WO2009134015A2 - 금속 나노분말을 포함하는 액상물질 제조장치 - Google Patents
금속 나노분말을 포함하는 액상물질 제조장치 Download PDFInfo
- Publication number
- WO2009134015A2 WO2009134015A2 PCT/KR2009/001692 KR2009001692W WO2009134015A2 WO 2009134015 A2 WO2009134015 A2 WO 2009134015A2 KR 2009001692 W KR2009001692 W KR 2009001692W WO 2009134015 A2 WO2009134015 A2 WO 2009134015A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- gas
- chamber
- storage tank
- injection
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/14—Making metallic powder or suspensions thereof using physical processes using electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to an apparatus for producing a liquid material including metal nanopowders, and more particularly, to shorten the time required for condensation after evaporation of a wire by electric explosion, so as to have metal particles of finer size.
- the present invention relates to a liquid manufacturing apparatus including a metal nanopowder capable of preparing a liquid material including a metal nanopowder without a separate operation and maintaining a life of an electrode for a long time.
- Metal nanopowders which are in the spotlight recently, have extremely fine particle sizes, and are widely used in various fields due to unique characteristics not obtained from existing materials.
- metal nanopowder manufacturing apparatuses using electric explosion by pulse current have been widely used.
- the metal nano powder manufacturing apparatus using the electric explosion by the pulse current is a metal nano powder manufacturing apparatus using the electric explosion by the pulse current in the air and the metal nano powder manufacturing apparatus by the electric explosion in the liquid Divided.
- Metal nanopowder manufacturing apparatus using electric explosion by pulse current in the air is applied to the metal wire instantaneously by applying a pulse current to the metal wire inside the chamber filled with an inert gas so that the electric explosion occurs in the process of condensing the wire after evaporation A fine particle size metal powder is obtained.
- the metal nanopowder manufacturing apparatus using the electrical explosion by the pulse current in the group was able to easily manufacture the metal nanopowder within a short time, but after the wire evaporated by the electrical explosion over a relatively long time Since the condensation is made in contact with the gas filled in the chamber, each particle is condensed by contacting with other particles in the periphery, thereby degrading the quality of the metal nanopowder manufactured due to the growth of the particles.
- Metal nanopowder manufacturing apparatus by electroexplosion in liquid is proposed to solve the above problems of the metal nanopowder manufacturing apparatus using electroexplosion by pulse current in air. This is to shorten the condensation time after the wire evaporation.
- Metal nanopowder manufacturing apparatus by electroexplosion in liquid is an electroexplosion in the liquid filled in the chamber, and is cooled by the liquid surrounding the surroundings in a state where the wire is evaporated and scattered by the electric explosion. This was achieved so that condensation could occur in a relatively short time.
- the apparatus for manufacturing metal nanopowders by electric explosion in liquid has a boundary surface formed in the liquid at the moment when the wire is evaporated by the electrical explosion, so that particles scattered by the evaporation are formed in the liquid boundary.
- the quality of the manufactured metal nanopowder is degraded, and more energy is required for the evaporation of the wire in the liquid than in a gas-filled state inside the chamber. There was a problem.
- the metal nano-powder manufacturing apparatus by the electric explosion in the air and liquid will be an electrical explosion when the wire is in contact with the electrode installed in the chamber
- the conventional metal nano-powder manufacturing apparatus by the electric explosion in the air and liquid the electrode is fixed Since the wire is always installed in contact with the same part and the electric explosion is made, if the electric explosion lasts for a long time, there is a problem that the electrode itself must be replaced after a certain period of time due to damage to the wire contact portion of the electrode.
- the present invention has been made in view of the above situation, it is possible to shorten the time required for condensation after the evaporation of the wire by the electric explosion to have a metal particle of a finer size, without additional work metal nano It is an object of the present invention to provide a liquid material manufacturing apparatus including a metal nano powder to enable the production of a liquid material containing powder, and to maintain the life of the electrode for a long time.
- Liquid material manufacturing apparatus comprising a metal nano powder according to the present invention for achieving the above object
- Nozzles are provided radially for the injection of the gas and discharge of the gas and injection of the liquid around the upper end, and a spiral inner wall through which the liquid injected through the liquid injection nozzle flows is provided on the inner circumference, and the liquid is collected on the bottom surface.
- a liquid supply pipe for supplying the liquid stored in the liquid reservoir to the liquid injection nozzle of the chamber is provided from the lower side of the liquid reservoir to the liquid injection nozzle of the chamber, and is connected to the collection port of the chamber from the upper center of the liquid reservoir.
- a liquid inlet pipe is provided to allow the liquid collected inside the chamber to flow into the liquid reservoir, and the gas flowing from the upper side of the liquid reservoir to the gas discharge nozzle of the chamber allows the gas discharged from the gas discharge nozzle to flow into the liquid reservoir.
- Inlet pipe is provided, the mesh filter for removing the foreign matter contained in the liquid collected from the chamber in the middle of the liquid reservoir is provided, the liquid processing line is provided with a liquid outlet for discharging the liquid stored in the lower side of the liquid reservoir to the outside and;
- It is characterized in that it comprises a gas processing line provided with a gas supply pipe leading from the upper end of the gas storage tank to the gas injection nozzle of the chamber to supply the gas stored in the gas reservoir to the gas injection nozzle of the chamber.
- Liquid material manufacturing apparatus comprising a metal nano-powder according to the present invention is that the wire is in contact with the liquid flowing through the inner wall of the chamber in a state where the wire is evaporated and scattered by the electric explosion, the cooling by the liquid is made to condensation after evaporation Since the time required can be shortened, not only the metal particles can have a finer size, but also liquid materials containing the metal nanopowders can be manufactured without a separate process of mixing the metal nanopowders into the liquid.
- the electrode is rotated by the motor driving during the electric explosion process, so that the electrode is in contact with the wire is not deflected on one side to prevent damage to the electrode, thereby maintaining the electrode for a long time. .
- FIG. 1 is an overall schematic view of a liquid material manufacturing apparatus including a metal nano powder according to the present invention
- Figure 2 is a front cross-sectional view for explaining the internal structure of the chamber in a liquid material manufacturing apparatus comprising a metal nano powder according to the present invention
- Figure 3 is a cross-sectional view for explaining the installation structure of the nozzle provided in the chamber in a liquid material manufacturing apparatus comprising a metal nano powder according to the present invention
- Figure 4 is an operating state of the electrode provided in the chamber in the liquid material manufacturing apparatus comprising a metal nano powder according to the present invention
- FIG. 5 is a cross-sectional view for explaining the structure of a liquid processing line in a liquid material manufacturing apparatus including a metal nano powder according to the present invention.
- Figure 6 is a cross-sectional view for explaining the structure of the gas treatment line in a liquid material manufacturing apparatus comprising a metal nano powder according to the present invention
- Figure 7 is an exemplary view for explaining the particle condensation after the electric explosion in the liquid material production apparatus comprising a metal nanopowder according to the present invention
- liquid injection nozzle 12 inner wall
- liquid storage tank 21a on-off valve
- FIG. 1 is an overall schematic view of a liquid material manufacturing apparatus including a metal nanopowder according to the present invention
- Figure 2 is a front sectional view for explaining the internal structure of the chamber in the liquid material manufacturing apparatus including a metal nanopowder according to the present invention
- 3 is a plan sectional view for explaining an installation structure of a nozzle provided in a chamber in a liquid material manufacturing apparatus including a metal nanopowder according to the present invention
- FIG. 4 is a liquid containing a metal nanopowder according to the present invention.
- 5 is a cross-sectional view illustrating a structure of a liquid processing line in a liquid material manufacturing apparatus including a metal nanopowder according to the present invention
- Figure 7 is a metal b according to the present invention Exemplary diagram for explaining particle condensation after an electric explosion in a liquid material manufacturing apparatus including a furnace powder
- the liquid material manufacturing apparatus A including the metal nanopowder according to the present invention includes a chamber 10, a liquid treatment line 20, and a gas treatment line 30.
- the chamber 10 is an electrical explosion of the metal wire therein,
- a nozzle 11 for injection of gas and discharge of gas and injection of liquid around the upper end is provided radially, and a spiral inner wall 12 through which liquid flows around the inner side is provided.
- a collecting port 13 for collecting the liquid is provided on one side of the bottom surface, and electrodes 14 and 14 'which are rotated by driving the motors 15 and 15' are provided on the upper and lower parts of the inner side.
- the nozzle 11 is provided radially, as shown in FIG. 3, the nozzle 11 such that the tip can be adjacent to the inner wall 12 of the chamber 10 so that the injection, in particular, After the liquid is injected, it is preferable to allow the inner wall 12 of the chamber 10 to flow down, and the electrodes 14 and 14 'are rotated as shown in FIG. 4.
- the upper gears 14b and 14b ' can be engaged with the gears 15b and 15b' on the central axes 15a and 15a 'of the motors 15 and 15' and rotated by driving the motors 15 and 15 '. It is desirable to allow this to be done.
- the nozzle 11 of the chamber 10 is composed of at least one or more gas injection nozzles 11a, at least one or more gas discharge nozzles 11b, and at least one or more liquid injection nozzles 11c.
- the number and positions of the gas injection nozzles 11a, the gas discharge nozzles 11b, and the liquid injection nozzles 11c may be flexible depending on the amount of the gas discharge and the liquid injection amount.
- the supply of the metal wire 40 into the chamber 10 is made through the wire feeder 50 provided in the upper chamber 10, the electrical explosion of the metal wire 40 supplied into the chamber 10 Is performed by the power supply device 60 supplying the pulse current and the trigger 70 temporarily emitting the pulse current from the power supply device 60.
- the supply of the wire 40 through the wire supplier 50 and the electric explosion of the wire 40 by the power supply device 60 and the trigger 70 are generalized in the art, so detailed description thereof will be omitted.
- the liquid processing line 20 is for continuously supplying liquid into the chamber 10 and storing liquid collected from the chamber 10.
- the liquid stored in the liquid reservoir 21 is transferred from the lower side of the liquid reservoir 21 to the liquid injection nozzle 11c of the chamber 10 through the operation of the pump 22a to the chamber 10.
- the liquid supply pipe 22 for supplying the liquid injection nozzle (11c) of the (1) is provided, the liquid collected in the chamber 10 from the center of the upper end of the liquid reservoir 21 to the collecting port 13 of the chamber 10 Is provided with a liquid inlet pipe 23 through which the liquid flows into the liquid reservoir 21, and is connected to the gas discharge nozzle 11b of the chamber 10 from one side of the upper end of the liquid reservoir 21 from the gas discharge nozzle 11b.
- a gas inlet pipe 24 is provided to allow the discharged gas to flow into the liquid reservoir 21, and a mesh filter for removing foreign substances contained in the liquid collected from the chamber 10 in the middle of the liquid reservoir 21. (25) is provided, the bottom of the liquid reservoir (21) The liquid discharge port 26 for discharging the liquid stored on one side to the outside is provided.
- the liquid storage tank 21 has an on / off valve 21a for controlling the liquid supply to the liquid supply pipe 22, a gauge 27 for checking the pressure inside, and an internal pressure. It is preferable that a safety valve 28 for adjustment and a cooler 29 for adjusting the temperature of the liquid stored therein are provided, and the mesh filter 25 is 300 mesh / inch or more stainless steel for improving foreign matter filtering effect and securing durability.
- the product is made of steel, and the liquid discharge port 26 of the liquid storage tank 21 is preferably provided with an on-off valve 26a for controlling the discharge of the liquid.
- the check and control of the pressure inside the reservoir through the gauge and the safety valve is a generalized technique in the relevant field, so a detailed description thereof will be omitted, and it is also possible to cool an object stored in the reservoir through the cooler. Detailed description is omitted since it is a generalized technology.
- the liquid stored in the liquid storage tank 21 in the liquid processing line 20 may be oils or alcohols
- the liquid injected into the chamber 10 from the liquid storage tank 21 through the liquid supply pipe 22 may be It is forcedly injected by the operation of the pump 22a, and the liquid flowing into the liquid reservoir 21 from the chamber 10 through the liquid inlet pipe 23 is naturally introduced as the pressure inside the chamber 10 increases.
- the gas treatment line 30 is for supplying gas into the chamber 10,
- the gas storage nozzle 11a is connected to the gas injection nozzle 11a of the chamber 10 from one side of the upper end of the gas storage tank 31 to transfer the gas stored in the gas storage tank 31 to the gas injection nozzle 11a of the chamber 10.
- Gas supply pipe 32 for supplying is provided.
- the gas storage tank 31 is preferably provided with an on-off valve 31a for controlling the gas supply to the gas supply pipe 32, the chamber 10 on the gas supply pipe (32).
- an on-off valve 31a for controlling the gas supply to the gas supply pipe 32, the chamber 10 on the gas supply pipe (32).
- a burr 33 for sucking gas pre-filled inside the chamber 10 and a regulator 34 for maintaining the gas discharge degree at a constant pressure.
- the inhalation of the gas through the vacuum 33 is a general technique in the related art, and thus a detailed description thereof will be omitted, and the control of the gas discharge through the regulator 34 is also generalized in the art. Detailed description thereof will be omitted.
- the gas stored in the gas storage tank 31 in the gas treatment line 30 may be any one of argon or nitrogen or oxygen or carbon.
- the chamber 10 Prior to preparing the liquid material including the metal nanopowder, the chamber 10 should be maintained in a state where gas and liquid are injected.
- Gas injection into the chamber 10 opens the on / off valve 31a provided in the gas storage tank 31 of the gas treatment line 30 so that the gas stored in the gas storage tank 31 passes through the gas supply pipe 32. It is made by the injection through the gas injection nozzle (11a) of (10).
- the gas injection is made without a separate device by the filling pressure of the gas storage tank 31, the chamber through the gas discharge nozzle (11b) provided in the chamber 10 in the state that the gas is excessively filled in the chamber 10 (10)
- the gas inside is discharged to the outside of the chamber 10 and is discharged to the liquid storage tank 21 via the gas inlet pipe 24.
- the liquid injection into the chamber 10 opens the on / off valve 21a provided in the liquid storage tank 21 of the liquid processing line 20 so that the liquid stored in the liquid storage tank 21 passes through the liquid supply pipe 22. It is made by causing the injection through the liquid injection nozzle (11c) of (10).
- the liquid injection into the chamber 10 is performed by the operation of the pump 22a provided in the liquid supply pipe 22 leading to the liquid injection nozzle 11c, and the liquid supplied by the operation of the pump 22a is a liquid. It is injected through the injection nozzle (11c) to be injected into the chamber 10, the liquid injected into the chamber 10 flows down the spiral inner wall 12 inside the chamber (10).
- the electric explosion of the wire 40 is made by allowing a pulse current to pass instantaneously while the wire 40 is in contact with the upper and lower electrodes 14 and 14 ′ in the chamber 10. Is by the power supply 60, and the instantaneous release of the pulsed current is by trigger 70 operation.
- the liquid containing the condensed particles flows through the inner wall 12 of the chamber 10 and reaches the bottom surface of the chamber 10.
- the collecting port 13 is provided at the bottom surface of the chamber 10 to condense.
- the liquid containing the particles are discharged to the outside of the chamber 10 through the collecting port 13 to reach the liquid storage tank 21 via the liquid inlet tube 24.
- the liquid injection from the liquid reservoir 21 to the chamber 10 and the discharge of the liquid from the chamber 10 to the liquid reservoir 21, which are made in the above process, are performed by circulation until the concentration of the particles contained in the liquid reaches a predetermined level.
- the liquid phase including the metal nanopowder having a fine particle size by opening and closing the valve 26a of the liquid discharge port 26 provided in the liquid storage tank 21. It will be possible to prepare the material simply.
- the gas injected into the chamber 10 is argon, it is possible to manufacture a liquid material including metal nanopowders made of pure metal, and the gas injected into the chamber is made of nitrogen, carbon, or oxygen. In this case, it is possible to prepare a liquid material including metal nanopowders of nitride or carbide or oxide.
- the liquid material manufacturing apparatus (A) comprising the metal nanopowder according to the present invention can not only prepare a liquid material containing the metal nanopowder, but also can manufacture the metal nanopowder itself.
- Production of the metal nanopowder itself through the liquid material manufacturing apparatus A including the metal nanopowder according to the present invention is made simply by blocking the liquid supply into the chamber 10.
- shutt off of the liquid supply into the chamber 10 opens the opening / closing valve 21a of the liquid reservoir 21 which controls the liquid supply from the liquid reservoir 21 to the liquid supply pipe 22 in the liquid treatment line 20. It is made by blocking, which is made through the operation of the on-off valve 21a.
- the liquid material manufacturing apparatus (A) including the metal nanopowder according to the present invention is capable of long-term use of the electrodes 14 and 14 'when manufacturing the liquid material or the metal nanopowder including the metal nanopowder.
- the electrodes 14 and 14 ' are rotated by driving the motors 15 and 15', and the wire 40 and the electrode 14 are rotated.
- , 14 ') is not limited to one point, so even if the electrical explosion of the wire 40 is repeated continuously, it is possible to prevent a certain portion of the electrodes 14 and 14' from being heated and damaged to prevent damage to the electrode 14. , 14 ') can be used for a long time.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Colloid Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
본 발명은 전기폭발에 의한 와이어의 증발 이후 응축에 소요되는 시간을 단축할 수 있어 더욱 미세한 크기의 금속 입자를 가질 수 있도록 하고, 별도의 작업 없이 금속 나노분말이 포함된 액상물질을 제조할 수 있도록 하며, 전극의 수명을 장기간 유지할 수 있도록 하는 금속 나노분말을 포함하는 액상물질 제조장치에 관한 것이다. 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)는, 와이어공급기로부터 공급되는 금속 와이어에 펄스전류를 가하여 전기폭발이 이루어지도록 하는 것이되, 기체의 주입과 기체의 배출과 액체의 주입을 위한 노즐(11)이 방사상으로 마련되며, 내측의 둘레에 액체가 타고 흐르는 나선형 내벽(12)이 마련되고, 바닥면에 액체의 포집을 위한 포집구(13)가 마련되며, 내측의 상하부에 모터(15, 15') 구동에 의해 회전되는 전극(14, 14')이 마련된 챔버(10)와; 액체저장조(21) 내부에 저장된 액체를 상기 챔버(10)의 액체주입노즐(11c)로 공급하는 액체공급관(22)이 마련되고, 챔버(10) 내부에 포집된 액체가 액체저장조(21) 내부로 유입 되도록 하는 액체유입관(23)이 마련되며, 기체배출노즐(11b)로부터 배출되는 기체를 액체저장조(21) 내부로 유입 되도록 하는 기체유입관(24)이 마련되고, 챔버(10)로부터 포집된 액체에 포함된 이물질을 제거하기 위한 메쉬필터(25)가 마련되며, 저장된 액체를 외부로 배출하기 위한 액체배출구(26)가 마련된 액체처리라인(20)과; 기체저장조(31) 내부에 저장된 기체를 상기 챔버(10)의 기체주입노즐(11a)로 공급하는 기체공급관(32)이 마련된 기체처리라인(30)을 구비하는 것을 특징으로 하는 것이다.
Description
본 발명은 금속 나노분말을 포함하는 액상물질 제조장치에 관한 것으로, 더욱 상세하게는 전기폭발에 의한 와이어의 증발 이후 응축에 소요되는 시간을 단축할 수 있어 더욱 미세한 크기의 금속 입자를 가질 수 있도록 하고, 별도의 작업 없이 금속 나노분말이 포함된 액상물질을 제조할 수 있도록 하며, 전극의 수명을 장기간 유지할 수 있도록 하는 금속 나노분말을 포함하는 액체 제조장치에 관한 것이다.
최근 각광받고 있는 금속 나노분말은 극히 미세한 입자 크기를 갖는 것으로서, 기존 재료로부터 얻을 수 없는 독특한 특성으로 인하여 다양한 분야에서 폭넓게 사용이 이루어지고 있다.
이와 같은 금속 나노분말을 제조하기 위해서는 다양한 장치가 이용될 수 있는데, 최근에는 펄스전류에 의한 전기폭발을 이용하는 금속 나노분말 제조장치가 널리 이용되고 있다.
이때, 펄스전류에 의한 전기폭발을 이용하는 금속 나노분말 제조장치는 기(氣)중 펄스전류에 의한 전기폭발을 이용하는 금속 나노분말 제조장치와 액(液)중 전기폭발에 의한 금속 나노분말 제조장치로 나뉜다.
기(氣)중 펄스전류에 의한 전기폭발을 이용하는 금속 나노분말 제조장치는 불활성 가스가 충전된 챔버 내부에서 금속 와이어에 순간적으로 펄스전류를 가하여 전기폭발이 이루어지도록 함으로써 와이어가 증발 이후 응축되는 과정에서 미세한 입자 크기의 금속 분말을 얻게 되는 것이다.
이와 같은 기(氣)중 펄스전류에 의한 전기폭발을 이용하는 금속 나노분말 제조장치는 단시간 내에 간편하게 금속 나노분말을 제조할 수 있는 것이었으나, 와이어가 전기폭발에 의해 증발한 이후에 비교적 긴 시간에 걸쳐 챔버 내부에 충전된 기체와 접촉하며 응축이 이루어지게 되므로 각 입자가 주변의 다른 입자와 접촉하여 응축되므로 입자 성장으로 인해 제조되는 금속 나노분말의 품질이 떨어지게 되는 문제가 있었다.
액(液)중 전기폭발에 의한 금속 나노분말 제조장치는 기(氣)중 펄스전류에 의한 전기폭발을 이용하는 금속 나노분말 제조장치가 갖는 상기와 같은 문제점을 해소하기 위하여 제안된 것으로, 전기폭발에 의한 와이어 증발 이후 응축 시간을 단축할 수 있도록 하는 것이다.
액(液)중 전기폭발에 의한 금속 나노분말 제조장치는 챔버 내부에 충전된 액(液) 중에서 전기폭발이 이루어지는 것으로, 와이어가 전기폭발에 의해 증발되어 비산되는 상태에서 주변을 감싸는 액체에 의해 냉각이 이루어지게 되므로 비교적 단시간 내에 응축이 이루어질 수 있는 것이었다.
그러나 액(液)중 전기폭발에 의한 금속 나노분말 제조장치는 와이어가 전기폭발에 의해 증발되는 순간 액(液) 중에 경계면이 형성되므로 증발에 의해 비산되는 입자가 액(液) 중에 형성되는 경계면에서 주변의 다른 입자와 접촉하여 성장하게 되므로 제조되는 금속 나노분말의 품질이 떨어지게 되는 문제가 있었고, 액(液) 중에서의 와이어 증발을 위해서는 챔버 내부에 기체가 충전된 상태에 비해 더 많은 에너지를 필요로 하게 되는 문제점이 있었다.
한편, 기중 및 액중 전기폭발에 의한 금속 나노분말 제조장치는 챔버에 설치된 전극에 와이어가 접촉할 때 전기폭발이 이루어지게 되는데, 기존의 기중 및 액중 전기폭발에 의한 금속 나노분말 제조장치는 전극이 고정 설치된 것이어서 와이어가 항상 동일부위에 접촉하여 전기폭발이 이루어지게 되므로 전기폭발이 장시간 지속될 경우 전극의 와이어 접촉 부위 손상이 뒤따라 일정 시간 작업 후에는 전극 자체를 교체해야만 하는 문제가 있었다.
본 발명은 상기와 같은 실정을 감안하여 안출한 것으로, 전기폭발에 의한 와이어의 증발 이후 응축에 소요되는 시간을 단축할 수 있어 더욱 미세한 크기의 금속 입자를 가질 수 있도록 하고, 별도의 작업 없이 금속 나노분말이 포함된 액상물질을 제조할 수 있도록 하며, 전극의 수명을 장기간 유지할 수 있도록 하는 금속 나노분말을 포함하는 액상물질 제조장치를 제공하는데 그 목적이 있는 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치는,
와이어공급기로부터 공급되는 금속 와이어에 펄스전류를 가하여 전기폭발이 이루어지도록 하는 것이되,
상단 둘레에 기체의 주입과 기체의 배출과 액체의 주입을 위한 노즐이 방사상으로 마련되며, 내측의 둘레에 액체 주입 노즐을 통해 주입된 액체가 타고 흐르는 나선형 내벽이 마련되고, 바닥면에 액체의 포집을 위한 포집구가 마련되며, 내측의 상하부에 모터 구동에 의해 회전되는 전극이 마련된 챔버와;
액체저장조 하부 일측으로부터 상기 챔버의 액체 주입 노즐로 이어져 펌프 작동을 통해 액체저장조 내부에 저장된 액체를 상기 챔버의 액체 주입 노즐로 공급하는 액체공급관이 마련되고, 액체저장조 상단 중앙으로부터 상기 챔버의 포집구로 이어져 챔버 내부에 포집된 액체가 액체저장조 내부로 유입 되도록 하는 액체유입관이 마련되며, 액체저장조 상단 일측으로부터 상기 챔버의 기체 배출 노즐로 이어져 기체 배출 노즐로부터 배출되는 기체를 액체저장조 내부로 유입 되도록 하는 기체유입관이 마련되고, 액체저장조 내부 중간에 챔버로부터 포집된 액체에 포함된 이물질을 제거하기 위한 메쉬필터가 마련되며, 액체저장조 하단 일측에 저장된 액체를 외부로 배출하기 위한 액체배출구가 마련된 액체처리라인과;
기체저장조 상단 일측으로부터 상기 챔버의 기체 주입 노즐로 이어져 기체저장조 내부에 저장된 기체를 상기 챔버의 기체 주입 노즐로 공급하는 기체공급관이 마련된 기체처리라인을 구비하는 것을 특징으로 하는 것이다.
본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치는 와이어가 전기폭발에 의해 증발되어 비산하는 상태에서 챔버 내벽을 타고 흐르는 액체에 접하게 되는 것인 바, 액체에 의한 냉각이 이루어져 증발 이후 응축에 소요되는 시간을 단축할 수 있게 되므로 금속 입자가 보다 미세한 크기를 가질 수 있게 될 뿐만 아니라 금속 나노분말을 액체에 혼합하는 별도의 과정을 거치지 않고도 금속 나노분말이 포함된 액상물질을 제조할 수 있게 되는 것이며, 전기폭발 과정에서 전극이 모터 구동에 의해 회전하는 것인 바, 전극과 와이어가 접하는 부위가 일측에 편향되지 아니하여 전극의 손상을 방지할 수 있게 되므로 전극을 수명을 장기간 유지할 수 있게 되는 것이다.
도 1은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치의 전체 개략도
도 2는 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 챔버의 내부 구조를 설명하기 위한 정단면도
도 3은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 챔버에 마련되는 노즐의 설치 구조를 설명하기 위한 평단면도
도 4는 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 챔버에 마련되는 전극의 작동상태도
도 5는 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 액체처리라인의 구조를 설명하기 위한 단면도
도 6은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 기체처리라인의 구조를 설명하기 위한 단면도
도 7은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서의 전기폭발 이후의 입자 응축을 설명하기 위한 예시도
<도면의 주요 부분에 대한 부호의 설명>
10 : 챔버 11 : 노즐
11a : 기체주입노즐 11b : 기체배출노즐
11c : 액체주입노즐 12 : 내벽
13 : 포집구 14, 14' : 전극
14a, 14a' : 회전축 14b, 14b' : 기어
15, 15' : 모터 15a, 15a' : 중심축
15b, 15b' : 기어 20 : 액체처리라인
21 : 액체저장조 21a : 개폐밸브
*22 : 액체공급관 22a : 펌프
23 : 액체유입관 24 : 기체유입관
25 : 메쉬필터 26 : 액체배출구
26a : 개폐밸브 27 : 게이지
28 : 안전변 29 : 쿨러
30 : 기체처리라인 31 : 기체저장조
31a : 개폐밸브 32 : 기체공급관
33 : 버큠 34 : 조절기
40 : 와이어 50 : 와이어공급기
60 : 전원장치 70 : 트리거
A : 액상물질 제조장치
이하, 첨부 도면에 의거하여 더욱 상세히 설명하면 다음과 같다.
도 1은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치의 전체 개략도이고, 도 2는 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 챔버의 내부 구조를 설명하기 위한 정단면도이며, 도 3은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 챔버에 마련되는 노즐의 설치 구조를 설명하기 위한 평단면도이고, 도 4는 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 챔버에 마련되는 전극의 작동상태도이며, 도 5는 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 액체처리라인의 구조를 설명하기 위한 단면도이고, 도 6은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서 기체처리라인의 구조를 설명하기 위한 단면도이며, 도 7은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치에서의 전기폭발 이후의 입자 응축을 설명하기 위한 예시도
도 1에 도시된 바와 같이 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)는 챔버(10)와, 액체처리라인(20)과, 기체처리라인(30)을 구비하는 것이다.
상기 챔버(10)는 그 내부에서 금속 와이어의 전기폭발이 이루어지는 것으로,
도 2에 도시된 바와 같이 상단 둘레의 기체의 주입과 기체의 배출과 액체의 주입을 위한 노즐(11)이 방사상으로 마련된 것이고, 내측의 둘레에 액체가 타고 흐르는 나선형 내벽(12)이 마련된 것이며, 바닥면 일측에 액체의 포집을 위한 포집구(13)가 마련된 것이고, 내측의 상하부에 모터(15, 15') 구동에 의해 회전되는 전극(14, 14')이 마련된 것이다.
이와 같은 챔버(10)에서 노즐(11)은 도 3에 도시된 바와 같이 방사상으로 마련되는데, 노즐(11)은 선단이 챔버(10)의 내벽(12)에 인접될 수 있도록 하여 주입물 특히, 액체가 분사된 이후에 챔버(10)의 내벽(12)을 타고 하부로 흘러내릴 수 있도록 하는 것이 바람직하고, 전극(14, 14')은 도 4에 도시된 바와 같이 회전축(14a, 14a')상의 기어(14b, 14b')가 모터(15, 15')의 중심축(15a, 15a')상의 기어(15b, 15b')와 치합될 수 있도록 하여 모터(15, 15') 구동에 의해 회전이 이루어질 수 있도록 하는 것이 바람직하다.
이때, 챔버(10)의 노즐(11)은 최소 하나 이상의 기체주입노즐(11a)과, 최소 하나 이상의 기체배출노즐(11b)과, 최소 하나 이상의 액체주입노즐(11c)로 이루어지는 것으로, 기체의 주입량과 기체의 배출량과 액체의 주입량 설정에 따라 기체주입노즐(11a), 기체배출노즐(11b), 액체주입노즐(11c)의 수와 위치는 유동적일 수 있는 것이다.
한편, 챔버(10) 내부로의 금속 와이어(40) 공급은 챔버(10) 상부에 마련되는 와이어공급기(50)를 통해 이루어지는 것이고, 챔버(10) 내부로 공급된 금속 와이어(40)의 전기폭발은 펄스전류를 공급하는 전원장치(60)와 전원장치(60)로부터의 펄스전류를 일시 방출하는 트리거(70)에 의해 이루어지는 것이다.
와이어공급기(50)를 통한 와이어(40)의 공급과 전원장치(60)와 트리거(70)에 의한 와이어(40)의 전기폭발은 해당 분야에서 일반화된 기술이므로 상세한 설명은 생략하는 바이다.
상기 액체처리라인(20)은 챔버(10) 내부로 액체를 연속 공급하고, 챔버(10)로부터 포집된 액체를 저장하기 위한 것으로,
도 5에 도시된 바와 같이 액체저장조(21) 하부 일측으로부터 상기 챔버(10)의 액체주입노즐(11c)로 이어져 펌프(22a) 작동을 통해 액체저장조(21) 내부에 저장된 액체를 상기 챔버(10)의 액체주입노즐(11c)로 공급하는 액체공급관(22)이 마련된 것이고, 액체저장조(21) 상단 중앙으로부터 상기 챔버(10)의 포집구(13)로 이어져 챔버(10) 내부에 포집된 액체가 액체저장조(21) 내부로 유입 되도록 하는 액체유입관(23)이 마련된 것이며, 액체저장조(21) 상단 일측으로부터 상기 챔버(10)의 기체배출노즐(11b)로 이어져 기체배출노즐(11b)로부터 배출되는 기체를 액체저장조(21) 내부로 유입 되도록 하는 기체유입관(24)이 마련된 것이고, 액체저장조(21) 내부 중간에 챔버(10)로부터 포집된 액체에 포함된 이물질을 제거하기 위한 메쉬필터(25)가 마련된 것이며, 액체저장조(21) 하단 일측에 저장된 액체를 외부로 배출하기 위한 액체배출구(26)가 마련된 것이다.
이와 같은 액체처리라인(20)에서 액체저장조(21)에는 액체공급관(22)으로의 액체 공급을 제어하기 위한 개폐밸브(21a)와, 내부의 압력 확인을 위한 게이지(27)와, 내부의 압력 조절을 위한 안전변(28)과, 내부에 저장되는 액체의 온도 조절을 위한 쿨러(29)가 마련되는 것이 바람직하고, 메쉬필터(25)는 이물질 거름 효과 향상과 내구성 확보를 위하여 300mesh/inch 이상인 스테인리스스틸 제품인 것이 바람직하며, 액체저장조(21)의 액체배출구(26)에는 액체의 배출 제어를 위한 개폐밸브(26a)가 마련되는 것이 바람직하다.
여기서, 게이지와 안전변을 통해 저장조 내부의 압력을 확인하고 조절하도록 하는 것은 해당 분야에서 일반화된 기술이므로 상세한 설명은 생략하는 바이며, 쿨러를 통해 저장조 내부에 저장된 대상물을 냉각하도록 하는 것 또한 해당 분야에서 일반화된 기술이므로 상세한 설명은 생략하는 바이다.
한편, 액체처리라인(20)에서 액체저장조(21)에 저장되는 액체는 오일류, 알콜류가 될 수 있으며, 액체공급관(22)을 통해 액체저장조(21)로부터 챔버(10) 내부로 주입되는 액체는 펌프(22a) 동작에 의해 강제 주입되는 것이며, 액체유입관(23)을 통해 챔버(10)로부터 액체저장조(21) 내부로 유입되는 액체는 챔버(10) 내부의 압력 증가에 따라 자연 유입되는 것이다.
상기 기체처리라인(30)은 챔버(10) 내부로 기체를 공급하기 위한 것으로,
도 6에 도시된 바와 같이 기체저장조(31) 상단 일측으로부터 상기 챔버(10)의 기체주입노즐(11a)로 이어져 기체저장조(31) 내부에 저장된 기체를 상기 챔버(10)의 기체주입노즐(11a)로 공급하는 기체공급관(32)이 마련된 것이다.
이와 같은 기체처리라인(30)에서 기체저장조(31)에는 기체공급관(32)으로의 기체 공급을 제어하기 위한 개폐밸브(31a)가 마련되는 것이 바람직하고, 기체공급관(32)상에는 챔버(10) 개방시 챔버(10) 내부에 사전 충전된 기체를 흡입하기 위한 버큠(33)과 기체 배출 정도를 일정한 압으로 유지할 수 있도록 하는 조절기(34)가 마련되는 것이 바람직하다.
여기서, 버큠(33)을 통해 기체를 흡입하도록 하는 것은 해당 분야에서 일반화된 기술이므로 상세한 설명은 생략하는 바이며, 조절기(34)를 통해 기체 배출 정도를 일정하게 조절하도록 하는 것 또한 해당 분야에서 일반화된 기술이므로 상세한 설명은 생략하는 바이다.
한편, 기체처리라인(30)에서 기체저장조(31)에 저장되는 기체는 알곤 또는 질소 또는 산소 또는 탄소 중의 어느 하나가 될 수 있다.
상기와 같은 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)를 통해 금속 나노분말이 포함된 액상물질을 제조하는 과정을 상세히 설명하면 다음과 같다.
금속 나노분말이 포함된 액상물질을 제조하기에 앞서 챔버(10) 내부는 기체와 액체의 주입이 이루어지는 상태가 유지되어야 한다.
챔버(10) 내부로의 기체 주입은 기체처리라인(30)의 기체저장조(31)에 마련되는 개폐밸브(31a)를 개방하여 기체저장조(31)에 저장된 기체가 기체공급관(32)을 거쳐 챔버(10)의 기체주입노즐(11a)을 통해 분사되도록 함으로써 이루어지게 된다.
이때, 기체 분사는 기체저장조(31)의 충전압에 의해 별도의 장치 없이 이루어지는 것이며, 챔버(10) 내부에 기체가 과도 충전된 상태에서는 챔버(10)에 마련된 기체배출노즐(11b)을 통해 챔버(10) 내부의 기체가 챔버(10) 외부로 배출되어 기체유입관(24)을 거쳐 액체저장조(21)로 배출된다.
챔버(10) 내부로의 액체 주입은 액체처리라인(20)의 액체저장조(21)에 마련되는 개폐밸브(21a)를 개방하여 액체저장조(21)에 저장된 액체가 액체공급관(22)을 거쳐 챔버(10)의 액체주입노즐(11c)을 통해 분사되도록 함으로써 이루어지게 된다.
이때, 챔버(10) 내부로의 액체 주입은 액체분사노즐(11c)로 이어지는 액체공급관(22)에 마련되는 펌프(22a) 작동에 의해 이루어지는 것으로, 펌프(22a) 작동에 의해 공급된 액체가 액체주입노즐(11c)을 통해 분사됨으로써 챔버(10) 내부로 주입될 수 있게 되는 것이며, 챔버(10) 내부로 주입된 액체는 챔버(10) 내부의 나선형 내벽(12)을 타고 흘러내리게 된다.
상기의 과정을 통해 챔버(10) 내부에 기체와 액체의 주입이 이루어지는 상태에서 챔버(10) 외측 상부에 마련되는 와이어공급기(50)를 통해 와이어(40)를 공급하여 전기폭발시키게 되면 챔버(10) 내부에서 와이어(40)의 증발이 이루어지게 된다.
이때, 와이어(40)의 전기폭발은 와이어(40)가 챔버(10) 내부의 상하측 전극(14, 14')에 맞닿은 상태에서 순간적으로 펄스전류가 통하도록 함으로써 이루어지게 되는데, 펄스전류의 발생은 전원장치(60)에 의한 것이고, 펄스전류의 순간적인 방출은 트리거(70) 작동에 의한 것이다.
전원장치(60)에서의 펄스전류 발생 원리와 트리거(70)를 통한 펄스전류의 순간적 방출원리는 일반적인 것이므로 상세한 설명은 생략하는 바이다.
챔버(10) 내부에서 전기폭발에 의해 와이어(40)가 증발하게 되면, 증발된 입자는 도 7에 도시된 바와 같이 비산하여 챔버(10)의 내벽(12)을 타고 흐르는 액체와 접촉하여 냉각됨으로써 응축이 이루어지게 된다.
챔버(10) 내벽을 타고 흐르는 액체와 접촉하여 냉각됨으로써 이루어지는 입자의 응축은 단시간 내에 이루어지는 것인바, 증발에 의해 비산되는 개별 입자는 응축되는 과정에서 주변의 다른 입자와 비교적 덜 접촉하게 되므로 성장이 이루어지지 않게 되어 극히 미세한 크기를 가질 수 있게 된다.
한편, 응축된 입자를 포함하는 액체는 챔버(10)의 내벽(12)을 타고 흘러 챔버(10) 바닥면에 이르게 되는데, 챔버(10) 바닥면에는 포집구(13)가 마련되어 있는바, 응축된 입자를 포함하는 액체는 포집구(13)를 통해 챔버(10) 외부로 유출되어 액체유입관(24)을 거쳐 액체저장조(21)에 이르게 된다.
챔버(10)의 포집구(13)를 통한 액체의 유출은 챔버(10) 내부로의 액체 주입에 따른 압력 증가에 의해 별도 수단 없이 자연스럽게 이루어지는 것이며, 액체가 액체저장조(21) 내부로 유입되어 메쉬필터(25)를 거치는 동안에 액체에 포함된 이물질이 걸러지게 된다.
상기의 과정으로 이루어지는 액체저장조(21)로부터 챔버(10)로의 액체 주입과 챔버(10)로부터 액체저장조(21)로의 액체 배출은 액체에 포함되는 입자의 농도가 일정 수준에 이를 때까지 순환에 의해 연속 반복되는 것이며, 액체에 포함되는 입자가 일정 농도에 도달하였을 때 액체저장조(21)에 마련된 액체배출구(26)의 개폐밸브(26a)를 개방함으로써 미세한 입자 크기를 갖는 금속 나노분말을 포함하는 액상물질을 간단히 제조할 수 있게 되는 것이다.
이때, 챔버(10) 내부로 주입되는 기체를 알곤으로 하는 경우 순수금속으로 된 금속 나노분말을 포함하는 액상물질을 제조할 수 있게 되고, 챔버 내부로 주입되는 기체를 질소 또는 탄소 또는 산소의 어느 하나로 하는 경우 질화물 또는 탄화물 또는 산화물의 금속 나노분말을 포함하는 액상물질을 제조할 수 있게 된다.
한편, 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)는 금속 나노분말을 포함하는 액상물질을 제조할 수 있을 뿐만 아니라 금속 나노분말 자체의 제조가 가능한 것이다.
본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)를 통한 금속 나노분말 자체의 제조는 챔버(10) 내부로의 액체 공급을 차단함으로써 간단히 이루어지게 된다.
챔버(10) 내부로의 액체 공급 차단은 액체처리라인(20)에서 액체저장조(21)로부터 액체공급관(22)으로의 액체 공급을 제어하는 액체저장조(21)의 개폐밸브(21a)의 개방을 차단함으로써 이루어지게 되는데, 이는 개폐밸브(21a) 조작을 통해 이루어지게 된다.
그리고 본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)는 금속 나노분말을 포함하는 액상물질 또는 금속 나노분말을 제조할 때 전극(14, 14')의 장기 사용이 가능한 것이다.
본 발명에 의한 금속 나노분말을 포함하는 액상물질 제조장치(A)에서 전극(14, 14')은 모터(15, 15') 구동에 의해 회전하는 것인 바, 와이어(40)와 전극(14, 14')의 접촉 부위가 일 지점에 국한되지 아니하므로 와이어(40)의 전기폭발이 연속 반복될지라도 전극(14, 14')의 특정 부위가 가열되어 손상되는 것을 방지할 수 있어 전극(14, 14')의 수명을 장기간 유지할 수 있게 되는 것이다.
이상에서 설명한 바와 같은 본 발명은 상기한 실시예에 한정되지 아니하므로 청구범위에서 청구하는 본 발명의 요지를 벗어나지 않는 범위 안에서 변경 가능한 것이며, 그와 같은 변경은 기재된 청구범위 내에 있게 된다.
Claims (6)
- 와이어공급기로부터 공급되는 금속 와이어에 펄스전류를 가하여 전기폭발이 이루어지도록 하는 것이되,상단 둘레에 기체의 주입과 기체의 배출과 액체의 주입을 위한 노즐이 방사상으로 마련되며, 내측의 둘레에 액체주입노즐을 통해 주입된 액체가 타고 흐르는 나선형 내벽이 마련되고, 바닥면에 액체의 포집을 위한 포집구가 마련되며, 내측의 상하부에 모터 구동에 의해 회전되는 전극이 마련된 챔버와;액체저장조 하부 일측으로부터 상기 챔버의 액체 주입 노즐로 이어져 펌프 작동을 통해 액체저장조 내부에 저장된 액체를 상기 챔버의 액체 주입 노즐로 공급하는 액체공급관이 마련되고, 액체저장조 상단 중앙으로부터 상기 챔버의 포집구로 이어져 챔버 내부에 포집된 액체가 액체저장조 내부로 유입 되도록 하는 액체유입관이 마련되며, 액체저장조 상단 일측으로부터 상기 챔버의 기체 배출 노즐로 이어져 기체 배출 노즐로부터 배출되는 기체를 액체저장조 내부로 유입 되도록 하는 기체유입관이 마련되고, 액체저장조 내부 중간에 챔버로부터 포집된 액체에 포함된 이물질을 제거하기 위한 메쉬필터가 마련되며, 액체저장조 하단 일측에 저장된 액체를 외부로 배출하기 위한 액체배출구가 마련된 액체처리라인과;기체저장조 상단 일측으로부터 상기 챔버의 기체 주입 노즐로 이어져 기체저장조 내부에 저장된 기체를 상기 챔버의 기체 주입 노즐로 공급하는 기체공급관이 마련된 기체처리라인을 구비하는 것을 특징으로 하는 금속 나노분말을 포함하는 액상물질 제조장치.
- 제1항에 있어서,상기 챔버에 마련되는 노즐은 최소 하나 이상의 기체주입노즐과, 최소 하나 이상의 기체배출노즐과, 최소 하나 이상의 액체주입노즐로 이루어지되, 각 노즐의 선단은 챔버의 내벽에 인접하도록 된 것을 특징으로 하는 금속 나노분말을 포함하는 액상물질 제조장치.
- 제1항에 있어서,상기 챔버에 마련되는 전극은 회전축상의 기어가 모터 중심축상의 기어와 치합하여 모터 구동에 의해 회전하도록 된 것을 특징으로 금속 나노분말을 포함하는 액상물질 제조장치.
- 제1항에 있어서,상기 액체처리라인의 액체저장조에 저장되는 액체는 오일류 또는 알콜류인 것을 특징으로 하는 금속 나노분말을 포함하는 액상물질 제조장치.
- 제1항에 있어서,상기 액체처리라인의 액체저장조에 마련되는 메쉬필터는 300mesh/inch 이상의 스테인리스스틸 제품인 것을 특징으로 하는 금속 나노분말을 포함하는 액상물질 제조장치.
- 제1항에 있어서,상기 기체처리라인의 기체저장조에 저장되는 기체는 알곤 또는 질소 또는 탄소 또는 산소 중의 어느 하나인 것을 특징으로 하는 금속 나노분말을 포함하는 액상물질 제조장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011507336A JP5143950B2 (ja) | 2008-04-30 | 2009-04-02 | 金属ナノ粉末を含む液状物質の製造装置 |
EP09726428A EP2269949A2 (en) | 2008-04-30 | 2009-04-02 | Device for producing liquid materials containing metal nano-powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080040641A KR100980364B1 (ko) | 2008-04-30 | 2008-04-30 | 금속 나노분말을 포함하는 액상물질 제조장치 |
KR10-2008-0040641 | 2008-04-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009134015A2 true WO2009134015A2 (ko) | 2009-11-05 |
WO2009134015A3 WO2009134015A3 (ko) | 2010-01-07 |
Family
ID=41255520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/001692 WO2009134015A2 (ko) | 2008-04-30 | 2009-04-02 | 금속 나노분말을 포함하는 액상물질 제조장치 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2269949A2 (ko) |
JP (1) | JP5143950B2 (ko) |
KR (1) | KR100980364B1 (ko) |
WO (1) | WO2009134015A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111618309A (zh) * | 2020-06-04 | 2020-09-04 | 西安斯瑞先进铜合金科技有限公司 | 一种铜铁合金纳米粉末的制备方法 |
CN113694869A (zh) * | 2021-09-13 | 2021-11-26 | 高密建滔化工有限公司 | 一种双氧水工作液氧化塔 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101155283B1 (ko) * | 2010-01-29 | 2012-06-18 | 한국원자력연구원 | 액중 전기폭발에 의한 나노유체 제조장치 |
KR101316589B1 (ko) * | 2011-05-17 | 2013-10-18 | 공주대학교 산학협력단 | 나노콜로이드 제조 장치 및 방법 |
CN102744414A (zh) * | 2012-07-13 | 2012-10-24 | 兰州理工大学 | 一种丝电爆法纳米铜润滑材料的制备方法 |
KR101499789B1 (ko) * | 2013-10-10 | 2015-03-09 | 한국전기연구원 | 유체를 이용한 와이어 자동피딩장치 |
US20170304901A1 (en) * | 2016-04-20 | 2017-10-26 | Hrl Laboratories, Llc | Apparatus for making nanoparticles and nanoparticle suspensions |
CN110000394B (zh) * | 2019-05-29 | 2023-10-17 | 纳华(宁波)新材料科技有限公司 | 一种金属纳米粉生产系统 |
KR102294406B1 (ko) | 2020-12-08 | 2021-08-27 | (주)엔오엔그리드 | 금속 나노분말 제조장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020090657A (ko) * | 2001-05-29 | 2002-12-05 | 한국원자력연구소 | 전기폭발법에 의한 금속 나노분말 제조방법 및 장치 |
US20030108459A1 (en) * | 2001-12-10 | 2003-06-12 | L. W. Wu | Nano powder production system |
KR20050000667A (ko) * | 2003-06-24 | 2005-01-06 | 한국원자력연구소 | 복수개의 와이어를 동시 투입하는 전기폭발법에 의한금속, 합금 또는 세라믹 나노분말 제조방법 및 그 장치 |
KR20070024041A (ko) * | 2005-08-26 | 2007-03-02 | 한국전기연구원 | 액중 전기폭발에 의한 나노분말 제조 방법 및 장치 |
-
2008
- 2008-04-30 KR KR1020080040641A patent/KR100980364B1/ko active IP Right Grant
-
2009
- 2009-04-02 EP EP09726428A patent/EP2269949A2/en not_active Withdrawn
- 2009-04-02 JP JP2011507336A patent/JP5143950B2/ja not_active Expired - Fee Related
- 2009-04-02 WO PCT/KR2009/001692 patent/WO2009134015A2/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020090657A (ko) * | 2001-05-29 | 2002-12-05 | 한국원자력연구소 | 전기폭발법에 의한 금속 나노분말 제조방법 및 장치 |
US20030108459A1 (en) * | 2001-12-10 | 2003-06-12 | L. W. Wu | Nano powder production system |
KR20050000667A (ko) * | 2003-06-24 | 2005-01-06 | 한국원자력연구소 | 복수개의 와이어를 동시 투입하는 전기폭발법에 의한금속, 합금 또는 세라믹 나노분말 제조방법 및 그 장치 |
KR20070024041A (ko) * | 2005-08-26 | 2007-03-02 | 한국전기연구원 | 액중 전기폭발에 의한 나노분말 제조 방법 및 장치 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111618309A (zh) * | 2020-06-04 | 2020-09-04 | 西安斯瑞先进铜合金科技有限公司 | 一种铜铁合金纳米粉末的制备方法 |
CN113694869A (zh) * | 2021-09-13 | 2021-11-26 | 高密建滔化工有限公司 | 一种双氧水工作液氧化塔 |
Also Published As
Publication number | Publication date |
---|---|
JP5143950B2 (ja) | 2013-02-13 |
EP2269949A2 (en) | 2011-01-05 |
JP2011523435A (ja) | 2011-08-11 |
KR20090114805A (ko) | 2009-11-04 |
WO2009134015A3 (ko) | 2010-01-07 |
KR100980364B1 (ko) | 2010-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009134015A2 (ko) | 금속 나노분말을 포함하는 액상물질 제조장치 | |
WO2021071162A1 (ko) | 세라믹 촉매 반응을 이용한 왁스 및 검 제거장치 | |
CN105284193B (zh) | 使用等离子体系统的高产量粒子生产 | |
WO2012023684A1 (ko) | 나노 분말 제조용 플라즈마 토치 전극 구조 | |
CN111503641A (zh) | 一种外加热气氛干燥热解装置 | |
KR102328768B1 (ko) | 고순도 분말 제조장치 | |
CN207877652U (zh) | 一种具有沥青烟气处理功能的电加热沥青罐 | |
CN218276516U (zh) | 一种新型节能高频励磁柜 | |
WO2020101337A1 (ko) | 질소 산화물 가스 발생장치 및 이의 제어 방법 | |
CN206173415U (zh) | 一种小型铝合金熔炼除气除杂装置 | |
CN214053655U (zh) | 高效可控的纳米粉制取设备 | |
CN213032152U (zh) | 一种萃取塔用尾气处理装置 | |
CN112371989A (zh) | 高效可控的纳米粉制取设备 | |
CN221570579U (zh) | 一种控制有机废气浓度的rto废气处理净化设备 | |
CN205925320U (zh) | 一种机械组合式等离子体气体净化机 | |
CN218155580U (zh) | 一种多组分金属物质物理分离装置 | |
JP2005097654A (ja) | 超微粒子作製装置 | |
CN110227343A (zh) | 一种双介质等离子协同催化剂一体机及其使用方法 | |
CN212800501U (zh) | 一种用于生产屏线的铜线退火装置 | |
CN217503697U (zh) | 一种蓄热式焚烧炉rto换向室装置 | |
CN217265303U (zh) | 一种工业废水净化设备 | |
CN219615272U (zh) | 一种熔喷布挤出机废气处理设备用冷却装置 | |
CN218924098U (zh) | 一种电加热锅炉排放烟尘的处理装置 | |
CN212855237U (zh) | 一种用于石墨化炉废气的脱硫装置 | |
CN216205341U (zh) | 一种具有助燃机构的铬钢玉加工冶炼炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011507336 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009726428 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09726428 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |