WO2009139473A1 - 前処理金属フッ化物およびフッ化物結晶の製造方法 - Google Patents

前処理金属フッ化物およびフッ化物結晶の製造方法 Download PDF

Info

Publication number
WO2009139473A1
WO2009139473A1 PCT/JP2009/059091 JP2009059091W WO2009139473A1 WO 2009139473 A1 WO2009139473 A1 WO 2009139473A1 JP 2009059091 W JP2009059091 W JP 2009059091W WO 2009139473 A1 WO2009139473 A1 WO 2009139473A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoride
crystal
metal fluoride
carbonyl
melt
Prior art date
Application number
PCT/JP2009/059091
Other languages
English (en)
French (fr)
Inventor
澄人 石津
関屋 章
福田 健太郎
敏尚 須山
Original Assignee
株式会社トクヤマ
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ, 独立行政法人産業技術総合研究所 filed Critical 株式会社トクヤマ
Priority to JP2010512036A priority Critical patent/JP5532435B2/ja
Priority to US12/992,783 priority patent/US20110061587A1/en
Priority to CA2724457A priority patent/CA2724457A1/en
Priority to EP09746679A priority patent/EP2292555A4/en
Priority to CN2009801168045A priority patent/CN102026914A/zh
Publication of WO2009139473A1 publication Critical patent/WO2009139473A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/06Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing a pretreated metal fluoride and a method for producing a fluoride crystal. More specifically, the present invention relates to a pretreated metal fluoride and a high-purity fluoride crystal that have a reduced oxygen impurity content and are useful as an optical material.
  • Fluoride crystals such as barium yttrium fluoride and lithium yttrium fluoride have high transmittance over a wide wavelength band and excellent chemical stability. Therefore, light emitting devices, various devices using lasers, cameras, lenses Demand for optical materials such as window materials is expanding.
  • such a fluoride crystal has been manufactured by a method in which a metal fluoride as a raw material is once melted at a high temperature to form a melt, and a crystal is grown from the melt to obtain a single crystal.
  • a metal fluoride as a raw material is once melted at a high temperature to form a melt, and a crystal is grown from the melt to obtain a single crystal.
  • impurities such as oxygen and moisture
  • characteristics such as transparency tend to be remarkably deteriorated due to the impurities.
  • Solid scavengers such as lead fluoride (see Non-Patent Document 1) and cadmium fluoride (see Non-Patent Document 2) are added, and oxygen and moisture are added.
  • a method for removing impurities such as these is known.
  • the solid scavenger is used, the scavenger itself remains in the crystal, and the optical properties of the crystal may deteriorate due to the influence of the solid scavenger.
  • Patent Document 1 a method using a gas scavenger such as tetrafluoromethane has been proposed (see Patent Document 1).
  • a gas scavenger When a gas scavenger is used, the residual in the crystal is suppressed, but the gas scavenger is thermally decomposed in a high temperature atmosphere when a crystal is grown from a melt of metal fluoride to obtain a single crystal. There has been a problem that the crystal growth is difficult to generate.
  • Tetrafluoromethane is very stable in the atmosphere and is a greenhouse gas that is stronger than carbon dioxide and causes global warming for a long time. Therefore, it introduces equipment for gas decomposition that requires a lot of energy. However, there is a problem that the management cost becomes high.
  • An object of the present invention is to provide a method for producing a pretreated metal fluoride with a reduced content of oxygen impurities, and a method for producing a fluoride crystal with reduced oxygen impurities and having excellent optical properties.
  • the present inventors have intensively studied a scavenger that does not remain in a metal fluoride and has a sufficient oxygen removing effect below the decomposition temperature. As a result, it was found that carbonyl fluoride, which is a gas at normal temperature, has a particularly excellent oxygen removal effect even at a decomposition temperature or lower.
  • the pretreated metal fluoride as a melting raw material and growing the crystal in the presence of a gas scavenger or carbonyl fluoride as necessary, the content of oxygen impurities is reduced and the fluoride crystal has excellent optical characteristics. Has been found, and the present invention has been completed.
  • a method for producing a pretreated metal fluoride wherein the metal fluoride is heated in the presence of carbonyl fluoride.
  • the heating temperature is not less than 300 Kelvin and not more than 1780 Kelvin (2) It is preferable that the amount of carbonyl fluoride to coexist is 1/100 mol or more per 1 mol of metal fluoride.
  • a method for producing a fluoride crystal characterized in that a metal fluoride is heated and melted to form a melt, and then crystals are grown from the melt.
  • a fluoride crystal comprising: a step of heating a metal fluoride in the presence of carbonyl fluoride to obtain a pretreated metal fluoride; and a crystal growth step of growing a crystal from the pretreated metal fluoride.
  • a manufacturing method In the manufacturing method of the fluoride crystal, (1) In the step of obtaining the pretreated metal fluoride, the heating temperature is not less than 300 Kelvin and not more than 1780 Kelvin (2) In the step of obtaining the pretreated metal fluoride, the amount of carbonyl fluoride coexisting is the metal fluoride. It is 1/100 mol or more with respect to 1 mol.
  • a method for producing a pretreated metal fluoride with a reduced content of oxygen impurities, and a method for producing a fluoride crystal with reduced oxygen impurities content and excellent optical properties such as transparency Is provided.
  • the pretreated metal fluoride obtained by the production method of the present invention is a material suitable as a molten raw material for fluoride crystal growth.
  • the obtained fluoride crystal becomes a high-quality optical material that can be suitably used in the fields of light-emitting elements, various devices using lasers, cameras, lenses, window materials, and the like.
  • the carbonyl fluoride used in the present invention can be easily removed, and there is no fear that carbonyl fluoride remains as an impurity in the produced fluoride crystals or pretreated metal fluorides. Fluoride crystals can be produced. Furthermore, the carbonyl fluoride used in the present invention is easily detoxified because it is easily hydrolyzed by contact with water. Therefore, it is an industrially advantageous material in terms of manufacturing and management costs without requiring a large-scale gas decomposition apparatus after use.
  • This figure is the schematic of the crystal manufacturing apparatus by a melt drawing-down method.
  • This figure is a schematic diagram of a transmission spectrum measuring apparatus.
  • This figure shows transmission spectra of barium yttrium fluoride crystals when the heating temperature is changed (Examples 1 to 6, Comparative Examples 1 and 2).
  • This figure shows transmission spectra of barium yttrium fluoride crystals when the heating time is changed (Examples 1 and 7 to 10, Comparative Examples 1 and 2).
  • This figure shows transmission spectra of barium yttrium fluoride crystals when the molar ratio of carbonyl fluoride to metal fluoride is changed (Examples 8, 11 to 14).
  • This figure shows barium yttrium fluoride crystals that were grown in the absence of a gas scavenger by replacing argon gas without opening the pretreated metal fluoride to the atmosphere, and the pretreated metal fluoride was opened to the atmosphere and then It is a transmission spectrum of a barium yttrium fluoride crystal grown in the presence of fluorinated methane (Examples 8 and 15).
  • This figure shows barium yttrium fluoride crystals that were grown in the absence of a gas scavenger by replacing argon gas with the pretreated metal fluoride not opened to the atmosphere, and the pretreated metal fluoride was not opened to the atmosphere.
  • This figure is a transmission spectrum of a lithium yttrium fluoride crystal doped with cerium (Example 18, Comparative Example 3).
  • This figure is a photograph of the barium yttrium fluoride crystal obtained in Example 1 after polishing.
  • This figure is the SEM photograph and EDS observation result of the barium yttrium fluoride crystal obtained in Example 1.
  • This figure is a photograph of the barium yttrium fluoride crystal obtained in Comparative Example 2 after polishing.
  • This figure is the SEM photograph and EDS observation result after polishing of the barium yttrium fluoride crystal obtained in Comparative Example 2.
  • the target metal fluoride is not particularly limited and can be applied to any metal fluoride.
  • metal fluoride examples include lithium fluoride, sodium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, aluminum fluoride, zinc fluoride, yttrium fluoride, zirconium fluoride.
  • metal fluorides can be used as the metal fluoride without limitation, but some of the commercially available metal fluorides adsorb a large amount of water. Before carrying out the pretreatment, it is desirable to heat and dry under high vacuum.
  • Carbonyl fluoride essential for the present invention has the property of reacting with water to decompose carbon dioxide and hydrogen fluoride, or reacting with oxygen and decomposed into carbon dioxide and fluorine gas in accordance with the reaction shown in the following reaction formula. Utilizing this property, it is possible to remove oxygen and moisture contained in the metal fluoride. Furthermore, it is possible to remove oxygen and moisture remaining in the apparatus used when the metal fluoride is heat-treated in the presence of carbonyl fluoride. COF 2 + H 2 O ⁇ CO 2 + 2HF 2COF 2 + O 2 ⁇ 2CO 2 + 2F 2
  • the carbonyl fluoride easily hydrolyzes upon contact with water, it can be easily rendered harmless by treatment with a scrubber or the like.
  • carbonyl fluoride is a gas at room temperature. Therefore, by evacuating the inside of the apparatus for heat-treating metal fluoride or the inside of the crystal growing apparatus, It is possible to easily remove carbonyl fluoride from the pretreated metal fluoride. For this reason, there is no possibility that carbonyl fluoride remains as an impurity in the produced fluoride crystal or pretreated metal fluoride, and a high-quality fluoride crystal can be produced.
  • Carbonyl fluoride can be obtained by a known production method such as a method of fluorinating phosgene or a method of fluorinating carbon monoxide.
  • the carbonyl fluoride produced by such a production method is widely commercially available and can be easily obtained.
  • the carbonyl fluoride may contain fluorine-based hydrocarbons other than carbonyl fluoride as impurities. Since such impurities may be pyrolyzed under heating to produce soot-like foreign matter, it is desirable to remove the impurities in advance by an operation such as distillation.
  • the purity of the carbonyl fluoride gas is not particularly limited, but is preferably 90 vol.% Or more, and particularly preferably 99 vol.% Or more.
  • the metal fluoride and the carbonyl fluoride are sealed in the same apparatus, or the carbonyl fluoride is allowed to flow at a constant flow rate in the apparatus containing the metal fluoride.
  • the method of making it suitable can be adopted.
  • existing heating methods such as resistance heating, induction heating, infrared heating, arc heating, electron beam heating, and laser heating can be employed without limitation.
  • resistance heating and induction heating do not require special conditions for the introduction of the apparatus, and the apparatus can be attached at a relatively low cost, which is preferable from the viewpoint of versatility and economy.
  • the device that heat-treats metal fluorides in the presence of carbonyl fluoride has a sealed chamber with a structure that does not leak the atmosphere inside the device to the outside, and has a vacuum exhaust device and a gas introduction line.
  • a crucible lowering method, a melt pulling method, a melt pulling method, an apparatus used in an annealing operation, and the like can be used, but the invention is not limited thereto.
  • the heating temperature is not particularly limited, but according to the study by the present inventors, the reactivity of carbonyl fluoride increases as the heating temperature increases, and impurities such as oxygen and moisture can be removed from the metal fluoride in a short time. Can do.
  • the heating temperature is too high, the carbonyl fluoride may be thermally decomposed according to, for example, the following formula to form a bowl-shaped foreign substance, and the process control may be difficult. Further, since carbonyl fluoride is a corrosive gas, it is not desirable from the viewpoint of maintenance of the apparatus to raise the temperature without any darkness. 2COF 2 ⁇ CO 2 + C + 2F 2
  • the heating temperature is preferably 300 to 1780 Kelvin, particularly preferably 400 to 900 Kelvin.
  • the heating time is not particularly limited and may be determined in consideration of the above heating temperature and the following carbonyl fluoride concentration.
  • the heating time is preferably 10 so that the reaction between carbonyl fluoride and impurities such as oxygen and moisture proceeds sufficiently. It is desirable that the time be at least 1 minute and more than 1 hour. Further, from the viewpoint of productivity, it is desirable that the heating time is within 24 hours, preferably within 6 hours.
  • the amount of carbonyl fluoride to coexist is 1/100 mol or more with respect to 1 mol of metal fluoride used. It is preferable that it is 1 mol or more.
  • the amount of carbonyl fluoride is not particularly limited, but carbonyl fluoride is coexisting from the viewpoint of cost because it is an expensive gas, and it is also a highly corrosive gas and it is difficult to maintain the apparatus.
  • the amount of is preferably 50 mol or less with respect to 1 mol of the metal fluoride used.
  • the above-mentioned carbonyl fluoride is based on the total number of moles of each metal fluoride. The amount (concentration) is determined.
  • the pretreatment heating temperature is low, the metal fluoride produced by pretreatment exists in a state where each raw metal fluoride is simply mixed, but the heating temperature of the target composite fluoride crystal is low. When the temperature is higher than the melting point, it is melted to become a pretreated composite metal fluoride having a part or all of the same composition as the composite fluoride crystal.
  • an inert gas such as nitrogen, helium, argon, or neon can be used in combination with carbonyl fluoride.
  • the gas to be used may be mixed with carbonyl fluoride in advance, or may be separately introduced into an apparatus for heat-treating metal fluoride and mixed therein.
  • the carbonyl fluoride is also useful as a growth scavenger when it coexists during crystal growth.
  • a high-quality fluoride crystal can be obtained by using a pretreated metal fluoride obtained by heating the metal fluoride in the presence of carbonyl fluoride as a crystal growth raw material.
  • the method for growing a fluoride crystal from a metal fluoride is not particularly limited.
  • a method for growing from a solution such as poor solvent addition crystallization, or a chemical vapor phase A known growth method such as a growth method from the gas phase can be used without limitation.
  • the crystal growth method from the melt is preferable from the viewpoints of obtaining large crystals more easily than other methods and from the viewpoint of production cost.
  • a known crystal growth method can be applied without limitation.
  • a crucible descent method for growing a single crystal in a crucible by gradually lowering the melt of the single crystal production raw material in the crucible together with the crucible, and a single crystal production raw material in the crucible.
  • a melt pulling method in which a seed crystal consisting of a target single crystal is brought into contact with the melt interface of the steel, and then the seed crystal is gradually pulled from the heating region of the crucible and cooled to grow a single crystal below the seed crystal.
  • a method such as a micro melting pulling method (melting pulling method) in which a melt is leached from a hole provided at the bottom of the crucible and a single crystal is grown by pulling down the leached melt.
  • the melt pulling method has the advantage that, in addition to being able to grow crystals in a short time compared to the crucible descent method and the melt pulling method, when doping is performed, a higher concentration additive can be doped, It can be suitably used in the present invention.
  • a seed crystal composed of a target single crystal can be used.
  • Known metals such as tungsten-rhenium (hereinafter referred to as W-Re) and platinum can also be used.
  • W-Re has advantages such as high corrosion resistance at high temperatures and appropriate rigidity. However, it is preferable from the viewpoint of high versatility.
  • the fluoride crystals to be manufactured are not particularly limited, but specific fluoride crystals are exemplified by lithium fluoride, sodium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, fluoride.
  • the melt is said to be a congruent composition.
  • the composition of the melt obtained by melting the raw material does not match the composition of the crystals actually obtained.
  • the melt has an incongruent composition.
  • the present invention can be applied regardless of whether the composition of the melt is congruent or incongruent.
  • the target fluoride crystal is a composite fluoride crystal and is grown from a melt having a congruent composition
  • a plurality of pretreated metal fluorides are quantified in advance so that the melt has a stoichiometric composition.
  • a pretreated composite metal fluoride having the same composition as the target crystal may be pretreated at a temperature equal to or higher than the melting point of the target composite fluoride crystal.
  • the pretreated metal fluoride is quantified and charged so as to have an appropriate composition. If this melt is grown in the same manner as a melt having a congruent composition, a fluoride crystal having the desired composition can be obtained.
  • an additive may be added for the purpose of causing the target fluoride crystal to emit light or improving the crystallinity of the target fluoride crystal.
  • the target additives are cerium fluoride, praseodymium fluoride, neodymium fluoride, samarium fluoride, europium fluoride, gadolinium fluoride, terbium fluoride, dysprosium fluoride, holmium fluoride, erbium fluoride, thulium fluoride Ytterbium fluoride, lithium fluoride, sodium fluoride, lead fluoride and the like, but are not limited thereto.
  • the raw material for fluoride crystals (pretreated metal fluoride) is generally charged in advance in a crucible and melted into a melt for use in crystal growth.
  • the composition of the melt may change as the crystal grows. Crystal growth may be performed while adding a raw material to the melt for the purpose of suppressing such a change in composition or growing a large-sized crystal.
  • inert gas atmosphere such as nitrogen, helium, argon, or neon.
  • inert gases include perfluorocompounds (PFC) such as tetrafluoromethane, hexafluoroethane, and octafluoropropane; trifluoromethane (HFC23) and 1,1,1,2-tetrafluoro.
  • PFC perfluorocompounds
  • HFC23 trifluoromethane
  • 1,1,1,2-tetrafluoro 1,1,1,2-tetrafluoro.
  • Hydrofluorocarbons such as ethane (HFC-134a); it is suitable to use in addition to known gas scavengers such as fluorinated olefins such as hexafluoropropylene and 2,3,3,3-tetrafluoropropylene (HFO-1234yf) It is a mode.
  • gas scavengers such as fluorinated olefins such as hexafluoropropylene and 2,3,3,3-tetrafluoropropylene (HFO-1234yf) It is a mode.
  • carbonyl fluoride can also be used as a gas scavenger.
  • an annealing operation may be performed after the production of the crystal in order to remove crystal defects caused by thermal strain. It is preferable that the apparatus used during the annealing operation has a function of controlling the temperature and can control the atmosphere in the apparatus. As an atmosphere at the time of annealing, an atmosphere containing carbonyl fluoride may be used.
  • the pretreatment metal fluoride production method and the fluoride crystal production method using the carbonyl fluoride of the present invention will be described by taking the case of the melt pulling method as an example.
  • the melt pulling method is a method for producing a crystal by drawing a raw material melt from a hole provided in the bottom of the crucible 5 using an apparatus as shown in FIG.
  • materials of the after heater 1, the heater 2, the heat insulating material 3, the stage 4, and the crucible 5 to be used graphite, glassy graphite, silicon carbide vapor-deposited graphite and the like are usually used, but other materials can be used without any problem. be able to.
  • a predetermined amount of raw material is filled into a crucible 5 having a hole at the bottom.
  • the shape of the hole provided at the bottom of the crucible is not particularly limited, but is preferably a cylindrical shape having a diameter of 0.5 to 4 mm and a length of 0.1 to 2 mm.
  • the purity of the raw material is not particularly limited, but it is preferable to use a metal fluoride having a purity of 99.99 vol.% Or more.
  • the crucible 5 filled with the metal fluoride, the after heater 1, the heater 2, the heat insulating material 3, and the stage 4 are set as shown in FIG.
  • the chamber 6 is evacuated using an evacuation apparatus.
  • the exhaust gas in the furnace is exhausted using a vacuum exhaust device, and carbonyl fluoride is exhausted from the furnace. It is preferable to perform evacuation until the ultimate pressure reaches 1.0 ⁇ 10 ⁇ 3 Pa or less. Thereafter, an inert gas such as high-purity argon is introduced into the furnace for gas replacement. The gas replacement operation is performed twice in total.
  • the pretreated metal fluoride can be produced. Crystals are grown using this pretreated metal fluoride as a raw material.
  • the raw material After performing the gas replacement operation, the raw material is heated and melted by the high frequency coil 7, and the melted raw material melt is drawn out from the hole at the bottom of the crucible to start crystal growth.
  • a gas scavenger such as carbonyl fluoride or methane tetrafluoride may be used alone or in combination at any ratio. Can do.
  • the metal fluoride since the metal fluoride generally has a very large contact angle with respect to carbon and the melt does not exude from the hole at the bottom of the crucible, it is necessary to take special measures.
  • the inventors attach a W-Re alloy wire to the tip of the pulling rod, insert the W-Re alloy wire into the crucible through the hole at the bottom of the crucible, and attach the W-Re alloy wire to the W-Re alloy wire. After adhering the raw material melt, the raw material melt was pulled down together with the W-Re alloy wire to allow crystal growth.
  • the target fluoride crystal can be obtained by continuously pulling it down at a constant pulling rate.
  • the pulling speed is not particularly limited, but is preferably in the range of 0.5 to 10 mm / hr.
  • the obtained fluoride crystal is basically a single crystal. This crystal has good processability and can be easily processed into a desired shape. In the processing, a known blade saw, wire saw, or other cutting machine, grinding machine, or polishing machine can be used without any limitation.
  • the obtained fluoride crystal can be processed into a desired shape and used for any application, such as a vacuum ultraviolet light emitting element or a laser.
  • Example 1 (Preparation for training) The crystal
  • raw materials barium fluoride having a purity of 99.99 vol.% And yttrium fluoride were used.
  • the after heater 1, the heater 2, the heat insulating material 3, the stage 4, and the crucible 5 are made of high-purity carbon, and the shape of the hole provided in the bottom of the crucible is a circle having a diameter of 2.0 mm and a length of 0.5 mm. It was columnar.
  • 0.42 g of barium fluoride and 0.69 g of yttrium fluoride were weighed and mixed well, and then charged in the crucible 5.
  • the crucible 5 filled with the raw material was set on the upper part of the after heater 1, and the heater 2 and the heat insulating material 3 were sequentially set around the crucible.
  • Argon 95vol.%-Carbonyl fluoride 5vol.% Mixed gas is introduced into the chamber 6, and the high frequency coil 7 is used to measure the temperature at the bottom of the crucible, and the output of the high frequency heating coil is adjusted so that the heating temperature becomes 790K. It was adjusted.
  • the pressure in the chamber 6 after the mixed gas replacement was atmospheric pressure, and heating was continued for 30 minutes in this state.
  • the crystal was continuously pulled down at a speed of 3 mm / hr for 14 hours, and finally a crystal having a diameter of 2.1 mm and a length of 40 mm was obtained.
  • This crystal was confirmed to be a barium yttrium fluoride crystal by powder X-ray diffraction analysis. The following examples were confirmed in the same manner.
  • the obtained crystal is cut to a length of about 15 mm by a blade saw equipped with a diamond cutting grindstone, the side surface is ground and processed into a shape having a length of 15 mm, a width of 2 mm, and a thickness of 1 mm.
  • a sample was used.
  • the measurement was performed at room temperature according to the procedure described below.
  • FIG. 10 shows a photograph of the spectrum measurement sample.
  • Spectra measurement sample 9 was set at a predetermined position in the measuring apparatus, and the entire inside of the apparatus was replaced with nitrogen gas. Transmitted light from a deuterium lamp 10 which is a light source for transmitted light is dispersed by a transmitted light spectrometer 11 (manufactured by Spectrometer, KV201 type extreme ultraviolet spectrometer), irradiated to a spectrum measurement sample 9, and transmitted from the sample. Light was recorded by the photomultiplier tube 13 to obtain a transmission spectrum. The results are shown in Table 1 and FIG. Furthermore, the obtained sample was observed using SEM-3400N manufactured by HITACHI. The results are shown in FIG.
  • Example 2 In the heating step in the presence of carbonyl fluoride, crystal growth was carried out in the same manner as in Example 1 except that the temperature at the bottom of the crucible after introduction of the mixed gas of 95 vol. A sample for measurement was prepared, and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 3 In the heating step in the presence of carbonyl fluoride, crystal growth was performed in the same manner as in Example 1 except that the temperature at the bottom of the crucible after introduction of the mixed gas of 95 vol. A measurement sample was prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 4 In the heating step in the presence of carbonyl fluoride, crystal growth was performed in the same manner as in Example 1 except that the temperature at the bottom of the crucible after introduction of the mixed gas of 95 vol. A measurement sample was prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 5 In the heating step in the presence of carbonyl fluoride, crystal growth was performed in the same manner as in Example 1 except that the temperature at the bottom of the crucible after introduction of the mixed gas of 95 vol. A measurement sample was prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 6 After evacuation in the same manner as in Example 1, a mixed gas of 95 vol.% Argon-5 vol.% Carbonyl fluoride was introduced and heated until the temperature at the bottom of the crucible reached 1260 K to melt the raw material. Thereafter, the melt was pulled down to grow crystals in the same manner as in Example 1, a spectrum measurement sample was prepared, and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 7 In the heating step in the presence of carbonyl fluoride, crystal growth was carried out in the same manner as in Example 1 except that the heating time after introduction of the mixed gas of 95 vol. Samples were prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 8 In the heating step in the presence of carbonyl fluoride, crystal growth was carried out in the same manner as in Example 1 except that the heating time after introduction of the mixed gas of 95 vol. Samples were prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 9 In the heating step in the presence of carbonyl fluoride, crystal growth was carried out in the same manner as in Example 1 except that the heating time after introduction of a mixed gas of 95 vol. Samples were prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 10 In the heating step in the presence of carbonyl fluoride, crystal growth was carried out in the same manner as in Example 1 except that the heating time after introduction of the mixed gas of 95 vol. Samples were prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 11 In the heating step in the presence of carbonyl fluoride, the same procedure as in Example 8 was conducted except that a mixed gas of 90 vol.% Argon—10 vol.% Carbonyl fluoride was introduced instead of a mixed gas of 95 vol.% Argon—5 vol.% Carbonyl fluoride. Crystal growth was performed to prepare a spectrum measurement sample, and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 12 In the heating step in the presence of carbonyl fluoride, the same procedure as in Example 8 was conducted except that a mixed gas of argon 99 vol.%-Carbonyl fluoride 1 vol.% was introduced instead of the argon 95 vol.%-Carbonyl fluoride 5 vol.% Mixed gas. Crystal growth was performed to prepare a spectrum measurement sample, and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 13 Implemented in the heating process in the presence of carbonyl fluoride, except that argon 9vol.%-Carbonyl fluoride 0.01 vol.% Mixed gas was introduced instead of argon 95 vol.%-Carbonyl fluoride 5 vol.% Mixed gas Crystal growth was performed in the same manner as in Example 8, a spectrum measurement sample was prepared, and the vacuum ultraviolet transmittance was measured. The results are shown in the table and FIG.
  • Example 14 Crystal growth was performed in the same manner as in Example 13 except that 23.18 g of barium fluoride and 38.57 g of yttrium fluoride were weighed and used as raw materials in the growth preparation step, and a sample for spectrum measurement was prepared. The ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 15 In this example, a pretreated metal fluoride raw material was prepared and then released into the atmosphere, and then this was used as a raw material to grow crystals in the presence of a gas scavenger. After carrying out to the process heated to metal fluoride in coexistence with carbonyl fluoride like Example 8, it cooled to room temperature once and obtained the pre-treatment metal fluoride raw material. The obtained pretreated metal fluoride raw material was again filled in the crucible 5. The crucible 5 filled with the raw material was set on the upper part of the after heater 1, and the heater 2 and the heat insulating material 3 were sequentially set around the crucible.
  • the inside of the chamber 6 was evacuated to 5.0 ⁇ 10 ⁇ 4 Pa using an evacuation apparatus composed of an oil rotary pump and an oil diffusion pump. At the same time, heating was performed using the high-frequency coil 7 so that the temperature inside the crucible during evacuation was 570K. Next, a mixed gas of 95 vol.% Argon and 5 vol.% Tetrafluoromethane was introduced until the pressure in the chamber 6 became equal to the atmospheric pressure. Thereafter, the melt was pulled down in the same manner as in the crystal growth step of Example 1, crystal growth was performed, a spectrum measurement sample was prepared, and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 16 In the process of exhausting carbonyl fluoride and introducing the crystal growth atmosphere gas, crystal growth was performed in the same manner as in Example 8 except that a mixed gas of 95 vol.% Argon-5 vol.% Tetrafluoromethane was introduced instead of argon gas. The sample for spectrum measurement was made, and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Example 17 In this example, a metal fluoride was heated and melted in the presence of carbonyl fluoride, and a crystal was grown from the melt.
  • argon 95vol.%-Carbonyl fluoride 5vol.% Mixed gas was introduce
  • FIG. While measuring the temperature, the output of the high-frequency heating coil was adjusted so that the heating temperature was 1260K, and the metal fluoride was melted. Heating was continued for 2 hours in this state.
  • Example 18 Crystal growth was carried out in the same manner as in Example 8 except that 0.006 g of cerium fluoride, 0.17 g of lithium fluoride, and 0.94 g of yttrium fluoride were weighed and used in the growth preparation step, and the spectrum was measured. Samples were prepared and the vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.
  • Comparative Example 1 In the heating step in the presence of carbonyl fluoride, crystal growth was carried out in the same manner as in Example 8 except that argon was introduced instead of a mixed gas of 95 vol.% Argon-5 vol.% Carbonyl fluoride. A vacuum ultraviolet transmittance was prepared. The results are shown in Table 1 and FIGS.
  • Example 8 and Example 8 were introduced except that a mixed gas of 95% by volume of argon and 5% by volume of methane tetrafluoride was introduced instead of a mixed gas of 95% by volume of argon and 5% by volume of carbonyl fluoride.
  • Crystal growth was performed in the same manner, a spectrum measurement sample was prepared, and vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIGS.
  • FIG. 12 shows a photograph of the spectrum measurement sample. From the comparison with FIG. 10, it can be seen that the crystal is clouded.
  • the sample for spectrum measurement was observed using SEM-3400N manufactured by HITACHI. The results are shown in FIG. It can be seen that the white turbidity of the crystal is caused by oxygen contamination.
  • Example 18 is the same as Example 18 except that in the heating step in the presence of carbonyl fluoride, a mixed gas of 95% by volume of argon and 5% by volume of methane tetrafluoride was introduced instead of a mixed gas of 95% by volume of argon and 5% by volume of carbonyl fluoride. Crystal growth was performed in the same manner, a spectrum measurement sample was prepared, and vacuum ultraviolet transmittance was measured. The results are shown in Table 1 and FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】酸素不純物の含有量が低減された前処理金属フッ化物並びに、酸素不純物の含有量が低減され、透明性などの優れた光学特性を有するフッ化物結晶の製造方法を提供することを目的とする。 【解決手段】金属フッ化物を、フッ化カルボニルが共存する条件下で、好適には金属フッ化物1モルに対してフッ化カルボニルの量が1/100以上で、300ケルビン以上1780ケルビン以下の温度範囲で加熱を行い、金属フッ化物原料や製造炉内部等に含まれる酸素、水分等を除去して前処理金属フッ化物を得る。更に、当該前処理金属フッ化物を原料として加熱溶融し、得られた融液から溶融引上げ法や溶融引下げ法などの結晶育成法により高品質のフッ化物の結晶を得る。

Description

前処理金属フッ化物およびフッ化物結晶の製造方法
 本発明は、前処理金属フッ化物の製造方法及びフッ化物結晶の製造方法に関する。より詳しくは、酸素不純物の含有量が低減され、光学材料として有用な前処理金属フッ化物及び高純度なフッ化物結晶に関する。
 フッ化バリウムイットリウムやフッ化リチウムイットリウム等のフッ化物結晶は広範囲の波長帯域にわたって高い透過率を有し、化学的安定性にも優れることから、発光素子、レーザーを用いた各種機器、カメラ、レンズ、窓材等の光学材料として需要が広がってきている。
 従来、こうしたフッ化物結晶は、原料となる金属フッ化物を一旦高温で溶融して融液とし、当該融液から結晶成長させて単結晶を得る方法で製造されてきた。しかしながら、かかるフッ化物結晶は容易に酸素、水分等の不純物と反応するため、該不純物を原因として透明性等の特性が著しく劣化する傾向がある。
 このような酸素、水分等の不純物に由来する悪影響を防ぐため、フッ化鉛(非特許文献1参照)やフッ化カドミウム(非特許文献2参照)等の固体スカベンジャーを添加して、酸素、水分等の不純物を除去する方法が知られている。しかしながら、該固体スカベンジャーを用いると、スカベンジャー自身が結晶に残留し、該固体スカベンジャーの影響により結晶の光学特性が劣化する場合があった。
 このような固体スカベンジャーの結晶中への残留による影響を防ぐため、四フッ化メタン等の気体スカベンジャーを用いる方法が提案されている(特許文献1参照)。気体スカベンジャーを用いる場合には結晶中への残留は抑制されるものの、金属フッ化物の融液から結晶成長させて単結晶を得る際の高温雰囲気において気体スカベンジャーが熱分解し、煤状の異物を生成して結晶成長を困難にする問題があった。
 一方、熱分解する温度以下で気体スカベンジャーを使用した場合には、気体スカベンジャーの反応性が充分でなく、金属フッ化物から効果的に酸素、水分等の不純物を除去することが困難であった。また、四フッ化メタンは大気中で非常に安定であり長期にわたり二酸化炭素よりも強く地球温暖化を招く温室効果ガスであるため、多大なエネルギーを必要とするガス分解用の設備を導入する等の方策を採らねばならず、管理コストが高くなるという問題点も存在する。
特開2005-200256号公報
Stockbarger,J.Opt.Am.39,1949 Radzhabov and Figura,Phys.Stat.Sol.(b)136,1986
 本発明は、酸素不純物の含有量が低減された前処理金属フッ化物の製造方法、ならびに酸素不純物の含有量が低減され、優れた光学特性を有するフッ化物結晶の製造方法を提供することを目的とする
 上記問題に鑑みて、本発明者等は、金属フッ化物中への残留がなく、且つ、分解温度以下で充分な酸素除去効果を有するスカベンジャーについて鋭意検討を行った。その結果、常温で気体であるフッ化カルボニルが、分解温度以下においても特に優れた酸素除去効果を有することを見出した。
 また、当該フッ化カルボニルをスカベンジャーとして用い、金属フッ化物をフッ化カルボニルの共存下に加熱することによって、酸素不純物の含有量が低減された前処理金属フッ化物が得られることを見出した。
 さらに、上記前処理金属フッ化物を溶融原料として、必要に応じて気体スカベンジャー或いはフッ化カルボニルを共存させて結晶育成することにより、酸素不純物の含有量が低減され優れた光学特性を有するフッ化物結晶が得られることを見出し、本発明を完成するに至った。
 本発明によれば、
金属フッ化物をフッ化カルボニルの共存下に加熱することを特徴とする前処理金属フッ化物の製造方法が提供される。
 上記前処理金属フッ化物の製造方法において、
(1)加熱温度が、300ケルビン以上1780ケルビン以下であること
(2)共存せしめるフッ化カルボニルの量が、金属フッ化物1モルに対して1/100モル以上であること
が好適である。
 本発明によれば、また、
 フッ化カルボニルの存在下に、金属フッ化物を加熱溶融して融液とし次いで該融液から結晶を育成することを特徴とするフッ化物結晶の製造方法が提供される。
 本発明によれば、更にまた、
金属フッ化物をフッ化カルボニルの共存下に加熱して前処理金属フッ化物を得る工程と、当該前処理金属フッ化物より結晶を育成する結晶育成工程とを含むことを特徴とするフッ化物結晶の製造方法が提供される
 上記フッ化物結晶の製造方法において、
(1)前処理金属フッ化物を得る工程において、加熱温度が300ケルビン以上1780ケルビン以下であること
(2)前処理金属フッ化物を得る工程において、共存せしめるフッ化カルボニルの量が、金属フッ化物1モルに対して1/100モル以上であること
(3)結晶育成工程における育成が、前処理金属フッ化物の融液上端に種結晶を接触させ引き上げることにより育成する溶融引き上げ法、または前処理金属フッ化物の融液下端に育成軸を接触させ引き下げることにより育成する溶融引き下げ法であること
(4)結晶育成工程において、気体スカベンジャーの共存下に融液から結晶を育成すること
が好適である。
 本発明によれば、酸素不純物の含有量が低減された前処理金属フッ化物の製造方法、ならびに酸素不純物の含有量が低減され、透明性などの優れた光学特性を有するフッ化物結晶の製造方法が提供される。
 本発明の製造方法によって得られた前処理金属フッ化物は、フッ化物結晶育成用の溶融原料として好適な材料となる。そして、得られたフッ化物結晶は、発光素子、レーザーを用いた各種機器、カメラ、レンズ、窓材等の分野において好適に使用できる高品質の光学材料となる。
 更に、本発明おいて使用するフッ化カルボニルは容易に除去することが可能であり、製造したフッ化物結晶や前処理金属フッ化物中にフッ化カルボニルが不純物として残留する恐れがなく、高品質のフッ化物結晶を製造することができる。
 更にまた、本発明に用いるフッ化カルボニルは、水との接触によって容易に加水分解を起こすために簡単に無害化することができる。そのため、使用後に大掛かりなガス分解装置を必要とせず製造および管理コストの面で工業的に有利な材料である。
本図は、溶融引下げ法による結晶製造装置の概略図である。 本図は、透過スペクトル測定装置の概略図である。 本図は、加熱温度を変更した場合のフッ化バリウムイットリウム結晶の透過スペクトルである(実施例1~6、比較例1、2)。 本図は、加熱時間を変更した場合のフッ化バリウムイットリウム結晶の透過スペクトルである(実施例1、7~10、比較例1、2)。 本図は、金属フッ化物に対するフッ化カルボニルのモル比を変更した場合のフッ化バリウムイットリウム結晶の透過スペクトルである(実施例8、11~14)。 本図は、前処理金属フッ化物を大気下に開放せずアルゴンガス置換し気体スカベンジャー不存在下に育成を行ったフッ化バリウムイットリウム結晶と、前処理金属フッ化物を大気下に開放しその後四フッ化メタンの存在下に育成を行ったフッ化バリウムイットリウム結晶の透過スペクトルである(実施例8、15)。 本図は、前処理金属フッ化物を大気下に開放せずアルゴンガスに置換し気体スカベンジャー不存在下に育成を行ったフッ化バリウムイットリウム結晶と、前処理金属フッ化物を大気下に開放せず気体スカベンジャーとして四フッ化メタンを含有するアルゴンガスで置換し、四フッ化メタンの存在下に育成を行ったフッ化バリウムイットリウム結晶の透過スペクトルである(実施例8、16)。 本図は、前処理金属フッ化物を大気下に開放せずアルゴンガスに置換し気体スカベンジャー不存在下に育成を行ったフッ化バリウムイットリウム結晶と、前処理雰囲気のまま、ガス置換せずに引き続き気体スカベンジャーとしてフッ化カルボニルの存在下で育成を行ったフッ化バリウムイットリウム結晶の透過スペクトルである(実施例8、17)。 本図は、セリウムをドープしたフッ化リチウムイットリウム結晶の透過スペクトルである(実施例18、比較例3)。 本図は、実施例1により得られたフッ化バリウムイットリウム結晶の研磨後の写真である。 本図は、実施例1により得られたフッ化バリウムイットリウム結晶のSEM写真及びEDS観察結果である。 本図は、比較例2により得られたフッ化バリウムイットリウム結晶の研磨後の写真である。 本図は、比較例2により得られたフッ化バリウムイットリウム結晶の研磨後のSEM写真及びEDS観察結果である。
1 アフターヒーター
2 ヒーター
3 断熱材
4 ステージ
5 坩堝
6 チャンバー
7 高周波コイル
8 引下げロッド
9 スペクトル測定用試料
10 重水素ランプ
11 透過光用分光器
12 光電子増倍管
 本発明の前処理金属フッ化物の製造方法において、対象となる金属フッ化物は特に制限はなく如何なる金属フッ化物にも適用できる。
 当該金属フッ化物を具体的に例示すると、フッ化リチウム、フッ化ナトリウム、フッ化ルビジウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化アルミニウム、フッ化亜鉛、フッ化イットリウム、フッ化ジルコニウム、フッ化ハフニウム、フッ化タンタル、フッ化クロム、フッ化鉄、フッ化コバルト、フッ化ニッケル、フッ化銅、フッ化銀、フッ化水銀、フッ化錫、フッ化セシウム、フッ化インジウム、フッ化ビスマス、フッ化鉛、フッ化タリウム、フッ化バリウム、フッ化ランタン、フッ化セリウム、フッ化プラセオジウム、フッ化ネオジム、フッ化サマリウム、フッ化ユウロピウム、フッ化ガドリニウム、フッ化テルビウム、フッ化ジスブロシウム、フッ化ホルミウム、フッ化エルビウム、フッ化ツリウム、フッ化イッテルビウム、フッ化ルテチウム等、及びこれらの混合物が挙げられる。
 上記金属フッ化物には市販の金属フッ化物を制限なく使用することができるが、市販されている金属フッ化物には水を多量に吸着しているものがあるので、本発明のフッ化カルボニルで前処理を実施する前に、高真空下で加熱乾燥処理することが望ましい。
 本発明に必須のフッ化カルボニルは、下記反応式に示す反応に従って、水と反応して二酸化炭素とフッ化水素を、或いは酸素と反応して二酸化炭素とフッ素ガスに分解する性質を持つ。この性質を利用して、金属フッ化物に含まれる酸素や水分を除去することが可能である。さらに、金属フッ化物をフッ化カルボニルの共存下に加熱処理する際に使用する装置内に残留した酸素や水分を除去することも可能である。
   COF + HO → CO + 2HF  
   2COF + O → 2CO + 2F 
 また、上記フッ化カルボニルは水との接触によって容易に加水分解を起こすために、スクラバーなどで処理することにより簡単に無害化することができる。
 更に、フッ化カルボニルは、フッ化鉛、フッ化ガドリニウムといったスカベンジャーと違い常温で気体であるため、金属フッ化物を加熱処理する装置内或いは結晶育成装置内を真空排気することによって、フッ化物結晶や前処理金属フッ化物からフッ化カルボニルを容易に除去することが可能である。このため、製造したフッ化物結晶や前処理金属フッ化物中にフッ化カルボニルが不純物として残留する恐れがなく、高品質のフッ化物結晶を製造することができる。
 フッ化カルボニルは、ホスゲンをフッ素化する方法、あるいは一酸化炭素をフッ素化する方法等公知の製造方法で得ることができる。かかる製造方法で製造されたフッ化カルボニルは広く市販されており、容易に入手することができる。
 該フッ化カルボニルは、不純物としてフッ化カルボニル以外のフッ素系炭化水素を含んでいる場合がある。かかる不純物は加熱下で熱分解して煤状の異物を生じる場合があるため、あらかじめ蒸留等の操作によって不純物を除去することが望ましい。当該フッ化カルボニルガスの純度は、特に制限されないが、90vol.%以上であることが好ましく、99vol.%以上であることが特に好ましい。
 金属フッ化物をフッ化カルボニルと共存せしめる方法としては、金属フッ化物とフッ化カルボニルを同一装置内で密封する方法、或いは金属フッ化物を含む装置内に一定の流量でフッ化カルボニルを流して接触させる方法が好適に採用できる。
 金属フッ化物をフッ化カルボニルの共存下に加熱する方法としては、抵抗加熱、誘導加熱、赤外線加熱、アーク加熱、電子ビーム加熱、レーザー加熱等既存の加熱方法を制限なく採用することができる。中でも、抵抗加熱、誘導加熱は装置の導入に特殊な条件を必要とせず、かつ比較的安価に装置を取り付けることができ、汎用性、経済性の観点から好ましい。
 金属フッ化物をフッ化カルボニルの共存下に加熱処理する装置は、密閉式のチャンバーを備え装置内部の雰囲気を外部に漏らさない構造を持ち、且つ、真空排気装置や気体導入用のラインを持つことが好ましい。具体的には、坩堝降下法、溶融引上げ法、溶融引下げ法、及びアニール操作で使用される装置等を使用することができるが、これらに限定されるわけではない。
 加熱温度は特に制限されないが、本発明者らの検討によれば、加熱温度が高いほどフッ化カルボニルの反応性は上昇し、短時間で金属フッ化物より酸素および水分等の不純物を除去することができる。一方、あまりに加熱温度が高い場合、フッ化カルボニルが、例えば下式に従って熱分解して煤状の異物を生じ、工程の制御が困難になる場合がある。また、フッ化カルボニルは腐食性を持つガスであるため、無闇に温度を上げることは、装置の維持管理の観点から望ましくない。
   2COF → CO + C + 2F 
 以上の理由により、前記加熱温度は、300~1780ケルビンとすることが好ましく、400~900ケルビンとすることが特に望ましい。
 加熱時間は特に制限されず上記加熱温度や下記フッ化カルボニル濃度を勘案して決定すれば良いが、フッ化カルボニルと酸素および水分等の不純物との反応が十分に進行するように、好ましくは10分以上、さらに1時間以上であることが望ましい。また、生産性の観点から、加熱時間は24時間以内、好ましくは6時間以内であることが望ましい。
 本発明において、フッ化カルボニルの濃度が高いほど短時間で前処理を行うことができるため、共存せしめるフッ化カルボニルの量は、使用する金属フッ化物1モルに対して1/100モル以上であることが好ましく、1モル以上であることが特に好ましい。一方、フッ化カルボニルの量に特に上限はないが、フッ化カルボニルは高価なガスであるためコストがかかる点、腐食性の高いガスでもあり装置の維持が難しいという観点から、共存せしめるフッ化カルボニルの量は、使用する金属フッ化物1モルに対して50モル以下であることが好ましい。
 なお、複合フッ化物結晶を製造するための原料を製造する目的で、複数の金属フッ化物を同時に前処理する場合は、各金属フッ化物のモル数の総和を基準にして、上記フッ化カルボニルの量(濃度)が決定される。また、前処理されて製造された金属フッ化物は、前処理の加熱温度が低い場合は各原料金属フッ化物が単に混合した状態で存在しているが、加熱温度が目的の複合フッ化物結晶の融点を上回る高温である場合は、溶融してその一部または全部が複合フッ化物結晶と同じ組成を有する前処理複合金属フッ化物となる。
 前処理時のフッ化カルボニルの濃度を調整するために、フッ化カルボニルとともに、窒素、ヘリウム、アルゴン、ネオン等の不活性ガスを併用することができる。使用するガスはあらかじめフッ化カルボニルと混合して使用してもよいし、金属フッ化物を加熱処理する装置内に別々に導入して内部で混合しても良い。
 当該フッ化カルボニルは、結晶育成時に共存させて育成用スカベンジャーとしても有用である。
 前記金属フッ化物をフッ化カルボニル共存下に加熱して得られた前処理金属フッ化物を結晶育成原料とすることにより高品位のフッ化物結晶を得ることができる。
 金属フッ化物よりフッ化物結晶を育成する方法は特に限定されず、後述する金属フッ化物の融液からの結晶育成のほかに、貧溶媒添加晶析等の溶液から育成する方法、あるいは化学気相成長法等の気相から育成する方法など公知の育成方法を制限なく使用することができる。中でも、融液からの結晶育成方法は他の方法に比べて容易に大型の結晶を得ることができる点、および製造コストの観点から好ましい。
 金属フッ化物を加熱溶融して融液とした後、該融液から結晶を育成する方法としては、既知の結晶育成方法を制限なく適用することができる。
 具体的な方法を例示すれば、坩堝中の単結晶製造原料の融液を坩堝ごと徐々に下降させながら冷却することにより坩堝内に単結晶を育成させる坩堝降下法、坩堝中の単結晶製造原料の融液界面に目的とする単結晶からなる種結晶を接触させ、次いでその種結晶を坩堝の加熱領域から徐々に引上げて冷却することにより該種結晶の下方に単結晶を育成する溶融引上げ法、あるいは坩堝底部に設けた孔から融液を滲出させ、この滲出した融液を引下げて単結晶を育成するマイクロ溶融引下げ法(溶融引下げ法)等の方法が挙げられる。
 中でも、溶融引下げ法は、坩堝降下法、溶融引上げ法と比べて短時間で結晶を育成できることに加えて、ドーピングを行う場合には、より高濃度な添加剤をドープできるという利点を有し、本発明に好適に使用できる。
 溶融引下げ法における育成軸としては、目的とする単結晶からなる種結晶を用いることができる。また、タングステン-レニウム(以下、W-Reとする)、白金など既知の金属も用いることができ、中でも、W-Reは高温時における耐腐食性が高い、適度な剛性を持つといった利点を有し、汎用性が高いという観点から好ましい。
 本発明において、製造の対象とするフッ化物結晶は特に制限されないが、具体的なフッ化物結晶を例示すると、フッ化リチウム、フッ化ナトリウム、フッ化ルビジウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化アルミニウム、フッ化亜鉛、フッ化イットリウム、フッ化鉛、フッ化タリウム、フッ化バリウム、フッ化ランタン、フッ化セリウム、フッ化プラセオジウム、フッ化ネオジム、フッ化バリウムリチウム、フッ化マグネシウムカリウム、フッ化アルミニウムリチウム、フッ化カルシウムストロンチウム、フッ化セシウムカルシウム、フッ化リチウムカルシウムアルミニウム、フッ化リチウムストロンチウムアルミニウム、フッ化リチウムイットリウム、フッ化バリウムイットリウム、フッ化カリウムイットリウム、フッ化リチウムルテチウム、フッ化バリウムエルビウム、フッ化バリウムツリウム、フッ化バリウムルテチウム等が挙げられる。
 原料である前処理金属フッ化物を融かして得られる融液の組成と、実際に得られる結晶の組成が一致しているとき、融液がコングルーエントな組成であるという。中には原料を融かして得られる融液の組成と、実際に得られる結晶の組成が一致していない場合があり、この場合、融液がインコングルーエントな組成であるという。本発明は、融液の組成がコングルーエントな場合、或いはインコングルーエントな場合に関わらず、適用することができる。
 目的とするフッ化物結晶が複合フッ化物結晶で、コングルーエントな組成の融液から育成する場合は、融液がその量論組成になるように複数の前処理金属フッ化物を予め定量して仕込めば良い。例えば、フッ化バリウムイットリウムの結晶を育成する場合は、フッ化バリウム1モルとフッ化イットリウム2モルを仕込んで溶融する。或いは、前述の通り、前処理金属フッ化物の製造時に、目的の複合フッ化物結晶の融点以上の温度で前処理して目的結晶と同じ組成の前処理複合金属フッ化物としてもよい。
 インコングルーエントな組成の場合は、そのフッ化物結晶の相図に従い、適切な組成になるよう前処理金属フッ化物を定量して仕込んで溶融する。この融液からコングルーエントな組成の融液と同様にして育成すれば目的の組成のフッ化物結晶が得られる。
 本発明において、対象とするフッ化物結晶を発光させることや、対象となるフッ化物結晶の結晶性を改良すること等を目的として、添加剤を加えても良い。対象となる添加剤は、フッ化セリウム、フッ化プラセオジウム、フッ化ネオジム、フッ化サマリウム、フッ化ユウロピウム、フッ化ガドリニウム、フッ化テルビウム、フッ化ジスプロシウム、フッ化ホルミウム、フッ化エルビウム、フッ化ツリウム、フッ化イッテルビウム、フッ化リチウム、フッ化ナトリウム、フッ化鉛等が挙げられるが、これらに限定されるわけではない。
 フッ化物結晶の原料(前処理金属フッ化物)は、あらかじめ既定量を坩堝に投入し融解して融液とし結晶育成に使用するのが一般的である。しかしながら、インコングルーエントな融液から結晶を育成する場合や、添加剤を加えて結晶育成を行う場合、結晶の育成が進むにつれて融液の組成が変化する場合がある。このような組成の変化を抑えることや、大型サイズの結晶育成を行うこと等を目的として、融液に原料を添加しながら結晶育成を行っても良い。
 結晶育成工程において、窒素、ヘリウム、アルゴン、ネオン等の不活性ガス雰囲気下において結晶育成を行うことが可能である。また、これらの不活性ガスに、四フッ化メタン、六フッ化エタン、八フッ化プロパン等のパーフルオロコンパウンド(PFC);三フッ化メタン(HFC23)や1,1,1,2-テトラフルオロエタン(HFC-134a)等のヒドロフルオロカーボン;ヘキサフルオロプロピレンや2,3,3,3-テトラフルオロプロピレン(HFO-1234yf)等の含フッ素オレフィンなどの既知の気体スカベンジャーを加えて使用することは好適な態様である。さらに気体スカベンジャーとしてフッ化カルボニルを使用することもできる。
 本発明によるフッ化物結晶の製造においては、熱歪に起因する結晶の結晶欠陥を除去する目的で、結晶の製造後にアニール操作を行っても良い。アニール操作時に使用する装置は、温度を制御する機能を持ち、装置内の雰囲気を制御できることが好ましい。アニール時の雰囲気としては、フッ化カルボニルを含む雰囲気を使用しても良い。
 以下、本発明のフッ化カルボニルを使用した前処理金属フッ化物の製造方法およびフッ化物結晶の製造方法について、溶融引下げ法の場合を例にとって説明する。
 溶融引下げ法とは、図1に示すような装置を用いて、坩堝5の底部に設けた孔より原料融液を引き出して結晶を製造する方法である。使用するアフターヒーター1、ヒーター2、断熱材3、ステージ4、坩堝5の材質は、通常、黒鉛、硝子状黒鉛、炭化珪素蒸着黒鉛等が使用されるが、これ以外の材質でも問題なく使用することができる。
 まず、所定量の原料を、底部に孔を設けた坩堝5に充填する。坩堝底部に設ける孔の形状は、特に限定されないが、直径が0.5~4mm、長さが0.1~2mmの円柱状とすることが好ましい。原料の純度は特に限定されないが、純度がそれぞれ99.99vol.%以上の金属フッ化物を用いることが好ましい。
 次いで、上記金属フッ化物を充填した坩堝5、アフターヒーター1、ヒーター2、断熱材3、及びステージ4を図1に示すようにセットする。真空排気装置を用いて、チャンバー6内の真空排気を行う。同時に高周波コイル7を用いて、坩堝内部の温度が350~1000Kになるまで加熱を行うことが好ましい。これは、炉、カーボン部材、金属フッ化物に付着している水分を除去するためである。また、到達圧力が、1.0×10-3Pa以下に達するまで真空排気を行うことが好ましい。
 フッ化カルボニル単体、もしくは高純度アルゴン等の不活性ガスと混合してチャンバー6に導入する。導入後は高周波コイル7を用いて、坩堝内部の温度が400K~900Kになるまで加熱を行うことが好ましい。この工程で、金属フッ化物に含まれる酸素および水分を除去することができる。さらに、金属フッ化物を加熱処理する装置内に残留した酸素、水分も除去することもできる。
 真空排気装置を用いて、炉内導入ガスの排気を行い、フッ化カルボニルを炉内から排気する。到達圧力が、1.0×10-3Pa以下に達するまで真空排気を行うことが好ましい。その後、高純度アルゴン等の不活性ガスを炉内に導入し、ガス置換する。上記ガス置換操作を計2回行う。
 以上の操作により、前処理金属フッ化物を製造することができる。この前処理金属フッ化物を原料として用いて結晶の育成を行う。
 ガス置換操作を行った後、高周波コイル7で原料を加熱して溶融せしめ、溶融した原料融液を坩堝底部の孔から引き出して結晶の育成を開始する。結晶育成時の炉内雰囲気としては、高純度アルゴン等の不活性ガスに加えて、フッ化カルボニル、四フッ化メタン等の気体スカベンジャーを単独で、もしくはこれらを任意の割合で混合して用いることができる。ここで、金属フッ化物は一般的にカーボンに対する接触角が非常に大きく、坩堝底部の孔から融液が滲出しないため、特別の手段を講じる必要がある。本発明者らは、W-Re合金製のワイヤーを引下げロッドの先端に取り付け、該W-Re合金製のワイヤーを坩堝底部の孔から坩堝内部に挿入し、該W-Re合金製のワイヤーに原料融液を付着せしめた後、原料融液を該W-Re合金製のワイヤーと共に引き下げることによって結晶の育成を可能とした。
 上記W-Re合金製ワイヤーによる原料融液の引き出しを行った後、一定の引下げ速度で連続的に引下げることにより、目的のフッ化物結晶を得ることができる。該引下げ速度は、特に限定されないが、0.5~10mm/hrの範囲とすることが好ましい。
 得られたフッ化物結晶は基本的に単結晶である。この結晶は良好な加工性を有しており、所望の形状に加工して用いることが容易である。加工に際しては、公知のブレードソー、ワイヤーソー、等の切断機、研削機、或いは研磨盤を何ら制限なく用いることができる。
 得られたフッ化物結晶は、所望の形状に加工して、真空紫外発光素子、レーザー等、任意の用途に用いることができる。
 以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
 実施例1
(育成準備)
 図1に示す結晶製造装置を用いて、フッ化バリウムイットリウムの結晶を製造した。原料としては、純度が99.99vol.%のフッ化バリウム、及びフッ化イットリウムを用いた。アフターヒーター1、ヒーター2、断熱材3、ステージ4、及び坩堝5は、高純度カーボン製のものを使用し、坩堝底部に設けた孔の形状は直径2.0mm、長さ0.5mmの円柱状とした。
 まず、フッ化バリウム0.42g、及びフッ化イットリウム0.69gをそれぞれ秤量し、よく混合した後に坩堝5に充填した。原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。
(装置内部の加熱乾燥処理)
 次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を5.0×10-4Paまで真空排気を行った。同時に、真空排気時の坩堝内部の温度は570Kとなるよう、高周波コイル7を用いて加熱を行った。
(金属フッ化物をフッ化カルボニル共存下で加熱する工程)
 アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスをチャンバー6内に導入し、高周波コイル7を用いて、坩堝底部の温度を計測しながら、加熱温度が790Kとなるよう高周波加熱コイルの出力を調整した。混合ガス置換後のチャンバー6内の圧力は大気圧とし、この状態で30分加熱を継続した。
(フッ化カルボニルの排気と結晶育成雰囲気ガスの導入)
 次に、高周波加熱コイルによる過熱を継続したまま、真空排気を行い、さらにチャンバー6内にアルゴンガスを導入してガス置換を行った。アルゴンガス置換後のチャンバー6内の圧力は大気圧とした。同様の操作を2回行った。
(結晶育成工程)
 高周波加熱コイル7を用いて、原料をフッ化バリウムイットリウムの融点まで加熱して溶融せしめたが、原料融液の坩堝5底部の孔からの滲出は認められなかった。そこで、高周波の出力を調整して原料融液の温度を徐々に上げながら、引下げロッド8の先端に設けたW-Reワイヤーを、上記孔に挿入し、引下げる操作を繰り返したところ、原料融液を上記孔より引き出すことができた。この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。3mm/hrの速度で連続的に14時間引き下げ、最終的に直径2.1mm、長さ40mmの結晶を得た。この結晶は、粉末X線回折分析によりフッ化バリウムイットリウムの結晶であることを確認した。以下の例も同様にして確認した。
(透過スペクトル測定)
 得られた結晶を、ダイヤモンド切断砥石を備えたブレードソーによって約15mmの長さに切断し、側面を研削して長さ15mm、幅2mm、厚さ1mmの形状に加工し、これをスペクトル測定用試料とした。図2に示す測定装置を用いて、以下に記す手順で室温で測定を行った。図10にスペクトル測定用試料の写真を示す。
 測定装置内の所定の位置にスペクトル測定用試料9をセットし、装置内部全体を窒素ガスで置換した。透過光用光源である重水素ランプ10から透過光を、透過光分光器11(分光計器製、KV201型極紫外分光器)で分光し、スペクトル測定用試料9に照射し、該試料からの透過光を光電子増倍管13で記録し、透過スペクトルを得た。結果を表1と図3に示す。さらに、HITACHI製SEM-3400Nを用いて、得られた試料の観察を行った。結果を図11に示す。
 実施例2
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の坩堝底部の温度を620Kとした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3に示す。
 実施例3
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の坩堝底部の温度を440Kとした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3に示す。
 実施例4
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の坩堝底部の温度を350Kとした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3に示す。
 実施例5
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の坩堝底部の温度を300Kとした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3に示す。
 実施例6
 実施例1と同様にして真空排気を行った後、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスを導入して坩堝底部の温度が1260Kとなるまで加熱を行い原料を溶融した。その後、実施例1と同様にして融液の引下げを行って結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3に示す。
 実施例7
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の加熱時間を4時間とした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図4に示す。
 実施例8
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の加熱時間を2時間とした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図4に示す。
 実施例9
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の加熱時間を10分とした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図4に示す。
 実施例10
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガス導入後の加熱時間を1分とした以外は実施例1と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図4に示す。
 実施例11
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスの代わりにアルゴン90vol.%-フッ化カルボニル10vol.%混合ガスを導入した以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図5に示す。
 実施例12
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスの代わりにアルゴン99vol.%-フッ化カルボニル1vol.%混合ガスを導入した以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図5に示す。
 実施例13
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスの代わりにアルゴン99.99vol.%-フッ化カルボニル0.01vol.%混合ガスを導入した以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表と図5に示す。
 実施例14
 育成準備の工程においてフッ化バリウム23.18g、及びフッ化イットリウム38.57gをそれぞれ秤量して原料とした以外は実施例13と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図5に示す。
 実施例15
 本実施例は、前処理金属フッ化物原料を作製した後大気下に開放し、次いでこれを原料として気体スカベンジャーの存在下に結晶の育成を行った例である。
 実施例8と同様にして金属フッ化物をフッ化カルボニル共存下で加熱する工程まで行った後、一旦室温まで冷却を行い前処理金属フッ化物原料を得た。得られた前処理金属フッ化物原料を再び、坩堝5に充填した。原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を5.0×10-4Paまで真空排気を行った。同時に、真空排気時の坩堝内部の温度は570Kとなるよう、高周波コイル7を用いて加熱を行った。次いで、アルゴン95vol.%-四フッ化メタン5vol.%混合ガスをチャンバー6内の圧力が大気圧に等しくなるまで導入した。その後、実施例1の結晶育成工程と同様にして融液の引下げを行い、結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図6に示す。
 実施例16
 フッ化カルボニルの排気と結晶育成雰囲気ガスの導入工程において、アルゴンガスの代わりに、アルゴン95vol.%-四フッ化メタン5vol.%混合ガスを導入した以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図7に示す。
 実施例17
 本実施例は、フッ化カルボニルの存在下に、金属フッ化物を加熱溶融し且つ該融液から結晶を育成した例である。
 装置内部の加熱乾燥処理の工程まで実施例1と同様に行った後、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスをチャンバー6内に導入し、高周波コイル7を用いて、坩堝底部の温度を計測しながら、加熱温度が1260Kとなるよう高周波加熱コイルの出力を調整し、金属フッ化物の溶融を行った。この状態で2時間加熱を継続した。2時間加熱後、高周波の出力を調整して原料融液の温度を徐々に上げながら、引下げロッド8の先端に設けたW-Reワイヤーを、上記孔に挿入し、引下げる操作を繰り返したところ、原料融液を上記孔より引き出すことができた。この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。3mm/hrの速度で連続的に14時間引き下げ、最終的に直径2.1mm、長さ40mmの結晶を得た。得られた結晶から、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図8に示す。
 実施例18
 育成準備の工程において、フッ化セリウム0.006g、フッ化リチウム0.17g、及びフッ化イットリウム0.94gをそれぞれ秤量して用いた以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図9に示す。
 比較例1
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスの代わりにアルゴンを導入した以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3、4に示す。
 比較例2
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスの代わりにアルゴン95vol.%-四フッ化メタン5vol.%混合ガスを導入した以外は実施例8と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図3、4に示す。また、図12にスペクトル測定用試料の写真を示す。図10との比較から、結晶が白濁している様子が分かる。加えて、HITACHI製SEM-3400Nを用いてスペクトル測定用試料の観察を行った。結果を図13に示す。結晶の白濁は酸素の混入が原因であることが分かる。
 比較例3
 フッ化カルボニル共存下での加熱工程において、アルゴン95vol.%-フッ化カルボニル5vol.%混合ガスの代わりにアルゴン95vol.%-四フッ化メタン5vol.%混合ガスを導入した以外は実施例18と同様にして結晶育成を行い、スペクトル測定用試料を作成し、真空紫外透過率を測定した。結果を表1と図9に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1. 金属フッ化物をフッ化カルボニルの共存下に加熱することを特徴とする前処理金属フッ化物の製造方法。
  2. 加熱温度が、300ケルビン以上1780ケルビン以下であることを特徴とする請求項1に記載の前処理金属フッ化物の製造方法。
  3. 共存せしめるフッ化カルボニルの量が、金属フッ化物1モルに対して1/100モル以上であることを特徴とする請求項1に記載の前処理金属フッ化物の製造方法。
  4. フッ化カルボニルの存在下に、金属フッ化物を加熱溶融して融液とし次いで該融液から結晶を育成することを特徴とするフッ化物結晶の製造方法。
  5. 金属フッ化物をフッ化カルボニルの共存下に加熱して前処理金属フッ化物を得る工程と、当該前処理金属フッ化物より結晶を育成する結晶育成工程とを含むことを特徴とするフッ化物結晶の製造方法。
  6. 前処理金属フッ化物を得る工程において、加熱温度が330ケルビン以上1780ケルビン以下であることを特徴とする請求項5に記載のフッ化物結晶の製造方法。
  7. 前処理金属フッ化物を得る工程において、共存せしめるフッ化カルボニルの量が、金属フッ化物1モルに対して1/100モル以上であることを特徴とする請求項5に記載のフッ化物結晶の製造方法。
  8. 結晶育成工程における育成が、前処理金属フッ化物の融液上端に種結晶を接触させ引き上げることにより育成する溶融引き上げ法、または前処理金属フッ化物の融液下端に育成軸を接触させ引き下げることにより育成する溶融引き下げ法である請求項5に記載のフッ化物結晶の製造方法。
  9. 結晶育成工程において、気体スカベンジャーの共存下に融液から結晶を育成することを特徴とする請求項8に記載のフッ化物結晶の製造方法。
PCT/JP2009/059091 2008-05-16 2009-05-15 前処理金属フッ化物およびフッ化物結晶の製造方法 WO2009139473A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010512036A JP5532435B2 (ja) 2008-05-16 2009-05-15 前処理金属フッ化物およびフッ化物結晶の製造方法
US12/992,783 US20110061587A1 (en) 2008-05-16 2009-05-15 Method of producing pretreated metal fluorides and fluoride crystals
CA2724457A CA2724457A1 (en) 2008-05-16 2009-05-15 Method of producing pretreated metal fluorides and fluoride crystals
EP09746679A EP2292555A4 (en) 2008-05-16 2009-05-15 METAL FLUORIDES PREFORMED AND PROCESS FOR THE PRODUCTION OF FLUORIDE CRYSTALS
CN2009801168045A CN102026914A (zh) 2008-05-16 2009-05-15 预处理金属氟化物及氟化物晶体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008129974 2008-05-16
JP2008-129974 2008-05-16

Publications (1)

Publication Number Publication Date
WO2009139473A1 true WO2009139473A1 (ja) 2009-11-19

Family

ID=41318831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059091 WO2009139473A1 (ja) 2008-05-16 2009-05-15 前処理金属フッ化物およびフッ化物結晶の製造方法

Country Status (7)

Country Link
US (1) US20110061587A1 (ja)
EP (1) EP2292555A4 (ja)
JP (1) JP5532435B2 (ja)
KR (1) KR20110030425A (ja)
CN (1) CN102026914A (ja)
CA (1) CA2724457A1 (ja)
WO (1) WO2009139473A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864595A (zh) * 2010-06-07 2010-10-20 长春理工大学 掺铒氟化钆锂晶体及其生长方法
JP2014149538A (ja) * 2014-03-13 2014-08-21 Hitachi Chemical Co Ltd 無機光学フィルター
JP2015138822A (ja) * 2014-01-21 2015-07-30 国立大学法人京都大学 高効率ペロブスカイト型太陽電池の製造方法
US9217910B2 (en) 2009-09-29 2015-12-22 National Institute For Materials Science Inorganic optical filter, optical element, and light source
CN112891973A (zh) * 2021-01-15 2021-06-04 中国科学院上海应用物理研究所 一种降低卤化物熔盐中氧含量的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147119B (zh) * 2013-03-21 2015-09-16 北京雷生强式科技有限责任公司 一种氟化镁晶体的制备方法及生长设备
CN107354509B (zh) * 2017-06-05 2020-02-14 中国科学院上海硅酸盐研究所 一种掺钇氟化钡晶体及其制备方法和应用
CN108193265A (zh) * 2018-01-04 2018-06-22 中国电子科技集团公司第二十六研究所 基于光学的微下拉炉籽晶对中调节方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228292A (ja) * 1997-10-24 1999-08-24 Canon Inc フッ化物結晶製造用原料およびその精製方法、フッ化物結晶およびその製造方法並びに光学部品
JP2002241196A (ja) * 2001-02-08 2002-08-28 Stella Chemifa Corp 弗化物中の酸素成分・炭素成分の低減方法
JP2003525197A (ja) * 2000-03-03 2003-08-26 フォルシュングスフェアブント ベルリン イー.ヴィ. 望ましくない不純物を含まない結晶及び/又は結晶材料の製造方法並びにかかる結晶の使用
JP2005200256A (ja) 2004-01-14 2005-07-28 Nikon Corp 金属フッ化物の精製方法、金属フッ化物多結晶および単結晶の製造方法および製造装置
WO2009028640A1 (ja) * 2007-08-31 2009-03-05 Stella Chemifa Corporation フッ素化合物の精製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519986A (en) * 1982-01-28 1985-05-28 Hughes Aircraft Company Process for preparation of ultrapure thorium fluoride
US4752454A (en) * 1984-12-27 1988-06-21 Hughes Aircraft Company Process for the preparation of ultrapure active metal fluorides
US4857293A (en) * 1984-12-27 1989-08-15 Hughes Aircraft Company Process for the preparation of ultrapure heavy metal fluorides
US6238479B1 (en) * 1997-10-24 2001-05-29 Canon Kabushiki Kaisha Raw material for manufacturing fluoride crystal, refining method of the same, fluoride crystal, manufacturing method of the same, and optical part
JP3631063B2 (ja) * 1998-10-21 2005-03-23 キヤノン株式会社 フッ化物の精製方法及びフッ化物結晶の製造方法
WO2004094705A1 (ja) * 2003-04-23 2004-11-04 Stella Chemifa Corporation フッ化物結晶の製造装置
US20050044802A1 (en) * 2003-08-27 2005-03-03 Bellman Robert A. Method and module for improving the lifetime of metal fluoride optical elements
US20070098624A1 (en) * 2005-10-27 2007-05-03 Honeywell International Inc. Andhydrous hydrogen fluoride composition and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228292A (ja) * 1997-10-24 1999-08-24 Canon Inc フッ化物結晶製造用原料およびその精製方法、フッ化物結晶およびその製造方法並びに光学部品
JP2003525197A (ja) * 2000-03-03 2003-08-26 フォルシュングスフェアブント ベルリン イー.ヴィ. 望ましくない不純物を含まない結晶及び/又は結晶材料の製造方法並びにかかる結晶の使用
JP2002241196A (ja) * 2001-02-08 2002-08-28 Stella Chemifa Corp 弗化物中の酸素成分・炭素成分の低減方法
JP2005200256A (ja) 2004-01-14 2005-07-28 Nikon Corp 金属フッ化物の精製方法、金属フッ化物多結晶および単結晶の製造方法および製造装置
WO2009028640A1 (ja) * 2007-08-31 2009-03-05 Stella Chemifa Corporation フッ素化合物の精製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RADZHABOV; FIGURA, PHYS. STAT. SOL., vol. 136, 1986
See also references of EP2292555A4 *
STOCKBARGER, J., OPT. AM., vol. 39, 1949

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217910B2 (en) 2009-09-29 2015-12-22 National Institute For Materials Science Inorganic optical filter, optical element, and light source
CN101864595A (zh) * 2010-06-07 2010-10-20 长春理工大学 掺铒氟化钆锂晶体及其生长方法
JP2015138822A (ja) * 2014-01-21 2015-07-30 国立大学法人京都大学 高効率ペロブスカイト型太陽電池の製造方法
JP2014149538A (ja) * 2014-03-13 2014-08-21 Hitachi Chemical Co Ltd 無機光学フィルター
CN112891973A (zh) * 2021-01-15 2021-06-04 中国科学院上海应用物理研究所 一种降低卤化物熔盐中氧含量的方法

Also Published As

Publication number Publication date
EP2292555A1 (en) 2011-03-09
JP5532435B2 (ja) 2014-06-25
KR20110030425A (ko) 2011-03-23
EP2292555A4 (en) 2012-07-11
US20110061587A1 (en) 2011-03-17
CN102026914A (zh) 2011-04-20
CA2724457A1 (en) 2009-11-19
JPWO2009139473A1 (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5532435B2 (ja) 前処理金属フッ化物およびフッ化物結晶の製造方法
RU2324021C2 (ru) Способ обработки хлорида или бромида, или йодида редкоземельного металла в углеродсодержащем тигле
JPH11157982A (ja) フッ化カルシウム結晶の製造方法および原料の処理方法
Veber et al. Flux growth of Yb 3+-doped RE 2 O 3 (RE= Y, Lu) single crystals at half their melting point temperature
EP0241614B1 (en) Process for enhancing ti:al2o3 tunable laser crystal fluorescence by controlling crystal growth atmosphere
Baldochi et al. Ce-doped LiYF4 growth under CF4 atmosphere
US20060249072A1 (en) Method of synthesizing a fluoride growth material for improved outgassing
JP4463730B2 (ja) フッ化金属単結晶の製造方法
JP2001240497A (ja) フッ化物単結晶製造方法及び製造装置
Darabont et al. Growth of pure and doped KMgF3 single crystals
JP6444568B2 (ja) 青色を呈する酸化アルミニウム単結晶およびその酸化アルミニウム単結晶の製造方法
JPH11130594A (ja) フッ化物結晶の製造方法およびフッ化物結晶ならびに光学部品
JP5471398B2 (ja) エピタキシャル成長用のサファイア単結晶ウエハ及びその製造方法
JP4484208B2 (ja) フッ化金属単結晶体の製造方法
Atkins et al. Interaction of NF3 with melt confinement materials in fluoride glass processing
JP2012006786A (ja) フッ化金属単結晶体の製造方法
JP5191153B2 (ja) フッ化金属用加熱溶融炉に用いる断熱材の再生方法
JPH11116393A (ja) 無機フッ化物単結晶の育成方法
JP2010073936A (ja) 真空紫外発光素子
JP2008019126A (ja) 真空紫外発光素子
JP2003119095A (ja) フッ化物単結晶の製造方法
CN1155741C (zh) 氟铝酸锂系列晶体的软坩埚下降生长方法
Santo et al. LiF, LiYF4, and Nd-and Er-Doped LiYF4 Fluoride Fibers
do Espirito Santo et al. 20 LiF, LiYF4, and Nd-and Er-Doped LiYF4 Fluoride Fibers
JP2005200256A (ja) 金属フッ化物の精製方法、金属フッ化物多結晶および単結晶の製造方法および製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116804.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107025440

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010512036

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12992783

Country of ref document: US

Ref document number: 2724457

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009746679

Country of ref document: EP