WO2009136573A1 - 血液分析装置、血液分析方法、溶血剤および染色剤 - Google Patents

血液分析装置、血液分析方法、溶血剤および染色剤 Download PDF

Info

Publication number
WO2009136573A1
WO2009136573A1 PCT/JP2009/058327 JP2009058327W WO2009136573A1 WO 2009136573 A1 WO2009136573 A1 WO 2009136573A1 JP 2009058327 W JP2009058327 W JP 2009058327W WO 2009136573 A1 WO2009136573 A1 WO 2009136573A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement sample
blood
sample
hemolytic agent
measurement
Prior art date
Application number
PCT/JP2009/058327
Other languages
English (en)
French (fr)
Inventor
英彬 松本
欣也 内橋
裕司 糸瀬
小西 綾
吉田 歩
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to CN200980116617.7A priority Critical patent/CN102016573B/zh
Priority to JP2010511054A priority patent/JP5619604B2/ja
Priority to EP09742697.7A priority patent/EP2293062B1/en
Publication of WO2009136573A1 publication Critical patent/WO2009136573A1/ja
Priority to US12/942,752 priority patent/US8920726B2/en
Priority to US14/530,973 priority patent/US9328375B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5094Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56905Protozoa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/44Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from protozoa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/44Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from protozoa
    • G01N2333/445Plasmodium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a blood analyzer, a blood analysis method, a hemolytic agent, and a staining agent, and in particular, a blood analysis device that classifies white blood cells and detects malaria-infected red blood cells, a blood analysis method, and a hemolytic agent used in this blood analysis method And dyeing agents.
  • blood analyzers that classify white blood cells are known. Such a blood analyzer is disclosed in, for example, JP-A-2006-292738. Conventionally, blood analyzers that detect malaria-infected erythrocytes are also known. Such a blood analyzer is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-304774.
  • the blood analyzer described in JP-A-2006-292738 described above uses a dedicated reagent for white blood cell classification to measure scattered light and fluorescence with a flow cytometer (optical information generation unit), and the white blood cells in the measurement sample Are classified into four.
  • the blood analyzer described in JP-A-2006-304774 uses a dedicated reagent for detecting malaria-infected erythrocytes, measures scattered light and fluorescence with a flow cytometer (light information generation unit), Is configured to detect malaria-infected erythrocytes.
  • the blood analyzer disclosed in JP-A-2006-292738 performs white blood cell classification using a reagent dedicated for white blood cell classification
  • the blood analyzer disclosed in JP-A-2006-304774 discloses a reagent for white blood cell classification.
  • the detection of malaria-infected erythrocytes is performed using a dedicated reagent for detection of malaria-infected erythrocytes having a different composition from that of the above, the blood analyzer of JP-A-2006-292738 and the blood analyzer of JP-A-2006-304774 Even if a blood analyzer capable of performing both leukocyte classification and malaria-infected erythrocyte detection is obtained in combination, two types of reagents with different compositions are used to perform both leukocyte classification and malaria-infected erythrocyte detection. There is a problem that it is necessary to develop separately and as a result, a burden is placed on the user.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to reduce four burdens of leukocytes in a measurement sample while reducing the burden on the user due to reagent development. And a blood analyzer capable of detecting malaria-infected erythrocytes, a blood analysis method, and a hemolyzing agent and a staining agent used in the blood analysis method.
  • a blood analyzer includes a first measurement sample including a blood sample and a hemolytic agent, a blood sample, and the same hemolytic agent and staining agent as the hemolytic agent.
  • White blood cells in the first measurement sample based on the optical information generation unit that generates the information and the second scattered light information, the first fluorescence information generated by the optical information generation unit, and the two types of first scattered light information Are classified into at least four types of monocytes, neutrophils, eosinophils, and other groups, and the second fluorescence information and the second scattered light information generated by the optical information generation unit Based on the above, the blood cells in the second measurement sample are separated from malaria-infected erythrocytes and malaria-infected erythrocytes. And a control unit which classifies the to and population.
  • the sample preparation unit further prepares a third measurement sample including the blood sample and the hemolytic agent, and the blood analysis device extracts the sample electricity from the third measurement sample.
  • An electrical information generation unit for generating information is further provided, and the control unit converts the white blood cells in the third measurement sample into at least lymphocytes and a group other than lymphocytes based on the electrical information generated by the electrical information generation unit. And classifying the white blood cells in the measurement sample into at least lymphocytes, basophils, monocytes, neutrophils, and eosinophils based on the classification results of the first classification and the second classification. It is comprised so that it may classify
  • the apparatus further includes a second optical information generation unit that generates at least one of transmitted light information or scattered light information of the sample from the third measurement sample, and the control unit is generated by the second optical information generation unit.
  • the hemoglobin concentration in the third measurement sample is obtained based on at least one of the transmitted light information and the scattered light information.
  • the dilution factor of the hemolytic agent in the second measurement sample is different from the dilution factor of the hemolytic agent in the first measurement sample.
  • the dilution factor of the hemolytic agent in the second measurement sample is smaller than the dilution factor of the hemolytic agent in the first measurement sample.
  • the sample preparation unit mixes the blood sample, the hemolytic agent contained in a predetermined reagent container, and a predetermined amount of the diluted solution to prepare the first measurement sample.
  • the second measurement sample is prepared by mixing and mixing the blood sample, the hemolytic agent accommodated in a predetermined reagent container, and a diluent less than the predetermined amount.
  • the sample preparation unit is configured to prepare the second measurement sample by mixing the blood sample in a state where the hemolytic agent and the diluent are mixed.
  • the sample preparation unit is provided in a second reagent container different from the first reagent container containing at least a blood sample and a hemolytic agent used for the first measurement sample.
  • a second measurement sample is prepared by mixing the stored hemolytic agent.
  • the hemolytic agent accommodated in the second reagent container is preferably diluted 9 times or more and 12 times or less.
  • the hemolytic agent preferably contains two types of cationic surfactants.
  • the stain may contain a fluorescent dye represented by the following formula and a nonionic surfactant.
  • the blood analysis method prepares a first measurement sample containing a blood sample and a hemolytic agent, and a second measurement sample containing the blood sample and the same hemolytic agent and staining agent as the hemolytic agent. And generating first fluorescence information and at least two types of first scattered light information from the first measurement sample, and generating second fluorescence information and second scattered light information from the second measurement sample.
  • the white blood cells in the first measurement sample are at least monocytes, neutrophils
  • the blood cells in the second measurement sample are classified based on the step of classifying into four groups of eosinophils and other populations, and the second fluorescence information and the second scattered light information generated from the second measurement sample. Classifying into malaria-infected erythrocytes and populations other than malaria-infected erythrocytes Equipped with a.
  • a hemolytic agent prepares a first measurement sample containing a blood sample and a hemolytic agent, and a second measurement sample containing the blood sample and the same hemolytic agent and staining agent as the hemolytic agent.
  • the white blood cells in the first measurement sample are at least monocytes, neutrophils,
  • the blood cells in the second measurement sample are classified into malaria on the basis of the step of classifying them into four groups of acid spheres and other populations, and the second fluorescence information and the second scattered light information generated from the second measurement sample. Categorizing into infected red blood cells and populations other than malaria infected red blood cells Used in that blood analysis method.
  • a staining agent prepares a first measurement sample containing a blood sample and a hemolytic agent, and a second measurement sample containing the blood sample and the same hemolytic agent and staining agent as the hemolytic agent.
  • the white blood cells in the first measurement sample are at least monocytes, neutrophils,
  • the blood cells in the second measurement sample are classified into malaria on the basis of the step of classifying them into four groups of acid spheres and other populations, and the second fluorescence information and the second scattered light information generated from the second measurement sample. Categorizing into infected red blood cells and populations other than malaria infected red blood cells Used in that blood analysis method.
  • FIG. 1 It is a front view which shows schematic structure of the blood analyzer by one Embodiment of this invention. It is a block diagram which shows the structure of the blood analyzer by one Embodiment shown in FIG. It is a perspective view which shows the measurement unit of the blood analyzer by one Embodiment shown in FIG. It is a perspective view which shows the internal structure of the measurement unit of the blood analyzer by one Embodiment shown in FIG. It is a side view which shows the internal structure of the measurement unit of the blood analyzer by one Embodiment shown in FIG. It is a perspective view which shows typically the structure of the flow cell provided in the measurement unit of the blood analyzer by one Embodiment shown in FIG.
  • FIG. 2 is a particle size distribution diagram of white blood cells created in the blood analyzer according to the embodiment shown in FIG. 1.
  • 2 is a scattergram for white blood cell classification created in the blood analyzer according to the embodiment shown in FIG. 1.
  • 2 is a scattergram for white blood cell classification created in the blood analyzer according to the embodiment shown in FIG. 1.
  • 2 is a scattergram for classifying malaria created in the blood analyzer according to the embodiment shown in FIG. 1.
  • FIG. 4 is a diagram showing experimental results when a hemolytic agent having a concentration of 2.15 mM in a WBC (for classification) measurement sample of a cationic surfactant is used in the blood analyzer according to the embodiment shown in FIG. 1. .
  • FIG. 4 is a diagram showing experimental results when a hemolytic agent having a concentration of 2.15 mM in a WBC (for classification) measurement sample of a cationic surfactant is used in the blood analyzer according to the embodiment shown in FIG. 1.
  • FIG. 3 is a diagram showing experimental results when a hemolytic agent having a concentration of 0.62 mM in a WBC (for classification) measurement sample of a cationic surfactant is used in the blood analyzer according to the embodiment shown in FIG. 1. .
  • FIG. 4 is a diagram showing experimental results when a hemolytic agent having a concentration of 0.62 mM in a WBC (for classification) measurement sample of a cationic surfactant is used in the blood analyzer according to the embodiment shown
  • FIG. 3 is a diagram showing experimental results when a hemolytic agent having a concentration of 0.62 mM in a WBC (for classification) measurement sample of a cationic surfactant is used in the blood analyzer according to the embodiment shown in FIG. 1. .
  • FIG. 11 is a diagram showing an experimental result when the hemolytic agent shown in FIG. 10 is used in the blood analyzer according to the embodiment shown in FIG. 1.
  • FIG. 11 is a diagram showing an experimental result when the hemolytic agent shown in FIG. 10 is used in the blood analyzer according to the embodiment shown in FIG. 1.
  • the blood analyzer 1 is an apparatus used for blood tests, and is mainly composed of a measurement unit 2 and a data processing unit 3.
  • the blood analyzer 1 is installed in a medical institution such as a hospital or a pathological examination facility, for example.
  • the measurement unit 2 performs a predetermined measurement on the components contained in the blood sample
  • the data processing unit 3 receives the measurement data to perform analysis processing.
  • the measurement unit 2 and the data processing unit 3 are connected by a data transmission cable 3a so that data communication can be performed.
  • the measurement unit 2 and the data processing unit 3 may be directly connected by a data transmission cable 3a.
  • the measurement unit 2 and the data processing unit 3 may be connected via a dedicated line using a telephone line, a communication network such as a LAN or the Internet. It may be connected.
  • the measurement unit 2 includes a sample supply unit 4, a WBC classification measurement unit 5, a DC measurement unit 6, an HGB measurement unit 7, a control unit 8, and a communication unit 9. .
  • a blood collection tube setting portion 2 a configured to be able to set a blood collection tube 20 containing a blood sample is provided in the lower right part of the front of the measurement unit 2.
  • the blood collection tube setting unit 2a is configured to be pushed forward by the user pressing a button switch 2b provided in the vicinity thereof. The user can set the blood collection tube 20 in a state in which the blood collection tube setting unit 2a protrudes. Then, after setting the blood collection tube 20, the blood collection tube setting unit 2 a is configured to be returned to the inside of the measurement unit 2 when the user presses the button switch 2 b again.
  • the measurement unit 2 includes a pipette 21 for aspirating the measurement sample, and chambers 22 and 23 (see FIG. 5) for mixing and preparing the blood sample and the reagent.
  • the pipette 21 is formed in a tubular shape extending in the vertical direction, and its tip is sharply pointed.
  • the pipette 21 is connected to a syringe pump (not shown), and is configured to suck and discharge a predetermined amount of liquid by the operation of the syringe pump.
  • the pipette 21 is connected to a moving mechanism, and is configured to be movable in the vertical direction and the front-back direction.
  • the pipette 21 is configured to suck a blood sample contained in the blood collection tube 20 by puncturing a sharp tip into a rubber cap 20 a that seals the blood collection tube 20.
  • the pipette 21 is configured to suck the blood sample and then move to a predetermined position by the moving mechanism to supply the blood sample into the chambers 22 and 23.
  • the sample supply unit 4 is a fluid unit having chambers 22 and 23, a plurality of solenoid valves, a diaphragm pump, and the like.
  • the chamber 22 is provided for preparing a measurement sample used for measurement of red blood cells, platelets, and hemoglobin concentration.
  • the chamber 23 is provided for preparing a measurement sample used for white blood cell measurement.
  • a reagent container is connected to the fluid unit constituted by the sample supply unit 4. Specifically, the diluent container 24 for containing the diluent, the hemolyzer container 25 for containing the hemolyzing agent 100, and the staining liquid container 26 for containing the staining liquid used for the measurement sample for malaria detection. Is connected to the fluid unit. Accordingly, the diluent and hemolytic agent 100 can be supplied to the chamber 22, and the diluent, hemolytic agent 100 and staining solution can be supplied to the chamber 23.
  • the WBC classification measurement unit 5 is an optical flow cytometer, and is provided for performing white blood cell classification detection and malaria-infected red blood cell detection (hereinafter referred to as malaria detection) by a flow cytometry method using semiconductor laser light. Yes.
  • the WBC classification measurement unit 5 includes a flow cell 51 (see FIG. 6) that forms a liquid flow of the measurement sample.
  • the flow cell 51 is formed in a tubular shape by a material such as translucent quartz, glass, and synthetic resin, and the inside thereof is a flow path through which a measurement sample and a sheath liquid (diluent) flow.
  • the flow cell 51 is provided with an orifice 51a whose inner space is narrowed narrower than other portions.
  • the vicinity of the inlet of the orifice 51a has a double tube structure, and the inner tube portion is a sample nozzle 51b.
  • the space outside the sample nozzle 51b is a flow path 51c through which the sheath liquid (diluent) flows, and the sheath liquid (diluent) flows through the flow path 51c and is introduced into the orifice 51a.
  • the sheath liquid (dilution liquid) supplied to the flow cell 51 flows so as to surround the measurement sample discharged from the sample nozzle 51b.
  • the flow of the measurement sample is narrowed down by the orifice 51a, and the white blood cells and red blood cells contained in the measurement sample are surrounded by the sheath liquid (diluent) and pass through the orifice 51a one by one.
  • a semiconductor laser light source 52 is arranged so as to emit laser light toward the orifice 51a of the flow cell 51.
  • the semiconductor laser light source 52 has a blue-violet semiconductor laser element 52a and is configured to emit blue-violet laser light having a wavelength of about 405 nm.
  • An irradiation lens system 53 including a plurality of lenses is disposed between the semiconductor laser light source 52 and the flow cell 51. By this irradiation lens system 53, the parallel beam emitted from the semiconductor laser light source 52 is focused on the beam spot.
  • a beam stopper 54a is provided on the optical axis linearly extending from the semiconductor laser light source 52 so as to face the irradiation lens system 53 with the flow cell 51 interposed therebetween.
  • the beam stopper 54a is a semiconductor laser light source.
  • the direct light from 52 is shielded.
  • a photodiode 54 is disposed further downstream of the beam stopper 54a on the optical axis.
  • the photodiode 54 is configured to receive the scattered light of the laser light generated by the measurement sample flowing through the flow cell 51. Specifically, among the light traveling along the optical axis extending linearly from the semiconductor laser light source 52, the direct light of the semiconductor laser light source 52 is blocked by the beam stopper 54a. Only scattered light (hereinafter referred to as forward scattered light) traveling along the axial direction is received.
  • the photodiode 54 is configured to photoelectrically convert forward scattered light emitted from the flow cell 51 and transmit an electric signal (hereinafter referred to as forward scattered light signal) generated thereby to the amplifier 54b.
  • the amplifier 54 b is configured to amplify the transmitted forward scattered light signal and output it to the control unit 8.
  • a side condenser lens 55 is disposed on the side of the flow cell 51 and in a direction orthogonal to the optical axis extending linearly from the semiconductor laser light source 52 to the photodiode 54. Is configured to collect side light (light emitted in a direction intersecting the optical axis) generated when a blood cell passing through the flow cell 51 is irradiated with laser light.
  • a dichroic mirror 56 is provided on the downstream side of the side condenser lens 55, and the dichroic mirror 56 is configured to divide the signal light transmitted from the side condenser lens 55 into a scattered light component and a fluorescent component.
  • a photodiode 57 for receiving side scattered light is provided, and light from the dichroic mirror 56 is provided.
  • An optical filter 58a and an avalanche photodiode 58 are provided on the downstream side of the shaft.
  • the photodiode 57 is configured to photoelectrically convert the side scattered light component divided by the dichroic mirror 56 and transmit an electric signal (hereinafter referred to as a side scattered light signal) generated thereby to the amplifier 57a.
  • the amplifier 57 a is configured to amplify the transmitted side scattered light signal and output the amplified side scattered light signal to the control unit 8.
  • the avalanche photodiode 58 is configured to photoelectrically convert the side fluorescent component after wavelength selection by the optical filter 58a, and to transmit an electric signal (side fluorescent signal) generated thereby to the amplifier 58b. Yes.
  • the amplifier 58b is configured to amplify the transmitted side fluorescent signal and output it to the control unit 8.
  • the DC measurement unit 6 is configured to be able to measure the red blood cell count (RBC) and the platelet count (PLT) by the sheath flow DC detection method. Further, the DC measurement unit 6 is configured to be able to obtain measurement data for calculating a hematocrit value (HCT) by the red blood cell pulse peak value detection method. Furthermore, the DC measurement unit 6 is also used for white blood cell count (WBC) detection for calculating the lymphocyte ratio.
  • the DC measurement unit 6 has a flow cell, and a measurement sample is transferred from the chamber 22 to the flow cell. For example, when measuring the number of red blood cells and platelets, as shown in FIG.
  • a measurement sample prepared by mixing a blood sample and a diluent in the chamber 22 together with a sheath solution (diluent) 4 to the flow cell.
  • a liquid flow is formed in a state where the measurement sample is surrounded by the sheath liquid (diluent).
  • the HGB measuring unit 7 is configured to measure the amount of hemoglobin (HGB) by the methemoglobin method. As shown in FIG. 9, the HGB measurement unit 7 has a cell for storing a diluted sample, and the measurement sample is transferred from the chamber 22 to this cell. And the HGB measurement part 7 has a light emitting diode which irradiates the light whose wavelength is about 555 nm, and measures the light absorbency by irradiating the light from a light emitting diode to the measurement sample in the said cell. It is configured.
  • a measurement sample is prepared by mixing the blood sample, the diluent, and the hemolytic agent 100 in the chamber 22.
  • the control unit 8 includes a CPU, a ROM, a RAM, and the like, and is configured to perform operation control of each unit of the measurement unit 2.
  • the communication unit 9 is, for example, an RS-232C interface, a USB interface, or an Ethernet (registered trademark) interface, and is configured to be able to transmit / receive data to / from the data processing unit 3.
  • the data processing unit 3 includes a CPU 31, a ROM 32, a RAM 33, a hard disk 34, a communication interface 35, an input unit 36 such as a keyboard and a mouse, and a display device 37.
  • the hard disk 34 of the data processing unit 3 is installed with an operating system and an application program for analyzing the measurement data received from the measurement unit 2.
  • the CPU 31 of the data processing unit 3 analyzes the measurement data by executing this application program, and performs white blood cell count (WBC), red blood cell count (RBC), hemoglobin amount (HGB), Hematocrit value (HCT), average erythrocyte volume (MCV), average erythrocyte hemoglobin amount (MCH), average erythrocyte hemoglobin concentration (MCHC), and platelet count (PLT) are calculated. Further, the CPU 31 creates a scattergram using the forward scattered light signal, the side scattered light signal, and the side fluorescent signal, and converts the white blood cells into neutrophils (Neut), lymphocytes, monocytes (Mono), and eosinophils. It is configured to be classified into five types: sphere (EO) and basophil (BASO).
  • the communication interface 35 is, for example, an RS-232C interface, a USB interface, or an Ethernet (registered trademark) interface, and is configured to be able to transmit and receive data to and from the measurement unit 2.
  • the hemolytic agent 100 in the present embodiment includes two kinds of cationic surfactants (lauryltrimethylammonium chloride; 34.1 mM, stearyltrimethylammonium chloride; 1.7 mM), and Does not contain labeling substances.
  • the hemolytic agent 100 has a property of converting hemoglobin in blood into methemoglobin.
  • the hemolytic agent 100 includes a phosphate buffer in order to maintain the pH at about 5 to about 7. This makes it possible to partially lyse the cell membrane of erythrocytes so that a fluorescent dye described later can permeate the cell membrane while the malaria parasite is held inside the erythrocytes.
  • each measurement sample used for each measurement has a different dilution ratio of the hemolytic agent 100 and a dilution ratio of the blood sample.
  • the white blood cells in the measurement sample are classified into four by simply changing the dilution factor without using two or more hemolytic agents having different compositions, and It is possible to detect malaria-infected erythrocytes.
  • the staining solution is a fluorescent dye (for example, Invitrogen's Hoechst 34580) having the chemical structure shown in FIG. 11 and a nonionic surfactant group that substantially dissolves the cell membrane of erythrocytes.
  • the fluorescent dye is specifically a DNA selective fluorescent dye, and preferably a DNA selective bisbenzimide fluorescent dye.
  • the DNA-selective fluorescent dye is a fluorescent dye that stains DNA more strongly than RNA, and the DNA-selective bisbenzimide fluorescent dye has a skeleton of bisimide.
  • This fluorescent dye can be excited by blue-violet laser light (wavelength is about 405 nm) emitted from the semiconductor laser light source 52a.
  • step S1 when the blood analyzer 1 is activated, after initialization of an application program and the like, it is determined in step S1 whether or not there is a measurement start instruction from the user by the CPU 31 of the data processing unit 3, This determination is repeated until instructed. If there is a measurement start instruction, a measurement start instruction signal is transmitted from the data processing unit 3 to the measurement unit 2 in step S2.
  • step S21 the control unit 8 of the measurement unit 2 determines whether a measurement start instruction signal is received, and this determination is repeated until it is received.
  • step S22 a blood sample is aspirated from the blood collection tube 20 set in the blood collection tube setting section 2a by the pipette 21.
  • step S23 the sample supply unit 4 prepares an RBC / PLT measurement sample (hereinafter referred to as a fourth measurement sample). Specifically, as shown in FIG. 13, a predetermined amount (for example, 2.0 mL) of diluent from the diluent container 24 and a predetermined amount (for example, 6 ⁇ L) sucked from the blood collection tube 20 by the pipette 21. A blood sample is supplied to the chamber 22 and agitated. Thereby, a predetermined amount (for example, 2.0 mL) of the fourth measurement sample is prepared.
  • a predetermined amount for example, 2.0 mL
  • step S24 a part (for example, 1 mL) of the fourth measurement sample in the chamber 22 is transferred to the DC measurement unit 6 together with the sheath liquid (diluent), and the DC measurement unit 6 performs the fourth measurement. RBC and PLT detection of the sample is performed.
  • step S25 the sample supply unit 4 prepares a WBC (for DC detection) / HGB measurement sample (hereinafter referred to as a third measurement sample). Specifically, as shown in FIG. 13, a predetermined amount (for example, 0.5 mL) of the hemolytic agent 100 is supplied from the hemolytic agent container 25 to the chamber 22 in which a predetermined amount (for example, 1 mL) of the fourth measurement sample remains. Supplied and stirred. That is, after the blood sample and the diluent are mixed in the chamber 22, the hemolytic agent 100 is mixed to prepare the third measurement sample.
  • a predetermined amount for example, 0.5 mL
  • a predetermined amount for example, 1 mL
  • red blood cells are hemolyzed and hemoglobin is converted into methemoglobin.
  • the third measurement sample in the chamber 22 is transferred to the DC measurement unit 6, and the WBC measurement of the third measurement sample is performed.
  • step S27 the third measurement sample is transferred to the HGB measurement unit 7, and HGB detection of the third measurement sample is performed.
  • a predetermined amount for example, 1 mL
  • a diluted hemolytic agent obtained by diluting the same hemolytic agent 100 contained in the
  • the blood sample and the staining solution are mixed in the state where the hemolytic agent 100 and the diluent are mixed in the chamber 23.
  • the hemolytic agent 100 is mixed with the blood sample in a state diluted with a diluent, it is possible to prevent the blood sample from being mixed with a hemolytic agent having a concentration higher than a desired concentration.
  • a second measurement sample in which the blood sample is diluted 100 times is prepared.
  • the red blood cell in the measurement sample is moderately reduced by making the dilution rate (9 times) of the hemolytic agent 100 in the second measurement sample smaller than the dilution rate (25 times) of the hemolysis agent 100 in the first measurement sample.
  • step S31 the second measurement sample in the chamber 23 is transferred to the WBC classification measurement unit 5 together with the sheath liquid (diluent), and the WBC classification measurement unit 5 detects malaria of the second measurement sample. Is called.
  • step S ⁇ b> 32 the measurement data measured in each detection unit is transmitted from the measurement unit 2 to the data processing unit 3.
  • step S3 it is determined whether or not the measurement data transmitted by the measurement unit 2 has been received, and this determination is repeated until it is received.
  • the CPU 31 calculates the white blood cell count (WBC) based on the measurement data obtained by WBC detection measured in step S26.
  • step S5 the CPU 31 creates a leukocyte particle size distribution map based on the measurement data obtained by WBC detection, and calculates the lymphocyte ratio relative to the white blood cell count (WBC), as shown in FIG.
  • the lymphocytes appear as the first mountain (group) from the left in the particle size distribution diagram.
  • the leukocytes are a group of lymphocytes and basophils, monocytes and granulocytes (neutrophils and eosinophils). (Group with sphere).
  • the CPU 31 creates a scattergram as shown in FIG. 15 using the forward scattered light signal and the side scattered light signal, and from this scattergram, a group of lymphocytes and basophils, The ratio of monocytes and granulocytes (neutrophil and eosinophil population) to each white blood cell count (WBC) is calculated.
  • WBC white blood cell count
  • leukocytes are classified into 3 groups of lymphocytes and basophils, monocytes and granulocytes (a group of neutrophils and eosinophils) on the scattergram. It can be seen that it can be classified into two types.
  • step S7 the CPU 31 classifies the leukocytes into two groups, eosinophils and a group other than eosinophils, based on the measurement data obtained by WBC classification detection. Specifically, the CPU 31 creates a scattergram using the forward scattered light signal and the side fluorescence signal, as shown in FIG. 16, and from this scattergram, the eosinophil ratio to the white blood cell count (WBC) is determined. calculate.
  • This side fluorescent signal is based on autofluorescence of leukocytes excited by blue-violet laser light (wavelength of about 405 nm) emitted from the semiconductor laser light source 52. Eosinophils are other than leukocyte eosinophils.
  • the CPU 31 can also calculate the ratio of eosinophils to the white blood cell count (WBC) from the scattergram based on the side scattered light signal and the side fluorescence signal.
  • WBC white blood cell count
  • FIG. 23 a blood sample actually collected from a subject is measured using the hemolytic agent in the present embodiment (see FIG. 10), and based on the forward scattered light signal and the side fluorescence signal obtained as a result. Shows the scattergram. As shown in FIG. 23, it can be seen that the actual measurement results can be classified into eosinophils and groups other than eosinophils on the scattergram.
  • step S8 the CPU 31 subtracts the eosinophil ratio calculated in step S7 from the granulocyte (the group of neutrophils and eosinophils) ratio calculated in step S6, thereby obtaining the white blood cell count ( The neutrophil ratio relative to (WBC) is calculated.
  • leukocytes are classified into four groups: lymphocytes and basophils, monocytes, neutrophils, and eosinophils.
  • step S9 the CPU 31 calculates the basophil ratio relative to the white blood cell count (WBC) by subtracting the lymphocyte ratio calculated in step S5 from the ratio of the population of lymphocytes and basophils. .
  • leukocytes are classified into five types: lymphocytes, basophils, monocytes, neutrophils and eosinophils.
  • step S10 the CPU 31 classifies malaria-infected erythrocytes from a group other than malaria-infected erythrocytes based on the measurement data obtained by malaria detection measured in step S31. Specifically, the CPU 31 creates a scattergram using the forward scattered light signal and the side fluorescence signal as shown in FIG. 17, and from this scattergram, malaria-infected erythrocytes are collected from a group other than malaria-infected erythrocytes. Classify. More specifically, in the scattergram of FIG. 17, red blood cells that are not infected with malaria appear in a region with low fluorescence intensity, while malaria-infected red blood cells appear in a region with relatively high fluorescence intensity. In addition, leukocytes appear in a region where both fluorescence intensity and scattered light intensity are large due to their size and DNA amount. This makes it possible to determine the presence or absence of malaria infection.
  • step S11 the CPU 31 calculates the red blood cell count (RBC), platelet count (PLT), and hematocrit value (HCT) based on the measurement data by RBC / PLT detection measured in step S24.
  • RBC red blood cell count
  • PLT platelet count
  • HCT hematocrit value
  • step S12 the CPU 31 calculates the hemoglobin amount (HGB) based on the measurement data obtained by the HGB detection measured in step S27. That is, the hemoglobin concentration is calculated based on the absorbance obtained by the HGB detection using the SLS hemoglobin method. As a result, the hemoglobin concentration can be obtained using the same third measurement sample as the measurement sample used for classifying leukocytes into five (neutrophils, lymphocytes, monocytes, eosinophils and basophils). is there.
  • HGB hemoglobin amount
  • step S13 from the red blood cell count (RBC), hematocrit value (HCT) and hemoglobin amount (HGB) calculated as described above, the CPU 31 causes the average red blood cell volume (MCV), average red blood cell hemoglobin amount (MCH) and Average erythrocyte hemoglobin concentration (MCHC) is calculated.
  • MCV average red blood cell volume
  • MCH average red blood cell hemoglobin amount
  • MCHC Average erythrocyte hemoglobin concentration
  • MCV (HCT / RBC) ⁇ 1000 (1)
  • MCV represents the mean red blood cell volume (fL)
  • HCT represents the hematocrit value (%)
  • RBC represents the number of red blood cells ( ⁇ 10 4 / ⁇ L).
  • MCH (HGB / RBC) ⁇ 1000 (2)
  • MCH represents the average amount of red blood cell pigment (pg)
  • HGB represents the amount of hemoglobin (g / dL)
  • RBC represents the number of red blood cells ( ⁇ 10 4 / ⁇ L).
  • MCHC (HGB / HCT) ⁇ 100 (3)
  • MCHC represents the average erythrocyte hemoglobin concentration (g / dL)
  • HGB represents the hemoglobin amount (g / dL)
  • HCT represents the hematocrit value (%).
  • step S14 the white blood cell count (WBC), red blood cell count (RBC), hemoglobin amount (HGB), hematocrit value (HCT), average red blood cell volume (MCV), average red blood cell hemoglobin amount (calculated as described above) MCH), average erythrocyte hemoglobin concentration (MCHC), and platelet count (PLT) are output to the display device 37. Further, the neutrophil ratio, lymphocyte ratio, monocyte ratio, eosinophil ratio, and basophil ratio relative to the white blood cell count (WBC) are output to the display device 37, and the result of malaria detection is also output.
  • the neutrophil count, lymphocyte count, monocyte count, eosinophil count and basophil count calculated based on the white blood cell count (WBC) and each blood cell ratio The number of balls is output.
  • step S15 it is determined whether or not there is a shutdown instruction from the user. If there is no instruction, the process proceeds to step S1. When there is a shutdown instruction, the operation of the data processing unit 3 for the sample analysis process in the blood analyzer 1 is terminated. On the measurement unit 2 side, after transmitting the measurement data to the data processing unit 3 in step S32, it is determined in step S33 whether or not there has been a shutdown instruction from the user. If there is no instruction, the process proceeds to step S21. To be migrated. If there is a shutdown instruction, the operation of the measurement unit 2 of the sample analysis process in the blood analyzer 1 is ended.
  • the WBC classification measurement unit 5 uses the blood sample and the hemolytic agent 100.
  • blood cells in the second measurement sample are classified into groups other than malaria-infected erythrocytes and malaria-infected erythrocytes.
  • the hemolytic agent for classifying the white blood cells into four and the hemolytic agent for detecting malaria-infected red blood cells can be used in common. It is not necessary to develop two different reagents (hemolytic agent) compositions in order to perform the A infected erythrocytes detection. Thereby, while reducing the burden on the user due to the development of the reagent, the white blood cells in the measurement sample can be classified into four and the malaria-infected red blood cells can be detected.
  • the white blood cells in the third measurement sample are classified into lymphocytes and a group other than lymphocytes based on the measurement data obtained by the DC measurement unit 6, and the classification results and the above-described white blood cells are classified.
  • the white blood cells in the measurement sample are classified into at least five of lymphocytes, basophils, monocytes, neutrophils, and eosinophils.
  • the CPU 31 it is possible to classify white blood cells into lymphocytes and a group other than lymphocytes using the same hemolytic agent 100 as the hemolytic agent for performing white blood cell classification and malaria-infected red blood cell detection.
  • the white blood cells in the measurement sample can be classified into 5 without separately developing different hemolytic agents.
  • the side fluorescent signal, the forward scattered light signal, and the side light generated from the first measurement sample including the blood sample and the hemolytic agent 100 by the WBC classification measurement unit 5 are used.
  • the step of classifying the white blood cells in the first measurement sample into at least four of monocytes, neutrophils, eosinophils, and other groups, and WBC classification measurement unit 5 Infects blood cells in the second measurement sample with malaria based on the side fluorescence signal and the forward scattered light signal generated from the blood sample, the same hemolysis agent 100 as the hemolysis agent 100, and the second measurement sample containing the staining agent.
  • a step of classifying the red blood cells into a group other than the malaria-infected red blood cells thereby making the hemolytic agent for classifying the white blood cells into four and the hemolytic agent for detecting the malaria-infected red blood cells common. Since it is not necessary to develop two different reagents (hemolytic agent) compositions in order to perform the white blood cell classification and malaria infected erythrocytes detection. Thereby, while reducing the burden on the user due to the development of the reagent, the white blood cells in the measurement sample can be classified into four and the malaria-infected red blood cells can be detected.
  • the hemolytic agent according to the present embodiment is converted from the side fluorescence signal, the forward scattered light signal, and the side scattering generated from the WBC classification measurement unit 5 from the first measurement sample including the blood sample and the hemolytic agent 100.
  • the step of classifying the white blood cells in the first measurement sample into at least four of monocytes, neutrophils, eosinophils, and other populations and the WBC classification measurement unit 5
  • a side fluorescence signal and a forward scattered light signal generated from a blood sample a second measurement sample containing the same hemolyzing agent 100 as the hemolytic agent 100, and a staining agent
  • blood cells in the second measurement sample are converted to malaria-infected erythrocytes.
  • a hemolytic agent for classifying leukocytes into four and a hemolytic agent for detecting malaria-infected erythrocytes It is possible to Tonghua, it is not necessary to develop two different reagents (hemolytic agent) compositions in order to perform the white blood cell classification and malaria infected erythrocytes detection. Thereby, while reducing the burden on the user due to the development of the reagent, the white blood cells in the measurement sample can be classified into four and the malaria-infected red blood cells can be detected.
  • the staining agent according to the present embodiment is obtained by using the side fluorescence signal, the forward scattered light signal, and the side scattering generated from the first measurement sample including the blood sample and the hemolytic agent 100 by the WBC classification measurement unit 5.
  • the step of classifying the white blood cells in the first measurement sample into at least four of monocytes, neutrophils, eosinophils, and other populations, and the WBC classification measurement unit 5 Based on a side fluorescence signal and a forward scattered light signal generated from a blood sample, a second measurement sample containing the same hemolyzing agent 100 as the hemolytic agent 100, and a staining agent, blood cells in the second measurement sample are converted to malaria-infected erythrocytes.
  • a hemolytic agent for classifying leukocytes into four and a hemolytic agent for detecting malaria-infected erythrocytes It is possible to Tonghua, it is not necessary to develop two different reagents (hemolytic agent) compositions in order to perform the white blood cell classification and malaria infected erythrocytes detection. Thereby, while reducing the burden on the user due to the development of the reagent, the white blood cells in the measurement sample can be classified into four and the malaria-infected red blood cells can be detected.
  • Example 2 the malaria infection rate obtained by visual observation and the malaria infection rate obtained based on the method described in the above embodiment (the same reagent as the reagent described in the above embodiment was used). The relationship is shown in Table 1 below. The visual measurement and the measurement by the method described in the above embodiment were performed on the same specimen for a plurality of blood samples.
  • the malaria infection rate obtained by visual observation and the malaria infection rate obtained based on the method described in the above embodiment are substantially the same, and according to the method described in the above embodiment. It was confirmed that malaria-infected erythrocytes could be detected with high accuracy.
  • Malaria infection rate (%) X / Y ⁇ 100 (4)
  • Y represents the predetermined number.
  • Y is about 10,000 for samples 1 and 2, about 20,000 for sample 3, and about 30,000 for sample 4.
  • the malaria infection rate obtained based on the method described in the above embodiment was calculated by the following equation (5).
  • Malaria infection rate (%) (6) / (7) ⁇ 100 (5)
  • (6) is A ⁇ B / C
  • (7) is the number of red blood cells obtained by measuring the same blood sample with a multi-item automatic blood cell analyzer XE-2100 (manufactured by Sysmex Corporation). Represent each.
  • A is the number of blood cells in the malaria region of FIG. 17
  • B is the number of white blood cells obtained by measuring the same blood sample with the multi-item automatic blood cell analyzer XE-2100
  • C is the white blood cell number of FIG. The number of blood cells in the region.
  • a hemolytic agent container as a reagent container that accommodates a hemolytic agent commonly used for WBC detection, HGB detection, WBC classification detection, and malaria detection is connected to the sample supply unit.
  • the present invention is not limited to this, and four hemolytic agent containers may be connected to the sample supply unit so as to accommodate the hemolytic agent used for each detection separately, and any one of the above four detections.
  • the hemolytic agent used in the above may be accommodated in a common hemolytic agent container, and two or three hemolytic agent containers may be connected to the sample supply unit. Further, five or more hemolytic agent containers may be connected to the sample supply unit.
  • the hemolytic agent accommodated in each hemolytic agent container is previously diluted to a predetermined dilution rate, the hemolytic agent is diluted to a desired dilution rate when preparing a measurement sample used for each detection. There is no need to provide a separate process.
  • a hemolytic agent not containing a labeling substance is shown as an example of the hemolytic agent.
  • the present invention is not limited to this, and the hemolytic agent may contain a labeling substance.
  • the present invention is not limited to this, and WBC detection, HGB detection, and WBC classification detection are used. Separate hemolytic agents may be used.
  • each detection process is performed in the order of RBC / PLT detection, WBC detection, HGB detection, WBC classification detection, and malaria detection from the earliest in the sample analysis process.
  • each detection process may be performed in a sequence other than the above.
  • the order of the white blood cell classification process, the malaria classification process, the red blood cell count / platelet count calculation process, and the hemoglobin amount calculation process in the sample analysis process can be appropriately changed.
  • the example which provides the semiconductor laser light source which has a blue-violet semiconductor laser element was shown in the said embodiment, this invention is not limited to this, Other than a blue-violet semiconductor laser element, such as a blue semiconductor laser element or an argon laser element A light source having a laser element may be provided.
  • the hemolytic agent in the second measurement sample is diluted 9 times, but the present invention is not limited to this. Further, the hemolytic agent in the second measurement sample is preferably diluted 9 times or more and 12 times or less.
  • a hemolytic agent it is an alkyl trimethyl ammonium salt
  • Cationic surfactant (lauryl trimethyl ammonium chloride; 34.1 mM, stearyl trimethyl whose alkyl group has 12 to 18 carbon atoms)
  • a hemolytic agent containing ammonium chloride (1.7 mM) was shown, but the present invention is not limited to this, and a WBC (a total of lauryltrimethylammonium chloride and stearyltrimethylammonium chloride in the above embodiment) is not limited thereto.
  • the concentration in the measurement sample is 0.62 mM or more and 2.15 mM or less, it may be a hemolytic agent containing a cationic surfactant having a concentration other than the above.
  • the concentration of the active agent in the hemolytic agent is 15.5 mM, and the concentration of the cationic surfactant in the hemolytic agent when the concentration of the cationic surfactant in the WBC (classification) measurement sample is 2.15 mM. 75 mM.
  • the concentration of the cationic surfactant in the WBC (for classification) measurement sample is 2.15 mM. Even above, it can be measured.
  • the concentration of the cationic surfactant in the hemolytic agent is varied in the blood analyzer according to one embodiment of the present invention.
  • a plurality of experimental results were obtained in which the concentration of the cationic surfactant in the hemolytic agent varies by a small amount.
  • the concentration of the cationic surfactant in the WBC (for classification) measurement sample is 2
  • Two experimental results in the case of using a hemolytic agent having a concentration of 15 mM and in the case of using a hemolytic agent having a concentration of 0.62 mM in the WBC (for classification) measurement sample of the cationic surfactant will be described.
  • leukocytes are classified into three groups: a lymphocyte and basophil group, a monocyte, and a granulocyte (neutrophil and eosinophil group). It is possible. Further, as shown in FIGS. 19 and 21, it is possible to classify into eosinophils and groups other than eosinophils on the scattergram. From these classification results, it is possible to classify leukocytes into four groups: a group of lymphocytes and basophils, monocytes, neutrophils and eosinophils. Therefore, it is considered that leukocytes can be classified into four categories when the concentration of the cationic surfactant in the WBC (for classification) measurement sample is in the range of 0.62 mM to 2.15 mM.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Ecology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 この血液分析装置は、血液試料と溶血剤とを含む第1測定試料と、血液試料と溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製する試料調製部と、光情報生成部が生成する蛍光情報と2種類の散乱光情報とに基づいて、第1測定試料中の白血球を少なくとも、単球と好中球と好酸球と他の集団との4つに分類し、光情報生成部が生成する蛍光情報と散乱光情報とに基づいて、第2測定試料中の血球をマラリア感染赤血球と他の集団とに分類する制御部とを備える。

Description

血液分析装置、血液分析方法、溶血剤および染色剤
 本発明は、血液分析装置、血液分析方法、溶血剤および染色剤に関し、特に、白血球を分類し、マラリア感染赤血球を検出する血液分析装置、血液分析方法、ならびに、この血液分析方法に用いる溶血剤および染色剤に関する。
 従来、白血球を分類する血液分析装置が知られている。このような血液分析装置は、たとえば、特開2006-292738号公報に開示されている。また、従来、マラリア感染赤血球を検出する血液分析装置も知られている。このような血液分析装置は、たとえば、特開2006-304774号公報に開示されている。
 上記特開2006-292738号公報に記載の血液分析装置は、白血球分類用の専用の試薬を用いて、フローサイトメータ(光情報生成部)により散乱光および蛍光を測定し、測定試料中の白血球を4つに分類するように構成されている。
 上記特開2006-304774号公報に記載の血液分析装置は、マラリア感染赤血球検出用の専用の試薬を用いて、フローサイトメータ(光情報生成部)により散乱光および蛍光を測定し、測定試料中のマラリア感染赤血球を検出するように構成されている。
 また、近年、白血球分類およびマラリア感染赤血球検出の両方を行うことが可能な血液分析装置が望まれている。
 しかしながら、上記特開2006-292738号公報の血液分析装置では、白血球分類用の専用の試薬を用いて白血球分類を行うとともに、上記特開2006-304774号公報の血液分析装置では、白血球分類用試薬とは組成の異なるマラリア感染赤血球検出用の専用の試薬を用いてマラリア感染赤血球検出を行うので、上記特開2006-292738号公報の血液分析装置と上記特開2006-304774号公報の血液分析装置とを組み合わせて、白血球分類およびマラリア感染赤血球検出の両方を行うことが可能な血液分析装置を得た場合でも、白血球分類およびマラリア感染赤血球検出の両方を行うために組成の異なる2種類の試薬を別々に開発する必要があり、その結果、ユーザに負担がかかるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、試薬開発に起因するユーザへの負担を軽減しながら、測定試料中の白血球を4つに分類し、かつ、マラリア感染赤血球を検出することが可能な血液分析装置、血液分析方法、ならびに、この血液分析方法に用いる溶血剤および染色剤を提供することである。
 上記目的を達成するために、この発明の第1の局面による血液分析装置は、血液試料と溶血剤とを含む第1測定試料と、血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製する試料調製部と、第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、第2測定試料から、第2蛍光情報と第2散乱光情報とを生成する光情報生成部と、光情報生成部により生成された第1蛍光情報と2種類の第1散乱光情報とに基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに第1分類し、光情報生成部により生成された第2蛍光情報と第2散乱光情報とに基づいて、第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類する制御部とを備える。
 上記第1の局面による血液分析装置において、好ましくは、試料調製部は、血液試料と溶血剤とを含む第3測定試料をさらに調製し、血液分析装置は、第3測定試料から、試料の電気情報を生成する電気情報生成部をさらに備え、制御部は、電気情報生成部により生成された電気情報に基づいて、第3測定試料中の白血球を少なくともリンパ球とリンパ球以外の集団とに第2分類するとともに、第1分類および第2分類の分類結果に基づいて、測定試料中の白血球を、少なくとも、リンパ球と、好塩基球と、単球と、好中球と、好酸球との5つに分類するように構成されている。
 この場合、好ましくは、第3測定試料から、試料の透過光情報または散乱光情報の少なくとも一方を生成する第2光情報生成部をさらに備え、制御部は、第2光情報生成部により生成された透過光情報または散乱光情報の少なくとも一方に基づいて、第3測定試料中のヘモグロビン濃度を取得するように構成されている。
 上記第1の局面による血液分析装置において、好ましくは、第2測定試料における溶血剤の希釈倍率は、第1測定試料における溶血剤の希釈倍率と異なる。
 この場合、好ましくは、第2測定試料における溶血剤の希釈倍率は、第1測定試料における溶血剤の希釈倍率よりも小さい。
 上記第1の局面による血液分析装置において、好ましくは、試料調製部は、血液試料、所定の試薬容器に収容された溶血剤、および、所定量の希釈液を混合することにより第1測定試料を調製し、血液試料、所定の試薬容器に収容された溶血剤、および、所定量よりも少ない量の希釈液を混合することにより第2測定試料を調製するように構成されている。
 この場合、好ましくは、試料調製部は、溶血剤と希釈液とを混合した状態で、血液試料を混合することにより第2測定試料を調製するように構成されている。
 上記第1の局面による血液分析装置において、好ましくは、試料調製部は、少なくとも血液試料、および、第1測定試料に用いられる溶血剤が収容された第1試薬容器とは異なる第2試薬容器に収容された溶血剤を混合することにより第2測定試料を調製するように構成されている。
 この場合、好ましくは、第2試薬容器に収容された溶血剤は、9倍以上12倍以下に希釈されている。
 上記第1の局面による血液分析装置において、好ましくは、溶血剤は、2種類のカチオン性界面活性剤を含む。
 上記第1の局面による血液分析装置において、染色剤は、以下の式で示される蛍光色素と、ノニオン界面活性剤とを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000002
 この発明の第2の局面による血液分析方法は、血液試料と溶血剤とを含む第1測定試料と、血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製するステップと、第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、第2測定試料から、第2蛍光情報と第2散乱光情報とを生成するステップと、第1測定試料から生成された第1蛍光情報と2種類の第1散乱光情報とに基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、第2測定試料から生成された第2蛍光情報と第2散乱光情報とに基づいて、第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備える。
 この発明の第3の局面による溶血剤は、血液試料と溶血剤とを含む第1測定試料と、血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製するステップと、第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、第2測定試料から、第2蛍光情報と第2散乱光情報とを生成するステップと、第1測定試料から生成された第1蛍光情報と2種類の第1散乱光情報とに基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、第2測定試料から生成された第2蛍光情報と第2散乱光情報とに基づいて、第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備える血液分析方法に用いられる。
 この発明の第4の局面による染色剤は、血液試料と溶血剤とを含む第1測定試料と、血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製するステップと、第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、第2測定試料から、第2蛍光情報と第2散乱光情報とを生成するステップと、第1測定試料から生成された第1蛍光情報と2種類の第1散乱光情報とに基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、第2測定試料から生成された第2蛍光情報と第2散乱光情報とに基づいて、第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備える血液分析方法に用いられる。
本発明の一実施形態による血液分析装置の概略構成を示す正面図である。 図1に示した一実施形態による血液分析装置の構成を示すブロック図である。 図1に示した一実施形態による血液分析装置の測定ユニットを示す斜視図である。 図1に示した一実施形態による血液分析装置の測定ユニットの内部構造を示す斜視図である。 図1に示した一実施形態による血液分析装置の測定ユニットの内部構造を示す側面図である。 図1に示した一実施形態による血液分析装置の測定ユニットに設けられたフローセルの構成を模式的に示す斜視図である。 図1に示した一実施形態による血液分析装置の測定ユニットに設けられたWBC分類測定部の構成を示す概略図である。 図1に示した一実施形態による血液分析装置の測定ユニットに設けられたDC測定部の構成を模式的に示す斜視図である。 図1に示した一実施形態による血液分析装置の測定ユニットに設けられたHGB測定部の構成を模式的に示す斜視図である。 図1に示した一実施形態による血液分析装置に用いられる溶血剤の組成を示す図である。 図1に示した一実施形態による血液分析装置に用いられるマラリア検出用の染色液の組成を示す図である。 図1に示した一実施形態による血液分析装置における試料分析処理を示すフローチャートである。 図1に示した一実施形態による血液分析装置に用いられる第3測定試料および第4測定試料の作成工程を説明するための図である。 図1に示した一実施形態による血液分析装置において作成される白血球の粒度分布図である。 図1に示した一実施形態による血液分析装置において作成される白血球分類用のスキャッタグラムである。 図1に示した一実施形態による血液分析装置において作成される白血球分類用のスキャッタグラムである。 図1に示した一実施形態による血液分析装置において作成されるマラリア分類用のスキャッタグラムである。 図1に示した一実施形態による血液分析装置において、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が2.15mMである溶血剤を用いた場合の実験結果を示した図である。 図1に示した一実施形態による血液分析装置において、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が2.15mMである溶血剤を用いた場合の実験結果を示した図である。 図1に示した一実施形態による血液分析装置において、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が0.62mMである溶血剤を用いた場合の実験結果を示した図である。 図1に示した一実施形態による血液分析装置において、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が0.62mMである溶血剤を用いた場合の実験結果を示した図である。 図1に示した一実施形態による血液分析装置において、図10に示した溶血剤を用いた場合の実験結果を示した図である。 図1に示した一実施形態による血液分析装置において、図10に示した溶血剤を用いた場合の実験結果を示した図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 まず、図1~図11を参照して、本発明の一実施形態による血液分析装置1の構成について説明する。
 本実施形態による血液分析装置1は、図1に示すように、血液検査に使用される装置であり、測定ユニット2と、データ処理ユニット3とによって主として構成されている。また、血液分析装置1は、たとえば、病院または病理検査施設などの医療機関の施設内に設置されている。また、血液分析装置1では、測定ユニット2により血液試料中に含まれる成分について所定の測定を行い、この測定データをデータ処理ユニット3で受信して分析処理を行っている。そして、測定ユニット2とデータ処理ユニット3とは、互いにデータ通信可能なように、データ伝送ケーブル3aにより接続されている。なお、測定ユニット2とデータ処理ユニット3とは、データ伝送ケーブル3aにより直接接続される構成であってもよいし、たとえば、電話回線を使用した専用回線、LANまたはインターネットなどの通信ネットワークを介して接続されていてもよい。
 測定ユニット2は、図2に示すように、試料供給部4と、WBC分類測定部5と、DC測定部6と、HGB測定部7と、制御部8と、通信部9とを含んでいる。また、図3に示すように、測定ユニット2の正面右下部分には、血液試料を収容した採血管20をセット可能に構成された採血管セット部2aが設けられている。この採血管セット部2aは、その近傍に設けられたボタンスイッチ2bをユーザが押下することにより、手前方向に迫り出すように構成されている。ユーザは、採血管セット部2aが迫り出した状態で採血管20をセットすることが可能である。そして、採血管20をセットした後、ユーザが再度ボタンスイッチ2bを押下することにより、採血管セット部2aは測定ユニット2の内部に戻されるように構成されている。
 測定ユニット2の内部には、図4および図5に示すように、測定試料を吸引するピペット21、および、血液試料と試薬とを混合調製するためのチャンバ22、23(図5参照)などが設けられている。ピペット21は、上下方向に延びた管状に形成されており、その先端は鋭く尖っている。また、ピペット21は、図示しないシリンジポンプに連結されており、このシリンジポンプの動作によって液体を所定量だけ吸引するとともに、吐出することが可能なように構成されている。また、ピペット21は、移動機構に接続されており、上下方向および前後方向にそれぞれ移動可能に構成されている。また、ピペット21は、採血管20を密閉するゴム製のキャップ20aに、鋭利な先端を穿刺することにより、採血管20に収容された血液試料を吸引するように構成されている。また、ピペット21は、血液試料を吸引した後、移動機構により所定の位置まで移動され、チャンバ22および23内に血液試料を供給するように構成されている。
 試料供給部4は、チャンバ22および23、複数の電磁弁、ダイヤフラムポンプなどを有する流体ユニットである。チャンバ22は、赤血球、血小板の測定、およびヘモグロビン濃度の測定に用いられる測定試料を調製するために設けられている。また、チャンバ23は、白血球の測定に用いられる測定試料を調製するために設けられている。また、試料供給部4により構成される流体ユニットには、試薬容器が接続されている。具体的には、希釈液を収容するための希釈液容器24、溶血剤100を収容するための溶血剤容器25およびマラリア検出用の測定試料に用いられる染色液を収容するための染色液容器26が流体ユニットに接続されている。これにより、希釈液および溶血剤100をチャンバ22に供給することが可能であるとともに、希釈液、溶血剤100および染色液をチャンバ23に供給することが可能である。
 WBC分類測定部5は、光学式のフローサイトメータであり、半導体レーザ光を用いたフローサイトメトリー法により、白血球分類検出およびマラリア感染赤血球検出(以下、マラリア検出という)を行うために設けられている。また、WBC分類測定部5は、測定試料の液流を形成するフローセル51(図6参照)を有している。フローセル51は、透光性を有する石英、ガラス、合成樹脂などの材料によって管状に構成されており、その内部が測定試料およびシース液(希釈液)が通流する流路となっている。このフローセル51には、内部空間が他の部分よりも細く絞り込まれたオリフィス51aが設けられている。また、オリフィス51aの入口付近は二重管構造となっており、その内側管部分は試料ノズル51bとなっている。また、試料ノズル51bの外側の空間はシース液(希釈液)が通流する流路51cであり、シース液(希釈液)は、流路51cを通流し、オリフィス51aに導入される。このようにフローセル51に供給されたシース液(希釈液)は、試料ノズル51bから吐出された測定試料を取り囲むように流れる。そして、オリフィス51aによって測定試料の流れが細く絞り込まれ、測定試料に含まれる白血球、赤血球などの粒子がシース液(希釈液)に取り囲まれて1つずつオリフィス51aを通過する。
 また、WBC分類測定部5には、半導体レーザ光源52が、フローセル51のオリフィス51aへ向けてレーザ光を出射するように配置されている。この半導体レーザ光源52は、青紫色半導体レーザ素子52aを有し、波長が約405nmの青紫色レーザ光を出射することが可能なように構成されている。また、半導体レーザ光源52とフローセル51との間には、複数のレンズからなる照射レンズ系53が配置されている。この照射レンズ系53によって、半導体レーザ光源52から出射された平行ビームがビームスポットに集束されるようになっている。また、半導体レーザ光源52から直線的に延びた光軸上には、フローセル51を挟んで照射レンズ系53に対向するように、ビームストッパ54aが設けられており、ビームストッパ54aは、半導体レーザ光源52からの直接光を遮光するように構成されている。
 また、ビームストッパ54aのさらに光軸下流側には、フォトダイオード54が配置されている。フォトダイオード54は、フローセル51を流れる測定試料により生じるレーザ光の散乱光を受光するように構成されている。具体的には、半導体レーザ光源52から直線的に延びた光軸に沿って進行する光のうち、半導体レーザ光源52の直接光はビームストッパ54aによって遮断されるので、フォトダイオード54は、概ね光軸方向に沿って進行する散乱光(以下、前方散乱光という)のみを受光するように構成されている。また、フォトダイオード54は、フローセル51から発せられた前方散乱光を光電変換し、これによって生じた電気信号(以下、前方散乱光信号という)をアンプ54bに伝達するように構成されている。そして、アンプ54bは、伝達された前方散乱光信号を増幅し、制御部8に出力するように構成されている。
 また、フローセル51の側方であって、半導体レーザ光源52からフォトダイオード54へ直線的に延びる光軸に対して直交する方向には、側方集光レンズ55が配置されており、この側方集光レンズ55は、フローセル51内を通過する血球にレーザ光を照射したときに発生する側方光(前記光軸に対して交差する方向へ出射される光)を集光するように構成されている。側方集光レンズ55の下流側にはダイクロイックミラー56が設けられており、ダイクロイックミラー56は、側方集光レンズ55から送られる信号光を散乱光成分と蛍光成分とに分けるように構成されている。ダイクロイックミラー56の側方(側方集光レンズ55とダイクロイックミラー56とを結ぶ光軸方向に交差する方向)には、側方散乱光受光用のフォトダイオード57が設けられており、ダイクロイックミラー56の光軸下流側には、光学フィルタ58aおよびアバランシェフォトダイオード58が設けられている。また、フォトダイオード57は、ダイクロイックミラー56で分けられた側方散乱光成分を光電変換し、これによって生じた電気信号(以下、側方散乱光信号という)をアンプ57aに伝達するように構成されている。そして、アンプ57aは、伝達された側方散乱光信号を増幅し、制御部8に出力するように構成されている。
 また、アバランシェフォトダイオード58は、光学フィルタ58aにより波長選択された後の側方蛍光成分を光電変換し、これによって生じた電気信号(側方蛍光信号)をアンプ58bに伝達するように構成されている。そして、アンプ58bは、伝達された側方蛍光信号を増幅し、制御部8に出力するように構成されている。
 DC測定部6は、シースフローDC検出法により、赤血球数(RBC)および血小板数(PLT)を測定することが可能なように構成されている。また、DC測定部6は、赤血球パルス波高値検出法により、ヘマトクリット値(HCT)を算出するための測定データも得ることが可能に構成されている。さらに、DC測定部6は、リンパ球比率を算出するための白血球数(WBC)検出にも用いられる。また、DC測定部6は、フローセルを有しており、このフローセルにチャンバ22から測定試料が移送されるようになっている。たとえば、赤血球数および血小板数の測定を行う場合には、図8に示すように、チャンバ22において血液試料と希釈液とが混合調製された測定試料が、シース液(希釈液)とともに試料供給部4からフローセルに移送される。そして、フローセル内では、測定試料がシース液(希釈液)によって取り囲まれた状態の液流が形成される。
 HGB測定部7は、メトヘモグロビン法により、血色素量(HGB)を測定するように構成されている。HGB測定部7は、図9に示すように、希釈試料を収容するセルを有しており、このセルにチャンバ22から測定試料が移送されるようになっている。そして、HGB測定部7は、波長が約555nmの光を照射する発光ダイオードを有しており、上記セル中の測定試料に発光ダイオードからの光を照射することによって、その吸光度を測定するように構成されている。なお、ヘモグロビンの測定を行う場合には、チャンバ22において、血液試料、希釈液および溶血剤100が混合され測定試料が調製される。
 制御部8は、CPU、ROM、RAMなどから構成されており、測定ユニット2の各部の動作制御を行うように構成されている。
 通信部9は、たとえば、RS-232Cインタフェース、USBインタフェース、Ethernet(登録商標)インタフェースであり、データ処理ユニット3との間でデータの送受信を行うことが可能なように構成されている。
 データ処理ユニット3は、図2に示すように、CPU31、ROM32、RAM33、ハードディスク34、通信インタフェース35、キーボードおよびマウスなどの入力部36、およびディスプレイ装置37を備えるコンピュータによって構成されている。データ処理ユニット3のハードディスク34には、オペレーティングシステムと、測定ユニット2から受信した測定データを分析処理するためのアプリケーションプログラムがインストールされている。
 ここで、本実施形態では、データ処理ユニット3のCPU31は、このアプリケーションプログラムを実行することにより、測定データを分析処理し、白血球数(WBC)、赤血球数(RBC)、血色素量(HGB)、ヘマトクリット値(HCT)、平均赤血球容積(MCV)、平均赤血球血色素量(MCH)、平均赤血球血色素濃度(MCHC)、血小板数(PLT)を算出するように構成されている。さらに、CPU31は、前方散乱光信号、側方散乱光信号、側方蛍光信号を用いてスキャッタグラムを作成して、白血球を好中球(Neut)、リンパ球、単球(Mono)、好酸球(EO)、好塩基球(BASO)の5つに分類するように構成されている。
 通信インタフェース35は、たとえば、RS-232Cインタフェース、USBインタフェース、Ethernet(登録商標)インタフェースであり、測定ユニット2との間でデータの送受信を行うことが可能に構成されている。
 また、本実施形態における溶血剤100は、図10に示すように、2種類のカチオン性界面活性剤(ラウリルトリメチルアンモニウムクロライド;34.1mM、ステアリルトリメチルアンモニウムクロライド;1.7mM)を含み、かつ、標識物質を含んでいない。また、この溶血剤100は、血液中のヘモグロビンをメトヘモグロビンへと転化する性質を有している。また、溶血剤100は、pHを約5~約7に保つためにリン酸緩衝液を含んでいる。これにより、マラリア原虫を赤血球内部に保持した状態で、後述する蛍光色素が細胞膜を透過できるように、赤血球の細胞膜を部分的に溶解することが可能となる。また、後述するように、各測定に用いられる各測定試料は、それぞれ、溶血剤100の希釈倍率、および、血液試料の希釈倍率が異なっている。このように2種類のカチオン性界面活性剤を用いることによって、組成が異なる2種類以上の溶血剤を用いることなく希釈倍率を変えるだけで、測定試料中の白血球を4つに分類し、かつ、マラリア感染赤血球の検出を行うことが可能である。
 また、本実施形態では、染色液は、図11に示す化学式の構造を有する蛍光色素(たとえば、Invitrogen社のヘキスト34580)と、実質的に赤血球の細胞膜を溶解するノニオン界面活性剤群のうちの1つとを含有している。この蛍光色素は、具体的には、DNA選択的蛍光色素であり、好ましくは、DNA選択的ビスベンズイミド系蛍光色素がよい。なお、DNA選択的蛍光色素とは、RNAよりもDNAを強く染色する蛍光色素であり、DNA選択的ビスベンズイミド系蛍光色素とは、骨格がビスイミド系のものである。このように、DNA選択的蛍光色素を用いることによって、核のない赤血球は染色されず、マラリア原虫のDNAが染色されるので、上記したフローサイトメータにより得られるスキャッタグラム(図17参照)から、容易に、内部にマラリア原虫を有するマラリア感染赤血球とマラリア感染赤血球以外の集団とを分類することが可能である。なお、この蛍光色素は、半導体レーザ光源52aから出射される青紫色レーザ光(波長が約405nm)により励起可能である。
 次に、図12~図17を参照して、本発明の一実施形態による血液分析装置1における試料分析処理について説明する。
 まず、血液分析装置1が起動されると、アプリケーションプログラムなどの初期化が行われた後、ステップS1において、データ処理ユニット3のCPU31により、ユーザからの測定開始指示があったか否かが判断され、指示があるまでこの判断が繰り返される。そして、測定開始指示があった場合には、ステップS2において、データ処理ユニット3から測定ユニット2に測定開始指示信号が送信される。
 そして、ステップS21において、測定ユニット2の制御部8により、測定開始指示信号が受信されたか否かが判断され、受信するまでこの判断が繰り返される。測定ユニット2が測定開始指示信号を受信すると、ステップS22において、ピペット21により、採血管セット部2aにセットされた採血管20から血液試料が吸引される。
 そして、ステップS23において、試料供給部4により、RBC/PLT測定試料(以下、第4測定試料という)が調製される。具体的には、図13に示すように、希釈液容器24から所定量(たとえば、2.0mL)の希釈液、および、ピペット21により採血管20から吸引された所定量(たとえば、6μL)の血液試料がチャンバ22に供給され、攪拌される。これにより、所定量(たとえば、2.0mL)の第4測定試料が調製される。その後、ステップS24において、チャンバ22内の第4測定試料の一部(たとえば、1mL)が、シース液(希釈液)とともにDC測定部6に移送されるとともに、DC測定部6により、第4測定試料のRBCおよびPLT検出が行われる。
 そして、ステップS25において、試料供給部4により、WBC(DC検出用)・HGB測定試料(以下、第3測定試料という)が調製される。具体的には、図13に示すように、所定量(たとえば、1mL)の第4測定試料が残存するチャンバ22に、溶血剤容器25から所定量(たとえば、0.5mL)の溶血剤100が供給され、攪拌される。すなわち、チャンバ22において血液試料と希釈液とが混合された後、溶血剤100が混合されて第3測定試料が調製される。これにより、溶血剤100が3倍に希釈(溶血剤/希釈液=1/2)され、血液試料が500倍に希釈された第3測定試料が調製される。また、これにより、赤血球が溶血されるとともに、ヘモグロビンがメトヘモグロビンへと転化される。その後、ステップS26において、チャンバ22内の第3測定試料がDC測定部6に移送されて、第3測定試料のWBC測定が行われる。また、ステップS27において、第3測定試料がHGB測定部7に移送されて、第3測定試料のHGB検出が行われる。
 そして、ステップS28において、試料供給部4により、WBC(分類用)測定試料(以下、第1測定試料という)が調製される。具体的には、上記した第3測定試料に含まれるのと同じ溶血剤100が25倍に希釈(溶血剤/希釈液=1/24)された所定量(たとえば、1mL)の希釈溶血剤、および、採血管20から吸引された所定量(たとえば、10μL)の血液試料がチャンバ23に供給され、攪拌される。これにより、血液試料が100倍に希釈された第1測定試料が調製される。その後、ステップS29において、チャンバ23内の第1測定試料が、シース液(希釈液)とともにWBC分類測定部5に移送されるとともに、WBC分類測定部5により、第1測定試料のWBC検出が行われる。
 ここで、本実施形態では、ステップS30において、試料供給部4により、マラリア測定試料(以下、第2測定試料という)が調製される。具体的には、上記した第1測定試料に含まれるのと同じ溶血剤100が9倍に希釈(溶血剤/希釈液=1/8)された所定量(たとえば、1mL)の希釈溶血剤に、採血管20から吸引された所定量(たとえば、10μL)の血液試料、および、染色液容器26から所定量(たとえば、10μL)の染色液がチャンバ23に供給され、攪拌される。すなわち、チャンバ23において溶血剤100と希釈液とが混合された状態で、血液試料および染色液が混合される。これにより、溶血剤100は希釈液で希釈された状態で血液試料に混合されるので、血液試料が所望の濃度よりも高い濃度の溶血剤と混合されるのを抑制することが可能である。そして、血液試料が100倍に希釈された第2測定試料が調製される。このように、第2測定試料における溶血剤100の希釈倍率(9倍)を、第1測定試料における溶血剤100の希釈倍率(25倍)よりも小さくすることによって、測定試料中の赤血球を適度に溶血することができるので、精度よくマラリア感染赤血球の検出を行うことが可能となる。また、これにより、溶血剤容器25に収容された共通の溶血剤100を用いて、第1測定試料および第2測定試料の両方を調製することが可能となる。その後、ステップS31において、チャンバ23内の第2測定試料が、シース液(希釈液)とともにWBC分類測定部5に移送されるとともに、WBC分類測定部5により、第2測定試料のマラリア検出が行われる。そして、ステップS32において、各検出部において測定された測定データが、測定ユニット2からデータ処理ユニット3に送信される。
 データ処理ユニット3では、ステップS3において、測定ユニット2が送信した測定データが受信されたか否かが判断され、受信するまでこの判断が繰り返される。そして、測定データを受信すると、ステップS4において、CPU31により、ステップS26で測定されたWBC検出による測定データに基づいて、白血球数(WBC)が算出される。また、ステップS5において、CPU31により、WBC検出による測定データに基づいて、図14に示すように、白血球の粒度分布図が作成され、白血球数(WBC)に対するリンパ球比率が算出される。なお、リンパ球は、粒度分布図において、左から1つ目の山(集団)として現れる。
 次に、ステップS6において、CPU31により、ステップS29で測定されたWBC分類検出による測定データに基づいて、白血球がリンパ球と好塩基球との集団、単球および顆粒球(好中球と好酸球との集団)の3つに分類される。具体的には、CPU31は、前方散乱光信号および側方散乱光信号を用いて、図15に示すように、スキャッタグラムを作成し、このスキャッタグラムから、リンパ球と好塩基球との集団、単球および顆粒球(好中球と好酸球との集団)のそれぞれの白血球数(WBC)に対する比率を算出する。ここで、図22には、実際に被験者から採取した血液試料を、本実施形態における溶血剤(図10参照)を用いて測定し、その結果得られた前方散乱光信号および側方散乱光信号によるスキャッタグラムを示す。図22に示すように、実際の測定結果においても、スキャッタグラム上で、白血球をリンパ球と好塩基球との集団、単球および顆粒球(好中球と好酸球との集団)の3つに分類することが可能であることが分かる。
 そして、ステップS7において、CPU31により、WBC分類検出による測定データに基づいて、白血球が好酸球および好酸球以外の集団の2つに分類される。具体的には、CPU31は、前方散乱光信号および側方蛍光信号を用いて、図16に示すように、スキャッタグラムを作成し、このスキャッタグラムから、白血球数(WBC)に対する好酸球比率を算出する。この側方蛍光信号は、半導体レーザ光源52から出射された青紫色レーザ光(波長が約405nm)により励起された白血球の自家蛍光に基づくものであり、好酸球は、白血球の好酸球以外の集団よりも強い蛍光強度を有している。なお、CPU31は、側方散乱光信号および側方蛍光信号によるスキャッタグラムから、白血球数(WBC)に対する好酸球比率を算出することも可能である。ここで、図23には、実際に被験者から採取した血液試料を、本実施形態における溶血剤(図10参照)を用いて測定し、その結果得られた前方散乱光信号および側方蛍光信号によるスキャッタグラムを示す。図23に示すように、実際の測定結果においても、スキャッタグラム上で、好酸球と好酸球以外の集団とに分類することが可能であることが分かる。
 その後、ステップS8において、CPU31により、ステップS6で算出された顆粒球(好中球と好酸球との集団)比率から、ステップS7で算出された好酸球比率を差し引くことによって、白血球数(WBC)に対する好中球比率が算出される。これにより、白血球がリンパ球と好塩基球との集団、単球、好中球および好酸球の4つに分類される。そして、ステップS9において、CPU31により、リンパ球と好塩基球との集団の比率から、ステップS5で算出されたリンパ球比率を差し引くことによって、白血球数(WBC)に対する好塩基球比率が算出される。これにより、白血球がリンパ球、好塩基球、単球、好中球および好酸球の5つに分類される。
 また、本実施形態では、ステップS10において、CPU31により、ステップS31で測定されたマラリア検出による測定データに基づいて、マラリア感染赤血球がマラリア感染赤血球以外の集団から分類される。具体的には、CPU31は、前方散乱光信号および側方蛍光信号を用いて、図17に示すように、スキャッタグラムを作成し、このスキャッタグラムから、マラリア感染赤血球をマラリア感染赤血球以外の集団から分類する。より具体的には、図17のスキャッタグラムにおいて、マラリアに感染していない赤血球は蛍光強度の小さい領域に現れる一方、マラリア感染赤血球は比較的蛍光強度の大きい領域に現れる。また、白血球は、そのサイズおよびDNA量に起因して、蛍光強度および散乱光強度の両方が大きい領域に現れる。これにより、マラリア感染の有無を判断することが可能となる。
 次に、ステップS11において、CPU31により、ステップS24で測定されたRBC/PLT検出による測定データに基づいて、赤血球数(RBC)、血小板数(PLT)およびヘマトクリット値(HCT)が算出される。
 そして、ステップS12において、CPU31により、ステップS27で測定されたHGB検出による測定データに基づいて、血色素量(HGB)が算出される。すなわち、SLSヘモグロビン法を用いたHGB検出により得られた吸光度に基づいて、ヘモグロビン濃度が算出される。これにより、白血球を5つ(好中球、リンパ球、単球、好酸球および好塩基球)に分類するために用いる測定試料と同じ第3測定試料を用いて、ヘモグロビン濃度を取得可能である。
 その後、ステップS13において、上記のように算出された赤血球数(RBC)、ヘマトクリット値(HCT)および血色素量(HGB)から、CPU31により、平均赤血球容積(MCV)、平均赤血球血色素量(MCH)および平均赤血球血色素濃度(MCHC)が算出される。各値の算出式をそれぞれ以下の式(1)~(3)に示す。
 MCV=(HCT/RBC)×1000・・・・・(1)
 上記式(1)において、MCVは平均赤血球容積(fL)、HCTはヘマトクリット値(%)、RBCは赤血球数(×10/μL)をそれぞれ表す。
 MCH=(HGB/RBC)×1000・・・・・(2)
 上記式(2)において、MCHは平均赤血球血色素量(pg)、HGBは血色素量(g/dL)、RBCは赤血球数(×10/μL)をそれぞれ表す。
 MCHC=(HGB/HCT)×100・・・・・(3)
 上記式(3)において、MCHCは平均赤血球血色素濃度(g/dL)、HGBは血色素量(g/dL)、HCTはヘマトクリット値(%)をそれぞれ表す。
 そして、ステップS14において、上記のように算出された、白血球数(WBC)、赤血球数(RBC)、血色素量(HGB)、ヘマトクリット値(HCT)、平均赤血球容積(MCV)、平均赤血球血色素量(MCH)、平均赤血球血色素濃度(MCHC)、血小板数(PLT)の算出結果がディスプレイ装置37に出力される。さらに、白血球数(WBC)に対する好中球比率、リンパ球比率、単球比率、好酸球比率および好塩基球比率がディスプレイ装置37に出力されるとともに、マラリア検出の結果も出力される。なお、白血球数(WBC)に対する各血球比率に加えて、白血球数(WBC)および各血球比率に基づいて算出された好中球数、リンパ球数、単球数、好酸球数および好塩基球数が出力される。
 その後、ステップS15において、ユーザからのシャットダウン指示の有無が判断され、指示がない場合には、ステップS1に移行される。シャットダウン指示があった場合には、血液分析装置1における試料分析処理のデータ処理ユニット3の動作が終了される。また、測定ユニット2側では、ステップS32で測定データをデータ処理ユニット3に送信した後、ステップS33において、ユーザからのシャットダウン指示があったか否かが判断され、指示がない場合には、ステップS21に移行される。シャットダウン指示があった場合には、血液分析装置1における試料分析処理の測定ユニット2の動作が終了される。
 本実施形態では、上記のように、WBC分類測定部5により血液試料および溶血剤100を含む第1測定試料から生成された側方蛍光信号、前方散乱光信号および側方散乱光信号に基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類し、WBC分類測定部5により血液試料、前記溶血剤100と同じ溶血剤100、および染色剤を含む第2測定試料から生成された側方蛍光信号および前方散乱光信号に基づいて、第2測定試料中の血球をマラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するCPU31を設けることによって、白血球を4つに分類するための溶血剤とマラリア感染赤血球を検出するための溶血剤とを共通化することができるので、白血球分類およびマラリア感染赤血球検出を行うために組成の異なる2種類の試薬(溶血剤)を開発する必要がない。これにより、試薬の開発に起因するユーザへの負担を軽減しながら、測定試料中の白血球を4つに分類し、かつ、マラリア感染赤血球の検出を行うことができる。
 また、本実施形態では、DC測定部6により得られた測定データに基づいて、第3測定試料中の白血球をリンパ球とリンパ球以外の集団とに分類するとともに、この分類結果と上記した白血球の4分類の分類結果とに基づいて、測定試料中の白血球を、少なくとも、リンパ球と、好塩基球と、単球と、好中球と、好酸球との5つに分類するようにCPU31を構成することによって、白血球分類およびマラリア感染赤血球検出を行うための溶血剤と同じ溶血剤100を用いて、白血球をリンパ球とリンパ球以外の集団とに分類することができるので、組成の異なる溶血剤を別途開発することなく、測定試料中の白血球を5つに分類することができる。
 また、本実施形態による血液分析方法では、上記のように、WBC分類測定部5により血液試料および溶血剤100を含む第1測定試料から生成された側方蛍光信号、前方散乱光信号および側方散乱光信号に基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、WBC分類測定部5により血液試料、前記溶血剤100と同じ溶血剤100、および染色剤を含む第2測定試料から生成された側方蛍光信号および前方散乱光信号に基づいて、第2測定試料中の血球をマラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを設けることによって、白血球を4つに分類するための溶血剤とマラリア感染赤血球を検出するための溶血剤とを共通化することができるので、白血球分類およびマラリア感染赤血球検出を行うために組成の異なる2種類の試薬(溶血剤)を開発する必要がない。これにより、試薬の開発に起因するユーザへの負担を軽減しながら、測定試料中の白血球を4つに分類し、かつ、マラリア感染赤血球の検出を行うことができる。
 また、本実施形態による溶血剤を、上記のように、WBC分類測定部5により血液試料および溶血剤100を含む第1測定試料から生成された側方蛍光信号、前方散乱光信号および側方散乱光信号に基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、WBC分類測定部5により血液試料、前記溶血剤100と同じ溶血剤100、および染色剤を含む第2測定試料から生成された側方蛍光信号および前方散乱光信号に基づいて、第2測定試料中の血球をマラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備えた血液分析方法に用いることによって、白血球を4つに分類するための溶血剤とマラリア感染赤血球を検出するための溶血剤とを共通化することができるので、白血球分類およびマラリア感染赤血球検出を行うために組成の異なる2種類の試薬(溶血剤)を開発する必要がない。これにより、試薬の開発に起因するユーザへの負担を軽減しながら、測定試料中の白血球を4つに分類し、かつ、マラリア感染赤血球の検出を行うことができる。
 また、本実施形態による染色剤を、上記のように、WBC分類測定部5により血液試料および溶血剤100を含む第1測定試料から生成された側方蛍光信号、前方散乱光信号および側方散乱光信号に基づいて、第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、WBC分類測定部5により血液試料、前記溶血剤100と同じ溶血剤100、および染色剤を含む第2測定試料から生成された側方蛍光信号および前方散乱光信号に基づいて、第2測定試料中の血球をマラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備えた血液分析方法に用いることによって、白血球を4つに分類するための溶血剤とマラリア感染赤血球を検出するための溶血剤とを共通化することができるので、白血球分類およびマラリア感染赤血球検出を行うために組成の異なる2種類の試薬(溶血剤)を開発する必要がない。これにより、試薬の開発に起因するユーザへの負担を軽減しながら、測定試料中の白血球を4つに分類し、かつ、マラリア感染赤血球の検出を行うことができる。
 (実施例)
 次に、目視により得られたマラリア感染率と、上記実施形態に記載の方法(試薬は、上記実施形態に記載の試薬と同様のものを使用した)に基づいて得られたマラリア感染率との関係を以下の表1に示す。なお、目視による測定と上記実施形態に記載の方法による測定とは、複数の血液試料について、同じ検体について行った。
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、目視により得られたマラリア感染率と、上記実施形態に記載の方法に基づいて得られたマラリア感染率とは略一致しており、上記実施形態に記載の方法によれば、マラリア感染赤血球を精度よく検出できることを確認することができた。
 なお、目視によるマラリア感染率は、以下の式(4)により算出した。
 マラリア感染率(%)=X/Y×100・・・・・(4)
 上記式(4)において、Xは目視によりカウントされた所定数(=Y)の赤血球のうち、マラリアに感染していると決定された赤血球の数、Yは上記所定数をそれぞれ表す。なお、表1において、Yは、サンプル1および2については約10,000、サンプル3については約20,000、サンプル4については約30,000である。
 また、上記実施形態に記載の方法に基づいて得られたマラリア感染率は、以下の式(5)により算出した。
 マラリア感染率(%)=(6)/(7)×100・・・・・(5)
 上記式(5)において、(6)はA×B/C、(7)は同じ血液試料を多項目自動血球分析装置XE-2100(シスメックス株式会社製)で測定して得られた赤血球数をそれぞれ表す。なお、上記(6)のAは図17のマラリア領域内の血球数、Bは同じ血液試料を多項目自動血球分析装置XE-2100で測定して得られた白血球数、Cは図17の白血球領域内の血球数である。
 なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。
 たとえば、上記実施形態では、WBC検出、HGB検出、WBC分類検出およびマラリア検出に共通に用いられる溶血剤を収容する1つの、試薬容器としての溶血剤容器を試料供給部に接続する例を示したが、本発明はこれに限らず、各検出に用いる溶血剤をそれぞれ別々に収容するように4つの溶血剤容器を試料供給部に接続してもよいし、上記4つの検出のうち、いずれかに用いる溶血剤を共通の溶血剤容器に収容し、2つまたは3つの溶血剤容器を試料供給部に接続してもよい。また、5つ以上の溶血剤容器を試料供給部に接続してもよい。この際、各溶血剤容器に収容する溶血剤を、それぞれ予め所定の希釈倍率に希釈しておけば、各検出に用いる測定試料を調製する際に、溶血剤を所望の希釈倍率に希釈するための工程を別途設ける必要がない。
 また、上記実施形態では、溶血剤の一例として、標識物質を含まない溶血剤を示したが、本発明はこれに限らず、溶血剤が標識物質を含んでいてもよい。
 また、上記実施形態では、WBC検出およびHGB検出に、WBC分類検出に用いる溶血剤と同じ溶血剤を用いる例を示したが、本発明はこれに限らず、WBC検出、HGB検出およびWBC分類検出にそれぞれ別々の専用の溶血剤を用いてもよい。
 また、上記実施形態では、試料分析処理において、早いものからRBC/PLT検出、WBC検出、HGB検出、WBC分類検出およびマラリア検出の順序で各検出処理を行う例を示したが、本発明はこれに限らず、試料分析処理において、上記以外の順序で各検出処理を行ってもよい。また、試料分析処理における、白血球分類処理、マラリア分類処理、赤血球数・血小板数算出処理、および、血色素量算出処理の順序も適宜変更可能である。
 また、上記実施形態では、青紫色半導体レーザ素子を有する半導体レーザ光源を設ける例を示したが、本発明はこれに限らず、青色半導体レーザ素子またはアルゴンレーザ素子など、青紫色半導体レーザ素子以外のレーザ素子を有する光源を設けてもよい。
 また、上記実施形態では、第2測定試料における溶血剤を9倍に希釈する構成の例を示したが、本発明はこれに限られない。また、第2測定試料における溶血剤は、9倍以上12倍以下に希釈することが好ましい。
 また、上記実施形態では、溶血剤の一例として、アルキルトリメチルアンモニウム塩であって、アルキル基の炭素数が12以上18以下であるカチオン性界面活性剤(ラウリルトリメチルアンモニウムクロライド;34.1mM、ステアリルトリメチルアンモニウムクロライド;1.7mM)を含む溶血剤を示したが、本発明はこれに限らず、カチオン性界面活性剤(上記実施形態では、ラウリルトリメチルアンモニウムクロライドとステアリルトリメチルアンモニウムクロライドの合計)のWBC(分類用)測定試料における濃度が、0.62mM以上2.15mM以下であれば、上記以外の濃度のカチオン性界面活性剤を含む溶血剤であってもよい。なお、上記実施形態では、溶血剤を25倍希釈して測定試料を調製しているので、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が0.62mMになるときのカチオン性界面活性剤の溶血剤における濃度は15.5mMであり、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が2.15mMになるときのカチオン性界面活性剤の溶血剤における濃度は53.75mMである。また、上記の溶血剤に代えて、アルキル基の炭素数が8以上10以下であるカチオン性界面活性剤を用いれば、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が2.15mM以上であっても測定可能である。
 ここで、本発明の一実施形態による血液分析装置において、溶血剤におけるカチオン性界面活性剤の濃度を変動させた場合の実験結果について説明する。実験では、溶血剤におけるカチオン性界面活性剤の濃度が微量ずつ異なる複数の実験結果を得たが、ここでは、代表して、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が2.15mMである溶血剤を用いた場合、および、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が0.62mMである溶血剤を用いた場合の2つの実験結果について説明する。
 図18および図20に示すように、スキャッタグラム上で、白血球をリンパ球と好塩基球との集団、単球および顆粒球(好中球と好酸球との集団)の3つに分類することが可能である。また、図19および図21に示すように、スキャッタグラム上で、好酸球と好酸球以外の集団とに分類することが可能である。また、これらの分類結果から白血球を、リンパ球と好塩基球との集団、単球、好中球および好酸球の4つに分類することが可能である。したがって、カチオン性界面活性剤のWBC(分類用)測定試料における濃度が0.62mM以上2.15mM以下の範囲においては、白血球を4分類することが可能であると考えられる。

Claims (14)

  1.  血液試料と溶血剤とを含む第1測定試料と、前記血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製する試料調製部と、
     前記第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、前記第2測定試料から、第2蛍光情報と第2散乱光情報とを生成する光情報生成部と、
     前記光情報生成部により生成された前記第1蛍光情報と前記2種類の第1散乱光情報とに基づいて、前記第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに第1分類し、前記光情報生成部により生成された前記第2蛍光情報と前記第2散乱光情報とに基づいて、前記第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類する制御部とを備える、血液分析装置。
  2.  前記試料調製部は、前記血液試料と前記溶血剤とを含む第3測定試料をさらに調製し、
     前記血液分析装置は、前記第3測定試料から、試料の電気情報を生成する電気情報生成部をさらに備え、
     前記制御部は、前記電気情報生成部により生成された電気情報に基づいて、前記第3測定試料中の白血球を少なくともリンパ球とリンパ球以外の集団とに第2分類するとともに、前記第1分類および前記第2分類の分類結果に基づいて、前記測定試料中の白血球を、少なくとも、リンパ球と、好塩基球と、単球と、好中球と、好酸球との5つに分類するように構成されている、請求項1に記載の血液分析装置。
  3.  前記第3測定試料から、試料の透過光情報または散乱光情報の少なくとも一方を生成する第2光情報生成部をさらに備え、
     前記制御部は、前記第2光情報生成部により生成された前記透過光情報または前記散乱光情報の少なくとも一方に基づいて、前記第3測定試料中のヘモグロビン濃度を取得するように構成されている、請求項2に記載の血液分析装置。
  4.  前記第2測定試料における前記溶血剤の希釈倍率は、前記第1測定試料における前記溶血剤の希釈倍率と異なる、請求項1~3のいずれか1項に記載の血液分析装置。
  5.  前記第2測定試料における前記溶血剤の希釈倍率は、前記第1測定試料における前記溶血剤の希釈倍率よりも小さい、請求項4に記載の血液分析装置。
  6.  前記試料調製部は、前記血液試料、所定の試薬容器に収容された前記溶血剤、および、所定量の希釈液を混合することにより前記第1測定試料を調製し、前記血液試料、前記所定の試薬容器に収容された前記溶血剤、および、前記所定量よりも少ない量の前記希釈液を混合することにより前記第2測定試料を調製するように構成されている、請求項1に記載の血液分析装置。
  7.  前記試料調製部は、前記溶血剤と前記希釈液とを混合した状態で、前記血液試料を混合することにより前記第2測定試料を調製するように構成されている、請求項6に記載の血液分析装置。
  8.  前記試料調製部は、少なくとも前記血液試料、および、前記第1測定試料に用いられる前記溶血剤が収容された第1試薬容器とは異なる第2試薬容器に収容された前記溶血剤を混合することにより前記第2測定試料を調製するように構成されている、請求項1に記載の血液分析装置。
  9.  前記第2試薬容器に収容された前記溶血剤は、9倍以上12倍以下に希釈されている、請求項8に記載の血液分析装置。
  10.  前記溶血剤は、2種類のカチオン性界面活性剤を含む、請求項1に記載の血液分析装置。
  11.  前記染色剤は、以下の式で示される蛍光色素と、ノニオン界面活性剤とを含む、請求項1に記載の血液分析装置。
    Figure JPOXMLDOC01-appb-C000001
  12.  血液試料と溶血剤とを含む第1測定試料と、前記血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製するステップと、
     前記第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、前記第2測定試料から、第2蛍光情報と第2散乱光情報とを生成するステップと、
     前記第1測定試料から生成された前記第1蛍光情報と前記2種類の第1散乱光情報とに基づいて、前記第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、
     前記第2測定試料から生成された前記第2蛍光情報と前記第2散乱光情報とに基づいて、前記第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備える、血液分析方法。
  13.  血液試料と溶血剤とを含む第1測定試料と、前記血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製するステップと、前記第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、前記第2測定試料から、第2蛍光情報と第2散乱光情報とを生成するステップと、前記第1測定試料から生成された前記第1蛍光情報と前記2種類の第1散乱光情報とに基づいて、前記第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、前記第2測定試料から生成された前記第2蛍光情報と前記第2散乱光情報とに基づいて、前記第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備える血液分析方法に用いられる前記溶血剤。
  14.  血液試料と溶血剤とを含む第1測定試料と、前記血液試料と前記溶血剤と同じ溶血剤と染色剤とを含む第2測定試料とを調製するステップと、前記第1測定試料から、第1蛍光情報と、少なくとも2種類の第1散乱光情報とを生成するとともに、前記第2測定試料から、第2蛍光情報と第2散乱光情報とを生成するステップと、前記第1測定試料から生成された前記第1蛍光情報と前記2種類の第1散乱光情報とに基づいて、前記第1測定試料中の白血球を、少なくとも、単球と、好中球と、好酸球と、他の集団との4つに分類するステップと、前記第2測定試料から生成された前記第2蛍光情報と前記第2散乱光情報とに基づいて、前記第2測定試料中の血球を、マラリア感染赤血球とマラリア感染赤血球以外の集団とに分類するステップとを備える血液分析方法に用いられる前記染色剤。
PCT/JP2009/058327 2008-05-09 2009-04-28 血液分析装置、血液分析方法、溶血剤および染色剤 WO2009136573A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980116617.7A CN102016573B (zh) 2008-05-09 2009-04-28 血液分析装置,血液分析方法,溶血剂及染色剂
JP2010511054A JP5619604B2 (ja) 2008-05-09 2009-04-28 血液分析装置、血液分析方法、溶血剤および染色剤
EP09742697.7A EP2293062B1 (en) 2008-05-09 2009-04-28 Blood analyzer, blood analysis method, hemolytic agent and staining agent
US12/942,752 US8920726B2 (en) 2008-05-09 2010-11-09 Blood analyzer, blood analysis method, hemolytic agent and staining agent
US14/530,973 US9328375B2 (en) 2008-05-09 2014-11-03 Blood analyzer, blood analysis method, hemolytic agent and staining agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-123403 2008-05-09
JP2008123403 2008-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/942,752 Continuation US8920726B2 (en) 2008-05-09 2010-11-09 Blood analyzer, blood analysis method, hemolytic agent and staining agent

Publications (1)

Publication Number Publication Date
WO2009136573A1 true WO2009136573A1 (ja) 2009-11-12

Family

ID=41264628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058327 WO2009136573A1 (ja) 2008-05-09 2009-04-28 血液分析装置、血液分析方法、溶血剤および染色剤

Country Status (5)

Country Link
US (2) US8920726B2 (ja)
EP (2) EP2293062B1 (ja)
JP (1) JP5619604B2 (ja)
CN (2) CN104297463A (ja)
WO (1) WO2009136573A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186463A (ja) * 2015-03-27 2016-10-27 シスメックス株式会社 血液分析装置および血液分析方法
JP2017049077A (ja) * 2015-08-31 2017-03-09 シスメックス株式会社 血液分析方法ならびにそれに用いる染色液および血液分析装置
JP2018091792A (ja) * 2016-12-06 2018-06-14 シスメックス株式会社 マラリア原虫に感染した赤血球の検出方法及び血液分析装置
US10073080B2 (en) 2013-07-23 2018-09-11 Sysmex Corporation Sample analyzing apparatus, disease monitoring system, and method for managing multiple disease determination data in a sample analyzing apparatus
US10107754B2 (en) 2015-08-31 2018-10-23 Sysmex Corporation Blood analyzer and blood analyzing method
JP7425597B2 (ja) 2019-12-25 2024-01-31 シスメックス株式会社 血液分析方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494653A (en) * 2011-09-13 2013-03-20 Orreco Ltd Apparatus for blood analysis
CN103091286B (zh) * 2011-10-31 2016-08-17 深圳迈瑞生物医疗电子股份有限公司 疟原虫感染的红细胞的识别方法及装置
SE537208C2 (sv) 2012-12-03 2015-03-03 Tommy Forsell Blodanalysapparat för malariaanalys
BR112015015400A2 (pt) 2012-12-31 2017-07-11 Beckman Coulter Inc métodos e sistemas de enumeração de plaquetas imaturas
JP6383216B2 (ja) * 2014-08-08 2018-08-29 シスメックス株式会社 血液分析方法、血液分析装置およびプログラム
WO2016043683A1 (en) * 2014-09-18 2016-03-24 Ciftci Ihsan Hakki A blood count device
JP6352750B2 (ja) 2014-09-26 2018-07-04 シスメックス株式会社 血液分析装置および血液分析方法
WO2016130962A1 (en) 2015-02-13 2016-08-18 Abbott Laboratories Automated storage modules for diagnostic analyzer liquids and related systems and methods
CN107407650B (zh) * 2015-03-31 2020-09-11 索尼公司 电特性测量装置、电特性测量方法、血液状况分析系统以及用于计算机化该方法的电特性测量程序
US11248994B2 (en) * 2018-08-16 2022-02-15 Essenlix Corporation Optical adapter with a card slot for imaging a thin sample layer
CN114174826A (zh) * 2019-09-19 2022-03-11 深圳迈瑞动物医疗科技有限公司 一种动物血液细胞分析方法、分析仪及存储介质
CN110579613A (zh) * 2019-10-28 2019-12-17 深圳开立生物医疗科技股份有限公司 一种血液分析仪
WO2021179177A1 (zh) * 2020-03-10 2021-09-16 深圳迈瑞生物医疗电子股份有限公司 血液分析仪、血液分析方法和计算机可读存储介质
CN111521834B (zh) * 2020-03-20 2023-03-24 佛山市顺德区德维医疗科技有限公司 Xn系列全自动模块式血液体液分析仪用试剂
JP2021167795A (ja) * 2020-04-13 2021-10-21 国立大学法人大阪大学 血液分析装置
CN113959911B (zh) * 2020-07-20 2024-06-18 深圳迈瑞生物医疗电子股份有限公司 抗血小板聚集干扰的检测方法、试剂及其应用
EP4222479A1 (en) 2020-09-29 2023-08-09 Universidade do Minho Automatic device for non-invasive malaria diagnosis through optical reflectance techniques, methods and uses thereof
EP4257974A4 (en) 2020-12-01 2024-01-10 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. SAMPLE ANALYSIS METHOD, SAMPLE ANALYSIS DEVICE AND COMPUTER-READABLE STORAGE MEDIUM
CN118185751A (zh) * 2024-04-07 2024-06-14 重庆大学 一种白细胞分类检测系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322882A (ja) * 1992-05-21 1993-12-07 Hitachi Ltd 血液分析装置
JP2000346839A (ja) * 1999-04-28 2000-12-15 Coulter Internatl Corp 白血球亜群の好塩基球と好酸球とを分別するための組成物及び方法
JP2005333868A (ja) * 2004-05-26 2005-12-08 Sysmex Corp マラリア原虫測定方法及び測定装置
JP2006292738A (ja) 2005-03-17 2006-10-26 Sysmex Corp 試料分析装置、試料分析方法、及び血液分析装置
JP2006304774A (ja) 2005-03-29 2006-11-09 Sysmex Corp マラリア感染赤血球の検出方法並びにこれに使用する検出用試薬及び赤血球膜部分溶解試薬
JP2006313151A (ja) * 2005-04-07 2006-11-16 Sysmex Corp 血液分析装置、試料分析装置及びフローサイトメータ
JP2007024844A (ja) * 2005-07-21 2007-02-01 Sysmex Corp 血液分析方法及び血液分析装置
JP2007078508A (ja) * 2005-09-14 2007-03-29 Sysmex Corp 分析装置及び検体情報処理プログラム
JP2007139438A (ja) * 2005-11-15 2007-06-07 Sysmex Corp 血液分析装置
JP2007525674A (ja) * 2004-02-27 2007-09-06 ベックマン コールター,インコーポレイティド マラリア原虫その他の寄生虫の感染を検出する方法
WO2007129485A1 (ja) * 2006-04-21 2007-11-15 Nihon Kohden Corporation 粒子分類方法および装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830613B2 (ja) 1997-04-18 2006-10-04 シスメックス株式会社 血液中の白血球及びヘモグロビン濃度測定試薬
EP1406088A3 (en) * 2002-10-04 2004-04-14 Sysmex Corporation Reagent kits and methods for detecting malaria parasites by two-steps surfactant-mediated hemolysis
JP4388779B2 (ja) * 2002-10-04 2009-12-24 シスメックス株式会社 マラリア原虫の検出方法、検出装置、およびその試薬キット
US9243993B2 (en) 2005-03-17 2016-01-26 Sysmex Corporation Sample analyzer and sample analyzing method
CN1834659A (zh) * 2005-03-17 2006-09-20 希森美康株式会社 试料分析装置和试料分析方法以及血液分析装置
EP1715345B1 (en) * 2005-03-29 2013-12-04 Sysmex Corporation A reagent for partially lysing a cell membrane of a red blood cell, a reagent for detecting malaria infected red blood cells, and a sample analyzing method for detecting malaria infected red blood cells
JP5431732B2 (ja) * 2005-12-29 2014-03-05 ハネウェル・インターナショナル・インコーポレーテッド マイクロ流体フォーマットにおけるアッセイ実装

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322882A (ja) * 1992-05-21 1993-12-07 Hitachi Ltd 血液分析装置
JP2000346839A (ja) * 1999-04-28 2000-12-15 Coulter Internatl Corp 白血球亜群の好塩基球と好酸球とを分別するための組成物及び方法
JP2007525674A (ja) * 2004-02-27 2007-09-06 ベックマン コールター,インコーポレイティド マラリア原虫その他の寄生虫の感染を検出する方法
JP2005333868A (ja) * 2004-05-26 2005-12-08 Sysmex Corp マラリア原虫測定方法及び測定装置
JP2006292738A (ja) 2005-03-17 2006-10-26 Sysmex Corp 試料分析装置、試料分析方法、及び血液分析装置
JP2006304774A (ja) 2005-03-29 2006-11-09 Sysmex Corp マラリア感染赤血球の検出方法並びにこれに使用する検出用試薬及び赤血球膜部分溶解試薬
JP2006313151A (ja) * 2005-04-07 2006-11-16 Sysmex Corp 血液分析装置、試料分析装置及びフローサイトメータ
JP2007024844A (ja) * 2005-07-21 2007-02-01 Sysmex Corp 血液分析方法及び血液分析装置
JP2007078508A (ja) * 2005-09-14 2007-03-29 Sysmex Corp 分析装置及び検体情報処理プログラム
JP2007139438A (ja) * 2005-11-15 2007-06-07 Sysmex Corp 血液分析装置
WO2007129485A1 (ja) * 2006-04-21 2007-11-15 Nihon Kohden Corporation 粒子分類方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293062A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073080B2 (en) 2013-07-23 2018-09-11 Sysmex Corporation Sample analyzing apparatus, disease monitoring system, and method for managing multiple disease determination data in a sample analyzing apparatus
JP2016186463A (ja) * 2015-03-27 2016-10-27 シスメックス株式会社 血液分析装置および血液分析方法
US10379120B2 (en) 2015-03-27 2019-08-13 Sysmex Corporation Blood analyzer and blood analysis method
JP2017049077A (ja) * 2015-08-31 2017-03-09 シスメックス株式会社 血液分析方法ならびにそれに用いる染色液および血液分析装置
US10107754B2 (en) 2015-08-31 2018-10-23 Sysmex Corporation Blood analyzer and blood analyzing method
JP2018091792A (ja) * 2016-12-06 2018-06-14 シスメックス株式会社 マラリア原虫に感染した赤血球の検出方法及び血液分析装置
JP7425597B2 (ja) 2019-12-25 2024-01-31 シスメックス株式会社 血液分析方法

Also Published As

Publication number Publication date
US20110053212A1 (en) 2011-03-03
US20150050643A1 (en) 2015-02-19
EP2889620A1 (en) 2015-07-01
JPWO2009136573A1 (ja) 2011-09-08
CN102016573A (zh) 2011-04-13
EP2293062A4 (en) 2011-05-25
CN104297463A (zh) 2015-01-21
EP2293062A1 (en) 2011-03-09
JP5619604B2 (ja) 2014-11-05
US8920726B2 (en) 2014-12-30
CN102016573B (zh) 2014-11-12
EP2889620B1 (en) 2017-10-11
US9328375B2 (en) 2016-05-03
EP2293062B1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5619604B2 (ja) 血液分析装置、血液分析方法、溶血剤および染色剤
JP5721874B2 (ja) 血液分析装置
JP4745030B2 (ja) 血液分析装置
JP4468590B2 (ja) 全血液サンプルにおけるセル分析方法および装置
US20070020721A1 (en) Blood analyzing method and blood analyzer
JP2006313151A (ja) 血液分析装置、試料分析装置及びフローサイトメータ
JP2016070658A (ja) 血液分析装置および血液分析方法
WO2011140042A1 (en) Method for hematology analysis
CN114450589A (zh) 分析血液样本中红细胞方法及血液分析系统
JP4509607B2 (ja) 細胞分析装置および方法
JP5441466B2 (ja) 動物用血球測定装置
JP6621620B2 (ja) 血液分析方法ならびにそれに用いる染色液および血液分析装置
JP7425597B2 (ja) 血液分析方法
JP2016070659A (ja) 血液分析装置および血液分析方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116617.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511054

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4184/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009742697

Country of ref document: EP