WO2009131379A2 - 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법 - Google Patents

다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법 Download PDF

Info

Publication number
WO2009131379A2
WO2009131379A2 PCT/KR2009/002103 KR2009002103W WO2009131379A2 WO 2009131379 A2 WO2009131379 A2 WO 2009131379A2 KR 2009002103 W KR2009002103 W KR 2009002103W WO 2009131379 A2 WO2009131379 A2 WO 2009131379A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon film
polycrystalline silicon
layer
semiconductor layer
amorphous silicon
Prior art date
Application number
PCT/KR2009/002103
Other languages
English (en)
French (fr)
Other versions
WO2009131379A3 (ko
WO2009131379A9 (ko
Inventor
노재상
홍원의
Original Assignee
주식회사 엔씰텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔씰텍 filed Critical 주식회사 엔씰텍
Publication of WO2009131379A2 publication Critical patent/WO2009131379A2/ko
Publication of WO2009131379A3 publication Critical patent/WO2009131379A3/ko
Publication of WO2009131379A9 publication Critical patent/WO2009131379A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline

Definitions

  • the present invention relates to a polycrystalline silicon film, a thin film transistor comprising the same, and a method for manufacturing the same. -One Moved left 515-517 cm -One
  • the present invention relates to a polycrystalline silicon film having excellent resistance characteristics, a thin film transistor including the same, and a manufacturing method thereof.
  • a semiconductor layer of a thin film transistor is formed of amorphous silicon.
  • amorphous silicon has a disadvantage in that the mobility and aperture ratio of electrons, which are charge carriers, are low and incompatible with CMOS processes.
  • the polycrystalline silicon thin film element can form a driving circuit on the substrate like a pixel TFT-array necessary for writing an image signal to a pixel, which was not possible with an amorphous silicon TFT. Therefore, in the polycrystalline silicon thin film element, the connection between the plurality of terminals and the driver IC becomes unnecessary, thereby increasing productivity and reliability and reducing the thickness of the panel. In addition, in the polycrystalline silicon TFT process, since the microfabrication technology of silicon LSI can be used as it is, a microstructure can be formed in wiring etc.
  • the thin film transistor using polycrystalline silicon in the semiconductor layer has advantages in that the size of the semiconductor layer is determined by the high switching capability and the self-matching, so that the device size and the CMOS can be reduced. For this reason, polycrystalline silicon thin film transistors are used as pixel switching elements such as active matrix flat panel display devices (eg, liquid crystal displays and organic light emitting display devices). It is emerging as a major element for the practical use of the.
  • Such low-temperature polycrystalline silicon may be formed by solid phase crystallization (SPC), metal induced crystallization (MIC), metal induced side crystallization (MILC), or excimer laser. Crystallization (ELC: Excimer Laser Crystallization) method.
  • the SPC method can obtain uniform crystallization using low-cost equipment, it requires a high crystallization temperature and a long time, so it is impossible to use a substrate having a relatively low heat deformation temperature such as a glass substrate, and the productivity is low. Have.
  • annealing is performed on an amorphous silicon thin film for about 1 to 24 hours at a temperature of 600 to 700 ° C. to allow crystallization.
  • the polycrystalline silicon produced by the SPC method it is accompanied with twin-growth during the solid phase transformation from the amorphous phase to the crystal phase, and thus contains a large number of crystal lattice defects in the formed grains. These factors serve to reduce the mobility and increase the threshold voltage of electrons and holes of the manufactured polycrystalline silicon TFT.
  • the MIC method has the advantage that amorphous silicon is brought into contact with a specific metal so that its crystallization is performed at a temperature much lower than the crystallization temperature by the SPC method.
  • Metals that enable the MIC method include Ni, Pd, Ti, Al, Ag, Au, Co, Cu, Fe, Mn, and the like, and these metals react with amorphous silicon to form eutectic or silicide phases. (silicide phase) is formed to promote low temperature crystallization.
  • application of the MIC method to the actual process of polycrystalline silicon TFT fabrication causes serious contamination of the metal in the channel.
  • the MILC method is an application technique of the MIC method. Instead of depositing a metal on a channel, a gate electrode is formed, and then a metal is deposited thinly on a source and a drain in a self-aligned structure to induce metal induced crystallization. This technique induces lateral crystallization toward the channel. Ni and Pd are the most commonly used metals in the MILC method. Polycrystalline silicon prepared by the MILC method is known to exhibit high leakage current characteristics, despite excellent crystallinity and high field effect mobility compared to the SPC method. In other words, the metal contamination problem is reduced compared to the MIC method, but it is still not completely solved. On the other hand, an improved method of the MILC method is Field Aided Lateral Crystallization (FALC). Compared with the MILC method, FALC method has a faster crystallization rate and anisotropy in the crystallization direction, but it also does not completely solve the problem of metal contamination.
  • FALC Field Aided Lateral Crystallization
  • the crystallization methods such as the MIC method, the MILC method, and the FALC method are effective in lowering the crystallization temperature compared to the SPC method, but the crystallization time is still long, and all of them have in common that the crystallization is induced by the metal. Therefore, it is not free in that it is a problem of metal contamination.
  • the recently developed ELC method makes it possible to produce a polycrystalline silicon thin film on a glass substrate in a low temperature process while solving the problem of metal contamination.
  • the ELC process undergoes crystallization by very fast melting and solidification in the local melt zone, which is greatly affected by the excimer laser, resulting in extremely short time (in tens of nano-sec units) without damaging the substrate.
  • Polycrystalline silicon can be produced. That is, when the laser is irradiated on the amorphous silicon of the base material consisting of a glass substrate / insulating layer / amorphous silicon thin film in a very short time, only the amorphous silicon thin film is selectively heated, and crystallization is performed without damaging the glass substrate located below.
  • ELC law has some significant drawbacks.
  • problems in the laser system that the irradiation amount of the laser beam itself is nonuniform
  • problems in the laser process that the processing area of the laser energy density to obtain coarse grains are extremely limited, and shot marks in large areas It has the problem of remaining.
  • These two factors cause non-uniformity of grain size of the polycrystalline silicon thin film constituting the active layer of the polycrystalline silicon TFT.
  • volume expansion is accompanied, so that a severe protrusion phenomenon occurs toward the surface from the point where the grain boundary is made.
  • This phenomenon also directly affects the gate insulating layer, which is a subsequent process, such as reducing breakdown voltage and hot carrier stress caused by uneven flatness of the polycrystalline silicon / gate insulating layer interface. It has a serious impact on reliability.
  • the advantages of the laser crystallization method i.e., because the process is performed in a short time, it does not damage the underlying substrate, and it is possible to produce very good grains with almost no defects due to high temperature phase transformation.
  • a method of crystallizing an amorphous silicon thin film that can solve the disadvantages of such laser crystallization method, that is, the irradiation non-uniformity and process limitation due to the local process and the problem of using expensive equipment.
  • the TFT-LCD is a voltage drive, but the grain size of the large-area substrate because of the current drive method.
  • the uniformity of is a very important factor. Therefore, the reality of the flat panel display industry is that the low-temperature crystallization method using the ELC method or the SLS method using a laser hits the limit. Considering this fact, there is a great need for a new technology for producing a high quality polycrystalline silicon thin film by low temperature crystallization using a laserless method.
  • the inventors of the present invention in Korean Patent Application No. 2004-37952, preheat the silicon thin film at a temperature range where the substrate is not deformed during the process to generate an intrinsic carrier therein.
  • the present invention first proposed a method of crystallization by applying Joule heating by the movement of the carrier by directly applying an electric field to the preheated silicon thin film. This method is very innovative in that it can produce high quality polycrystalline silicon thin film in a short time at relatively low temperature.
  • the inventors of the present invention in Korean Patent Application No. 2005-73076, form an ITO layer and an insulating layer, respectively, as conductive layers on an insulating layer on a transparent substrate, and then form a silicon thin film to apply an electric field to the ITO layer.
  • a high temperature better crystallization and dopant activation and thermal oxidation process in a very short time at a lower temperature than conventionally, preferably at room temperature, without damaging the substrate And a method to achieve crystal lattice defect healing.
  • An object of the present invention is to provide a polycrystalline silicon film having excellent resistance characteristics, a thin film transistor having the same, and a manufacturing method thereof.
  • the present invention provides a polycrystalline silicon film in which the peak value of the Raman spectrum appears at 515-517 cm -1 .
  • the present invention also provides a substrate; A semiconductor layer on the substrate, the semiconductor layer comprising a polycrystalline silicon film having a Raman spectrum peak value of 515-517 cm ⁇ 1 ; A gate insulating layer on the semiconductor layer; A gate electrode disposed on the gate insulating layer and corresponding to a predetermined region of the semiconductor layer; An interlayer insulating layer on the gate electrode; And a source / drain electrode positioned on the interlayer insulating layer and electrically connected to the semiconductor layer.
  • the present invention also provides a substrate; A gate electrode on the substrate; A gate insulating layer on the gate electrode; A semiconductor layer on the gate insulating layer, the semiconductor layer comprising a polycrystalline silicon thin film having a peak value of a Raman spectrum of 515-517 cm ⁇ 1 ;
  • the thin film transistor is disposed on the semiconductor layer, and includes a source / drain electrode electrically connected to the semiconductor layer.
  • the present invention provides a substrate, a semiconductor layer is formed of a polycrystalline silicon film having a Raman spectrum peak value of 515-517 cm -1 on the substrate, a gate insulating film is formed on the semiconductor layer, the gate insulating film Forming a gate electrode on the gate electrode, forming an interlayer insulating film on the gate electrode, and forming a source / drain electrode electrically connected to the source / drain regions of the semiconductor layer on the interlayer insulating film; It provides a method of manufacturing a thin film transistor.
  • a polycrystalline silicon film having excellent resistance characteristics, a thin film transistor including the same, and a method of manufacturing the same can be obtained.
  • FIG. 1 is a cross-sectional view illustrating an embodiment of a crystallization method by Joule heating.
  • FIG. 2 is a graph showing the Raman spectrum of the polycrystalline silicon film according to the prior art and the present invention.
  • 3 to 5 are cross-sectional views illustrating a process of manufacturing the thin film transistor according to the first embodiment including the polycrystalline silicon film of the present invention.
  • 6 to 7 are cross-sectional views illustrating a process of manufacturing a thin film transistor according to a second embodiment including a polycrystalline silicon film of the present invention.
  • FIGS. 8 to 9 are cross-sectional views illustrating a process of manufacturing a thin film transistor according to a third embodiment including a polycrystalline silicon film of the present invention.
  • FIG. 10 is a graph showing a Raman spectrum of a polycrystalline silicon film crystallized according to the above experimental and comparative examples.
  • FIG. 11 is a photograph showing incontinence occurring in a silicon film during crystallization when crystallized according to Comparative Example 3.
  • FIG. 11 is a photograph showing incontinence occurring in a silicon film during crystallization when crystallized according to Comparative Example 3.
  • substrate 11 first insulating layer
  • the polycrystalline silicon film in which the peak value of the Raman spectrum according to the present invention is shown at 515-517 cm ⁇ 1 is a Joule heating polycrystalline silicon film crystallized using a crystallization method by Joule heating.
  • the amorphous silicon film is heated by subjecting the conductive layer to an upper or lower portion of the amorphous silicon film by applying an electric field to the conductive layer for a very short time of 0.1 to 300 mW and performing Joule heating. To crystallize.
  • FIG. 1 is a cross-sectional view illustrating an embodiment of a crystallization method by Joule heating.
  • the first insulating layer 11, the conductive layer 12, the second insulating layer 13, and the amorphous silicon (a-Si) film 14 are sequentially formed on the substrate 10.
  • a-Si amorphous silicon
  • the material of the substrate 10 is not particularly limited, and for example, a transparent substrate material such as glass, quartz, plastic, or the like is possible, and in terms of economical efficiency, glass is more preferable.
  • a transparent substrate material such as glass, quartz, plastic, or the like
  • glass is more preferable.
  • the method of the present invention can be applied to the substrate of the plastic material as it is.
  • the first insulating layer 11 is used to prevent elution of an alkali material in some materials inside the substrate 10, for example, a glass substrate, which may be generated in a later process. Oxide (SiO 2 ) and silicon nitride are formed by evaporation, but the thickness is generally about 2000-5000 Pa, but is not limited thereto.
  • the first insulating layer 11 may be omitted, and the method of the present invention may be applied to such a structure, so the scope of the present invention should be interpreted as including such a structure.
  • the conductive layer 12 may be formed of a transparent conductive thin film or a metal thin film.
  • the conductive layer 12 is formed of a metal thin film having a melting point of 1100 ° C. or more.
  • a high temperature of 1100 ° C. or more may be applied to the amorphous silicon film 14 instantaneously.
  • the conductive layer 12 is preferably formed of a metal thin film having a melting point of 1100 ° C. or more. Examples of the metal having a melting point of 1100 ° C. or more include molybdenum (Mo), titanium (Ti), chromium (Cr), or molybdenum tungsten (MoW).
  • the conductive layer 12 may be formed by a method such as sputtering or evaporation, and may be formed at 500 kPa to 3000 kPa. But it is not limited to that.
  • the second insulating layer 13 may serve to prevent the subsequent amorphous silicon film 14 from being contaminated by the conductive layer 12 and to insulate the TFT device during the heat treatment process.
  • the second insulating layer 13 may be formed of the same material as the first insulating layer 11.
  • an amorphous silicon film 14 is formed on the second insulating layer 13.
  • an electric field is applied to the conductive layer 12.
  • the amorphous silicon film 14 is crystallized by Joule heating.
  • the application of the electric field to the conductive layer 12 generates energy of power density capable of applying high heat sufficient to induce crystallization of the amorphous silicon film 14 within a very short time, such as 0.1 to 300 kW. It is applied to the conductive layer 12.
  • energy of a power density capable of applying high heat of 1100 ° C. or more to the amorphous silicon film 14 is applied to the conductive layer 12.
  • the amorphous silicon film 14 When an electric field is applied to the conductive layer 12 with energy of sufficient power density for a very short time of 0.1 to 300 mW, the amorphous silicon film 14 is crystallized and tension is applied to the amorphous silicon film 14 during crystallization. This can be applied. If the time for which the electric field is applied to the conductive layer 12 is shorter than 0.1 ms, the amorphous silicon film 14 may not be crystallized into a polycrystalline silicon layer, and if it is longer than 300 ms, as shown in FIG. Incontinence may occur in the film, and the peak value of the Raman spectrum of the crystallized polycrystalline silicon film may not be shifted to the left than before due to the tension applied to the amorphous silicon film 14 due to the incontinence.
  • a mechanism in which tension is applied to the amorphous silicon film 14 during crystallization by Joule heating is as follows.
  • an electric field generating high heat of 1100 ° C. or more is applied to the conductive layer 12 for a very short time of 0.1 to 300 kPa
  • high heat sufficient to crystallize the amorphous silicon film 14 is applied to the amorphous silicon film 14.
  • Delivered since it is a short time for all of the heat generated in the conductive layer 12 to be transferred to the amorphous silicon film 14, a temperature gradient occurs between the conductive layer 12 and the amorphous silicon film 14 during crystallization. .
  • the conductive layer 12 is formed of the amorphous silicon film. It expands relatively more than (14). Then, a tensile stress acts on the conductive layer 12 which expands more than the amorphous silicon layer 14, whereas a tension acts on the second insulating layer 13 and the amorphous silicon layer 14 positioned on the upper side. Done.
  • the peak value of the Raman spectrum of the polycrystalline silicon film crystallized by the crystallization method by Joule heating is 518-520 cm as shown in FIG. -One Moved left 515-517 cm -One Appears in.
  • the peak value of the Raman spectrum is 515-517 cm -One Appearing in The peak value of the Raman spectrum of the single crystal silicon film is 520.1 cm -One It is based on what appears.
  • the polycrystalline silicon film whose peak value in the Raman spectrum is 515-517 cm ⁇ 1 is called the joule heating polycrystalline silicon film.
  • the Joule-heated polycrystalline silicon film according to the present invention has better resistance characteristics than the polycrystalline silicon film in which peak values of the Raman spectrum appear in the conventional 518-520 cm ⁇ 1 .
  • 3 to 5 are cross-sectional views illustrating a process of manufacturing the thin film transistor according to the first embodiment including the polycrystalline silicon film of the present invention.
  • a buffer layer 31 is formed in a single layer or a plurality of layers by using an insulating film such as a silicon oxide film or a silicon nitride film on a substrate 30 made of glass, stainless steel or plastic.
  • the buffer layer 31 serves to prevent the diffusion of moisture or impurities generated in the substrate 30, or to control the heat transfer rate during crystallization, so that the amorphous silicon layer can be crystallized well.
  • the amorphous silicon film 32 is formed of a Joule heated polycrystalline silicon film.
  • a Joule heating polycrystalline silicon film For forming the amorphous silicon film 32 as a Joule heating polycrystalline silicon film, refer to FIG. 1 and the description thereof.
  • the substrate 30 on which the components 30, 31, 32, 33, and 34 are formed may be preheated to an appropriate temperature range.
  • the appropriate temperature range refers to a temperature range in which the substrate 30 is not damaged throughout the process, and is preferably a range lower than the heat deformation temperature of the substrate 30.
  • the preheating method is not particularly limited, and for example, a method of putting in a general heat treatment furnace, a method of irradiating radiant heat such as a lamp, or the like may be used.
  • the amorphous silicon film 32 may be doped with n-type or p-type impurities, and a heat treatment process for activating the doped impurities may be performed.
  • the polycrystalline silicon film may be doped with n-type or p-type impurities, and the doped impurities The heat treatment process for activating may be performed.
  • phosphorus (P) is preferable as the n-type impurity
  • boron (B) is preferable as the p-type impurity.
  • the conductive layer 34 and the insulating layer 33 are removed, and the joule heating polycrystalline silicon film is patterned to form the semiconductor layer 35.
  • the gate insulating layer 36 may be a silicon oxide layer, a silicon nitride layer, or a double layer thereof.
  • the gate electrode metal layer (not shown) is formed on the layer, and the gate electrode metal layer is etched by the photolithography process to form the gate electrode 37 in a portion corresponding to the channel region of the semiconductor layer 35.
  • the interlayer insulating film 38 is formed over the entire substrate including the gate electrode 37.
  • the interlayer insulating layer 38 may be a silicon nitride film, a silicon oxide film, or a multilayer thereof.
  • the interlayer insulating layer 38 and the gate insulating layer 36 are etched to form a contact hole 39 exposing a predetermined region of a source / drain region of the semiconductor layer 35.
  • source / drain electrodes 39a and 39b connected to the source / drain regions of the semiconductor layer 35 are formed on the interlayer insulating layer 38 through the contact hole 39.
  • FIGS. 6 to 7 are cross-sectional views illustrating a process of manufacturing a thin film transistor according to a second embodiment including a polycrystalline silicon film of the present invention. Reference is made to those mentioned in the above examples, except as specifically mentioned below.
  • a buffer layer 41 is formed on the substrate 40.
  • the conductive layer 42, the insulating layer 43, and the amorphous silicon film 44 are sequentially formed on the buffer layer 41.
  • an electric field is applied to the conductive layer 42 to form the amorphous silicon film 44 as a Joule heating polycrystalline silicon film.
  • the joule-heated polycrystalline silicon film is patterned to form the semiconductor layer 45.
  • a gate insulating layer 46 is formed on the semiconductor layer 45, and a gate electrode 47 is formed on a portion of the gate insulating layer 46 corresponding to the channel region of the semiconductor layer 45.
  • an interlayer insulating film 48 is formed over the entire surface of the substrate including the gate electrode 47, and the source and drain of the semiconductor layer 45 are etched by etching the interlayer insulating film 48 and the gate insulating film 46.
  • a contact hole 49 is formed to expose a certain region of the region.
  • source / drain electrodes 49a and 49b connected to the source / drain regions of the semiconductor layer 45 are formed through the contact hole 49.
  • FIGS. 8 to 9 are cross-sectional views illustrating a process of manufacturing a thin film transistor according to a third embodiment including a polycrystalline silicon film of the present invention. Reference is made to those mentioned in the above examples, except as specifically mentioned below.
  • a buffer layer 51 is formed on the substrate 50.
  • the gate electrode 52 is formed on the buffer layer 51.
  • a gate insulating film 53 is formed on the substrate 50.
  • an amorphous silicon film 54, an insulating layer 55, and a conductive layer 56 are sequentially formed on the gate insulating film 53. Subsequently, an electric field is applied to the conductive layer 56 to form the amorphous silicon film 54 as a Joule heating polycrystalline silicon film.
  • the Joule heating polycrystalline silicon film is patterned to form a semiconductor layer 57.
  • an ohmic contact material film and a source / drain conductive film are sequentially stacked on the semiconductor layer 57, and the stacked source / drain conductive film and the ohmic contact material film are patterned in order to sequentially source / drain electrodes 59a and 59b and ohmic.
  • An ohmic contact layer 58 is formed.
  • the ohmic contact layer 58 may be an amorphous silicon film doped with an impurity, and the ohmic contact layer 58 may not be formed when an impurity is doped into the semiconductor layer 57.
  • An SiO 2 layer having a thickness of 3000 Pa was formed by a PECVD method on the substrate having a width ⁇ length ⁇ thickness of 2 cm ⁇ 2 cm ⁇ 0.7 mm by a first insulating layer.
  • a molybdenum layer having a thickness of 1000 mW was deposited on the first insulating layer by a sputtering method, and a SiO 2 layer having a thickness of 1000 mW was deposited by the PECVD method as a second insulating layer.
  • An amorphous silicon film having a thickness of 500 GPa was deposited on the second insulating layer by PECVD.
  • a voltage of 600 V was applied to the molybdenum layer of the prepared specimen for 300 kV to crystallize the amorphous silicon film into a Joule heating polycrystalline silicon film using heat generated from Joule heating.
  • the instantaneous temperature applied to the molybdenum layer was measured to rise to about 1100 °C.
  • the polycrystalline silicon film was doped with boron ions for 10 minutes at 10 KeV, followed by heat treatment at a temperature of 500 ° C. for 30 minutes to activate the boron ions.
  • An SiO 2 layer having a thickness of 3000 Pa was formed by a PECVD method on the substrate having a width ⁇ length ⁇ thickness of 2 cm ⁇ 2 cm ⁇ 0.7 mm by a first insulating layer.
  • a molybdenum layer having a thickness of 1000 mW was deposited on the first insulating layer by a sputtering method, and a SiO 2 layer having a thickness of 1000 mW was deposited by the PECVD method as a second insulating layer.
  • An amorphous silicon film having a thickness of 500 GPa was deposited on the second insulating layer by PECVD.
  • a voltage of 700 V was applied to the molybdenum layer of the prepared specimen for 15 kV to crystallize the amorphous silicon film into a Joule heating polycrystalline silicon film using heat generated from Joule heating.
  • the instantaneous temperature applied to the molybdenum layer was measured to rise to about 1300 °C.
  • the polycrystalline silicon film was doped with boron ions for 1 minute at 10 KeV, followed by heat treatment at a temperature of 500 ° C. for 30 minutes to activate the boron ions.
  • a SiO 2 layer having a thickness of 3000 Pa was formed by an PECVD method on the substrate having a width ⁇ length ⁇ thickness of 2 cm ⁇ 2 cm ⁇ 0.7 mm.
  • An amorphous silicon film having a thickness of 500 kPa was deposited on the insulating layer by PECVD.
  • the substrate on which the amorphous silicon film was formed was heat-treated in a tubular furnace at a temperature of 600 ° C. for 24 hours to crystallize the amorphous silicon film into a polycrystalline silicon film by a solid phase crystallization method.
  • the polycrystalline silicon film was doped with boron ions for 1 minute at 10 KeV, followed by heat treatment at a temperature of 500 ° C. for 30 minutes to activate the boron ions.
  • a SiO 2 layer having a thickness of 3000 Pa was formed by an PECVD method on the substrate having a width ⁇ length ⁇ thickness of 2 cm ⁇ 2 cm ⁇ 0.7 mm.
  • An amorphous silicon film having a thickness of 500 kPa was deposited on the insulating layer by PECVD.
  • the substrate on which the amorphous silicon film is formed is heat-treated in a tubular furnace at a temperature of 600 ° C. for 30 minutes to form an initial crystal seed and an intrinsic carrier in the amorphous silicon film to enable conductivity.
  • 10 times of electric fields were applied to the amorphous silicon film under conditions of 3000 V and 30 ms to crystallize into a polycrystalline silicon film.
  • the polycrystalline silicon film was doped with boron ions for 1 minute at 10 KeV, followed by heat treatment at a temperature of 500 ° C. for 30 minutes to activate the boron ions.
  • An SiO 2 layer having a thickness of 3000 Pa was formed by a PECVD method on the substrate having a width ⁇ length ⁇ thickness of 2 cm ⁇ 2 cm ⁇ 0.7 mm by a first insulating layer.
  • a molybdenum layer having a thickness of 1000 mW was deposited on the first insulating layer by a sputtering method, and a SiO 2 layer having a thickness of 1000 mW was deposited by the PECVD method as a second insulating layer.
  • An amorphous silicon film having a thickness of 500 GPa was deposited on the second insulating layer by PECVD.
  • a voltage of 600 V was applied to the molybdenum layer of the prepared specimen to crystallize the amorphous silicon film into a Joule heating polycrystalline silicon film using heat generated from Joule heating.
  • the instantaneous temperature applied to the molybdenum layer was measured to rise to about 1000 °C.
  • the polycrystalline silicon film was doped with boron ions for 1 minute at 10 KeV, followed by heat treatment at a temperature of 500 ° C. for 30 minutes to activate the boron ions.
  • FIG. 10 is a graph showing a Raman spectrum of a polycrystalline silicon film crystallized according to the above experimental and comparative examples.
  • the peak value of the Raman spectrum is 520 cm. -One in 518 cm in the case of the polycrystalline silicon film crystallized according to Comparative Example 3 -One It can be seen from.
  • Table 1 shows the measurement of the resistance value of the polycrystalline silicon film crystallized according to the experimental examples
  • Table 2 shows the measurement of the resistance value of the polycrystalline silicon film crystallized according to the comparative examples. Four experiments each were measured.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 12353 ohm / square 12234 ohm / square 206332 ohm / square 12916 ohm / square 12548 ohm / square 146298 ohm / square 12849 ohm / square 12112 ohm / square 126135 ohm / square 12913 ohm / square 12442 ohm / square 166453 ohm / square
  • the polycrystalline silicon film crystallized according to the experimental examples has a value of about 1/2 or less of the resistance value of the polycrystalline silicon film crystallized according to the comparative examples, in particular Experimental Example 2 It can be seen that the polycrystalline silicon film crystallized according to the present invention has a value of about 1/100 as compared with the comparative examples. Therefore, it can be seen that the resistance characteristics of the Joule-heated polycrystalline silicon film crystallized according to the experimental examples are superior to the polycrystalline silicon film crystallized according to the comparative examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

본 발명은 다결정 실리콘막의 라만 스펙트럼의 피크값을 종래 518-520 cm-1 보다 왼쪽으로 이동한 515-517 cm-1 에서 가지도록 형성함으로써, 저항 특성이 우수한 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법에 관한 것이다.

Description

다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법
본 발명은 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법에 관한 것으로, 보다 자세하게는 다결정 실리콘막이 라만 스펙트럼의 피크값을 종래 518-520 cm-1 보다 왼쪽으로 이동한 515-517 cm-1 에서 가짐으로써, 저항 특성이 우수한 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법에 관한 것이다.
평판 표시장치의 제조를 위한 다양한 기술 중 최근 박막 트랜지스터를 이용한 액티브 매트릭스형 평판 표시장치에 관한 연구개발이 활발히 진행되고 있다. 종래에는 박막 트랜지스터의 반도체층을 비정질 실리콘으로 형성하였다. 그러나 일반적으로 비정질 실리콘은 전하 운반체인 전자의 이동도 및 개구율이 낮고 CMOS 공정에 부합되지 못하는 단점을 가지고 있다.
반면에, 다결정 실리콘(Polycrystalline silicon) 박막 소자는 비정질 실리콘 TFT에서는 불가능하였던 영상신호를 화소에 기입하는데 필요한 구동회로를 화소 TFT-array와 같이 기판 상에 구성하는 것이 가능하다. 따라서 다결정 실리콘 박막 소자에서는 다수의 단자와 드라이버 IC와의 접속이 불필요하게 되므로, 생산성과 신뢰성을 높이고 패널의 두께를 줄일 수 있다. 또한 다결정 실리콘 TFT 공정에서는 실리콘 LSI의 미세가공 기술을 그대로 이용할 수 있으므로, 배선 등에서 미세구조를 형성할 수 있다. 따라서 비정질 실리콘 TFT에서 보이는 드라이버 IC의 TAB 실장상의 피치(pitch) 제약이 없으므로, 화소 축소가 용이하고 작은 화각에 다수의 화소를 실현할 수 있다. 다결정 실리콘을 반도체층에 이용한 박막트랜지스터는 비정질 실리콘을 이용한 박막 트랜지스터와 비교할 때, 스위칭 능력이 높고 자기 정합에 의해 반도체층의 채널 위치가 결정되기 때문에, 소자 소형화, CMOS화가 가능하다는 장점이 있다. 이러한 이유로 다결정 실리콘 박막 트랜지스터는 액티브 매트릭스형 평판 표시장치(예를들면, 액정표시장치, 유기전계발광표시장치) 등의 화소 스위칭 소자로 사용하여 대화면화 및 드라이버가 내장된 COG(Chip On Glass) 제품의 실용화에 주요한 소자로 대두되고 있다.
이러한 다결정 실리콘 TFT를 제조하는 방법으로는 고온 조건에서 제조하는 방법과 저온 조건에서 제조하는 기술이 있는데, 고온 조건에서 형성하기 위해서는 기판으로 석영 등의 고가의 재질을 사용하여야 하므로 대면적화에 적당하지 않다. 따라서, 저온 조건에서 비정질 실리콘 박막을 다결정 실리콘으로 대량으로 제조하는 방법에 대한 연구가 활발히 진행되고 있다.
이러한 저온의 다결정 실리콘을 형성하는 방법으로는 고상 결정화(SPC: Solid Phase Crystallization)법, 금속유도 결정화(MIC: Metal Induced Crystallization)법, 금속유도측면 결정화(MILC: Metal Induced Lateral Crystallization)법, 엑시머 레이저 결정화(ELC: Excimer Laser Crystallization) 법 등이 있다.
SPC 법은 저가의 장비를 사용하여 균일한 결정질을 얻을 수는 있으나, 높은 결정화 온도와 장시간을 요구하기 때문에, 유리기판과 같이 열변형 온도가 상대적으로 낮은 기판을 사용할 수 없고 생산성이 낮다는 단점을 가지고 있다. SPC 법에 의한 경우, 통상적으로 600 ~ 700℃의 온도에서 약 1 ~ 24 시간 동안 비정질 실리콘 박막에 어닐링 작업을 실시해야 결정화가 가능하다. 또한, SPC 법에 의해 제조된 다결정 실리콘의 경우에는, 비정질상으로부터 결정상으로의 고상 상변태시 쌍정 성장(twin-growth)을 동반하므로, 형성된 결정립 내에 매우 많은 결정격자 결함들을 함유하고 있다. 이러한 인자들은 제조된 다결정 실리콘 TFT의 전자 및 홀의 이동도(mobility)를 감소시키고 문턱 전압(threshold voltage)을 상승시키는 요인으로 작용한다.
MIC 법은 비정질 실리콘이 특정 금속과 접촉함으로써 그것의 결정화가 SPC 법에 의한 결정화 온도보다 훨씬 낮은 온도에서 이루어지는 장점을 가지고 있다. MIC 법을 가능하게 하는 금속으로는, Ni, Pd, Ti, Al, Ag, Au, Co, Cu, Fe, Mn 등이 있으며, 이들 금속들은 비정질 실리콘과 반응하여 공정상(eutectic phase) 또는 실리사이드상(silicide phase)을 형성하여 저온 결정화를 촉진시킨다. 그러나, MIC 법을 다결정 실리콘 TFT 제작의 실제 공정에 적용시킬 경우 채널(channel) 내에 금속의 심각한 오염 문제를 야기시킨다.
MILC 법은 MIC 법의 응용기술로서, 채널 위에 금속을 증착하는 대신 게이트 전극을 형성한 후, 자기 정렬된 구조에서 소스 및 드레인 위에 금속을 얇게 증착하여 금속유도결정화(metal induced crystallization)를 유발한 후, 채널 쪽으로 측면 결정화를 유도하는 기술이다. MILC 법에 가장 많이 사용되는 금속으로는 Ni 및 Pd을 들 수 있다. MILC 법으로 제조된 다결정 실리콘은 SPC 법에 비하여 우수한 결정성 및 높은 전계 효과 이동도(field effect mobility)를 보임에도 불구하고, 높은 누설 전류 특성을 보인다고 알려져 있다. 즉, 금속 오염 문제를 MIC 법에 비하여 감소하기는 하였으나, 아직도 완전히 해결하지 못한 실정이다. 한편, MILC 법을 개량한 방법으로 전계유도방향성 결정화법(FALC: Field Aided Lateral Crystallization)이 있다. MILC 법에 비하여 FALC 법은 결정화 속도가 빠르며 결정화 방향의 이방성을 보이지만, 이 역시 금속의 오염 문제를 완전히 해결하지는 못하고 있다.
이상의 MIC 법, MILC 법, FALC 법 등의 결정화 방법은 SPC 법에 비하여 결정화 온도를 낮추었다는 점에서는 효과적이나, 결정화 시간이 여전히 길다는 점과, 모두 금속에 의하여 결정화가 유도되는 공통점을 가지고 있다. 따라서, 금속의 오염 문제라는 점에서 자유롭지 못한다. 한편, 최근 개발된 ELC 법은 금속의 오염 문제를 해결하면서 유리기판 위에 저온 공정으로 다결정 실리콘 박막을 제조하는 것을 가능하게 한다. LPCVD(Low Pressure Chemical Vapor Deposition)법 또는 PECVD(Plasma Enhanced Chemical Vapor Deposition)법으로 증착된 비정질 실리콘 박막은 엑시머 레이저의 파장인 자외선 영역(λ = 308 ㎚)에 대한 흡수 계수가 매우 크기 때문에, 적정한 에너지 밀도에서 쉽게 비정질 실리콘 박막의 용융이 일어나게 된다. 비정질 실리콘 박막을 엑시머 레이저에 의해 결정화시키는 경우, 용융 및 응고의 과정을 매우 짧은 시간 내에 동반하게 된다. 이러한 관점에서 볼 때, ELC 법은 엄밀한 의미에서 저온 공정은 아니다. 그러나, ELC 공정은 엑시머 레이저에 의해 크게 영향을 받은 국부적인 용융 영역에서 매우 빠르게 진행되는 용융 및 응고에 의해 결정화되는 과정을 거치므로, 기판을 손상시키지 않으면서 극히 짧은 시간(수십 nano-sec 단위)에 다결정 실리콘을 제조할 수 있다. 즉, 유리기판/절연층/비정질 실리콘 박막으로 이루어진 모재의 비정질 실리콘 상에 레이저가 극히 짧은 시간에 조사되면, 비정질 실리콘 박막만이 선택적으로 가열되어, 하층에 위치한 유리기판의 손상없이 결정화가 이루어진다. 또한, 액상에서 고상으로의 상변태시 생성되는 다결정 실리콘의 경우, 고상 결정화를 통해 생성되는 다결정 실리콘의 경우보다, 열역학적으로 안정된 결정립 구조를 보이고 결정립 내의 결정 결함이 현저히 감소될 수 있는 장점이 있으므로, ELC 법으로 제조된 다결정 실리콘은 다른 여타의 결정화법들의 결과물보다 우수하다.
그럼에도 불구하고, ELC 법은 몇 가지 중대한 단점들을 가지고 있다. 예를 들어, 레이저 빔 자체의 조사량이 불균일하다는 레이저 시스템 상의 문제점과, 조대한 결정립을 얻기 위한 레이저 에너지 밀도의 공정 영역이 극히 제한되어 있다는 레이저 공정상의 문제점, 그리고 대면적에 샷(shot) 자국이 남는다는 문제점을 가지고 있다. 이들 두 요소들은 다결정 실리콘 TFT의 액티브층(active layer)를 구성하는 다결정 실리콘 박막의 결정립 크기의 불균일성을 야기시킨다. 또한, 액상에서 고상으로의 상변태를 동반하며 생성되는 다결정 실리콘의 경우 부피 팽창이 수반되므로, 결정립계가 만들어지는 지점으로부터 표면쪽으로 심한 돌출(protrusion) 현상이 일어난다. 이러한 현상은 후속 공정인 게이트 절연층에도 직접적인 영향을 미치게 되는데, 다결정 실리콘/게이트 절연층 계면의 불균일한 평탄도에 의한 절연 파괴 전압(breakdown voltage) 감소 및 핫 캐리어 응력(hot carrier stress) 등의 소자 신뢰성에 심각한 영향을 미치고 있다.
최근에는, 상기 설명한 ELC 법의 불안정성을 해결하기 위하여 SLS(Sequential Lateral Solidification) 법이 개발되어 레이저 에너지 밀도의 공정 영역을 안정화하는데 성공하였지만, 여전히 샷 자국 및 표면 쪽으로 돌출(protrusion) 현상을 해결하지 못하였으며, 또한 평판 디스플레이 산업이 급속히 발전하고 있는 현재의 추세로 비추어 볼 때, 조만간 양산화가 필요하게 될 1 m × 1 m 크기 이상인 기판의 결정화 공정에 레이저를 이용하는 기술은 여전히 문제점을 가지고 있다. 더욱이, ELC 법과 SLS 법의 실행을 위한 장비는 매우 고가이므로, 초기 투자비와 유지비가 많이 소요된다는 문제점도 가지고 있다.
따라서, 레이저 결정화법의 장점들, 즉, 짧은 시간 내에 공정이 이루어지기 때문에 하부의 기판에 손상을 주지 않는다는 점과 고온 상변태에 의해 결함이 거의 없는 매우 양질의 결정립을 생성할 수 있다는 점을 가지면서, 그러한 레이저 결정화법의 단점들, 즉, 국부적인 공정에 따른 조사량 불균일성 및 공정상의 제한 등과 고가 장비를 사용해야 하는 문제점들을 해결할 수 있는 비정질 실리콘 박막의 결정화 방법에 대한 필요성이 대두되고 있다. 특히, 최근 차세대 평판 디스플레이의 응용에 많은 주목을 받고 있는 능동형 유기-EL(Active Matrix Organic Light Emitting Diode)의 경우, TFT-LCD가 전압 구동인데 반하여, 전류 구동 방식이기 때문에 대면적 기판에서의 결정립 크기의 균일도가 매우 중요한 인자이다. 그러므로, 레이저를 사용하는 ELC 방법 또는 SLS 방법에 의한 저온 결정화 방법이 한계에 부딪히고 있는 것이 평판 디스플레이 산업체들이 안고 있는 현실이다. 이러한 사실을 고려할 때, 레이저를 사용하지 않는 방식에 의한 저온 결정화에 의하여 양질의 다결정 실리콘 박막을 제조하는 신기술에 대한 필요성이 매우 높은 실정이다.
이러한 종래기술의 문제점을 해결하기 위하여, 본 발명의 발명자들은 한국특허출원 제2004-37952호에서, 공정 중에 상기 기판이 변형되지 않는 온도범위에서 상기 실리콘 박막을 예열하여 그것의 내부에 진성 캐리어를 생성함으로써 주울 가열이 가능한 저항값으로 낮춘 후, 상기 예열된 실리콘 박막에 전계를 직접 인가하여 상기 캐리어의 이동에 의한 주울 가열을 행함으로써 결정화를 하는 방법을 최초로 제시한 바 있다. 이러한 방법은 상대적으로 낮은 온도에서 짧은 시간 내에 양질의 다결정 실리콘 박막을 제조할 수 있다는 점에서 매우 혁신적인 방법이다.
또한 본 발명의 발명자들은 한국특허출원 제2005-73076호에서, 투명 기판 상의 절연층 위에 도전층인 ITO층 및 절연층을 각각 형성한 후 실리콘 박막을 형성하여, 상기 ITO층에 전계를 인가하여 주울 가열을 유도함으로써 고열을 발생시켜, 그러한 고열에 의해 상기 실리콘 박막을 기판이 손상되지 않으면서 종래보다 더욱 낮은 온도에서, 바람직하게는 상온에서, 매우 짧은 시간 내에 더욱 우수한 결정화 및 도펀트 활성화 그리고 열산화막 공정 및 결정격자결함치유를 이룰 수 있는 방법을 제시하였다.
그러나 대형화되고 있는 평판 표시장치의 화소 스위칭 소자의 반도체층으로 주울 가열을 이용한 결정화 박막이 사용되기 위해서는 종래의 다결정 실리콘막보다 저항 특성이 개선될 필요성이 있다.
본 발명은 저항 특성이 우수한 다결정 실리콘막, 이를 구비한 박막트랜지스터, 및 이의 제조방법을 제공하는데 목적이 있다.
본 발명은 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막을 제공한다.
또한 본 발명은 기판; 상기 기판 상에 위치하며, 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막으로 이루어진 반도체층; 상기 반도체층 상에 위치하는 게이트 절연막; 상기 게이트 절연막 상에 위치하며, 상기 반도체층의 일정 영역에 대응되게 위치하는 게이트 전극; 상기 게이트 전극 상에 위치하는 층간 절연막; 및 상기 층간 절연막 상에 위치하며, 상기 반도체층과 전기적으로 연결되는 소오스/드레인 전극을 포함하는 것을 특징으로 하는 박막트랜지스터를 제공한다.
또한 본 발명은 기판; 상기 기판 상에 위치하는 게이트 전극; 상기 게이트 전극 상이 위치하는 게이트 절연막; 상기 게이트 절연막 상에 위치하며, 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘 박막으로 이루어진 반도체층; 상기 반도체층 상에 위치하며, 상기 반도체층과 전기적으로 연결되는 소오스/드레인 전극을 포함하는 것을 특징으로 하는 박막트랜지스터를 제공한다.
또한 본 발명은 기판을 제공하고, 상기 기판 상에 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막으로 반도체층을 형성하고, 상기 반도체층 상에 게이트 절연막을 형성하고, 상기 게이트 절연막 상에 게이트 전극을 형성하고, 상기 게이트 전극 상에 층간 절연막을 형성하고, 상기 층간 절연막 상에 상기 반도체층의 소오스/드레인 영역과 전기적으로 연결되는 소오스/드레인 전극을 형성하는 것을 포함하는 것을 특징으로 하는 박막트랜지스터의 제조방법을 제공한다.
본 발명에 따르면, 저항 특성이 우수한 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법을 얻을 수 있다.
도 1은 주울 가열에 의한 결정화 방법의 일 실시예를 설명하는 단면도이다.
도 2는 종래 기술과 본원 발명에 따른 다결정 실리콘막의 라만 스펙트럼을 나타낸 그래프이다.
도 3 내지 도 5는 본 발명의 다결정 실리콘막을 포함하는 제 1 실시예에 따른 박막트랜지스터를 제조하는 공정을 나타낸 단면도이다.
도 6 내지 도 7은 본 발명의 다결정 실리콘막을 포함하는 제 2 실시예에 따른 박막트랜지스터를 제조하는 공정을 나타낸 단면도이다.
도 8 내지 도 9는 본 발명의 다결정 실리콘막을 포함하는 제 3 실시예에 따른 박막트랜지스터를 제조하는 공정을 나타낸 단면도이다.
도 10은 상기 실험예들 및 비교예들에 따라 결정화된 다결정 실리콘막의 라만 스펙트럼을 나타낸 그래프이다.
도 11은 비교예 3에 따라 결정화한 경우 결정화동안 실리콘막에 발생한 실금을 나타낸 사진이다.
<도면의 주요 부분에 대한 부호의 설명>
10, 30, 40, 50: 기판 11: 제 1 절연층
12, 34, 42, 56: 도전층 13: 제 2 절연층
14, 32, 43, 54: 비정질 실리콘막 33, 44, 55: 절연층
35, 45, 57: 반도체층 36, 46, 53: 게이트 절연막
37, 47, 52: 게이트 전극 38, 48: 층간 절연막
39a, 39b, 49a, 49b, 59a, 59b: 소오스/드레인 전극
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시 예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나 본 발명은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화될 수도 있다.
본 발명에 따른 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막은 주울 가열에 의한 결정화 방법을 이용하여 결정화된 주울 가열 다결정 실리콘막이다.
본 발명의 주울 가열에 의한 결정화 방법은 비정질 실리콘막의 상부 혹은 하부에 도전층을 개재한 후 그 도전층에 0.1 내지 300㎲의 아주 짧은 시간 동안 전계를 인가하여 주울 가열을 행함으로써 상기 비정질 실리콘막을 가열시켜 결정화를 하는 방법이다.
도 1은 주울 가열에 의한 결정화 방법의 일 실시예를 설명하는 단면도이다.
도 1을 참조하면, 기판(10) 위에 제 1 절연층(11), 도전층(12), 제 2 절연층(13) 및 비정질 실리콘(a-Si)막(14)을 순차적으로 형성하고, 상기 도전층(12)에 전계를 인가하여 주울 가열을 유도함으로써 고열을 발생시켜, 상기 고열에 의해 상기 비정질 실리콘막(14)을 결정화한다.
상기 기판(10)의 소재는 특별히 제한되는 것은 아니고, 예를 들어, 유리, 석영, 플라스틱 등의 투명기판 소재가 가능하며, 경제적인 측면에서 유리가 더욱 바람직하다. 그러나, 평판 디스플레이 분야의 최근 연구 경향을 살펴보면, 내충격성과 생산공정성 등이 우수한 플라스틱 소재의 기판 등에 대한 많은 연구들이 진행되고 있으며, 본 발명의 방법은 이러한 플라스틱 소재의 기판에도 그대로 적용될 수 있다.
상기 제 1 절연층(11)은 추후 공정에서 생성될 수 있는 상기 기판(10) 내부의 일부 물질, 예를 들어, 유리기판의 경우 알칼리 물질의 용출을 방지하기 위한 용도로 사용되며, 일반적으로 실리콘 산화물(SiO2), 실리콘 질화물을 증착하여 형성하는데, 두께는 통상 2000 - 5000 Å 정도인 것이 바람직하지만, 그것으로 한정되는 것은 아니다. 상기 제 1 절연층(11)은 생략될 수 있으며, 본 발명의 방법은 그러한 구조에 적용될 수 있으므로, 본 발명의 범주는 그러한 구조를 포함하는 것으로 해석되어야 한다.
상기 도전층(12)은 투명성 도전 박막 또는 금속 박막으로 형성할 수 있다. 바람직하게는 상기 도전층(12)은 녹는점이 1100℃ 이상인 금속 박막으로 형성한다. 0.1 내지 300㎲ 정도의 아주 짧은 시간 동안 상기 비정질 실리콘막(14)을 결정화하기 위해서는 상기 비정질 실리콘막(14)에 순간적으로 1100℃ 이상의 고열이 가해질 수 있다. 그와 같은 고열에서 상기 도전층(12)의 파손을 방지하기 위해서는 상기 도전층(12)을 녹는점이 1100℃ 이상인 금속 박막으로 형성하는 것이 바람직하다. 상기 녹는점이 1100℃ 이상인 금속으로는 몰리브덴(Mo), 티탄늄(Ti), 크롬(Cr) 또는 몰리텅스텐(MoW) 등이 있다.
상기 도전층(12)은 스퍼터링(Sputtering), 또는 기상증착(Evaporation) 등의 방법에 의해 형성할 수 있으며, 500Å 내지 3000Å로 형성할 수 있다. 그러나 그것으로 한정되는 것은 아니다.
상기 제 2 절연층(13)은 열처리 과정에서 상기 도전층(12)에 의해 후속하는 비정질 실리콘막(14)이 오염되는 것을 방지하는 역할과 TFT소자의 절연 역할을 할 수 있다. 상기 제 2 절연층(13)은 상기 제 1 절연층(11)과 동일한 물질로 형성될 수 있다.
이어서 상기 제 2 절연층(13) 상에 비정질 실리콘막(14)을 형성한다.
이어서 상기 도전층(12)에 전계를 인가한다. 상기 도전층(12)에 전계가 인가되면, 상기 비정질 실리콘막(14)은 주울 가열에 의해 결정화된다. 상기 도전층(12)에 대한 전계 인가는, 0.1 내지 300㎲ 정도의 아주 짧은 시간 내에 상기 비정질 실리콘막(14)의 결정화를 유도하기에 충분한 고열을 가할 수 있는 파워 밀도(power density)의 에너지를 상기 도전층(12)에 인가한다. 바람직하게는 상기 비정질 실리콘막(14)에 1100℃ 이상의 고열을 가할 수 있는 파워 밀도(power density)의 에너지를 상기 도전층(12)에 인가한다. 상기 도전층(12)에 0.1 내지 300㎲의 아주 짧은 시간 동안 충분한 파워 밀도의 에너지로 전계가 인가되면, 상기 비정질 실리콘막(14)이 결정화됨과 동시에, 결정화동안 상기 비정질 실리콘막(14)에 장력이 가해질 수 있다. 여기서 상기 도전층(12)에 전계가 인가되는 시간이 0.1㎲보다 짧으면 상기 비정질 실리콘막(14)이 다결정 실리콘층으로 결정화되지 않을 수 있으며, 300㎲보다 길면 도 11에서 보는 바와 같이, 결정화동안 실리콘막에 실금이 발생할 수 있으며, 상기 실금으로 인하여 상기 비정질 실리콘막(14)에 가해지는 장력이 완화되어 결정화된 다결정 실리콘막의 라만 스펙트럼의 피크값이 종래보다 왼쪽으로 이동하지 않을 수 있다.
여기서 주울 가열에 의한 결정화동안 상기 비정질 실리콘막(14)에 장력이 가해지는 메커니즘은 다음과 같다. 상기 도전층(12)에 0.1 내지 300㎲의 아주 짧은 시간 동안 1100℃ 이상의 고열을 발생시키는 전계가 인가되면, 상기 비정질 실리콘막(14)을 결정화하기에 충분한 고열이 상기 비정질 실리콘막(14)에 전달된다. 그러나 상기 도전층(12)에서 발생한 열의 전부가 상기 비정질 실리콘막(14)에 전달되기에는 짧은 시간이므로, 결정화동안 상기 도전층(12)과 상기 비정질 실리콘막(14) 사이에서는 온도 구배가 발생한다. 이 때, 상기 도전층(12)에 가해지는 온도가 더 높고, 더욱이 상기 도전층(12)은 상기 비정질 실리콘막(14)보다 열팽창 계수가 크므로, 상기 도전층(12)은 상기 비정질 실리콘막(14)보다 상대적으로 많이 팽창하게 된다. 그러면 상기 비정질 실리콘막(14)보다 많이 팽창하는 상기 도전층(12)에는 인장 응력이 작용하게 되고, 반대로 상부에 위치한 상기 제 2 절연층(13) 및 상기 비정질 실리콘층(14)에는 장력이 작용하게 된다.
이와 같이 주울 가열에 의해 상기 비정질 실리콘막(14)을 결정화하면, 결정화 동안에 상기 비정질 실리콘층(14)에 장력이 작용하게 됨으로써, 라만 스펙트럼의 피크값이 종래보다 왼쪽으로 이동할 수 있다. 따라서 본 발명에서와 같이 주울 가열에 의한 결정화 방법으로 결정화된 다결정 실리콘막의 라만 스펙트럼의 피크값은, 도 2에 도시된 바와 같이 종래 518-520 cm-1 보다 왼쪽으로 이동한 515-517 cm-1 에서 나타난다. 본 발명에서 라만 스펙트럼의 피크값이 515-517 cm-1에서 나타난다는 것은 단결정 실리콘막의 라만 스펙트럼의 피크값이 520.1 cm-1 나타나는 것을 기준으로 한 것이다.
본 발명의 주울 가열에 의한 결정화 방법으로 결정화된 다결정 실리콘막으로, 라만 스펙트럼의 피크값이 515-517 cm-1 에서 나타나는 다결정 실리콘막을 주울 가열 다결정 실리콘막이라고 한다. 하기 표 1을 참조하면, 본 발명에 따른 주울 가열 다결정 실리콘막은 종래 518-520 cm-1에서 라만 스펙트럼의 피크값이 나타나는 다결정 실리콘막보다 저항 특성이 우수하다.
도 3 내지 도 5는 본 발명의 다결정 실리콘막을 포함하는 제 1 실시예에 따른 박막트랜지스터를 제조하는 공정을 나타낸 단면도이다.
도 3을 참조하면, 유리, 스테인레스 스틸 또는 플라스틱 등으로 이루어진 기판(30)상에 실리콘 산화막 또는 실리콘 질화막과 같은 절연막을 이용하여 단층 또는 복층으로 버퍼층(31)을 형성한다. 이때 상기 버퍼층(31)은 상기 기판(30)에서 발생하는 수분 또는 불순물의 확산을 방지하거나, 결정화시 열의 전달 속도를 조절함으로써, 비정질 실리콘층의 결정화가 잘 이루어질 수 있도록 하는 역할을 한다.
이어서, 상기 버퍼층(31) 상에 비정질 실리콘막(32), 절연층(33), 및 도전층(34)을 형성한 후, 상기 도전층(34)에 전계를 인가하여, 상기 비정질 실리콘막(32)을 주울 가열 다결정 실리콘막으로 형성한다. 상기 비정질 실리콘막(32)을 주울 가열 다결정 실리콘막으로 형성하는 것은 상기 도 1 및 그에 관한 설명을 참조한다.
한편, 상기 도전층(34)에 전계를 인가하기 전에, 상기 구성요소들(30, 31, 32, 33, 34)이 형성된 상기 기판(30)을 적정한 온도 범위로 예열할 수 있다. 상기 적정한 온도 범위는 공정 전반에 걸쳐 상기 기판(30)이 손상되지 않는 온도범위를 의미하며, 바람직하게는 상기 기판(30)의 열변형 온도보다 낮은 범위이다. 예열 방법은 특별히 한정되는 것은 아니며, 예를 들어, 일반 열처리 로에 투입하는 방법, 램프 등의 복사열을 조사하는 방법 등이 사용될 수 있다.
또한 상기 도전층(34)에 전계를 인가하기 전에 상기 비정질 실리콘막(32)에 n형 또는 p형 불순물을 도핑할 수 있으며, 상기 도핑된 불순물을 활성화하기 위한 열처리 공정을 진행할 수도 있다. 또는 상기 도전층(32)에 전계를 인가하여 상기 비정질 실리콘막(32)을 주울 가열 다결정 실리콘막으로 형성한 후에 상기 다결정 실리콘막에 n형 또는 p형 불순물을 도핑할 수도 있으며, 상기 도핑된 불순물을 활성화하기 위한 열처리 공정을 진행할 수도 있다. 이때 n형 불순물로는 인(P)이 바람직하며, p형 불순물로는 붕소(B)가 바람직하다.
이어서 도 4를 참조하면, 상기 도전층(34) 및 상기 절연층(33)을 제거하고, 상기 주울 가열 다결정 실리콘막을 패터닝하여, 반도체층(35)으로 형성한다.
이어서, 상기 반도체층(35) 상에 게이트 절연막(36)을 형성한다. 상기 게이트 절연막(36)은 실리콘 산화막, 실리콘 질화막 또는 이들의 이중층일 수 있다.
계속해서, 상기 게이트 절연막(36) 상에 알루미늄(Al) 또는 알루미늄-네오디뮴(Al-Nd)과 같은 알루미늄 합금의 단일층이나, 크롬(Cr) 또는 몰리브덴(Mo) 합금 위에 알루미늄 합금이 적층된 다중층을 게이트 전극용 금속층(도시안됨)을 형성하고, 사진 식각공정으로 상기 게이트 전극용 금속층을 식각하여 상기 반도체층(35)의 채널 영역와 대응되는 부분에 게이트 전극(37)을 형성한다.
이어서, 상기 게이트 전극(37)을 포함하는 기판 전면에 걸쳐 층간 절연막(38)을 형성한다. 여기서, 상기 층간 절연막(38)은 실리콘 질화막, 실리콘 산화막 또는 이들의 다중층일 수도 있다.
이어서, 상기 층간 절연막(38) 및 상기 게이트 절연막(36)을 식각하여 상기 반도체층(35)의 소오스/드레인 영역의 일정 영역을 노출시키는 콘택홀(39)을 형성한다.
이어서 도 5를 참조하면, 상기 층간 절연막(38) 상에 상기 콘택홀(39)을 통하여 상기 반도체층(35)의 소오스/드레인 영역과 연결되는 소오스/드레인 전극(39a, 39b)을 형성한다.
도 6 내지 도 7은 본 발명의 다결정 실리콘막을 포함하는 제 2 실시예에 따른 박막트랜지스터를 제조하는 공정을 나타낸 단면도이다. 하기에서 특별히 언급되는 것을 제외하고는 상기 실시예에서 언급된 것을 참조한다.
도 6을 참조하면, 기판(40) 위에 버퍼층(41)을 형성한다. 상기 버퍼층(41) 상에 도전층(42), 절연층(43), 및 비정질 실리콘막(44)을 차례로 형성한다.
이어서 상기 도전층(42)에 전계를 인가하여, 상기 비정질 실리콘막(44)을 주울 가열 다결정 실리콘막으로 형성한다.
계속해서 도 7을 참조하면, 상기 주울 가열 다결정 실리콘막을 패터닝하여, 반도체층(45)으로 형성한다. 이어서, 상기 반도체층(45) 상에 게이트 절연막(46)을 형성하고, 상기 게이트 절연막(46) 상에 상기 반도체층(45)의 채널 영역과 대응되는 부분에 게이트 전극(47)을 형성한다.
이어서, 상기 게이트 전극(47)을 포함하는 기판 전면에 걸쳐 층간 절연막(48)을 형성하고, 상기 층간 절연막(48) 및 상기 게이트 절연막(46)을 식각하여 상기 반도체층(45)의 소오스/드레인 영역의 일정 영역을 노출시키는 콘택홀(49)을 형성한다. 이어서 상기 콘택홀(49)을 통하여 상기 반도체층(45)의 소오스/드레인 영역과 연결되는 소오스/드레인 전극(49a, 49b)을 형성한다.
도 8 내지 도 9는 본 발명의 다결정 실리콘막을 포함하는 제 3 실시예에 따른 박막트랜지스터를 제조하는 공정을 나타낸 단면도이다. 하기에서 특별히 언급되는 것을 제외하고는 상기 실시예에서 언급된 것을 참조한다.
도 8을 참조하면, 기판(50) 상에 버퍼층(51)을 형성한다. 상기 버퍼층(51) 상에 게이트 전극(52)을 형성한다. 이어서 상기 기판(50) 상에 게이트 절연막(53)을 형성한다.
계속해서 상기 게이트 절연막(53) 상에 비정질 실리콘막(54), 절연층(55), 및 도전층(56)을 차례로 형성한다. 이어서 상기 도전층(56)에 전계를 인가하여 상기 비정질 실리콘막(54)을 주울 가열 다결정 실리콘막으로 형성한다.
이어서 도 9를 참조하면, 상기 주울 가열 다결정 실리콘막을 패터닝하여, 반도체층(57)으로 형성한다.
이어서, 상기 반도체층(57) 상에 오믹콘택 물질막 및 소오스/드레인 도전막을 차례로 적층하고, 적층된 소오스/드레인 도전막 및 오믹콘택 물질막을 차례로 패터닝하여 소오스/드레인 전극(59a, 59b) 및 오믹콘택층(ohmic contact layer; 58)을 형성한다. 상기 오믹콘택층(58)은 불순물이 도핑된 비정질 실리콘막일 수 있으며, 상기 반도체층(57)에 불순물을 도핑하는 경우에는 상기 오믹콘택층(58)을 형성하지 않을 수 있다.
이하, 실험예 및 비교예를 참조하여 본 발명을 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[실험예 1]
가로 × 세로 × 두께가 2 ㎝ × 2 ㎝ × 0.7 ㎜인 기판 상에 제 1 절연층으로 PECVD 법에 의해 두께 3000 Å의 SiO2 층을 형성하였다. 상기 제 1 절연층 상에 도전층으로 스퍼터링법에 의해 두께 1000Å의 몰리브덴층을 증착한 후, 제 2 절연층으로 PECVD 법에 의해 두께 1000Å의 SiO2 층을 증착하였다. 상기 제 2 절연층 상에 PECVD 법에 의해 두께 500Å의 비정질 실리콘막을 증착하였다. 이어서 제조된 시편의 몰리브덴층에 600V의 전압을 300㎲동안 인가하여 주울 가열로부터 발생한 열을 이용하여 상기 비정질 실리콘막을 주울 가열 다결정 실리콘막으로 결정화하였다. 이때, 상기 몰리브덴층에 가해지는 순간 온도는 1100℃ 정도로 상승한 것으로 측정되었다. 이어서 상기 다결정 실리콘막에 10 KeV로 1분 동안 붕소 이온을 도핑한 후, 500℃의 온도에서 30분간 열처리하여 상기 붕소 이온을 활성화시켰다.
[실험예 2]
가로 × 세로 × 두께가 2 ㎝ × 2 ㎝ × 0.7 ㎜인 기판 상에 제 1 절연층으로 PECVD 법에 의해 두께 3000 Å의 SiO2 층을 형성하였다. 상기 제 1 절연층 상에 도전층으로 스퍼터링법에 의해 두께 1000Å의 몰리브덴층을 증착한 후, 제 2 절연층으로 PECVD 법에 의해 두께 1000Å의 SiO2 층을 증착하였다. 상기 제 2 절연층 상에 PECVD 법에 의해 두께 500Å의 비정질 실리콘막을 증착하였다. 이어서 제조된 시편의 몰리브덴층에 700V의 전압을 15㎲ 동안 인가하여 주울 가열로부터 발생한 열을 이용하여 상기 비정질 실리콘막을 주울 가열 다결정 실리콘막으로 결정화하였다. 이때, 상기 몰리브덴층에 가해지는 순간 온도는 1300℃ 정도로 상승한 것으로 측정되었다. 이어서 상기 다결정 실리콘막에 10 KeV로 1분동안 붕소 이온을 도핑한 후, 500℃의 온도에서 30분간 열처리하여 상기 붕소 이온을 활성화시켰다.
[비교예 1]
가로 × 세로 × 두께가 2 ㎝ × 2 ㎝ × 0.7 ㎜인 기판 상에 절연층으로 PECVD 법에 의해 두께 3000 Å의 SiO2 층을 형성하였다. 상기 절연층 상에 PECVD 법에 의해 두께 500 Å의 비정질 실리콘막을 증착하였다. 상기 비정질 실리콘막이 형성된 기판을 관상로에서 600℃ 의 온도에서 24 시간 동안 열처리함으로써, 상기 비정질 실리콘막을 고상 결정화법에 의해 다결정 실리콘막으로 결정화하였다. 이어서 상기 다결정 실리콘막에 10 KeV로 1분동안 붕소 이온을 도핑한 후, 500℃의 온도에서 30분간 열처리하여 상기 붕소 이온을 활성화시켰다.
[비교예 2]
가로 × 세로 × 두께가 2 ㎝ × 2 ㎝ × 0.7 ㎜인 기판 상에 절연층으로 PECVD 법에 의해 두께 3000 Å의 SiO2 층을 형성하였다. 상기 절연층 상에 PECVD 법에 의해 두께 500 Å의 비정질 실리콘막을 증착하였다. 상기 비정질 실리콘막이 형성된 기판을 관상로에서 600℃ 의 온도에서 30분 동안 열처리하여 상기 비정질 실리콘막에 초기 결정 시드와 진성 캐리어를 생성시킴으로써 도전이 가능하도록 형성한다. 이어서 상기 비정질 실리콘막에 3000V, 30ms 의 조건으로 전계를 10회 인가하여 다결정 실리콘막으로 결정화하였다. 이어서 상기 다결정 실리콘막에 10 KeV로 1분동안 붕소 이온을 도핑한 후, 500℃의 온도에서 30분간 열처리하여 상기 붕소 이온을 활성화시켰다.
[비교예 3]
가로 × 세로 × 두께가 2 ㎝ × 2 ㎝ × 0.7 ㎜인 기판 상에 제 1 절연층으로 PECVD 법에 의해 두께 3000 Å의 SiO2 층을 형성하였다. 상기 제 1 절연층 상에 도전층으로 스퍼터링법에 의해 두께 1000Å의 몰리브덴층을 증착한 후, 제 2 절연층으로 PECVD 법에 의해 두께 1000Å의 SiO2 층을 증착하였다. 상기 제 2 절연층 상에 PECVD 법에 의해 두께 500Å의 비정질 실리콘막을 증착하였다. 이어서 제조된 시편의 몰리브덴층에 600V의 전압을 310ms 인가하여 주울 가열로부터 발생한 열을 이용하여 상기 비정질 실리콘막을 주울 가열 다결정 실리콘막으로 결정화하였다. 이때, 상기 몰리브덴층에 가해지는 순간 온도는 1000℃ 정도로 상승한 것으로 측정되었다. 이어서 상기 다결정 실리콘막에 10 KeV로 1분동안 붕소 이온을 도핑한 후, 500℃의 온도에서 30분간 열처리하여 상기 붕소 이온을 활성화시켰다.
도 10은 상기 실험예들 및 비교예들에 따라 결정화된 다결정 실리콘막의 라만 스펙트럼을 나타낸 그래프이다.
도 10을 참조하면, 비교예 1 및 비교예 2에 따라 결정화된 다결정 실리콘막의 경우는 라만 스펙트럼의 피크값이 520 cm-1 에서 나타나고, 비교예 3에 따라 결정화된 다결정 실리콘막의 경우는 518 cm-1에서 나타남을 확인할 수 있다.
비교예 2에 따라 비정질 실리콘막 상부 또는 하부에 도전층을 형성하지 않고, 상기 비정질 실리콘막을 가열하여 도전성을 갖도록 형성하고, 상기 도전성을 가지는 상기 비정질 실리콘막에 전계를 인가하여 결정화된 다결정 실리콘막의 경우에도 라만 스펙트럼의 피크값이 520 cm-1 에서 나타남을 확인할 수 있다. 비교예 2에서처럼 비정질 실리콘막을 예열하여 도전성을 갖도록 형성하여도, 상기 비정질 실리콘막의 저항은 도전층보다 높다. 그래서 결정화가 진행될 수 있는 온도로 상기 비정질 실리콘막을 가열하기 위해서는 상기 비정질 실리콘막에 1회 전계를 인가하는 시간이 30ms정도가 되어야 하는데, 상기 시간 동안 전계가 인가되면, 기판 상에 형성된 막들의 팽창 정도의 차이가 점점 감소하여 결정화동안 상기 비정질 실리콘막에 장력이 가해지지 않는다. 그 결과 상기 비교예 2에 따라 결정화된 다결정 실리콘막의 라만 스펙트럼이 왼쪽으로 이동하지 않았음을 확인할 수 있다.
또한 비교예 3의 경우, 비정질 실리콘막 하부에 도전층을 형성하여도 310㎲정도의 시간 동안 전계를 인가하면, 도 7에서 보이는 바와 같이 결정화동안 상기 비정질 실리콘막에 실금이 발생했음을 확인할 수 있다. 상기 실금은 결정화동안 상기 비정질 실리콘막에 가해지는 장력을 완화하는 요소로 작용하게 되었으며, 그로 인하여 결정화된 다결정 실리콘막의 라만 스펙트럼의 피크값을 515-517 cm-1로 이동시킬 정도의 장력이 상기 비정질 실리콘막에 가해지지 않았음을 확인할 수 있다.
이에 대하여, 도 6을 참조하면, 실험예 1 및 실험예 2에 따라 결정화된 다결정 실리콘막의 경우는 라만 스펙트럼의 피크값이 각각 517 및 515 cm-1 에서 나타남을 확인할 수 있다. 실험예 1 및 2에 따라 상기 비정질 실리콘막 하부에 상기 비정질 실리콘막보다 열팽창 계수가 큰 몰리브덴층을 형성하고, 상기 몰리브덴층에 0.1 내지 300㎲ 시간인 300㎲ 및 15 ㎲ 동안 전계를 인가하여 1100℃ 이상의 고열로 열처리를 하여 주울 가열에 의해 상기 비정질 실리콘막을 결정화하는 경우에는, 결정화를 위한 열처리시 상기 몰리브덴층이 급속하게 팽창하고, 그로 인하여 실리콘막에는 장력이 가해짐으로써, 라만 스펙트럼의 피크값이 종래보다 왼쪽으로 이동하여 515-517cm-1 에서 나타남을 확인할 수 있다.
표 1은 실험예들에 따라 결정화된 다결정 실리콘막의 저항값을 측정한 것을 나타낸 것이며, 표 2는 비교예들에 따라 결정화된 다결정 실리콘막의 저항값을 측정한 것을 나타낸 것이다. 각각 4회의 실험을 하여 측정하였다.
표 1
실험예 1 실험예 2
8313 ohm/square 1414 ohm/square
8238 ohm/square 1420 ohm/square
8422 ohm/square 1410 ohm/square
8171 ohm/square 1425 ohm/square
표 2
비교예 1 비교예 2 비교예 3
12353 ohm/square 12234 ohm/square 206332 ohm/square
12916 ohm/square 12548 ohm/square 146298 ohm/square
12849 ohm/square 12112 ohm/square 126135 ohm/square
12913 ohm/square 12442 ohm/square 166453 ohm/square
표 1 및 2를 참조하면, 실험예들에 따라 결정화된 다결정 실리콘막의 경우 비교예들에 따라 결정화된 다결정 실리콘막의 저항값의 약 1/2 이하의 값을 가짐을 확인할 수 있으며, 특히 실험예 2에 따라 결정화된 다결정 실리콘막의 경우는 비교예들과 비교하여 약 1/100 정도의 값을 가짐을 확인할 수 있다. 따라서 실험예들에 따라 결정화된 주울 가열 다결정 실리콘막의 저항 특성이 비교예들에 따라 결정화된 다결정 실리콘막보다 우수함을 확인할 수 있다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (15)

  1. 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막.
  2. 제 1 항에 있어서,
    상기 다결정 실리콘막은 주울 가열 다결정 실리콘막인 것을 특징으로 하는 다결정 실리콘막.
  3. 기판;
    상기 기판 상에 위치하며, 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막으로 이루어진 반도체층;
    상기 반도체층 상에 위치하는 게이트 절연막;
    상기 게이트 절연막 상에 위치하며, 상기 반도체층의 일정 영역에 대응되게 위치하는 게이트 전극;
    상기 게이트 전극 상에 위치하는 층간 절연막; 및
    상기 층간 절연막 상에 위치하며, 상기 반도체층과 전기적으로 연결되는 소오스/드레인 전극을 포함하는 것을 특징으로 하는 박막트랜지스터.
  4. 기판;
    상기 기판 상에 위치하는 게이트 전극;
    상기 게이트 전극 상이 위치하는 게이트 절연막;
    상기 게이트 절연막 상에 위치하며, 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘 박막으로 이루어진 반도체층;
    상기 반도체층 상에 위치하며, 상기 반도체층과 전기적으로 연결되는 소오스/드레인 전극을 포함하는 것을 특징으로 하는 박막트랜지스터.
  5. 제 3 항 또는 제 4 항에 있어서,
    상기 다결정 실리콘막을 주울 가열 다결정 실리콘막인 것을 특징으로 하는 박막트랜지스터.
  6. 제 3 항에 있어서,
    상기 기판과 상기 반도체층 사이에 위치하며, 상기 기판 상에 위치하는 도전층 및 상기 도전층 상에 위치하는 절연층을 더욱 포함하는 것을 특징으로 하는 박막트랜지스터.
  7. 제 6 항에 있어서,
    상기 도전층은 몰리브덴(Mo), 티탄늄(Ti), 크롬(Cr) 또는 몰리텅스텐(MoW)을 포함하는 것을 특징으로 하는 박막트랜지스터.
  8. 제 3 항 또는 제 4 항에 있어서,
    상기 기판은 유리 기판 또는 플라스틱 기판인 것을 특징으로 하는 박막트랜지스터.
  9. 제 3 항 또는 제 4 항에 있어서,
    상기 반도체층은 n형 또는 p형 불순물을 포함하는 것을 특징으로 하는 박막트랜지스터.
  10. 기판을 제공하고,
    상기 기판 상에 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막으로 반도체층을 형성하고,
    상기 반도체층 상에 게이트 절연막을 형성하고,
    상기 게이트 절연막 상에 게이트 전극을 형성하고,
    상기 게이트 전극 상에 층간 절연막을 형성하고,
    상기 층간 절연막 상에 상기 반도체층의 소오스/드레인 영역과 전기적으로 연결되는 소오스/드레인 전극을 형성하는 것을 포함하는 것을 특징으로 하는 박막트랜지스터의 제조방법.
  11. 제 10 항에 있어서,
    상기 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막으로 반도체층을 형성하는 것은,
    상기 기판 상에 비정질 실리콘막을 형성하고,
    상기 비정질 실리콘막 상에 절연층을 형성하고,
    상기 절연층 상에 도전층을 형성하고,
    상기 도전층에 0.1 내지 300㎲ 동안 전계를 인가하여 상기 비정질 실리콘막을 주울 가열에 의해 결정화면서, 상기 비정질 실리콘막에 장력을 가하여, 결정화된 다결정 실리콘막의 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나도록 형성하고,
    상기 절연층 및 도전층을 제거하고,
    상기 다결정 실리콘막을 패터닝하여 반도체층으로 형성하는 것을 포함하는 것을 특징으로 하는 박막트랜지스터의 제조방법.
  12. 제 10 항에 있어서,
    상기 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나는 다결정 실리콘막으로 반도체층을 형성하는 것은,
    상기 기판 상에 도전층을 형성하고,
    상기 도전층 상에 절연층을 형성하고,
    상기 절연층 상에 비정질 실리콘층을 형성하고,
    상기 도전층에 0.1 내지 300㎲ 동안 전계를 인가하여 상기 비정질 실리콘막을 주울 가열에 의해 결정화면서, 상기 비정질 실리콘막에 장력을 가하여, 결정화된 다결정 실리콘막의 라만 스펙트럼의 피크값이 515-517cm-1 에서 나타나도록 형성하고,
    상기 다결정 실리콘막을 패터닝하여 반도체층으로 형성하는 것을 포함하는 것을 특징으로 하는 박막트랜지스터의 제조방법.
  13. 제 11 항 또는 제 12 항에 있어서,
    상기 비정질 실리콘막에 가해지는 온도가 1100℃ 이상인 것을 특징으로 하는 박막트랜지스터의 제조방법.
  14. 제 11 항 또는 제 12 항에 있어서,
    상기 도전층은 몰리브덴(Mo), 티탄늄(Ti), 크롬(Cr) 또는 몰리텅스텐(MoW)으로 형성하는 것을 특징으로 하는 박막트랜지스터의 제조방법.
  15. 제 11 항 또는 제 12 항에 있어서,
    상기 도전층에 전계를 인가하기 전에 상기 비정질 실리콘막에 n형 또는 p형 불순물을 도핑하거나, 또는 상기 도전층에 전계를 인가하고 난 후 상기 다결정 실리콘막에 n형 또는 p형 불순물을 도핑하는 것을 더욱 포함하는 것을 특징으로 하는 박막트랜지스터의 제조방법.
PCT/KR2009/002103 2008-04-23 2009-04-22 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법 WO2009131379A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0037816 2008-04-23
KR1020080037816A KR101009429B1 (ko) 2008-04-23 2008-04-23 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의제조방법

Publications (3)

Publication Number Publication Date
WO2009131379A2 true WO2009131379A2 (ko) 2009-10-29
WO2009131379A3 WO2009131379A3 (ko) 2009-12-23
WO2009131379A9 WO2009131379A9 (ko) 2010-03-25

Family

ID=41217267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002103 WO2009131379A2 (ko) 2008-04-23 2009-04-22 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR101009429B1 (ko)
TW (1) TW200952172A (ko)
WO (1) WO2009131379A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056431B1 (ko) 2010-06-04 2011-08-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 이를 구비한 표시 장치 및 그 제조 방법
TW201212237A (en) 2010-09-03 2012-03-16 Au Optronics Corp Thin film transistor and fabricating method thereof
CN103323444A (zh) * 2013-05-27 2013-09-25 江苏大学 一种判别多晶硅薄膜无序度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677131A (ja) * 1992-08-25 1994-03-18 Fuji Xerox Co Ltd 半導体素子の製造方法
KR20070090849A (ko) * 2006-03-03 2007-09-06 노재상 비정질 실리콘의 주울 가열 결정화 방법
KR100786873B1 (ko) * 2006-09-26 2007-12-20 삼성에스디아이 주식회사 다결정 실리콘 기판의 결정화도 측정방법, 이를 이용한유기 발광 표시 장치의 제조방법 및 유기 발광 표시 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376331B2 (ja) * 1998-08-07 2009-12-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2007502025A (ja) * 2003-05-27 2007-02-01 ロ,ジェ−サン シリコン薄膜の焼鈍方法およびそれから調製される多結晶シリコン薄膜
JP4031021B2 (ja) * 2006-11-20 2008-01-09 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
KR100882834B1 (ko) * 2007-03-14 2009-02-10 샤프 가부시키가이샤 박막 반도체 장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677131A (ja) * 1992-08-25 1994-03-18 Fuji Xerox Co Ltd 半導体素子の製造方法
KR20070090849A (ko) * 2006-03-03 2007-09-06 노재상 비정질 실리콘의 주울 가열 결정화 방법
KR100786873B1 (ko) * 2006-09-26 2007-12-20 삼성에스디아이 주식회사 다결정 실리콘 기판의 결정화도 측정방법, 이를 이용한유기 발광 표시 장치의 제조방법 및 유기 발광 표시 장치

Also Published As

Publication number Publication date
KR101009429B1 (ko) 2011-01-19
WO2009131379A3 (ko) 2009-12-23
TW200952172A (en) 2009-12-16
KR20090112116A (ko) 2009-10-28
WO2009131379A9 (ko) 2010-03-25

Similar Documents

Publication Publication Date Title
KR100729942B1 (ko) 도전층을 이용한 실리콘 박막의 어닐링 방법 및 그로부터제조된 다결정 실리콘 박막
KR100946808B1 (ko) 다결정 실리콘 박막의 제조 방법, 이를 이용하여 제조된다결정 실리콘 박막, 및 이를 포함하는 박막트랜지스터
Stewart et al. Polysilicon VGA active matrix OLED displays-technology and performance
US20020115242A1 (en) Method and apparatus for fabricating thin film transistor including crystalline active layer
JPH0758339A (ja) 半導体装置およびその作製方法
US8871616B2 (en) Methods of fabricating thin film transistor and organic light emitting diode display device having the same
TWI322446B (en) Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask
KR100946809B1 (ko) 박막트랜지스터 및 그의 제조방법
WO2009131379A2 (ko) 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법
JPH06124890A (ja) 薄膜状半導体装置の作製方法。
WO2010011038A2 (ko) 박막트랜지스터 및 이의 제조방법
WO2010123263A2 (ko) 다결정 실리콘 박막의 제조방법
KR20070043393A (ko) 비정질 실리콘 박막의 결정화 방법 및 박막 트랜지스터제조 방법
WO2011149215A9 (ko) 다결정 실리콘 박막의 제조방법
KR101043788B1 (ko) 다결정 실리콘막의 제조방법 및 이를 포함하는 박막트랜지스터의 제조방법
WO2009096747A2 (ko) 다결정 실리콘 박막 제조장치
KR100611747B1 (ko) 박막 트랜지스터의 제조방법
KR101009432B1 (ko) 박막트랜지스터 및 그의 제조방법
KR20050054240A (ko) 박막 트랜지스터 표시판의 제조 방법
KR20110031840A (ko) 박막트랜지스터의 제조방법
KR20090084239A (ko) 다결정 실리콘 박막 제조장치 및 방법
KR101043785B1 (ko) 박막트랜지스터 및 그의 제조방법
JP2003197630A (ja) 薄膜トランジスタと表示装置およびその製造方法
WO2010128783A2 (ko) 다결정 실리콘 박막 제조장치 및 방법
JP2003077832A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735158

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735158

Country of ref document: EP

Kind code of ref document: A2