WO2009133688A1 - 光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュール - Google Patents

光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュール Download PDF

Info

Publication number
WO2009133688A1
WO2009133688A1 PCT/JP2009/001908 JP2009001908W WO2009133688A1 WO 2009133688 A1 WO2009133688 A1 WO 2009133688A1 JP 2009001908 W JP2009001908 W JP 2009001908W WO 2009133688 A1 WO2009133688 A1 WO 2009133688A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
photoelectric conversion
terminal
conversion element
oxide semiconductor
Prior art date
Application number
PCT/JP2009/001908
Other languages
English (en)
French (fr)
Inventor
臼井弘紀
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN2009801148427A priority Critical patent/CN102017281A/zh
Priority to EP09738625A priority patent/EP2276101A1/en
Priority to AU2009241138A priority patent/AU2009241138B2/en
Publication of WO2009133688A1 publication Critical patent/WO2009133688A1/ja
Priority to US12/913,535 priority patent/US20110088773A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion element, a photoelectric conversion element manufactured thereby, a method for manufacturing a photoelectric conversion element module, and a photoelectric conversion element module manufactured thereby.
  • Dye-sensitized solar cells were developed by Gretzel, Switzerland, and have the advantages of high photoelectric conversion efficiency and low manufacturing costs, and are attracting attention as a new type of solar cell.
  • the schematic structure of the dye-sensitized solar cell is as follows: a working electrode in which a porous oxide semiconductor layer carrying a photosensitizing dye is provided on a transparent substrate provided with a transparent conductive film; And an electrolyte containing a redox pair is filled between the working electrode and the counter electrode.
  • the electrolyte it is common to use an electrolytic solution in which a redox couple such as I ⁇ / I 3 ⁇ is dissolved in an organic solvent such as acetonitrile.
  • a configuration using a non-volatile ionic liquid, a liquid There are known a structure in which the electrolyte is gelled with an appropriate gelling agent to make it pseudo-solid, a structure using a solid semiconductor such as a p-type semiconductor, and the like.
  • the counter electrode must be made of a material that prevents corrosion due to chemical reaction with the electrolyte.
  • a material that prevents corrosion due to chemical reaction with the electrolyte a titanium substrate formed of platinum, a glass electrode substrate formed of platinum, or the like can be used.
  • the glass electrode substrate on which the conductive layer made of platinum is formed has a problem that the thickness of the photoelectric conversion element is increased because the glass has to have a certain thickness or more in order to secure the strength of the glass.
  • a titanium substrate has an oxide film formed on the surface of titanium, it is difficult to connect lead wires or the like to the titanium substrate.
  • Patent Document 1 a film made of a dissimilar metal (such as Cu) that can be easily soldered is formed on the surface of an electrode composed of a titanium substrate by sputtering.
  • the present invention has been made in view of the above circumstances, and a method for manufacturing a photoelectric conversion element capable of easily manufacturing a photoelectric conversion element including a terminal firmly bonded to an electrode using titanium, and thereby It aims at providing the manufacturing method of the photoelectric conversion element manufactured, the photoelectric conversion element module, and the photoelectric conversion element module manufactured by it.
  • the method for producing a photoelectric conversion element of the present invention is the method for producing a photoelectric conversion element on the surface of the catalyst layer in the first electrode having a metal plate made of titanium or an alloy containing titanium and the catalyst layer, or the second electrode having a transparent conductor.
  • a terminal forming step of forming a terminal on the metal plate, and in the terminal forming step, the terminal is formed by heating and melting a high melting point solder and applying an ultrasonic wave. Also features It is.
  • a porous oxide semiconductor layer is formed on the catalyst layer of the first electrode or the transparent conductor of the second electrode, and photosensitization is performed on the porous oxide semiconductor layer.
  • the dye is supported. That is, in the first electrode and the second electrode, the electrode on which the porous oxide semiconductor layer is formed becomes an electrode on the working electrode, and the electrode on which the porous oxide semiconductor layer is not formed becomes an electrode on the counter electrode. Then, the electrolyte is surrounded and sealed with a sealing material between the first electrode and the second electrode.
  • the first electrode has a metal plate made of titanium or an alloy containing titanium, and the metal plate has corrosion resistance to the electrolyte.
  • a terminal is formed on the metal plate on the surface other than the surface surrounded by the outer periphery of the sealing material in the first electrode.
  • the terminal is made of a high melting point solder, and is formed by heating and melting the high melting point solder and applying ultrasonic waves to the high melting point solder.
  • the wettability with respect to the metal plate surface of a high melting point solder improves. Therefore, the high melting point solder can be firmly bonded to the electrode using titanium, and the terminal can be easily formed without using equipment such as a vacuum apparatus.
  • the porous oxide semiconductor layer may be formed on the transparent conductor.
  • the first electrode is surrounded by an outer periphery of the sealing material when the first electrode is viewed from a direction perpendicular to the surface of the first electrode. It is preferable that an extending portion is provided extending outward from the region, and the terminal is formed in the extending portion.
  • the surface on the surface opposite to the second electrode side of the first electrode is The distance between the terminal and the photosensitizing dye or electrolyte is larger than when the terminal is formed in the region surrounded by the sealing material. For this reason, it can suppress that a heat
  • the terminal is formed from a surface of the first electrode opposite to the second electrode side to a surface of the second electrode side.
  • the terminal is bonded to the metal plate of the first electrode from the surface on the opposite side to the second electrode side of the first electrode to the surface on the second electrode side.
  • the terminal can be more firmly connected on the metal plate.
  • a collection of metal is formed on a surface of the second electrode on the first electrode side from a region surrounded by the sealing material to an outer periphery of the sealing agent.
  • the terminal is on the opposite side of the first electrode from the second electrode side.
  • it is preferably formed at a position overlapping the current collector wiring.
  • the current collector wiring is made of a metal material, it has excellent thermal conductivity. And since the current collection wiring is provided from the area
  • a current collecting wiring made of metal on a surface of the second electrode on the first electrode side from a region overlapping with the sealing material to an outer periphery of the sealing material. And when the first electrode is viewed from a direction perpendicular to the surface of the first electrode, the terminal is on a surface opposite to the second electrode side of the first electrode. In the region that overlaps with the sealing material, the layer is preferably formed at a position that overlaps with the current collector wiring.
  • the current collector wiring is made of a metal material, it has excellent thermal conductivity. And since the current collection wiring is provided from the area
  • the method for producing a photoelectric conversion element of the present invention includes a terminal forming step of forming a terminal on the surface of the metal plate in the first electrode having a metal plate made of titanium or an alloy containing titanium and a catalyst layer, and transparent A semiconductor forming step of forming a porous oxide semiconductor layer on the surface of the transparent conductor of the second electrode having a conductor; a dye supporting step of supporting a photosensitizing dye on the porous oxide semiconductor layer; The first electrode and the second electrode face each other, the porous oxide semiconductor layer and the electrolyte are surrounded by a sealing material between the first electrode and the second electrode, and the terminal is sealed A sealing step of sealing so as not to be surrounded by a stopper, and in the terminal forming step, the terminal is formed by heating and melting high melting point solder and applying ultrasonic waves. Characterized by A.
  • a terminal is formed on a metal plate on a first electrode, a porous oxide semiconductor layer is formed on a second electrode, and a porous oxide semiconductor layer is formed. Is loaded with a photosensitizing dye.
  • heat applied in the terminal formation step is applied to the second electrode. Does not conduct. For this reason, deterioration of the photosensitizing dye due to heat in the terminal forming step can be prevented. Further, the heat applied in the terminal forming process is not conducted to the electrolyte through the first electrode. For this reason, deterioration of the electrolyte due to heat in the terminal forming step can be prevented.
  • the method for producing a photoelectric conversion element of the present invention is a semiconductor in which a porous oxide semiconductor layer is formed on the surface of the catalyst layer in the first electrode having a metal plate made of titanium or an alloy containing titanium and a catalyst layer.
  • Forming a terminal on the metal plate in a forming step, a dye carrying step for carrying a photosensitizing dye on the porous oxide semiconductor layer, and a region where the porous semiconductor is not formed on the surface of the first electrode A terminal forming step, a second electrode having a transparent conductor and the first electrode face each other, and the porous oxide semiconductor layer and the electrolyte are sealed between the first electrode and the second electrode And a sealing step of sealing the terminal so as not to be surrounded by the sealing material, and in the terminal forming step, the terminal is heated and melted by a high melting point solder. Both It is characterized in that the ultrasonic wave is formed is applied.
  • the terminal forming step is before the dye supporting step.
  • the photoelectric conversion element of the present invention is manufactured by the above-described method for manufacturing a photoelectric conversion element.
  • a photoelectric conversion element According to such a photoelectric conversion element, wettability with respect to the metal plate surface of the first electrode of the high melting point solder is improved in the manufacturing process, and the first electrode using titanium and the terminal formed on the first electrode are provided. Strongly joined. For this reason, when connecting a lead wire etc. to a terminal, a photoelectric conversion element and a lead wire etc. can be connected firmly.
  • the manufacturing method of the photoelectric conversion element module of this invention is equipped with the photoelectric conversion element preparation process of preparing multiple photoelectric conversion elements manufactured by said manufacturing method of a photoelectric conversion element,
  • the said in the at least 1 said photoelectric conversion element It has the connection process which electrically connects the terminal formed on a 1st electrode, and the said 2nd electrode in another at least 1 photoelectric conversion element with a conductive member.
  • the high melting point solder can be easily and firmly joined to the first electrode using titanium. Therefore, a photoelectric conversion module capable of firmly connecting the photoelectric conversion elements via the conductive member can be manufactured.
  • the photoelectric conversion element has a terminal formed outside a region surrounded by an outer periphery of the sealing material on the surface of the second electrode on the first electrode side.
  • the terminal formed on the first electrode in at least one of the photoelectric conversion elements may be connected to the terminal formed on the second electrode in the other at least one photoelectric conversion element by the conductive member. .
  • the photoelectric conversion element module of the present invention is manufactured by the above-described method for manufacturing a photoelectric conversion element module.
  • the connection between the photoelectric conversion elements is strong, and it is possible to suppress the disconnection between the photoelectric conversion elements due to an external force or the like.
  • the manufacturing method of the photoelectric conversion element which can manufacture easily a photoelectric conversion element provided with the terminal firmly joined with the electrode which uses titanium, the photoelectric conversion element manufactured by it, and a photoelectric conversion element A module manufacturing method and a photoelectric conversion element module manufactured thereby are provided.
  • FIG. 1 is a schematic cross-sectional view showing a photoelectric conversion element according to the first embodiment of the present invention.
  • the photoelectric conversion element 100 includes a working electrode 11, a counter electrode 12 disposed so as to face the working electrode 11, an electrolyte 5 disposed between the working electrode 11 and the counter electrode 12, A sealing material 14 surrounding the electrolyte 5 and a terminal 7 formed on the surface of the counter electrode 12 opposite to the working electrode 11 are provided as main components.
  • the working electrode 11 is provided on the transparent substrate 1 and the second electrode 20 made of the transparent conductor 1 provided on one surface of the transparent substrate 2 and the transparent substrate 2, and carries a photosensitizing dye. And a porous oxide semiconductor layer 3.
  • the transparent base material 2 is composed of a substrate made of a light transmissive material. Examples of such materials include glass, polyethylene terephthalate (PET), polycarbonate (PC), polyethersulfone (PES), polyethylene naphthalate (PEN), and are usually used as a transparent substrate for photoelectric conversion elements. Any material can be used.
  • the transparent substrate 2 is appropriately selected from these in consideration of resistance to the electrolyte and the like. Further, the transparent substrate 2 is preferably a substrate that is as excellent in light transmission as possible, and more preferably a substrate having a light transmittance of 90% or more.
  • the transparent conductor 1 is a transparent conductive film, and is a thin film formed on a part of one surface or the entire surface of the transparent substrate 2.
  • the transparent conductor 1 is preferably a thin film made of a conductive metal oxide.
  • conductive metal oxides include indium tin oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ).
  • the transparent conductor 1 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides.
  • the transparent conductor 1 is preferably ITO or FTO from the viewpoint of easy film formation and low manufacturing cost, and has high heat resistance and chemical resistance. From the viewpoint of having, it is more preferable that it is composed of FTO.
  • the transparent conductor 1 is composed of a laminated body composed of a plurality of layers because the characteristics of each layer can be reflected.
  • a laminated film in which a film made of FTO is laminated on a film made of ITO is preferable.
  • the transparent conductor 1 having high conductivity, heat resistance, and chemical resistance can be realized, and a transparent conductive substrate with low light absorption in the visible range and high conductivity can be configured.
  • the thickness of the transparent conductor 1 may be in the range of 0.01 ⁇ m to 2 ⁇ m, for example.
  • the oxide semiconductor that forms the porous oxide semiconductor layer 3 is not particularly limited, and any oxide semiconductor can be used as long as it is usually used to form a porous oxide semiconductor layer for a photoelectric conversion element. be able to.
  • oxide semiconductor include titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and strontium titanate.
  • the average particle diameter of these oxide semiconductor particles is 1 to 1000 nm, which increases the surface area of the oxide semiconductor covered with the dye, that is, widens the field for photoelectric conversion and generates more electrons. This is preferable.
  • the porous oxide semiconductor layer 3 is preferably configured by stacking oxide semiconductor particles having different particle size distributions. In this case, light can be repeatedly reflected in the semiconductor layer, and incident light that escapes to the outside of the porous oxide semiconductor layer 3 can be reduced, and light can be efficiently converted into electrons.
  • the thickness of the porous oxide semiconductor layer 3 may be, for example, 0.5 to 50 ⁇ m.
  • the porous oxide semiconductor layer 3 can also be comprised with the laminated body of the some oxide semiconductor which consists of a different material.
  • the porous oxide semiconductor layer 3 for example, a dispersion in which commercially available oxide semiconductor particles are dispersed in a desired dispersion medium or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding a desired additive, the coating is performed by a known coating method such as a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, or a spray coating method, and then a void is formed by heat treatment or the like. It is possible to apply a method to make it.
  • a coating method such as a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, or a spray coating method, and then a void is formed by heat treatment or the like. It is possible to apply a method to make it.
  • the photosensitizing dye examples include a ruthenium complex containing a bipyridine structure, a terpyridine structure and the like as a ligand, a metal-containing complex such as polyphylline and phthalocyanine, and organic dyes such as eosin, rhodamine and merocyanine.
  • a ruthenium complex containing a bipyridine structure, a terpyridine structure and the like as a ligand a metal-containing complex such as polyphylline and phthalocyanine
  • organic dyes such as eosin, rhodamine and merocyanine.
  • the electrolyte 5 is obtained by impregnating the porous oxide semiconductor layer 3 with an electrolytic solution, or after impregnating the porous oxide semiconductor layer 3 with the electrolytic solution, the electrolytic solution is appropriately gelled. Gelled (quasi-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 3, or a gel electrolyte containing an ionic liquid, oxide semiconductor particles, or conductive particles Can be used.
  • an electrolytic solution in which an electrolyte component such as iodine, iodide ion or tertiary-butylpyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile is used.
  • an electrolytic solution in which an electrolyte component such as iodine, iodide ion or tertiary-butylpyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile is used.
  • the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.
  • Room temperature meltable salt which is a liquid at room temperature and made the compound which has the quaternized nitrogen atom into a cation or an anion is mentioned.
  • the cation of the room temperature melting salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, quaternized ammonium derivatives and the like.
  • the anion of the ambient temperature molten salt BF 4 -, PF 6 - , F (HF) n-, bis (trifluoromethylsulfonyl) imide [N (CF 3 SO 2) 2 -], and the like iodide ion.
  • Specific examples of the ionic liquid include salts composed of a quaternized imidazolium cation and iodide ion or bistrifluoromethylsulfonylimide ion.
  • the oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those that are excellent in mixing with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. .
  • the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte without reducing the conductivity of the electrolyte.
  • the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.
  • oxide semiconductor particles examples include TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , Y 2 O 3 ,
  • TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , Y 2 O 3 One or a mixture of two or more selected from the group consisting of Ho 2 O 3 , Bi 2 O 3 , CeO 2 , and Al 2 O 3 is preferable, and titanium dioxide fine particles (nanoparticles) are particularly preferable.
  • the average particle diameter of the titanium dioxide is preferably about 2 nm to 1000 nm.
  • conductive particles such as conductors and semiconductors are used.
  • the range of the specific resistance of the conductive particles is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, and more preferably 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used.
  • Such conductive particles are required to have excellent chemical stability with respect to other coexisting components contained in the electrolyte, since the conductivity is not easily lowered in the electrolyte.
  • the electrolyte contains an oxidation / reduction pair such as iodine / iodide ion or bromine / bromide ion, an electrolyte that does not deteriorate due to oxidation reaction or the like is preferable.
  • Such conductive particles include those composed of carbon-based materials, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.
  • the counter electrode 12 is configured by the first electrode 10.
  • the first electrode includes a metal plate 4 and a catalyst layer 6 made of titanium or a titanium alloy.
  • the catalyst layer 6 that promotes the reduction reaction is formed on the surface of the metal plate 4 on the working electrode 11 side.
  • the catalyst layer 6 is made of platinum or carbon.
  • the sealing material 14 connects the working electrode 11 and the counter electrode 12, and the electrolyte 5 between the working electrode 11 and the counter electrode 12 is sealed by being surrounded by the sealing material 14.
  • the material constituting the sealing material 14 include an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, an ultraviolet curable resin, and a vinyl alcohol polymer. Is mentioned.
  • the sealing material 14 may be comprised only with resin, and may be comprised with resin and an inorganic filler.
  • a terminal 7 is formed on the surface of the counter electrode 12 opposite to the working electrode 11 side, that is, on the surface of the metal plate 4 of the first electrode 10.
  • the terminal 7 is composed of a high melting point solder.
  • the high melting point solder it is preferable to use a solder having a melting point of 200 ° C. or higher (for example, 210 ° C. or higher).
  • a solder having a melting point of 200 ° C. or higher for example, 210 ° C. or higher.
  • a solder 13 for connecting a conductive wire or the like and the terminal 7 is formed on the terminal 7.
  • the solder 13 is not particularly limited, but when the terminal 7 is a high melting point solder, a solder having a lower melting point than the high melting point solder (hereinafter, sometimes referred to as a low melting point solder) is preferable.
  • a solder having a melting point of less than 200 ° C. is preferably used.
  • solder include eutectic type (eg Sn-Pb), lead-free type (eg Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Zn, Sn-Zn-B). Is mentioned.
  • the terminal 8 is formed in the outer region surrounded by the outer periphery of the sealing material 14 on the surface of the second electrode 20 on the first electrode side.
  • the material constituting the terminal 8 include metals such as gold, silver, copper, platinum, and aluminum.
  • the working electrode 11 and the counter electrode 12 are prepared (preparation process).
  • the working electrode 11 can be obtained by the following process. First, the transparent conductor 1 is formed on one surface of the transparent substrate 2 to form the second electrode 20. Next, the porous oxide semiconductor layer 3 is formed on the transparent conductor 1 in the second electrode 20 (semiconductor forming step). Next, a photosensitizing dye is carried (dye carrying process).
  • Examples of the method for forming the transparent conductor 1 on the transparent substrate 2 include thin film forming methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. .
  • the spray pyrolysis method is preferable.
  • the haze ratio can be easily controlled.
  • the spray pyrolysis method is preferable because a vacuum system is unnecessary, and thus the manufacturing process can be simplified and the cost can be reduced.
  • the method for forming the porous oxide semiconductor layer 3 on the transparent conductor 1 mainly includes a coating process and a drying / firing process.
  • a coating process for example, a paste of TiO 2 colloid obtained by mixing TiO 2 powder, a surfactant and a thickener at a predetermined ratio is applied to the surface of the transparent conductor 1 that has been made hydrophilic. It is done.
  • a pressing means is used so that the applied colloid keeps a uniform thickness while pressing the colloid on the transparent conductor 1 using a pressing means (for example, a glass rod).
  • a pressing means for example, a glass rod
  • drying / firing step for example, a method of leaving the coated colloid in an air atmosphere at room temperature for about 30 minutes and drying the applied colloid, followed by firing at a temperature of 450 ° C. for about 60 minutes using an electric furnace. Can be mentioned.
  • a very small amount of dye solution for supporting the dye for example, a solvent having a volume ratio of 1: 1 acetonitrile and t-butanol.
  • a solution prepared by adding N3 dye powder was prepared in advance.
  • a porous oxide semiconductor layer 3 is formed in a solution containing a photosensitizing dye as a solvent in a petri dish-like container, which is separately heated to about 120 to 150 ° C. in an electric furnace.
  • the second electrode 20 is immersed, and is immersed for a whole day and night (approximately 20 hours) in a dark place.
  • the second electrode 20 on which the porous oxide semiconductor layer 3 is formed is taken out of the solution containing the photosensitizing dye, and washed with a mixed solution of acetonitrile and t-butanol. This gives a working electrode 11 having the porous oxide semiconductor layer 3 made of TiO 2 thin film carrying a photosensitizing dye.
  • the terminal 8 formed on the working electrode 11 is formed, for example, by applying a silver paste by printing or the like, and heating and baking.
  • the terminal 8 is preferably formed before the dye carrying step.
  • a metal plate 4 made of titanium or a titanium alloy is prepared.
  • a catalyst layer 6 made of platinum or the like is formed on the surface of the prepared metal plate 4.
  • the catalyst layer 6 is formed by a sputtering method or the like. Thereby, the 1st electrode 10 which has the metal plate 4 and the catalyst layer 6 can be obtained, and the 1st electrode 10 becomes the counter electrode 12 as it is.
  • the electrolyte 5 is surrounded and sealed by the sealing material 14 between the working electrode 11 and the counter electrode 12 (sealing process).
  • a resin or its precursor for forming the sealing material 14 is formed on the working electrode 11.
  • the resin or its precursor is formed so as to surround the porous oxide semiconductor layer 3 of the working electrode 11.
  • the resin is a thermoplastic resin
  • the molten resin is applied on the working electrode 11 and then naturally cooled at room temperature, or a film-like resin is brought into contact with the working electrode 11 and the resin is heated and melted by an external heat source. Then, the resin can be obtained by natural cooling at room temperature.
  • the thermoplastic resin for example, an ionomer or an ethylene-methacrylic acid copolymer is used.
  • an ultraviolet curable resin an ultraviolet curable resin that is a precursor of the resin is applied on the working electrode 11.
  • an aqueous solution containing the resin is applied on the working electrode 11.
  • a vinyl alcohol polymer is used as the water-soluble resin.
  • a resin or its precursor for forming the sealing material 14 is formed on the counter electrode 12.
  • the resin or its precursor on the counter electrode 12 is formed at a position overlapping the resin on the working electrode 11 or its precursor when the working electrode 11 and the counter electrode 12 face each other.
  • the resin on the counter electrode 12 or its precursor may be formed in the same manner as the resin or its precursor formed on the working electrode 11.
  • an electrolyte is filled in a region surrounded by the resin on the working electrode 11 or its precursor.
  • the working electrode 11 and the counter electrode 12 are opposed to each other, and the resin on the counter electrode 12 and the working electrode 11 are overlapped. Thereafter, when the resin is a thermoplastic resin in a reduced pressure environment, the resin is heated and melted to bond the working electrode 11 and the counter electrode 12 together. Thus, the sealing material 14 is obtained.
  • the resin is an ultraviolet curable resin
  • the ultraviolet curable resin of the resin on the counter electrode 12 and the working electrode 11 are overlapped, and then the ultraviolet curable resin is cured by ultraviolet rays, whereby the sealing material 14 is obtained.
  • the resin is a water-soluble resin, after the laminate is formed, the finger is dried at room temperature and then dried in a low-humidity environment, whereby the sealing material 14 is obtained.
  • the terminal 7 is formed on the surface of the counter electrode 12 opposite to the working electrode 11 side, that is, on the metal plate 4 of the first electrode 10 (terminal forming step).
  • the counter electrode 12 First, on the surface of the counter electrode 12 opposite to the working electrode 11 side, the counter electrode 12, the high melting point solder, and the tip of the soldering iron are placed in contact.
  • the tip of the soldering iron is heated so that the high-melting-point solder can be melted and generates ultrasonic waves.
  • the high melting point solder is melted by the heat transmitted from the tip of the soldering iron and vibrated by the ultrasonic waves from the tip of the soldering iron. Therefore, the high melting point solder improves the wettability with the metal plate 4 and is fixed on the surface of the metal plate 4.
  • the terminal 7 is formed on the surface of the counter electrode 12.
  • the temperature of the tip of the soldering iron is not particularly limited as long as a high melting point solder can be melted, but is preferably 200 to 450 ° C. from the viewpoint of sufficiently melting the solder, for example, 250 to 350 ° C. It is more preferable from the viewpoint of preventing oxidation of the solder and preventing deterioration of the photosensitizing dye due to heat.
  • the vibration frequency of the ultrasonic wave generated from the tip of the soldering iron is preferably 10 to 200 kHz, and more preferably 20 to 100 kHz from the viewpoint of preventing the metal plate 4 from being damaged.
  • the terminal 7 is formed by removing the soldering iron from the molten high melting point solder and cooling the high melting point solder.
  • the solder 13 on the terminals 7 and 8 is formed by melting the solder on the terminals 7 and 8 and then solidifying it.
  • the porous oxide semiconductor layer 3 is formed on the transparent conductor 1 of the second electrode composed of the transparent substrate 2 and the transparent conductor 1 to increase the photosensitivity.
  • the working electrode 11 is obtained by supporting the dye.
  • the catalyst layer 6 is formed on the surface of the metal plate 4 made of titanium or a titanium alloy, and the first electrode is used as the counter electrode 12 as it is as the first electrode 10.
  • the working electrode 11 and the counter electrode 12 are prepared, and the electrolyte 5 is surrounded and sealed by the sealing material 14 between the working electrode 11 and the counter electrode 12. Since the counter electrode 12 includes the metal plate 4 made of titanium or an alloy containing titanium and the catalyst layer 6, the counter electrode 12 has corrosion resistance to the electrolyte 5.
  • the terminal 7 is formed on the surface of the metal plate 4 of the counter electrode 12.
  • the terminal 7 is formed by heating and melting the high melting point solder and applying ultrasonic waves to the high melting point solder. For this reason, when the terminal 7 is formed, the wettability of the high melting point solder to the surface of the metal plate 4 is improved. For this reason, the terminal 7 made of high melting point solder can be easily and firmly fixed to the surface of the metal plate 4 made of a titanium plate or an alloy plate containing titanium.
  • the photoelectric conversion element 100 including the terminal 7 firmly fixed on the surface of the metal plate 4 of the counter electrode 12 can be easily manufactured.
  • the photoelectric conversion element 100 manufactured in the above-described manufacturing process the first electrode 10 using titanium and the terminal 7 formed on the first electrode 10 are firmly bonded. Etc., the photoelectric conversion element 100 and the lead wire can be firmly connected.
  • FIG. 2 is a schematic cross-sectional view showing the photoelectric conversion device of the present embodiment.
  • the photoelectric conversion element 110 when the metal plate 4 is viewed from a direction perpendicular to the surface of the metal plate 4 constituting the counter electrode 12, the counter electrode 12 is It has the extension part 18a extended outside the area
  • the terminal 7 is formed on the extending portion 18a.
  • Such a photoelectric conversion element 110 is manufactured as follows.
  • the counter electrode 12 having a region outside the region where the region surrounded by the outer periphery of the sealing material 14 is planned is prepared. That is, the counter electrode 12 having a region that becomes the extending portion 18a is prepared.
  • Other processes in the preparation process are the same as those in the first embodiment.
  • sealing is performed with the sealing material 14 so that the extended portion 18a is secured.
  • the sealing method may be performed in the same manner as the sealing process in the first embodiment.
  • the terminal 7 is formed on the extended portion 18a.
  • the terminals may be formed in the same manner as the terminal forming process in the first embodiment.
  • the photoelectric conversion element 110 when heat is applied in the terminal formation step, when the counter electrode 12 is viewed from a direction perpendicular to the surface of the metal plate 4 constituting the counter electrode 12, The distance between the terminal 7 and the electrolyte 5 is greater than when the terminal 7 is connected to the region surrounded by the sealing material 14. For this reason, heat can be prevented from being transmitted to the photosensitizing dye or the electrolyte 5 through the counter electrode 12. Therefore, even when heat is applied in the terminal forming step, deterioration of the photosensitizing dye and the electrolyte 5 due to heat can be suppressed.
  • FIG. 3 the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 3 is a schematic cross-sectional view showing the photoelectric conversion device of the present embodiment.
  • the working electrode 11 has a plurality of porous oxide semiconductor layers 3 a and 3 b, and a porous oxide is formed on the surface of the working electrode 11 on the counter electrode 12 side.
  • a current collecting wiring 35 made of metal is provided between the semiconductor layers 3a and 3b.
  • the terminal is connected to the current collecting wiring 35 in the region 19 surrounded by the sealing material 14 of the metal plate 4. It is formed at the overlapping position.
  • the current collection wiring 35 is provided from the region 19 surrounded by the sealing material 14 to the outside of the outer periphery of the sealing agent, and is connected to the terminal 8. Further, the current collecting wiring 35 is entirely covered with the wiring protective layer 36, and the contact between the electrolyte 5 and the current collecting wiring 35 is prevented. Note that the wiring protective layer 36 may or may not be in contact with the transparent conductor 1 of the working electrode 11 as long as the entire current collecting wiring 35 is covered.
  • the material constituting the current collector wiring 35 may be any material having a lower resistance than the transparent conductor 1, and examples of such a material include metals such as gold, silver, copper, platinum, aluminum, titanium, and nickel. Is mentioned.
  • Examples of the material constituting the wiring protective layer 36 include inorganic insulating materials such as non-lead transparent low melting point glass frit.
  • the wiring protective layer 36 prevents contact between the electrolyte 5 and the current collector wiring 35 over a longer period of time, and generation of dissolved components of the wiring protective layer 36 when the electrolyte 5 comes into contact with the wiring protective layer 36.
  • Such a photoelectric conversion element 120 is manufactured as follows.
  • the porous oxide semiconductor layers 3a and 3b are formed in the semiconductor formation process.
  • the porous semiconductor is formed at two locations using the same method as the method of forming the porous oxide semiconductor layer 3. Should be provided.
  • the current collecting wiring 35 and the wiring protective layer 36 are formed.
  • the current collector wiring 35 is formed by coating the metal particles constituting the current collector wiring between the porous oxide semiconductor layers 3a and 3b after forming the porous oxide semiconductor layers 3a and 3b. It can be obtained by heating and baking.
  • the terminal 8 is preferably formed simultaneously with the current collecting wiring 35.
  • the wiring protective layer 36 is made of, for example, a paste obtained by blending a thickener, a binder, a dispersant, a solvent, or the like with an inorganic insulating material such as the above-described low-melting glass frit as necessary, by a screen printing method. It can be obtained by coating the entire current collecting wiring 35 so as to cover it, heating and baking.
  • the molten chemical resistant resin is applied to the wiring protective layer 36 and then naturally cooled at room temperature, or a film-like chemical resistant resin is applied.
  • the chemical-resistant resin can be obtained by bringing the conductive resin into contact with the wiring protective layer 36, heating and melting the film-shaped chemical-resistant resin with an external heat source, and then naturally cooling at room temperature.
  • the thermoplastic chemical-resistant resin for example, an ionomer or an ethylene-methacrylic acid copolymer is used.
  • the chemical resistant resin is an ultraviolet curable resin
  • an ultraviolet curable resin which is a precursor of the chemical resistant resin
  • the above ultraviolet curable resin is cured by ultraviolet rays.
  • a chemical resistant resin can be obtained.
  • the chemical resistant resin is a water soluble resin
  • the chemical resistant resin can be obtained by applying an aqueous solution containing the chemical resistant resin on the wiring protective layer 36.
  • sealing step sealing is performed in the same manner as the sealing step of the first embodiment.
  • the terminal 7 is formed in the terminal forming step.
  • the terminal 7 is connected to the current collecting wiring 35 in the region 19 surrounded by the sealing material 14 of the metal plate 4. It is formed at the overlapping position.
  • the terminals may be formed in the same manner as the terminal forming process in the first embodiment.
  • heat transmitted to the electrolyte 5 through the counter electrode 12 is transmitted to the current collector wiring 35 in the terminal forming step.
  • the current collection wiring 35 is comprised with a metal, it is excellent in thermal conductivity. And since it is provided from the area
  • FIG. 4 is a schematic cross-sectional view showing the photoelectric conversion device of the present embodiment.
  • current collection wiring 35 is provided from a position overlapping the sealing material 14 to the outside of the outer periphery of the sealing material 14, and is connected to the terminal 8.
  • the terminal 7 is formed at a position where the sealing material 14 and the current collecting wiring 35 overlap when the metal plate 4 is viewed from a direction perpendicular to the surface of the metal plate 4.
  • Such a photoelectric conversion element 130 is manufactured as follows.
  • the porous oxide semiconductor layer 3 is formed in the same manner as in the first embodiment, and then the current collector wiring 35 is formed at a position overlapping the sealing material 14.
  • the current collecting wiring 35 is formed around the porous oxide semiconductor layer 3 at a place where the sealing material 14 is to be formed. .
  • the method of forming the current collector wiring 35 is the same method as the current collector wiring 35 of the third embodiment.
  • the wiring protective layer 36 is formed.
  • the wiring protective layer 36 may be formed by the same method as the wiring protective layer in the third embodiment.
  • the terminal 8 is preferably formed simultaneously with the current collecting wiring 35.
  • the working electrode 11 and the counter electrode 12 are overlapped and sealed so that the sealing material 14 and the current collecting wiring 35 overlap each other.
  • the sealing method may be performed in the same manner as the sealing process in the first embodiment.
  • the terminal 7 is formed at a position where the sealing material 14 and the current collecting wiring 35 overlap.
  • the terminals may be formed in the same manner as in the first embodiment.
  • heat transmitted to the sealing material 14 via the counter electrode 12 is transmitted to the current collector wiring 35 in the terminal forming step. Since the current collecting wiring 35 is provided from the position where it overlaps with the sealing material 14 to the outside of the outer periphery of the sealing material 14, the heat transmitted to the current collecting wiring 35 escapes to the outside of the outer periphery of the sealing material 14. For this reason, it can suppress that the heat transmitted to the sealing material 14 through the counter electrode 12 stays in the sealing material 14 or stays in the electrolyte 5 through the sealing material 14. Therefore, in the terminal formation step, deterioration of the sealing material 14, the photosensitizing dye, and the electrolyte 5 due to heat can be suppressed.
  • the present embodiment is a photoelectric conversion element module using a photoelectric conversion element having the same configuration as the photoelectric conversion element 100 of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the photoelectric conversion element module according to the present embodiment.
  • the photoelectric conversion element module 200 includes a set of photoelectric conversion elements 100. Moreover, the photoelectric conversion elements 100 and 100 share one transparent substrate 2.
  • one end of the conductive wire 9 is connected to the terminal 7 of one photoelectric conversion element 100 by solder 13. Furthermore, the other end of the conductive wire 9 is connected to the terminal 8 of the other photoelectric conversion element 100 by a solder 13. Thus, the pair of photoelectric conversion elements 100, 100 are connected in series.
  • the conductive wire 9 is a wire made of a conductive material such as copper or solder, and can be a lead wire, a solder ribbon wire, or the like.
  • the photoelectric conversion element module 200 can be manufactured as follows.
  • photoelectric conversion element preparation step First, a set of photoelectric conversion elements 100 and 100 is prepared (photoelectric conversion element preparation step).
  • Preparation of a set of photoelectric conversion elements is performed by first forming a set of transparent conductors 1 on the transparent substrate 2 in a preparation process for manufacturing the photoelectric conversion elements 100.
  • the transparent conductor 1 may be formed in the same manner as the transparent conductor 1 in the first embodiment.
  • a porous oxide semiconductor layer 3 is formed on each transparent conductor 1 by the same method as in the first embodiment, and a photosensitizing dye is carried.
  • a plurality of counter electrodes are prepared by the same method as in the first embodiment.
  • terminal 8 is formed on the working electrode 11 of each photoelectric conversion element 100 by the same method as in the first embodiment.
  • the electrolyte 5 is sealed between each working electrode 11 and the counter electrode 12 by the same method as the sealing step in the first embodiment.
  • the terminal 7 is formed on each counter electrode 12 by the same method as the terminal forming step in the first embodiment.
  • the terminal 7 on the counter electrode 12 of one photoelectric conversion element 100 and the terminal 8 on the working electrode of the other photoelectric conversion element 100 are connected by a conductive wire 9 (connection process).
  • one end of the conductive wire 9 is soldered to the terminal 7 on the counter electrode 12 of one photoelectric conversion element 100 by solder 13, and the other end of the conductive wire 9 is connected to the working electrode 11 of the other photoelectric conversion element 100. This is performed by soldering the terminals 8 with solder 13.
  • the conductive wire 9 includes the terminal 7 formed on the surface of the counter electrode 12 opposite to the working electrode 11 after the photoelectric conversion elements 100 and 100 are manufactured. Since the terminals 8 formed on the transparent conductor 1 can be connected with the solder 13 from the same direction, the photoelectric conversion element module 200 can be easily manufactured. Moreover, the connection of the conductive wire 9 can be easily changed after the photoelectric conversion element module 200 is manufactured.
  • the photoelectric conversion element module 200 has a strong connection between the photoelectric conversion elements 100, and can prevent the connection between the photoelectric conversion elements 100 from being disconnected due to an external force or the like.
  • the photoelectric conversion element module 200 connects the conductive wires 9 with solder, thereby using a silver paste or the like between the working electrode 11 of one photoelectric conversion element 100 and the counter electrode 12 of the other photoelectric conversion element 100.
  • the resistance can be reduced as compared with the case of electrical connection. Therefore, although the titanium plate is used as the counter electrode 12, the resistance can be reduced and the durability can be improved.
  • FIG. 6 the same or equivalent components as those in the second embodiment and the fifth embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • This embodiment is a photoelectric conversion element module using a photoelectric conversion element having the same configuration as the photoelectric conversion element 110 of the set of the second embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the photoelectric conversion element module according to the present embodiment.
  • the photoelectric conversion element module 210 includes a pair of photoelectric conversion elements 110 and 110. Moreover, the photoelectric conversion elements 110 and 110 share one transparent substrate 2.
  • the terminal 7 on the counter electrode of one photoelectric conversion element 110 and the terminal 8 on the working electrode of the other photoelectric conversion element 100 are connected by a conductive adhesive 9a.
  • the two photoelectric conversion elements 110 and 110 are connected in series.
  • conductive adhesive 9a various metal pastes such as silver paste and carbon paste can be used.
  • Such a photoelectric conversion element module 210 can be manufactured as follows.
  • photoelectric conversion element preparation step First, a set of photoelectric conversion elements 110 and 110 is prepared (photoelectric conversion element preparation step).
  • Preparation of a set of photoelectric conversion elements 110 and 110 is performed by forming a set of transparent conductors 1 on the transparent substrate 2 in a preparation process for manufacturing the photoelectric conversion element 110 in the second embodiment.
  • the transparent conductor 1 can be formed by the same method as the formation of the transparent conductor 1 in the second embodiment.
  • a porous oxide semiconductor layer 3 is formed on each transparent conductor 1 by the same method as in the second embodiment, and a photosensitizing dye is carried.
  • the several counter electrode 12 is prepared by the method similar to 2nd Embodiment.
  • the electrolyte 5 is sealed between each working electrode 11 and the counter electrode 12 by the same method as the sealing step in the second embodiment.
  • the terminals 7 are formed on the extending portions 18a on the respective counter electrodes 12 by the same method as the terminal forming step in the second embodiment. Moreover, the terminal 8 is formed on the working electrode 11 of each photoelectric conversion element 110 by the method similar to 2nd Embodiment.
  • the terminal 7 on the counter electrode 12 of one photoelectric conversion element 110 and the terminal 8 on the working electrode of the other photoelectric conversion element 110 are connected by the conductive adhesive 9a (connection process).
  • the terminal 8 formed thereon can be connected from the same direction by the conductive adhesive 9a.
  • the photoelectric conversion element module 210 can be manufactured easily.
  • the connection of one photoelectric conversion element 110 and the other photoelectric conversion element 110 can be easily changed after manufacture of a photoelectric conversion element module.
  • the conductive adhesive 9a can be firmly connected to the counter electrode 12 via the terminal 7.
  • the present embodiment is a photoelectric conversion element module using a set of photoelectric conversion elements.
  • FIG. 7 is a schematic cross-sectional view showing the photoelectric conversion element module according to the present embodiment.
  • the photoelectric conversion element module 220 includes a pair of photoelectric conversion elements 110a and 110a.
  • the photoelectric conversion element 110a is a second embodiment in that the terminal 15 is made of a high melting point solder, and the terminal 15 is formed from the surface opposite to the working electrode 11 side of the counter electrode 12 to the surface on the working electrode 11 side. It differs from the photoelectric conversion element 110 of the form. Further, in the photoelectric conversion element module 220, the terminal 15 formed on the counter electrode 12 of one photoelectric conversion element 110 a and the terminal 8 formed on the working electrode 11 of the other photoelectric conversion element 110 a have the surface of the counter electrode 12. When the counter electrode 12 is viewed from a direction perpendicular to the direction, they overlap each other.
  • the terminal 15 of one photoelectric conversion element 110 a and the terminal 8 on the other working electrode 11 are connected by solder 16.
  • the solder 16 is preferably composed of low melting point solder.
  • Such a photoelectric conversion element can be manufactured as follows.
  • photoelectric conversion element preparation step First, a set of photoelectric conversion elements 110a and 110a is prepared (photoelectric conversion element preparation step).
  • Preparation of a set of photoelectric conversion elements 110a and 110a is performed by first preparing a working electrode and a counter electrode in the same manner as the preparation step in the fifth embodiment.
  • the terminal 15 is formed with a high melting point solder from one surface of the counter electrode 12 to the other surface at the end of the region that becomes the extending portion 18a of the counter electrode 12.
  • the terminal 15 may be formed in the same manner as the terminal 7 is formed with the high melting point solder in the second embodiment.
  • the catalyst layer 6 is formed on the working electrode 11 side in the extending portion 18a of the counter electrode 12, the catalyst layer 6 is destroyed by applying ultrasonic waves to the high melting point solder. Therefore, the high melting point solder is directly formed on the metal plate 4 of the counter electrode 12 on the working electrode 11 side in the extending portion 18a.
  • the terminal 8 is formed outside the region that is expected to be surrounded by the outer periphery of the sealing material 14.
  • the terminal 8 may be formed in the same manner as the terminal 8 in the second embodiment.
  • a solder 16 made of low melting point solder is provided on the terminal 8.
  • the counter electrode 12 and the working electrode 11 are overlapped so that the terminal 15 formed on one counter electrode 12 and the solder 16 of the terminal 8 formed on the working electrode 11 serving as the other photoelectric conversion element are in contact with each other.
  • the electrolyte 5 is sealed between each working electrode 11 and the counter electrode 12 by the same method as the sealing step in the second embodiment.
  • the terminal 15 and the solder 16 are connected by heating the solder 16 (connection process).
  • the photoelectric conversion element module 220 can firmly join the counter electrode 12 of one photoelectric conversion element 110a to the other photoelectric conversion element 110a via the terminal 15 and the solder 16. Moreover, electrical connectivity can be improved by adopting soldering. Therefore, although the metal plate 4 of the counter electrode 12 is made of titanium, the electrical connectivity and durability can be improved. In addition, since the terminals 15 and the solder 16 are made of solder, they are easy to form and are inexpensive, so that manufacturing can be facilitated and costs can be reduced. Further, in the photoelectric conversion element module 220, the extension portion 18a located outside the region surrounded by the outer periphery of the sealing material 14 in one photoelectric conversion element 110a is connected to the other photoelectric conversion element 110a. It is possible to suppress the porous oxide semiconductor layer 3 and the electrolyte 5 from becoming high temperature during soldering, and to suppress the deterioration of the porous oxide semiconductor layer 3 and the electrolyte 5.
  • the terminal forming step is performed after the sealing step, but the present invention is not limited to this.
  • a terminal formation process may be performed before the sealing process.
  • the terminal 7 is formed on one surface of the counter electrode 12 before sealing.
  • the terminals may be formed in the same manner as the terminal forming process in the first embodiment.
  • the sealing step in the first embodiment may be performed in the same manner.
  • the porous oxide semiconductor layer 3 is formed on the second electrode 20.
  • the working electrode 11 is composed of the second electrode 20 and the porous oxide semiconductor layer 3 carrying the photosensitizing dye
  • the counter electrode 12 is composed of the first electrode 10.
  • the present invention is not limited thereto, and the porous oxide semiconductor layer 3 is formed on the first electrode 10, and the working electrode 11 is a porous oxide on which the first electrode 10 and the photosensitizing dye are supported.
  • the counter electrode 12 may be composed of the second electrode 20 and the semiconductor layer 3.
  • FIG. 8 is a cross-sectional view showing such a modification of the photoelectric conversion element 100 shown in FIG.
  • the 1st electrode 10 is comprised with the metal plate 4, and the working electrode 11 is comprised with the 1st electrode 10 and the porous oxide semiconductor layer 3 with which a photosensitizing dye is carry
  • the second electrode 20 is composed of the transparent substrate 2, the transparent conductor 1, and the catalyst layer 6 provided on the transparent conductor 1, and the counter electrode 12 is composed of the second electrode 20.
  • the catalyst layer 6 is made of, for example, platinum or the like that is thinly formed so that light can be transmitted.
  • the manufacture of the photoelectric conversion element 140 is performed as follows. First, the 1st electrode 10 comprised from the metal plate 4 is prepared. Next, a porous oxide semiconductor layer is formed on the first electrode 10. The method for forming the porous oxide semiconductor layer 3 may be performed in the same manner as the semiconductor forming step in the first embodiment. Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 3. The photosensitizing dye may be supported in the same manner as the dye supporting process in the first embodiment. Thus, the working electrode 11 in which the porous oxide semiconductor layer 3 is formed on the first electrode 10 is obtained.
  • the counter electrode 12 is prepared.
  • the counter electrode 12 is prepared by forming the transparent conductor 1 on the transparent substrate 2 and forming the catalyst layer 6 on the transparent conductor 1 to form the second electrode.
  • the method for forming the transparent conductor 1 may be performed in the same manner as the method for forming the transparent conductor 1 on the transparent substrate 2 in the first embodiment.
  • a method similar to the method of forming the catalyst layer on the metal plate 4 may be performed.
  • the second electrode thus obtained becomes the counter electrode 12.
  • the porous oxide semiconductor layer 3 and the electrolyte 5 are sealed with the sealing material 14 between the working electrode 11 and the counter electrode 12.
  • the sealing method may be performed in the same manner as the sealing process in the first embodiment.
  • the terminal 7 is formed.
  • the terminal 7 may be formed in the same manner as the terminal forming process in the first embodiment. Other processes are the same as those in the first embodiment.
  • the terminal 7 is formed after the sealing step in the above, but the terminal 7 may be formed before the sealing step. By doing so, heat in the terminal forming process is not conducted to the electrolyte 5, and deterioration of the electrolyte 5 due to heat in the terminal forming process can be prevented.
  • the terminal 7 may be formed before the dye supporting step. By doing so, heat in the terminal forming step is not conducted to the photosensitizing dye, and deterioration of the photosensitizing dye due to heat in the terminal forming step can be prevented.
  • the photoelectric conversion element module includes a set of photoelectric conversion elements, but the photoelectric conversion element module of the present invention may include three or more photoelectric conversion elements. Good. In a photoelectric conversion element module having three or more photoelectric conversion elements, when two of the photoelectric conversion elements are connected to each other by a conductive line, the photoelectric conversion element to which the conductive line is connected is easily changed after the element is assembled. Can do.
  • the terminal 7 is formed on the metal plate 4 on the side opposite to the working electrode 11 side of the counter electrode 12, but the terminal 7 is on the working electrode 11 side of the counter electrode 12. It may be provided on the metal plate 4. In order to provide the terminal 7 on the metal plate 4 on the working electrode 11 side of the counter electrode 12, the terminal 7 may be provided on the working electrode 11 side of the counter electrode 12 in the terminal forming step in the second embodiment.
  • the catalyst layer 6 is formed on the working electrode 11 side of the counter electrode 12, but when the ultrasonic wave is applied to the high melting point solder in the terminal formation step, the catalyst layer 6 is destroyed and the terminal 7 is replaced with the metal plate 4. Can be formed on top.
  • the terminal 7 may be formed from the side opposite to the working electrode 11 side of the counter electrode 12 to the working electrode 11 side of the counter electrode 12.
  • the method of forming the terminal 7 may be performed in the same manner as the formation of the terminal 15 in the seventh embodiment.
  • the 2nd electrode was comprised from the transparent conductor 1 provided on the transparent base material 2 and the transparent base material 2, it may be comprised with the conductive glass as a transparent conductor.
  • Titanium foil with a thickness of 40 ⁇ m was prepared as a metal plate.
  • the high melting point solder shown in Table 1 was used for one part of this titanium foil, the high melting point solder was melted with an ultrasonic soldering iron, and then solidified to form a terminal. At this time, the temperature of the high melting point solder in the molten state was set to a temperature higher than the melting point shown in Table 1, and the ultrasonic vibration frequency was set to 10 kHz.
  • the lead wires were soldered onto the terminals using the joining solder shown in Table 1.
  • the material of the lead wire is copper.
  • Example 9 Copper was coated on the same metal plate as in Example 1 to a thickness of 1 ⁇ m by sputtering. A lead wire was soldered to this coating in the same manner as in Example 1. Next, as in Example 1, a tensile force was applied to the lead wire.
  • the terminal can be easily and firmly formed on the counter electrode composed of the titanium plate without using a vacuum device for forming the terminal.
  • Example 7 The photoelectric conversion element module shown in FIG. 7 was produced.
  • Counter electrode A conductive film made of Pt formed on a titanium foil having a thickness of 40 ⁇ m by a sputtering method was used as a counter electrode. A terminal was formed in the extended portion of the counter electrode of the photoelectric conversion element. For forming the terminals, Cerasolzer # 297 was used as a high melting point solder. When forming the terminals, the temperature was set higher than the melting point solder higher than the melting point, and ultrasonic waves with a vibration frequency of 60 kHz were applied.
  • the extension part of one photoelectric conversion element was provided with solder on the terminal on the working electrode of the other photoelectric conversion element.
  • Assembly of photoelectric conversion element Combine the working electrode and the counter electrode so that the terminal formed on the counter electrode serving as one photoelectric conversion element and the terminal on the working electrode serving as the other photoelectric conversion element overlap.
  • An electrolyte layer was formed by injecting an electrolyte into and sealing.
  • connection using the silver paste was performed by applying the silver paste to the extending portion of one photoelectric conversion element and the terminal on the working electrode of the other photoelectric conversion element, and placing the paste at 80 ° C. for 1 hour.
  • the measurement result of the photoelectric conversion efficiency of only one photoelectric conversion element is also shown.
  • Example 7 As shown in Table 2, the photoelectric conversion efficiency of Example 7 was superior to the photoelectric conversion efficiency of Comparative Example 10. This is presumably because, in Example 7, the electrical connectivity between the terminal on the counter electrode of one photoelectric conversion element and the terminal on the working electrode of the other photoelectric conversion element is good.
  • Example 7 can easily produce a photoelectric conversion element module using a photoelectric conversion element having a terminal on the counter electrode, and that the photoelectric conversion efficiency of the photoelectric conversion element module is good.
  • the manufacturing method of the photoelectric conversion element which can manufacture easily a photoelectric conversion element provided with the terminal firmly joined with the electrode which uses titanium, the photoelectric conversion element manufactured by it, and a photoelectric conversion element A module manufacturing method and a photoelectric conversion element module manufactured thereby are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】 チタンを用いる電極と強固に接合する端子を備える光電変換素子を容易に製造可能な光電変換素子の製造方法等を提供する。 【解決手段】 光電変換素子100の製造方法は、チタン或いはチタンを含む合金からなる金属板4と触媒層6とを有する第1電極10における触媒層6の表面上、又は、透明導電体1を有する第2電極20の透明導電体1の表面上に、多孔質酸化物半導体層3を形成する半導体形成工程と、多孔質酸化物半導体層3に光増感色素を担持させる色素担持工程と、第1電極10と第2電極20との間に多孔質酸化物半導体層3及び電解質5を封止材14により包囲して封止する封止工程と、金属板4上に端子7を形成する端子形成工程とを備え、端子形成工程において、端子7は、高融点はんだが加熱されて溶融されると共に超音波が印加されて形成されることを特徴とする。

Description

光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュール
 本発明は、光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュールに関する。
 色素増感太陽電池は、スイスのグレッツェルらにより開発されたものであり、光電変換効率が高く、製造コストが安い利点を持ち、新しいタイプの太陽電池として注目を集めている。
 色素増感太陽電池の概略構成は、透明導電膜が設けられた透明基材上に、光増感色素が担持される多孔質酸化物半導体層が設けられた作用極と、この作用極に対向して設けられた対極とを備え、これら作用極と対極との間に、酸化還元対を含有する電解質が充填されたものである。
 この種の色素増感太陽電池は、太陽光などの入射光を吸収した光増感色素により発生する電子が酸化物半導体微粒子に注入され、作用極と対極の間に起電力が生じることにより、光エネルギーを電力に変換する光電変換素子として機能する。
 電解質としては、I/I3-などの酸化還元対をアセトニトリル等の有機溶剤に溶解させた電解液を用いることが一般的であり、このほか、不揮発性のイオン液体を用いた構成、液状の電解質を適当なゲル化剤でゲル化させ、擬固体化させた構成、及びp型半導体などの固体半導体を用いた構成等が知られている。
 対極は、電解質との化学反応による腐食が抑制される材質を用いる必要がある。このような材質としては、白金を製膜したチタン基板、白金を製膜したガラス電極基板等を用いることができる。
 しかし、白金からなる導電層を形成したガラス電極基板は、ガラスの強度を確保するためにガラスを一定以上の厚さにしなければならず、このため光電変換素子の厚さが大きくなるという問題があり、チタン基板により対極を構成したいという要求がある。しかし、チタン基板は、チタンの表面に酸化膜が形成されるため、リード線等をチタン基板に接続することが困難である。
 このため、チタン基板により構成される電極の表面上に、はんだ付けが容易な異種金属(Cuなど)からなる被膜をスパッタリング法などにより形成することが提案されている(特許文献1参照)。
特開2007-280849号公報
 しかしながら、特許文献1に記載の光電変換素子は、前記異種金属からなる被膜をスパッタリング法などにより形成するために、真空装置等を用いる必要がある。このため、コストがかさみ、被膜の形成が困難であることから、チタン基板を用いる対極にリード線等が接続できる光電変換素子の製造が容易ではないという問題があった。また、被膜とチタン基板とを接合する力について、更なる改善の余地があった。
 そこで、本発明は、上記事情に鑑みてなされたものであって、チタンを用いる電極と強固に接合する端子を備える光電変換素子を容易に製造可能な光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュールを提供することを目的とする。
 本発明の光電変換素子の製造方法は、チタン或いはチタンを含む合金からなる金属板と触媒層とを有する第1電極における前記触媒層の表面上、又は、透明導電体を有する第2電極の前記透明導電体の表面上に、多孔質酸化物半導体層を形成する半導体形成工程と、前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、前記第1電極と前記第2電極との間に前記多孔質酸化物半導体層及び電解質を封止材により包囲して封止する封止工程と、前記第1電極における前記封止材の外周により包囲される表面以外の表面において、前記金属板上に端子を形成する端子形成工程と、を備え、前記端子形成工程において、前記端子は、高融点はんだが加熱されて溶融されると共に超音波が印加されて形成されることを特徴とするものである。
 このような光電変換素子の製造方法によれば、第1電極の触媒層上又は第2電極の透明導電体上に多孔質酸化物半導体層を形成し、多孔質酸化物半導体層に光増感色素を担持させる。つまり、第1電極及び第2電極において、多孔質酸化物半導体層が形成される電極が作用極における電極となり、多孔質酸化物半導体層が形成されない電極が対極における電極となる。そして、これら第1電極と第2電極との間に電解質を封止材により包囲して封止する。この第1電極は、チタン或いはチタンを含む合金からなる金属板を有し、金属板は電解質に対して耐腐食性を有する。そして、この第1電極における封止材の外周により包囲される表面以外の表面において、金属板上に端子を形成する。このとき、端子は、高融点はんだにより構成され、高融点はんだが加熱されて溶融されると共に高融点はんだに超音波が印加されて形成される。このため、端子を形成する際、高融点はんだの金属板表面に対する濡れ性が向上する。従って、チタンを用いる電極に高融点はんだを強固に接合させることができ、また、真空装置等の設備を用いなくとも容易に端子を形成することができる。
 また、上記光電変換素子の製造方法において、前記多孔質酸化物半導体層は、前記透明導電体上に形成されても良い。
 さらに、上記光電変換素子の製造方法において、前記第1電極は、前記第1電極の表面に対して垂直な方向から前記第1電極を見た場合に、前記封止材の外周により包囲される領域よりも外側に延設される延設部を有し、前記端子は、前記延設部に形成されることが好ましい。
 このような光電変換素子の製造方法によれば、第1電極の表面に対して垂直な方向から第1電極を見た場合に、第1電極の第2電極側とは反対側の表面における前記封止材により包囲される領域に端子が形成される場合よりも、端子と光増感色素や電解質との距離が大きい。このため、端子形成工程において、熱が第1電極を介して光増感色素や電解質に伝導することが抑制できる。従って、端子形成工程において、熱による光増感色素や電解質の劣化を抑制することができる。
 さらに、上記光電変換素子の製造方法において、前記端子は、前記第1電極における前記第2電極側と反対側の表面から前記第2電極側の表面にかけて形成されることが好ましい。
 このような光電変換素子の製造方法によれば、端子は、第1電極における第2電極側と反対側の表面から第2電極側の表面にかけて、第1電極の金属板に接合されるため、端子を金属板上に更に強固に接続することができる。
 或いは、上記光電変換素子の製造方法において、前記第2電極における前記第1電極側の表面上には、前記封止材により包囲される領域から前記封止剤の外周の外側にかけて金属からなる集電配線が設けられており、前記端子は、前記第1電極の表面に対して垂直な方向から前記第1電極を見た場合に、前記第1電極の前記第2電極側とは反対側の表面上における前記封止材により包囲される領域において、前記集電配線と重なる位置に形成されることが好ましい。
 このような構成の光電変換素子の製造方法によれば、端子形成工程において、第1電極を介して電解質に伝わる熱は、集電配線に伝わる。集電配線は、金属材料により構成されるため熱伝導性に優れる。そして、集電配線は、封止材により包囲される領域から封止剤の外周の外側にかけて設けられるため、集電配線に伝わる熱は、封止材の外周の外に伝送されて放出される。このため、第1電極を介して光増感色素や電解質に伝わる熱がこれらに留まることを抑制することができる。従って、端子形成工程において、熱による光増感色素や電解質の劣化を抑制することができる。
 或いは、上記光電変換素子の製造方法において、前記第2電極における前記第1電極側の表面上には、前記封止材と重なる領域から前記封止材の外周の外側にかけて金属からなる集電配線が設けられており、前記端子は、前記第1電極の表面に対して垂直な方向から前記第1電極を見た場合に、前記第1電極の前記第2電極側とは反対側の表面上における前記封止材と重なる領域において、前記集電配線と重なる位置に形成されることが好ましい。
 このような構成の光電変換素子の製造方法によれば、端子形成工程において、第1電極を介して封止材に伝わる熱は、集電配線に伝わる。集電配線は、金属材料により構成されるため熱伝導性に優れる。そして、集電配線は、封止材と重なる領域から封止材の外周の外側にかけて設けられるため、集電配線に伝わる熱は、封止材の外周の外側に伝送されて放出される。このため、対極を介して封止材に伝わる熱が、封止材に留まったり、封止材を介して光増感色素や電解質中に留まったりすることを抑制することができる。従って、端子形成工程において、熱による封止材や光増感色素や電解質の劣化を抑制することができる。
 また、本発明の光電変換素子の製造方法は、チタン或いはチタンを含む合金からなる金属板と触媒層とを有する第1電極における前記金属板の表面上に端子を形成する端子形成工程と、透明導電体を有する第2電極の前記透明導電体の表面上に多孔質酸化物半導体層を形成する半導体形成工程と、前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、前記第1電極と前記第2電極とを対面させ、前記第1電極と前記第2電極との間に前記多孔質酸化物半導体層と電解質とが封止材により包囲され、前記端子が前記封止材により包囲されないようにして封止する封止工程と、を備え、前記端子形成工程において、前記端子は、高融点はんだが加熱されて溶融されると共に超音波が印加されて形成されることを特徴とするものである。
 このような光電変換素子の製造方法によれば、第1電極上の金属板上に端子を形成して、第2電極上に多孔質酸化物半導体層を形成して、多孔質酸化物半導体層に光増感色素を担持させる。このように、端子形成工程が、封止工程の前にあり、端子と多孔質酸化物半導体層とが、それぞれ別の電極に形成されるため、端子形成工程において加えられる熱が第2電極に伝導しない。このため端子形成工程における熱による光増感色素の劣化を防止することができる。また、端子形成工程において加えられる熱が第1電極を介して電解質に伝導しない。このため端子形成工程における熱による電解質の劣化を防止することができる。
 或いは、本発明の光電変換素子の製造方法は、チタン或いはチタンを含む合金からなる金属板と触媒層とを有する第1電極における前記触媒層の表面上に多孔質酸化物半導体層を形成する半導体形成工程と、前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、前記第1電極の表面上における前記多孔質半導体が形成されない領域において、前記金属板上に端子を形成する端子形成工程と、透明導電体を有する第2電極と前記第1電極とを対面させ、前記第1電極と前記第2電極との間に前記多孔質酸化物半導体層と電解質とが封止材により包囲され、前記端子が前記封止材により包囲されないようにして封止する封止工程と、を備え、前記端子形成工程において、前記端子は、高融点はんだが加熱されて溶融されると共に超音波が印加されて形成されることを特徴とするものである。
 このような光電変換素子の製造方法によれば、端子形成工程が、封止工程の前にあるため、端子形成工程において加えられる熱が第1電極を介して電解質に伝導することがない。このため電解質の熱による劣化を防止することができる。
 さらに、上記光電変換素子の製造方法において、前記端子形成工程は、前記色素担持工程の前にあることが好ましい。
 このような光電変換素子の製造方法によれば、端子形成工程が色素担持工程の前にあるため、端子形成工程において加えられる熱が光増感色素に伝導しない。このため光増感色素の熱による劣化を防止することができる。
 また、本発明の光電変換素子は、上記光電変換素子の製造方法により製造されることを特徴とするものである。
 このような光電変換素子によれば、製造過程において高融点はんだの第1電極における金属板表面に対する濡れ性が向上し、チタンを用いる第1電極と、第1電極上に形成される端子とが強固に接合される。このため、端子にリード線等を接続する場合に光電変換素子とリード線等を強固に接続することができる。
 また、本発明の光電変換素子モジュールの製造方法は、上記の光電変換素子の製造方法により製造される光電変換素子を複数準備する光電変換素子準備工程を備え、少なくとも1つの前記光電変換素子における前記第1電極上に形成される端子と、他の少なくとも1つの光電変換素子における前記第2電極とを導電部材により電気的に接続する接続工程を有することを特徴とするものである。
 このような光電変換素子モジュールの製造方法によれば、光電変換素子モジュールを形成する光電変換素子において、チタンを用いる第1電極に容易に高融点はんだを強固に接合させることができる。従って、導電部材を介して光電変換素子同士を強固に接続することができる光電変換モジュールを製造することができる。
 さらに、上記光電変換素子モジュールの製造方法において、前記光電変換素子は、前記第2電極の前記第1電極側の表面上における前記封止材の外周により包囲される領域の外側に端子が形成され、少なくとも1つの前記光電変換素子における前記第1電極上に形成される端子と、他の少なくとも1つの光電変換素子における第2電極上に形成される端子とを前記導電部材により接続しても良い。
 また、本発明の光電変換素子モジュールは、上記光電変換素子モジュールの製造方法により製造されることを特徴とするものである。
 このような光電変換素子モジュールによれば、光電変換素子同士の接続が強固であり、外力等により光電変換素子同士の接続が外れることを抑制することができる。
 本発明によれば、チタンを用いる電極と強固に接合する端子を備える光電変換素子を容易に製造可能な光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュールが提供される。
本発明の第1実施形態に係る光電変換素子を示す断面図である。 本発明の第2実施形態に係る光電変換素子を示す断面図である。 本発明の第3実施形態に係る光電変換素子を示す断面図である。 本発明の第4実施形態に係る光電変換素子を示す断面図である。 本発明の第5実施形態に係る光電変換素子モジュールを示す断面図である。 本発明の第6実施形態に係る光電変換素子モジュールを示す断面図である。 本発明の第7実施形態に係る光電変換素子モジュールを示す断面図である。 図1に示す光電変換素子の変形例を示す断面図である。
 以下、本発明に係る光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュールの好適な実施形態について図面を参照しながら詳細に説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかる光電変換素子を示す概略断面図である。
 図1に示すように、光電変換素子100は、作用極11と、作用極11と対向するように配置される対極12と、作用極11と対極12との間に配置される電解質5と、電解質5を包囲する封止材14と、対極12の作用極11とは反対側の表面に形成される端子7とを主な構成要素として備える。
 (作用極)
 作用極11は、透明基材2及び透明基材2の一方の面に設けられる透明導電体1から成る第2電極20と、透明導電体1上に設けられ、光増感色素が担持される多孔質酸化物半導体層3とを備える。
 透明基材2は、光透過性の材料からなる基板により構成される。このような材料としては、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)などが挙げられ、通常、光電変換素子の透明基材として用いられる材料であればいかなるものでも用いることができる。透明基材2は、これらの中から電解質への耐性などを考慮して適宜選択される。また、透明基材2は、できる限り光透過性に優れる基材が好ましく、光透過率が90%以上の基材がより好ましい。
 透明導電体1は、透明導電膜であり、透明基材2の一方の面の一部、または、全面に形成される薄膜である。作用極11の透明性を著しく損なわない構造とするために、透明導電体1は、導電性金属酸化物からなる薄膜であることが好ましい。このような導電性金属酸化物としては、例えば、酸化インジウムスズ(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが挙げられる。また、透明導電体1は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電体1が単層で構成される場合、透明導電体1は、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましく、また、高い耐熱性及び耐薬品性を有する観点から、FTOで構成されることがより好ましい。
 また、透明導電体1が複数の層で構成される積層体により構成されると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電体1が実現でき、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。また、透明導電体1の厚さは例えば0.01μm~2μmの範囲にすればよい。
 多孔質酸化物半導体層3を形成する酸化物半導体としては、特に限定されず、通常、光電変換素子用の多孔質酸化物半導体層を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような酸化物半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)が挙げられ、これらの2種以上で構成される酸化物半導体であっても良い。
 これら酸化物半導体の粒子の平均粒径は1~1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。また、多孔質酸化物半導体層3は、粒度分布の異なる酸化物半導体粒子を積層させて構成されることが好ましい。この場合、半導体層内で繰り返し光の反射を起こさせることが可能となり、多孔質酸化物半導体層3の外部へ逃がす入射光を少なくして、効率よく光を電子に変換することができる。多孔質酸化物半導体層3の厚さは、例えば0.5~50μmとすればよい。なお、多孔質酸化物半導体層3は、異なる材料からなる複数の酸化物半導体の積層体で構成することもできる。
 多孔質酸化物半導体層3を形成する方法としては、例えば、市販の酸化物半導体粒子を所望の分散媒に分散させた分散液、あるいは、ゾル-ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、加熱処理などにて空隙を形成させ多孔質化する方法などを適用することができる。
 光増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などが挙げられ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。具体的には、N3、N719、ブラックダイ(Black dye)などを使用することができる。
 (電解質)
 電解質5は、多孔質酸化物半導体層3内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層3内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層3と一体に形成されてなるもの、あるいは、イオン性液体、酸化物半導体粒子若しくは導電性粒子を含むゲル状の電解質を用いることができる。
 上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ-ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
 上記イオン性液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。常温溶融塩のアニオンとしては、BF-、PF-、F(HF)n-、ビストリフルオロメチルスルホニルイミド[N(CFSO-]、ヨウ化物イオンなどが挙げられる。イオン性液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
 上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン性液体を主体とする電解液との混和製に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
 このような酸化物半導体粒子としては、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y2O、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm~1000nm程度が好ましい。
 上記導電性粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10-2Ω・cm以下であり、より好ましくは、1.0×10-3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。このような導電性粒子には、電解質中において導電性が低下しにくく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが求められる。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応などによる劣化を生じないものが好ましい。
 このような導電性粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
 (対極)
 対極12は、第1電極10により構成される。第1電極は、チタンまたはチタン合金からなる金属板4と触媒層6とで構成される。なお、還元反応を促進する触媒層6は、金属板4における作用極11側の表面に形成される。触媒層6は、白金や炭素などからなる。
 (封止材)
 封止材14は、作用極11と対極12とを連結しており、作用極11と対極12との間の電解質5は、封止材14によって包囲されることで封止される。封止材14を構成する材料としては、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体、紫外線硬化樹脂、及び、ビニルアルコール重合体が挙げられる。なお、封止材14は樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。
 (端子)
 対極12における作用極11側とは反対側の表面、すなわち第1電極10の金属板4の表面には、端子7が形成される。端子7は、高融点はんだから構成される。
 高融点はんだとしては、融点が200℃以上(例えば210℃以上)であるものを用いることが好適である。このような高融点はんだとしては、Sn-Cu系、Sn-Ag系、Sn-Ag-Cu系、Sn-Au系、Sn-Sb系、Sn-Pb系(Pb含有量は例えば85質量%超)などを挙げることができ、これらのうち1つを単独で使用してもよいし、2以上を併用してもよい。
 なお、本実施形態においては、端子7上に、導電線等と端子7とを接続するためのはんだ13が形成される。はんだ13としては、特に制限はされないが、端子7が高融点はんだである場合には、高融点はんだより融点が低いはんだ(以下、低融点はんだということがある)が好適である。低融点はんだとしては、例えば融点が200℃未満であるものを用いるのが好適である。この様なはんだとしては、共晶タイプ(例えばSn-Pb等)や、鉛フリータイプ(例えばSn-Ag、Sn-Cu、Sn-Ag-Cu、Sn-Zn、Sn-Zn―B等)などが挙げられる。
低融点はんだを使用することによって、導電線等と端子7とのはんだ付けの際に多孔質酸化物半導体層3に担持される光増感色素や、電解質5が高温になることが抑制でき、光増感色素や電解質5が劣化することが抑制できる。
 なお、第2電極20の第1電極側の表面における封止材14の外周で包囲される外側の領域には端子8が形成される。端子8を構成する材料としては、金、銀、銅、白金、アルミニウムなどの金属が挙げられる。
 次に、図1に示す光電変換素子100の製造方法について説明する。
 まず、作用極11と、対極12とを準備する(準備工程)。
 作用極11は、次の工程により得ることができる。最初に透明基材2の一方の面上に透明導電体1を形成し第2電極20とする。次に、第2電極20における透明導電体1上に多孔質酸化物半導体層3を形成する(半導体形成工程)。次に、光増感色素を担持させる(色素担持工程)。
 透明基材2上に透明導電体1を形成する方法としては、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。なかでも、スプレー熱分解法が好ましい。透明導電体1を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、真空システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好ましい。
 透明導電体1上に多孔質酸化物半導体層3を形成する方法としては、主に塗布工程と乾燥・焼成工程からなる。塗布工程としては、例えばTiO2粉末と界面活性剤および増粘剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電体1の表面に塗布することが挙げられる。その際、塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電体1上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電体1の上を移動させる方法が挙げられる。乾燥・焼成工程としては、例えば大気雰囲気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ60分間、450℃の温度にて焼成する方法が挙げられる。
 多孔質酸化物半導体層3に光増感色素を担持させる方法としては、まず、色素担持用の色素溶液、例えば、アセトニトリルとt-ブタノールを容積比で1:1とした溶媒に対して極微量のN3色素粉末を加えて調整した溶液を予め準備しておく。
 次に、シャーレ状の容器内に入れた光増感色素を溶媒として含有する溶液中に、別途電気炉にて120~150℃程度に加熱処理をし、多孔質酸化物半導体層3が形成された第2電極20を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、光増感色素を含有する溶液から多孔質酸化物半導体層3が形成された第2電極20を取り出し、アセトニトリルとt-ブタノールからなる混合溶液を用い洗浄する。これによって、光増感色素を担持したTiO薄膜からなる多孔質酸化物半導体層3を有する作用極11を得る。
 また、作用極11上に形成される端子8は、例えば、銀ペーストを印刷等により塗布し、加熱・焼成させて形成される。この端子8の形成は、色素担持工程の前に行うことが好ましい。
 一方、対極12を準備するには、まず、チタンまたはチタン合金からなる金属板4を準備する。そして、準備した金属板4の表面上に白金などからなる触媒層6を形成する。触媒層6の形成は、スパッタリング法などにより形成する。これにより金属板4と触媒層6とを有する第1電極10を得ることができ、第1電極10がそのまま対極12となる。
 次に、作用極11と対極12との間に電解質5を封止材14により包囲して封止する(封止工程)。
 まず、作用極11の上に、封止材14となるための樹脂またはその前駆体を形成する。このとき樹脂またはその前駆体は、作用極11の多孔質酸化物半導体層3を包囲する様に形成する。樹脂が熱可塑性樹脂である場合は、溶融させた樹脂を作用極11上に塗布した後に室温で自然冷却するか、フィルム状の樹脂を作用極11に接触させ、外部の熱源によって樹脂を加熱溶融させた後に室温で自然冷却することにより樹脂を得ることができる。熱可塑性の樹脂としては、例えばアイオノマーやエチレン-メタクリル酸共重合体が用いられる。樹脂が紫外線硬化樹脂である場合は、樹脂の前駆体である紫外線硬化性樹脂を作用極11上に塗布する。樹脂が水溶性樹脂である場合は、樹脂を含む水溶液を作用極11上に塗布する。水溶性の樹脂として、例えばビニルアルコール重合体が用いられる。
 次に、対極12の上に封止材14となるための樹脂またはその前駆体を形成する。対極12上の樹脂またはその前駆体は、作用極11と対極12とを対向させる際に、作用極11上の樹脂またはその前駆体と重なる位置に形成する。また、対極12上の樹脂またはその前駆体の形成は、作用極11の上に形成される樹脂またはその前駆体と同様にして行えば良い。
 次に、作用極11上の樹脂またはその前駆体で包囲された領域に電解質を充填する。
 そして、作用極11と対極12とを対向させ、対極12上の樹脂と作用極11とを重ね合わせる。その後、減圧環境下において、樹脂が熱可塑性樹脂である場合は、樹脂を加熱溶融させ、作用極11と対極12とを接着させる。こうして封止材14が得られる。樹脂が紫外線硬化樹脂である場合は、対極12上の樹脂の紫外線硬化性樹脂と作用極11とを重ね合わせた後に紫外線により、紫外線硬化性樹脂を硬化させ、封止材14が得られる。樹脂が水溶性樹脂である場合は、積層体を形成した後に室温にて触指乾燥させた後、低湿環境下で乾燥させ、封止材14が得られる。
 次に、対極12における作用極11側とは反対側の表面上、すなわち第1電極10における金属板4上に端子7を形成する(端子形成工程)。
 まず、対極12における作用極11側とは反対側の表面上において、対極12と、高融点はんだと、はんだこての先端部とを接するように配置する。
 このとき、はんだこての先端部は、高融点はんだが溶融可能に加熱されると共に、超音波を発生する。こうして、高融点はんだは、はんだこて先端部から伝送する熱により溶融し、はんだこて先端部からの超音波により振動する。従って、高融点はんだは、金属板4との濡れ性が向上されて、金属板4の表面上に固定する。こうして、端子7が対極12の表面上に形成される。
 なお、はんだこて先端部の温度は、高融点はんだを溶融可能であれば、特に制限されないが、例えば、200~450℃であることが、はんだを十分に溶かす観点から好ましく、250~350℃であることが、はんだの酸化防止、及び、光増感色素の熱による劣化を防止する観点からより好ましい。
 また、はんだこての先端部から発生する超音波の振動周波数は、10~200kHzであることが好ましく、20~100kHzであることが金属板4に傷をつけることを防止する観点からより好ましい。
 次に、溶融した高融点はんだからはんだこてを離し、高融点はんだを冷却することで端子7が形成される。
 なお、端子7上及び端子8上のはんだ13は、はんだを端子7、8上で溶融させて、その後、凝固させることにより形成される。
 こうして、図1に示す光電変換素子100を得る。
 このような光電変換素子100の製造方法によれば、透明基材2と透明導電体1とからなる第2電極の透明導電体1上において、多孔質酸化物半導体層3を形成して光増感色素を担持させ、作用極11を得る。また、チタンまたはチタン合金からなる金属板4の表面上に触媒層6を形成し第1電極10として、第1電極をそのまま対極12とする。こうして、作用極11と、対極12とを準備して、これら作用極11と対極12との間に電解質5を封止材14により包囲して封止する。この対極12は、チタン或いはチタンを含む合金からなる金属板4と触媒層6とにより構成されるため、対極12は電解質5に対して耐腐食性を有する。そして、対極12の金属板4の表面に端子7を形成する。この端子7は、高融点はんだが加熱されて溶融されると共に高融点はんだに超音波が印加されて形成される。このため、端子7の形成時、高融点はんだの金属板4の表面に対する濡れ性が向上する。このため、チタン板或いはチタンを含む合金板からなる金属板4の表面に高融点はんだからなる端子7を容易にかつ強固に固定させることができる。
 このようにして対極12の金属板4の表面上に強固に固定される端子7を備える光電変換素子100を容易に製造することができる。
 従って、上述の製造過程において製造される光電変換素子100は、チタンを用いる第1電極10と、第1電極10上に形成される端子7とが強固に接合されるため、端子7にリード線等を接続する場合に光電変換素子100とリード線等を強固に接続することができる。
 (第2実施形態)
 次に、本発明の光電変換装置の第2実施形態について図2を用いて説明する。なお、図2において、第1実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。
 図2は、本実施形態の光電変換装置を示す概略断面図である。図2に示すように、光電変換素子110において、対極12は、対極12を構成する金属板4の表面に対して垂直な方向から金属板4を見た場合に、封止材14の外周により包囲される領域18よりも外側に延設される延設部18aを有する。そして、端子7は、延設部18a上に形成される。これらの点で第1実施形態の光電変換素子100と異なる。
 このような光電変換素子110は、次のようにして製造される。
 まず、準備工程において、封止材14の外周により包囲される領域が予定される領域よりも外側の領域を有する対極12を準備する。すなわち、延設部18aとなる領域を有する対極12を準備する。準備工程におけるその他の工程は、第1実施形態と同様である。
 そして、封止工程において、延設部18aが確保されるように封止材14により封止を行う。封止の方法は、第1実施形態における封止工程と同様にして行えば良い。
 次に、端子形成工程において、端子7を、延設部18aに形成する。端子の形成は、第1実施形態における端子形成工程と同様にして行えば良い。
 このような光電変換素子110の製造方法によれば、端子形成工程において、熱が加えられるとき、対極12を構成する金属板4の表面に対して垂直な方向から対極12を見た場合に、封止材14により包囲される領域に端子7が接続される場合よりも、端子7と電解質5との距離が大きい。このため、熱が対極12を介して光増感色素や、電解質5に伝わることが抑制できる。従って、端子形成工程において、熱を加える場合においても、熱による光増感色素や電解質5の劣化を抑制することができる。
 (第3実施形態)
 次に、本発明の光電変換装置の第3実施形態について図3を用いて説明する。なお、図3において、第1実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。
 図3は、本実施形態の光電変換装置を示す概略断面図である。図3に示すように、光電変換素子120において、作用極11は、複数の多孔質酸化物半導体層3a、3bを有し、作用極11の前記対極12側の表面上において、多孔質酸化物半導体層3a、3bの間に金属からなる集電配線35が設けられる。また、端子は、対極12を構成する金属板4の表面に対して垂直な方向から対極12を見た場合に、金属板4の封止材14により包囲される領域19における集電配線35と重なる位置に形成される。これらの点で、第1実施形態の光電変換素子100と異なる。
 集電配線35は、封止材14により包囲される領域19から封止剤の外周の外側にかけて設けられており、端子8と接続されている。また、集電配線35は、配線保護層36によって全体を覆われ、電解質5と集電配線35との接触が防止されている。なお、配線保護層36は、集電配線35の全体を覆っている限り、作用極11の透明導電体1に接触していてもよいし、接触していなくてもよい。
 集電配線35を構成する材料は、透明導電体1よりも低い抵抗を有する材料であればよく、このような材料としては、例えば金、銀、銅、白金、アルミニウム、チタン及びニッケルなどの金属が挙げられる。
 配線保護層36を構成する材料としては、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料が挙げられる。
 配線保護層36は、より長期間に渡って電解質5と集電配線35との接触を防止するため、また、電解質5が配線保護層36と接触した場合の配線保護層36の溶解成分の発生を防ぐために、ポリイミド、フッ素樹脂、アイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体、紫外線硬化樹脂、及び、ビニルアルコール重合体等の耐薬品性樹脂(図示せず)で被覆されていることが好ましい。
 このような光電変換素子120は、次のようにして製造される。
 まず、準備工程で作用極11を準備するとき、半導体形成工程において、多孔質酸化物半導体層3a,3bを形成する。多孔質酸化物半導体層3a,3bを形成するには、第1実施形態の半導体形成工程において、多孔質酸化物半導体層3を形成する方法と同様の方法を用いて、多孔質半導体を2箇所に設ければよい。
 次に、集電配線35及び配線保護層36を形成する。集電配線35は、半導体形成工程において、多孔質酸化物半導体層3a、3bを形成した後、多孔質酸化物半導体層3a、3bの間に集電配線を構成する金属の粒子を塗膜し、加熱して焼成することによって得ることができる。なお、端子8は集電配線35と同時に形成することが好ましい。
 配線保護層36は、例えば、上述した低融点ガラスフリットなどの無機絶縁材料に、必要に応じて増粘剤、結合剤、分散剤、溶剤などを配合してなるペーストを、スクリーン印刷法などにより集電配線35の全体を被覆するように塗布し、加熱し焼成することによって得ることができる。
 なお、配線保護層36が、上述した耐薬品性の樹脂で被覆される場合は、溶融させた耐薬品性樹脂を配線保護層36に塗布した後に室温で自然冷却するか、フィルム状の耐薬品性樹脂を配線保護層36に接触させ、外部の熱源によってフィルム状の耐薬品性樹脂を加熱溶融させた後に室温で自然冷却することによって耐薬品性樹脂を得ることができる。熱可塑性の耐薬品性樹脂としては、例えばアイオノマーやエチレン-メタクリル酸共重合体が用いられる。耐薬品性樹脂が紫外線硬化樹脂である場合は、耐薬品性樹脂の前駆体である紫外線硬化性樹脂を配線保護層36に塗布した後、紫外線により、上述した紫外線硬化性樹脂を硬化させることにより耐薬品性樹脂を得ることができる。耐薬品性樹脂が水溶性樹脂である場合は、耐薬品性樹脂を含む水溶液を配線保護層36上に塗布することにより耐薬品性樹脂を得ることができる。
 準備工程におけるその他の工程は、第1実施形態と同様である。
 次に、封止工程において、第1実施形態の封止工程と同様に封止を行う。
 次に、端子形成工程において、端子7を形成する。端子7は、端子形成工程において、金属板4の表面に対して垂直な方向から金属板4を見た場合に、金属板4の封止材14により包囲される領域19における集電配線35と重なる位置に形成される。端子の形成は、第1実施形態における端子形成工程と同様にして行えば良い。
 このような光電変換素子120の製造方法によれば、端子形成工程において、対極12を介して電解質5に伝わる熱は、集電配線35に伝わる。集電配線35は、金属により構成されるため熱伝導性に優れる。そして、封止材14により包囲される領域19から封止材14の外周の外側にかけて設けられるため、集電配線35に伝わる熱は、封止材14の外周の外に逃げる。このため、対極12を介して電解質5に伝わる熱が電解質5中に留まることを抑制することができる。従って、端子形成工程において、熱が加えられても、熱による光増感色素や電解質の劣化を抑制することができる。
 (第4実施形態)
 次に、本発明の光電変換装置の第4実施形態について図4を用いて説明する。なお、図4において、第1実施形態、第3実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。
 図4は、本実施形態の光電変換装置を示す概略断面図である。図4に示すように、光電変換素子130において、封止材14と重なる位置から、封止材14の外周の外側にかけて集電配線35が設けられており、端子8と接続されている。端子7は、金属板4の表面に対して垂直な方向から金属板4を見た場合に、封止材14と集電配線35とが重なる位置に形成される点で、第1実施形態、第3実施形態と異なる。
 このような光電変換素子130は、次のようにして製造される。
 まず半導体形成工程において、第1実施形態と同様に多孔質酸化物半導体層3を形成し、次に、集電配線35を封止材14と重なる位置に形成する。
 集電配線35を封止材14と重なる位置に形成するには、まず、多孔質酸化物半導体層3の周囲で、封止材14の形成が予定される場所に集電配線35を形成する。集電配線35を形成する方法は、第3実施形態の集電配線35と同様の方法である。次に配線保護層36を形成する。配線保護層36は、第3実施形態における配線保護層と同様の方法により配線保護層36を形成すれば良い。なお、端子8は集電配線35と同時に形成することが好ましい。
 次に、封止工程において、封止材14と集電配線35とが重なるように、作用極11と対極12とを重ねて封止する。封止の方法は、第1実施形態における封止工程と同様に行えば良い。
 次に、端子形成工程において、金属板4の表面に対して垂直な方向から対極12を見た場合に、封止材14と集電配線35とが重なる位置に、端子7を形成する。端子の形成は、第1実施形態と同様に形成すれば良い。
 このような構成の光電変換素子の製造方法によれば、端子形成工程において、対極12を介して封止材14に伝わる熱は、集電配線35に伝わる。集電配線35が封止材14と重なる位置から封止材14の外周の外側にかけて設けられるため、集電配線35に伝わる熱は、封止材14の外周の外側に逃げる。このため、対極12を介して封止材14に伝わる熱が封止材14に留まったり、封止材14を介して電解質5中に留まったりすることを抑制することができる。従って、端子形成工程において、熱による封止材14や光増感色素や電解質5の劣化を抑制することができる。
 (第5実施形態)
 次に、本発明の第5実施形態について、図5を用いて説明する。なお、図5において、第1実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。本実施形態は、第1実施形態の光電変換素子100と同様の構成の光電変換素子を用いた光電変換素子モジュールである。
 図5は、本実施形態にかかる光電変換素子モジュールを示す概略断面図である。
 図5に示すように光電変換素子モジュール200は、一組の光電変換素子100を備えている。また、光電変換素子100、100は、1つの透明基材2を共有している。
 また、一方の光電変換素子100の端子7には、はんだ13により導電線9の一端が接続される。さらに、他方の光電変換素子100の端子8には、はんだ13により、導電線9の他端が接続されている。こうして、一組の光電変換素子100、100は、直列に接続される。
 導電線9としては、銅、半田などの金属等の導電性材料からなる線材であって、リード線、半田リボン線などが使用できる。
 光電変換素子モジュール200は、次のようにして製造することができる。
 まず、一組の光電変換素子100、100を準備する(光電変換素子準備工程)。
 一組の光電変換素子の準備は、まず、光電変換素子100の製造の準備工程において、透明基材2上に一組の透明導電体1を形成する。透明導電体1の形成は、第1実施形態における透明導電体1の形成と同様に形成すれば良い。次に、第1実施形態と同様の方法で、それぞれの透明導電体1上に多孔質酸化物半導体層3を形成し、光増感色素を坦持させる。次に、第1実施形態と同様の方法で、複数の対極を準備する。
 また、第1実施形態と同様の方法で、それぞれの光電変換素子100の作用極11上に端子8を形成する。
 次に、第1実施系形態における封止工程と同様の方法で、各作用極11と対極12との間に電解質5を封止する。
 次に、第1実施形態における端子形成工程と同様の方法で、それぞれの対極12上に端子7を形成する。
 次に、一方の光電変換素子100の対極12上の端子7と、他方の光電変換素子100の作用極上の端子8とを導電線9で接続する(接続工程)。
 接続は、導電線9の一端を一方の光電変換素子100の対極12上の端子7にはんだ13によりはんだ付けすると共に、導電線9の他端を他方の光電変換素子100の作用極11上の端子8にはんだ13によりはんだ付けすることにより行う。
 本実施形態による光電変換素子モジュールの製造方法によれば、導電線9は、光電変換素子100、100を製造した後に、対極12の作用極11とは反対側の表面に形成される端子7と、透明導電体1上に形成される端子8とを同じ方向からはんだ13により接続することができるため、容易に光電変換素子モジュール200を製造することができる。また、光電変換素子モジュール200の製造後に導電線9の接続を容易に変更することができる。
 また、光電変換素子100は、対極12を構成する金属板4上に端子7が強固に固定されているので、端子7を介して、導電線9を対極12に強固に接続することができる。従って、光電変換素子モジュール200は、光電変換素子100同士の接続が強固であり、外力等により光電変換素子100同士の接続が外れることを抑制することができる。
 また、光電変換素子モジュール200は、導電線9をはんだにより接続することで、一方の光電変換素子100の作用極11と他方の光電変換素子100の対極12との間を銀ペーストなどを用いて電気的に接続する場合と比べて、抵抗を小さくすることができる。従って、対極12として、チタン板を用いているにもかかわらず、抵抗を小さくすることができると共に耐久性を良好にできる。
 (第6実施形態)
 次に本発明の第6実施形態について図6を用いて説明する。なお、図6において、第2実施形態、第5実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。本実施形態は、一組の第2実施形態の光電変換素子110と同様の構成の光電変換素子を用いた光電変換素子モジュールである。
 図6は、本実施形態にかかる光電変換素子モジュールを示す概略断面図である。
 図6に示すように光電変換素子モジュール210は、一組の光電変換素子110、110を備えている。また、光電変換素子110、110は、1つの透明基材2を共有している。
 また、一方の光電変換素子110の対極上の端子7と、他方の光電変換素子100の作用極上の端子8とは、導電性接着剤9aにより接続される。こうして、2つの光電変換素子110、110は、直列に接続される。
 導電性接着剤9aとしては、銀ペーストなどの各種金属ペーストやカーボンペーストなどが使用できる。
 このような光電変換素子モジュール210は、次のようにして製造することができる。
 まず、一組の光電変換素子110、110を準備する(光電変換素子準備工程)。
 一組の光電変換素子110、110の準備は、第2実施形態における光電変換素子110の製造の準備工程において、透明基材2上に一組の透明導電体1形成する。透明導電体1の形成は、第2実施形態における透明導電体1の形成と同様の方法により形成することができる。次に、第2実施形態と同様の方法で、それぞれの透明導電体1上に多孔質酸化物半導体層3を形成し、光増感色素を坦持させる。その後、第2実施形態と同様の方法で、複数の対極12を準備する。
 次に、第2実施系形態における封止工程と同様の方法で、各作用極11と対極12との間に電解質5を封止する。
 次に、第2実施形態における端子形成工程と同様の方法で、それぞれの対極12上の延設部18aに端子7を形成する。また、第2実施形態と同様の方法で、それぞれの光電変換素子110の作用極11上に端子8を形成する。
 次に、一方の光電変換素子110の対極12上の端子7と、他方の光電変換素子110の作用極上の端子8とを導電性接着剤9aにより接続する(接続工程)。
 本実施形態による光電変換素子モジュールの製造方法によれば、光電変換素子110、110を製造した後に、対極12の作用極11とは反対側の表面に形成される端子7と、透明導電体1上に形成される端子8とを導電性接着剤9aにより同じ方向から接続することができる。このため、容易に光電変換素子モジュール210を製造することができる。また、光電変換素子モジュールの製造後に一方の光電変換素子110と他方の光電変換素子110との接続を容易に変更することができる。
 また、光電変換素子110は、対極12上に端子7が強固に固定されているので、端子7を介して、導電性接着剤9aを対極12に強固に接続することができる。
 (第7実施形態)
 次に本発明の第7実施形態について図7を用いて説明する。なお、図7において、第2実施形態、第6実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。本実施形態は、一組の光電変換素子を用いた光電変換素子モジュールである。
 図7は、本実施形態にかかる光電変換素子モジュールを示す概略断面図である。
 図7に示すように光電変換素子モジュール220は、一組の光電変換素子110a、110aを備えている。光電変換素子110aは、端子15が高融点はんだにより構成され、端子15が、対極12の作用極11側とは反対側の表面から作用極11側の表面にかけて形成されている点で第2実施形態の光電変換素子110と異なる。また、光電変換素子モジュール220は、一方の光電変換素子110aの対極12に形成される端子15と、他方の光電変換素子110aの作用極11上に形成される端子8とが、対極12の表面に対して垂直な方向から対極12を見た場合に互いに重なっている。
 一方の光電変換素子110aの端子15と、他方の作用極11上の端子8とは、はんだ16により接続されている。はんだ16は、低融点半田により構成されることが好ましい。
 このような光電変換素子は、次のように製造することができる。
 まず、一組の光電変換素子110a、110aを準備する(光電変換素子準備工程)。
 一組の光電変換素子110a、110aの準備は、まず、第5実施形態における準備工程と同様の方法で作用極と、対極とを準備する。
 次に、対極12における延設部18aとなる領域の端部において、対極12の一方の表面から他方の表面にかけて、高融点はんだにより端子15を形成する。端子15の形成は、第2実施形態における高融点はんだによる端子7の形成と同様にして行えば良い。このとき、対極12の延設部18aにおいて、作用極11側には触媒層6が形成されているが、高融点はんだに超音波を印加することで触媒層6が破壊される。従って、高融点はんだは、延設部18aにおける作用極11側においては、対極12の金属板4に直接形成される。次に、作用極11の透明導電体1上において、封止材14の外周により包囲されることが予定される領域の外側に端子8を形成する。端子8の形成は、第2実施形態における端子8の形成と同様に行えば良い。次に、端子8上には、低融点はんだにより構成されるはんだ16を設ける。
 次に、一方の対極12に形成した端子15と他方の光電変換素子となる作用極11上に形成した端子8のはんだ16とが接触するように、対極12と作用極11とを重ねて、第2実施形態における封止工程と同様の方法で、各作用極11と対極12との間に電解質5を封止する。
 次に、はんだ16を加熱することで、端子15と半田16とを接続する(接続工程)。
 光電変換素子モジュール220は、一方の光電変換素子110aの対極12を端子15とはんだ16とを介して、他方の光電変換素子110aに強固に接合可能である。また、はんだ付けの採用によって、電気的接続性を向上させることができる。よって、対極12の金属板4をチタンを用いて構成しているにもかかわらず、電気的接続性および耐久性を良好にできる。また、端子15、はんだ16は、はんだにより構成されるため形成が容易であり、しかも安価であることから、製造の容易化および低コスト化が可能となる。また、光電変換素子モジュール220では、一方の光電変換素子110aにおける封止材14の外周により包囲される領域の外に位置する延設部18aにおいて、他方の光電変換素子110aに接続されるため、半田付けの際に多孔質酸化物半導体層3や電解質5が高温になることが抑制され、多孔質酸化物半導体層3や電解質5の劣化が生じることが抑制できる。
 以上、本発明について、第1~第7実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、第1~第7実施形態において、端子形成工程は、封止工程の後に行うとしたが、本発明はこれに限らない。例えば、封止工程の前に端子形成工程を行っても良い。
 この場合、封止を行う前の対極12の一方の表面に端子7を形成する。端子の形成は、第1実施形態における端子形成工程と同様に行えば良い。
 次に、端子7が封止材により封止されないために、対極12における端子7が形成されていない側の表面が作用極11側を向くように、作用極11と対極12とを対面させて封止を行えば良い。封止の方法は、第1実施形態における封止工程を同様に行えば良い。
 このように、端子形成工程を封止工程の前に行うことにより、端子形成工程において、熱が加えられる場合においても、多孔質酸化物半導体層3と電解質5とが封止される前であるため、端子形成工程における熱が光増感色素や電解質5に伝達して、光増感色素や電解質5を劣化されることが防止できる。
 また、第1~第7実施形態において、多孔質酸化物半導体層3は、第2電極20上に形成されるものとした。そして、作用極11は、第2電極20と光増感色素が担持される多孔質酸化物半導体層3とで構成され、対極12は、第1電極10で構成するものとした。しかし、本発明はこれらに限らず、多孔質酸化物半導体層3は、第1電極10上に形成され、作用極11は、第1電極10と光増感色素が担持される多孔質酸化物半導体層3とで構成され、対極12は、第2電極20で構成するものとしてもよい。図8は、図1に示す光電変換素子100のこのような変形例を示す断面図である。この場合、第1電極10は、金属板4で構成され、作用極11は、第1電極10と光増感色素が担持される多孔質酸化物半導体層3とで構成される。また、第2電極20は透明基材2と透明導電体1と透明導電体1上に設けられる触媒層6とから構成され、対極12は、第2電極20で構成される。なお、触媒層6は、例えば、光が透過する程度に薄く製膜された白金等からなる。
 光電変換素子140の製造は、次のように行われる。まず、金属板4から構成される第1電極10を準備する。次に第1電極10上に多孔質酸化物半導体層を形成する。多孔質酸化物半導体層3を形成する方法は、第1実施形態における半導体形成工程と同様にして行えば良い。次に多孔質酸化物半導体層3に光増感色素を担持させる。光増感色素の担持は、第1実施形態における色素担持工程と同様にして行えば良い。こうして、第1電極10上に多孔質酸化物半導体層3が形成された作用極11を得る。
 次に対極12を準備する。対極12の準備は、透明基材2上に透明導電体1を形成し、透明導電体1上に触媒層6を形成して第2電極とする。透明導電体1を形成する方法は、第1実施形態において、透明基材2上に透明導電体1を形成する方法と同様にして行えば良い。透明導電体1上に触媒層を形成するには、第1実施形態において、金属板4上に触媒層を形成した方法と同様の方法で行えばよい。こうして得られる第2電極が対極12となる。
 次に作用極11と対極12との間において、多孔質酸化物半導体層3と電解質5とを封止材14で封止する。封止の方法は、第1実施形態における封止工程と同様にして行えば良い。次に端子7を形成する。端子7の形成は、第1実施形態における端子形成工程と同様にして行えば良い。また、その他の工程は、第1実施形態と同様である。
 こうして、光電変換素子140を得る。
 また、光電変換素子140の製造において、上記では端子7を封止工程の後に形成したが、端子7の形成を封止工程の前に行っても良い。こうすることで端子形成工程における熱が電解質5に伝導することがなく、端子形成工程による熱による電解質5の劣化を防止することができる。
 さらに、光電変換素子140の製造において、端子7の形成を色素担持工程の前に行っても良い。こうすることで、端子形成工程における熱が光増感色素に伝導することがなく、端子形成工程による熱による光増感色素の劣化を防止することができる。
 また、例えば、第5~第7実施形態において、光電変換素子モジュールは、一組の光電変換素子を備えるが、本発明の光電変換素子モジュールは、3つ以上の光電変換素子を備えていてもよい。3以上の光電変換素子を有する光電変換素子モジュールにおいて、それらのうち2つの光電変換素子を導電線で互いに接続する場合に、導電線を接続する光電変換素子を、素子組み立て後に容易に変更することができる。
 また、第2実施形態において、端子7は、対極12の作用極11側とは反対側における金属板4上に形成されるものとしたが、端子7は、対極12の作用極11側において、金属板4上に設けても良い。端子7を対極12の作用極11側において、金属板4上に設けるには、第2実施形態における端子形成工程において、端子7を対極12の作用極11側に設ければ良い。このとき対極12の作用極11側には、触媒層6が形成されるが、端子形成工程において、高融点はんだに超音波を印加する際に触媒層6は破壊され、端子7を金属板4上に形成することができる。
 あるいは、第2実施形態において、端子7は、対極12の作用極11側とは反対側から対極12の作用極11側にかけて形成されても良い。端子7を形成する方法は、第7実施形態における端子15の形成と同様に行えばよい。
 また、第2電極は、透明基材2及び透明基材2上に設けられる透明導電体1から構成されるとしたが、透明導電体としての導電性ガラスにより構成されても良い。
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものでは無い。
 (実施例1~6)
 端子を高融点はんだにより形成する場合において、端子と金属板との接合強度を確認するため、次の検討を行った。
 金属板として厚さ40μmのチタン箔を用意した。このチタン箔の一方の一部に、表1に示す高融点はんだを用いて、高融点はんだを超音波はんだこてで溶融させ、その後凝固させることで、端子を形成した。このとき、溶融状態における高融点はんだの温度を表1に示す融点より高い温度とし、超音波の振動周波数を10kHzとした。
 この端子上に、表1に示す接合用のはんだを用いてリード線をはんだ付けした。リード線の材料は、銅である。
 (比較例1、2)
 端子を表1に示す低融点はんだにより形成したこと以外は、実施例1と同様に行った。
 (比較例3~8)
 表1に示す高融点はんだを用いて、端子と金属板上に形成した。このとき高融点はんだに超音波を印加しないこと以外については、実施例1と同様にして接合した。次に表1に示す接合用のはんだを用いて、リード線をはんだ付けした。
 次に、実施例1~6、及び、比較例1~4について、リード線にチタン箔に沿う方向で、10Nの引張力を加え、チタン箔から端子がはがれるか否かを測定した。その結果、はがれたものを×として、はがれなかったものを○とした。
 その結果を表1に示す。なお、セラソルザは黒田テクノ株式会社の製品である。
Figure JPOXMLDOC01-appb-T000001
 (比較例9)
 実施例1と同様の金属板に銅を厚さ1μmとなるようにスパッタで被膜した。この被膜に、実施例1と同様にしてリード線をはんだ付けした。次に実施例1と同様にリード線に引張力を与えた。
 表1に示すように、端子に高融点はんだを用いた実施例1~6は、チタン箔に沿う方向に10N以上の力をかけても端子がチタン箔からはがれずに、十分な接合強度を得られたことが分かった。
 一方、比較例1~8は、チタン箔に沿う方向の接着力が、どれも10N未満となり、十分な接合強度が得られないことが分かった。また、比較例9も、被膜がチタン箔からはがれたため、チタン箔に沿う方向の接着力が、10N未満という結果となり、接合強度に改善の余地があることが分かった。
 以上のように、本発明による実施例1~9は、端子の形成に真空装置を用いなくとも、チタン板により構成される対極上に端子を容易にかつ強固に形成できることが分かった。
 (実施例7)
 図7に示す光電変換素子モジュールを作製した。
 (対極) 厚さ40μmのチタン箔に、Ptからなる導電層をスパッタリング法により形成したものを対極として使用した。光電変換素子の対極における延設部に端子を形成した。端子の形成には、高融点はんだをとしてセラソルザ#297を用いた。端子を形成する際、融点より高融点はんだよりも高い温度にすると共に、振動周波数60kHzの超音波を与えた。
 (電解質) ヨウ素/ヨウ化物イオンレドックス対を含有するイオン液体[ヘキシルメチルイミダゾリウムアイオダイド]からなる電解液を調整した。
 (作用極) FTOからなる透明導電体を形成したガラス基板である透明基材を用い、この透明基材の透明導電体上に、平均粒径20nmの酸化チタンのスラリー状分散水溶液を塗布し、乾燥後、450℃にて1時間加熱することにより、厚さ7μmの酸化物半導体多孔質膜を形成した。さらにルテニウムビピリジン錯体N3色素のエタノール溶液中に1晩浸漬して色素を担持させた。これによって、透明基材2上に多孔質酸化物半導体層が設けられた作用極を得た。
 次に、一方の光電変換素子の延設部を他方の光電変換素子の作用極上の端子上にはんだを設けた。
 (光電変換素子の組み立て) 一方の光電変換素子となる対極に形成した端子と、他方の光電変換素子となる作用極上の端子とが重なる様にして、作用極と対極とを組み合わせ、これらの間に電解質を注入して封止することによって、電解質の層を形成した。
 その後、他方の光電変換素子の作用極上のはんだを加熱して、一方の光電変換素子の対極に形成した端子と接続した。
 (比較例10)
 端子及びはんだを使用せず、これに代えて一方の光電変換素子の延設部と他方の光電変換素子の作用極上の端子とを銀ペーストにより接続したこと以外は実施例7と同様にして光電変換素子モジュールを作製した。
 銀ペーストによる接続は、一方の光電変換素子の延設部と、他方の光電変換素子の作用極上の端子とに銀ペーストを塗布し、80℃に1時間おくことにより接続した。
 次に、実施例7、比較例10の光電変換効率を計測した。この結果を表2に示す。
 参考例として、一方の光電変換素子のみの光電変換効率の測定結果を併せて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す様に、実施例7の光電変換効率は、比較例10の光電変換効率よりも優れていた。これは、実施例7では、一方の光電変換素子の対極上の端子と他方の光電変換素子の作用極上の端子との間の電気的接続性が良好であるためと考えられる。
 以上より、実施例7は、対極上に端子を有する光電変換素子を用いる光電変換素子モジュールを簡易に製造することができると共に、光電変換素子モジュールの光電変換効率が良好であることが分かった。
 本発明によれば、チタンを用いる電極と強固に接合する端子を備える光電変換素子を容易に製造可能な光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法及び、それにより製造される光電変換素子モジュールが提供される。
 1・・・透明導電体
 2・・・透明基材
 3、3a、3b・・・多孔質酸化物半導体層
 5・・・電解質
 7・・・端子
 8・・・端子
 9・・・導電線
 9a・・・導電性接着剤
 10・・・第1電極
 11・・・作用極
 12・・・対極
 14・・・封止材
 20・・・第2電極
 35・・・集電配線
 100、110、120、130、140・・・光電変換素子
 200、210、220・・・光電変換素子モジュール

Claims (13)

  1.  チタン或いはチタンを含む合金からなる金属板と触媒層とを有する第1電極における前記触媒層の表面上、又は、透明導電体を有する第2電極の前記透明導電体の表面上に、多孔質酸化物半導体層を形成する半導体形成工程と、
     前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、
     前記第1電極と前記第2電極との間に前記多孔質酸化物半導体層及び電解質を封止材により包囲して封止する封止工程と、
     前記第1電極における前記封止材の外周により包囲される表面以外の表面において、前記金属板上に端子を形成する端子形成工程と、
    を備え、
     前記端子形成工程において、前記端子は、高融点はんだが加熱されて溶融されると共に超音波が印加されて形成される
    ことを特徴とする光電変換素子の製造方法。
  2.  前記多孔質酸化物半導体層は、前記透明導電体上に形成されることを特徴とする請求項1に記載の光電変換素子の製造方法。
  3.  前記第1電極は、前記第1電極の表面に対して垂直な方向から前記第1電極を見た場合に、前記封止材の外周により包囲される領域よりも外側に延設される延設部を有し、
     前記端子は、前記延設部に形成される
    ことを特徴とする請求項1または2に記載の光電変換素子の製造方法。
  4.  前記端子は、前記第1電極における前記第2電極側と反対側の表面から前記第2電極側の表面にかけて形成されることを特徴とする請求項3に記載の光電変換素子の製造方法。
  5.  前記第2電極における前記第1電極側の表面上には、前記封止材により包囲される領域から前記封止剤の外周の外側にかけて金属からなる集電配線が設けられており、
     前記端子は、前記第1電極の表面に対して垂直な方向から前記第1電極を見た場合に、前記第1電極の前記第2電極側とは反対側の表面上における前記封止材により包囲される領域において、前記集電配線と重なる位置に形成される
    ことを特徴とする請求項1または2に記載の光電変換素子の製造方法。
  6.  前記第2電極における前記第1電極側の表面上には、前記封止材と重なる領域から前記封止材の外周の外側にかけて金属からなる集電配線が設けられており、
     前記端子は、前記第1電極の表面に対して垂直な方向から前記第1電極を見た場合に、前記第1電極の前記第2電極側とは反対側の表面上における前記封止材と重なる領域において、前記集電配線と重なる位置に形成されることを特徴とする請求項1または2に記載の光電変換素子の製造方法。
  7.  チタン或いはチタンを含む合金からなる金属板と触媒層とを有する第1電極における前記金属板の表面上に端子を形成する端子形成工程と、
     透明導電体を有する第2電極の前記透明導電体の表面上に多孔質酸化物半導体層を形成する半導体形成工程と、
     前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、
     前記第1電極と前記第2電極とを対面させ、前記第1電極と前記第2電極との間に前記多孔質酸化物半導体層と電解質とが封止材により包囲され、前記端子が前記封止材により包囲されないようにして封止する封止工程と、
    を備え、
     前記端子形成工程において、前記端子は、高融点はんだが加熱されて溶融されると共に超音波が印加されて形成される
    ことを特徴とする光電変換素子の製造方法。
  8.  チタン或いはチタンを含む合金からなる金属板と触媒層とを有する第1電極における前記触媒層の表面上に多孔質酸化物半導体層を形成する半導体形成工程と、
     前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、
     前記第1電極の表面上における前記多孔質半導体が形成されない領域において、前記金属板上に端子を形成する端子形成工程と、
     透明導電体を有する第2電極と前記第1電極とを対面させ、前記第1電極と前記第2電極との間に前記多孔質酸化物半導体層と電解質とが封止材により包囲され、前記端子が前記封止材により包囲されないようにして封止する封止工程と、
    を備え、
     前記端子形成工程において、前記端子は、高融点はんだが加熱されると共に超音波が印加されて形成される
    ことを特徴とする光電変換素子の製造方法。
  9.  前記端子形成工程は、前記色素担持工程の前にあることを特徴とする請求項8に記載の光電変換素子の製造方法。
  10.  請求項1から9のいずれか1項に記載の光電変換素子の製造方法により製造されることを特徴とする光電変換素子。
  11.  請求項1から9のいずれか1項に記載の光電変換素子の製造方法により製造される光電変換素子を複数準備する光電変換素子準備工程を備え、
     少なくとも1つの前記光電変換素子における前記第1電極上に形成される端子と、他の少なくとも1つの光電変換素子における前記第2電極とを導電部材により電気的に接続する接続工程を有することを特徴とする光電変換素子モジュールの製造方法。
  12.  前記光電変換素子は、前記第2電極の前記第1電極側の表面上における前記封止材の外周により包囲される領域の外側に端子が形成され、
     少なくとも1つの前記光電変換素子における前記第1電極上に形成される端子と、他の少なくとも1つの光電変換素子における第2電極上に形成される端子とを前記導電部材により接続することを特徴とする請求項11に記載の光電変換素子モジュールの製造方法。
  13.  請求項11または12に記載の光電変換素子モジュールの製造方法により製造されることを特徴とする光電変換素子モジュール。
PCT/JP2009/001908 2008-04-28 2009-04-27 光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュール WO2009133688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801148427A CN102017281A (zh) 2008-04-28 2009-04-27 光电转换元件的制造方法、通过其制造的光电转换元件、光电转换元件组件的制造方法以及通过其制造的光电转换元件组件
EP09738625A EP2276101A1 (en) 2008-04-28 2009-04-27 Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
AU2009241138A AU2009241138B2 (en) 2008-04-28 2009-04-27 Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
US12/913,535 US20110088773A1 (en) 2008-04-28 2010-10-27 Method of manufacturing photoelectric conversion element, photoelectric conversion element manufactured by the same, method of manufacturing photoelectric conversion element module, and photoelectric conversion element module manufactured by the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008116965 2008-04-28
JP2008-116965 2008-04-28
JP2009-040391 2009-02-24
JP2009040391A JP5430970B2 (ja) 2008-04-28 2009-02-24 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/913,535 Continuation US20110088773A1 (en) 2008-04-28 2010-10-27 Method of manufacturing photoelectric conversion element, photoelectric conversion element manufactured by the same, method of manufacturing photoelectric conversion element module, and photoelectric conversion element module manufactured by the same

Publications (1)

Publication Number Publication Date
WO2009133688A1 true WO2009133688A1 (ja) 2009-11-05

Family

ID=41254912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001908 WO2009133688A1 (ja) 2008-04-28 2009-04-27 光電変換素子の製造方法、及び、それにより製造される光電変換素子、及び、光電変換素子モジュールの製造方法、及び、それにより製造される光電変換素子モジュール

Country Status (8)

Country Link
US (1) US20110088773A1 (ja)
EP (1) EP2276101A1 (ja)
JP (1) JP5430970B2 (ja)
KR (1) KR20100125465A (ja)
CN (1) CN102017281A (ja)
AU (1) AU2009241138B2 (ja)
TW (1) TW201010110A (ja)
WO (1) WO2009133688A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198835A (ja) * 2009-02-24 2010-09-09 Fujikura Ltd 光電変換素子
JP2012182041A (ja) * 2011-03-02 2012-09-20 Fujikura Ltd 色素増感太陽電池モジュール及びその製造方法
JP2012182038A (ja) * 2011-03-02 2012-09-20 Fujikura Ltd 色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法
EP2402967A3 (en) * 2010-06-29 2013-04-17 Sony Corporation Photoelectric conversion element, method of manufacturing the same, photoelectric conversion element module, and method of manufacturing the same
US20130240014A1 (en) * 2010-10-04 2013-09-19 Dyepower Vertical electrical connection of photoelectrochemical cells
JP2014053111A (ja) * 2012-09-05 2014-03-20 Fujikura Ltd 色素増感太陽電池モジュール
US9257237B2 (en) 2010-04-13 2016-02-09 Fujikura Ltd. Dye-sensitized solar cell module and manufacturing method for same
US9330854B2 (en) 2011-03-02 2016-05-03 Fujikura Ltd. Dye-sensitized solar cell and process of manufacturing same, dye-sensitized solar cell module and process of manufacturing same
JP2020520109A (ja) * 2017-05-11 2020-07-02 イソルグ 耐劣化性が高められた電子デバイス

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412142B (zh) * 2010-03-29 2013-10-11 Univ Nat Sun Yat Sen 具金屬反光層之光電極及其染料敏化太陽能電池結構
TWI494952B (zh) * 2010-04-29 2015-08-01 Hon Hai Prec Ind Co Ltd 導電膜製造方法
US20120180850A1 (en) * 2011-01-13 2012-07-19 Kim Sung-Su Photoelectric conversion module and method of manufacturing the same
US20120241002A1 (en) * 2011-03-23 2012-09-27 Southern Illinois University Carbondale Coal solar cells
JP5706786B2 (ja) * 2011-08-31 2015-04-22 株式会社フジクラ 色素増感太陽電池の製造方法
JP6181948B2 (ja) * 2012-03-21 2017-08-16 株式会社半導体エネルギー研究所 蓄電装置及び電気機器
JP5996995B2 (ja) * 2012-10-05 2016-09-21 株式会社フジクラ 色素増感太陽電池及び色素増感太陽電池モジュール
JP2016127037A (ja) * 2014-12-26 2016-07-11 日本写真印刷株式会社 色素増感型太陽電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629564A (ja) * 1992-07-07 1994-02-04 Fuji Electric Co Ltd 太陽電池装置の製造方法
JP2004079823A (ja) * 2002-08-20 2004-03-11 Mitsubishi Heavy Ind Ltd 封止構造及びその封止構造を用いた太陽電池モジュール及び封止方法及び太陽電池モジュールの封止方法
JP2006040555A (ja) * 2004-07-22 2006-02-09 Fujikura Ltd 光電変換素子
JP2006318770A (ja) * 2005-05-13 2006-11-24 Japan Carlit Co Ltd:The 色素増感型太陽電池の触媒電極、及びそれを備えた色素増感型太陽電池
JP2006324090A (ja) * 2005-05-18 2006-11-30 Kyocera Corp 光電変換モジュールおよびそれを用いた光発電装置
JP2007018909A (ja) * 2005-07-08 2007-01-25 Kyocera Corp 光電変換装置の製造方法
JP2007035591A (ja) * 2005-07-29 2007-02-08 Sharp Corp 色素増感太陽電池および色素増感太陽電池用多孔質半導体層の製造方法
JP2007073273A (ja) * 2005-09-06 2007-03-22 Sony Corp 光電変換素子およびその製造方法ならびに光電変換素子モジュールならびに電子機器ならびに移動体ならびに発電システムならびにディスプレイおよびその製造方法
JP2007280849A (ja) 2006-04-10 2007-10-25 Fujikura Ltd 光電変換素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629564A (ja) * 1992-07-07 1994-02-04 Fuji Electric Co Ltd 太陽電池装置の製造方法
JP2004079823A (ja) * 2002-08-20 2004-03-11 Mitsubishi Heavy Ind Ltd 封止構造及びその封止構造を用いた太陽電池モジュール及び封止方法及び太陽電池モジュールの封止方法
JP2006040555A (ja) * 2004-07-22 2006-02-09 Fujikura Ltd 光電変換素子
JP2006318770A (ja) * 2005-05-13 2006-11-24 Japan Carlit Co Ltd:The 色素増感型太陽電池の触媒電極、及びそれを備えた色素増感型太陽電池
JP2006324090A (ja) * 2005-05-18 2006-11-30 Kyocera Corp 光電変換モジュールおよびそれを用いた光発電装置
JP2007018909A (ja) * 2005-07-08 2007-01-25 Kyocera Corp 光電変換装置の製造方法
JP2007035591A (ja) * 2005-07-29 2007-02-08 Sharp Corp 色素増感太陽電池および色素増感太陽電池用多孔質半導体層の製造方法
JP2007073273A (ja) * 2005-09-06 2007-03-22 Sony Corp 光電変換素子およびその製造方法ならびに光電変換素子モジュールならびに電子機器ならびに移動体ならびに発電システムならびにディスプレイおよびその製造方法
JP2007280849A (ja) 2006-04-10 2007-10-25 Fujikura Ltd 光電変換素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198835A (ja) * 2009-02-24 2010-09-09 Fujikura Ltd 光電変換素子
US9257237B2 (en) 2010-04-13 2016-02-09 Fujikura Ltd. Dye-sensitized solar cell module and manufacturing method for same
EP2402967A3 (en) * 2010-06-29 2013-04-17 Sony Corporation Photoelectric conversion element, method of manufacturing the same, photoelectric conversion element module, and method of manufacturing the same
US20130240014A1 (en) * 2010-10-04 2013-09-19 Dyepower Vertical electrical connection of photoelectrochemical cells
JP2012182041A (ja) * 2011-03-02 2012-09-20 Fujikura Ltd 色素増感太陽電池モジュール及びその製造方法
JP2012182038A (ja) * 2011-03-02 2012-09-20 Fujikura Ltd 色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法
US9330854B2 (en) 2011-03-02 2016-05-03 Fujikura Ltd. Dye-sensitized solar cell and process of manufacturing same, dye-sensitized solar cell module and process of manufacturing same
JP2014053111A (ja) * 2012-09-05 2014-03-20 Fujikura Ltd 色素増感太陽電池モジュール
JP2020520109A (ja) * 2017-05-11 2020-07-02 イソルグ 耐劣化性が高められた電子デバイス

Also Published As

Publication number Publication date
TW201010110A (en) 2010-03-01
JP2009289735A (ja) 2009-12-10
EP2276101A1 (en) 2011-01-19
JP5430970B2 (ja) 2014-03-05
CN102017281A (zh) 2011-04-13
AU2009241138B2 (en) 2012-02-02
US20110088773A1 (en) 2011-04-21
KR20100125465A (ko) 2010-11-30
AU2009241138A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5430970B2 (ja) 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法
JP5430971B2 (ja) 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法
JP5230481B2 (ja) 光電変換素子
JP5346932B2 (ja) 光電変換素子モジュール、及び、光電変換素子モジュールの製造方法
JP5351553B2 (ja) 光電変換素子モジュール
JP5412136B2 (ja) 光電変換素子
JP5451106B2 (ja) 光電変換素子モジュール
JP5706786B2 (ja) 色素増感太陽電池の製造方法
JP2010198834A (ja) 光電変換素子モジュールの製造方法
JP5762053B2 (ja) 色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114842.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107024158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009241138

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009738625

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009241138

Country of ref document: AU

Date of ref document: 20090427

Kind code of ref document: A