WO2009130898A1 - 発電制御装置および輸送機器 - Google Patents

発電制御装置および輸送機器 Download PDF

Info

Publication number
WO2009130898A1
WO2009130898A1 PCT/JP2009/001845 JP2009001845W WO2009130898A1 WO 2009130898 A1 WO2009130898 A1 WO 2009130898A1 JP 2009001845 W JP2009001845 W JP 2009001845W WO 2009130898 A1 WO2009130898 A1 WO 2009130898A1
Authority
WO
WIPO (PCT)
Prior art keywords
output current
current value
command output
value
power generation
Prior art date
Application number
PCT/JP2009/001845
Other languages
English (en)
French (fr)
Inventor
谷口将健
Original Assignee
ヤマハモーターエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハモーターエレクトロニクス株式会社 filed Critical ヤマハモーターエレクトロニクス株式会社
Priority to CN200980114766XA priority Critical patent/CN102017393A/zh
Priority to JP2010509078A priority patent/JPWO2009130898A1/ja
Publication of WO2009130898A1 publication Critical patent/WO2009130898A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • the present invention relates to a power generation control device that controls an output current of a generator and a transport device including the power generation control device.
  • a power generation system used for a vehicle such as an automobile has an AC generator and a regulator (see, for example, Patent Document 1).
  • the alternator is driven by the engine and generates an alternating current.
  • the regulator converts the alternating current generated by the alternating current generator into a direct current and outputs it.
  • the output current of the power generation system is supplied to an electric load such as a lamp and a battery. Thereby, power is consumed by the electric load and the battery is charged.
  • the output current value cannot be changed according to the load current value or the state of charge / discharge of the battery.
  • the output current can be controlled by controlling the field current of the field winding of the three-phase AC generator.
  • a flywheel magneto generator which is a magnetic three-phase AC generator, is used.
  • a permanent magnet is used for the flywheel magneto generator. Therefore, the output current cannot be controlled by controlling the field current.
  • An object of the present invention is to provide a power generation control device capable of controlling an output current of an AC generator driven by an engine to an arbitrary value, and a transportation device including the power generation control device.
  • a power generation control device is a power generation control device that controls an output current of an AC generator driven by an engine, and converts an AC current output from the AC generator into a DC current.
  • a rectifier circuit and a control unit that controls the output current value of the rectifier circuit to a target output current value by performing phase angle control of the rectifier circuit, wherein the control unit includes a first command output current that is equal to or greater than the target output current value.
  • a second command output current value equal to or less than the target output current value, and an average value of the first command output current value and the second command output current value within a predetermined period is equal to the target output current value
  • the first control period for performing phase angle control of the rectifier circuit according to the first command output current value within the predetermined period and the second control for performing phase angle control of the rectifier circuit according to the second command output current value It controls the ratio with the period. .
  • the controller determines a first command output current value that is greater than or equal to the target output current value and a second command output current value that is less than or equal to the target output current value.
  • the control unit performs phase angle control of the rectifier circuit in accordance with the first command output current value in the first control period within the predetermined period, and rectifies in accordance with the second command output current value in the second control period within the predetermined period. Controls the phase angle of the circuit.
  • the controller controls the first control period and the second control period so that an average value of the first command output current value and the second command output current value within a predetermined period is equal to the target output current value. Control the ratio with the control period.
  • the average output current value of the rectifier circuit can be controlled to an arbitrary value by setting the target output current value to an arbitrary value. Therefore, an arbitrary output current can be supplied to the load.
  • the power generation control device further includes a current detector that detects an output current value of the rectifier circuit, and the control unit includes an average value of the output current values detected by the current detector within a predetermined period and a target output current value.
  • the ratio between the first control period and the second control period may be changed so that the average value of the output current values becomes equal to the target output current value based on the difference.
  • the first control period and the first control period are set so that the average value of the output current values becomes equal to the target output current value based on the difference between the average value of the output current values detected by the current detector and the target output current value.
  • the ratio to the control period of 2 is changed.
  • the control unit changes the first command output current value and the second command output current value when the target output current value is changed, and the average value within a predetermined period is the target output current value.
  • the ratio between the first control period and the second control period may be changed to be equal to.
  • the AC generator may be a magnet type AC generator having a permanent magnet. Even in this case, the average output current value of the rectifier circuit can be controlled to an arbitrary value.
  • the rectifier circuit may include a bridge circuit including a plurality of switching elements, and the control unit may perform phase angle control of the plurality of switching elements in accordance with the first and second command output current values.
  • the output current value of the rectifier circuit is controlled by controlling the phase angle of the plurality of switching elements.
  • the first and second command output current values may have discrete values. Even in this case, the average output current value of the rectifier circuit can be made equal to an arbitrary target output current value.
  • a transport device includes a main body, an engine provided in the main body, a drive unit that moves the main body by rotation of the engine, and an AC generator that is driven by rotation of the engine.
  • a generator control device that controls the output current of the AC generator driven by the engine, the generator control device converting the AC current output from the AC generator into a DC current, and the phase of the rectifier circuit
  • a control unit that controls the output current value of the rectifier circuit to a target output current value by performing angle control, and the control unit has a first command output current value that is greater than or equal to the target output current value and a value that is less than or equal to the target output current value
  • a second command output current value is determined, and the average value of the first command output current value and the second command output current value within the predetermined period is equal to the target output current value within the predetermined period.
  • First command output current And it controls the ratio of the first control period and the second control period for phase angle control of the rectifier circuit according to the second command output current value for phase angle control of the
  • the drive unit moves the main unit by the rotation of the engine.
  • the power generation control device when the AC generator is driven by the engine, an AC current is output from the AC generator, and the AC current is converted into a DC current by the rectifier circuit.
  • the controller determines a first command output current value that is greater than or equal to the target output current value and a second command output current value that is less than or equal to the target output current value.
  • the control unit performs phase angle control of the rectifier circuit in accordance with the first command output current value in the first control period within the predetermined period, and rectifies in accordance with the second command output current value in the second control period within the predetermined period. Controls the phase angle of the circuit.
  • the controller controls the first control period and the second control period so that an average value of the first command output current value and the second command output current value within a predetermined period is equal to the target output current value. Control the ratio with the control period.
  • the average output current value of the rectifier circuit can be controlled to an arbitrary value by setting the target output current value to an arbitrary value. Therefore, an arbitrary output current can be supplied to the load.
  • FIG. 1 is a side view of a motorcycle according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an electric system of the motorcycle provided with the power generation control device according to the first embodiment of the present invention.
  • FIG. 3 is a waveform diagram showing examples of a basic clock signal, a trigger signal, an output voltage, and an output current.
  • FIG. 4 is a waveform diagram showing an example of the basic clock signal, trigger signal, output voltage, and output current.
  • FIG. 5 is a diagram illustrating an example of an output current in the power generation control device.
  • FIG. 6 is a diagram illustrating an example of output current control in the power generation control device.
  • FIG. 7 is a flowchart showing an output current control process of the power generation control device by the CPU of the microcomputer.
  • FIG. 8 is a block diagram showing a configuration of an electric system of a motorcycle provided with the power generation control device according to the second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of an output current in the power generation control device.
  • FIG. 10 is a flowchart showing an output current control process of the power generation control device by the CPU of the microcomputer.
  • FIG. 1 is a side view of a motorcycle according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an electric system of the motorcycle provided with the power generation control device according to the first embodiment of the present invention.
  • a head pipe 32 is provided at the front end of the main body frame 31.
  • a handle 33 is provided at the upper end of the head pipe 32.
  • a front fork 34 is attached to the lower end of the head pipe 32. In this state, the front fork 34 is rotatable within a predetermined angle range around the axis of the head pipe 32.
  • a front wheel 35 is rotatably supported at the lower end of the front fork 34.
  • the engine 30 is provided at the center of the main body frame 31.
  • the engine 30 is provided with a flywheel magneto generator (hereinafter abbreviated as magneto generator) 1, and a power generation control device 2 is provided in the vicinity of the magneto generator 1.
  • the battery 3 is provided in the lower part of the main body sheet 36 or in the side cover.
  • the rear arm 37 is connected to the main body frame 31 so as to extend to the rear of the engine 30.
  • the rear arm 37 rotatably holds the rear wheel 38 and the rear wheel driven sprocket 39.
  • a chain 40 is attached to the rear wheel driven sprocket 39.
  • the headlight 4a is attached to the front of the head pipe 32, and the taillight 4b is attached to the rear of the main body sheet 36.
  • the 2 includes a magneto generator 1, a power generation control device 2, a battery 3 and an electric load 4.
  • the electric load 4 includes, for example, the headlight 4a, the taillight 4b, the brake lamp, and the blinker shown in FIG.
  • the magneto generator 1 is a magnet type three-phase AC generator, and has a rotor and a stator. A permanent magnet is attached to the rotor, and stator coils 1a, 1b, and 1c are provided on the stator. The magneto generator 1 generates power with the stator coils 1a to 1c and generates an alternating current when the rotor rotates together with the crankshaft of the engine 30 (FIG. 1).
  • the power generation control device 2 includes a microcomputer 5, a voltage dividing circuit 6, and a three-phase mixed bridge circuit 7.
  • the stator coils 1a, 1b, 1c of the magneto generator 1 are connected to the nodes Na, Nb, Nc.
  • the three-phase mixed bridge circuit 7 includes three diodes 7a and three thyristors 7b. Three diodes 7a are connected between the negative power supply line L2 and the nodes Na, Nb, and Nc, respectively, and three thyristors 7b are connected between the positive power supply line L1 and the nodes Na, Nb, and Nc, respectively. Is done.
  • the three-phase mixed bridge circuit 7 converts the alternating current generated by the magneto generator 1 into a direct current.
  • the voltage dividing circuit 6 divides the alternating voltages of the nodes Na, Nb, and Nc, respectively, and outputs the divided voltages to the microcomputer 5.
  • the microcomputer 5 includes an I / O (input / output) port 51, a CPU (central processing unit) 52, an A / D (analog / digital) converter 53, and a memory 54.
  • the A / D converter 53 converts the output voltage of the voltage dividing circuit 6 into a digital voltage value.
  • the memory 54 is composed of, for example, a non-volatile memory, and stores a control program, a target output current value, first and second command output current values, a duty ratio, and the like which will be described later.
  • the CPU 52 operates in synchronization with the basic clock signal CK.
  • the basic clock signal CK may be generated inside the microcomputer 5 or may be given from the outside of the microcomputer 5.
  • the operating frequency of the microcomputer 5 is determined by the frequency of the basic clock signal CK.
  • the CPU 52 detects the rotational speed of the engine 10 and its fluctuation based on the voltage value obtained by the A / D converter 53. Further, the CPU 52 executes an output current control process, which will be described later, according to a control program stored in the memory 54, and gives a trigger signal to the gate of the thyristor 7b via the I / O port 51, thereby controlling the phase angle of the thyristor 7b. Do.
  • the current output from the three-phase mixed bridge circuit 7 is controlled by controlling the timing of the trigger signal.
  • a battery 3 and an electric load 4 are connected between the positive power line L1 and the negative power line L2.
  • the current output from the three-phase mixed bridge circuit 7 is supplied to the battery 3 and the electric load 4. Thereby, the battery 3 is charged and the electric load 4 consumes power.
  • FIG. 3 and 4 are waveform diagrams showing examples of the basic clock signal CK, the trigger signal TR, the output voltage, and the output current.
  • the basic clock signal CK supplied to the CPU 52, the trigger signal TR supplied to one thyristor 7b, the output voltage for one phase of the three-phase mixed bridge circuit 7, and the three-phase mixed bridge circuit 7 The output current for one phase is shown.
  • the period T of the basic clock signal CK corresponds to the control period of the microcomputer 5 and is, for example, 40 ⁇ sec.
  • the trigger signal TR rises in synchronization with the basic clock signal CK. Therefore, the timing of the trigger signal TR is controlled in units of the control cycle T.
  • the CPU 52 detects the rising edge of the output voltage at time t1, and raises the pulse of the trigger signal TR in synchronization with the rising edge of the basic clock signal CK at time t2.
  • the thyristor 7b is turned on in response to the rising edge of the trigger signal TR.
  • current flows through the diode 7a and the thyristor 7b from time t2 to time t3.
  • the value of the output current is 7.5A.
  • the CPU 52 detects the rise of the output voltage at time t1, and raises the pulse of the trigger signal TR in synchronization with the rise of the basic clock signal CK at time t3.
  • the thyristor 7b is turned on in response to the rising edge of the trigger signal TR.
  • current flows through the diode 7a and the thyristor 7b from time t4 to time t3.
  • the value of the output current is 8.5A.
  • FIG. 5 is a diagram showing an example of the output current in the power generation control device 2.
  • the value of the output current is 7.5A
  • the pulse of the trigger signal TR is raised at the timing of the example of FIG.
  • the value of the output current is 8.5A.
  • the output current Since the timing of the trigger signal TR is controlled in units of the control cycle T, the output current has a discrete value. In the above case, the value of the output current cannot be controlled to 8.0 A by controlling the timing (phase angle) of the trigger signal TR. In the power generation control device 2 according to the present embodiment, the output current can be controlled to an arbitrary value by the following method.
  • the CPU 52 sets the current control cycle Tc.
  • the current control cycle Tc is set sufficiently larger than the rotation cycle (for example, 50 msec) in the idling state of the engine 30.
  • the current control cycle Tc is composed of a first control period ta and a second control period tb as shown in the following equation (1).
  • Tc ta + tb (1) Further, the ratio of the first control period ta to the current control period Tc is called a duty ratio Rd.
  • the first control period ta and the second control period tb are set to an integral multiple of the control cycle T of the microcomputer 5.
  • the duty ratio Rd may be changed by making the current control period Tc constant and adjusting the first control period ta and the second control period tb. Further, the duty ratio Rd may be changed by making the first control period ta constant and adjusting the second control period tb and the current control period Tc.
  • the CPU 52 controls the output current of the three-phase mixed bridge circuit 7 according to the first command output current value I1 in the first control period ta, and the second command output current value I2 in the second control period tb.
  • the output current of the three-phase mixed bridge circuit 7 is controlled according to That is, the CPU 52 controls the phase angle of the thyristor 7b so that the output current of the three-phase mixed bridge circuit 7 becomes equal to the first command output current value I1 in the first control period ta, and the second control period tb.
  • the phase angle of the thyristor 7b is controlled so that the output current of the three-phase mixed bridge circuit 7 becomes equal to the second command output current value I2.
  • the CPU 52 uses the first command output current value I1 and the second command output current value I2 so that the average output current value of the three-phase mixed bridge circuit 7 in the current control period Tc is equal to the target output current value Itar.
  • the duty ratio Rd is set.
  • the duty ratio Rd is set so as to satisfy the following expression (3).
  • the CPU 52 controls the first command output current value I1, the second command output current value I2, and the duty ratio Rd, thereby obtaining the average output current value of the three-phase mixed bridge circuit 7 as an arbitrary target output.
  • the current value Itar can be controlled.
  • FIG. 6 is a diagram showing an example of output current control in the power generation control device 2.
  • the target output current value Itar is set to 8.0A.
  • the first command output current value I1 is set to 7.5A
  • the second command output current value I2 is set to 8.5A.
  • the duty ratio Rd is set to 0.5. That is, the first control period ta and the second control period tb are equal. In this case, the average output current value Iave is 8.0A.
  • FIG. 7 is a flowchart showing an output current control process of the power generation control device 2 by the CPU 52 of the microcomputer 5.
  • the CPU 52 determines whether or not the target output current value Itar has been changed (step S1).
  • the target output current value Itar is changed based on the state of the motorcycle 100, for example.
  • a plurality of target output current values Itar are stored in advance in the memory 54 corresponding to the state of the motorcycle 100.
  • the state of the motorcycle 100 is, for example, an idling state, an acceleration state, a deceleration state, and a constant speed state of the engine 30.
  • the state of the motorcycle 100 is not limited to these states.
  • the target output current value Itar may be changed based on the charge state and the discharge state of the battery 3.
  • the CPU 52 performs the phase angle control of the thyristor 7b by the trigger signal TR during the first control period ta at the first command output current value I1 (step S2).
  • step S3 the CPU 52 performs phase angle control of the thyristor 7b with the trigger signal TR during the second control period tb with the second command output current value I2 (step S3). Thereafter, the CPU 52 returns to the process of step S1.
  • the average output current value Iave is controlled to the target output current value Itar by repeatedly executing the processes of steps S1 to S3.
  • the CPU 52 determines the first command output current value I1 and the second command output current value I2 that are close to the changed target output current value Itar (Ste S4).
  • the first command output current value I1 and the second command output current value I2 are set to values above and below the target output current value Itar.
  • step S3 determines the duty ratio Rd from the above equation (3) (step S3). Accordingly, the first control period ta and the second control period tb are calculated from the above equation (2). Thereafter, the CPU 52 returns to the process of step S1, and changes the first command output current value I1, the second command output current value I2, the duty ratio Rd, the first control period ta, and the second control period tb. Steps S1 to S3 are repeatedly executed using As a result, the average output current value Iave is controlled to the changed target output current value Itar.
  • the first output current value Itar is determined under the limitation of the control cycle T of the microcomputer 5. It can be set to any value between the command output current value I1 and the second command output current value I2. Thereby, the average output current value Iave of the three-phase mixed bridge circuit 7 can be controlled to an arbitrary value. Accordingly, an arbitrary output current can be supplied to the electric load and the battery 3. Further, by arbitrarily changing the target output current value Itar based on the state of the motorcycle 100 or the state of the battery 3, the value of the output current supplied to the electric load and the battery 3 can be arbitrarily changed. .
  • FIG. 8 shows the configuration of the electric system of a motorcycle equipped with the power generation control device according to the second embodiment of the present invention.
  • a current sensor 8 for detecting the output current value of the three-phase mixed bridge circuit 7 is further provided.
  • the current sensor 8 is connected to the positive power supply line L2.
  • An output signal of the current sensor 8 is given to the microcomputer 5.
  • the A / D converter 53 of the microcomputer 5 converts the output signal of the current sensor 8 into a digital current value.
  • FIG. 9 is a diagram illustrating an example of an output current in the power generation control device 2.
  • the target output current value Itar is 8.0A.
  • the first command output current value I1 is set to 7.5A
  • the second command output current value I2 is set to 8.5A
  • the duty ratio Rd is set to 0.5.
  • the output current value Ir1 of the three-phase mixing bridge circuit 7 is the first due to the variation in the characteristics of the magneto generator 1 or the temperature change. 1 does not coincide with the command output current value I1, and becomes 7.0A.
  • the output current value Ir2 of the three-phase mixed bridge circuit 7 matches the second command output current value I2.
  • the actual average output current value Iave from the three-phase mixed bridge circuit 7 is lower than the target output current value Itar.
  • the duty ratio Rd is changed based on the output current value detected by the current sensor 8.
  • the duty ratio Rd is changed to a value smaller than 0.5. That is, the second control period tb is longer than the first control period ta.
  • the actual average output current value Iave matches the target output current value Itar.
  • FIG. 10 is a flowchart showing an output current control process of the power generation control device 2 by the CPU 52 of the microcomputer 5.
  • the current integrated value of the output current value in the first control period ta is I1sum
  • the current integrated value of the output current value in the second control period tb is I2sum.
  • the integrated value is I1'sum until the previous output current value in the first control period ta
  • the integrated value is I2'sum until the previous output current value in the second control period tb.
  • the initial values of the integrated values I1'sum and I2'sum are zero.
  • the CPU 52 determines whether or not the target output current value Itar has been changed (step S11).
  • the target output current value Itar is changed based on, for example, the state of the motorcycle 100 or the state of the battery 3 as in the first embodiment.
  • the CPU 52 determines whether the current command current value is the first command output current value I1 or the second command output current value I2 (step S12). .
  • the CPU 52 controls the phase angle of the thyristor 7b by the trigger signal TR with the first command output current value I1 (step S12). S13).
  • the CPU 52 reads the output current value I1r detected by the current sensor 8 (step S14). Next, the CPU 52 adds the output current value I1r to the integrated value I1'sum until the previous time in the first control period ta, and sets the addition result as the current integrated value I1sum in the first control period ta (step S15).
  • the CPU 52 performs the phase angle control of the thyristor 7b by the trigger signal TR with the second command output current value I2 (step S12). S16).
  • the CPU 52 reads the output current value I2r detected by the current sensor 8 (step S17). Next, the CPU 52 adds the output current value I2r to the integrated value I2'sum until the previous time in the second control period tb, and sets the addition result as the current integrated value I2sum in the second control period tb (step S18).
  • step S19 the CPU 52 determines whether or not the current control cycle Tc has elapsed. That is, the CPU 52 determines whether or not the first control period ta and the second control period tb have ended. If the current control period Tc has not elapsed, the CPU 52 returns to the process of step S11.
  • the CPU 52 calculates the average output current value Iave within the current control cycle Tc from the following equation (4) (step S20).
  • the CPU 52 determines the first average output current value I1ave in the first control period ta and the second average output current in the second control period tb.
  • the value I2ave is calculated from the following equations (5) and (6) (step S22).
  • I1ave I1sum / TA
  • I2ave I2sum / TB (6)
  • TA is the number of readings of the output current value I1r within the first control period ta
  • TB is the number of readings of the output current value I2r within the second control period tb. It is.
  • the CPU 52 calculates the duty ratio from the following equation (7) based on the first average output current value I1ave and the second average output current value I2ave so that the average output current value Iave is equal to the target output current value Itar. Rd is calculated (step S23).
  • the CPU 52 determines the first command output current value I1 and the second command output current value I2 that are close to the changed target output current value Itar (Ste S24).
  • the first command output current value I1 and the second command output current value I2 are set to values above and below the target output current value Itar.
  • step S25 the CPU 52 determines the duty ratio Rd from the above equation (3) (step S25). Accordingly, the first control period ta and the second control period tb are calculated from the above equation (2). Thereafter, the CPU 52 returns to the process of step S11, and the changed first command output current value I1, second command output current value I2, duty ratio Rd, first control period ta, and second control period tb. Steps S11 to S23 are repeatedly executed using As a result, the average output current value Iave is feedback controlled to the target output current value Itar after the change.
  • the first output current value Itar is determined under the limitation of the control cycle T of the microcomputer 5. It can be set to any value between the command output current value I1 and the second command output current value I2. Thereby, the average output current value Iave of the three-phase mixed bridge circuit 7 can be controlled to an arbitrary value. Accordingly, an arbitrary output current can be supplied to the electric load and the battery 3. Further, by arbitrarily changing the target output current value Itar based on the state of the motorcycle 100 or the state of the battery 3, the value of the output current supplied to the electric load and the battery 3 can be arbitrarily changed. .
  • the average output current value of the three-phase mixed bridge circuit 7 can be feedback-controlled so that Iave is surely equal to the target output current value Itar. Therefore, an output current that matches the target output current value Itar can be accurately supplied to the electric load and the battery 3.
  • the flywheel magneto generator 1 is used as an example of an AC generator.
  • the present invention is not limited to this, and other magneto generators may be used.
  • an AC generator having a field winding may be used as the AC generator.
  • the three-phase mixed bridge circuit 7 including the diode 7a and the thyristor 7b is used as the rectifier circuit.
  • the present invention is not limited to this, and other rectifier circuits may be used.
  • various half-wave rectifier circuits and various full-wave rectifier circuits can be used as the rectifier circuit.
  • a transistor may be used as the switching element instead of the thyristor 7b.
  • control part is comprised by the microcomputer 5 and a control program, it is not limited to this, You may comprise a control part by a logic circuit.
  • the power generation control device 2 is applied to the scooter type motorcycle 100 as an example of transportation equipment, but is not limited to this.
  • the power generation control device 2 may be applied to a motorcycle other than the scooter type (for example, a saddle riding type motorcycle).
  • the power generation control device 2 can be applied to various transportation equipment such as an automatic tricycle, an automatic four-wheel vehicle, and a ship.
  • the power generation control device 2 can be applied to transportation equipment that does not have a battery.
  • the magneto generator 1 is an example of an AC generator or a magnet type AC generator
  • the three-phase mixed bridge circuit 7 is an example of a rectifier circuit or a bridge circuit
  • the microcomputer 5 is an example of a control unit.
  • the current sensor 8 is an example of a current detector
  • the thyristor 7b is an example of a switching element.
  • the current control cycle Tc is an example of a predetermined period
  • the first control period ta is an example of a first control period
  • the second control period tb is an example of a second control period.
  • the part of the motorcycle 100 excluding the power generation control device 2 and the rear wheel 39 is an example of the main body, and the rear wheel 39 is an example of the drive unit.
  • the present invention can be widely applied to power generation systems in various transportation equipment such as motorcycles, motor tricycles, motor four-wheeled vehicles, and ships.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 マイクロコンピュータは、目標出力電流値以上の第1の指令出力電流値および目標出力電流値以下の第2の指令出力電流値を決定する。マイクロコンピュータは、電流制御周期内の第1の制御期間において第1の指令出力電流値に従って三相混合ブリッジ回路の位相角制御を行い、電流制御周期内の第2の制御期間において第2の指令出力電流値に従って三相混合ブリッジ回路の位相角制御を行う。この場合、マイクロコンピュータは、電流制御周期内での第1の指令出力電流値と第2の指令出力電流値との平均値が目標出力電流値に等しくなるように、第1の制御期間と第2の制御期間との割合を制御する。

Description

発電制御装置および輸送機器
 本発明は、発電機の出力電流を制御する発電制御装置およびそれを備えた輸送機器に関する。
 自動車等の車両に用いられる発電システムは、交流発電機およびレギュレータを有する(例えば特許文献1参照)。交流発電機は、エンジンにより駆動され、交流電流を発生する。レギュレータは、交流発電機により発生された交流電流をほ直流電流に変換して出力する。発電システムの出力電流は、ランプ等の電気負荷およびバッテリに供給される。それにより、電気負荷で電力が消費されるとともに、バッテリが充電される。
 上記の発電システムでは、負荷電流の値またはバッテリの充放電の状態に応じて出力電流の値を変化させることができない。
 一方、特許文献2に記載された車両用の発電制御装置では、三相交流発電機の界磁巻線の界磁電流を制御することにより出力電流を制御することができる。
特開平6-86476号公報 特開2002-125329号公報
 一般に、自動二輪車のエンジンにより駆動される発電システムでは、磁石式三相交流発電機であるフライホイールマグネトウジェネレータが用いられる。フライホイールマグネトウジェネレータには、永久磁石が用いられる。そのため、界磁電流を制御することにより出力電流を制御することはできない。
 本発明の目的は、エンジンにより駆動される交流発電機の出力電流を任意の値に制御することが可能な発電制御装置およびそれを備えた輸送機器を提供することである。
 (1)本発明の一局面に従う発電制御装置は、エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置であって、交流発電機から出力される交流電流を直流電流に変換する整流回路と、整流回路の位相角制御を行うことにより整流回路の出力電流値を目標出力電流値に制御する制御部とを備え、制御部は、目標出力電流値以上の第1の指令出力電流値および目標出力電流値以下の第2の指令出力電流値を決定し、所定期間内での第1の指令出力電流値と第2の指令出力電流値との平均値が目標出力電流値に等しくなるように、所定期間内で第1の指令出力電流値に従って整流回路の位相角制御を行う第1の制御期間と第2の指令出力電流値に従って整流回路の位相角制御を行う第2の制御期間との割合を制御するものである。
 その発電制御装置においては、エンジンにより交流発電機が駆動されることにより、交流発電機から交流電流が出力され、整流回路により交流電流が直流電流に変換される。
 制御部により目標出力電流値以上の第1の指令出力電流値および目標出力電流値以下の第2の指令出力電流値が決定される。制御部は、所定期間内の第1の制御期間において第1の指令出力電流値に従って整流回路の位相角制御を行い、所定期間内の第2の制御期間において第2の指令出力電流値に従って整流回路の位相角制御を行う。この場合、制御部は、所定期間内での第1の指令出力電流値と第2の指令出力電流値との平均値が目標出力電流値に等しくなるように、第1の制御期間と第2の制御期間との割合を制御する。
 それにより、目標出力電流値を任意の値に設定することにより整流回路の平均出力電流値を任意の値に制御することが可能となる。したがって、負荷に任意の値の出力電流を供給することができる。
 (2)発電制御装置は、整流回路の出力電流値を検出する電流検出器をさらに備え、制御部は、所定期間内で電流検出器により検出された出力電流値の平均値と目標出力電流値とに差がある場合に、差に基づいて出力電流値の平均値が目標出力電流値と等しくなるように第1の制御期間と第2の制御期間との割合を変更してもよい。
 この場合、電流検出器により検出された出力電流値の平均値と目標出力電流値との差に基づいて出力電流値の平均値が目標出力電流値と等しくなるように第1の制御期間と第2の制御期間との割合が変更される。それにより、整流回路の平均出力電流値が目標出力電流値に確実に等しくなるように整流回路がフィードバック制御される。したがって、負荷に目標出力電流値に等しい出力電流を正確に供給することができる。
 (3)制御部は、目標出力電流値が変更された場合に、第1の指令出力電流値および第2の指令出力電流値を変更するとともに、所定期間内での平均値が目標出力電流値に等しくなるように第1の制御期間と第2の制御期間との割合を変更してもよい。
 この場合、目標出力電流値が変更された場合でも、整流回路の平均出力電流が変更後の目標出力電流値に等しくなる。
 (4)交流発電機は、永久磁石を有する磁石式交流発電機であってもよい。この場合においても、整流回路の平均出力電流値を任意の値に制御することが可能となる。
 (5)整流回路は、複数のスイッチング素子を含むブリッジ回路を含み、制御部は、第1および第2の指令出力電流値に従って複数のスイッチング素子の位相角制御を行ってもよい。
 この場合、複数のスイッチング素子の位相角制御により整流回路の出力電流値が制御される。
 (6)第1および第2の指令出力電流値は離散的な値を有してもよい。この場合においても、整流回路の平均出力電流値を任意の目標出力電流値に等しくすることができる。
 (7)本発明の他の局面に従う輸送機器は、本体部と、本体部に設けられるエンジンと、エンジンの回転により本体部を移動させる駆動部と、エンジンの回転により駆動される交流発電機と、エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置とを備え、発電制御装置は、交流発電機から出力される交流電流を直流電流に変換する整流回路と、整流回路の位相角制御を行うことにより整流回路の出力電流値を目標出力電流値に制御する制御部とを備え、制御部は、目標出力電流値以上の第1の指令出力電流値および目標出力電流値以下の第2の指令出力電流値を決定し、所定期間内での第1の指令出力電流値と第2の指令出力電流値との平均値が目標出力電流値に等しくなるように、所定期間内で第1の指令出力電流値に従って整流回路の位相角制御を行う第1の制御期間と第2の指令出力電流値に従って整流回路の位相角制御を行う第2の制御期間との割合を制御するものである。
 その輸送機器においては、エンジンの回転により駆動部が本体部を移動させる。この場合、発電制御装置においては、エンジンにより交流発電機が駆動されることにより、交流発電機から交流電流が出力され、整流回路により交流電流が直流電流に変換される。
 制御部により目標出力電流値以上の第1の指令出力電流値および目標出力電流値以下の第2の指令出力電流値が決定される。制御部は、所定期間内の第1の制御期間において第1の指令出力電流値に従って整流回路の位相角制御を行い、所定期間内の第2の制御期間において第2の指令出力電流値に従って整流回路の位相角制御を行う。この場合、制御部は、所定期間内での第1の指令出力電流値と第2の指令出力電流値との平均値が目標出力電流値に等しくなるように、第1の制御期間と第2の制御期間との割合を制御する。
 それにより、目標出力電流値を任意の値に設定することにより整流回路の平均出力電流値を任意の値に制御することが可能となる。したがって、負荷に任意の値の出力電流を供給することができる。
 本発明によれば、エンジンにより駆動される交流発電機の出力電流を任意の値に制御することが可能となる。
図1は本発明の第1の実施の形態に係る自動二輪車の側面図である。 図2は本発明の第1の実施の形態に係る発電制御装置を備えた自動二輪車の電気系統の構成を示すブロック図である。 図3は基本クロック信号、トリガー信号、出力電圧および出力電流の例を示す波形図である。 図4は基本クロック信号、トリガー信号、出力電圧および出力電流の例を示す波形図である。 図5は発電制御装置における出力電流の一例を示す図である。 図6は発電制御装置における出力電流の制御の一例を示す図である。 図7はマイクロコンピュータのCPUによる発電制御装置の出力電流制御処理を示すフローチャートである。 図8は本発明の第2の実施の形態に係る発電制御装置を備えた自動二輪車の電気系統の構成を示すブロック図である。 図9は発電制御装置における出力電流の一例を示す図である。 図10はマイクロコンピュータのCPUによる発電制御装置の出力電流制御処理を示すフローチャートである。
 以下、図面を参照しながら本発明の実施の形態について説明する。以下の実施の形態では、本発明に係る発電制御装置を輸送機器の一例としてスクータ型の自動二輪車に適用した場合について説明する。
 (1)第1の実施の形態
 (1-1)発電制御装置および自動二輪車の構成
 図1は本発明の第1の実施の形態に係る自動二輪車の側面図である。図2は本発明の第1の実施の形態に係る発電制御装置を備えた自動二輪車の電気系統の構成を示すブロック図である。
 図1に示す自動二輪車100においては、本体フレーム31の前端にヘッドパイプ32が設けられる。ヘッドパイプ32の上端にはハンドル33が設けられる。ヘッドパイプ32の下端にフロントフォーク34が取り付けられる。この状態で、フロントフォーク34は、ヘッドパイプ32の軸心を中心として所定の角度範囲内で回転可能となっている。フロントフォーク34の下端に前輪35が回転可能に支持される。
 本体フレーム31の中央部には、エンジン30が設けられる。エンジン30には、フライホイールマグネトウジェネレータ(以下、マグネトウジェネレータと略記する)1が取り付けられ、マグネトウジェネレータ1の近傍に発電制御装置2が設けられる。バッテリ3は、本体シート36の下部またはサイドカバー内に設けられる。
 エンジン30の後方に延びるように、本体フレーム31にリアアーム37が接続される。リアアーム37は、後輪38および後輪ドリブンスプロケット39を回転可能に保持する。後輪ドリブンスプロケット39には、チェーン40が取り付けられる。
 また、ヘッドパイプ32の前方にヘッドライト4aが取り付けられ、本体シート36の後方にテールライト4bが取り付けられる。
 図2の電気系統は、マグネトウジェネレータ1、発電制御装置2、バッテリ3および電気負荷4を含む。電気負荷4は、例えば、図1のヘッドライト4a、テールライト4b、ブレーキランプ、およびウインカー等を含む。
 マグネトウジェネレータ1は、磁石式三相交流発電機であり、ロータおよびステータを有する。ロータには永久磁石が取り付けられ、ステータにはステータコイル1a,1b,1cが設けられている。マグネトウジェネレータ1は、エンジン30(図1)のクランク軸とともにロータが回転することにより、ステータコイル1a~1cで発電を行い、交流電流を発生する。
 発電制御装置2は、マイクロコンピュータ5、分圧回路6および三相混合ブリッジ回路7を含む。
 マグネトウジェネレータ1のステータコイル1a,1b,1cはノードNa,Nb,Ncに接続される。三相混合ブリッジ回路7は、3個のダイオード7aおよび3個のサイリスタ7bにより構成される。3個のダイオード7aは負側電源ラインL2とノードNa,Nb,Ncとの間にそれぞれ接続され、3個のサイリスタ7bは正側電源ラインL1とノードNa,Nb,Ncとの間にそれぞれ接続される。三相混合ブリッジ回路7は、マグネトウジェネレータ1により発生された交流電流を直流電流に変換する。分圧回路6は、ノードNa,Nb,Ncの交流電圧をそれぞれ分圧し、分圧された電圧をマイクロコンピュータ5に出力する。
 マイクロコンピュータ5は、I/O(入出力)ポート51、CPU(中央演算処理装置)52、A/D(アナログ/デジタル)変換器53およびメモリ54を含む。A/D変換器53は、分圧回路6の出力電圧をデジタルの電圧値に変換する。メモリ54は、例えば不揮発性メモリからなり、後述する制御プログラム、目標出力電流値、第1および第2の指令出力電流値、およびデューティ比等を記憶する。
 CPU52は、基本クロック信号CKに同期して動作する。この基本クロック信号CKは、マイクロコンピュータ5の内部で発生されてもよく、またはマイクロコンピュータ5の外部から与えられてもよい。基本クロック信号CKの周波数によりマイクロコンピュータ5の動作周波数が決定される。
 CPU52は、A/D変換器53により得られた電圧値に基づいてエンジン10の回転速度およびその変動を検出する。また、CPU52は、メモリ54に記憶される制御プログラムに従って後述する出力電流制御処理を実行し、I/Oポート51を介してサイリスタ7bのゲートにトリガー信号を与えることによりサイリスタ7bの位相角制御を行う。トリガー信号のタイミングが制御されることにより三相混合ブリッジ回路7から出力される電流が制御される。
 正側電源ラインL1と負側電源ラインL2との間にはバッテリ3および電気負荷4が接続される。三相混合ブリッジ回路7から出力される電流は、バッテリ3および電気負荷4に供給される。それにより、バッテリ3が充電されるとともに、電気負荷4で電力が消費される。
 (1-2)発電制御装置2の動作
 次に、本実施の形態に係る発電制御装置2の動作について説明する。図3および図4は基本クロック信号CK、トリガー信号TR、出力電圧および出力電流の例を示す波形図である。
 図3および図4には、CPU52に与えられる基本クロック信号CK、1個のサイリスタ7bに与えられるトリガー信号TR、三相混合ブリッジ回路7の1相分の出力電圧および三相混合ブリッジ回路7の1相分の出力電流が示される。基本クロック信号CKの周期Tが、マイクロコンピュータ5の制御周期に相当し、例えば40μsecである。トリガー信号TRは、基本クロック信号CKに同期して立ち上がる。したがって、トリガー信号TRのタイミングは、制御周期Tを単位として制御される。
 図3の例では、CPU52は、時点t1で出力電圧の立ち上がりを検出し、時点t2で基本クロック信号CKの立ち上がりに同期してトリガー信号TRのパルスを立ち上げる。トリガー信号TRのパルスの立ち上がりに応答してサイリスタ7bがオンする。それにより、時点t2から時点t3までダイオード7aおよびサイリスタ7bに電流が流れる。図3の例では、出力電流の値は7.5Aである。
 図4の例では、CPU52は、時点t1で出力電圧の立ち上がりを検出し、時点t3で基本クロック信号CKの立ち上がりに同期してトリガー信号TRのパルスを立ち上げる。トリガー信号TRのパルスの立ち上がりに応答してサイリスタ7bがオンする。それにより、時点t4から時点t3までダイオード7aおよびサイリスタ7bに電流が流れる。図4の例では、出力電流の値は8.5Aである。
 図5は発電制御装置2における出力電流の一例を示す図である。図5において、図3の例のタイミングでトリガー信号TRのパルスが立ち上げられる場合、出力電流の値は7.5Aとなり、図4の例のタイミングでトリガー信号TRのパルスが立ち上げられる場合、出力電流の値は8.5Aとなる。
 トリガー信号TRのタイミングは制御周期Tを単位として制御されるため、出力電流は離散的な値を有する。上記の場合、トリガー信号TRのタイミング(位相角)を制御することにより出力電流の値を8.0Aに制御することができない。本実施の形態に係る発電制御装置2では、以下の方法で出力電流を任意の値に制御することができる。
 CPU52は、電流制御周期Tcを設定する。ここで、電流制御周期Tcはエンジン30のアイドリング状態での回転周期(例えば50msec)よりも十分に大きく設定される。電流制御周期Tcは、次式(1)のように、第1の制御期間taおよび第2の制御期間tbからなる。
 Tc=ta+tb …(1)
 また、電流制御周期Tcに対する第1の制御期間taの割合をデューティ比Rdと呼ぶ。
 Rd=ta/Tc=ta/(ta+tb) …(2)
 ここで、第1の制御期間taおよび第2の制御期間tbはマイクロコンピュータ5の制御周期Tの整数倍に設定される。電流制御周期Tcを一定にし、第1の制御期間taおよび第2の制御期間tbを調整することによりデューティ比Rdを変更してもよい。また、第1の制御期間taを一定にし、第2の制御期間tbおよび電流制御周期Tcを調整することによりデューティ比Rdを変更してもよい。
 ここで、CPU52は、第1の制御期間taにおいて第1の指令出力電流値I1に従って三相混合ブリッジ回路7の出力電流を制御し、第2の制御期間tbにおいて第2の指令出力電流値I2に従って三相混合ブリッジ回路7の出力電流を制御する。すなわち、CPU52は、第1の制御期間taにおいて三相混合ブリッジ回路7の出力電流が第1の指令出力電流値I1に等しくなるようにサイリスタ7bの位相角制御を行い、第2の制御期間tbにおいて三相混合ブリッジ回路7の出力電流が第2の指令出力電流値I2に等しくなるようにサイリスタ7bの位相角制御を行う。
 この場合、CPU52は、電流制御周期Tcにおける三相混合ブリッジ回路7の平均出力電流値が目標出力電流値Itarに等しくなるように第1の指令出力電流値I1、第2の指令出力電流値I2およびデューティ比Rdを設定する。デューティ比Rdは、次式(3)を満足するように設定される。
 Itar=I1・Rd+I2・(1-Rd) …(3)
 このように、CPU52は、第1の指令出力電流値I1、第2の指令出力電流値I2およびデューティ比Rdを制御することにより、三相混合ブリッジ回路7の平均出力電流値を任意の目標出力電流値Itarに制御することができる。
 図6は発電制御装置2における出力電流の制御の一例を示す図である。図6の例では、目標出力電流値Itarが8.0Aに設定される。この場合、第1の指令出力電流値I1が7.5Aに設定され、第2の指令出力電流値I2が8.5Aに設定される。また、デューティ比Rdが0.5に設定される。すなわち、第1の制御期間taと第2の制御期間tbとが等しくなる。この場合、平均出力電流値Iaveが8.0Aとなる。
 図7はマイクロコンピュータ5のCPU52による発電制御装置2の出力電流制御処理を示すフローチャートである。
 目標出力電流値Itar、第1の指令出力電流値I1、第2の指令出力電流値I2およびデューティ比Rdの初期値が予め設定されているものとする。
 まず、CPU52は、目標出力電流値Itarが変更されたか否かを判定する(ステップS1)。目標出力電流値Itarは、例えば自動二輪車100の状態に基づいて変更される。この場合、複数の目標出力電流値Itarが自動二輪車100の状態に対応して予めメモリ54に記憶される。自動二輪車100の状態とは、例えばエンジン30のアイドリング状態、加速状態、減速状態および定速状態である。自動二輪車100の状態はこれらの状態に限定されない。あるいは、目標出力電流値Itarがバッテリ3の充電状態および放電状態に基づいて変更されてもよい。
 目標出力電流値Itarが変更されない場合には、CPU52は、第1の指令出力電流値I1で第1の制御期間taの間、トリガー信号TRによるサイリスタ7bの位相角制御を行う(ステップS2)。
 続いて、CPU52は、第2の指令出力電流値I2で第2の制御期間tbの間、トリガー信号TRによるサイリスタ7bの位相角制御を行う(ステップS3)。その後、CPU52は、ステップS1の処理に戻る。
 ステップS1~S3の処理が繰り返し実行されることにより、平均出力電流値Iaveが目標出力電流値Itarに制御される。
 ステップS1で目標出力電流値Itarが変更された場合には、CPU52は、変更後の目標出力電流値Itarに近い第1の指令出力電流値I1および第2の指令出力電流値I2を決定する(ステップS4)。この場合、第1の指令出力電流値I1および第2の指令出力電流値I2は目標出力電流値Itarの上下の値に設定される。
 次に、CPU52は、上式(3)よりデューティ比Rdを決定する(ステップS3)。これにより、上式(2)より第1の制御期間taおよび第2の制御期間tbが算出される。その後、CPU52は、ステップS1の処理に戻り、変更後の第1の指令出力電流値I1、第2の指令出力電流値I2、デューティ比Rd、第1の制御期間taおよび第2の制御期間tbを用いてステップS1~S3の処理を繰り返し実行する。それにより、平均出力電流値Iaveが変更後の目標出力電流値Itarに制御される。
 (1-3)発電制御装置2の効果
 第1の実施の形態に係る発電制御装置2によれば、目標出力電流値Itarをマイクロコンピュータ5の制御周期Tの制限下で決定される第1の指令出力電流値I1と第2の指令出力電流値I2との間の任意の値に設定することができる。それにより、三相混合ブリッジ回路7の平均出力電流値Iaveを任意の値に制御することが可能となる。したがって、電気負荷およびバッテリ3に任意の値の出力電流を供給することができる。また、自動二輪車100の状態またはバッテリ3の状態等に基づいて目標出力電流値Itarを任意に変更することにより、電気負荷およびバッテリ3に供給される出力電流の値を任意に変更することができる。
 (2)第2の実施の形態
 (2-1)発電制御装置および自動二輪車の構成
 図8は本発明の第2の実施の形態に係る発電制御装置を備えた自動二輪車の電気系統の構成を示すブロック図である。
 図8の発電制御装置2の構成が図1の発電制御装置2の構成と異なるのは、三相混合ブリッジ回路7の出力電流値を検出する電流センサ8がさらに設けられる点である。本実施の形態では、電流センサ8は正側電源ラインL2に接続される。電流センサ8の出力信号はマイクロコンピュータ5に与えられる。マイクロコンピュータ5のA/D変換器53は、電流センサ8の出力信号をデジタルの電流値に変換する。
 (2-2)発電制御装置2の動作
 マグネトウジェネレータ1の特性のばらつきまたは温度変化等により三相混合ブリッジ回路7からの実際の出力電流値と第1の指令出力電流値I1または第2の指令出力電流値I2との間に誤差が生じる場合がある。本実施の形態に係る発電制御装置2では、このような誤差が生じる場合でも、以下に示す方法により三相混合ブリッジ回路7の平均出力電流値を目標出力電流値Itarに一致させることができる。
 次に、本実施の形態に係る発電制御装置2の動作について説明する。図9は発電制御装置2における出力電流の一例を示す図である。
 図9において、目標出力電流値Itarは8.0Aである。この場合、第1の指令出力電流値I1が7.5Aに設定され、第2の指令出力電流値I2が8.5Aに設定され、デューティ比Rdが0.5に設定される。
 図9の例では、第1の指令出力電流値I1に従って位相角制御が行われた場合、マグネトウジェネレータ1の特性のばらつきまたは温度変化等により三相混合ブリッジ回路7の出力電流値Ir1は第1の指令出力電流値I1に一致せず、7.0Aとなる。なお、第2の指令出力電流値I2に従って位相角制御が行われた場合、三相混合ブリッジ回路7の出力電流値Ir2は第2の指令出力電流値I2に一致する。
 この場合、時点t10から時点t11までは、三相混合ブリッジ回路7からの実際の平均出力電流値Iaveは目標出力電流値Itarよりも低くなる。
 そこで、時点t11以下は、電流センサ8により検出される出力電流値に基づいてデューティ比Rdが変更される。図9の例では、デューティ比Rdが0.5よりも小さい値に変更される。すなわち、第2の制御期間tbが第1の制御期間taよりも長くなる。その結果、実際の平均出力電流値Iaveが目標出力電流値Itarに一致する。
 図10はマイクロコンピュータ5のCPU52による発電制御装置2の出力電流制御処理を示すフローチャートである。
 目標出力電流値Itar、第1の指令出力電流値I1、第2の指令出力電流値I2およびデューティ比Rdの初期値が予め設定されているものとする。
 第1の制御期間taにおける出力電流値の現在の積算値をI1sumとし、第2の制御期間tbにおける出力電流値の現在の積算値をI2sumとする。また、第1の制御期間taにおける出力電流値の前回まで積算値をI1’sumとし、第2の制御期間tbにおける出力電流値の前回まで積算値をI2’sumとする。積算値I1’sum,I2’sumの初期値は0である。
 まず、CPU52は、目標出力電流値Itarが変更されたか否かを判定する(ステップS11)。目標出力電流値Itarは、第1の実施の形態と同様に、例えば自動二輪車100の状態またはバッテリ3の状態に基づいて変更される。
 目標出力電流値Itarが変更されない場合には、CPU52は、現在の指令電流値が第1の指令出力電流値I1であるか第2の指令出力電流値I2であるかを判定する(ステップS12)。
 ステップS12で現在の指令出力電流値が第1の指令出力電流値I1である場合には、CPU52は、第1の指令出力電流値I1でトリガー信号TRによるサイリスタ7bの位相角制御を行う(ステップS13)。
 また、CPU52は、電流センサ8により検出された出力電流値I1rを読み込む(ステップS14)。次いで、CPU52は、第1の制御期間taにおける前回まで積算値I1’sumに出力電流値I1rを加算し、加算結果を第1の制御期間taにおける現在の積算値I1sumとする(ステップS15)。
 ステップS12で現在の指令出力電流値が第2の指令出力電流値I2である場合には、CPU52は、第2の指令出力電流値I2でトリガー信号TRによるサイリスタ7bの位相角制御を行う(ステップS16)。
 また、CPU52は、電流センサ8により検出された出力電流値I2rを読み込む(ステップS17)。次いで、CPU52は、第2の制御期間tbにおける前回まで積算値I2’sumに出力電流値I2rを加算し、加算結果を第2の制御期間tbにおける現在の積算値I2sumとする(ステップS18)。
 次に、CPU52は、電流制御周期Tcが経過したか否かを判定する(ステップS19)。すなわち、CPU52は、第1の制御期間taおよび第2の制御期間tbが終了したか否かを判定する。電流制御周期Tcが経過していない場合には、CPU52はステップS11の処理に戻る。
 電流制御周期Tcが経過していない場合には、CPU52は、電流制御周期Tc内の平均出力電流値Iaveを次式(4)より算出する(ステップS20)。
 Iave=(I1sum+I2sum)/(ta+tb) …(4)
 そして、CPU52は、平均出力電流値Iaveが目標出力電流値Itarと等しいか否かを判定する(ステップS21)。
 平均出力電流値Iaveが目標出力電流値Itarと等しい場合には、CPU52は、ステップS11の処理に戻る。
 平均出力電流値Iaveが目標出力電流値Itarと等しくない場合には、CPU52は、第1の制御期間taにおける第1の平均出力電流値I1aveおよび第2の制御期間tbにおける第2の平均出力電流値I2aveを次式(5),(6)より算出する(ステップS22)。
 I1ave=I1sum/TA …(5)
 I2ave=I2sum/TB …(6)
 上式(5),(6)において、TAは第1の制御期間ta内での出力電流値I1rの読み込み回数であり、TBは第2の制御期間tb内での出力電流値I2rの読み込み回数である。
 さらに、CPU52は、平均出力電流値Iaveが目標出力電流値Itarと等しくなるように、第1の平均出力電流値I1aveおよび第2の平均出力電流値I2aveに基づいて次式(7)よりデューティ比Rdを算出する(ステップS23)。
 Rd(I1ave-Itar)+(1-Rd)(I2ave-Itar)=0 …(7)
 これにより、デューティ比Rdが更新される。デューティ比Rdの更新に伴って第1の制御期間taおよび第2の制御期間tbが更新される。その後、CPU52は、ステップS11の処理に戻る。ステップS11~S23の処理が繰り返し実行されることにより、平均出力電流値Iaveが目標出力電流値Itarにフィードバック制御される。
 ステップS11で目標出力電流値Itarが変更された場合には、CPU52は、変更後の目標出力電流値Itarに近い第1の指令出力電流値I1および第2の指令出力電流値I2を決定する(ステップS24)。この場合、第1の指令出力電流値I1および第2の指令出力電流値I2は目標出力電流値Itarの上下の値に設定される。
 次に、CPU52は、上式(3)よりデューティ比Rdを決定する(ステップS25)。これにより、上式(2)より第1の制御期間taおよび第2の制御期間tbが算出される。その後、CPU52は、ステップS11の処理に戻り、変更後の第1の指令出力電流値I1、第2の指令出力電流値I2、デューティ比Rd、第1の制御期間taおよび第2の制御期間tbを用いてステップS11~S23の処理を繰り返し実行する。それにより、平均出力電流値Iaveが変更後の目標出力電流値Itarにフィードバック制御される。
 (2-3)発電制御装置2の効果
 第2の実施の形態に係る発電制御装置2によれば、目標出力電流値Itarをマイクロコンピュータ5の制御周期Tの制限下で決定される第1の指令出力電流値I1と第2の指令出力電流値I2との間の任意の値に設定することができる。それにより、三相混合ブリッジ回路7の平均出力電流値Iaveを任意の値に制御することが可能となる。したがって、電気負荷およびバッテリ3に任意の値の出力電流を供給することができる。また、自動二輪車100の状態またはバッテリ3の状態等に基づいて目標出力電流値Itarを任意に変更することにより、電気負荷およびバッテリ3に供給される出力電流の値を任意に変更することができる。
 さらに、第1および第2の指令出力電流値I1,I2と三相混合ブリッジ回路7からの実際の出力電流値との間に誤差がある場合でも、三相混合ブリッジ回路7の平均出力電流値Iaveが目標出力電流値Itarに確実に等しくなるように三相混合ブリッジ回路7をフィードバック制御することができる。したがって、電気負荷およびバッテリ3に目標出力電流値Itarと一致する出力電流を正確に供給することができる。
 (3)他の実施の形態
 上記実施の形態のでは、交流発電機の一例としてフライホイールマグネトウジェネレータ1が用いられるが、これに限定されず、他のマグネトウジェネレータを用いてもよい。例えば、交流発電機として界磁巻線を有する交流発電機を用いてもよい。
 また、上記実施の形態では、整流回路としてダイオード7aおよびサイリスタ7bにより構成される三相混合ブリッジ回路7が用いられているが、これに限定されず、他の整流回路を用いてもよい。例えば、整流回路としては種々の半波整流回路および種々の全波整流回路を用いることができる。また、スイッチング素子としてサイリスタ7bの代わりにトランジスタを用いることもできる。
 さらに、上記実施の形態では、制御部がマイクロコンピュータ5および制御プログラムにより構成されるが、これに限定されず、制御部を論理回路により構成してもよい。
 上記の実施の形態では、発電制御装置2を輸送機器の一例としてスクータ型の自動二輪車100に適用しているが、これに限定されない。発電制御装置2をスクータ型以外の形式の自動二輪車(例えば、鞍乗型自動二輪車)に適用してもよい。
 また、発電制御装置2は自動三輪車、自動四輪車、および船舶等の種々の輸送機器に適用することも可能である。
 さらに、発電制御装置2はバッテリを有しない輸送機器に適用することも可能である。
 (4)請求項の各構成要素と実施の形態の各構成要素との対応の対応
 以下、請求項の各構成要素と実施の形態の各構成要素との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態では、マグネトウジェネレータ1が交流発電機または磁石式交流発電機の例であり、三相混合ブリッジ回路7が整流回路またはブリッジ回路の例であり、マイクロコンピュータ5が制御部の例であり、電流センサ8が電流検出器の例であり、サイリスタ7bがスイッチング素子の例である。また、電流制御周期Tcが所定期間の例であり、第1の制御期間taが第1の制御期間の例であり、第2の制御期間tbが第2の制御期間の例である。
 さらに、発電制御装置2および後輪39を除く自動二輪車100の部分が本体部の例であり、後輪39が駆動部の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の構成要素を用いることもできる。
 本発明は、自動二輪車、自動三輪車、自動四輪車、または船舶等の種々の輸送機器における発電システムに広く適用することができる。

Claims (7)

  1. エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置であって、
     前記交流発電機から出力される交流電流を直流電流に変換する整流回路と、
     前記整流回路の位相角制御を行うことにより前記整流回路の出力電流値を目標出力電流値に制御する制御部とを備え、
     前記制御部は、前記目標出力電流値以上の第1の指令出力電流値および前記目標出力電流値以下の第2の指令出力電流値を決定し、所定期間内での前記第1の指令出力電流値と前記第2の指令出力電流値との平均値が前記目標出力電流値に等しくなるように、前記所定期間内で前記第1の指令出力電流値に従って前記整流回路の位相角制御を行う第1の制御期間と前記第2の指令出力電流値に従って前記整流回路の位相角制御を行う第2の制御期間との割合を制御する、発電制御装置。
  2. 前記整流回路の出力電流値を検出する電流検出器をさらに備え、
     前記制御部は、前記所定期間内で前記電流検出器により検出された出力電流値の平均値と前記目標出力電流値とに差がある場合に、前記差に基づいて前記出力電流値の平均値が前記目標出力電流値と等しくなるように前記第1の制御期間と前記第2の制御期間との割合を変更する、請求項1記載の発電制御装置。
  3. 前記制御部は、前記目標出力電流値が変更された場合に、前記第1の指令出力電流値および前記第2の指令出力電流値を変更するとともに、前記所定期間内での前記平均値が前記目標出力電流値に等しくなるように前記第1の制御期間と前記第2の制御期間との割合を変更する、請求項1記載の発電制御装置。
  4. 前記交流発電機は、永久磁石を有する磁石式交流発電機である、請求項1記載の発電制御装置。
  5. 前記整流回路は、複数のスイッチング素子を含むブリッジ回路を含み、
     前記制御部は、前記第1および第2の指令出力電流値に従って前記複数のスイッチング素子の位相角制御を行う、請求項1記載の発電制御装置。
  6. 前記第1および第2の指令出力電流値は離散的な値を有する、請求項1記載の発電制御装置。
  7. 本体部と、
     前記本体部に設けられるエンジンと、
     前記エンジンの回転により前記本体部を移動させる駆動部と、
     前記エンジンの回転により駆動される交流発電機と、
     前記エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置とを備え、
     前記発電制御装置は、
     前記交流発電機から出力される交流電流を直流電流に変換する整流回路と、
     前記整流回路の位相角制御を行うことにより前記整流回路の出力電流値を目標出力電流値に制御する制御部とを備え、
     前記制御部は、前記目標出力電流値以上の第1の指令出力電流値および前記目標出力電流値以下の第2の指令出力電流値を決定し、所定期間内での前記第1の指令出力電流値と前記第2の指令出力電流値との平均値が前記目標出力電流値に等しくなるように、前記所定期間内で前記第1の指令出力電流値に従って前記整流回路の位相角制御を行う第1の制御期間と前記第2の指令出力電流値に従って前記整流回路の位相角制御を行う第2の制御期間との割合を制御する、輸送機器。
PCT/JP2009/001845 2008-04-23 2009-04-22 発電制御装置および輸送機器 WO2009130898A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980114766XA CN102017393A (zh) 2008-04-23 2009-04-22 发电控制装置及输送设备
JP2010509078A JPWO2009130898A1 (ja) 2008-04-23 2009-04-22 発電制御装置および輸送機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008112268 2008-04-23
JP2008-112268 2008-04-23

Publications (1)

Publication Number Publication Date
WO2009130898A1 true WO2009130898A1 (ja) 2009-10-29

Family

ID=41216639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001845 WO2009130898A1 (ja) 2008-04-23 2009-04-22 発電制御装置および輸送機器

Country Status (4)

Country Link
JP (1) JPWO2009130898A1 (ja)
CN (1) CN102017393A (ja)
TW (1) TW201010265A (ja)
WO (1) WO2009130898A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104905A (ja) * 2002-09-09 2004-04-02 Mitsubishi Electric Corp モータの制御装置並びに電気掃除機
JP2007325361A (ja) * 2006-05-30 2007-12-13 Denso Corp 交流発電機の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240797B2 (ja) * 2000-10-17 2009-03-18 株式会社デンソー 車両用発電制御装置
US6741482B2 (en) * 2001-09-14 2004-05-25 Kabushiki Kaisha Toshiba Power conversion device
JP2006164615A (ja) * 2004-12-03 2006-06-22 Canon Inc ヒータ電力制御方法、および画像形成装置
JP2006217780A (ja) * 2005-02-07 2006-08-17 Yamaha Motor Co Ltd インバータ式交流発電装置
JP4501866B2 (ja) * 2006-02-16 2010-07-14 株式会社デンソー 車両用発電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104905A (ja) * 2002-09-09 2004-04-02 Mitsubishi Electric Corp モータの制御装置並びに電気掃除機
JP2007325361A (ja) * 2006-05-30 2007-12-13 Denso Corp 交流発電機の制御装置

Also Published As

Publication number Publication date
TW201010265A (en) 2010-03-01
CN102017393A (zh) 2011-04-13
JPWO2009130898A1 (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5595447B2 (ja) 車輌用交流発電機の制御装置及び制御方法
JP5164428B2 (ja) 発電制御装置及び鞍乗型車両
US9709015B2 (en) Power generation unit, and motor generator control method
JP6301240B2 (ja) 車両用バッテリ充電装置
JP2015035942A (ja) 発電装置、移動体および発電制御方法
JPWO2018016085A1 (ja) ハイブリッド車両の制御装置および制御方法
JP5644723B2 (ja) 電力供給制御装置
WO2009130898A1 (ja) 発電制御装置および輸送機器
WO2009136487A1 (ja) 発電制御装置および輸送機器
JP5921903B2 (ja) 発電制御装置および輸送機器
JP6379306B2 (ja) ハイブリッド車両の制御装置および制御方法
WO2020044937A1 (ja) 制御装置
JP2010011575A (ja) 車両用電動機の制御装置
JP6367498B2 (ja) ハイブリッド車両の制御装置および制御方法
JP2010095100A (ja) 車両用電源装置
JP6448828B1 (ja) 車両用発電機の制御装置、およびそれを用いた車両用発電機の制御システム
JP2009024657A (ja) 発電制御装置及び鞍乗型車両
CN111434024A (zh) 用于运行针对机动车中的电蓄能器的充电控制器的方法
JP2008148488A (ja) 車両用交流発電機の制御装置
JP6948844B2 (ja) エンジンの始動装置
JP6383970B2 (ja) ハイブリッド車両の制御装置および制御方法
JP6967880B2 (ja) 電子制御装置
JP4961252B2 (ja) 発電制御装置及び鞍乗型車両
JP6665773B2 (ja) 回転電機の回転上昇異常検出装置、回転電機ユニット
TWI599714B (zh) 引擎系統及跨坐型車輛

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114766.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735191

Country of ref document: EP

Kind code of ref document: A1