、1時間還流させた。粗ポリマーを濾過して集め、水200g、次いで、メタノール280gを用いて浸漬洗浄し、80℃の乾燥機で乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー25.37gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー25.31gをフラスコに入れ、アルゴン雰囲気下、NMP630gを加えて、80℃で加熱撹拌し、溶解させた。これに活性アルミナ33gを加えて1時間30分保温撹拌した。その後、これに630gのNMPを加え、濾過により活性アルミナを除いた。得られた溶液からNMPを減圧留去することで濃縮し、302gのNMP溶液とした。この溶液に水2.3g、無水臭化リチウム10.89g(125.4mmol)を加え、120℃に昇温して、同温度で12時間保温撹拌した。得られた反応溶液を6N塩酸1270gに投入し、1時間攪拌した。析出した粗ポリマーを濾過で集め、1270gの35重量%塩酸/メタノール溶液(重量比1/1の混合溶液)で3回浸漬洗浄した後、濾液のpHが4を越えるまで水洗を行った。ついで、粗ポリマーを1650gの熱水(95℃)で4回浸漬洗浄し、乾燥することにより下記構造で表されるポリアリーレン系ブロック共重合体18.50gを得た。得られた共重合体の分子量は、Mn=116000、Mw=315000であった。
Figure JPOXMLDOC01-appb-C000083
得られたポリアリーレン系ブロック共重合体を9.0重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をPET上に流延塗布し、常圧下、115℃で乾燥させる事により溶媒を除去した後、2N硫酸で浸漬処理し、イオン交換水での洗浄を経て、膜厚約20μmの高分子電解質膜C2を作製した。得られた高分子電解質膜C2のIECは2.70meq/gであった。
合成例C6
 アルゴン雰囲気下、フラスコに無水塩化ニッケル13.85g(106.9mmol)とジメチルスルホキシド(DMSO)110gとを加え、70℃に昇温し、溶解した。これを50℃に冷却し、2,2’-ビピリジル18.36g(117.6mmol)を加え、同温度で保温することで、ニッケル含有溶液を調製した。
 アルゴン雰囲気下、フラスコに合成例C3で得られた前駆体C6.35g、DMSO150gを加え50℃に昇温し、溶解した。得られた溶液に、メタンスルホン酸0.019g(0.20mmol)、亜鉛粉末10.48g(160.3mmol)を加え、30分保温撹拌した。次いで、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)10.00g(33.7mmol)を加え溶解させた。これに、上記ニッケル含有溶液を注加し、次いで70℃に昇温して2時間保温撹拌し、黒色の重合溶液を得た。得られた重合溶液を、70℃の熱水600gに注加し、生じた沈殿を濾過で集めた。沈殿物に、沈殿物と水との合計が348gになるように水を加え、さらに35重量%亜硝酸ナトリウム水溶液4.6gを加えた。このスラリー溶液に、70重量%硝酸80gを12分かけて滴下し、滴下後、室温で1時間撹拌した。スラリー溶液を濾過し、集めた粗ポリマーを濾液のpHが1を越えるまで水洗を行なった。次に、冷却器を備えたフラスコに、粗ポリマーと、粗ポリマーと水との合計の重量が352gになるまで水を加え、さらに5重量%水酸化リチウム水溶液を、粗ポリマーと水のスラリー溶液のpHが8.4になるまで加え、さらにメタノール333gを加え、1時間還流させた。 粗ポリマーを濾過して集め、水150g、次いで、メタノール150gを用いて浸漬洗浄し、80℃の乾燥機で乾燥することで、スルホン酸前駆基(スルホン酸(2,2-ジメチルプロピル)基)を有するポリマー12.30gを得た。
 次に、以下のようにしてスルホン酸前駆基をスルホン酸基に変換した。
 上述のようにして得られたスルホン酸前駆基を有するポリマー12.25gをフラスコに入れ、アルゴン雰囲気下、NMP110g、水1.1g、無水臭化リチウム5.13g(59.7mmol)を加え、120℃に昇温して、同温度で13時間保温撹拌した。得られた反応溶液を6N塩酸610gに投入し、1時間攪拌した。析出した粗ポリマーを濾過で集め、600gの35重量%塩酸/メタノール溶液(重量比1/1の混合溶液)で3回浸漬洗浄した後、濾液のpHが4を越えるまで水洗を行った。ついで、粗ポリマーを800gの熱水(95℃)で3回浸漬洗浄し、乾燥することにより下記構造で表されるポリアリーレン系ブロック共重合体8.89gを得た。得られた共重合体の分子量は、Mn=54000、Mw=301000であった。
Figure JPOXMLDOC01-appb-C000084
 得られたポリアリーレン系ブロック共重合体を12.0重量%の濃度でDMSOに溶解し、高分子電解質溶液を調整した。その後、得られた高分子電解質溶液をPET上に流延塗布し、常圧下、100℃で乾燥させる事により溶媒を除去した後、2N硫酸で浸漬処理し、イオン交換水での洗浄を経て、膜厚約27μmの高分子電解質膜C3を作製した。得られた高分子電解質膜C3のIECは2.82meq/gであった。
燃料電池セルの作製と評価
(触媒インク調製)
 市販の5重量%ナフィオン(登録商標)溶液(アルドリッチ社製、商品名:Nafion perfluorinated ion-exchange resin,5重量% soln in lower aliphatic alcohols/HO mix、溶媒:水と低級アルコールの混合物)3.15gに、50重量%の白金が担持された白金担持カーボン(エヌ・イー・ケムキャット社製SA50BK)を0.50g投入し、さらに水を3.23g、エタノール21.83gを加えた。得られた混合物を1時間超音波処理した後、スターラーで6時間攪拌して触媒インクを得た。
実施例C1
(MEA1の作製)
 上記で作製した高分子電解質膜C1の片面の中央部における1cm×1.3cmの領域に、スプレー法にて上記の触媒インクを塗布した。この際、吐出口から膜までの距離は6cm、ステージ温度は75℃に設定した。同様にして重ね塗りをした後、溶媒を除去してアノード触媒層を形成させた。アノード触媒層として2.1mgの固形分(白金目付け:0.6mg/cm)が塗布された。続いて、もう一方の面に同様に触媒インクを塗布して、カソード触媒層を形成させて、MEA1を得た。カソード触媒層として2.1mgの固形分(白金目付け:0.6mg/cm)が塗布された。
実施例C2
(MEA2作製)
 実施例C1の高分子電解質膜C1の代わりに高分子電解質膜C2を用いたこと以外は実施例C1と同様にしてMEA2を得た。アノード触媒層として2.1mgの固形分(白金目付け:0.6mg/cm)カソード触媒層として2.1mgの固形分(白金目付け:0.6mg/cm)が塗布された。
実施例C3
(MEA3作製)
 実施例C1の高分子電解質膜C1の代わりに高分子電解質膜C3を用いたこと以外は実施例C1と同様にしてMEA3を得た。アノード触媒層として2.1mgの固形分(白金目付け:0.6mg/cm)カソード触媒層として2.1mgの固形分(白金目付け:0.6mg/cm)が塗布された。
(燃料電池セル組み立て)
上記で得られたMEAの両外側に、ガス拡散層としてカーボンペーパーと、ガス通路用の溝を切削加工したカーボン製セパレータを配し、さらにその外側に集電体及びエンドプレートを順に配置し、これらをボルトで締め付けることによって、有効膜面積1.3cmの燃料電池セルを組み立てた。
(発電特性評価)
 得られた燃料電池セル80℃に保ちながら、アノードに加湿水素、カソードに加湿空気をそれぞれ供給した。この際、セルのガス出口における背圧が0.1MPaGとなるようにした。各原料ガスの加湿は、水の入ったバブラーにガスを通すことで行い、加湿度は、バブラー水温で調整を行った。水素のガス流量は529mL/min、空気のガス流量は1665mL/minとした。
 実施例C1~C3で得られたMEAを燃料電池セルに組み込み、下記加湿条件下で、電流密度1.0A/cmの時の電圧値を測定した。結果を、表4に示す。この値が大きいほど、発電特性が良好であることを示す。
[加湿条件1]
アノードバブラー水温80℃
カソードバブラー水温80℃
アノードガス相対湿度100%RH
カソードガス相対湿度100%RH
[加湿条件2]
アノードバブラー水温45℃
カソードバブラー水温55℃
アノードガス相対湿度20%RH
カソードガス相対湿度33%RH
Figure JPOXMLDOC01-appb-T000085
 以上の結果から、電解質膜として用いたときに、高温低加湿条件下で、良好な発電特性を示すポリアリーレン系ブロック共重合体、該ブロック共重合体を含む高分子電解質、該高分子電解質を用いてなる高分子電解質膜、該高分子電解質を用いてなる触媒組成物及びこれらを用いてなる高分子電解質形燃料電池を提供できることが明らかとなった。
 10…燃料電池、12…高分子電解質膜、14a,14b…触媒層、16a,16b…ガス拡散層、18a,18b…セパレータ、20…膜-電極接合体(MEA)。

Claims (35)

  1.  イオン交換基を有する高分子電解質を含む高分子電解質膜であって、
     前記高分子電解質膜を5mmol/L塩化鉄(II)四水和物水溶液に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第1の浸漬処理を行った後の前記高分子電解質膜の13C-固体核磁気共鳴スペクトルを測定して得られるスペクトルのピークの面積の合計をSpとし、
     前記第1の浸漬処理前の前記高分子電解質膜を水に25℃で1時間浸漬した後、25℃、10hPa以下で12時間乾燥する第2の浸漬処理を行った後の前記高分子電解質膜の13C-固体核磁気共鳴スペクトルを測定して得られるスペクトルのピークの面積の合計をSnpとしたとき、
     前記Spと前記Snpとが、下記式(I)で表される関係を満足する、高分子電解質膜。
      Sp/Snp≦0.42   (I)
  2.  前記高分子電解質が、イオン交換基を有する構造単位と、イオン交換基を有しない構造単位とを備える共重合体を含有する、請求項1記載の高分子電解質膜。
  3.  前記高分子電解質が、芳香族系高分子電解質である、請求項1又は2記載の高分子電解質膜。
  4.  主鎖が、実質的に複数の芳香環が直接結合で連結してなるポリアリーレン構造であり、 該主鎖を構成している芳香環の一部又は全部に直接結合してなるスルホン酸基を有し、 さらに該主鎖を構成している芳香環の一部又は全部に、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有し、
    且つイオン交換容量が3.0meq/gを越える、ポリマー。
  5.  構造単位の合計を100モル%としたとき、スルホン酸基が直接結合している芳香環を主鎖に有する構造単位が20モル%以上である、請求項4記載のポリマー。
  6.  下記式(A-1)で表される構造単位を有する、請求項4又は5記載のポリマー。
    Figure JPOXMLDOC01-appb-C000001
    [式(A-1)中、Arは、2価の芳香族基を表し、該芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Arにおける主鎖を構成する芳香環に、少なくとも一つのスルホン酸基が直接結合している。]
  7.  前記式(A-1)で表される構造単位として、下記式(A-2)で表される構造単位を含む、請求項6記載のポリマー。
    Figure JPOXMLDOC01-appb-C000002
    [式(A-2)中、Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基を表す。pは1以上3以下の整数であり、qは0以上3以下の整数であり、p+qは4以下の整数である。なお、qが2以上である場合、複数存在するRはそれぞれ同一でも異なっていてもよい。]
  8.  前記ポリアリーレン構造は、芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上の構造である、請求項4~7のいずれか一項に記載のポリマー。
  9.  下記式(A-3)で表される第1の芳香族モノマー及び下記式(A-4)で表される第2の芳香族モノマーを含む原料モノマーを重合して得られる、ポリマー。
       Q-Ar10-Q   (A-3)
    [式(A-3)中、Ar10は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの基を有していてもよい2価の芳香族基であり、Qは脱離基を表し、2つのQは同一であっても異なっていてもよい。そして、2つのQのうち、いずれかのQが結合している芳香環にスルホン酸基及び/又はスルホン酸前駆基が結合している。]
       Q-Ar-Q   (A-4)
    [式(A-4)中、Arは、2価の芳香族基を表し、ここで2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの置換基を有する。Qは脱離基を表し、2つのQは同一であっても異なっていてもよい。]
  10.  前記第2の芳香族モノマーが、置換基を有していてもよいアシル基を置換基として有する、請求項9記載のポリマー。
  11.  前記原料モノマーをゼロ価遷移金属錯体の共存下で重合して得られる、請求項9又は10記載のポリマー。
  12.  イオン交換基を有するブロックと、イオン交換基を実質的に有しないポリスチレン換算の重量平均分子量が4000~25000のポリマーから得られるイオン交換基を実質的に有しないブロックと、を含むブロック共重合体であって、
     前記イオン交換基を有するブロックが、下記式(B-1)で表される構造単位を含み、且つ、前記イオン交換基を実質的に有しないブロックが、下記式(B-2)で表される構造単位を含む、ポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000003
    [式(B-1)中、Arはアリーレン基を表し、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Arにおいて主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合する。式(B-2)中、Arは2価の芳香族基を表し、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。Xは酸素原子(-O-)又は硫黄原子(-S-)を表す。]
  13.  前記イオン交換基がスルホン酸基、ホスホン酸基、カルボン酸基及びスルホンイミド基からなる群より選ばれる少なくとも1つの酸基である、請求項12記載のポリアリーレン系ブロック共重合体。
  14.  前記式(B-1)で表される構造単位が、下記式(B-3)で表される構造単位である、請求項12又は13記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000004
    [式(B-3)中、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基又はシアノ基を表す。kは0~3の整数を表し、pは1又は2の整数を表し、k+pは4以下の整数を表す。kが2以上である場合、複数存在するRは、それぞれ同一でも異なってもよい。)
  15.  前記イオン交換基を実質的に有しないポリマーが、下記式(B-4)で表されるポリマーである、請求項12~14のいずれか一項に記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000005
    [式(B-4)中、Ar21は、2価の芳香族基を表し、複数あるAr21は、それぞれ同一でも異なってもよい。該芳香族基は、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基、置換基を有していてもよい炭素数2~20のアシル基及びシアノ基からなる群より選ばれる少なくとも1つの基で置換されていてもよい。X11は酸素原子(-O-)又は硫黄原子(-S-)を表し、複数存在するX11は、それぞれ同一でも異なってもよい。Yは脱離基を表し、2つのYは同一でも異なっていてもよい。qは4以上の整数を表す。]
  16.  前記式(B-4)で表されるポリマーの疎水性パラメータが1.7~6.0である、請求項15記載のポリアリーレン系ブロック共重合体。
  17.  前記式(B-4)で表されるポリマーの疎水性パラメータが2.5~4.0である、請求項15記載のポリアリーレン系ブロック共重合体。
  18.  イオン交換容量が、1.0~7.0meq/gである、請求項12~17のいずれか一項に記載のポリアリーレン系ブロック共重合体。
  19.  イオン交換基を有するブロックと、イオン交換基を実質的に有しないブロックとをそれぞれ有し、
     前記イオン交換基を有するブロックの主鎖が、実質的に複数の芳香環が直接連結してなるポリアリーレン構造を有し、
     さらにイオン交換基の一部又は全部が、主鎖を構成する芳香環に直接結合している構造であり、
     前記イオン交換基を実質的に有しないブロックが、下記式(C-1)で表される構造を有する、ポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000006
    [式(C-1)中、Ar及びArは互いに独立にアリーレン基を表す。該アリーレン基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基で置換されていてもよい。Xはカルボニル基(-C(=O)-)又はスルホニル基(-S(=O)-)を表し、Yは酸素原子(-O-)又は硫黄原子(-S-)を表す。nは3~45の整数を表す。複数存在するAr、Ar、X及びYは、それぞれ同一でも異なってもよい。]
  20.  前記イオン交換基を実質的に有しないブロックが下記式(C-2)で表される構造を有する、請求項19記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000007
    (式中、nは3~45の整数を表す。)
  21.  前記イオン交換基を有するブロックが、下記式(C-3)で表される構造を有する、請求項19又は20記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000008
    [式(C-3)中、mは3以上の整数を表し、Arはアリーレン基を表す。ここで該アリーレン基は、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基又は置換基を有していてもよい炭素数2~20のアシル基で置換されていてもよい。Arは主鎖を構成する芳香環に、少なくとも一つのイオン交換基が直接結合する。複数存在するArは、それぞれ互いに同一でも異なってもよい。]
  22.  前記イオン交換基がスルホン酸基、スルホンイミド基、ホスホン酸基及びカルボン酸基からなる群より選ばれる少なくとも1つの酸基である、請求項19~21のいずれか一項に記載のポリアリーレン系ブロック共重合体。
  23.  前記イオン交換基を有するブロックが、下記式(C-4)で表される構造を有する、請求項19~22のいずれか一項に記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000009
    [式(C-4)中、mは3以上の整数を表す。Rは、フッ素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数6~20のアリールオキシ基及び置換基を有していてもよい炭素数2~20のアシル基からなる群より選ばれる少なくとも1つの置換基を表す。pは0~3の整数である。Rが複数存在する場合、それぞれ同一でも異なってもよい。]
  24.  イオン交換容量が、0.5meq/g~5.0meq/gである、請求項19~23のいずれか一項に記載のポリアリーレン系ブロック共重合体。
  25.  請求項4~11のいずれか一項に記載のポリマーを含む、高分子電解質。
  26.  請求項12~18のいずれか一項に記載のポリアリーレン系ブロック共重合体を含む、高分子電解質。
  27.  請求項19~24のいずれか一項に記載のポリアリーレン系ブロック共重合体を含む、高分子電解質。
  28.  請求項25~27のいずれか一項に記載の高分子電解質を含有する高分子電解質膜。
  29.  孔中に高分子電解質を有する多孔質基材からなる高分子電解質複合膜であって、
    前記高分子電解質が、請求項25~27のいずれか一項に記載の高分子電解質である、高分子電解質複合膜。
  30.  請求項25~27のいずれか一項に記載の高分子電解質と、触媒成分とを含む、触媒組成物。
  31.  請求項1~3のいずれか一項に記載の高分子電解質膜と、該高分子電解質膜上に形成された触媒層と、を備える膜-電極接合体。
  32.  高分子電解質膜と、該高分子電解質膜上に形成された触媒層と、を備える膜-電極接合体であって、
     前記高分子電解質膜が、請求項25~27のいずれか一項に記載の高分子電解質を含有する膜-電極接合体。
  33.  請求項28記載の高分子電解質膜又は請求項29記載の高分子電解質複合膜を有する、膜-電極接合体。
  34.  高分子電解質膜と、該高分子電解質膜上に形成された触媒層と、を備える膜-電極接合体であって、
     前記触媒層が、請求項30記載の触媒組成物から形成される膜-電極接合体。
  35.  一対のセパレータと、該一対のセパレータ間に配置された一対のガス拡散層と、該一対のガス拡散層間に配置された膜-電極接合体と、を備える燃料電池であって、
     前記膜-電極接合体が、請求項31~34のいずれか一項に記載の膜-電極接合体である燃料電池。
PCT/JP2009/059377 2008-05-21 2009-05-21 ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池 WO2009142274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801286821A CN102105506A (zh) 2008-05-21 2009-05-21 聚合物、聚亚芳基类嵌段共聚物、高分子电解质、高分子电解质膜及燃料电池
US12/993,675 US20110311899A1 (en) 2008-05-21 2009-05-21 Polymer, polyarylene block copolymer, polyelectrolyte, polyelectrolyte membrane, and fuel cell
DE112009001216T DE112009001216T5 (de) 2008-05-21 2009-05-21 Polymer, Polyarylen-Blockcopolymer, Polymerelektrolyt, Polymerelektrolytmembran und Brennstoffzelle

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008132912 2008-05-21
JP2008-132912 2008-05-21
JP2008-331143 2008-12-25
JP2008331143 2008-12-25
JP2009071362 2009-03-24
JP2009071361 2009-03-24
JP2009-071361 2009-03-24
JP2009-071362 2009-03-24
JP2009102867 2009-04-21
JP2009-102867 2009-04-21

Publications (1)

Publication Number Publication Date
WO2009142274A1 true WO2009142274A1 (ja) 2009-11-26

Family

ID=41340201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059377 WO2009142274A1 (ja) 2008-05-21 2009-05-21 ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池

Country Status (5)

Country Link
US (1) US20110311899A1 (ja)
JP (1) JP2010272363A (ja)
CN (1) CN102105506A (ja)
DE (1) DE112009001216T5 (ja)
WO (1) WO2009142274A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062302A1 (ja) * 2009-11-20 2011-05-26 住友化学株式会社 ポリアリーレン系ブロック共重合体及びその用途
WO2011145748A1 (ja) * 2010-05-19 2011-11-24 住友化学株式会社 ポリアリーレン系ブロック共重合体、その製造方法及び高分子電解質
WO2012017965A1 (ja) * 2010-08-03 2012-02-09 Jsr株式会社 スルホン酸基を有する芳香族系共重合体、ならびにその用途
WO2012017960A1 (ja) * 2010-08-03 2012-02-09 Jsr株式会社 スルホン酸基を有する芳香族系共重合体、ならびにその用途
WO2014038763A1 (ko) * 2012-09-06 2014-03-13 제일모직 주식회사 술폰계 화합물 및 그 제조방법
WO2014168297A1 (ko) * 2013-04-11 2014-10-16 제일모직 주식회사 탄화수소 코어를 포함하는 술폰계 화합물 및 그 제조방법
WO2014208714A1 (ja) * 2013-06-28 2014-12-31 東洋紡株式会社 ポリアリーレンスルホン酸類とその前駆体、及びそれらの製造方法、複合電解質膜とその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963622B1 (fr) * 2010-08-04 2012-08-17 Michelin Soc Tech Monomere perfluoroalcane aromatique soufre et sulfone
FR2965808B1 (fr) 2010-08-04 2013-10-18 Michelin Soc Tech Monomere triazine soufre utilisable pour la synthese d'une membrane polymere pour pile a combustible
FR2963621B1 (fr) * 2010-08-04 2012-08-17 Soc Tech Michelin Monomere perfluoroalcane aromatique
FR2963623B1 (fr) 2010-08-04 2012-08-17 Michelin Soc Tech Polymere triazine utilisable comme membrane dans une pile a combustible
JP5942338B2 (ja) * 2011-04-28 2016-06-29 デクセリアルズ株式会社 駆動装置、レンズモジュールおよび撮像装置
JP5580856B2 (ja) * 2012-06-13 2014-08-27 住友ゴム工業株式会社 イソプレン系ゴムの耐熱劣化性能の予測方法
EP3053641B1 (en) * 2013-09-16 2020-03-11 LG Chem, Ltd. Water-treatment separation membrane comprising ionic exchange polymer layer and method for forming same
JP6819287B2 (ja) * 2015-03-13 2021-01-27 東レ株式会社 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
KR101849621B1 (ko) 2015-11-23 2018-04-18 주식회사 삼양사 폴리에테르설폰-폴리카보네이트 공중합체 및 그 제조방법
KR101956169B1 (ko) * 2016-05-24 2019-03-08 한양대학교 산학협력단 자기-가습성 이온교환 복합막 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183526A (ja) * 2001-12-25 2003-07-03 Jsr Corp ポリアリーレン系重合体組成物およびプロトン伝導膜
JP2003212988A (ja) * 2002-01-18 2003-07-30 Jsr Corp ポリアリーレン系重合体およびプロトン伝導膜
JP2005248143A (ja) * 2004-02-05 2005-09-15 Sumitomo Chemical Co Ltd 高分子化合物およびその製造方法
WO2008004644A1 (fr) * 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Émulsion d'électrolyte polymère et utilisation de celle-ci
WO2008004645A1 (fr) * 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Émulsion d'électrolyte polymère et utilisation de celle-ci
WO2008029937A1 (en) * 2006-09-05 2008-03-13 Sumitomo Chemical Company, Limited Polymer, polyelectrolyte, and fuel cell employing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403675A (en) 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
JP4876392B2 (ja) 2003-12-25 2012-02-15 住友化学株式会社 高分子電解質およびその用途
CN1922236A (zh) * 2004-02-05 2007-02-28 住友化学株式会社 高分子化合物的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183526A (ja) * 2001-12-25 2003-07-03 Jsr Corp ポリアリーレン系重合体組成物およびプロトン伝導膜
JP2003212988A (ja) * 2002-01-18 2003-07-30 Jsr Corp ポリアリーレン系重合体およびプロトン伝導膜
JP2005248143A (ja) * 2004-02-05 2005-09-15 Sumitomo Chemical Co Ltd 高分子化合物およびその製造方法
WO2008004644A1 (fr) * 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Émulsion d'électrolyte polymère et utilisation de celle-ci
WO2008004645A1 (fr) * 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Émulsion d'électrolyte polymère et utilisation de celle-ci
WO2008029937A1 (en) * 2006-09-05 2008-03-13 Sumitomo Chemical Company, Limited Polymer, polyelectrolyte, and fuel cell employing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062302A1 (ja) * 2009-11-20 2011-05-26 住友化学株式会社 ポリアリーレン系ブロック共重合体及びその用途
WO2011145748A1 (ja) * 2010-05-19 2011-11-24 住友化学株式会社 ポリアリーレン系ブロック共重合体、その製造方法及び高分子電解質
WO2012017965A1 (ja) * 2010-08-03 2012-02-09 Jsr株式会社 スルホン酸基を有する芳香族系共重合体、ならびにその用途
WO2012017960A1 (ja) * 2010-08-03 2012-02-09 Jsr株式会社 スルホン酸基を有する芳香族系共重合体、ならびにその用途
JPWO2012017960A1 (ja) * 2010-08-03 2013-10-03 Jsr株式会社 スルホン酸基を有する芳香族系共重合体、ならびにその用途
WO2014038763A1 (ko) * 2012-09-06 2014-03-13 제일모직 주식회사 술폰계 화합물 및 그 제조방법
WO2014168297A1 (ko) * 2013-04-11 2014-10-16 제일모직 주식회사 탄화수소 코어를 포함하는 술폰계 화합물 및 그 제조방법
WO2014208714A1 (ja) * 2013-06-28 2014-12-31 東洋紡株式会社 ポリアリーレンスルホン酸類とその前駆体、及びそれらの製造方法、複合電解質膜とその製造方法
JPWO2014208714A1 (ja) * 2013-06-28 2017-02-23 東洋紡株式会社 ポリアリーレンスルホン酸類とその前駆体、及びそれらの製造方法、複合電解質膜とその製造方法

Also Published As

Publication number Publication date
DE112009001216T5 (de) 2011-03-24
US20110311899A1 (en) 2011-12-22
JP2010272363A (ja) 2010-12-02
CN102105506A (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2009142274A1 (ja) ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池
JP5028828B2 (ja) ポリアリーレン系ブロック共重合体及びその用途
JP4661083B2 (ja) 高分子化合物およびその製造方法
KR20070117663A (ko) 폴리아릴렌계 블록 공중합체 및 그 용도
JP2007109638A (ja) 高分子電解質、並びに、これを用いた高分子電解質膜、膜−電極接合体及び燃料電池
US20110033774A1 (en) Polymer electrolyte composition and method for preparing the same, and fuel cell
JP2008308683A (ja) 架橋芳香族ポリマー、高分子電解質、触媒インク、高分子電解質膜、膜−電極接合体及び燃料電池
US20090269645A1 (en) Polymer, polymer electrolyte and fuel cell using the same
WO2012015072A1 (ja) 高分子電解質組成物、高分子電解質および含硫黄複素環芳香族化合物
US20120251919A1 (en) Polyarylene-based copolymer and uses thereof
WO2011145748A1 (ja) ポリアリーレン系ブロック共重合体、その製造方法及び高分子電解質
KR101087573B1 (ko) 디카보닐기로 가교된 폴리설폰, 이의 제조방법, 이를 이용한 고분자전해질막 및 이를 채용한 연료전지
JP2010015980A (ja) 高分子電解質、架橋高分子電解質、高分子電解質膜およびその用途
JP5266691B2 (ja) ポリマー、高分子電解質およびそれを用いてなる燃料電池
JP2011127109A (ja) ポリアリーレン系ブロック共重合体及びその用途
WO2011155528A1 (ja) スルホン酸基を有する芳香族系共重合体、ならびにその用途
WO2010061963A1 (ja) ポリマー、高分子電解質、燃料電池、及び高分子電解質膜の製造方法
JP2011246618A (ja) ポリアリーレン系ブロック共重合体及び高分子電解質
JP2008027903A (ja) 縮合環含有高分子電解質およびその用途
JP2007191694A (ja) 共重合体、高分子電解質及びその用途
KR20080079319A (ko) 공중합체, 고분자 전해질 및 그 용도
JP2015008060A (ja) 電解質膜、膜−電極接合体および固体高分子型燃料電池
WO2012099118A1 (ja) 高分子電解質膜、膜電極接合体、燃料電池
JP2007149653A (ja) 直接メタノール型燃料電池用電解質及び、それを使用した直接メタノール型燃料電池
JP2005213276A (ja) 酸性基含有ポリベンズイミダゾール系化合物およびその組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128682.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8117/CHENP/2010

Country of ref document: IN

RET De translation (de og part 6b)

Ref document number: 112009001216

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09750636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993675

Country of ref document: US