WO2009128221A1 - アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置 - Google Patents

アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置 Download PDF

Info

Publication number
WO2009128221A1
WO2009128221A1 PCT/JP2009/001629 JP2009001629W WO2009128221A1 WO 2009128221 A1 WO2009128221 A1 WO 2009128221A1 JP 2009001629 W JP2009001629 W JP 2009001629W WO 2009128221 A1 WO2009128221 A1 WO 2009128221A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
output
output signal
sensor
Prior art date
Application number
PCT/JP2009/001629
Other languages
English (en)
French (fr)
Inventor
江島直樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/602,282 priority Critical patent/US8086202B2/en
Priority to JP2009528541A priority patent/JP4957804B2/ja
Publication of WO2009128221A1 publication Critical patent/WO2009128221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • H04B1/126Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means having multiple inputs, e.g. auxiliary antenna for receiving interfering signal

Definitions

  • the present invention relates to a broadcast radio wave receiver, and more particularly, to a small receiver suitable for portable equipment, and to receive a highly sensitive and stable antenna diversity correlation removal method and antenna coupled correlation elimination.
  • the present invention relates to a wireless device having a function.
  • FIG. 10 to 12 show the configuration of the wireless transmitter / receiver disclosed in Patent Document 1.
  • FIG. 10 shows an example of a wireless communication terminal 700 equipped with two antennas.
  • Receivers 701 and 702 demodulate received signals received by receiving antennas 601 and 602, respectively.
  • the interference canceller 703 inputs those demodulated signals.
  • the interference canceller 703 removes a radiation noise component.
  • the interference canceller 703 outputs the received signal from which the radiation noise has been removed to the information processing system 704.
  • FIG. 11 shows a first specific example of the interference canceller 703 shown in FIG. This specific example is effective when the correlation between the interference signals received by the two receiving antennas 601 and 602 is high.
  • the receiver 701 demodulates the signal received by the receiving antenna 601 and outputs a signal 704 that is the sum of the desired signal and the interference signal.
  • the receiver 702 demodulates the signal received by the receiving antenna 602 and outputs a signal 706 that is the sum of the desired signal and the interference signal.
  • the amplitude / phase adjuster 802 inputs this signal 706.
  • the amplitude phase adjuster 802 adjusts the amplitude phase of the interference signal included in the input signal 706 to be equal to the amplitude phase of the interference signal included in the signal 704.
  • the amplitude / phase adjuster 802 outputs the adjusted signal 708.
  • the adder 803 adds the signal 704 and the signal 708 and outputs a signal 710.
  • the interference canceller 703 can operate stably. As a result, the interference canceller 703 can attenuate the radiation noise to be smaller as the correlation between the interference signals received by the receiving antennas 601 and 602 is higher.
  • FIG. 12 shows another specific example of the interference canceller 703 shown in FIG.
  • the interference canceller 703 directly obtains radiation noise through a cable 912 from an electronic device PC (Personal Computer).
  • the acquired radiation noise information is input to amplitude phase adjusters 904 and 905 to generate pseudo interference signals 728 and 730 for each receiving system.
  • Outputs of the amplitude / phase adjusters 904 and 905 are input to the first adder 901 and the second adder 902 as a pseudo interference signal 730 and a pseudo interference signal 728 that are output signals of the radiation noise predictor 903.
  • the first adder 901 and the second adder 902 subtract the pseudo interference signals 728 and 730 from the received signals, respectively.
  • data 732 and data 734 from which radiation noise has been removed are output from the first adder 901 and the second adder 902. These data 732 and 734 are diversity-received by the diversity receiver 910.
  • the amplitude phase adjusters 904 and 905 generate pseudo interference signals for each receiving system.
  • the outputs of the amplitude phase adjusters 904 and 905 are input to the first adder 901 and the second adder 902 as the pseudo interference signal 730 and the pseudo interference signal 728 that are output signals of the radiation noise predictor 903, and these first additions are performed.
  • the counter 901 and the second adder 902 subtract the pseudo interference signals 730 and 728 from the respective received signals.
  • Patent Document 1 is effective for the noise component of the electronic device PC, but does not act on other internal noise sources. Therefore, the technique disclosed in Patent Document 1 cannot exhibit the effect of improving sensitivity suppression due to such noise.
  • the antenna coupling correlation elimination method of the present invention is arranged such that the mutual distance between a part or feeding point of the first antenna and a part or feeding point of the second antenna is close to 1 ⁇ 2 of the wavelength of the received radio wave. This is an antenna coupling correlation removal method in diversity reception.
  • the first arrangement step includes a first sensor near the ground of the feeding point of the second antenna, a first amplitude phase adjustment unit that controls the amplitude phase of the first pickup signal output from the first sensor, Input the output signal and the output signal of the first amplitude phase adjustment unit, add the two output signals that have been input, and output the first addition unit, the output signal from the first antenna, the first addition unit And a second tuner for inputting an output signal from the second antenna.
  • a diversity receiving unit that inputs the output signal of the first tuner and the output signal of the second tuner, and a control unit that inputs the reception quality signal output from the diversity receiving unit are arranged.
  • the first amplitude phase adjustment unit controls the amplitude phase of the pickup signal output from the first sensor.
  • the output signal of the first antenna which is the two output signals, and the output signal of the first amplitude phase adjuster are input and added.
  • Output In the first tuner, the output signal from the first antenna is input via the first adder.
  • an output signal from the second antenna is input in the second tuner.
  • the output signal of the first tuner and the output signal of the second tuner are input to the diversity receiver.
  • the combining step combines the output signal of the first tuner and the output signal of the second tuner in the diversity receiver.
  • the diversity receiver demodulates the diversity scheme from the output signal from the first antenna and the output signal from the second antenna.
  • the amplitude phase of the first pickup signal is controlled in accordance with the reception quality signal output from the diversity reception unit, and the first amplitude phase adjustment unit is controlled so that the reception quality signal has the best value.
  • the wireless device having the antenna coupling correlation removal function of the present invention the mutual distance between a part or feeding point of the first antenna and a part or feeding point of the second antenna is 1 / wavelength of the received radio wave. It is a radio apparatus that performs diversity reception arranged close to 2 or less.
  • the wireless device includes a first sensor, a first amplitude phase adjustment unit, a first addition unit, a first tuner, a second tuner, a diversity reception unit, and a control unit.
  • the first sensor is placed near the ground of the feeding point of the second antenna.
  • the first amplitude phase adjustment unit controls the amplitude phase of the first pickup signal output from the first sensor.
  • the first adder receives the output signal from the first antenna and the output signal of the first amplitude phase adjuster, adds the two input output signals, and outputs the result.
  • the first tuner inputs an output signal from the first antenna via the first adder.
  • the second tuner receives an output signal from the second antenna.
  • the diversity receiver inputs the output signal of the first tuner and the output signal of the second tuner.
  • the control unit inputs a reception quality signal output from the diversity reception unit.
  • the diversity receiver synthesizes the output signal of the first tuner and the output signal of the second tuner, and performs demodulation of the diversity scheme from the output signal from the first antenna and the output signal of the second antenna.
  • the control unit controls the first amplitude phase adjustment unit so that the amplitude phase of the first pickup signal becomes the best value according to the reception quality signal output from the diversity reception unit.
  • FIG. 1 is an image diagram of a radio wave arrival direction for a radio apparatus having an antenna coupling correlation removal function according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of a radio apparatus having an antenna coupling correlation removal function according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart for explaining an antenna coupling correlation removal method according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating an operation in which a wireless apparatus having an antenna coupling correlation removal function according to Embodiment 1 of the present invention cancels coupling components using vector synthesis.
  • FIG. 5 is a block diagram of a radio apparatus having an antenna coupling correlation removal function according to Embodiment 2 of the present invention.
  • FIG. 6 is a block diagram of a radio apparatus having an antenna coupling correlation removal function according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart for explaining an antenna coupling correlation removal method according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram of a radio apparatus having an antenna coupling correlation removal function according to Embodiment 4 of the present invention.
  • FIG. 9 is a block diagram of a radio apparatus having an antenna coupling correlation removal function according to Embodiment 5 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a wireless communication terminal in a conventional example.
  • FIG. 11 is a block diagram showing a configuration of an interference canceller of a wireless communication terminal in a conventional example.
  • FIG. 12 is a block diagram showing a configuration of an interference canceller of a wireless communication terminal in a conventional example.
  • FIG. 1 is an image diagram of a radio wave arrival direction for explaining a general environment in which a radio apparatus 10a having an antenna coupling correlation removal function according to the present embodiment is used.
  • the wireless device 10 a according to the present embodiment includes a first antenna 19 and a second antenna 29. It is assumed that the polarization planes of these antennas are the same.
  • the antenna directivity is usually omnidirectional, and the antenna polarization directivity is also unambiguous. Not stipulated. The reason for this is that in order to effectively receive not only the direct wave 73 but also the indirect wave 74 that arrives after being reflected by the buildings 70 and 72 and the mountain 71, the polarization plane also changes in various ways. This is because. Therefore, in a portable device, when performing diversity, it is usual to combine space diversity aiming at a spatial split effect and polarization diversity using a difference in polarization plane.
  • FIG. 2 is a block diagram of radio apparatus 10a having an antenna coupling correlation removal function according to Embodiment 1 of the present invention.
  • a radio apparatus 10a having an antenna coupling correlation removal function in the present embodiment includes a first antenna 19, a second antenna 29, a first sensor 28, a first amplitude / phase adjustment unit 12, and a first addition unit 13.
  • the radio apparatus 10a having an antenna coupling correlation removal function is suitable for application to a system that receives terrestrial digital broadcasting in the UHF band of 470 [MHz] to 770 [MHz] as the frequency band.
  • the wavelength ⁇ of the radio wave is approximately 0.64 m when the frequency is 470 [MHz], and approximately 0.39 m when the frequency is 770 [MHz].
  • the mutual distance d is 0.3 m
  • the mutual distance d is a distance that is less than 1 ⁇ 2 wavelength depending on the frequency of the radio wave.
  • radio apparatus 10a having an antenna coupling correlation removal function in the present embodiment is a device that performs diversity reception, and is a part or feeding point of first antenna 19 and a part or feeding of second antenna 29. It is assumed that the mutual distance d with respect to the point is arranged in the vicinity of at least 1/2 of the wavelength of the received radio wave.
  • the first antenna 19 performs impedance matching with the first adder 13 at the subsequent stage by the matching circuit 11. The reason for this is to improve the signal reception sensitivity most in the first antenna 19.
  • the first addition unit 13 has a first input terminal and a second input terminal. Then, the output signal from the first antenna 19 is input to the first input terminal of the first adder 13 via the matching circuit 11. Further, the output of the first amplitude phase adjustment unit 12 is input to the second input terminal of the first addition unit 13. And the 1st addition part 13 adds and outputs the signal input into the 1st input terminal and the 2nd input terminal. That is, the first adder 13 receives the output signal from the first antenna 19 and the output signal of the first amplitude / phase adjuster 12, adds these two output signals, and outputs the result.
  • the first tuner 14 inputs the output signal of the first adder 13. That is, the first tuner 14 inputs an output signal from the first antenna 19 via the matching circuit 11 and the first adder 13.
  • the first tuner 14 performs RF amplification, frequency conversion, and the like.
  • the second antenna 29 performs impedance matching with the second tuner 24 at the subsequent stage by the matching circuit 21 in the same manner as the first tuner 14. The reason for this is to improve the signal reception sensitivity most in the second antenna 29. That is, the second tuner 24 inputs an output signal from the second antenna 29 via the matching circuit 21. The second tuner 24 performs RF amplification, frequency conversion, and the like. In the present embodiment, as indicated by an arrow 44 in FIG. 2, the first antenna 19 and the second antenna 29 are disposed in substantially the same direction.
  • the diversity receiver 30 has a first input terminal and a second input terminal. Moreover, the diversity receiver 30 inputs the output signal of the first tuner 14 to the first input terminal. Then, the diversity receiver 30 inputs the output signal of the second tuner 24 to the second input terminal. In this way, the diversity receiver 30 inputs and combines the output signal of the first tuner 14 and the output signal of the second tuner 24. For this combining, for example, diversity demodulation may be performed by combining the carrier maximum ratio.
  • the control unit 40 receives the reception quality signal 31 output from the diversity receiving unit 30. Then, the control unit 40 controls the first amplitude phase adjustment unit 12 according to the reception quality signal 31.
  • the first sensor 28 and the first antenna 19 are arranged in substantially the same direction. Further, the first sensor 28 picks up the electromagnetic coupling current component (indicated by an arrow 27 in FIG. 2) of the second antenna 29 that flows in the ground of the matching circuit 21 of the second antenna 29. Place near the ground of the feeding point. At the feeding point of the second antenna 29, that is, the ground portion of the matching circuit 21, the first sensor 28 is arranged within 1 ⁇ 4 ⁇ , which is a range where the electromagnetic coupling current component exists, and within 0.15 m. . That is, the distance between the feeding point of the second antenna 29 and the central portion of the first sensor 28 is set to at least 1 ⁇ 4 of the wavelength of the received radio wave.
  • the received signal component of the second antenna 29 is induced in the first sensor 28.
  • the first sensor 28 also picks up noise components emitted from various noise sources inside the device together with the received signal components of the second antenna 29.
  • the first amplitude phase adjustment unit 12 controls the amplitude phase of the first pickup signal output from the first sensor 28.
  • the control unit 40 sets the amplitude phase of the first pickup signal output from the first sensor 28 so that the reception quality signal 31 has the best value.
  • the amplitude phase adjustment unit 12 is controlled.
  • radio apparatus 10a in the present embodiment has an antenna coupling correlation removal function. Details of the operation for canceling the coupling component of the two antennas will be described later.
  • the reception quality signal 31 includes a reception signal strength parameter (AGC: Automatic Gain Control signal parameter), a bit error rate (BER), a CN ratio (C / N; Carrier to Noise Ratio) representing final reception quality. At least one of the above is used.
  • AGC Automatic Gain Control signal parameter
  • BER bit error rate
  • C / N Carrier to Noise Ratio
  • Diversity receiving unit 30 outputs reception quality signal 31 and inputs reception quality signal 31 to control unit 40.
  • the control unit 40 feeds back the control parameter to the first amplitude phase adjustment unit 12 based on the reception quality signal 31.
  • the reception quality signal 31 has the best value.
  • the reception signal strength parameter the reception quality signal 31 when the electric field strength of the signals received by the first antenna 19 and the second antenna 29 is the highest.
  • the bit error rate is the value of the reception quality signal 31 when the bit error rate is the smallest.
  • the CN ratio is the value of the reception quality signal 31 when the CN ratio is the highest. That is, the diversity receiver 30 has a function of detecting the received signal strength parameter, bit error rate, and CN ratio described above.
  • FIG. 3 is a flowchart for explaining an antenna coupling correlation removal method according to Embodiment 1 of the present invention.
  • the mutual distance d between a part or feeding point of the first antenna 19 and a part or feeding point of the second antenna 29 is within 1 ⁇ 2 of the wavelength of the received radio wave. It is related with the diversity reception arrange
  • the first sensor 28 is arranged near the ground of the feeding point of the second antenna 29.
  • the reception frequency is adjusted to a channel with a low level of the first pickup signal output from the first sensor 28 that is a synthetic noise source for removing the antenna coupling correlation. This channel can be obtained in advance from the clock frequency of each part used in the system and preset.
  • the first amplitude / phase adjusting unit 12 for inputting the first pickup signal output from the first sensor 28 is disposed.
  • a reception signal component of the second antenna 29 is induced in the first sensor 28.
  • the first sensor 28 also picks up noise components emitted from various noise sources inside the device together with the received signal components of the second antenna 29.
  • an output signal from the first antenna 19 and an output signal of the first amplitude phase adjustment unit 12 are input, and a first addition unit 13 that adds and outputs these two output signals is disposed.
  • a first tuner 14 that inputs an output signal from the first antenna 19 via the first adder 13 and a second tuner 24 that inputs an output signal from the second antenna 29 are arranged (step). S11).
  • the second arrangement step includes a diversity receiver 30 that inputs the output signal of the first tuner 14 and the output signal of the second tuner 24, and a control unit 40 that inputs the reception quality signal 31 output from the diversity receiver 30.
  • the control unit 40 supplies a control parameter as an initial value to the first amplitude phase adjustment unit 12.
  • the control part 40 controls the amplitude phase of the signal of the 1st sensor 28 with the control parameter.
  • the first amplitude phase adjustment unit 12 controls the amplitude phase of the pickup signal output from the first sensor 28 (step S13).
  • the output signal of the first amplitude phase adjustment unit 12 is applied to the second input terminal of the first addition unit 13.
  • the signal received from the first antenna 19 via the matching circuit 11 is applied to the first input terminal of the first adder 13. That is, in the first input step, in the first adder 13 that inputs two output signals, the two output signals of the first antenna 19 and the output signal of the first amplitude / phase adjustment unit 12 Are input, added and output. Further, in the first tuner 14, an output signal from the first antenna 19 is input via the first adder 13 (step S14).
  • the second tuner 24 inputs an output signal from the second antenna 29 (step S15).
  • the output signal of the first tuner 14 and the output signal of the second tuner 24 are input to the diversity receiver 30 (step S16).
  • the diversity receiving unit 30 combines the output signal of the first tuner 14 and the output signal of the second tuner 24 (step S17). Diversity receiver 30 then outputs reception quality signal 31.
  • the control unit 40 inputs this reception quality signal 31.
  • the diversity receiver 30 demodulates the diversity scheme from the output signal from the first antenna 19 and the output signal from the second antenna 29 (step S18).
  • the control unit 40 further controls the amplitude phase of the first pickup signal according to the reception quality signal 31 output from the diversity reception unit 30 so that the reception quality signal 31 has the best value (Ste S19). That is, the control unit 40 changes some of the control parameters with reference to the received signal strength parameter (AGC), bit error rate (BER), and CN ratio (CN) representing the reception quality at this time.
  • AGC received signal strength parameter
  • BER bit error rate
  • CN CN ratio
  • the control unit 40 stores the best point among them in the memory. And the control part 40 confirms whether the reception quality signal 31 is the best value (step S20). If it is the best value (Yes), the series of processing is terminated. Otherwise (No), the process returns to step S13 and the series of processes is repeated. At this time, the control unit 40 sequentially shifts the control parameter changing steps from coarse to dense, thereby enabling more accurate control. Therefore, the control unit 40 can control the first amplitude phase adjustment unit 12 so that the reception quality signal 31 has the best value.
  • FIG. 4 is a diagram illustrating an operation in which the radio apparatus 10a having an antenna coupling correlation removal function according to Embodiment 1 of the present invention cancels coupling components using vector synthesis.
  • the coupling component is caused by the interaction of the two antennas because they are placed close together.
  • the coupling component from the second antenna 29 induced in the first antenna 19 is canceled, and the reception sensitivity in the first antenna 19 is not suppressed by the coupling component.
  • FIG. 4 shows five vector displays 60, 62, 64, 66, and 68.
  • the vector display 62 indicates a signal component induced in the first sensor 28 by a vector 54.
  • the signal component induced in the first sensor 28 is mainly induced by an electromagnetic coupling current component directed to the ground of the second antenna 29. Therefore, it is in phase with the signal component received by the second antenna 29.
  • the carrier of the signal component received by the second antenna 29 is assumed to be on the R axis as a reference in the display system of the vector display 62.
  • the axis delayed by 90 degrees is displayed as the I axis to constitute a vector display system.
  • the other vector displays 60, 64, 66 and 68 are displayed in the same manner.
  • the vector display 64 indicates the result of controlling the amplitude and phase of the signal component induced in the first sensor 28 input to the first amplitude / phase adjustment unit 12 by the first amplitude / phase adjustment unit 12 as a vector 55.
  • the vector display 60 indicates two signal components induced in the first antenna 19 by two vectors 51 and 52. Further, a vector 53 obtained by combining these vectors is also shown.
  • a received signal from the broadcasting station 50 is a vector 51.
  • These synthesized signals become a vector 53 obtained by vector synthesis.
  • This combined signal is actually output from the first antenna 19. That is, the amplitude is smaller than that of the received signal vector 51. The cause of this is due to the coupling component of the second antenna 29 arranged close to the first antenna 19.
  • a method for canceling the vector 52 as the coupling component will be described.
  • the vector display 66 indicates the input signal of the first addition unit 13 as vectors 51, 52, and 55. That is, the vectors 51 and 52 of the vector display 60, the vector 55 of the vector display 64, and the vector 51 obtained by combining them are displayed.
  • the vector 52 that is the coupling component of the second antenna 29 in the first antenna 19 can be canceled by the vector 55 as a result of control in the first amplitude phase adjustment unit 12.
  • a signal output from the first adder 13 as shown in the vector display 68, a combined received signal indicated by a vector 59 can be obtained.
  • This vector 59 is equivalent to the vector 51. In this way, it is possible to eliminate the influence of the coupling deterioration on the reception sensitivity due to the close arrangement of the two antennas. Therefore, the reception sensitivity of the first antenna 19 can be maximized.
  • the first sensor 28 and the first antenna 19 are arranged so as to be substantially in the same direction. That is, the first pickup signal output from the first sensor 28 is arranged so as to capture more signals of the polarization plane jumping into the first antenna 19. As a result, in the present embodiment, it is possible to increase the action and effect of canceling the antenna coupling deterioration component.
  • a portable receiver is configured with a small casing, and a receiver having high sensitivity and high stability by diversity and noise canceller is inexpensive. Can be provided.
  • FIG. 5 is a block diagram of radio apparatus 10b having an antenna coupling correlation removal function according to Embodiment 2 of the present invention.
  • the first antenna 19 and the second antenna 29 are arranged in substantially the same direction.
  • the first antenna 19 and the second antenna 29b are substantially orthogonal to each other. Is arranged. That is, the first antenna 19 mainly receives the vertical polarization plane, and the second antenna 29b mainly receives the horizontal polarization plane.
  • configurations and functions equivalent to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the first sensor 28 mainly receives the polarization plane in the same direction as the first antenna 19 as indicated by an arrow 44 in FIG. Further, the first antenna 19 and the second antenna 29 are arranged apart from each other by a distance d [m]. That is, the radio apparatus 10b having the antenna coupling correlation removal function in the present embodiment is also a part or feeding point of the first antenna 19 and a part or feeding point of the second antenna 29b, as in the first embodiment. The mutual distance d is arranged close to within a half of the wavelength of the received radio wave.
  • the radio apparatus 10b provided with the antenna coupling correlation removal function in the present embodiment also has the effect of removing the antenna coupling correlation.
  • the first antenna 19 and the second antenna 29b are substantially orthogonal to each other. Further, as indicated by an arrow 44, the first sensor 28 and the first antenna 19 are arranged so as to be substantially in the same direction. With such an arrangement, the first antenna 19 and the second antenna 29b can be significantly loosely coupled as compared with the first embodiment that is substantially in the same direction. Therefore, by making the polarization planes of the first antenna 19 and the second antenna 29b different from each other, it is possible to suppress a signal due to electromagnetic coupling between the first antenna 19 and the second antenna 29b that causes sensitivity suppression. it can.
  • the first pickup signal output from the first sensor 28 is arranged so as to capture more signals of the polarization plane jumping into the first antenna 19.
  • FIG. 6 is a block diagram of radio apparatus 10c having an antenna coupling correlation removal function according to Embodiment 3 of the present invention.
  • the output signal from the second antenna 29 is input directly from the matching circuit 21 to the diversity receiver 30 via the second tuner 24 in order to simplify the circuit configuration.
  • the system of the second antenna 29 is configured to have the same configuration as that of the system of the first antenna 19 to cancel the antenna coupling with each other.
  • wireless apparatus 10c provided with the antenna coupling correlation removal function in this Embodiment adds the 2nd sensor 18 and a 2nd amplitude phase.
  • An adjustment unit 22 and a second addition unit 23 are further provided. Since other configurations and functions are the same, a detailed description thereof will be omitted.
  • the second antenna 29 is set so that impedance matching is performed by the matching circuit 21 and the signal receiving sensitivity is most improved.
  • the second adder 23 has a first input terminal and a second input terminal. Further, an output signal from the second antenna 29 is input to the first input terminal of the second adder 23 via the matching circuit 21.
  • the output of the second amplitude phase adjustment unit 22 is input to the second input terminal of the second addition unit 23.
  • the 2nd addition part 23 adds and outputs the signal input into the 1st input terminal and the 2nd input terminal.
  • the second adder 23 receives the output signal from the second antenna 29 and the output signal of the second amplitude / phase adjuster 22, adds these two output signals, and outputs the result.
  • the second tuner 24 inputs the output signal of the second adder 23.
  • the second tuner 24 inputs the output signal from the second antenna 29 via the matching circuit 21 and the second adder 23.
  • the second tuner 24 also performs RF amplification, frequency conversion, and the like.
  • the diversity receiving unit 30 inputs and synthesizes the output signal of the first tuner 14 and the output signal of the second tuner 24. For this combining, for example, diversity demodulation may be performed by combining the carrier maximum ratio.
  • the control unit 40 receives the reception quality signal 31 output from the diversity receiving unit 30. Then, the control unit 40 controls the first amplitude phase adjustment unit 12 and the second amplitude phase adjustment unit 22 according to the reception quality signal 31.
  • the second sensor 18 picks up the electromagnetic coupling current component (indicated by an arrow 17 in FIG. 6) of the first antenna 19 that flows in the ground of the matching circuit 11 of the first antenna 19.
  • the first antenna 19 is disposed near the ground of the feeding point.
  • the second sensor 18 is arranged within 1 ⁇ 4 ⁇ , which is a range where the electromagnetic coupling current component exists, and within 0.15 m. . That is, the distance between the feeding point of the first antenna 19 and the central portion of the second sensor 18 is set to within 1 ⁇ 4 of the wavelength of the received radio wave.
  • the second sensor 18 is disposed so as to be orthogonal to the first sensor 28.
  • the received signal component of the first antenna 19 is induced in the second sensor 18.
  • the second sensor 18 also picks up noise components emitted from various noise sources inside the device together with the received signal components of the first antenna 19.
  • the second amplitude phase adjustment unit 22 controls the amplitude phase of the first pickup signal output from the second sensor 18.
  • the control unit 40 sets the amplitude phase of the first pickup signal output from the first sensor 28 in accordance with the reception quality signal 31 output from the diversity reception unit 30 so that the reception quality signal 31 has the best value.
  • the single amplitude phase adjustment unit 12 is controlled.
  • the control unit 40 controls the second amplitude phase adjustment unit 22 so that the reception quality signal 31 has the best value for the amplitude phase of the second pickup signal output from the second sensor 18.
  • radio apparatus 10c in the present embodiment has an antenna coupling correlation removal function. The details of the operation for canceling the coupling component between the first antenna 19 and the second antenna 29 are the same as those described in the first embodiment, and will not be described.
  • FIG. 7 is a flowchart for explaining an antenna coupling correlation removal method according to Embodiment 3 of the present invention.
  • the antenna coupling correlation elimination method in the present embodiment includes a second sensor arrangement step, a second amplitude phase adjustment unit arrangement step, and a second addition unit arrangement. A step. Note that these arrangement steps do not have to be in the order of the flowchart shown in FIG.
  • a second amplitude phase adjustment unit 22 is further arranged.
  • the control unit 40 in addition to the first amplitude phase adjustment unit 12, the control unit 40 further controls the second amplitude phase adjustment unit 22.
  • the second sensor 18 is placed near the ground of the feeding point of the first antenna 19 (step S21).
  • the reception frequency is adjusted to a channel with a low level of the first pickup signal output from the first sensor 28 and the second pickup signal output from the second sensor 18, which is a combined noise source for removing the antenna coupling correlation. .
  • This channel can be obtained in advance from the clock frequency of each part used in the system and preset.
  • the second amplitude phase adjustment unit 22 for inputting the second pickup signal output from the second sensor 18 is arranged (step S22).
  • a received signal component of the first antenna 19 is induced in the second sensor 18.
  • the second sensor 18 also picks up noise components emitted from various noise sources inside the device together with the received signal components of the first antenna 19.
  • the second arrangement step includes a diversity receiver 30 that inputs the output signal of the first tuner 14 and the output signal of the second tuner 24, and a control unit 40 that inputs the reception quality signal 31 output from the diversity receiver 30.
  • the control unit 40 first supplies a control parameter as an initial value to the first amplitude phase adjustment unit 12 and the second amplitude phase adjustment unit 22. And the control part 40 controls the amplitude phase of the signal of the 1st sensor 28 and the 2nd sensor 18 with the control parameter.
  • the first amplitude phase adjustment unit 12 controls the amplitude phase of the pickup signal output from the first sensor 28. Further, the second amplitude phase adjustment unit 22 controls the amplitude phase of the second pickup signal of the second sensor 18 (step S24).
  • the output signal from the second antenna 29 is input to the second tuner 24, first, the output signal from the second antenna 29, which is two output signals, is input to the second adder 23. Then, the output signal of the second amplitude phase adjustment unit 22 is input, added and output. Then, in the second tuner 24, the output signal from the second antenna 29 is input via the second adder 23 (step S25).
  • the control unit 40 controls the first amplitude phase adjustment unit 12 in the same manner as in the first embodiment, and the second sensor 18 outputs the second amplitude according to the reception quality signal 31 output from the diversity reception unit 30. Further, the second amplitude and phase adjustment unit 22 is controlled so that the reception quality signal 31 has the best value for the amplitude phase of the pickup signal (step S26). That is, the control unit 40 changes some of the control parameters with reference to the received signal strength parameter (AGC), bit error rate (BER), and CN ratio (CN) representing the reception quality at this time.
  • AGC received signal strength parameter
  • BER bit error rate
  • CN CN ratio
  • the control unit 40 stores the best point among them in the memory. And the control part 40 confirms whether the reception quality signal 31 is the best value (step S20). If it is the best value (Yes), the series of processing is terminated. Otherwise (No), the process returns to step S24 and a series of processes are repeated. At this time, the control unit 40 sequentially shifts the control parameter changing steps from coarse to dense, thereby enabling more accurate control. Therefore, the control unit 40 can control the first amplitude phase adjustment unit 12 and the second amplitude phase adjustment unit 22 so that the reception quality signal 31 has the best value.
  • the first sensor 28 and the second sensor 18 only need to pick up electromagnetic coupling current components of the first antenna 19 and the second antenna 29, respectively. Therefore, the first sensor 28 and the second sensor 18 may have a smaller gain as an antenna than the first antenna 19 and the second antenna 29. Further, the first sensor 28 and the second antenna 29 may be loosely coupled. The second sensor 18 and the first antenna 19 may be loosely coupled. The first sensor 28 and the second sensor 18 are disposed so as to be substantially orthogonal to each other.
  • the antenna coupling between the first sensor 28 and the second sensor 18 is much smaller than the antenna coupling between the first antenna 19 and the second antenna 29.
  • the reception sensitivity of the first antenna 19 and the second antenna 29 can be maximized.
  • FIG. 8 is a block diagram of radio apparatus 10d having an antenna coupling correlation removal function according to Embodiment 4 of the present invention.
  • the second antenna 29 system has the same configuration as that of the first antenna 19 system and cancels the antenna coupling with each other.
  • the first antenna 19 and the second antenna 29 are arranged in substantially the same direction.
  • first antenna 19 and second antenna 29b are substantially orthogonal to each other. Is arranged. That is, the first antenna 19 mainly receives the vertical polarization plane, and the second antenna 29b mainly receives the horizontal polarization plane.
  • the first antenna 19 and the second antenna 29b are significantly loosely coupled to each other in the same arrangement as in the second embodiment, as compared with the first embodiment that is substantially in the same direction. be able to. Therefore, by making the polarization planes of the first antenna 19 and the second antenna 29b different from each other, it is possible to capture a signal due to electromagnetic coupling between the first antenna 19 and the second antenna 29b that causes the sensitivity suppression. It becomes possible.
  • the first sensor 28 mainly receives the polarization plane in the same direction as the first antenna 19 as indicated by an arrow 44 in FIG.
  • the second sensor 18 mainly receives the polarization plane in the same direction as the second antenna 29b, as indicated by an arrow 44a in FIG.
  • Other configurations are the same as those of the third embodiment, and the same reference numerals are given to the same configurations and functions, and description thereof is omitted.
  • the first antenna 19 and the second antenna 29b are substantially orthogonal to each other, and the first sensor 28 and the first antenna 19 are disposed in substantially the same direction.
  • the first pickup signal output from the first sensor 28 can capture more signals on the plane of polarization jumping into the first antenna 19. Therefore, it is possible to further increase the action and effect of canceling the antenna coupling deterioration component.
  • the second pickup signal output from the second sensor 18 captures more signals of the polarization plane jumping into the second antenna 29b. It becomes possible. Therefore, it is possible to synergistically increase the action and effect of canceling the antenna coupling deterioration component.
  • the wireless device 10d having an antenna coupling correlation removal function that can reduce the antenna coupling degradation caused by the proximity of the antennas and maximize the antenna performance.
  • the first sensor 28 may pick up noise components from various noise sources inside the device.
  • the factor that most affects the sensitivity degradation depending on the reception channel and band is to cancel mainly the antenna coupling component if it is antenna coupling degradation, and mainly cancel the noise component if it is a noise component.
  • the whole is controlled by the control unit 40, and the function of a normal noise canceller can be taken in.
  • FIG. 9 is a block diagram of radio apparatus 10e having an antenna coupling correlation removal function according to Embodiment 5 of the present invention.
  • the system of the second antenna 29 has the same configuration as that of the system of the first antenna 19 and cancels the antenna coupling with each other.
  • the first antenna 19b and the second antenna 29 are disposed so as to be substantially orthogonal to each other. That is, the first antenna 19b mainly receives the horizontal polarization plane, and the second antenna 29b mainly receives the vertical polarization plane.
  • the first sensor 28 and the second sensor 18 are disposed so as to be substantially orthogonal to each other.
  • the first antenna 19b and the first sensor 28 are arranged so as to be substantially orthogonal to each other as indicated by an arrow 42b.
  • the second antenna 29 and the second sensor 18 are disposed so as to be substantially orthogonal to each other.
  • configurations and functions equivalent to those of the other embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the first antenna 19b and the second antenna 29 can be significantly loosely coupled as compared with the first embodiment which is substantially in the same direction. Therefore, by making the planes of polarization of the first antenna 19b and the second antenna 29 different from each other, it is possible to suppress a signal due to electromagnetic coupling between the first antenna 19b and the second antenna 29 that causes sensitivity suppression. It becomes possible.
  • the first sensor 28 and the second sensor 18 are arranged so as to be substantially orthogonal to each other, it is possible to suppress a signal due to electromagnetic coupling between the first sensor 28 and the second sensor 18. It becomes.
  • the first sensor 28 and the second sensor 18 play a role of canceling the coupling component generated by the interaction of the antennas by using signal components induced in the respective sensors. Therefore, it is not necessary to capture a signal component that is induced larger than necessary.
  • the first sensor 28 and the second sensor 18 are arranged so as to be substantially orthogonal to each other. As a result, it is desirable that no binding component be generated between the first sensor 28 and the second sensor 18.
  • the antenna coupling correlation removing method and the antenna coupling correlation removing function according to the present invention can prevent the deterioration of the diversity antenna coupling in a small device. Therefore, it is a small receiving device suitable for portable equipment, and is useful for various wireless devices equipped with an antenna coupling correlation removing method and an antenna coupling correlation removing function that receive diversity with high sensitivity and stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)

Abstract

 本発明のアンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置は、第二アンテナに誘起する電流とともに内部のノイズ成分を併せてピックアップし、ダイバーシティ受信部の出力する受信品質信号が最良の値となるように、振幅位相を制御して第一アンテナの出力信号と第一振幅位相調整部の出力信号とを加算合成する。第二アンテナに誘起する第一アンテナの結合成分をキャンセルし、併せてノイズ成分もキャンセルすることができ、受信感度抑圧の最大要因であるものを主にキャンセルすることで結果的に受信感度を最大にすることが可能となる。

Description

アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置
 本発明は、放送電波の受信装置に関するものであり、特に、ポータブル機器に適する小型の受信装置であって、かつダイバーシティを用いて高感度かつ安定に受信するアンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置に関するものである。
 従来、移動時に安定受信をするために、ダイバーシティ受信装置が存在する。また、受信機において、自己ノイズによる感度抑圧を軽減する方法が開示されている。すなわち、まず、当該ノイズを加工して逆位相かつ適度な振幅を有するノイズを生成する。そして、加工したノイズを受信回路の途中に注入することで、ノイズを相殺するノイズキャンセル技術が開示されている(特許文献1参照)。
 図10~図12に、特許文献1に開示されている無線送受信機の構成を示す。この無線送受信機に関して、図10では、2本のアンテナを搭載した無線通信端末700の例を示す。受信アンテナ601、602で受信した受信信号を、受信機701、702がそれぞれ復調する。そして、それらの復調信号を干渉除去器703が入力する。干渉除去器703は、放射雑音成分を除去する。そして、干渉除去器703が、放射雑音の除去された受信信号を、情報処理系704に出力する。
 図11は、図10に示した干渉除去器703の第1の具体例を示す。この具体例では、2つの受信アンテナ601、602に受信される干渉信号の相関が高い場合に有効となる。受信機701は、受信アンテナ601で受信した信号を復調し、希望信号と干渉信号との和の信号704を出力する。一方、受信機702は、受信アンテナ602で受信した信号を復調し、希望信号と干渉信号との和の信号706を出力する。この信号706を振幅位相調整器802は入力する。そして、振幅位相調整器802は、この入力した信号706に含まれる干渉信号の振幅位相を、信号704に含まれる干渉信号の振幅位相と等しくするように調整する。振幅位相調整器802は、調整した信号708を出力する。加算器803は、信号704と信号708とを加算し、信号710を出力する。
 この際、初期設定では、例えば、データを伝送しない状況下で、加算器803から出力される信号710に含まれる干渉信号をモニタする。この状況では、信号710には、データは含まれない。そこで、振幅位相調整器802において、加算後の干渉信号の電力が、実質的にゼロになるように設定する。この初期設定により、干渉除去器703は、安定に動作できる。その結果、干渉除去器703は、受信アンテナ601、602で受信した干渉信号の相関が高いほど、放射雑音をより小さくなるように減衰させることができる。
 図12は、図10に示した干渉除去器703の他の具体例を示す。この具体例では、干渉除去器703は、電子機器PC(Personal Computer)から、ケーブル912を通じて放射雑音を直接取得している。そして、この取得した放射雑音情報を、振幅位相調整器904、905に入力して各受信系の擬似干渉信号728、730を生成している。振幅位相調整器904、905の出力を、放射雑音予測器903の出力信号となる擬似干渉信号730と擬似干渉信号728として、第一加算器901と第二加算器902に入力する。そして、これら第一加算器901と第二加算器902で各受信信号からそれぞれ擬似干渉信号728、730を差し引く。この加算により第1の加算器901と第2の加算器902から放射雑音が除去されたデータ732とデータ734が出力される。そして、これらのデータ732、734は、ダイバーシティ受信機910でダイバーシティ受信される。
 しかし、従来実施されてきたこれらのダイバーシティおよびノイズキャンセラによる装置は、本来、車載型などに好適な比較的大型の装置向けである。したがって、ポータブル型、すなわち持ち運んで使用するような小型機器には、必ずしも好適とは言えない。なぜなら、これらの装置は、小型化することによりダイバーシティアンテナ相互の結合劣化、およびダイバーシティ相関によるゲイン劣化を引き起こすからである。したがって、これらの装置では、狙い通りの高感度受信が出来なくなる問題がある。
 また、ノイズ源が機器内部で複数ある場合、例えば、信号処理回路、クロック部、液晶ディスプレイ駆動部、各種メモリーのバスライン、DC-DCコンバータなどの場合、チャンネル毎に要因を特定することが困難である。そのため劣化原因となるノイズ成分をキャンセルするためには、関連するノイズ成分を総合的にピックアップする必要があった。
 上記したように、特許文献1に開示されている技術では、ノイズ源である電子機器PCからケーブル912等を通じて放射雑音を直接取得している。そして、この取得した放射雑音情報を用いて、振幅位相調整器904、905で各受信系の擬似干渉信号を生成している。各振幅位相調整器904、905の出力を放射雑音予測器903の出力信号となる擬似干渉信号730と擬似干渉信号728として第一加算器901と第二加算器902に入力し、これら第一加算器901と第二加算器902で、各受信信号からそれぞれ擬似干渉信号730、728を差し引く構成である。
 そのため、特許文献1に開示されている技術は、電子機器PCのノイズ成分には、効果を奏するが、他の内部のノイズ源に対して作用しない。したがって、特許文献1に開示されている技術は、それらのノイズによる感度抑圧を改善する効果を発揮できない。
 また、小型筐体の機器に適用した場合、ダイバーシティアンテナ相互の結合劣化およびダイバーシティ相関によるゲイン劣化を引き起こす。その結果、高感度受信が出来なくなる課題は、解決できなかった。
特開2004-236171号公報
 本発明のアンテナ結合相関除去方法は、第一アンテナの一部または給電点と、第二アンテナの一部または給電点との、相互距離が受信電波の波長の1/2以内に近接して配置されるダイバーシティ受信におけるアンテナ結合相関除去方法である。
 第一配置ステップは、第二アンテナの給電点の地盤付近に第一センサーと、第一センサーの出力する第一ピックアップ信号の振幅位相を制御する第一振幅位相調整部と、第一アンテナからの出力信号と、第一振幅位相調整部の出力信号とを入力し、入力した2つの出力信号を加算して出力する第一加算部と、第一アンテナからの出力信号を、第一加算部を介して入力する第一チューナと、第二アンテナからの出力信号を、入力する第二チューナと、を配置する。
 第二配置ステップは、第一チューナの出力信号と、第二チューナの出力信号とを入力するダイバーシティ受信部と、ダイバーシティ受信部の出力する受信品質信号を入力する制御部を配置する。
 振幅位相調整ステップは、第一振幅位相調整部において、第一センサーの出力するピックアップ信号の振幅位相を制御する。
 第一入力ステップは、2つの出力信号を入力する第一加算部において、2つの出力信号である第一アンテナの出力信号と、第一振幅位相調整部の出力信号とを入力し、加算して出力する。そして、第一チューナにおいて、第一アンテナからの出力信号を、第一加算部を介して入力する。
 第二入力ステップは、第二チューナにおいて、第二アンテナからの出力信号を入力する。
 第三入力ステップは、第一チューナの出力信号と、第二チューナの出力信号とをダイバーシティ受信部に入力する。
 合成ステップは、ダイバーシティ受信部において、第一チューナの出力信号と第二チューナの出力信号とを合成する。
 復調ステップは、ダイバーシティ受信部において、第一アンテナからの出力信号と第二アンテナの出力信号とからダイバーシティ方式の復調を行う。
 制御ステップは、制御部において、ダイバーシティ受信部の出力する受信品質信号に応じて、第一ピックアップ信号の振幅位相を、受信品質信号が最良の値となるように第一振幅位相調整部を制御する。
 また、本発明のアンテナ結合相関除去機能を備えた無線装置は、第一アンテナの一部または給電点と、第二アンテナの一部または給電点との、相互距離が受信電波の波長の1/2以内に近接して配置されるダイバーシティ受信を行う無線装置である。無線装置は、第一センサーと、第一振幅位相調整部と、第一加算部と、第一チューナと、第二チューナと、ダイバーシティ受信部と、制御部と、を備えている。
 第一センサーは、第二アンテナの給電点の地盤付近に配置する。第一振幅位相調整部は、第一センサーの出力する第一ピックアップ信号の振幅位相を制御する。第一加算部は、第一アンテナからの出力信号と、第一振幅位相調整部の出力信号とを入力し、入力した2つの出力信号を加算して出力する。第一チューナは、第一アンテナからの出力信号を、第一加算部を介して入力する。第二チューナは、第二アンテナからの出力信号を、入力する。ダイバーシティ受信部は、第一チューナの出力信号と、第二チューナの出力信号とを入力する。制御部は、ダイバーシティ受信部の出力する受信品質信号を入力する。
 ダイバーシティ受信部は、第一チューナの出力信号と第二チューナの出力信号とを合成し、かつ、第一アンテナからの出力信号と第二アンテナの出力信号とからダイバーシティ方式の復調を行う。また、制御部は、ダイバーシティ受信部の出力する受信品質信号に応じて、第一ピックアップ信号の振幅位相を、受信品質信号が最良の値となるように第一振幅位相調整部を制御する。
 このような構成により、第二アンテナに誘起する第一アンテナの結合成分をキャンセルし、併せてノイズ成分もキャンセルすることができ、感度抑圧の最大要因であるものを主にキャンセルできる。したがって、受信感度を最大にできる。
図1は、本発明の実施の形態1におけるアンテナ結合相関除去機能を備えた無線装置に対する電波到来方向のイメージ図である。 図2は、本発明の実施の形態1におけるアンテナ結合相関除去機能を備えた無線装置のブロック図である。 図3は、本発明の実施の形態1におけるアンテナ結合相関除去方法を説明するフローチャートである。 図4は、本発明の実施の形態1におけるアンテナ結合相関除去機能を備えた無線装置が、結合成分をキャンセルする動作を、ベクトル合成を用いて説明する図である。 図5は、本発明の実施の形態2におけるアンテナ結合相関除去機能を備えた無線装置のブロック図である。 図6は、本発明の実施の形態3におけるアンテナ結合相関除去機能を備えた無線装置のブロック図である。 図7は、本発明の実施の形態3におけるアンテナ結合相関除去方法を説明するフローチャートである。 図8は、本発明の実施の形態4におけるアンテナ結合相関除去機能を備えた無線装置のブロック図である。 図9は、本発明の実施の形態5におけるアンテナ結合相関除去機能を備えた無線装置のブロック図である。 図10は、従来例における無線通信端末の構成を示すブロック図である。 図11は、従来例における無線通信端末の干渉除去器の構成を示すブロック図である。 図12は、従来例における無線通信端末の干渉除去器の構成を示すブロック図である。
符号の説明
 10a,10b,10c,10d,10e  無線装置
 11,21  整合回路
 12  第一振幅位相調整部
 13  第一加算部
 14  第一チューナ
 17,27  矢印
 18  第二センサー
 19,19b  第一アンテナ
 22  第二振幅位相調整部
 23  第二加算部
 28  第一センサー
 29,29b  第二アンテナ
 24  第二チューナ
 30  ダイバーシティ受信部
 31  受信品質信号
 40  制御部
 42,42a,42b,42d,44,44a  矢印
 50  放送局
 60,62,64,66,68  ベクトル表示
 70,72  建造物
 71  山
 73  直接波
 74  間接波
 d  相互距離
 λ  電波の波長
 以下、本発明の実施の形態について、図面を用いて説明する。
 (実施の形態1)
 図1は、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10aを使用する一般的な環境について説明するための電波到来方向のイメージ図である。なお、本実施の形態における無線装置10aは、第一アンテナ19と第二アンテナ29を備えている。そして、これらのアンテナの偏波面が、同一な場合を想定している。
 固定機器では、一般に屋上に設置された強指向性アンテナから、信号を屋内に引き込んで受信する。しかし、本実施の形態における無線装置10aのように、ポータブル機器では、移動中の場所・方向が定まらないために、通常、アンテナの指向性を全指向性とし、アンテナの偏波指向性も一義に規定しない。このようにする理由は、電波環境が直接波73だけでなく、建造物70、72や山71に反射して到来する間接波74を有効に受信するためには、偏波面も多様に変化しているためである。したがって、ポータブル機器では、ダイバーシティを行う場合、空間的なスプリット効果を狙うスペースダイバーシティと、偏波面のちがいを利用する偏波ダイバーシティとを、組み合わせることが通常行われる。
 図2は、本発明の実施の形態1におけるアンテナ結合相関除去機能を備えた無線装置10aのブロック図である。本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10aは、第一アンテナ19と、第二アンテナ29と、第一センサー28と、第一振幅位相調整部12と、第一加算部13と、第一チューナ14と、第二チューナ24と、ダイバーシティ受信部30と、制御部40とを備えている。
 本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10aは、周波数帯域として、470[MHz]~770[MHz]のUHF帯域の地上デジタル放送を受信するシステムに適用して好適である。なお、電波の波長λは、周波数が470[MHz]の場合は、約0.64m、周波数が770[MHz]の場合は、約0.39mである。しかし、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10aのようなポータブル機器の場合、機器の持ち運びの利便性を損なわないようにするために、機器のサイズには、制約がある。したがって、第一アンテナ19と第二アンテナ29との相互距離dは、高々0.3mに制限される。相互距離dが0.3mであると、相互距離dは、電波の周波数によっては、1/2波長にも満たない距離である。このようにアンテナ相互の空間距離が小さい場合、第一アンテナ19と第二アンテナ29とにおいて、アンテナ結合が起こり、互いに干渉して受信感度の劣化が生じやすい。
 すなわち、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10aは、ダイバーシティ受信を行う機器であって、第一アンテナ19の一部または給電点と、第二アンテナ29の一部または給電点との、相互距離dが、受信電波の波長の少なくとも1/2以内に近接して配置されることを想定している。
 第一アンテナ19は、整合回路11により、その後段の第一加算部13とのインピーダンスマッチングを行う。このようにするのは、第一アンテナ19において、信号の受信感度を最も向上させるようにするためである。第一加算部13は、第一入力端子及び第二入力端子を有する。そして、第一アンテナ19からの出力信号を、整合回路11を介して、第一加算部13の第一入力端子に入力する。また、第一振幅位相調整部12の出力を第一加算部13の第二入力端子に入力する。そして、第一加算部13は、第一入力端子及び第二入力端子に入力された信号を加算して出力する。すなわち、第一加算部13は、第一アンテナ19からの出力信号と、第一振幅位相調整部12の出力信号とを入力し、入力したこれら2つの出力信号を加算して出力する。
 第一チューナ14は、第一加算部13の出力信号を入力する。すなわち、第一チューナ14は、第一アンテナ19からの出力信号を、整合回路11と第一加算部13とを介して入力する。第一チューナ14ではRF増幅、周波数変換などを行う。
 第二アンテナ29は、第一チューナ14と同様に整合回路21により、その後段の第二チューナ24とのインピーダンスマッチングを行う。このようにするのは、第二アンテナ29において、信号の受信感度を最も向上させるようにするためである。すなわち、第二チューナ24は、第二アンテナ29からの出力信号を、整合回路21を介して入力する。第二チューナ24ではRF増幅、周波数変換などを行う。なお、本実施の形態では、図2の矢印44に示すように、第一アンテナ19と第二アンテナ29とは、実質的に同方向に配置している。
 ダイバーシティ受信部30は、第一入力端子と第二入力端子とを有する。また、ダイバーシティ受信部30は、その第一入力端子に、第一チューナ14の出力信号を入力する。そして、ダイバーシティ受信部30は、その第二入力端子に、第二チューナ24の出力信号を入力する。このように、ダイバーシティ受信部30は、第一チューナ14の出力信号と第二チューナ24の出力信号とを入力して、合成する。この合成は、例えば、キャリア最大比合成を行いダイバーシティ方式の復調をしてもよい。
 制御部40は、ダイバーシティ受信部30の出力する受信品質信号31を入力する。そして、制御部40は、受信品質信号31に応じて、第一振幅位相調整部12を制御する。
 図2の矢印44aに示すように、第一センサー28と第一アンテナ19とは、互いに実質的に同方向に配置する。また、第一センサー28は、第二アンテナ29の整合回路21の地盤に流れる第二アンテナ29の電磁結合電流成分(図2には、矢印27で示す)をピックアップするように、第二アンテナ29の給電点の地盤付近に配置する。第二アンテナ29の給電点すなわち整合回路21のグランド部において、電磁結合電流成分の存在する範囲である1/4λ以内であって、0.15m以内に近接して、第一センサー28を配置する。すなわち、第二アンテナ29の給電点と、第一センサー28の中央部との距離は、受信電波の波長に対して少なくとも1/4以内とする。
 このように近接して配置したので、第一センサー28には、第二アンテナ29の受信信号成分が誘起される。また、第一センサー28は、第二アンテナ29の受信信号成分とともに機器内部の各種ノイズ源から放出されるノイズ成分を併せてピックアップする。第一振幅位相調整部12は、第一センサー28の出力する第一ピックアップ信号の振幅位相を制御する。
 制御部40は、ダイバーシティ受信部30の出力する受信品質信号31に応じて、第一センサー28の出力する第一ピックアップ信号の振幅位相を、受信品質信号31が最良の値となるように第一振幅位相調整部12を制御する。このような制御により、本実施の形態における無線装置10aは、アンテナ結合相関除去機能を備えている。なお、2つのアンテナの結合成分をキャンセルする動作の詳細については、後述する。
 受信品質信号31は、最終的な受信品質を表す受信信号強度パラメータ(AGC;Automatic Gain Contorol signal parameter),ビットエラーレート(BER;Bit Error Ratio),CN比(C/N;Carrier to Noise Ratio)の少なくともいずれか1つを用いる。ダイバーシティ受信部30は受信品質信号31を出力し、受信品質信号31を制御部40へ入力する。制御部40は、受信品質信号31に基づいて、制御パラメータを第一振幅位相調整部12へ、フィードバックする。
 ここで、受信品質信号31が最良の値となるとは、例えば、受信信号強度パラメータでは、第一アンテナ19および第二アンテナ29で受信する信号の電界強度が最も高くなったときの受信品質信号31の値である。また、ビットエラーレートでは、最もビットエラーレートが小さくなったときの受信品質信号31の値である。そして、CN比では、最もCN比が高くなったときの受信品質信号31の値である。すなわち、ダイバーシティ受信部30は、上記した受信信号強度パラメータ、ビットエラーレート、CN比を検出する機能を有する。
 次に、本実施の形態におけるアンテナ結合相関除去方法の具体的な手順について述べる。図3は、本発明の実施の形態1におけるアンテナ結合相関除去方法を説明するフローチャートである。本実施の形態におけるアンテナ結合相関除去方法は、第一アンテナ19の一部または給電点と、第二アンテナ29の一部または給電点との、相互距離dが受信電波の波長の1/2以内に近接して配置されるダイバーシティ受信に関する。
 第一配置ステップは、第二アンテナ29の給電点の地盤付近に第一センサー28を配置する。そして、まず、アンテナ結合相関除去の合成ノイズ源である第一センサー28の出力する第一ピックアップ信号のレベルの小さいチャンネルに、受信周波数を調整する。このチャンネルは、システムに使用する各部のクロック周波数などから予め求めて、プリセットしておくことができる。
 また、第一センサー28の出力する第一ピックアップ信号を入力する第一振幅位相調整部12を配置する。第一センサー28には、第二アンテナ29の受信信号成分が誘起される。また、第一センサー28は、第二アンテナ29の受信信号成分とともに機器内部の各種ノイズ源から放出されるノイズ成分を併せてピックアップする。さらに、第一アンテナ19からの出力信号と、第一振幅位相調整部12の出力信号とを入力し、入力したこれらの2つの出力信号を加算して出力する第一加算部13を配置する。
 また、第一アンテナ19からの出力信号を、第一加算部13を介して入力する第一チューナ14と、第二アンテナ29からの出力信号を、入力する第二チューナ24とを配置する(ステップS11)。
 第二配置ステップは、第一チューナ14の出力信号と、第二チューナ24の出力信号とを入力するダイバーシティ受信部30と、ダイバーシティ受信部30の出力する受信品質信号31を入力する制御部40を配置する(ステップS12)。まず、制御部40は、初期値としての制御パラメータを、第一振幅位相調整部12に供給する。そして、制御部40は、第一センサー28の信号の振幅位相を、その制御パラメータで制御する。
 すなわち、第一振幅位相調整ステップは、第一振幅位相調整部12において、第一センサー28の出力するピックアップ信号の振幅位相を制御する(ステップS13)。
 その後、第一振幅位相調整部12の出力信号が、第一加算部13の第二入力端子に印加される。一方、第一アンテナ19から整合回路11を介して受信した信号は、第一加算部13の第一入力端子に印加される。すなわち、第一入力ステップは、2つの出力信号を入力する第一加算部13において、これらの2つの出力信号である第一アンテナ19の出力信号と、第一振幅位相調整部12の出力信号とを入力し、加算して出力する。また、第一チューナ14において、第一アンテナ19からの出力信号を、第一加算部13を介して入力する(ステップS14)。
 第二入力ステップは、第二チューナ24において、第二アンテナ29からの出力信号を入力する(ステップS15)。
 第三入力ステップは、第一チューナ14の出力信号と、第二チューナ24の出力信号とをダイバーシティ受信部30に入力する(ステップS16)。
 合成ステップは、ダイバーシティ受信部30において、第一チューナ14の出力信号と第二チューナ24の出力信号とを合成する(ステップS17)。そして、ダイバーシティ受信部30は、受信品質信号31を出力する。制御部40は、この受信品質信号31を入力する。
 そして、復調ステップは、ダイバーシティ受信部30において、第一アンテナ19からの出力信号と第二アンテナ29の出力信号とからダイバーシティ方式の復調を行う(ステップS18)。
 制御ステップは、制御部40において、ダイバーシティ受信部30の出力する受信品質信号31に応じて、第一ピックアップ信号の振幅位相を、受信品質信号31が最良の値となるように、さらに制御する(ステップS19)。すなわち、制御部40は、この時の受信品質を表す受信信号強度パラメータ(AGC),ビットエラーレート(BER),CN比(CN)をリファレンスとして、制御パラメータのいくつかを変化させる。
 制御パラメータを変化させた結果、受信品質信号31が増減する場合は、制御部40は、その中で最も良くなるポイントをメモリーに格納する。そして、制御部40は、受信品質信号31は最良の値か、どうかを確認する(ステップS20)。最良の値であれば(Yes)、一連の処理を終了する。そうでなければ(No)、ステップS13に戻って、一連の処理を繰り返す。この際に、制御部40が、制御パラメータの変化ステップを順次、粗から密に移行させることで、より精確な制御が可能となる。したがって、受信品質信号31が最良の値となるように、制御部40が、第一振幅位相調整部12を制御できる。
 図4は、本発明の実施の形態1におけるアンテナ結合相関除去機能を備えた無線装置10aが、結合成分をキャンセルする動作を、ベクトル合成を用いて説明する図である。結合成分は、2つのアンテナが近接して配置されているために、それらのアンテナの相互作用により生じる。特に、本実施の形態では、第一アンテナ19に誘起される第二アンテナ29からの結合成分をキャンセルし、第一アンテナ19における受信感度の抑圧が結合成分によって生じないように工夫している。
 図4には、5つのベクトル表示60、62、64、66、68を示している。ベクトル表示62は、第一センサー28に誘起する信号成分をベクトル54で示している。第一センサー28に誘起する信号成分は、第二アンテナ29の地盤へ向かう電磁結合電流成分により、主に誘起する。したがって、第二アンテナ29で受信する信号成分と同相となる。ここで、第二アンテナ29で受信する信号成分のキャリアを、ベクトル表示62の表示系における基準として、R軸上にあるものとしている。そして、90度遅れた軸をI軸で表示し、ベクトル表示系を構成している。他のベクトル表示60、64、66、68も同様にして、表示している。
 ベクトル表示64は、第一振幅位相調整部12に入力した第一センサー28に誘起する信号成分の振幅と位相を、第一振幅位相調整部12において制御した結果をベクトル55で示している。
 ベクトル表示60は、第一アンテナ19に誘起する2つの信号成分を2つのベクトル51、52で示している。さらに、それらのベクトルの合成したベクトル53も示している。放送局50からの受信信号は、ベクトル51である。受信信号のベクトル51の他に、アンテナ結合により第二アンテナ29からの結合成分のベクトル52も同時に存在する。これらの合成信号はベクトル合成したベクトル53となる。この合成信号が、実際には、第一アンテナ19から出力される。すなわち、受信信号のベクトル51よりも振幅が減少する。この原因は、第一アンテナ19に近接して配置された第二アンテナ29による結合成分による。以下では、この結合成分であるベクトル52をキャンセルする方法について説明する。
 ベクトル表示66は、第一加算部13の入力信号をベクトル51、52、55で示している。すなわち、ベクトル表示60のベクトル51、52とベクトル表示64のベクトル55と、それらを合成したベクトル51を表示している。第一アンテナ19における第二アンテナ29の結合成分であるベクトル52は、第一振幅位相調整部12において制御した結果のベクトル55によりキャンセルすることができる。結果として、第一加算部13の出力信号として、ベクトル表示68に示すように、ベクトル59で示す合成受信信号を得ることができる。このベクトル59は、ベクトル51と同等である。このようにして、2つのアンテナが近接されて配置されたことに伴う、受信感度に対する結合劣化の影響をなくすことができる。したがって、第一アンテナ19の受信感度を最大化できる。
 また、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10aにおいては、第一センサー28と第一アンテナ19とは実質的に同一方向となるように配置している。すなわち、第一センサー28の出力する第一ピックアップ信号は、第一アンテナ19に飛び込む偏波面の信号を、より多く捉えるように配置されている。その結果、本実施の形態においては、アンテナ結合劣化成分をキャンセルする作用と効果を増大させることが可能となる。
 したがって、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置によれば、小型の筐体でポータブル受信機を構成してダイバーシティとノイズキャンセラとによって高感度・高安定度を有する受信機を安価に提供することが可能となる。
 (実施の形態2)
 図5は、本発明の実施の形態2におけるアンテナ結合相関除去機能を備えた無線装置10bのブロック図である。本実施の形態1においては、図2に示すように、第一アンテナ19と第二アンテナ29とは、実質的に同方向に配置していた。しかし、本実施の形態2におけるアンテナ結合相関除去機能を備えた無線装置10bでは、図5の矢印42に示すように、第一アンテナ19と第二アンテナ29bとは、互いに実質的に直交するように配置している。すなわち、第一アンテナ19は垂直偏波面を主に、第二アンテナ29bは水平偏波面を主に、受信するものである。なお、本実施の形態では、実施の形態1と同等な構成・機能には同じ符号を付け、説明は省略する。
 また、実施の形態1と同様に、図5の矢印44に示すように、第一センサー28は第一アンテナ19と同じ方向の偏波面を主に受信する。また、第一アンテナ19と第二アンテナ29とは互いに相互距離d[m]だけ離して配置する。すなわち、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10bも、実施の形態1と同様に、第一アンテナ19の一部または給電点と、第二アンテナ29bの一部または給電点との、相互距離dが、受信電波の波長の1/2以内に近接して配置されている。
 他の構成は実施の形態1と同様である。したがって、本実施の形態においても、アンテナ結合に伴って、第一アンテナ19に誘起される第二アンテナ29bからの結合成分をキャンセルし、第一アンテナ19における受信感度の抑圧が結合成分によって生じないようにできる。その結果、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10bも、アンテナ結合相関除去の効果を奏する。
 また、本実施の形態では、矢印42に示すように、第一アンテナ19と第二アンテナ29bとを互いに実質的に直交させている。また、矢印44に示すように、第一センサー28と第一アンテナ19とは実質的に同一方向となるように配置している。このような配置より、第一アンテナ19と第二アンテナ29bとは、実質的に同方向である実施の形態1と比べて、格段に疎結合とすることができる。したがって、第一アンテナ19と第二アンテナ29bとの偏波面をお互いに異ならせることにより、感度抑圧の原因になる第一アンテナ19と第二アンテナ29bとの間の電磁結合による信号を抑えることができる。加えて、第一センサー28が出力する第一ピックアップ信号は、第一アンテナ19に飛び込む偏波面の信号をより多く捉えるように配置されている。その結果、本実施の形態においても、アンテナ結合劣化成分をキャンセルする作用と効果を増大させることが可能となる。
 (実施の形態3)
 図6は、本発明の実施の形態3におけるアンテナ結合相関除去機能を備えた無線装置10cのブロック図である。実施の形態1においては、第二アンテナ29からの出力信号は、回路構成を簡単にするため、整合回路21から直接、第二チューナ24を介して、ダイバーシティ受信部30へ入力している。しかし、図6に示すように、実施の形態3においては、第二アンテナ29の系統にも、第一アンテナ19の系統と同様の構成を取って相互にアンテナ結合をキャンセルするようにしている。
 図6に示すように、本実施の形態におけるアンテナ結合相関除去機能を備えた無線装置10cは、図2に示した実施の形態1の構成に加えて、第二センサー18と、第二振幅位相調整部22と第二加算部23とをさらに備えている。他の構成と機能は、同等であるので、これらの詳細な説明は略する。
 第二アンテナ29は、第一アンテナ19と同様に整合回路21でインピーダンスマッチングを取り、信号の受信感度を最も向上させるように設定する。第二加算部23は、第一入力端子及び第二入力端子を有する。また、第二アンテナ29からの出力信号を、整合回路21を介して、第二加算部23の第一入力端子に入力する。第二振幅位相調整部22の出力を第二加算部23の第二入力端子に入力する。そして、第二加算部23は、第一入力端子及び第二入力端子に入力された信号を加算して出力する。すなわち、第二加算部23は、第二アンテナ29からの出力信号と、第二振幅位相調整部22の出力信号とを入力し、入力したこれら2つの出力信号を加算して出力する。
 第二チューナ24は、第二加算部23の出力信号を入力する。すなわち、第二チューナ24は、第二アンテナ29からの出力信号を、整合回路21と第二加算部23とを介して入力する。第二チューナ24でも、RF増幅、周波数変換などを行う。
 ダイバーシティ受信部30は、第一チューナ14の出力信号と第二チューナ24の出力信号とを入力して、合成する。この合成は、例えば、キャリア最大比合成を行いダイバーシティ方式の復調をしてもよい。
 制御部40は、ダイバーシティ受信部30の出力する受信品質信号31を入力する。そして、制御部40は、受信品質信号31に応じて、第一振幅位相調整部12と第二振幅位相調整部22とを制御する。
 図6に示すように、第二センサー18は、第一アンテナ19の整合回路11の地盤に流れる第一アンテナ19の電磁結合電流成分(図6には、矢印17で示す)をピックアップするように、第一アンテナ19の給電点の地盤付近に配置する。第一アンテナ19の給電点すなわち整合回路11のグランド部において、電磁結合電流成分の存在する範囲である1/4λ以内であって、0.15m以内に近接して、第二センサー18を配置する。すなわち、第一アンテナ19の給電点と、第二センサー18の中央部との距離は、受信電波の波長に対して1/4以内とする。また、図6の矢印42に示すように、第二センサー18は、第一センサー28とは、互いに直交するように配置している。
 このように近接して配置したので、第二センサー18には、第一アンテナ19の受信信号成分が誘起される。また、第二センサー18は、第一アンテナ19の受信信号成分とともに機器内部の各種ノイズ源から放出されるノイズ成分を併せてピックアップする。第二振幅位相調整部22は、第二センサー18の出力する第一ピックアップ信号の振幅位相を制御する。
 制御部40は、ダイバーシティ受信部30の出力する受信品質信号31に応じて、第一センサー28の出力する第一ピックアップ信号の振幅位相を、受信品質信号31が最良の値となるように、第一振幅位相調整部12を制御する。さらに、制御部40は、第二センサー18の出力する第2ピックアップ信号の振幅位相を、受信品質信号31が最良の値となるように、第二振幅位相調整部22を制御する。このような制御により、本実施の形態における無線装置10cは、アンテナ結合相関除去機能を備えている。なお、第一アンテナ19と第二アンテナ29との結合成分をキャンセルする動作の詳細については、実施の形態1で説明したのと同等であるので省略する。
 次に、本実施の形態におけるアンテナ結合相関除去方法の具体的な手順について述べる。図7は、本発明の実施の形態3におけるアンテナ結合相関除去方法を説明するフローチャートである。実施の形態1のアンテナ結合相関除去方法におけるステップに加えて、本実施の形態におけるアンテナ結合相関除去方法は、第二センサー配置ステップと、第二振幅位相調整部配置ステップと、第二加算部配置ステップとを、さらに有している。なお、これらの配置ステップは、図7に示したフローチャートの順とする必要はない。また、第一及び第二振幅位相調整部配置ステップは、第一振幅位相調整部12に加えて、第二振幅位相調整部22をさらに配置している。そして、制御ステップは、第一振幅位相調整部12に加えて、制御部40は、第二振幅位相調整部22をさらに制御する。
 以下では、本実施の形態のアンテナ結合相関除去方法の詳細について説明する。ただし、実施の形態1と同等なステップについては、同等な符号を付け、説明を省略する。
 第二センサー配置ステップは、第一アンテナ19の給電点の地盤付近に第二センサー18を配置する(ステップS21)。そして、まず、アンテナ結合相関除去の合成ノイズ源である第一センサー28の出力する第一ピックアップ信号、及び第二センサー18の出力する第二ピックアップ信号のレベルの小さいチャンネルに、受信周波数を調整する。このチャンネルは、システムに使用する各部のクロック周波数などから予め求めて、プリセットしておくことができる。
 また、第二振幅位相調整部配置ステップは、第二センサー18の出力する第二ピックアップ信号を入力する第二振幅位相調整部22を配置する(ステップS22)。第二センサー18には、第一アンテナ19の受信信号成分が誘起される。また、第二センサー18は、第一アンテナ19の受信信号成分とともに機器内部の各種ノイズ源から放出されるノイズ成分を併せてピックアップする。
 第二加算部配置ステップは、第二アンテナ29からの出力信号と、第二振幅位相調整部22の出力信号とを入力し、入力したこれらの2つの出力信号を入力する第二加算部23を配置する(ステップS23)。
 第二配置ステップは、第一チューナ14の出力信号と、第二チューナ24の出力信号とを入力するダイバーシティ受信部30と、ダイバーシティ受信部30の出力する受信品質信号31を入力する制御部40を配置する(ステップS12)。次に、まず、制御部40は、初期値としての制御パラメータを、第一振幅位相調整部12、及び第二振幅位相調整部22に供給する。そして、制御部40は、第一センサー28、及び第二センサー18の信号の振幅位相を、その制御パラメータで制御する。
 すなわち、第一及び第二振幅位相調整ステップは、第一振幅位相調整部12において、第一センサー28の出力するピックアップ信号の振幅位相を制御する。さらに、第二振幅位相調整部22において、第二センサー18の第二ピックアップ信号の振幅位相を、制御する(ステップS24)。
 第二入力ステップは、第二チューナ24において、第二アンテナ29からの出力信号を入力する際に、まず、第二加算部23において、2つの出力信号である第二アンテナ29からの出力信号と、第二振幅位相調整部22の出力信号とを入力し、加算して出力する。そして、第二チューナ24において、第二アンテナ29からの出力信号を、第二加算部23を介して入力する(ステップS25)。
 制御ステップは、制御部40において、実施の形態1と同様に第一振幅位相調整部12を制御するとともに、ダイバーシティ受信部30の出力する受信品質信号31に応じて、第二センサー18の第二ピックアップ信号の振幅位相を、受信品質信号31が最良の値となるように、さらに第二振幅位相調整部22を制御する(ステップS26)。すなわち、制御部40は、この時の受信品質を表す受信信号強度パラメータ(AGC),ビットエラーレート(BER),CN比(CN)をリファレンスとして、制御パラメータのいくつかを変化させる。
 制御パラメータを変化させた結果、受信品質信号31が増減する場合は、制御部40は、その中で最も良くなるポイントをメモリーに格納する。そして、制御部40は、受信品質信号31は最良の値か、どうかを確認する(ステップS20)。最良の値であれば(Yes)、一連の処理を終了する。そうでなければ(No)、ステップS24に戻って、一連の処理を繰り返す。この際に、制御部40が、制御パラメータの変化ステップを順次、粗から密に移行させることで、より精確な制御が可能となる。したがって、受信品質信号31が最良の値となるように、制御部40が、第一振幅位相調整部12および第二振幅位相調整部22を制御できる。
 なお、第一センサー28と第二センサー18とは、それぞれ第一アンテナ19と第二アンテナ29との電磁結合電流成分をピックアップできればよい。したがって、第一センサー28と第二センサー18とは、第一アンテナ19と第二アンテナ29とよりも、アンテナとしての利得は小さくてもよい。また、第一センサー28と第二アンテナ29とは、疎結合であってもよい。そして、第二センサー18と第一アンテナ19とも、疎結合であってもよい。また、第一センサー28と第二センサー18とは、互いに実質的に直交するように配置している。
 したがって、第一センサー28と第二センサー18との間のアンテナ結合は、第一アンテナ19と第二アンテナ29とのアンテナ結合よりも、遥かに小さいものである。その結果、第一センサー28と第二センサー18とのアンテナ結合を原因とする、受信感度の対する結合劣化の影響は殆ど生じない。したがって、第一アンテナ19と第二アンテナ29の受信感度を最大化できる。
 (実施の形態4)
 図8は、本発明の実施の形態4におけるアンテナ結合相関除去機能を備えた無線装置10dのブロック図である。実施の形態3においては、図6に示すように、第二アンテナ29系統にも、第一アンテナ19の系統と同様の構成を取って相互にアンテナ結合をキャンセルするようにしている。そして、第一アンテナ19と第二アンテナ29とは、実質的に同方向に配置していた。しかし、本実施の形態4におけるアンテナ結合相関除去機能を備えた無線装置10dでは、図8の矢印42に示すように、第一アンテナ19と第二アンテナ29bとは、互いに実質的に直交するように配置している。すなわち、第一アンテナ19は垂直偏波面を主に、第二アンテナ29bは水平偏波面を主に、受信するものである。
 したがって、本実施形態でも、実施の形態2と同様の配置により、第一アンテナ19と第二アンテナ29bとは、実質的に同方向である実施の形態1と比べて、格段に疎結合とすることができる。したがって、第一アンテナ19と第二アンテナ29bとの偏波面をお互いに異ならせることにより、感度抑圧の原因になる第一アンテナ19と第二アンテナ29bとの間の電磁結合による信号を捉えることが可能となる。
 なお、第一センサー28は、図8の矢印44に示すように、第一アンテナ19と同じ方向の偏波面を主に受信する。第二センサー18は、図8の矢印44aに示すように、第二アンテナ29bと同じ方向の偏波面を主に受信する。他の構成は、実施の形態3と同様であり、同等な構成・機能には同じ符号を付け、説明は省略する。
 本実施の形態では、第一アンテナ19と第二アンテナ29bを互いに実質的に直交させ、第一センサー28と第一アンテナ19とは実質的に同方向とするように配置している。これにより、第一センサー28が出力する第一ピックアップ信号は、第一アンテナ19に飛び込む偏波面の信号をより多く捉えることが可能となる。したがって、アンテナ結合劣化成分をキャンセルする作用と効果をさらに増大させることが可能となる。また、第二センサー18と第二アンテナ29bとは実質的に同方向とすることにより、第二センサー18が出力する第二ピックアップ信号は、第二アンテナ29bに飛び込む偏波面の信号をより多く捉えることが可能となる。したがって、アンテナ結合劣化成分をキャンセルする作用と効果をさらに増大させることが相乗的に可能となる。
 これらにより、アンテナ同士が近接することで生じるアンテナ結合劣化を軽減してアンテナ性能を最大に発揮できるアンテナ結合相関除去機能を備えた無線装置10dを実現可能とする。
 なお、第一センサー28は、機器内部の各種ノイズ源からのノイズ成分を併せてピックアップするようにしてもよい。この場合は受信チャンネル、帯域に応じて最も感度劣化に影響する要因に対して、それがアンテナ結合劣化であればアンテナ結合成分を主に、ノイズ成分であればそのノイズ成分を主にキャンセルするよう全体を制御部40によって制御し、通常のノイズキャンセラの機能を合わせ取り込むことができる。
 (実施の形態5)
 図9は、本発明の実施の形態5におけるアンテナ結合相関除去機能を備えた無線装置10eのブロック図である。図6に示すように、実施の形態3においては、第二アンテナ29の系統にも、第一アンテナ19の系統と同様の構成を取って相互にアンテナ結合をキャンセルするようにしている。本実施の形態では、図9の矢印42に示すように、第一アンテナ19bと第二アンテナ29とを、互いに実質的に直交するように配置している。すなわち、第一アンテナ19bは水平偏波面を主に、第二アンテナ29bは垂直偏波面を主に、受信するものである。また、矢印42aに示すように、第一センサー28と第二センサー18とは、互いに実質的に直交するように配置している。そして、第一アンテナ19bと第一センサー28とは、矢印42bに示すように、互いに実質的に直交するように配置している。かつ、矢印42dに示すように、第二アンテナ29と第二センサー18と互いに実質的に直交するように配置している。本実施の形態では、他の実施の形態と同等な構成・機能には同じ符号を付け、説明は省略する。
 このように構成することにより、第一アンテナ19bと第二アンテナ29とは、実質的に同方向である実施の形態1と比べて、格段に疎結合とすることができる。したがって、第一アンテナ19bと第二アンテナ29との偏波面をお互いに異ならせることにより、感度抑圧の原因になる第一アンテナ19bと第二アンテナ29との間の電磁結合による信号を抑えることが可能となる。
 また、第一センサー28と第二センサー18とは、互いに実質的に直交するように配置しているので、第一センサー28と第二センサー18との間の電磁結合による信号を抑えることが可能となる。なお、第一センサー28と第二センサー18は、それぞれのセンサーに誘起する信号成分を用いて、アンテナの相互作用により生じる結合成分を、キャンセルする役割を果たす。したがって、必要以上に大きな誘起する信号成分を捉える必要はない。そのためには、本実施の形態のように、第一センサー28と第二センサー18とは、互いに実質的に直交するように配置している。その結果、第一センサー28と第二センサー18との間に結合成分を生じないことが望ましい。
 本発明に係るアンテナ結合相関除去方法およびアンテナ結合相関除去機能は、小型の機器におけるダイバーシティアンテナの結合劣化を防止できる。そのため、ポータブル機器に適する小型の受信装置であって、かつダイバーシティを用いて高感度かつ安定に受信するアンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた各種の無線装置に有用である。

Claims (16)

  1. 第一アンテナの一部または給電点と、第二アンテナの一部または給電点との、相互距離が受信電波の波長の1/2以内に近接して配置されるダイバーシティ受信におけるアンテナ結合相関除去方法であって、
    第一配置ステップは、
      前記第二アンテナの給電点の地盤付近に第一センサーと、
      前記第一センサーの出力する第一ピックアップ信号の振幅位相を制御する第一振幅位相調整部と、
      前記第一アンテナからの出力信号と、前記第一振幅位相調整部の出力信号とを入力し、入力した前記2つの出力信号を加算して出力する第一加算部と、
      前記第一アンテナからの出力信号を、前記第一加算部を介して入力する第一チューナと、
      前記第二アンテナからの出力信号を、入力する第二チューナと、を配置し、
    第二配置ステップは、
      前記第一チューナの出力信号と、前記第二チューナの出力信号とを入力するダイバーシティ受信部と、
      ダイバーシティ受信部の出力する受信品質信号を入力する制御部を配置し、
    振幅位相調整ステップは、第一振幅位相調整部において、前記第一センサーの出力するピックアップ信号の振幅位相を制御し、
    第一入力ステップは、
      2つの出力信号を入力する第一加算部において、
      前記2つの出力信号である前記第一アンテナの出力信号と、前記第一振幅位相調整部の出力信号とを入力し、加算して出力し、
      第一チューナにおいて、
        前記第一アンテナからの出力信号を、前記第一加算部を介して入力し、
    第二入力ステップは、
      第二チューナにおいて、
        前記第二アンテナからの出力信号を入力し、
    第三入力ステップは、前記第一チューナの出力信号と、前記第二チューナの出力信号とを前記ダイバーシティ受信部に入力し、
    合成ステップは、前記ダイバーシティ受信部において、前記第一チューナの前記出力信号と前記第二チューナの前記出力信号とを合成し、
    復調ステップは、前記ダイバーシティ受信部において、前記第一アンテナからの前記出力信号と前記第二アンテナの前記出力信号とからダイバーシティ方式の復調を行い、
    制御ステップは、制御部において、前記ダイバーシティ受信部の出力する受信品質信号に応じて、前記第一ピックアップ信号の振幅位相を、受信品質信号が最良の値となるように前記第一振幅位相調整部を制御するアンテナ結合相関除去方法。
  2. 前記第二アンテナの前記給電点と、前記第一センサーの中央部との距離は、受信電波の波長の1/4以内とする請求項1に記載のアンテナ結合相関除去方法。
  3. 前記第一アンテナと前記第二アンテナとは、互いに実質的に直交する請求項1または請求項2のいずれか1項に記載のアンテナ結合相関除去方法。
  4. 前記第一センサーと前記第一アンテナとは、互いに実質的に同方向とする請求項1から請求項3のいずれか1項に記載のアンテナ結合相関除去方法。
  5. 前記受信品質信号は、受信信号強度パラメータ、ビットエラーレート、CN比の少なくともいずれか1つである請求項1に記載のアンテナ結合相関除去方法。
  6. 前記配置ステップは、第二センサー配置ステップと、第二振幅位相調整部配置ステップと、第二加算部配置ステップとを、さらに有し、
      前記第二センサー配置ステップは、前記第一アンテナの給電点の地盤付近に第二センサーを配置し、
      前記第二振幅位相調整部配置ステップは、前記第二センサーの出力する第二ピックアップ信号を入力する第二振幅位相調整部を配置し、
      前記第二加算部配置ステップは、2つの出力信号を入力する第二加算部を配置し、
    前記第二入力ステップは、さらに
      前記第二加算部において、
        前記2つの出力信号である前記第二アンテナからの出力信号と、前記第二振幅位相調整部の出力信号とを入力し、加算して出力し、
      第二チューナにおいて、
        前記第二アンテナからの出力信号を、前記第二加算部を介して入力し、
    前記振幅位相調整ステップは、さらに、前記第二振幅位相調整部において、前記第二センサーの前記第二ピックアップ信号の振幅位相を、制御し、
    前記制御ステップは、前記制御部において、前記ダイバーシティ受信部の出力する前記受信品質信号に応じて、前記第二センサーの前記第二ピックアップ信号の振幅位相を、前記受信品質信号が最良の値となるように、さらに第二振幅位相調整部を制御する請求項1に記載のアンテナ結合相関除去方法。
  7. 前記第一アンテナと前記第二アンテナとは、互いに実質的に直交する請求項6に記載のアンテナ結合相関除去方法。
  8. 前記第一センサーと前記第2センサーとは、互いに実質的に直交する請求項6に記載のアンテナ結合相関除去方法。
  9. 第一アンテナの一部または給電点と、第二アンテナの一部または給電点との、相互距離が受信電波の波長の1/2以内に近接して配置されるダイバーシティ受信を行う無線装置であって、
    前記第二アンテナの給電点の地盤付近に配置する第一センサーと、
    前記第一センサーの出力する第一ピックアップ信号の振幅位相を制御する第一振幅位相調整部と、
    前記第一アンテナからの出力信号と、前記第一振幅位相調整部の出力信号とを入力し、入力した前記2つの出力信号を加算して出力する第一加算部と、
    前記第一アンテナからの出力信号を、前記第一加算部を介して入力する第一チューナと、
    前記第二アンテナからの出力信号を、入力する第二チューナと、
    前記第一チューナの出力信号と、前記第二チューナの出力信号とを入力するダイバーシティ受信部と、
    前記ダイバーシティ受信部の出力する受信品質信号を入力する制御部と、
    を備え、
    前記ダイバーシティ受信部は、
      前記第一チューナの前記出力信号と前記第二チューナの前記出力信号とを合成し、
      かつ、前記第一アンテナからの前記出力信号と前記第二アンテナの前記出力信号とからダイバーシティ方式の復調を行い、
    前記制御部は、前記ダイバーシティ受信部の出力する受信品質信号に応じて、前記第一ピックアップ信号の振幅位相を、受信品質信号が最良の値となるように前記第一振幅位相調整部を制御するアンテナ結合相関除去機能を備えた無線装置。
  10. 前記第二アンテナの前記給電点と、前記第一センサーの中央部との距離は、受信電波の波長の1/4以内とする請求項9に記載のアンテナ結合相関除去機能を備えた無線装置。
  11. 前記第一アンテナと前記第二アンテナとは、互いに実質的に直交する請求項9または請求項10のいずれか1項に記載のアンテナ結合相関除去機能を備えた無線装置。
  12. 前記第一センサーと前記第一アンテナとは、互いに実質的に同方向とする請求項9から請求項11のいずれか1項に記載のアンテナ結合相関除去機能を備えた無線装置。
  13. 前記受信品質信号は、受信信号強度パラメータ、ビットエラーレート、CN比の少なくともいずれか1つである請求項9に記載のアンテナ結合相関除去機能を備えた無線装置。
  14. 前記第一アンテナの給電点の地盤付近に配置する第二センサーと、
    前記ダイバーシティ受信部が出力する前記受信品質信号に応じて、前記第二センサーの出力する第二ピックアップ信号の振幅位相を、制御する第二振幅位相調整部と、
    前記第二アンテナからの出力信号と、前記第二振幅位相調整部の出力信号とを入力し、入力した前記2つの出力信号を加算して出力する第二加算部と、をさらに備え、
    前記第二チューナは、前記第二アンテナの出力信号を、前記第二加算部を介して入力し、
    前記制御部は、前記ダイバーシティ受信部の出力する前記受信品質信号に応じて、前記第二ピックアップ信号の振幅位相を、前記受信品質信号が最良の値となるように、さらに第二振幅位相調整部を制御する請求項9に記載のアンテナ結合相関除去機能を備えた無線装置。
  15. 前記第一アンテナと前記第二アンテナとは、互いに実質的に直交する請求項14に記載のアンテナ結合相関除去機能を備えた無線装置。
  16. 前記第一センサーと前記第2センサーとは、互いに実質的に直交する請求項14に記載のアンテナ結合相関除去機能を備えた無線装置。
PCT/JP2009/001629 2008-04-16 2009-04-08 アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置 WO2009128221A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/602,282 US8086202B2 (en) 2008-04-16 2009-04-08 Method for removing the coupling and correlation of antennas, and wireless device having the function of removing the coupling and correlation of antennas
JP2009528541A JP4957804B2 (ja) 2008-04-16 2009-04-08 アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-106499 2008-04-16
JP2008106499 2008-04-16

Publications (1)

Publication Number Publication Date
WO2009128221A1 true WO2009128221A1 (ja) 2009-10-22

Family

ID=41198928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001629 WO2009128221A1 (ja) 2008-04-16 2009-04-08 アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置

Country Status (3)

Country Link
US (1) US8086202B2 (ja)
JP (1) JP4957804B2 (ja)
WO (1) WO2009128221A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086566A1 (ja) * 2010-12-22 2012-06-28 シャープ株式会社 無線通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469281B1 (ko) * 2016-05-13 2022-11-22 삼성전자주식회사 안테나를 포함하는 전자 장치
CN113647024B (zh) * 2019-03-29 2022-12-20 原田工业株式会社 降噪装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661893A (ja) * 1992-08-05 1994-03-04 Nec Corp 干渉波除去装置
JPH09312511A (ja) * 1996-03-18 1997-12-02 Asahi Glass Co Ltd 車両用ガラスアンテナ装置
JP2000504189A (ja) * 1996-02-08 2000-04-04 オレンジ パーソナル コミュニケーションズ サービシーズ リミテッド アンテナ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110602C2 (de) * 1980-03-28 1985-07-04 Nippon Telegraph & Telephone Public Corp., Tokio/Tokyo Interferenz-Kompensationssystem
US4373210A (en) * 1981-03-27 1983-02-08 Bell Telephone Laboratories, Incorporated Space diversity combiner
US6704557B1 (en) * 1999-04-22 2004-03-09 Lucent Technologies Inc. System and method for protecting a receiver from jamming interference
JP4094444B2 (ja) 2003-01-31 2008-06-04 株式会社エヌ・ティ・ティ・ドコモ 無線通信端末
EP1687929B1 (en) 2003-11-17 2010-11-10 Quellan, Inc. Method and system for antenna interference cancellation
JP2005229391A (ja) 2004-02-13 2005-08-25 Pioneer Electronic Corp 受信機、受信方法、受信制御用プログラムおよび記録媒体
JP2010118880A (ja) * 2008-11-13 2010-05-27 Panasonic Corp 受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661893A (ja) * 1992-08-05 1994-03-04 Nec Corp 干渉波除去装置
JP2000504189A (ja) * 1996-02-08 2000-04-04 オレンジ パーソナル コミュニケーションズ サービシーズ リミテッド アンテナ装置
JPH09312511A (ja) * 1996-03-18 1997-12-02 Asahi Glass Co Ltd 車両用ガラスアンテナ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086566A1 (ja) * 2010-12-22 2012-06-28 シャープ株式会社 無線通信装置
JP5464628B2 (ja) * 2010-12-22 2014-04-09 シャープ株式会社 無線通信装置
US8818306B2 (en) 2010-12-22 2014-08-26 Sharp Kabushiki Kaisha Wireless communication device

Also Published As

Publication number Publication date
JPWO2009128221A1 (ja) 2011-08-04
US20100190461A1 (en) 2010-07-29
JP4957804B2 (ja) 2012-06-20
US8086202B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
US11444688B2 (en) Wireless communication with interference mitigation
JP4693462B2 (ja) ダイバシティ受信装置および方法
JP5766369B2 (ja) ダイバーシチ受信装置及びダイバーシチ受信方法
JP5347120B2 (ja) アンテナ装置およびそれを備えた受信機
JP4957804B2 (ja) アンテナ結合相関除去方法およびアンテナ結合相関除去機能を備えた無線装置
JP2010183171A (ja) 受信機
US20090195701A1 (en) Noise canceller as well as high-frequency receiver and portable device each using the same
EP2976835B1 (en) Television receiver, television broadcast receiving method and mobile terminal
US8588828B2 (en) Mobile communication system, base station and interference cancellation method
KR101919618B1 (ko) 차량 다이버시티 안테나 시스템 및 그의 신호 처리 방법
JP2006211546A (ja) 車載用受信装置
JP2009159453A (ja) 無線通信システム、偏波面調整方法、基地局、及びセンサ局
JP2011176659A (ja) ノイズセンサ位相振幅調整回路及びこれを用いた無線機
JP2010118880A (ja) 受信装置
JP2008060907A (ja) アダプティブアンテナ装置及び無線通信装置
KR20150063721A (ko) 다이버시티 안테나 시스템의 fm 및 rds 간 적응형 데이터 처리 장치 및 방법
JP2009278503A (ja) ダイバーシティ受信テレビ及びタイバーシティテレビ受信方法
JP2009182596A (ja) 受信装置
JP2010193369A (ja) 受信システムおよび受信方法
JP2009033497A (ja) 受信装置
JP2008066824A (ja) 携帯機器
WO2009139099A1 (ja) 携帯無線機
JP5895210B2 (ja) アレーアンテナ装置およびその放送受信制御方法
JP2008199454A (ja) テレビジョン受信装置
JP2009272989A (ja) 携帯無線機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009528541

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12602282

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732602

Country of ref document: EP

Kind code of ref document: A1