WO2009139136A1 - スペクトル拡散高周波加熱装置 - Google Patents

スペクトル拡散高周波加熱装置 Download PDF

Info

Publication number
WO2009139136A1
WO2009139136A1 PCT/JP2009/002024 JP2009002024W WO2009139136A1 WO 2009139136 A1 WO2009139136 A1 WO 2009139136A1 JP 2009002024 W JP2009002024 W JP 2009002024W WO 2009139136 A1 WO2009139136 A1 WO 2009139136A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
reflected wave
heating
intensity
oscillator
Prior art date
Application number
PCT/JP2009/002024
Other languages
English (en)
French (fr)
Inventor
石崎俊雄
岡島利幸
八幡和宏
夘野高史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/745,825 priority Critical patent/US8330085B2/en
Priority to JP2010506763A priority patent/JP4542625B2/ja
Priority to CN2009801012145A priority patent/CN101884245B/zh
Publication of WO2009139136A1 publication Critical patent/WO2009139136A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a high-frequency heating device used for a microwave oven or the like.
  • a conventional high-frequency heating device used for a microwave oven includes a magnetron, a high-power direct oscillation device using a vacuum tube, and an antenna (radiator) that radiates electromagnetic waves generated by the magnetron into a heating chamber.
  • the frequency of the electromagnetic wave for high-frequency heating the ISM band is usually used, and the oscillation frequency of the magnetron is set to a predetermined value included in a range from 2.40 GHz to 2.50 GHz, for example.
  • the oscillation frequency of the magnetron is fluctuated by the voltage applied to the magnetron and the impedance in the heating chamber, and the oscillation spectrum spreads over almost the entire 100 MHz bandwidth from 2.40 GHz to 2.50 GHz.
  • a solid-state high-frequency heating apparatus including an oscillator and a solid-state power amplifier has been studied in place of the magnetron. This is because high-frequency semiconductor devices such as GaN and SiC (hereinafter referred to as “semiconductor power amplifiers”) are being put into practical use as solid-state power amplifiers.
  • semiconductor power amplifiers high-frequency semiconductor devices such as GaN and SiC
  • a high-frequency signal output from the oscillator is amplified by the semiconductor power amplifier and radiated from the radiator into the heating chamber with high power.
  • the solid-state high-frequency heating device can realize electromagnetic radiation of a line spectrum with almost no noise component. Moreover, the radiation frequency of the line spectrum can be arbitrarily changed within a range from 2.40 GHz to 2.50 GHz, for example, by setting the oscillator.
  • the semiconductor power amplifier has a problem that when it receives a strong reflected wave, it is easily broken by heating, which is an important problem to be solved for practical use.
  • electromagnetic waves are radiated into an open space, so that it is not necessary to prevent damage to the semiconductor power amplifier due to reflected waves.
  • strong reflected waves are likely to be generated in the heating chamber, so it is necessary to protect the semiconductor power amplifier from reflected waves for practical use. It is essential.
  • Patent Document 1 discloses an example of a high-frequency heating device including such a semiconductor power amplifier.
  • this high-frequency heating device as shown in FIGS. 9A and 9C, the intensity of the reflected wave is increased while the frequency is continuously swept by setting the intensity (radiated power) of the radiated wave low immediately after the start of operation. Execute the monitor mode to be measured.
  • the frequency is continuously changed from 2.40 GHz to 2.50 GHz in the monitor mode. If the intensity of the reflected wave generated at this time is detected, for example, as shown in FIG. 9B, the intensity of the reflected wave greatly changes depending on the frequency of the electromagnetic wave.
  • the frequency at which the reflected wave intensity becomes small can be determined. After fixing the oscillation frequency to the frequency thus determined, the output is increased as shown in FIG. 9A, and radiation is started for heating.
  • the output of electromagnetic radiation is reduced in order to prevent destruction of the solid-state amplifier due to the reflected wave. Heating is stopped.
  • high-frequency heating can be performed at a frequency with low reflection and high absorption efficiency by the object to be heated, and it is also possible to protect the power amplifier from destruction by reflected waves. Become.
  • Patent Document 2 discloses a high-frequency heating device that detects the impedance of a heating chamber and controls the oscillation frequency based on the detection result. By adjusting the oscillation frequency, the impedance is always matched, thereby trying to realize cooking without unevenness.
  • Patent Document 3 discloses a microwave processing device that stores the relationship between reflected power and frequency by sweeping the microwave frequency in the range from 2.4 MHz to 2.5 MHz and detecting the reflected current. ing. This microwave processing apparatus extracts the frequency at which the minimum reflected power is indicated as the heating frequency from the relationship between the stored reflected power and the frequency.
  • the high-frequency heating device disclosed in Patent Document 1 requires a preliminary monitor mode in which the reflected wave intensity is measured by continuously sweeping the frequency of an electromagnetic wave radiated with low power.
  • the frequency control cannot follow, so if the heating efficiency is poor and the reflected wave intensity is high, heating must be interrupted to prevent destruction of the semiconductor power amplifier.
  • the radiation frequency is fixed during heating, there is a problem that the electromagnetic field distribution is steadily uneven in the heating chamber, resulting in uneven heating of the object to be heated.
  • Patent Document 1 when a plurality of radiation units each having a power amplifier and a radiator are provided in one high-frequency heating device, a common frequency determined in the monitor mode is used. Since electromagnetic waves are radiated from each radiating unit, the reflected waves of the electromagnetic waves radiated from each radiating unit cannot be distinguished from the electromagnetic waves radiated from other radiating units. There are also problems that cause large errors.
  • Patent Document 2 discloses that the oscillation frequency is controlled based on the impedance detected during heating, but describes how to determine the optimum impedance. Absent. In the apparatus of Patent Document 2, it is presumed that the frequency at which impedance matching is achieved is detected while the oscillation frequency is swept. However, there is a problem similar to the problem described in Patent Document 1. Will be.
  • the reflection spectrum of the object to be heated shows a complex profile, and there may be a plurality of regions where the reflected wave intensity is locally reduced depending on the frequency.
  • the profile of the reflection spectrum changes dynamically during the heating process. For this reason, in the conventional techniques taught in Patent Documents 1 and 2, even if the frequency at which the reflected wave intensity is locally reduced can be temporarily detected, Therefore, the frequency that minimizes the reflection intensity may change greatly. In such a case, if the reflection spectrum by the object to be heated changes, the optimum frequency cannot be detected following the change, and there is a risk that fatal damage may occur to the solid-state amplifier due to the reflected wave whose intensity suddenly increases.
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is to realize radiation with low reflected power while preventing destruction of the solid-state amplifier due to reflected waves, and the state of the object to be heated is temporal.
  • An object of the present invention is to provide a high-frequency heating device that can adjust the radiation frequency in accordance with the change in the situation even if it changes.
  • the high-frequency heating device of the present invention includes a variable frequency oscillator, a semiconductor power amplifier that amplifies the output of the variable frequency oscillator, a radiator that radiates a heating electromagnetic wave based on the output of the semiconductor power amplifier, and the heating And a control circuit for controlling the oscillation frequency of the variable frequency oscillator, and the control circuit switches the oscillation frequency of the variable frequency oscillator discontinuously.
  • the frequency hopping type spread spectrum radiation is emitted from the radiator.
  • control circuit sets the occurrence probability of the oscillation frequency based on the relationship between the intensity of the reflected wave detected by the reflected wave monitor circuit and the oscillation frequency.
  • control circuit uses the occurrence probability of the oscillation frequency in a frequency range where the intensity of the reflected wave detected by the reflected wave monitor circuit is relatively low, and the frequency where the intensity of the reflected wave is relatively high. Higher than the occurrence probability of the oscillation frequency in the region.
  • the output of the semiconductor power amplifier is adjusted to a relatively low value to emit the heating electromagnetic wave, and the reflected wave monitor circuit The relationship between the intensity of the reflected wave detected by the above and the oscillation frequency is obtained.
  • the control circuit updates the relationship between the intensity of the reflected wave detected by the reflected wave monitor circuit and the oscillation frequency, and the oscillation Dynamically change the frequency occurrence probability.
  • control circuit includes a plurality of frequencies including a frequency at which the intensity of the reflected wave is minimized and a frequency at which the intensity of the reflected wave is not minimized in the process of heating the object to be heated by the heating electromagnetic wave.
  • the oscillation frequency of the variable frequency oscillator is switched discontinuously.
  • the apparatus includes a heating chamber that accommodates an object to be heated, and the control circuit sets the oscillation frequency of the frequency variable oscillator between a plurality of frequencies included in a range from 2.40 GHz to 2.50 GHz. Switch to continuous.
  • a heating chamber for storing an object to be heated is provided, and the control circuit switches the oscillation frequency of the frequency variable oscillator discontinuously in 1.0 milliseconds or less.
  • control circuit switches the oscillation frequency of the variable frequency oscillator discontinuously in 0.01 milliseconds or more.
  • the semiconductor power amplifier is a GaN HFET.
  • discontinuous switching of the oscillation frequency is performed according to a frequency sequence determined by the control circuit, and the frequency sequence is a white random frequency sequence, the intensity of the reflected wave and the oscillation frequency. It is determined by performing time-series filtering with the occurrence probability based on the normalized absorption amount represented by the inverse characteristic of the relationship.
  • the high-frequency heating device of the present invention is a high-frequency heating device including a plurality of radiation units each radiating a heating electromagnetic wave with variable frequency, and each radiation unit includes a frequency variable oscillator and the frequency variable oscillator A semiconductor power amplifier that amplifies an output; a radiator that radiates a heating electromagnetic wave based on an output of the semiconductor power amplifier; and a reflected wave monitor circuit that detects a reflected wave of the heating electromagnetic wave; Further includes a control circuit for controlling the oscillation frequency of the variable frequency oscillator included in the plurality of radiation units, and the oscillation frequency of each frequency variable oscillator is such that the control circuit has no correlation between the plurality of radiation units. Frequency hopping spectrum independently from individual radiators included in the plurality of radiation units. The dispersion type of radiation do.
  • control circuit includes a corresponding radiation unit based on a relationship between the intensity of the reflected wave detected independently by each reflected wave monitor circuit included in the plurality of radiation units and the oscillation frequency.
  • the probability of occurrence of the oscillation frequency of the variable frequency oscillator included in is set.
  • a driving method of a high-frequency heating device includes a variable frequency oscillator, a semiconductor power amplifier that amplifies the output of the variable frequency oscillator, and a radiator that radiates a heating electromagnetic wave based on the output of the semiconductor power amplifier.
  • a method for driving a high-frequency heating apparatus comprising: a reflected wave monitor circuit that detects a reflected wave of the heating electromagnetic wave; and a control circuit that controls an oscillation frequency of the frequency variable oscillator, the oscillation of the frequency variable oscillator (A) radiating the heating electromagnetic wave from the radiator while switching the frequency discontinuously, and detecting the intensity of the reflected reflection of the heating electromagnetic wave by the reflected wave monitoring circuit, and the intensity of the reflected wave and the Based on the relationship between the oscillation frequency and the step (B), the intensity of the reflected wave obtained in the step (B) and the oscillation frequency Determining a frequency range in which the intensity of the reflected wave is relatively low, and in the step (A), the occurrence probability of the oscillation frequency in the frequency range in which the intensity of the reflected wave is relatively low, The occurrence frequency of the oscillation frequency in a frequency region where the intensity of the reflected wave is relatively high is set higher.
  • step (C) an oscillation frequency that minimizes the intensity of the reflected wave is determined based on the relationship between the intensity of the reflected wave obtained in step (B) and the oscillation frequency.
  • the frequency at which the reflected wave intensity (reflected power) is minimized is detected by frequency hopping, it is not necessary to execute the low power monitor mode, and the time required for heating can be shortened. Moreover, even if the state of the object to be heated in the heating chamber changes with time, it is possible to always adjust to the best heating state by performing frequency hopping during heating. That is, in the present invention, heating is not continuously performed at a frequency at which the reflected wave intensity is minimized. In the present invention, the reflected wave intensity is not minimized from the frequency at which the reflected wave intensity is minimized during the heating process. Hopping can also be performed on frequencies that are not present.
  • one high-frequency heating device includes a plurality of systems of power amplifiers and radiators
  • the radiation frequencies of each system can be changed so as not to correlate with each other, and as a result, the reflected waves of each system can be accurately monitored. It becomes possible. Further, power consumption required for heating is reduced, and energy saving can be realized.
  • the high-frequency heating device of the present invention does not use a magnetron, each radiation spectrum is narrow and can be accurately adjusted within a range where radiation is allowed. For this reason, EMC (Electromagnetic compatibility: Electro Magnetic Compatibility) characteristics can be improved, and the cost can be reduced by omitting EMC countermeasure parts.
  • EMC Electro Magnetic Compatibility
  • (a) is a graph which shows the time change of the radiated wave intensity (radiated power) when performing frequency hopping
  • (b) It is a graph which shows the time change of reflected wave intensity (reflected electric power)
  • (c) is a graph which shows the frequency dependence of reflected wave intensity.
  • 2 is a diagram illustrating a configuration example of a reflected wave monitor in Embodiment 1.
  • FIG. FIG. 2 is a diagram illustrating a configuration of a control circuit in the first embodiment. It is a flowchart which shows an example of the algorithm which determines the frequency sequence in this invention.
  • (A)-(d) is a figure for demonstrating time series filtering. It is a block diagram which shows 2nd Embodiment of the high frequency heating apparatus by this invention.
  • (A) is a graph which shows the time change of the intensity
  • (b) is a graph which shows the time change of reflected wave intensity
  • (c) is a graph showing the time change of the frequency.
  • the high-frequency heating device of the present invention can perform frequency hopping spread spectrum type radiation by switching the oscillation frequency of the variable frequency oscillator discontinuously within a predetermined range.
  • Frequency hopping spread spectrum in this specification is the same as “Spread Spectrum” implemented in the field of wireless communication, and broadens the frequency band of electromagnetic waves from a line spectrum to a band of a predetermined width ( It is a technique similar to the technique of spreading.
  • the frequency of the electromagnetic wave applied to the object to be heated is not fixed, and can be switched between a plurality of discrete values (discontinuous values) within a predetermined frequency range in a short time. That is, the emission of electromagnetic waves at each discrete frequency is completed in a short time, and hopping to the next frequency is performed. For this reason, even if a strong electromagnetic wave is radiated at a frequency where the intensity of the reflected wave by the object to be heated is high (low absorptivity), before the solid power amplifier is damaged by the reflected wave, the frequency is changed to another value. It will be switched. As a result, the solid state power amplifier can be prevented from being damaged by the reflected wave.
  • “Spread spectrum” is a well-known technique in the field of wireless communications, and is broadly divided into a method called “frequency hopping” and a method called “direct sequence”.
  • high-frequency energy is radiated in a closed space called a heating cabinet, and is converted into heat by absorbing the object to be heated. Perform the operation.
  • the high-frequency radiation in the present invention is also referred to as a “spread spectrum heating method” because it is similar to the spread spectrum in the wireless communication technology in that the frequency spectrum is spread within a predetermined range.
  • the Q value is low. Therefore, the frequency spectrum of the high frequency radiated from the magnetron shows a gentle mountain-shaped broad distribution including many noise components.
  • the Q value of the oscillator is high. For this reason, the frequency spectrum of the high-frequency signal output from the oscillator is substantially a “line spectrum”, and has a sharp peak at an arbitrary frequency.
  • a plurality of frequency candidate values are set in advance within a predetermined frequency band in which radiation is allowed.
  • n is a natural number of 3 or more
  • frequency candidate values F1, F2,..., Fn (F1 ⁇ F2 ⁇ ... ⁇ Fn) included in the frequency band are set. deep.
  • frequency hopping is performed by switching the radiation frequency between n frequency candidate values every time ⁇ .
  • the time ⁇ can be set to a value of 0.1 to 1 millisecond, for example, and n can be set to 256 to 1024, for example.
  • the size of the interval between adjacent frequencies on the frequency axis (for example, F3-F2) is 0.1 to 0.00. It can be set to about 4 MHz.
  • Fn ⁇ F1 is set to a value of 100 MHz or less, but if it is too small, the effect of frequency spreading cannot be obtained.
  • Fn-F1 is preferably set to 80 MHz or more.
  • FIG. 1A shows an example in which the oscillation frequency is switched at every time ⁇ with four frequency candidate values (F1 ⁇ F2 ⁇ ... ⁇ F5) of the frequencies F1, F2, F3, F4, and F5.
  • the oscillation frequency changes as F1-> F2-> F3-> F4-> F5-> F4-> F3-> F4-> F1-> F5-> F3-> ... with the passage of time.
  • FIG. 1 (b) shows an example of a change in the intensity of the reflected power that occurs in response to the above frequency change. Since the reflectance of the object to be heated is different at the frequency of the radiated electromagnetic wave, different reflected powers are observed depending on the frequency as illustrated in FIG.
  • FIG. 1C is a diagram showing an example of the relationship between the intensity of reflected power and the frequency.
  • the reflected power is the smallest at the frequency F3. This means that electromagnetic waves are most efficiently absorbed by the object to be heated at the frequency F3.
  • the frequency change is not monotonous.
  • a stepwise increase or decrease in frequency is referred to as a “monotonic” change in frequency
  • a non-monotonic change non-monotonic change
  • random does not exclude regularity, and does not require that the frequency (probability of occurrence) of each frequency is equal in a sufficiently long period. That is, the occurrence probability of a specific frequency may be high and the occurrence probability of other frequencies may be low.
  • the frequency spectrum is evenly distributed over the n frequencies from F1 to Fn, and the power at each frequency is the total output power Pout. Of 1 / n.
  • the occurrence probability of the frequency F3 may be increased in order to perform heating efficiently.
  • hopping is performed at a plurality of frequencies in order to determine the frequency at which the reflected wave intensity is lowest (for the purpose of search), but it is not necessary to separately perform this before the heating operation as a monitor mode.
  • frequency hopping may be performed while heating the object to be heated, or frequency hopping may be performed with low power before heating the object to be heated.
  • the local minimum point (local minimum) of the reflected wave intensity is not always one, and if the entire frequency band is not searched, the true minimum point is detected. I can't.
  • the local minimum point of the reflected wave intensity first found is erroneously recognized as the “true minimum point”, and the true The minimum point may not be reached.
  • the spectral distribution of the reflected wave intensity can change over time as the heating progresses, so even if the local minimum point of the reflected wave intensity detected first is the true minimum point, There is no guarantee that will remain the true minimum.
  • the minimum reflection point is searched from the predetermined frequency band in which radiation is allowed without being restricted by the local minimum. It is possible. Therefore, the local minimum point (so-called local minimum point) of the reflection intensity found by monotonically sweeping the frequency is not set as the true minimum point, and the true minimum reflection point is searched from a predetermined frequency band in which radiation is allowed. be able to.
  • the present invention is advantageous even when the reflection minimum point changes abruptly during heating, the selected minimum point becomes a local minimum value, and a different frequency becomes a new true minimum point.
  • random hopping is performed in a predetermined frequency band in which radiation is allowed.
  • frequency hopping radiation is performed at a frequency different from the frequency that minimizes the reflected wave intensity.
  • the reflected power can be kept small as an average value, heating efficiency is improved.
  • Even when radiation is performed at a frequency with high reflected wave intensity at the time of hopping if the time ⁇ is set to be extremely short, damage to the semiconductor power amplifier due to the reflected wave can be prevented.
  • the upper limit value of the time ⁇ can be determined from the viewpoint of preventing the semiconductor power amplifier from being damaged by the reflected wave.
  • the frequency hopping time ⁇ For example, by setting the frequency hopping time ⁇ to 1 millisecond or less, the frequency can be switched before the solid-state power amplifier is damaged by the reflected wave. Also, by setting the frequency hopping time ⁇ to 1 millisecond or less, in the 100 MHz bandwidth between 2.40 GHz and 2.50 GHz, which is generally used in heating of materials, the frequency during hopping A dispersion effect can be obtained.
  • the lower limit value of the time ⁇ for hopping the frequency is not particularly limited. It can be set within a range where the frequency change speed of the transmitter can be followed. In the present practical range, the frequency hopping time ⁇ is preferably 0.01 milliseconds or more. In order to realize a cheaper device, the frequency hopping time ⁇ is preferably 0.1 milliseconds or more.
  • the present invention it is possible to improve the heating efficiency of the solid-state high-frequency heating device and avoid the destruction of the semiconductor power amplifier.
  • FIG. 2 is a block diagram of the high-frequency heating device in the present embodiment.
  • the illustrated high-frequency heating device includes a variable frequency oscillator 1, a semiconductor power amplifier 2 that amplifies the output of the variable frequency oscillator 1, and a radiator 3 that radiates a heating electromagnetic wave based on the output of the semiconductor power amplifier 2. And a reflected wave monitor circuit 5 for detecting the reflected wave of the heating electromagnetic wave, and a control circuit 7 for controlling the oscillation frequency of the variable frequency oscillator 1.
  • the control circuit 7 can perform frequency hopping spread spectrum type radiation from the radiator 3 by discontinuously switching the oscillation frequency of the variable frequency oscillator 1.
  • the electromagnetic wave radiated from the radiator 3 irradiates an object to be heated (usually food) 9 disposed inside the heating chamber 8 to heat the object 9 to be heated.
  • a directional coupler 4 is provided between the semiconductor power amplifier 2 and the radiator 3, and a reflected wave monitor circuit 5 is connected to the directional coupler 4.
  • the frequency variable oscillator 1, the semiconductor power amplifier 2, the directional coupler 4, and the reflected wave monitor circuit 5 constitute a radiation circuit 6.
  • the radiation circuit 6 and the radiator 3 coupled to the radiation circuit 6 constitute one radiation unit.
  • the frequency variable oscillator 1 that can be suitably used in the present embodiment is, for example, a frequency synthesizer using a phase locked loop (PLL).
  • the oscillation frequency is determined based on the digital data of the given frequency indication information.
  • the semiconductor power amplifier 2 is, for example, a multistage amplifier using an HFET (heterogeneous junction two-dimensional electron gas field effect transistor) formed of GaN (gallium nitride) in the final stage.
  • HFET heterogeneous junction two-dimensional electron gas field effect transistor
  • GaN gallium nitride
  • the magnetron itself is a high-power oscillator, but in this embodiment, a semiconductor power amplifier is used separately from the oscillator.
  • Radiator 3 is an antenna that radiates radio waves. In order to radiate radio waves into a closed space such as a heating chamber 8 and a structure that can handle high output, it is necessary to adjust impedance and examine radiation characteristics in the entire system.
  • the directional coupler 4 is a coupler formed by a quarter wavelength coupled transmission line or the like.
  • the high-frequency signal incident from the port 1 (P1) is mostly output to the port 2 (P2) and is reduced by the amount represented by the coupling amount, and is also output to the port 3 (P3). It is not output to port 4 (P4).
  • the high-frequency signal incident on the port 2 is mostly output to the port 1 and is reduced by the amount represented by the coupling amount and is also output to the port 4, but is not output to the port 3. Therefore, when the output of the power amplifier 2 is input to the port 1 and the port 2 is coupled to the radiator to emit a large amount of power, the port 3 is terminated and the output of the port 4 is monitored. Observable.
  • the reflected wave monitor circuit 5 is connected to the port 4 of the directional coupler 4 and measures the reflected wave intensity.
  • the conventional reflected wave monitor detects the output of the port 4 with a diode, and generates an output voltage that is substantially proportional to the reflected power.
  • frequency hopping is used for radiation, if the reflected wave is demodulated according to the frequency sequence generated by itself, only the reflected wave of itself can be observed. Since all other signals that do not follow this frequency sequence become noise, the output becomes zero if a time average is taken for a certain period.
  • the reflected wave monitor circuit 5 has a configuration shown in FIG. 3, for example.
  • the reflected wave monitor circuit 5 shown in this figure receives the reflected wave signal, and integrates this signal with an output obtained by shifting the output from the transmitter 1 of FIG. 2 and the transfer of the output by ⁇ / 2. . Thereafter, the signals thus obtained (I signal and Q signal: analog signal) are converted into a digital signal by an A / D converter and output as a reflected wave demodulated signal.
  • the radiating circuit 6 is composed of a variable frequency oscillator 1, a semiconductor power amplifier 2, a directional coupler 4, and a reflected wave monitor circuit 5. If power is supplied from the power supply unit by connecting the radiator 3, this one set is used. High power, high frequency output can be obtained. By providing a plurality of units having the radiation circuit 6 and the radiator 3, the output can be further increased by spatial power combining. An embodiment having such a configuration will be described in detail later.
  • the control circuit 7 is a circuit for sending oscillation frequency command data to the variable frequency oscillator 1 based on the reflected wave intensity information from the reflected wave monitor circuit 5.
  • the control circuit 7 commands the oscillation frequency with a different occurrence probability for each frequency according to a predetermined algorithm.
  • the reflected wave intensity information may be an analog signal or a digital signal. It is preferable that the reflected wave intensity information is obtained by digitizing the output of the reflected wave monitor circuit 5 by an A / D converter because a desired algorithm can be executed by the microprocessor. In this case, the control circuit 7 can supply frequency data digitized according to a frequency sequence described later to the PLL of the frequency variable oscillator 1.
  • the control circuit 7 has a configuration shown in FIG. 4, for example.
  • the control circuit 7 of FIG. 4 is a digital circuit, and can be configured by, for example, a software module.
  • the reflection coefficient table 31 Since the reflected wave is monitored with respect to the radiation frequency instructed from the search module 35, the reflection coefficient table 31 is not rewritten at all frequencies at the same time. Done for frequency.
  • the data recorded in the reflection coefficient table 31 is mapped by the mapping module 32 with appropriate weighting applied to each reflection coefficient.
  • the mapped data is referred to by the time series filter module 34, and a frequency hopping signal having a frequency spectrum corresponding to the reflection coefficient is generated. More specifically, filtering is performed so as to increase the occurrence probability at a frequency with a small reflection coefficient.
  • the search module 35 includes a gradient search module 36 and a random search module 37. Since these modules are appropriately combined, the search can be performed quickly and effectively so as not to be trapped by the local minimum. Normally, the random search is performed by the random search module 37, but only when the speed is required, the gradient search by the gradient search module 36 is used together. The radiation frequency information obtained in this way is converted into serial data by the parallel / serial (P / S) conversion module 38 and then input to the PLL register.
  • P / S parallel / serial
  • the heating chamber 8 prevents the radiated high-frequency power from being scattered around, and can confine the high-frequency energy so as to efficiently heat the object 9 to be heated (mainly food in the case of a microwave oven).
  • the “frequency sequence” preferably used in the present embodiment is determined so as to increase the probability of occurrence of a frequency having a low reflected wave intensity.
  • a random series of radiation frequencies is determined in order to search for a frequency having a low reflection intensity (step S41).
  • 1000 frequencies F1, F2,..., F1000
  • the frequencies are set from the range of 2.40 GHz to 2.50 GHz.
  • 100 frequency candidate values are selected from these 1000 frequencies.
  • electromagnetic waves are radiated while hopping an actual frequency every one of the above frequency candidate values every time ⁇ (for example, about 1 millisecond).
  • the mode of sweeping the frequency with a small power before heating is not executed, and radiation is started from the initial point of radiation with a power that can sufficiently heat the object to be heated (for example, maximum power). May be.
  • the frequency of the electromagnetic wave radiated from the radiator 3 is selected in a random series from the above frequency candidate values, and hops in a short cycle.
  • the reflected wave monitoring circuit 5 of the radiation circuit 6 monitors the reflected wave, and the monitored reflected wave intensity and frequency are written in the table (step S42).
  • the “frequency series” is a sequence of a plurality of frequency candidate values or a sequence of codes corresponding to the plurality of frequency candidate values.
  • frequency candidate values are selected from a relatively wide range, and the frequency is switched between these frequency candidate values.
  • the above operation it is possible to detect a rough relationship between the frequency and the reflected wave intensity in the range from 2.40 GHz to 2.50 GHz, for example. Based on this rough relationship, at least one frequency region (for example, a region having a width of 10 MHz) where the reflected wave intensity is relatively low can be determined.
  • an operation for detecting the frequency at which the reflected wave intensity is minimum is performed from such a frequency region.
  • the frequency with the lowest reflected wave intensity is selected as the initial value among the frequency candidate values selected for obtaining the above-mentioned “coarse relationship”.
  • radiation is sequentially performed at a frequency increased by a width ⁇ from the initial value and at a frequency decreased by a width ⁇ from the initial value. In this way, it is possible to determine whether the reflected wave intensity is reduced when the frequency is increased or decreased from the initial value (step S43).
  • the frequency is hopped to the frequency candidate values arranged at intervals of the width ⁇ on the side where the reflected wave intensity decreases.
  • the width ⁇ is a multiple of the frequency step of the oscillator.
  • the width ⁇ can be set to 5 MHz, for example, with a frequency step of 100 kHz.
  • is reduced by k times (0 ⁇ k ⁇ 1), and the frequency is randomly hopped within the above frequency region (step S44).
  • is a multiple of the oscillator frequency step and can be set to 1 MHz, for example.
  • the width ⁇ is further reduced, the frequency at which the reflected wave intensity is minimized at the current time is increased or decreased by the width ⁇ , and the reflected wave intensity is monitored.
  • the frequency occurrence probability is determined based on this table (step S45).
  • the frequency occurrence probability that minimizes the reflected wave intensity is set to the maximum.
  • the occurrence probability of the frequency that minimizes the reflected wave intensity is set to 0.9, for example, the occurrence probability of other frequencies is set to 0.1 as a whole.
  • the reason why the occurrence probability of the frequency for minimizing the reflected wave intensity is not set to 1.0 is to cope with the change in the relationship between the frequency and the reflected wave intensity as the object to be heated is heated.
  • the table is a running average having a forgetting factor m (0 ⁇ m ⁇ 1) and is constantly updated (step S46). By such an update, it is possible to follow a temporal change in reflected wave intensity characteristics.
  • the value of the width ⁇ may be reset and the above sequence may be repeated again (step S47). Further, if the reflected wave intensity continues for a predetermined time longer than the predetermined value ⁇ 2 ( ⁇ 1 ⁇ 2) for a predetermined time, it is determined that an abnormal situation has occurred and the output of the semiconductor power amplifier 2 is reduced. Good (step S48). This is to protect the semiconductor power amplifier 2 from strong reflected waves.
  • a random number sequence is generated in the M series (step S51). This sequence is mapped to the frequencies F1, F2,... Fn (step S52). In this way, it is possible to obtain a substantially uniform spectral density in which the occurrence probabilities are equal at all frequencies Fi and white within the bandwidth.
  • step S53 thinning is performed based on the occurrence probability. This is time series filtering. Spread spectrum radiation is performed using the thinned frequency sequence as a frequency sequence.
  • the occurrence probability of the frequency Fi in the frequency sequence thus obtained is the same as the occurrence probability described in the table. That is, the frequency spectrum becomes large when the reflected wave intensity is small and becomes small when the reflected wave intensity is large. Therefore, at a frequency close to total reflection, the emission probability approaches zero as much as possible, so that the semiconductor power amplifier can be protected from destruction.
  • the M sequence is a numerical sequence having a cycle of 2 N -1 (N is a natural number representing the number of bits). Usually, it is composed of a shift register and an adder that takes an exclusive OR. It is possible to generate a pseudo-random sequence not by hardware but also by logical operation by software.
  • x 8 + x 6 + x 5 + x + 1 can be used as an irreducible primitive polynomial. If a sequence other than 0 (0, 0, 0, 0, 0, 0, 0, 0) is used as an initial value, a pseudo-random sequence having a maximum period of 255 bits can be generated. Here, the occurrence probabilities of 0 and 1 are equal and random.
  • the initial value is (1, 1, 1, 1, 1, 1, 0, 1).
  • the 8-bit shift is repeated as 4-digit 2-digit hexadecimal numbers, 15, 13, 13, 8, 14,..., A numerical sequence from 0 to 15 is obtained.
  • each number is incremented by +1 and correspond to F1, F2,..., F16, a frequency sequence corresponding to 16 frequencies as shown in FIG.
  • FIG. 7A although the occurrence frequency distribution has some irregularities, the occurrence probabilities of the respective frequencies are substantially equal.
  • FIG. 7B is a graph showing an example of the frequency dependence of the reflection coefficient obtained by the reflected wave monitor.
  • the following reflection coefficients are F1: 0.95, F2: 0.9, F3: 0.8, F4: 0.6, F5: 0.7, F6: 0.6, F7: 0.4, F8: 0.2, F9: 0.3, F10: 0.4, F11: 0.6, F12: 0.7, F13: 0. 7, F14: 0.8, F15: 0.7, F16: 0 are obtained.
  • the average reflection coefficient is 0.6219. That is, more than 62% of the radiated power is reflected back without changing to the heat that heats food.
  • mapping for generating a preferable occurrence probability is performed based on the above reflection coefficient distribution.
  • the reflection coefficient is ⁇ i, and the following calculation is performed to weight the reflection coefficient and perform mapping. SQRT ((exp (10 ⁇ ⁇ i) ⁇ exp (0)) / (exp (10) ⁇ exp (0)))
  • FIG. 7C is a graph showing a mapping function having the horizontal axis as a reflection coefficient.
  • This mapping function has the property that when the reflection coefficient increases from 0 to 1, the value on the vertical axis increases from 0 to 1, and defines the weighting of the reflection coefficient.
  • the shape of the mapping function can be set to an appropriate value in consideration of the heating performance of the microwave oven. For each frequency, a random number ⁇ indicating a value between 0 and 1 is compared with a mapping function, and when the mapping function is relatively small, that frequency is adopted in the radiation frequency sequence. When the mapping function is relatively large, the frequency is not adopted in the radiation frequency sequence.
  • the weighted reflection coefficient may be compared to the square of ⁇ or the third power.
  • FIG. 7D is a graph showing the frequency of occurrence of the selected radiation frequency.
  • FIG. 8 is a block diagram showing the configuration of the high-frequency heating device in the present embodiment.
  • the high-frequency heating device of the present embodiment includes a plurality of radiation circuits 6 having a variable frequency oscillator 1, a semiconductor power amplifier 2, a directional coupler 4, and a reflected wave monitor circuit 5. .
  • a corresponding radiator 3 is coupled to each of the plurality of radiation circuits 6.
  • the radiator 3 is preferably arranged on a different wall surface of the heating chamber 8 and preferably faces the object 9 of the heating chamber 8 at a greatly different angle.
  • a high-power high-frequency signal is sent from each of the plurality of semiconductor power amplifiers 2 and radiated from the corresponding radiator 3 into the inside of the heating chamber 8. Inside the heating chamber 8, the electromagnetic waves radiated from the radiators 3 are superposed, and the spatial power is synthesized.
  • Each radiation circuit 6 is provided with a variable frequency oscillator 1 individually.
  • the output of one oscillator is demultiplexed and the semiconductor power amplifier is driven at a common radiation frequency.
  • the configuration of this embodiment is basically the same as the conventional technology. Is different.
  • each of the plurality of radiation circuits 6 includes the variable frequency oscillator 1 so that the frequency sequences of the variable frequency oscillators 1 in the individual radiation circuits 6 are different from each other. be able to. If there is no correlation between the frequency sequences of the plurality of variable frequency oscillators 1, the oscillation frequencies of the respective radiation circuits 6 have different values except for a very short period that coincides by chance.
  • each radiation circuit 6 supplies a part of the signal from the variable frequency oscillator 1 to the reflected wave monitor circuit 5 to perform synchronous demodulation. For this reason, the reflected wave monitor circuit 5 can selectively monitor a reflected wave having a frequency equal to the high frequency radiated by the radiation circuit 6 to which the reflected wave monitor circuit 5 belongs. That is, the high frequency of the other radiation circuit 6 is suppressed as noise, and each radiation circuit 6 can accurately detect only the high frequency reflected wave radiated by the radiation circuit 6.
  • a standing wave electromagnetic field distribution is formed.
  • This electromagnetic field distribution is expressed by a linear combination of natural resonance modes when the heating chamber 8 is regarded as a cavity cavity. Since the article 9 to be heated is present inside the heating chamber 8, there is a loss and the Q value is low. Therefore, the resonance frequency that is an eigenvalue corresponding to the eigenresonance mode is broadened.
  • the natural resonance mode of the heating chamber 8 changes one after another depending on the frequency, and there are innumerable resonance frequencies. Therefore, by performing frequency hopping, the excited natural resonance mode changes, and as a result, the standing wave distribution of the heating chamber 8 also changes. This makes it possible to perform uniform heating without providing a turntable or the like.
  • the control circuit 7 in this embodiment has the same configuration as that of the control circuit 7 in the first embodiment, except that a plurality of non-correlated frequency sequences are generated for the plurality of radiation circuits 6. is there. According to the present embodiment, it is possible to further improve the heating efficiency of the solidified high-frequency heating device by synthesizing electromagnetic waves whose frequencies are different from each other and change with time.
  • the high-frequency heating device of the present invention can improve the heating efficiency and can avoid the destruction of the semiconductor power amplifier without interrupting the heating, and thus is useful in various high-frequency heating devices such as a microwave oven.

Abstract

 周波数可変型発振器1と、周波数可変型発振器1の出力を増幅する半導体電力増幅器2と、半導体電力増幅器2の出力に基づいて加熱用電磁波を放射する放射器3と、加熱用電磁波の反射波を検出する反射波モニタ回路5と、周波数可変型発振器1の発振周波数を制御する制御回路7とを備えている。制御回路7は、周波数可変型発振器1の発振周波数を不連続に切り替えることにより、放射器3から周波数ホッピング式スペクトル拡散型の放射を行うことができる。放射器3から放射された電磁波は、加熱庫8の内部に配置される被加熱物(通常は食品)9を照射し、被加熱物を加熱する。

Description

スペクトル拡散高周波加熱装置
 本発明は、電子レンジ等に用いられる高周波加熱装置に関する。
 電子レンジに用いられる従来の高周波加熱装置は、マグネトロンという、真空管を用いた大電力直接発振デバイスと、マグネトロンで発生した電磁波を加熱庫内に放射するアンテナ(放射器)とを備えている。高周波加熱のための電磁波の周波数としては、通常、ISMバンドが用いられ、マグネトロンの発振周波数は、例えば2.40GHzから2.50GHzまでの範囲に含まれる所定値に設定される。しかし、マグネトロンの発振周波数は、マグネトロンに印加される電圧と加熱庫内のインピーダンスで動揺し、発振スペクトルは、2.40GHzから2.50GHzまでの100MHz帯域幅のほぼ全体に広がってしまう。
 近年、マグネトロンの代わりに、発振器および固体電力増幅器を備える固体化高周波加熱装置が検討されている。これは、固体電力増幅器として、GaNやSiCなどの高周波半導体デバイス(以下、「半導体電力増幅器」と称する)が実用化されつつあるためである。このような半導体電力増幅器を用いた高周波加熱装置では、発振器から出力される高周波信号を半導体電力増幅器によって増幅し、放射器から加熱庫内に大電力で放射することになる。
 固体化高周波加熱装置では、ノイズ成分のほとんどない、線スペクトルの電磁波放射を実現できる。しかも、発振器の設定により、線スペクトルの放射周波数を例えば2.40GHzから2.50GHzまでの範囲内で任意に変化させることができる。
 しかしながら、半導体電力増幅器は、強い反射波を受けると、加熱により破壊しやすいという問題があり、実用化のために解決しなければならない重要な課題となっている。このような半導体電力増幅器を通信技術に用いる場合は、電磁波を開放された空間内に放射するため、反射波による半導体電力増幅器の損傷を防止する必要性は低い。しかし、電子レンジのように加熱庫内に強い電磁波を放射する用途では、加熱庫内で強い反射波が生じやすいため、実用化のためには、半導体電力増幅器を反射波から保護することが必要不可欠である。
 特許文献1は、このような半導体電力増幅器を備える高周波加熱装置の例を開示している。この高周波加熱装置では、図9(a)、(c)に示すように、動作開始直後に放射波の強度(放射電力)を低く設定して周波数を連続的にスイープさせながら反射波の強度を測定するモニタ・モードを実行する。図9(c)に示す例では、モニタ・モードで周波数を2.40GHzから2.50GHzまで連続的に変化させている。このときに発生する反射波の強度を検知すると、例えば図9(b)に示されるように、反射波の強度が電磁波の周波数に依存して大きく変化している。
 このようなモニタ・モードを実行することにより、反射波強度が小さくなる周波数を決定できる。こうして決定した周波数に発振周波数を固定した後、図9(a)に示すように出力を上げ、加熱のため放射を開始する。なお、特許文献1に開示されている装置では、加熱途中に何らかの理由で反射波の強度が規定値以上になれば、反射波による固体増幅器の破壊を防止するため、電磁放射の出力を落として加熱が停止される。
 このような固体化高周波加熱装置によれば、反射が少なく被加熱物による吸収効率の高い周波数で高周波加熱を実行することができ、また、反射波による破壊から電力増幅器を保護することも可能になる。
 特許文献2は、加熱室のインピーダンスを検出し、検出結果に基づいて発振周波数を制御する高周波加熱装置を開示している。発振周波数を調整することにより、常にインピーダンスを整合させ、それによってむらの無い調理を実現しようとしている。
 特許文献3は、マイクロ波の周波数を2.4MHzから2.5MHzまでの範囲でスイープするとともに、反射電流を検出することにより、反射電力と周波数との関係を記憶するマイクロ波処理装置を開示している。このマイクロ波処理装置は、記憶した反射電力と周波数との関係から最小の反射電力が示される周波数を加熱周波数として抽出する。
特開2007-317458号公報 特開昭59-165399号公報 特開2008-34244号公報
 特許文献1に開示されている高周波加熱装置では、小電力で放射する電磁波の周波数を連続的にスイープして反射波強度を測定するという予備的なモニタ・モードが必要である。また、加熱途中で加熱庫内の被加熱物の状況が変化すると、周波数制御が追随できないため、加熱効率が悪く、反射波強度が高くなると、半導体電力増幅器の破壊を防ぐために加熱を中断しなければならないという問題もある。また、加熱時には放射周波数が固定されているため、加熱庫内に電磁界分布の定常的な不均一が生じ、その結果として被加熱物に加熱むらを生じてしまうという問題もある。
 さらに、特許文献1に開示される従来技術によれば、各々が電力増幅器および放射器を有する複数の放射ユニットを1つの高周波加熱装置に設けた場合、モニタ・モードで決定される共通の周波数で各放射ユニットから電磁波の放射が行われるため、各放射ユニットから放射される電磁波の反射波と、他の放射ユニットから放射された電磁波とを区別することができず、反射波強度のモニタ値に大きな誤差を生じる問題もある。
 特許文献2に開示されている高周波加熱装置では、加熱時に検出されるインピーダンスに基づいて発振周波数を制御することが開示されているが、最適なインピーダンスをどのようにして決定するかが記載されていない。特許文献2の装置では、発振周波数をスイープしながらインピーダンス整合が達成される周波数を検出していると推察されるが、これでは、特許文献1について説明した問題点と同様の問題点が存在していることになる。
 特許文献3に開示されているマイクロ波処理装置でも、周波数のスイープが行われるため、特許文献1、2について説明した問題点と同様の問題点が存在する。
 被加熱物の反射スペクトルは複雑なプロファイルを示し、周波数によって局所的に反射波強度が小さくなる複数の領域が存在し得る。また、加熱の過程で反射スペクトルのプロファイルがダイナミックに変化する場合も多い。このため、特許文献1、2が教示する従来技術では、局所的に反射波強度が低くなる周波数を一時的に検出できたとしても、加熱の進行によって被加熱物の状態が変動すると、それに伴って反射強度を最小化する周波数も大きく変化する可能性がある。そのような場合、被加熱物による反射スペクトルが変化すると、それに追従して最適な周波数を検出できず、急激に強度を増した反射波によって固体増幅器に致命的な損傷が生じる危険がある。
 本発明は上記課題を解決するためになされたものであり、その主たる目的は、反射波による固体増幅器の破壊を防止しつつ、反射電力の低い放射を実現し、被加熱物の状況が時間的に変化しても、その状況変化に応じて放射周波数を調整できる高周波加熱装置を提供することにある。
 本発明の高周波加熱装置は、周波数可変型発振器と、前記周波数可変型発振器の出力を増幅する半導体電力増幅器と、前記半導体電力増幅器の出力に基づいて加熱用電磁波を放射する放射器と、前記加熱用電磁波の反射波を検出する反射波モニタ回路と、前記周波数可変型発振器の発振周波数を制御する制御回路とを備え、前記制御回路が前記周波数可変型発振器の発振周波数を不連続に切り替えることにより、前記放射器から周波数ホッピング式スペクトル拡散型の放射を行う。
 好ましい実施形態において、前記制御回路は、前記反射波モニタ回路によって検出される反射波の強度と前記発振周波数との関係に基づいて、前記発振周波数の生起確率を設定する。
 好ましい実施形態において、前記制御回路は、前記反射波モニタ回路によって検出される反射波の強度が相対的に低い周波数域における前記発振周波数の生起確率を、前記反射波の強度が相対的に高い周波数域における前記発振周波数の生起確率よりも高くする。
 好ましい実施形態において、前記加熱用電磁波によって被加熱物を加熱する過程の初期において、前記半導体電力増幅器の出力を相対的に低い値に調整して前記加熱用電磁波を放射し、前記反射波モニタ回路によって検出される反射波の強度と前記発振周波数との関係を求める。
 好ましい実施形態において、前記加熱用電磁波によって被加熱物を加熱する過程において、前記制御回路は、前記反射波モニタ回路によって検出される反射波の強度と前記発振周波数との関係を更新し、前記発振周波数の生起確率を動的に変化させる。
 好ましい実施形態において、前記制御回路は、前記加熱用電磁波によって被加熱物を加熱する過程で、前記反射波の強度が極小となる周波数および前記反射波の強度が極小とならない周波数を含む複数の周波数の間で前記周波数可変型発振器の発振周波数を不連続に切り替える。
 好ましい実施形態において、被加熱物を収容する加熱庫を備え、前記制御回路は、2.40GHzから2.50GHzまでの範囲に含まれる複数の周波数の間で前記周波数可変型発振器の発振周波数を不連続に切り替える。
 好ましい実施形態において、被加熱物を収容する加熱庫を備え、前記制御回路は、1.0ミリ秒以下で前記周波数可変型発振器の発振周波数を不連続に切り替える。
 好ましい実施形態において、前記制御回路は、0.01ミリ秒以上で前記周波数可変型発振器の発振周波数を不連続に切り替える。
 好ましい実施形態において、前記半導体電力増幅器は、GaN HFETである。
 好ましい実施形態において、前記発振周波数の不連続な切り替えは、前記制御回路が決定する周波数シーケンスに従って行われ、前記周波数シーケンスは、白色のランダム周波数系列に対して、前記反射波の強度と前記発振周波数との関係の逆特性で表される正規化吸収量に基づく生起確率で時系列フィルタリングを行うことにより決定される。
 本発明の高周波加熱装置は、各々が加熱用電磁波を周波数可変で放射する複数の放射ユニットを備えた高周波加熱装置であって、各放射ユニットは、周波数可変型発振器と、前記周波数可変型発振器の出力を増幅する半導体電力増幅器と、前記半導体電力増幅器の出力に基づいて加熱用電磁波を放射する放射器と、前記加熱用電磁波の反射波を検出する反射波モニタ回路とを備え、前記高周波加熱装置は、前記複数の放射ユニットに含まれる周波数可変型発振器の発振周波数を制御する制御回路を更に備え、前記制御回路が前記複数の放射ユニット間で相関が無くなるように各周波数可変型発振器の発振周波数を不連続に切り替えることにより、前記複数の放射ユニットに含まれる個々の放射器から独立して周波数ホッピング式スペクトル拡散型の放射を行う。
 好ましい実施形態において、前記制御回路は、前記複数の放射ユニットに含まれる個々の反射波モニタ回路によって独立して検出される反射波の強度と前記発振周波数との関係に基づいて、対応する放射ユニットに含まれる前記周波数可変型発振器の発振周波数の生起確率を設定する。
 本発明による高周波加熱装置の駆動方法は、周波数可変型発振器と、前記周波数可変型発振器の出力を増幅する半導体電力増幅器と、前記半導体電力増幅器の出力に基づいて加熱用電磁波を放射する放射器と、前記加熱用電磁波の反射波を検出する反射波モニタ回路と、前記周波数可変型発振器の発振周波数を制御する制御回路とを備える高周波加熱装置の駆動方法であって、前記周波数可変型発振器の発振周波数を不連続に切り替えつつ、前記放射器から加熱用電磁波を放射させるステップ(A)と、前記反射波モニタ回路によって前記加熱用電磁波の反射被の強度を検出し、前記反射波の強度と前記発振周波数との関係を求めるステップ(B)と、前記ステップ(B)で求めた前記反射波の強度と前記発振周波数と関係に基づいて、前記反射波の強度が相対的に低い周波数域を決定するステップ(C)とを含み、前記ステップ(A)では、前記反射波の強度が相対的に低い周波数域における前記発振周波数の生起確率を、前記反射波の強度が相対的に高い周波数域における前記発振周波数の生起確率よりも高くする。
 好ましい実施形態において、前記ステップ(C)では、前記ステップ(B)で求めた前記反射波の強度と前記発振周波数と関係に基づいて、前記反射波の強度が最小となる発振周波数を決定する。
 本発明によれば、反射波強度(反射電力)が最小となる周波数を周波数ホッピングによって検出するため、小電力のモニタ・モードを実行することが不要となり、加熱に要する時間を短縮できる。また、加熱庫内における被加熱物の状況が時間的に変化しても、加熱時に周波数ホッピングを行うことにより、常に最良な加熱状態に調整することが可能である。すなわち、本発明では、反射波強度が極小となる周波数で加熱を実行し続けるわけではなく、本発明では、加熱処理の途中において、反射波強度が極小となる周波数から、反射波強度が極小ではない周波数へもホッピングが行われ得る。
 周波数のホッピングを短い周期で繰り返すことにより、反射波強度の強い周波数で長時間の放射を行うことを回避し、強い反射波によって半導体電力増幅器が破壊されることを防止できる。また、反射波による破壊保護のためのアイソレータを設けることも不要となり、小型・低コスト化することが可能となる。更に、周波数ホッピングによって加熱庫内の電磁界分布を変化させることができるため、電波の攪拌機能やターンテーブル無しで均一な加熱も可能になる。
 1つの高周波加熱装置が複数系統の電力増幅器および放射器を備える場合、各々の系統の放射周波数を互いに相関が無いように変化させることができ、その結果、各系統の反射波を正確にモニタすることが可能になる。また、加熱に要する電源消費電力が少なくなり、省エネルギーを実現できる。
 また、本発明の高周波加熱装置は、マグネトロンを用いないため、個々の放射スペクトルが狭く、かつ、放射が許容される範囲内に的確に調節できる。このため、EMC(電磁環境適合性:Electro Magnetic Compatibility)特性を改善でき、またEMC対策部品の省略により低コスト化も可能である。
本発明におけるスペクトル拡散高周波加熱の原理を説明する図であり、(a)は、周波数ホッピングを行っているときの放射波強度(放射電力)の時間変化を示すグラフであり、(b)は、反射波強度(反射電力)の時間変化を示すグラフであり、(c)は、反射波強度の周波数依存性を示すグラフである。 本発明による高周波加熱装置の第1の実施形態を示すブロック図である。 実施形態1における反射波モニタの構成例を示す図である。 実施形態1における制御回路の構成を示す図である。 本発明における周波数シーケンスを決定するアルゴリズムの一例を示すフローチャートである。 本発明における時系列フィルタリングによる周波数系列計算を説明するためのフローチャートである。 (a)~(d)は、時系列フィルタリングを説明するための図である。 本発明による高周波加熱装置の第2の実施形態を示すブロック図である。 (a)は、特許文献1などに開示されるモニタ・モードにおける、放射電磁波の強度(放射電力)の時間変化を示すグラフであり、(b)は、反射波強度の時間変化を示すグラフであり、(c)は、周波数の時間変化を示すグラフである。
 本発明の高周波加熱装置は、周波数可変型発振器の発振周波数を所定範囲内で不連続に切り替えることにより、周波数ホッピング式スペクトル拡散型の放射を行うことができる。本明細書における「周波数ホッピング式スペクトル拡散」とは、無線通信の分野で実施されている「スペクトル拡散(Spread Spectrum)」と同様に、電磁波の周波数帯域を線スペクトルから所定幅の帯域に広げる(拡散させる)技術に類似した技術である。
 本発明では、被加熱物に照射する電磁波の周波数が固定されず、短時間の間に所定の周波数範囲内において離散した複数の値(不連続値)の間で切り替えられる。すなわち、離散した各周波数における電磁波の放射は、それぞれ、短時間で完了し、次の周波数へのホッピングが行われる。このため、仮に被加熱物による反射波強度が高い(吸収率の低い)周波数で強い電磁波が放射されたとしても、その反射波によって固体電力増幅器が損傷を受ける前に、周波数が他の値に切り替えられることになる。その結果、固体電力増幅器が反射波によって損傷を受けることを防止できる。
 以下、本発明の実施形態を説明する前に、本発明で用いる「スペクトル拡散加熱」の基本的原理を説明する。
 「スペクトル拡散」は、無線通信分野でよく知られた技術であり、「周波数ホッピング(Frequency Hopping)」と呼ばれる方式と「直接拡散(Direct Sequence)」と呼ばれる方式に大別される。本発明の高周波加熱装置では、自由空間中で情報伝送を行う無線通信と違い、加熱庫という閉じられた空間の中で高周波エネルギーを放射し、被加熱物に吸収させることにより、熱に変換するという動作を行う。しかしながら、本発明における高周波の放射も、周波数スペクトルを所定範囲に拡散するという点において、無線通信技術におけるスペクトル拡散と同様であるため、「スペクトル拡散加熱方式」と称することとする。
 前述のように、マグネトロンでは直接発振を行う。マグネトロンを発振器として見た場合、そのQ値は低い。そのため、マグネトロンから放射される高周波の周波数スペクトルは、多くのノイズ成分を含んだ緩やかな山状のブロードな分布を示す。これに対して、本発明では、周波数可変型発振器と半導体電力増幅器を用いるため、発振器のQ値が高い。このため、発振器から出力される高周波信号の周波数スペクトルは実質的に「線スペクトル」であり、任意の周波数に鋭いピークを有するものとなる。このような「線スペクトル」の高周波信号を半導体電力増幅器で増幅することにより、実質的に線スペクトル状の大電力電磁波(半値全幅:例えば1kHz)を放射することが可能になる。周波数可変型発振器の発振周波数を、例えば2.40GHzから2.50GHzまでの範囲内で変化させると、放射器から放射される加熱用電磁波の周波数(放射周波数)も、発振周波数に応じて上記範囲内で変化することになる。
 本発明では、放射が許される所定の周波数帯域の中で、予め複数の周波数候補値を設定しておく。具体的には、上記の周波数帯域に含まれるn(nは3以上の自然数)個の周波数候補値F1、F2、・・・、Fn(F1<F2<・・・<Fn)を設定しておく。高周波加熱装置の動作時には、n個の周波数候補値の間で放射周波数を時間τごとに切り替えることより、周波数ホッピングを行う。時間τは、例えば0.1~1ミリ秒の値に設定され、nは例えば256~1024に設定され得る。周波数をホッピングする時間τを1ミリ秒以下に設定することにより、反射波によって固体電力増幅器が損傷を受ける前に周波数を切り替えることができる。なお、2.40GHzから2.50GHzまでの範囲からn個の周波数候補値を選択する場合、周波数軸上で隣接する周波数の間隔(例えばF3-F2)の大きさは、0.1~0.4MHz程度に設定され得る。Fn-F1は、100MHz以下の値に設定されるが、小さすぎると、周波数拡散の効果が得られなくなる。Fn-F1は、80MHz以上に設定することが好ましい。
 図1(a)は、周波数F1、F2、F3、F4、F5の4つの周波数候補値(F1<F2<・・・<F5)で時間τごとに発振周波数を切り替える例を示している。この例では、時間の経過に伴って発振周波数がF1→F2→F3→F4→F5→F4→F3→F4→F1→F5→F3→・・・と変化している。
 図1(b)は、上記の周波数変化に応じて生じる反射電力の強度変化の一例を示している。放射される電磁波の周波数において、被加熱物の反射率が異なるため、図1(b)に例示されるように、周波数によって異なる反射電力が観測される。
 図1(c)は、反射電力の強さと周波数との関係の一例を示す図である。この例では、周波数F3で反射電力が最も小さい。このことは、電磁波が周波数F3で最も効率的に被加熱物に吸収されることを意味している。
 図1(a)に示す例では、周波数の変化が単調では無い。本明細書では、周波数が段階的に増加する、あるいは減少することを周波数の「単調」な変化と称することとし、単調でない変化(非単調な変化)を「ランダム」な変化と称することとする。「ランダム」とは、規則的であることを排除せず、また、充分に長い期間に各周波数の生起する頻度(生起確率)が等しいことを要求しない。すなわち、特定の周波数の生起確率が高く、他の周波数の生起確率が低くとも良い。
 ここで、n個の周波数候補値の各々の生起確率が等しいと仮定すると、周波数スペクトルは、F1からFnまでのn個の周波数で均等に分布し、各周波数における電力は、総出力電力Poutの1/nである。F1からFnまでのn個の周波数で反射波強度Prefi(i=1、・・・n)が観測される。被加熱物以外での電力損失が無いと仮定すれば、被加熱物に吸収された電力Pabsiは、Pabsi=Pout-Prefiで求められる。すなわち、反射の少ない周波数では、電磁波のエネルギーが高い吸収率で吸収され、加熱が行われていることになる。したがって、効率よく加熱を行うためには、反射の少ない周波数における放射が支配的になるように、反射の少ない周波数の生起確率を相対的に高くすればいい。例えば、反射電力の強さが図1(c)に示すような周波数依存性を示す場合、効率よく加熱を行うためには、周波数F3の生起確率を高くすればよい。
 本発明では、反射波強度が最も低くなる周波数を決定するため(探索目的)に、複数の周波数でホッピングを行うが、これをモニタ・モードとして加熱動作前に別途行う必要は無い。加熱動作を開始した後、被加熱物を加熱しながら、周波数ホッピングを行っても良いし、被加熱物を加熱する前に小電力で周波数ホッピングを行っても良い。
 一般に、周波数と反射波強度との関係を示す曲線において、反射波強度の局所的な最小点(ローカルミニマム)は1つとは限らず、周波数帯域全体を探索しないと、真の最小点を検出することができない。しかし、特許文献1、2に記載されている従来技術では、周波数のスイープを開始した後、最初に見つかった反射波強度の局所最小点を「真の最小点」と誤って認識し、真の最小点に至らない可能性がある。また、反射波強度のスペクトル分布は、加熱の進行に応じて経時的に変化し得るため、最初に検出した反射波強度の局所最小点が、仮に真の最小点であったとしても、加熱中に真の最小点であり続ける保証はない。
 本発明では、放射が許される所定の周波数帯域の中において離散した複数の周波数でランダムにホッピングを行うため、ローカルミニマムに拘束されず、放射が許される所定の周波数帯域から反射最小点を探索することが可能である。したがって、周波数を単調にスイープして見つかった反射強度の局所最小点(いわゆる極小点)を真の最小点とすることがなく、放射が許される所定の周波数帯域から真の反射最小点を探索することができる。特に、本発明は、加熱中に反射最小点が急激に変化し、選択している最小点が局所最小値となって、異なる周波数が新たに真の最小点となった場合でも有利である。本発明は、放射が許される所定の周波数帯域でランダムにホッピングさせている。このため、選択している周波数の最小点の周辺の周波数のみをスイープして周波数の最小点を再探索する方法と比較して、選択している周波数の局所最小値と新たな異なる新の周波数の最小値との間に周波数の他の局所最小値があったときに、探索した周波数を他の局所最小値に収束させてしまうことがなく、反射周波数の真の最小点を見つけ出すことができる。
 周波数ホッピングによれば、反射波強度を最小化する周波数とは異なる周波数での放射を行うことになるが、平均値として反射電力を小さく抑えることができれば、加熱効率の向上になる。このためには、反射波強度を小さくする周波数の生起確率を高く設定しつつ、広い帯域内(例えば、2.40GHzから2.50GHzまでの範囲内)に分散した他の周波数にホッピングすればよい。ホッピングに際し、反射波強度の高い周波数で放射が行われたとしても、その時間τが極めて短く設定されれば、反射波による半導体電力増幅器の損傷を防ぐことができる。時間τの上限値は、反射波による半導体電力増幅器の損傷防止という観点から決定され得る。例えば、周波数をホッピングする時間τを1ミリ秒以下に設定することにより、反射波によって固体電力増幅器が損傷を受ける前に周波数を切り替えることができる。また、周波数をホッピングする時間τを1ミリ秒以下に設定することにより、物質の加熱において一般的に使用される2.40GHzから2.50GHzまでの間の100MHz帯域幅において、ホッピングの際に周波数分散の効果を得ることができる。
 なお、周波数をホッピングする時間τの下限値は、特に限定はされない。発信器の周波数変更スピードの追随が許される範囲で設定することができる。なお、現在の実用的な範囲としては、周波数をホッピングする時間τは0.01ミリ秒以上が好ましい。また、より安価な装置を実現するのであれば、周波数をホッピングする時間τは0.1ミリ秒以上が好ましい。
 このように時間τを短く設定することにより、反射波強度が極小とならない周波数を含む多数の周波数の間でホッピングを行うことが可能となる。その結果、加熱過程中に反射波強度を最小化する周波数が大きく変化した場合でも、反射波強度を最小化する周波数を広い帯域の中から適切に見つけ出すことができる。
 本発明によれば、固体化高周波加熱装置の加熱効率を改善し、半導体電力増幅器の破壊を回避することができる。
 (実施形態1)
 以下、本発明による高周波加熱装置の最初の実施形態を説明する。
 まず、図2を参照する。図2は、本実施形態における高周波加熱装置のブロック図である。図示されている高周波加熱装置は、周波数可変型発振器1と、周波数可変型発振器1の出力を増幅する半導体電力増幅器2と、半導体電力増幅器2の出力に基づいて加熱用電磁波を放射する放射器3と、加熱用電磁波の反射波を検出する反射波モニタ回路5と、周波数可変型発振器1の発振周波数を制御する制御回路7とを備えている。制御回路7は、周波数可変型発振器1の発振周波数を不連続に切り替えることにより、放射器3から周波数ホッピング式スペクトル拡散型の放射を行うことができる。放射器3から放射された電磁波は、加熱庫8の内部に配置される被加熱物(通常は食品)9を照射し、被加熱物9を加熱する。
 本実施形態の高周波加熱装置では、半導体電力増幅器2と放射器3との間に方向性結合器4が設けられており、方向性結合器4には反射波モニタ回路5が接続されている。本実施形態では、周波数可変型発振器1、半導体電力増幅器2、方向性結合器4、および反射波モニタ回路5により、放射回路6が構成される。放射回路6と、放射回路6に結合された放射器3とが、1つの放射ユニットを構成している。
 本実施形態で好適に使用され得る周波数可変型発振器1は、例えばフェーズ・ロックド・ループ(PLL)を用いた周波数シンセサイザなどである。与えられた周波数指示情報のデジタル・データに基づき、発振周波数が決定される。
 半導体電力増幅器2は、例えばGaN(窒化ガリウム)で形成されるHFET(異種接合2次元電子ガス電界効果トランジスタ)を最終段に用いた多段増幅器などである。マグネトロンは、それ自体が大電力の発振器であるが、本実施形態では、発振器と別に半導体電力増幅器を用いる。近年の半導体デバイス技術の進化により、2.4GHz帯でも出力数百W級の電力増幅器を実現することか可能となってきた。
 放射器3は、電波を放射するアンテナである。高出力に対応できる構造と、加熱庫8という閉空間に電波を放射するため、系全体でのインピーダンスの合わせ込みや放射特性の吟味が必要である。
 方向性結合器4は、4分の1波長結合伝送線路などによって形成されるカップラである。ポート1(P1)から入射された高周波信号は、ポート2(P2)に大部分出力されると共に、結合量で表される分だけ小さくなって、ポート3(P3)にも出力されるが、ポート4(P4)には出力されない。一方、ポート2に入射した高周波信号は、ポート1に大部分出力されると共に、結合量で表される分だけ小さくなって、ポート4にも出力されるが、ポート3には出力されない。したがって、ポート1に電力増幅器2の出力を入力し、ポート2を放射器に結合して大電力の放射を行うとき、ポート3を終端し、ポート4の出力をモニタすれば、反射波強度を観測できる。
 反射波モニタ回路5は、方向性結合器4のポート4に接続され、反射波強度を測定する。従来の反射波モニタは、ポート4の出力をダイオードで検波し、反射電力にほぼ比例する出力電圧を発生させるというものであった。本実施形態では、放射に周波数ホッピングを用いているので、自分が発生させた周波数シーケンスに従って反射波を復調すれば、自分自身の反射波のみを観測することができる。この周波数シーケンスに従わない他の信号はすべて雑音となるため、ある一定期間の時間平均を取れば、その出力は零になる。
 反射波モニタ回路5は、例えば図3に示す構成を有している。この図に示す反射波モニタ回路5は、反射波信号を受け取り、この信号に対して、図2の発信器1からの出力および当該出力の移送をπ/2だけシフトさせた出力で積算を行う。その後、こうして得た信号(I信号とQ信号:アナログ信号)をA/Dコンバータでデジタル信号に変換し、反射波復調信号として出力する。
 放射回路6は、周波数可変型発振器1と半導体電力増幅器2と方向性結合器4と反射波モニタ回路5から構成され、放射器3をつないで電源ユニットから電力を供給すれば、この1セットで大電力の高周波出力を得ることができる。放射回路6と放射器3を有する複数のユニットを備えることにより、空間電力合成によって更に出力を増大できる。このような構成を有する実施形態は、後に詳しく説明する。
 制御回路7は、反射波モニタ回路5からの反射波強度情報に基づいて、周波数可変型発振器1に発振周波数の指令データを送出する回路である。制御回路7は、予め決められたアルゴリズムに従い、周波数ごとに異なる生起確率で発振周波数を指令する。反射波強度情報は、アナログ信号であってもデジタル信号であってもよい。反射波強度情報が、反射波モニタ回路5の出力をA/Dコンバータによってデジタル化したものである場合、マイクロプロセッサによって所望のアルゴリズムを実行することができるので好ましい。この場合、制御回路7は、後述する周波数シーケンスに従ってデジタル化された周波数データを周波数可変型発振器1のPLLに供給することができる。
 制御回路7は、例えば図4に示す構成を有している。図4の制御回路7は、デジタル回路であり、例えばソフトウェア・モジュールによって構成され得る。
 反射波モニタ回路5から出力された反射波復調信号(最新のデータ)は、反射係数テーブル31から読み出された前回のデータに対して忘却係数m(0<m<1)を積算したものと加算された後、反射係数テーブル31に書き込まれる。例えば、m=0.7とすると、古いデータは0.7倍され、新しいデータに積算された後、1.7(=m+1)で割って規格化される。この例では、反射係数に関する古いデータが、更新されるたびに0.7倍されるので、0.49倍、0.35倍、・・・とだんだん影響が小さくなる。
 反射波のモニタリングは、サーチモジュール35から指示された放射周波数に対して行われるため、反射係数テーブル31の書換えは、全周波数で同時に行われるのではなく、放射周波数がホッピングするたびに、その放射周波数について行われる。
 反射係数テーブル31に記録されたデータは、マッピングモジュール32により、各反射係数に適切な重み付けがなされてマッピングされる。マッピングされたデータは、時系列フィルタモジュール34で参照され、反射係数に対応した周波数スペクトルを持つ周波数ホッピング信号が発生される。より具体的には、反射係数が小さい周波数での生起確率を大きくするようにフィルタリングが行われる。
 サーチモジュール35には、勾配サーチモジュール36とランダムサーチモジュール37とが含まれる。これらのモジュールを適宜組み合わせるため、ローカルミニマムにトラップされないように、サーチを高速にかつ有効的に実施することができる。通常は、ランダムサーチモジュール37によってランダムサーチが実行されるが、高速化が必要なときだけ、勾配サーチモジュール36による勾配サーチが併用される。こうして得られた放射周波数情報は、パラレル/シリアル(P/S)変換モジュール38によってシリアルデータに変換された後、PLLレジスタに入力される。
 加熱庫8は、放射高周波電力が周囲に散らばらないようにするとともに、高周波のエネルギーを閉じ込めて被加熱物9(電子レンジの場合は主に食品)を効率よく温めることができるようにする。
 次に、図5を参照しながら、周波数シーケンスを決定するためのアルゴリズムの一例を説明する。これは、あくまでも一例である。加熱庫8の形状、放射器3の電気特性、予想される被加熱物9の特性などに応じて、効率的な周波数シーケンスのパターンが存在するため、個々の状況に応じて、最適なアルゴリズムを取り入れることが望ましい。本実施形態で好適に使用される「周波数シーケンス」は、反射波強度の低い周波数の生起確率を高くするように決定される。
 図5に例示するフローでは、まず、反射強度の低い周波数を探索するため、放射周波数のランダムな系列を決める(ステップS41)。例えば、2.40GHzから2.50GHzまでの範囲から1000個の周波数(F1、F2、・・・、F1000)を設定する。この場合、周波数が等間隔であれば、隣接する周波数の間隔は、100MHz÷1000個=100kHzとなる。まず、これらの1000個の周波数から例えば100個の周波数候補値を選択する。
 そして、現実の周波数を、上記の周波数候補値のいずれかに時間τ(例えば1ミリ秒程度)ごとにホッピングさせながら、電磁波の放射を行う。本実施形態では、加熱前に小電力で周波数をスイープさせるモードを実行せず、放射の初期の時点から、被加熱物を充分に加熱し得る大きさの電力(例えば最大パワー)で放射を開始してもよい。
 放射器3から放射される電磁波の周波数は、上記の周波数候補値の中からランダムな系列に選択され、短い周期でホッピングする。このとき、放射回路6の反射波モニタ回路5は、反射波をモニタし、モニタされた反射波強度と周波数とがテーブルに書き込まれてゆく(ステップS42)。
 本明細書における「周波数の系列」とは、複数の周波数候補値の列、または、複数の周波数候補値に対応する符号の列である。本実施形態では、最初に相対的に広い範囲から周波数候補値を選択し、それらの周波数候補値の間で周波数を切り替えてゆく。
 上記の動作により、例えば2.40GHzから2.50GHzまでの範囲において、周波数と反射波強度との粗い関係を検出することができる。この粗い関係に基づいて、反射波強度が相対的に低くなる周波数領域(例えば幅10MHzの領域)を少なくとも1つ決定することができる。
 次に、このような周波数領域の中から、反射波強度が最小となる周波数を検出するための動作を行う。具体的には、上述の「粗い関係」を求めるために選択した周波数候補値の中で最も反射波強度が低くなる周波数を初期値として選択する。次に、この初期値から幅Δだけ増加させた周波数と、初期値から幅Δだけ減少させた周波数とで順次放射を実行する。こうして、初期値から周波数を増加させた場合と減少させた場合の何れで反射波強度が低くなるかを決定することができる(ステップS43)。その後、反射波強度が減少する側に幅Δの間隔で並んだ周波数候補値に周波数をホッピングさせる。ここで、周波数は離散的な値だけを想定しているので、幅Δは発振器の周波数ステップの倍数となる。幅Δは、例えば周波数ステップを100kHzとして、5MHzに設定され得る。
 周波数の幅Δの増減により、モニタされる反射波強度が高くなれば、Δをk倍(0<k<1)小さくし、上記の周波数領域内で周波数をランダムにホッピングさせる(ステップS44)。ここでも、Δは発振器の周波数ステップの倍数であり、例えば1MHzに設定され得る。こうして、反射波強度が更に低い周波数が検出できた場合、その周波数の前後に、より反射波強度の低い周波数が無いかを求めてもよい。このためには、幅Δを更に小さくした上で現在の時点で反射波強度を最小化する周波数を幅Δだけ増減させ、反射波強度をモニタする。
 モニタされた反射波強度が今までの最小値より大きくなった場合は、再度、周波数を広い範囲でランダムにホッピングさせる。
 上記の手順、または他の手順によって周波数と反射波強度との関係を示すテーブルを作成した後、このテーブルに基づいて周波数の生起確率を決定する(ステップS45)。反射波強度を最小化する周波数の生起確率を最大に設定する。反射波強度を最小化する周波数の生起確率を例えば0.9に設定する場合、他の周波数の生起確率は、全体で0.1に設定する。反射波強度を最小化する周波数の生起確率を1.0に設定しない理由は、被加熱物の加熱に伴い、周波数と反射波強度との関係が変化することに対処するためである。
 次に、生起確率に基づく時系列フィルタリングによる周波数系列計算を行う。この状態においても、テーブルは忘却係数m(0<m<1)を有するランニング・アベレージとし、常に更新する(ステップS46)。このような更新により、反射波強度特性の時間的変化にも追随できる。
 反射波強度が、予想値に対して規定量α1以上異なる場合、幅Δの値をリセットし、再度、上記のシーケンスを繰り返すようにしてもよい(ステップS47)。また、反射波強度が規定値α2以上の相対的に高い値(α1<α2)を示す時間が所定時間を超えて続く場合、異常事態と判断し、半導体電力増幅器2の出力を低下させてもよい(ステップS48)。半導体電力増幅器2を強い反射波から保護するためである。
 生起確率のテーブルから、放射周波数の系列を発生させる手順としては、以下に述べる時系列フィルタリングによる方法によってもよい。以下、図6を参照しながら、この方法を説明する。
 まず、M系列でランダムな数列を発生させる(ステップS51)。この数列を、周波数F1、F2、・・・Fnにマッピングする(ステップS52)。こうすれば、すべての周波数Fiで生起確率が等しく、帯域幅内で白色となる略均一なスペクトル密度を得ることができる。
 この周波数系列において、生起確率に基づく間引きを行う(ステップS53)。これが、時系列フィルタリングである。間引かれた周波数系列を周波数シーケンスとして、スペクトル拡散放射を行う。
 こうして得られた周波数シーケンスにおける周波数Fiの発生確率は、テーブルに記載の生起確率と同じになる。すなわち、周波数スペクトルは、反射波強度が小さいところで大となり、反射波強度が大きいところで小となる。したがって、全反射に近いような周波数では、放射確率が限りなく零に近付くので、半導体電力増幅器を破壊から守ることができる。
 以下、図7(a)から(d)を参照して、本実施形態で採用され得る時系列フィルタリングのためのアルゴリズムの一例を説明する。
 まず、擬似ランダム系列の発生方法を説明する。擬似ランダム系列を発生するために種々の方法を採用することが可能であるが、ここではM系列について説明する。M系列は、周期が2N-1(Nはビット数を表す自然数)となる数列である。通常、シフトレジスタと、排他的論理和をとる加算器で構成される。ハードウェアではなく、ソフトウェアによる論理操作によっても擬似ランダム系列を発生することが可能である。
 ここでは、簡単のため、8ビットの系列を考える。この場合、既約な原始多項式として、x8+x6+x5+x+1を用いることができる。初期値として、すべてが0である(0、0、0、0、0、0、0、0)以外の数列を用いると、最大255ビット周期の擬似ランダム系列を発生することができる。ここで、0と1の発生確率は等しくランダムである。
 ここで、初期値を(1、1、1、1、1、1、0、1)とする。4ビットずつ2桁の16進数として、8ビットのシフトを繰り返すと、15、13、13、8、14、・・・という0から15までの数列が得られる。各数に+1をして、F1、F2、・・・・、F16に対応させると、図7(a)に示すような、16個の周波数に対応する周波数列が得られる。図7(a)からわかるように、発生頻度分布に若干の凹凸はあるが、各周波数の生起確率はほぼ等しい。
 次に、図7(b)に示す反射係数に基づいて、反射係数が小さいほど生起確率を高くする時系列フィルタリングを行う。図7(b)は、反射波モニタによって得られた反射係数の周波数依存性の一例を示すグラフである。図7(b)の例では、F1~F16の各周波数について、次の反射係数、すなわち、F1:0.95、F2:0.9、F3:0.8、F4:0.6、F5:0.7、F6:0.6、F7:0.4、F8:0.2、F9:0.3、F10:0.4、F11:0.6、F12:0.7、F13:0.7、F14:0.8、F15:0.7、F16:0が得られたとする。
 各周波数の生起確率が等しいとすると、平均反射係数は、0.6219である。すなわち、放射した電力の62%強が食品を温める熱に変わることなく、反射して戻ってくるということになる。
 本実施形態では、上記の反射係数分布に基づいて、好ましい生起確率を発生させるためのマッピングを行う。ここでは、反射係数をΓiとし、以下の計算を行うことにより、反射係数に重みをつけてマッピングを行う。
 SQRT((exp(10・Γi)-exp(0))/(exp(10)-exp(0)))
 図7(c)は、横軸を反射係数とするマッピング関数を示すグラフである。このマッピング関数は、反射係数が0から1に向かって増加すると、縦軸の値が0から1に増加する性質を有しおり、反射係数の重み付けを規定する。マッピング関数の形は、電子レンジの加熱性能などを加味して適切なものに設定され得る。各周波数について、0~1の間の値を示す乱数γとマッピング関数との間で大小比較を行い、マッピング関数が相対的に小さいときは、その周波数を放射周波数列に採用する。マッピング関数が相対的に大きいときは、その周波数を放射周波数列に採用しない。重み付けられた反射係数は、γの2乗、3乗と比較してもよい。
 上記のフィルタリング処理を繰り返すと、反射係数が相対的に低くなる周波数の発生頻度が高くなる。図7(d)は、こうして選択された放射周波数の発生頻度を示すグラフである。
 (実施形態2)
 次に、図8を参照しながら、本発明による高周波加熱装置の第2の実施形態を説明する。図8は、本実施形態における高周波加熱装置の構成を示すブロック図である。
 本実施形態の高周波加熱装置は、図8に示すように、周波数可変型発振器1、半導体電力増幅器2、方向性結合器4、および反射波モニタ回路5を有する複数の放射回路6を備えている。また、複数の放射回路6の各々には、対応する放射器3が結合されている。放射器3は、好ましくは加熱庫8の異なる壁面に配置され、加熱庫8の被加熱物9に対して大きく異なる角度で対面することが好ましい。これらの個々の構成要素は、基本的には、実施形態1について説明した構成要素と同様の構造を有し、同様に機能する。このため、ここでは同じ説明は繰り返さない。
 本実施形態では、複数の半導体電力増幅器2の各々から大電力の高周波信号が送出され、対応する放射器3から加熱庫8の内部に放射される。加熱庫8の内部では、各放射器3から放射された電磁波が重ね合わせられ、空間電力の合成が行われる。
 各放射回路6は、それぞれ個別に周波数可変型発振器1を備えている。従来の固体化高周波加熱装置では、ひとつの発振器の出力を分波して共通の放射周波数で半導体電力増幅器を駆動しているが、この点において、本実施形態の構成は従来技術と基本的に異なっている。
 周波数ホッピングを行う本実施形態において、複数の放射回路6の各々が周波数可変型発振器1を備えていることにより、個々の放射回路6における周波数可変型発振器1の周波数シーケンスを相互に異なるものとすることができる。複数の周波数可変型発振器1の周波数シーケンスに相関がなければ、各放射回路6の発振周波数は、偶然に一致する極めて短い期間を除き、相互に異なる値を有することになる。
 本実施形態では、各放射回路6において、周波数可変型発振器1からの信号の一部を反射波モニタ回路5に供給し、同期復調を行う。このため、反射波モニタ回路5は、その反射波モニタ回路5が属する放射回路6によって放射された高周波の周波数と等しい周波数を有する反射波を選択的にモニタすることができる。すなわち、他の放射回路6の高周波は、雑音として抑圧され、各放射回路6は、その放射回路6によって放射された高周波の反射波のみを的確に検出することが可能になる。
 加熱庫8の内部空間は、周囲を金属壁で囲まれているため、定在波の電磁界分布が形成される。この電磁界分布は、加熱庫8を空胴キャビティと見立てた場合の固有共振モードの線形結合によって表現される。加熱庫8の内部に被加熱物9が存在するために損失がありQ値が低くなっている。よって、固有共振モードに対応する固有値である共振周波数はブロードに広がっている。加熱庫8の固有共振モードは周波数によって次々に変わっていき、無数の共振周波数が存在することになる。したがって、周波数ホッピングを行うことにより、励起される固有共振モードが変化し、その結果、加熱庫8の定在波の分布も変わる。このことにより、ターンテーブルなどを設けなくとも、均一な加熱が可能になる。
 本実施形態における制御回路7は、実施形態1の制御回路7と同様の構成を有しているが、異なる点は、複数の放射回路6のために相関しない複数の周波数シーケンスを生成することにある。本実施形態によれば、周波数が相互に異なり、かつ時間的に変化する電磁波を合成することにより、固体化高周波加熱装置の加熱効率を更に改善することが可能になる。
 本発明の高周波加熱装置は、加熱効率を改善することができ、また、半導体電力増幅器の破壊を加熱中断することなく回避できるため、電子レンジ等の各種高周波加熱装置において有用である。
1  周波数可変型発振器
2  半導体電力増幅器
3  放射器
4  方向性結合器
5  反射波モニタ回路
6  放射回路
7  制御回路

Claims (15)

  1.  周波数可変型発振器と、
     前記周波数可変型発振器の出力を増幅する半導体電力増幅器と、
     前記半導体電力増幅器の出力に基づいて加熱用電磁波を放射する放射器と、
     前記加熱用電磁波の反射波を検出する反射波モニタ回路と、
     前記周波数可変型発振器の発振周波数を制御する制御回路と、
    を備え、
     前記制御回路が前記周波数可変型発振器の発振周波数を不連続に切り替えることにより、前記放射器から周波数ホッピング式スペクトル拡散型の放射を行う、高周波加熱装置。
  2.  前記制御回路は、前記反射波モニタ回路によって検出される反射波の強度と前記発振周波数との関係に基づいて、前記発振周波数の生起確率を設定する、請求項1に記載の高周波加熱装置。
  3.  前記制御回路は、前記反射波モニタ回路によって検出される反射波の強度が相対的に低い周波数域における前記発振周波数の生起確率を、前記反射波の強度が相対的に高い周波数域における前記発振周波数の生起確率よりも高くする、請求項2に記載の高周波加熱装置。
  4.  前記加熱用電磁波によって被加熱物を加熱する過程の初期において、前記半導体電力増幅器の出力を相対的に低い値に調整して前記加熱用電磁波を放射し、前記反射波モニタ回路によって検出される反射波の強度と前記発振周波数との関係を求める、請求項3に記載の高周波加熱装置。
  5.  前記加熱用電磁波によって被加熱物を加熱する過程において、前記制御回路は、前記反射波モニタ回路によって検出される反射波の強度と前記発振周波数との関係を更新し、前記発振周波数の生起確率を動的に変化させる、請求項3または4に記載の高周波加熱装置。
  6.  前記加熱用電磁波によって被加熱物を加熱する過程において、前記制御回路は、前記反射波の強度が極小となる周波数、および前記反射波の強度が極小とならない周波数を含む複数の周波数の間で前記周波数可変型発振器の発振周波数を不連続に切り替える、請求項1に記載の高周波加熱装置。
  7.  被加熱物を収容する加熱庫を備え、
     前記制御回路は、2.40GHzから2.50GHzまでの範囲に含まれる複数の周波数の間で前記周波数可変型発振器の発振周波数を不連続に切り替える、請求項1に記載の高周波加熱装置。
  8.  被加熱物を収容する加熱庫を備え、
     前記制御回路は、1.0ミリ秒以下で前記周波数可変型発振器の発振周波数を不連続に切り替える、請求項1に記載の高周波加熱装置。
  9.  前記制御回路は、0.01ミリ秒以上で前記周波数可変型発振器の発振周波数を不連続に切り替える、請求項8に記載の高周波加熱装置。
  10.  前記半導体電力増幅器は、GaN HFETである請求項1に記載の高周波加熱装置。
  11.  前記発振周波数の不連続な切り替えは、前記制御回路が決定する周波数シーケンスに従って行われ、
     前記周波数シーケンスは、白色のランダム周波数系列に対して、前記反射波の強度と前記発振周波数との関係の逆特性で表される正規化吸収量に基づく生起確率で時系列フィルタリングを行うことにより決定される、請求項1に記載の高周波加熱装置。
  12.  各々が加熱用電磁波を周波数可変で放射する複数の放射ユニットを備えた高周波加熱装置であって、
     各放射ユニットは、
     周波数可変型発振器と、
     前記周波数可変型発振器の出力を増幅する半導体電力増幅器と、
     前記半導体電力増幅器の出力に基づいて加熱用電磁波を放射する放射器と、
     前記加熱用電磁波の反射波を検出する反射波モニタ回路と、
    を備え、
     前記高周波加熱装置は、前記複数の放射ユニットに含まれる周波数可変型発振器の発振周波数を制御する制御回路を更に備え、
     前記制御回路が前記複数の放射ユニット間で相関が無くなるように各周波数可変型発振器の発振周波数を不連続に切り替えることにより、前記複数の放射ユニットに含まれる個々の放射器から独立して周波数ホッピング式スペクトル拡散型の放射を行う、高周波加熱装置。
  13.  前記制御回路は、前記複数の放射ユニットに含まれる個々の反射波モニタ回路によって独立して検出される反射波の強度と前記発振周波数との関係に基づいて、対応する放射ユニットに含まれる前記周波数可変型発振器の発振周波数の生起確率を設定する、請求項12に記載の高周波加熱装置。
  14.  周波数可変型発振器と、前記周波数可変型発振器の出力を増幅する半導体電力増幅器と、前記半導体電力増幅器の出力に基づいて加熱用電磁波を放射する放射器と、前記加熱用電磁波の反射波を検出する反射波モニタ回路と、前記周波数可変型発振器の発振周波数を制御する制御回路とを備える高周波加熱装置の駆動方法であって、
     前記周波数可変型発振器の発振周波数を不連続に切り替えつつ、前記放射器から加熱用電磁波を放射させるステップ(A)と、
     前記反射波モニタ回路によって前記加熱用電磁波の反射被の強度を検出し、前記反射波の強度と前記発振周波数との関係を求めるステップ(B)と、
     前記ステップ(B)で求めた前記反射波の強度と前記発振周波数と関係に基づいて、前記反射波の強度が相対的に低い周波数域を決定するステップ(C)と、
    を含み、
     前記ステップ(A)では、前記反射波の強度が相対的に低い周波数域における前記発振周波数の生起確率を、前記反射波の強度が相対的に高い周波数域における前記発振周波数の生起確率よりも高くする、高周波加熱装置の駆動方法。
  15.  前記ステップ(C)では、前記ステップ(B)で求めた前記反射波の強度と前記発振周波数と関係に基づいて、前記反射波の強度が最小となる発振周波数を決定する、請求項14に記載の高周波加熱装置の駆動方法。
PCT/JP2009/002024 2008-05-13 2009-05-08 スペクトル拡散高周波加熱装置 WO2009139136A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/745,825 US8330085B2 (en) 2008-05-13 2009-05-08 Spread-spectrum high-frequency heating device
JP2010506763A JP4542625B2 (ja) 2008-05-13 2009-05-08 スペクトル拡散高周波加熱装置
CN2009801012145A CN101884245B (zh) 2008-05-13 2009-05-08 扩频高频加热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-125461 2008-05-13
JP2008125461 2008-05-13

Publications (1)

Publication Number Publication Date
WO2009139136A1 true WO2009139136A1 (ja) 2009-11-19

Family

ID=41318512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002024 WO2009139136A1 (ja) 2008-05-13 2009-05-08 スペクトル拡散高周波加熱装置

Country Status (4)

Country Link
US (1) US8330085B2 (ja)
JP (1) JP4542625B2 (ja)
CN (1) CN101884245B (ja)
WO (1) WO2009139136A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027529A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 マイクロ波加熱装置
CN102906504A (zh) * 2010-05-26 2013-01-30 Lg电子株式会社 烹饪装置及其操作方法
WO2013038715A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 マイクロ波処理装置
EP2446706B1 (en) 2010-05-03 2016-01-27 Goji Limited Modal analysis
KR101727905B1 (ko) * 2010-05-26 2017-04-18 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101727904B1 (ko) * 2010-05-26 2017-04-18 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101731388B1 (ko) * 2010-05-26 2017-04-28 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101735609B1 (ko) * 2010-05-26 2017-05-15 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101748608B1 (ko) 2010-08-25 2017-06-20 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기
KR101759160B1 (ko) * 2010-12-23 2017-07-18 엘지전자 주식회사 조리기기 및 그 동작방법
KR101762160B1 (ko) 2010-05-26 2017-07-27 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101811592B1 (ko) * 2010-08-25 2017-12-22 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기
JP2019202533A (ja) * 2018-05-21 2019-11-28 マイクロ波化学株式会社 成形装置、金型および成形品製造方法
JP2020192817A (ja) * 2018-05-21 2020-12-03 マイクロ波化学株式会社 成形装置、金型および成形品製造方法
US11558936B2 (en) 2017-07-04 2023-01-17 Panasonic Holdings Corporation Microwave processing device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657016B2 (ja) 2009-11-10 2015-01-21 ゴジ リミテッド エネルギーを制御するための装置および方法
KR101762164B1 (ko) * 2010-12-23 2017-07-27 엘지전자 주식회사 조리기기
KR101752523B1 (ko) * 2010-07-01 2017-06-29 고지 엘티디. 무선 주파수 에너지에 의한 대상물 처리
CN101979923A (zh) * 2010-11-17 2011-02-23 美的集团有限公司 微波炉
CN102374557B (zh) * 2011-10-31 2016-08-03 广东美的厨房电器制造有限公司 半导体微波炉的微波馈入结构
CN103152889B (zh) * 2013-02-26 2015-03-25 合肥荣事达三洋电器股份有限公司 一种控制变频微波炉功率的电路控制方法
JP6487936B2 (ja) * 2014-03-20 2019-03-20 広東美的厨房電器制造有限公司 電子レンジの半導体マイクロ波発生器接続構造、電子レンジの半導体マイクロ波発生器の入出力接続構造及び電子レンジ
WO2016096922A1 (en) 2014-12-17 2016-06-23 Koninklijke Philips N.V. Method and apparatus for controlling the heating of food ingredients
CN105282888B (zh) * 2015-11-22 2019-02-05 齐齐哈尔东暖能源科技发展有限公司 高频电磁加热设备及其电力控制方法
CN106255246B (zh) * 2015-12-05 2019-11-08 南京昌合泰智能科技有限公司 电力加热设备的电力控制方法
EP3516927B1 (en) 2016-09-22 2021-05-26 Whirlpool Corporation Method and system for radio frequency electromagnetic energy delivery
US11032878B2 (en) * 2016-09-26 2021-06-08 Illinois Tool Works Inc. Method for managing a microwave heating device and microwave heating device
EP3530075A4 (en) 2016-10-19 2020-05-27 Whirlpool Corporation METHOD AND DEVICE FOR ELECTROMAGNETIC COOKING BY MEANS OF CONTROL IN THE CLOSED CONTROL CIRCUIT
US10993294B2 (en) 2016-10-19 2021-04-27 Whirlpool Corporation Food load cooking time modulation
US11041629B2 (en) 2016-10-19 2021-06-22 Whirlpool Corporation System and method for food preparation utilizing a multi-layer model
US10728962B2 (en) * 2016-11-30 2020-07-28 Illinois Tool Works, Inc. RF oven energy application control
US11202348B2 (en) 2016-12-22 2021-12-14 Whirlpool Corporation Method and device for electromagnetic cooking using non-centered loads management through spectromodal axis rotation
US11197355B2 (en) 2016-12-22 2021-12-07 Whirlpool Corporation Method and device for electromagnetic cooking using non-centered loads
US11382189B2 (en) 2016-12-23 2022-07-05 Whirlpool Corporation Method of diagnosing an electromagnetic cooking device
EP3563634B1 (en) 2016-12-29 2021-10-13 Whirlpool Corporation Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
WO2018125147A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
EP3563633B1 (en) 2016-12-29 2021-11-17 Whirlpool Corporation System and method for detecting cooking level of food load
EP3563638B1 (en) 2016-12-29 2021-09-01 Whirlpool Corporation Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
WO2018125143A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Detecting changes in food load characteristics using q-factor
WO2018125151A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
US11638333B2 (en) 2016-12-29 2023-04-25 Whirlpool Corporation System and method for analyzing a frequency response of an electromagnetic cooking device
EP3563630B1 (en) 2016-12-29 2021-09-08 Whirlpool Corporation System and method for controlling a heating distribution in an electromagnetic cooking device
EP3563636B1 (en) 2016-12-29 2021-10-13 Whirlpool Corporation System and method for controlling power for a cooking device
EP3563632B1 (en) 2016-12-29 2023-01-18 Whirlpool Corporation Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
CN109792810B (zh) 2016-12-29 2021-07-20 松下电器产业株式会社 电磁烹饪装置及控制烹饪的方法
JPWO2021020374A1 (ja) * 2019-07-31 2021-02-04
KR102215527B1 (ko) * 2019-08-26 2021-02-16 주식회사 웨이브피아 Rf 방사 모듈을 채용한 3d 프린터
KR20210125289A (ko) * 2020-04-08 2021-10-18 엘지전자 주식회사 복수 개의 안테나를 포함하는 오븐 및 그 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696487A (en) * 1979-12-28 1981-08-04 Matsushita Electric Ind Co Ltd High frequency heater
WO2008007777A2 (fr) * 2006-07-14 2008-01-17 Sunny Engineering Co., Ltd Dispositif de chauffage par induction à micro-ondes
WO2008018466A1 (fr) * 2006-08-08 2008-02-14 Panasonic Corporation Appareil de traitement par micro-ondes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165399A (ja) 1983-03-09 1984-09-18 株式会社東芝 高周波加熱装置
JP2000357583A (ja) 1999-06-15 2000-12-26 Mitsubishi Electric Corp 電子レンジ
JP2002246167A (ja) * 2001-02-16 2002-08-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP4935188B2 (ja) 2006-05-25 2012-05-23 パナソニック株式会社 マイクロ波利用装置
JP4860395B2 (ja) 2006-07-28 2012-01-25 パナソニック株式会社 マイクロ波処理装置およびマイクロ波処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696487A (en) * 1979-12-28 1981-08-04 Matsushita Electric Ind Co Ltd High frequency heater
WO2008007777A2 (fr) * 2006-07-14 2008-01-17 Sunny Engineering Co., Ltd Dispositif de chauffage par induction à micro-ondes
WO2008018466A1 (fr) * 2006-08-08 2008-02-14 Panasonic Corporation Appareil de traitement par micro-ondes

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648257B2 (ja) * 2009-09-03 2015-01-07 パナソニックIpマネジメント株式会社 マイクロ波加熱装置
WO2011027529A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 マイクロ波加熱装置
US10425999B2 (en) 2010-05-03 2019-09-24 Goji Limited Modal analysis
EP2446706B1 (en) 2010-05-03 2016-01-27 Goji Limited Modal analysis
CN102906504A (zh) * 2010-05-26 2013-01-30 Lg电子株式会社 烹饪装置及其操作方法
KR101731388B1 (ko) * 2010-05-26 2017-04-28 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101727905B1 (ko) * 2010-05-26 2017-04-18 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101727904B1 (ko) * 2010-05-26 2017-04-18 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101762160B1 (ko) 2010-05-26 2017-07-27 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101735609B1 (ko) * 2010-05-26 2017-05-15 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기 및 그 동작방법
CN102906504B (zh) * 2010-05-26 2015-03-11 Lg电子株式会社 烹饪装置及其操作方法
KR101748608B1 (ko) 2010-08-25 2017-06-20 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기
KR101811592B1 (ko) * 2010-08-25 2017-12-22 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기
KR101759160B1 (ko) * 2010-12-23 2017-07-18 엘지전자 주식회사 조리기기 및 그 동작방법
US10285224B2 (en) 2011-09-16 2019-05-07 Panasonic Intellectual Property Management Co., Ltd. Microwave treatment device
WO2013038715A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 マイクロ波処理装置
US11558936B2 (en) 2017-07-04 2023-01-17 Panasonic Holdings Corporation Microwave processing device
JP2019202533A (ja) * 2018-05-21 2019-11-28 マイクロ波化学株式会社 成形装置、金型および成形品製造方法
JP2020192817A (ja) * 2018-05-21 2020-12-03 マイクロ波化学株式会社 成形装置、金型および成形品製造方法
JP7352965B2 (ja) 2018-05-21 2023-09-29 マイクロ波化学株式会社 成形装置、金型および成形品製造方法

Also Published As

Publication number Publication date
JPWO2009139136A1 (ja) 2011-09-15
JP4542625B2 (ja) 2010-09-15
CN101884245B (zh) 2013-02-13
US8330085B2 (en) 2012-12-11
US20100243645A1 (en) 2010-09-30
CN101884245A (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4542625B2 (ja) スペクトル拡散高周波加熱装置
US9332591B2 (en) RF heating at selected power supply protocols
KR101709473B1 (ko) 마이크로웨이브를 이용한 조리기기
JP5286905B2 (ja) マイクロ波処理装置
JP6032563B2 (ja) マイクロ波処理装置
WO2010134307A1 (ja) マイクロ波加熱装置及びマイクロ波加熱方法
JP2008269793A (ja) マイクロ波処理装置
JP5262250B2 (ja) マイクロ波処理装置
US20180245983A1 (en) Temperature measurement arrangement
JP6665183B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2009252346A5 (ja)
WO2011007542A1 (ja) 高周波加熱装置
JP7055822B2 (ja) マイクロ波調理装置、制御方法及び記憶媒体
US11102853B2 (en) Microwave heating system having improved frequency scanning and heating methods
JP6956326B2 (ja) 高周波加熱装置
EP3793327B1 (en) Method for operating a microwave device
JP2009252564A (ja) マイクロ波処理装置
JP6864995B2 (ja) マイクロ波プラズマ生成装置及びマイクロ波プラズマ生成方法
JP2010140839A (ja) マイクロ波処理装置
JP2010073382A (ja) マイクロ波処理装置
JP2010192359A (ja) マイクロ波処理装置
JP2010272216A (ja) マイクロ波処理装置
WO2023026947A1 (ja) Rfエネルギー放射装置
KR20110129722A (ko) 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR20100136838A (ko) 마이크로웨이브를 이용한 조리기기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101214.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010506763

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12745825

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6331/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746343

Country of ref document: EP

Kind code of ref document: A1