WO2009126010A2 - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
WO2009126010A2
WO2009126010A2 PCT/KR2009/001886 KR2009001886W WO2009126010A2 WO 2009126010 A2 WO2009126010 A2 WO 2009126010A2 KR 2009001886 W KR2009001886 W KR 2009001886W WO 2009126010 A2 WO2009126010 A2 WO 2009126010A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
current spreading
light emitting
conductive semiconductor
emitting device
Prior art date
Application number
PCT/KR2009/001886
Other languages
English (en)
French (fr)
Other versions
WO2009126010A3 (ko
Inventor
송준오
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20080033967A external-priority patent/KR101480552B1/ko
Priority claimed from KR1020080033966A external-priority patent/KR101428068B1/ko
Priority claimed from KR1020080033987A external-priority patent/KR101449032B1/ko
Priority claimed from KR1020080033986A external-priority patent/KR101428069B1/ko
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to US12/937,453 priority Critical patent/US9543467B2/en
Publication of WO2009126010A2 publication Critical patent/WO2009126010A2/ko
Publication of WO2009126010A3 publication Critical patent/WO2009126010A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a light emitting device.
  • the light emitting diode is attracting attention in the next generation lighting field because it has a high efficiency of converting electrical energy into light energy and a lifespan of more than 5 years on average, which can greatly reduce energy consumption and maintenance cost.
  • the light emitting diode is formed of a light emitting semiconductor layer including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, and is applied through the first conductive semiconductor layer and the second conductive semiconductor layer. The light is generated in the active layer according to the current.
  • the second conductive semiconductor layer since the second conductive semiconductor layer has a relatively high sheet resistance due to low carrier concentration and mobility, the second conductive semiconductor layer has an ohmic shape on the second conductive semiconductor layer. There is a need for a transparent current spreading layer that forms a contact interface.
  • the current may be formed by a subsequent process such as deposition and heat treatment.
  • the spreading layer forms a schottky contact interface rather than an ohmic contact interface.
  • the embodiment provides a light emitting device having a new structure and a method of manufacturing the same.
  • the embodiment provides a light emitting device having improved electrical characteristics and a method of manufacturing the same.
  • the embodiment provides a light emitting device having improved light efficiency and a method of manufacturing the same.
  • the light emitting device may include a first conductive semiconductor layer; An active layer on the first conductive semiconductor layer; A second conductive semiconductor layer on the active layer; A superlattice structure layer on the second conductive semiconductor layer; And a first current spreading layer formed of a transparent conductive thin film on the superlattice structure layer.
  • the light emitting device may include a first conductive semiconductor layer; An active layer on the first conductive semiconductor layer; A second conductive semiconductor layer on the active layer; A superlattice structure layer on the second conductive semiconductor layer; A first current spreading layer formed of a transparent conductive thin film on the superlattice structure layer; And a third current spreading layer formed of a reflective conductive thin film on the first current spreading layer.
  • the embodiment can provide a light emitting device having a new structure and a method of manufacturing the same.
  • the embodiment can provide a light emitting device having improved electrical characteristics and a method of manufacturing the same.
  • the embodiment can provide a light emitting device having improved light efficiency and a method of manufacturing the same.
  • FIG. 1 is a view for explaining a light emitting device structure according to the embodiment.
  • FIG. 2 is a view for explaining another example of a light emitting element structure according to the embodiment.
  • FIG. 3 is a view for explaining a light emitting element according to the first embodiment
  • FIG. 4 is a view for explaining a light emitting element according to the second embodiment
  • FIG. 5 is a view for explaining a light emitting element according to the third embodiment.
  • FIG. 6 is a view for explaining a light emitting element according to the fourth embodiment.
  • FIG. 7 is a view for explaining a light emitting element according to the fifth embodiment.
  • FIG. 8 is a view for explaining a light emitting element according to the sixth embodiment.
  • FIG 9 is a view for explaining a light emitting element according to the seventh embodiment.
  • FIG 10 is a view for explaining a light emitting element according to the eighth embodiment.
  • each layer (film), region, pattern or structure is “on / on” or “bottom / on” of the substrate, each layer (film), region, pad or patterns
  • “on” and “under” are “directly” or “indirectly” formed through another layer. It includes everything that is done.
  • the criteria for the top or bottom of each layer will be described with reference to the drawings.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • FIG. 1 is a view illustrating a light emitting device structure according to an embodiment.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90 and a first current spreading layer 100 are formed on the second conductive semiconductor layer 40.
  • the growth substrate 10 may include sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon (Si), aluminum nitride (AlN), gallium nitride (GaN), aluminum gallium nitride. AlGaN, glass, or gallium arsenide (GaAs) may be used.
  • a buffer layer may be formed between the growth substrate 10 and the semiconductor layer 20 of the first conductivity type, and the buffer layer may be used for lattice matching on the growth substrate 10. It may be formed, for example, at least one of InGaN, AlN, SiC, SiCN, or GaN.
  • the light emitting semiconductor layer including the first conductive semiconductor layer 20, the active layer 30, and the second conductive semiconductor layer 40 may be formed of a group III nitride-based semiconductor material.
  • the first conductive semiconductor layer 20 may be formed of a gallium nitride layer including an n-type impurity such as Si
  • the second conductive semiconductor layer 40 may be a p-type such as Mg or Zn. It may be formed of a gallium nitride layer containing an impurity.
  • the active layer 30 is a layer for generating light by recombination of electrons and holes, for example, may be formed including any one of InGaN, AlGaN, GaN, or AlInGaN, the active layer 30 is Si Alternatively, Mg may be applied, and the wavelength of light emitted from the light emitting device is determined according to the type of material constituting the active layer 30.
  • the active layer 30 may be formed of a multilayer film having a quantum well layer and a barrier layer repeatedly formed, and an energy band gap of the material constituting the barrier layer may be formed of a material constituting the well layer. It is larger than the energy bandgap and the thickness of the barrier layer may be thicker than the thickness of the well layer.
  • the superlattice structure layer 90 lowers the dopant activation energy of the second conductive semiconductor layer 40 to increase the effective hole concentration or through quantum mechanical tunneling conduction through energy band gap engineering. May cause symptoms.
  • the superlattice structure layer 90 may be formed in a multilayer structure, and each layer constituting the superlattice structure layer 90 may be formed to a thickness of 5 nm or less. Each layer constituting the superlattice structure layer 90 may be formed of at least one of InN, InGaN, InAlN, AlGaN, GaN, AlInGaN, AlN, SiC, SiCN, MgN, ZnN, or SiN. Mg, Zn, or the like may be doped.
  • the superlattice structure layer 90 may be formed of a multilayer structure such as InGaN / GaN, AlGaN / GaN, InGaN / GaN / AlGaN, AlGaN / GaN / InGaN.
  • the superlattice structure layer 90 may be formed in a single layer structure, for example, an InGaN layer doped with n-type impurities or an InGaN layer doped with p-type impurities.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer. In addition, the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like. For example, the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the light emitting semiconductor layer, the superlattice structure layer 90, and the first current spreading layer 100 are continuously in-situ using a device such as a MOCVD, MBE, HVPE, sputter, or PLD. Can grow and form. Alternatively, the light emitting semiconductor layer and the superlattice structure layer 90 are continuously grown in an in situ state, and then the first current spreading layer 100 is transferred to the superlattice structure layer (ex-situ state). 90) may be grown.
  • FIG. 2 is a view for explaining another example of the light emitting device structure according to the embodiment.
  • the difference from FIG. 1 includes a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 on the growth substrate 10.
  • the light emitting semiconductor layer is formed.
  • a superlattices structure layer 90 and a first current spreading layer 100 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be alternately and repeatedly stacked.
  • the superlattice structure layer 90 described with reference to FIGS. 1 and 2 has a structure similar to the active layer 30 formed of a well layer and a barrier layer, but the barrier layer of the active layer 30 is thicker than the quantum well layer.
  • the superlattice structure layer 90 may be formed of layers having a thin thickness of 5 nm or less.
  • the quantum well layer and the barrier layer trap electrons or holes, which are carriers, in the well layer between the thick barrier layers, but the superlattice structure layer 90 provides a flow of electrons or holes that are carriers. It plays a role to make it smooth.
  • the superlattice structure layer 90 forms an ohmic contact interface with the second conductive semiconductor layer 40.
  • FIG 3 is a view for explaining a light emitting device according to the first embodiment.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90 and a first current spreading layer 100 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the first current spreading layer 100, the superlattice structure layer 90, the second conductive semiconductor layer 40, the active layer 30, and the first conductive semiconductor layer 20 may be mesa etched. Is partially removed, so that the first conductive semiconductor layer 20 is partially exposed in the upward direction.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the first current spreading layer 100.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the first current spreading layer 100. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the light emitting device since the superlattice structure layer 90 and the first current spreading layer 100 form an ohmic contact interface, the light emitting device may increase the light emitting efficiency of the light emitting device by evenly distributing the current.
  • FIG. 4 is a view for explaining a light emitting device according to the second embodiment.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90 and a first current spreading layer 100 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the first current spreading layer 100, the superlattice structure layer 90, the second conductive semiconductor layer 40, the active layer 30, and the first conductive semiconductor layer 20 may be mesa etched. Is partially removed, so that the first conductive semiconductor layer 20 is partially exposed in the upward direction.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the first current spreading layer 100.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the first current spreading layer 100. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 is formed with a light extraction structure 110 formed in an uneven pattern.
  • the light extracting structure 110 forms a concave-convex pattern by dry etching or wet etching the first current spreading layer 100, thereby minimizing light totally reflected in the light emitting device to improve light extraction efficiency of the light emitting device. .
  • the light emitting device since the superlattice structure layer 90 and the first current spreading layer 100 form an ohmic contact interface, the light emitting device may increase the light emitting efficiency of the light emitting device by evenly distributing the current.
  • the light emitting device forms a light extraction structure 110 on the upper surface of the first current spreading layer 100 formed on the superlattice structure layer 90, thereby lowering the electrical characteristics of the light emitting device.
  • the light extraction efficiency can be increased without making it.
  • FIG 5 is a view for explaining a light emitting device according to the third embodiment.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90, a first current spreading layer 100, and a second current spreading layer 120 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the second current spreading layer 120, the first current spreading layer 100, the superlattice structure layer 90, the second conductive semiconductor layer 40, the active layer 30, and the first conductive semiconductor layer 20 is partially removed by mesa etching, and the first conductive semiconductor layer 20 is partially exposed in an upward direction.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the second current spreading layer 120.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the second current spreading layer 120. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer.
  • the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like.
  • the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the second current spreading layer 120 may form an ohmic contact interface, and may be formed of a transparent conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the second current spreading layer 120 is a material having a light transmittance of 70% or more in a wavelength region of 600 nm or less, such as ITO or ZnO, and may be formed in a single layer structure or a multilayer structure having a thickness of 5 nm or more. .
  • the current is evenly distributed to distribute the current.
  • the luminous efficiency can be increased.
  • FIG. 6 is a view for explaining a light emitting device according to the fourth embodiment.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90, a first current spreading layer 100, and a second current spreading layer 120 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the second current spreading layer 120, the first current spreading layer 100, the superlattice structure layer 90, the second conductive semiconductor layer 40, the active layer 30, and the first conductive semiconductor layer 20 is partially removed by mesa etching, and the first conductive semiconductor layer 20 is partially exposed in an upward direction.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the second current spreading layer 120.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the second current spreading layer 120. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer.
  • the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like.
  • the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the second current spreading layer 120 may form an ohmic contact interface, and may be formed of a transparent conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the second current spreading layer 120 is a material having a light transmittance of 70% or more in a wavelength region of 600 nm or less, such as ITO or ZnO, and may be formed in a single layer structure or a multilayer structure having a thickness of 5 nm or more. .
  • the second current spreading layer 120 is formed with a light extraction structure 110 formed in an uneven pattern.
  • the light extracting structure 110 forms a concave-convex pattern by dry etching or wet etching the second current spreading layer 120, thereby minimizing light totally reflected in the light emitting device to improve light extraction efficiency of the light emitting device. .
  • the light emitting device since the superlattice structure layer 90, the first current spreading layer 100, and the second current spreading layer 120 form an ohmic contact interface, the light emitting device is uniformly dispersed with current. The luminous efficiency of can be increased.
  • the light extracting structure 110 is formed on the top surface of the second current spreading layer 120 formed on the superlattice structure layer 90 and the first current spreading layer 100. As a result, the light extraction efficiency can be increased without lowering the electrical characteristics of the light emitting device.
  • FIG. 7 is a view for explaining a light emitting device according to the fifth embodiment.
  • FIG. 7 illustrates a light emitting device having a flip chip structure.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90, a first current spreading layer 100, and a third current spreading layer 130 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the third current spreading layer 130, the first current spreading layer 100, the superlattice structure layer 90, the second conductive semiconductor layer 40, the active layer 30, and the first conductive semiconductor layer 20 is partially removed by mesa etching, and the first conductive semiconductor layer 20 is partially exposed in an upward direction.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the third current spreading layer 130.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the third current spreading layer 130. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer.
  • the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like.
  • the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the third current spreading layer 130 forms an ohmic contact interface and may be formed of a reflective conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the third current spreading layer 130 is a material having a light reflectance of 70% or more in a wavelength region of 600 nm or less, such as Ag or Al, and may be formed in a single layer structure or a multilayer structure having a thickness of 200 nm or more. .
  • the light emitted from the active layer 30 is reflected by the third current spreading layer 130 to be emitted toward the growth substrate 10.
  • the light emitting device since the superlattice structure layer 90, the first current spreading layer 100, and the third current spreading layer 130 form an ohmic contact interface, the light emitting device is uniformly dispersed with current. The luminous efficiency of can be increased.
  • the light emitting device forms the third current spreading layer 130 formed of the reflective conductive thin film, unlike the second current spreading layer 120 formed of the transparent conductive thin films of the third and fourth embodiments.
  • the transmissive conductive thin film such as ITO or ZnO, used as the second current spreading layer 120 described above, has a trade-off relationship between transmittance and electrical conductivity. That is, the second current spreading layer 120 should be formed thin in order to increase the transmittance. In this case, there is a problem in that the resistance is increased. In contrast, the second current spreading layer 120 should be formed thick in order to decrease the resistance. In this case, the transmittance is lowered.
  • the light emitting device forms the third current spreading layer 130 formed of the reflective conductive thin film, so that the light generated from the active layer 30 is emitted toward the growth substrate 10.
  • the third current spreading layer 130 can be formed thicker than 200 nm, there is an advantage of low resistance.
  • the superlattice structure layer 90 and the first current spreading layer 100 are disposed between the second conductive semiconductor layer 40 and the third current spreading layer 130. Is formed. Ag or Al used as the third current spreading layer 130 forms a schottky contact interface when it is in contact with the second conductive semiconductor layer 40. If formed directly above, the light efficiency of a light emitting element will fall. However, in the light emitting device according to the fifth embodiment, since the third current spreading layer 130 is formed on the first current spreading layer 100, a good ohmic contact interface can be formed.
  • FIG 8 is a view for explaining a light emitting device according to the sixth embodiment.
  • FIG. 8 illustrates a light emitting device having a flip chip structure.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • a superlattices structure layer 90, a first current spreading layer 100, and a third current spreading layer 130 are formed on the second conductive semiconductor layer 40.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the third current spreading layer 130, the first current spreading layer 100, the superlattice structure layer 90, the second conductive semiconductor layer 40, the active layer 30, and the first conductive semiconductor layer 20 is partially removed by mesa etching, and the first conductive semiconductor layer 20 is partially exposed in an upward direction.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the third current spreading layer 130.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the third current spreading layer 130. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer.
  • the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like.
  • the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the third current spreading layer 130 forms an ohmic contact interface and may be formed of a reflective conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the third current spreading layer 130 is a material having a light reflectance of 70% or more in a wavelength region of 600 nm or less, such as Ag or Al, and may be formed in a single layer structure or a multilayer structure having a thickness of 200 nm or more. .
  • the first current spreading layer 100 is formed with a light extraction structure 110 formed in an uneven pattern.
  • the light extracting structure 110 forms a concave-convex pattern by dry etching or wet etching the first current spreading layer 100, thereby minimizing light totally reflected in the light emitting device to improve light extraction efficiency of the light emitting device. .
  • the light emitting device since the superlattice structure layer 90, the first current spreading layer 100, and the third current spreading layer 130 form an ohmic contact interface, the light emitting device is uniformly dispersed with current. The luminous efficiency of can be increased.
  • the light emitting device forms a light extraction structure 110 on the upper surface of the first current spreading layer 100 formed on the superlattice structure layer 90, thereby lowering the electrical characteristics of the light emitting device.
  • the light extraction efficiency can be increased without making it.
  • FIG 9 is a view for explaining a light emitting device according to the seventh embodiment.
  • FIG. 9 illustrates a light emitting device having a flip chip structure.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • the superlattices structure layer 90, the first current spreading layer 100, the second current spreading layer 120, and the third current spreading layer are formed on the second conductive semiconductor layer 40. 130 is formed.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the third current spreading layer 130.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the third current spreading layer 130. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer.
  • the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like.
  • the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the second current spreading layer 120 may form an ohmic contact interface, and may be formed of a transparent conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the second current spreading layer 120 is a material having a light transmittance of 70% or more in a wavelength region of 600 nm or less, such as ITO or ZnO, and may be formed in a single layer structure or a multilayer structure having a thickness of 5 nm or more. .
  • the third current spreading layer 130 forms an ohmic contact interface and may be formed of a reflective conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the third current spreading layer 130 is a material having a light reflectance of 70% or more in a wavelength region of 600 nm or less, such as Ag or Al, and may be formed in a single layer structure or a multilayer structure having a thickness of 200 nm or more. .
  • the light emitted from the active layer 30 is reflected by the third current spreading layer 130 to be emitted toward the growth substrate 10.
  • the superlattice structure layer 90, the first current spreading layer 100, the second current spreading layer 120, and the third current spreading layer 130 form an ohmic contact interface. Therefore, it is possible to increase the luminous efficiency of the light emitting device by evenly distributing the current.
  • the light emitting device forms the third current spreading layer 130 formed of the reflective conductive thin film, so that the light generated from the active layer 30 is emitted toward the growth substrate 10.
  • the third current spreading layer 130 can be formed thicker than 200 nm, there is an advantage of low resistance.
  • FIG 10 is a view for explaining a light emitting device according to the eighth embodiment.
  • FIG. 10 illustrates a light emitting device having a flip chip structure.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • the superlattices structure layer 90, the first current spreading layer 100, the second current spreading layer 120, and the third current spreading layer are formed on the second conductive semiconductor layer 40. 130 is formed.
  • the superlattice structure layer 90 and the first current spreading layer 100 may be repeatedly stacked alternately, as shown in FIG. 2.
  • the first electrode layer 80 is formed on the first conductive semiconductor layer 20, and the second electrode layer 70 is formed on the third current spreading layer 130.
  • the first electrode layer 80 forms an ohmic contact interface with the first conductive semiconductor layer 20, and the second electrode layer 70 forms a schottky contact interface with the third current spreading layer 130. do.
  • the first electrode layer 80 may be formed of a metal such as Cr / Al
  • the second electrode layer 70 may be formed of a metal such as Pd / Au.
  • the first current spreading layer 100 may form an ohmic contact interface, and may be formed of a group III nitride-based conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the first current spreading layer 100 is a single layer having a thickness of 6 nm or more represented by the formula In x Al y Ga (1-xy) N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1). Or it may be formed in a multi-layer.
  • the first current spreading layer 100 may be formed by doping Si, Mg, Zn or the like.
  • the first current spreading layer 100 may be formed of Si-doped gallium nitride (GaN) or Si-doped aluminum gallium nitride (AlGaN).
  • the second current spreading layer 120 may form an ohmic contact interface, and may be formed of a transparent conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the second current spreading layer 120 is a material having a light transmittance of 70% or more in a wavelength region of 600 nm or less, such as ITO or ZnO, and may be formed in a single layer structure or a multilayer structure having a thickness of 5 nm or more. .
  • the third current spreading layer 130 forms an ohmic contact interface and may be formed of a reflective conductive thin film having a sheet resistance of 50 ⁇ / ⁇ or less.
  • the third current spreading layer 130 is a material having a light reflectance of 70% or more in a wavelength region of 600 nm or less, such as Ag or Al, and may be formed in a single layer structure or a multilayer structure having a thickness of 200 nm or more. .
  • the light emitted from the active layer 30 is reflected by the third current spreading layer 130 to be emitted toward the growth substrate 10.
  • the first current spreading layer 100 is formed with a light extraction structure 110 formed in an uneven pattern.
  • the light extracting structure 110 forms a concave-convex pattern by dry etching or wet etching the first current spreading layer 100, thereby minimizing light totally reflected in the light emitting device to improve light extraction efficiency of the light emitting device. .
  • the superlattice structure layer 90, the first current spreading layer 100, the second current spreading layer 120, and the third current spreading layer 130 form an ohmic contact interface. Therefore, it is possible to increase the luminous efficiency of the light emitting device by evenly distributing the current.
  • the light emitting device according to the eighth embodiment forms a light extraction structure 110 on the upper surface of the first current spreading layer 100 formed on the superlattice structure layer 90, thereby lowering the electrical characteristics of the light emitting device.
  • the light extraction efficiency can be increased without making it.
  • the light emitting device forms the third current spreading layer 130 formed of the reflective conductive thin film, so that the light generated from the active layer 30 is emitted toward the growth substrate 10.
  • the third current spreading layer 130 can be formed thicker than 200 nm, there is an advantage of low resistance.
  • the embodiment can be applied to a light emitting device used as a light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시예에 따른 발광 소자는 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 슈퍼래티스 구조층; 및 상기 슈퍼래티스 구조층 상에 투과성 전도성 박막으로 형성된 제1 전류 퍼짐층을 포함한다.

Description

발광 소자
본 발명은 발광 소자에 관한 것이다.
최근, 발광 소자로서 발광 다이오드(Light Emitting Diode; LED)가 각광 받고 있다. 발광 다이오드는 전기에너지를 빛에너지로 변환하는 효율이 높고 수명이 평균 5년 이상으로 길기 때문에, 에너지 소모와 유지보수 비용을 크게 절감할 수 있는 장점이 있어 차세대 조명 분야에서 주목받고 있다.
상기 발광 다이오드는 제1 도전형의 반도체층, 활성층 및 제2 도전형의 반도체층을 포함하는 발광 반도체층으로 형성되며, 상기 제1 도전형의 반도체층 및 제2 도전형의 반도체층을 통해 인가되는 전류에 따라 상기 활성층에서 빛을 발생시킨다.
한편, 상기 발광 다이오드에서, 상기 제2 도전형의 반도체층은 낮은 캐리어 농도(carrier concentration) 및 이동도(mobility)로 인하여 상대적으로 높은 면저항을 갖기 때문에, 상기 제2 도전형의 반도체층 상에 오믹 접촉 계면을 형성하는 투명한 전류 퍼짐층이 요구된다.
상기 제2 도전형의 반도체층 상에 ITO(indium tin oxide) 또는 ZnO(zinc oxide)와 같이 오믹 접촉 계면을 형성하는 투명한 전류 퍼짐층을 형성하는 경우, 증착 및 열처리와 같은 후속 공정에 의해 상기 전류 퍼짐층이 오믹 접촉 계면이 아닌 쇼키 접촉 계면을 형성하는 문제가 있다.
또한, 상기 발광 다이오드의 광 추출 효율을 향상시키기 위하여, 상기 전류 퍼짐층의 표면에 요철 형태의 광 추출 구조를 형성하는 것이 연구되고 있으나, 상기 제2 도전형의 반도체층의 바로 위에 형성된 전류 퍼짐층에 광 추출 구조를 형성하는 경우 상기 발광 다이오드에 전기적인 손상이 발생되어 구동 전압 및 누설 전류가 증가하는 문제가 있다.
실시예는 새로운 구조의 발광 소자 및 그 제조방법을 제공한다.
실시예는 전기적 특성이 향상된 발광 소자 및 그 제조방법을 제공한다.
실시예는 광 효율이 향상된 발광 소자 및 그 제조방법을 제공한다.
실시예에 따른 발광 소자는 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 슈퍼래티스 구조층; 및 상기 슈퍼래티스 구조층 상에 투과성 전도성 박막으로 형성된 제1 전류 퍼짐층을 포함한다.
실시예에 따른 발광 소자는 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 슈퍼래티스 구조층; 상기 슈퍼래티스 구조층 상에 투과성 전도성 박막으로 형성된 제1 전류 퍼짐층; 및 상기 제1 전류 퍼짐층 상에 반사성 전도성 박막으로 형성된 제3 전류 퍼짐층을 포함한다.
실시예는 새로운 구조의 발광 소자 및 그 제조방법을 제공할 수 있다.
실시예는 전기적 특성이 향상된 발광 소자 및 그 제조방법을 제공할 수 있다.
실시예는 광 효율이 향상된 발광 소자 및 그 제조방법을 제공할 수 있다.
도 1은 실시예에 따른 발광 소자 구조를 설명하는 도면.
도 2는 실시예에 따른 발광 소자 구조의 다른 예를 설명하는 도면.
도 3은 제1 실시예에 따른 발광 소자를 설명하는 도면.
도 4는 제2 실시예에 따른 발광 소자를 설명하는 도면.
도 5는 제3 실시예에 따른 발광 소자를 설명하는 도면.
도 6은 제4 실시예에 따른 발광 소자를 설명하는 도면.
도 7은 제5 실시예에 따른 발광 소자를 설명하는 도면.
도 8은 제6 실시예에 따른 발광 소자를 설명하는 도면.
도 9는 제7 실시예에 따른 발광 소자를 설명하는 도면.
도 10은 제8 실시예에 따른 발광 소자를 설명하는 도면.
본 발명에 따른 실시예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1은 실시예에 따른 발광 소자 구조를 설명하는 도면이다.
도 1을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다.
그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90)과 제1 전류 퍼짐층(100)이 형성된다.
보다 상세히 설명하면, 예를 들어, 상기 성장 기판(10)은 사파이어(Al2O3), 실리콘 카바이드(SiC), 실리콘(Si), 질화알루미늄(AlN), 질화갈륨(GaN), 질화알루미늄갈륨(AlGaN), 유리(Glass), 또는 갈륨아세나이드(GaAs) 중 어느 하나가 사용될 수 있다.
비록 도시되지 않았지만 상기 성장 기판(10)과 상기 제1 도전형의 반도체층(20) 사이에는 버퍼층이 형성될 수 있으며, 상기 버퍼층은 상기 성장 기판(10) 상에 격자 정합(lattice match)을 위해 형성되며, 예를 들어, InGaN, AlN, SiC, SiCN, 또는 GaN 중 적어도 어느 하나로 형성될 수 있다.
상기 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층은 그룹 3족 질화물계 반도체 물질로 형성될 수 있으며, 예를 들어, 상기 제1 도전형의 반도체층(20)은 Si와 같은 n형 불순물을 포함하는 질화갈륨층으로 형성될 수 있고, 상기 제2 도전형의 반도체층(40)은 Mg 또는 Zn과 같은 p형 불순물을 포함하는 질화갈륨층으로 형성될 수 있다.
또한, 상기 활성층(30)은 전자와 정공이 재결합하여 빛을 발생시키는 층으로 예를 들어, InGaN, AlGaN, GaN, 또는 AlInGaN 중 어느 하나를 포함하여 형성될 수 있으며, 상기 활성층(30)은 Si 또는 Mg이 도포될 수 있고, 상기 활성층(30)을 구성하는 물질의 종류에 따라 상기 발광소자에서 방출되는 빛의 파장이 결정된다.
상기 활성층(30)은 양자 우물층(well layer)과 장벽층(barrier layer)이 반복적으로 형성된 다층막으로 형성될 수도 있으며, 상기 장벽층을 구성하는 물질의 에너지 밴드갭은 우물층을 구성하는 물질의 에너지 밴드갭 보다 크고, 상기 장벽층의 두께는 우물층의 두께보다 더 두꺼울 수도 있다.
상기 슈퍼래티스 구조층(90)은 상기 제2 도전형의 반도체층(40)의 도펀트 활성화 에너지를 낮추어 유효 정공 농도를 증가시키거나 에너지 밴드갭 조절(band-gap engineering)을 통해 양자 역학적인 터널링 전도 현상을 일으킬 수 있다.
상기 슈퍼래티스 구조층(90)은 다층 구조로 형성될 수 있으며, 상기 슈퍼래티스 구조층(90)을 구성하는 각각의 층은 5nm 이하의 두께로 형성될 수 있다. 상기 슈퍼래티스 구조층(90)을 구성하는 각각의 층은 InN, InGaN, InAlN, AlGaN, GaN, AlInGaN, AlN, SiC, SiCN, MgN, ZnN, 또는 SiN 중 적어도 어느 하나로 형성될 수 있으며, Si, Mg, Zn 등이 도핑될 수도 있다. 예를 들어, 상기 슈퍼래티스 구조층(90)은 InGaN/GaN, AlGaN/GaN, InGaN/GaN/AlGaN, AlGaN/GaN/InGaN 과 같은 다층 구조로 형성될 수 있다.
또한, 상기 슈퍼래티스 구조층(90)은 단층 구조로 형성될 수 있으며, 예를 들어, n형 불순물이 도핑된 InGaN층 또는 p형 불순물이 도핑된 InGaN층으로 형성될 수도 있다.
상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다.
상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si이 도핑된 질화갈륨(GaN) 또는 Si이 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 발광 반도체층, 슈퍼래티스 구조층(90), 및 제1 전류 퍼짐층(100)은 MOCVD, MBE, HVPE, sputter, 또는 PLD 등의 장치를 이용하여 인시츄(in-situ) 상태에서 연속적으로 성장 형성할 수 있다. 또는, 상기 발광 반도체층 및 슈퍼래티스 구조층(90)은 연속적으로 인시츄 상태에서 성장시킨 다음, 엑시츄(ex-situ) 상태에서 상기 제1 전류 퍼짐층(100)을 상기 슈퍼래티스 구조층(90) 상에 성장시킬 수도 있다.
도 2는 실시예에 따른 발광 소자 구조의 다른 예를 설명하는 도면이다.
도 2를 참조하여 도 1과 차이에 대해 설명하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90)과 제1 전류 퍼짐층(100)이 형성된다.
도 2에 도시된 바와 같이, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 교대로 반복하여 적층될 수 있다.
도 1과 도 2에서 설명한 상기 슈퍼래티스 구조층(90)은 우물층과 장벽층으로 형성된 상기 활성층(30)과 유사한 구조를 가지나, 상기 활성층(30)의 장벽층은 양자 우물층에 비하여 두꺼운 반면에 상기 슈퍼래티스 구조층(90)은 5nm 이하의 얇은 두께를 가진 층들로 형성될 수 있다.
상기 활성층(30)에서 양자 우물층 및 장벽층은 캐리어인 전자 또는 정공을 두꺼운 장벽층 사이의 우물층에 가두는 역할을 하지만, 상기 슈퍼래티스 구조층(90)은 캐리어인 전자 또는 정공의 흐름을 원활하게 해주는 역할을 한다.
따라서, 상기 슈퍼래티스 구조층(90)은 상기 제2 도전형의 반도체층(40)과 오믹 접촉 계면(ohmic contact interface)을 형성한다.
도 3은 제1 실시예에 따른 발광 소자를 설명하는 도면이다.
도 3을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90)과 제1 전류 퍼짐층(100)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제1 전류 퍼짐층(100) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제1 전류 퍼짐층(100)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
제1 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
도 4는 제2 실시예에 따른 발광 소자를 설명하는 도면이다.
도 4를 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90)과 제1 전류 퍼짐층(100)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제1 전류 퍼짐층(100) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제1 전류 퍼짐층(100)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 요철 패턴으로 형성된 광 추출 구조(110)가 형성된다. 상기 광 추출 구조(110)는 상기 제1 전류 퍼짐층(100)을 건식 식각 또는 습식 식각하여 요철 패턴을 형성한 것으로, 발광 소자 내에서 전반사되는 빛을 최소화하여 발광 소자의 광 추출 효율을 향상시킨다.
제2 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
또한, 제2 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90) 상에 형성된 제1 전류 퍼짐층(100)의 상면에 광 추출 구조(110)를 형성함으로써, 발광 소자의 전기적 특성을 저하시키지 않으면서 광 추출 효율을 증대시킬 수 있다.
도 5는 제3 실시예에 따른 발광 소자를 설명하는 도면이다.
도 5를 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90), 제1 전류 퍼짐층(100), 및 제2 전류 퍼짐층(120)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제2 전류 퍼짐층(120), 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제2 전류 퍼짐층(120) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제2 전류 퍼짐층(120)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다. 상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si가 도핑된 질화갈륨(GaN) 또는 Si가 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 제2 전류 퍼짐층(120)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 투명 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제2 전류 퍼짐층(120)은 ITO 또는 ZnO와 같이 600nm 이하의 파장 영역에서 70% 이상의 광 투과율을 갖는 물질로서, 5nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
제3 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90), 제1 전류 퍼짐층(100) 및 제2 전류 퍼짐층(120)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
도 6은 제4 실시예에 따른 발광 소자를 설명하는 도면이다.
도 6을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90), 제1 전류 퍼짐층(100), 및 제2 전류 퍼짐층(120)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제2 전류 퍼짐층(120), 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제2 전류 퍼짐층(120) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제2 전류 퍼짐층(120)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다. 상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si가 도핑된 질화갈륨(GaN) 또는 Si가 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 제2 전류 퍼짐층(120)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 투명 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제2 전류 퍼짐층(120)은 ITO 또는 ZnO와 같이 600nm 이하의 파장 영역에서 70% 이상의 광 투과율을 갖는 물질로서, 5nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
한편, 상기 제2 전류 퍼짐층(120)은 요철 패턴으로 형성된 광 추출 구조(110)가 형성된다. 상기 광 추출 구조(110)는 상기 제2 전류 퍼짐층(120)을 건식 식각 또는 습식 식각하여 요철 패턴을 형성한 것으로, 발광 소자 내에서 전반사되는 빛을 최소화하여 발광 소자의 광 추출 효율을 향상시킨다.
제4 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90), 제1 전류 퍼짐층(100), 및 제2 전류 퍼짐층(120)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
또한, 제4 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100) 상에 형성된 제2 전류 퍼짐층(120)의 상면에 광 추출 구조(110)를 형성함으로써, 발광 소자의 전기적 특성을 저하시키지 않으면서 광 추출 효율을 증대시킬 수 있다.
도 7은 제5 실시예에 따른 발광 소자를 설명하는 도면이다.
도 7에는 플립칩 구조의 발광 소자가 예시된다. 도 7을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90), 제1 전류 퍼짐층(100), 및 제3 전류 퍼짐층(130)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제3 전류 퍼짐층(130), 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제3 전류 퍼짐층(130) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제3 전류 퍼짐층(130)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다. 상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si가 도핑된 질화갈륨(GaN) 또는 Si가 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 제3 전류 퍼짐층(130)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 반사성 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제3 전류 퍼짐층(130)은 Ag 또는 Al과 같이 600nm 이하의 파장 영역에서 70% 이상의 광 반사율을 갖는 물질로서, 200nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
따라서, 상기 활성층(30)에서 방출된 빛은 상기 제3 전류 퍼짐층(130)에 의해 반사되어 상기 성장 기판(10) 방향으로 방출된다.
제5 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90), 제1 전류 퍼짐층(100), 및 제3 전류 퍼짐층(130)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
제5 실시예에 따른 발광 소자는 제3 실시예 및 제4 실시예의 투과성 전도성 박막으로 형성된 제2 전류 퍼짐층(120)과 달리 반사성 전도성 박막으로 형성된 제3 전류 퍼짐층(130)을 형성한다. 상술한 제2 전류 퍼짐층(120)으로 사용되는 ITO 또는 ZnO과 같은 투과성 전도성 박막은 투과율과 전기 전도성이 트레이드-오프 관계에 있다. 즉, 상기 제2 전류 퍼짐층(120)은 투과율을 높이기 위해서 얇게 형성하여야 하는데 이 경우에는 저항이 증가되는 문제가 있고, 반대로 상기 제2 전류 퍼짐층(120)은 저항을 낮추기 위해서 두껍게 형성하여야 하는데, 이 경우에는 투과율이 낮아지는 문제가 있다.
따라서, 제5 실시예에 따른 발광 소자는 반사성 전도성 박막으로 형성된 제3 전류 퍼짐층(130)을 형성함으로써, 상기 활성층(30)에서 발생된 빛이 상기 성장 기판(10) 방향으로 방출되도록 한다. 이 경우 상기 제3 전류 퍼짐층(130)은 200nm 이상으로 두껍게 형성할 수 있기 때문에 저항이 낮은 장점이 있다.
제5 실시예에 따른 발광 소자는 상기 제2 도전형의 반도체층(40)과 상기 제3 전류 퍼짐층(130) 사이에 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)이 형성된다. 상기 제3 전류 퍼짐층(130)으로 사용되는 Ag 또는 Al은 상기 제2 도전형의 반도체층(40)과 접촉하는 경우 쇼키 접촉 계면을 형성하기 때문에 상기 제2 도전형의 반도체층(40)의 바로 위에 형성하면 발광 소자의 광 효율이 저하된다. 그러나, 제5 실시예에 따른 발광 소자는 상기 제3 전류 퍼짐층(130)이 상기 제1 전류 퍼짐층(100) 상에 형성되기 때문에, 양호한 오믹 접촉 계면을 형성할 수 있다.
도 8은 제6 실시예에 따른 발광 소자를 설명하는 도면이다.
제6 실시예를 설명함에 있어서 상술한 제5 실시예와 중복되는 설명은 생략하도록 한다.
도 8에는 플립칩 구조의 발광 소자가 예시된다. 도 8을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90), 제1 전류 퍼짐층(100), 및 제3 전류 퍼짐층(130)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제3 전류 퍼짐층(130), 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제3 전류 퍼짐층(130) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제3 전류 퍼짐층(130)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다. 상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si가 도핑된 질화갈륨(GaN) 또는 Si가 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 제3 전류 퍼짐층(130)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 반사성 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제3 전류 퍼짐층(130)은 Ag 또는 Al과 같이 600nm 이하의 파장 영역에서 70% 이상의 광 반사율을 갖는 물질로서, 200nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
상기 활성층(30)에서 방출된 빛은 상기 제3 전류 퍼짐층(130)에 의해 반사되어 상기 성장 기판(10) 방향으로 방출된다.
한편, 상기 제1 전류 퍼짐층(100)은 요철 패턴으로 형성된 광 추출 구조(110)가 형성된다. 상기 광 추출 구조(110)는 상기 제1 전류 퍼짐층(100)을 건식 식각 또는 습식 식각하여 요철 패턴을 형성한 것으로, 발광 소자 내에서 전반사되는 빛을 최소화하여 발광 소자의 광 추출 효율을 향상시킨다.
제6 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90), 제1 전류 퍼짐층(100), 및 제3 전류 퍼짐층(130)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
또한, 제6 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90) 상에 형성된 제1 전류 퍼짐층(100)의 상면에 광 추출 구조(110)를 형성함으로써, 발광 소자의 전기적 특성을 저하시키지 않으면서 광 추출 효율을 증대시킬 수 있다.
도 9는 제7 실시예에 따른 발광 소자를 설명하는 도면이다.
제7 실시예를 설명함에 있어서, 상술한 제5 실시예와 중복되는 설명은 생략하도록 한다.
도 9에는 플립칩 구조의 발광 소자가 예시된다. 도 9를 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90), 제1 전류 퍼짐층(100), 제2 전류 퍼짐층(120), 및 제3 전류 퍼짐층(130)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제3 전류 퍼짐층(130), 제2 전류 퍼짐층(120), 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제3 전류 퍼짐층(130) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제3 전류 퍼짐층(130)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다. 상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si가 도핑된 질화갈륨(GaN) 또는 Si가 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 제2 전류 퍼짐층(120)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 투명 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제2 전류 퍼짐층(120)은 ITO 또는 ZnO와 같이 600nm 이하의 파장 영역에서 70% 이상의 광 투과율을 갖는 물질로서, 5nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
상기 제3 전류 퍼짐층(130)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 반사성 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제3 전류 퍼짐층(130)은 Ag 또는 Al과 같이 600nm 이하의 파장 영역에서 70% 이상의 광 반사율을 갖는 물질로서, 200nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
따라서, 상기 활성층(30)에서 방출된 빛은 상기 제3 전류 퍼짐층(130)에 의해 반사되어 상기 성장 기판(10) 방향으로 방출된다.
제7 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90), 제1 전류 퍼짐층(100), 제2 전류 퍼짐층(120) 및 제3 전류 퍼짐층(130)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
제7 실시예에 따른 발광 소자는 반사성 전도성 박막으로 형성된 제3 전류 퍼짐층(130)을 형성함으로써, 상기 활성층(30)에서 발생된 빛이 상기 성장 기판(10) 방향으로 방출되도록 한다. 이 경우 상기 제3 전류 퍼짐층(130)은 200nm 이상으로 두껍게 형성할 수 있기 때문에 저항이 낮은 장점이 있다.
도 10은 제8 실시예에 따른 발광 소자를 설명하는 도면이다.
제8 실시예를 설명함에 있어서, 상술한 제5 실시예와 중복되는 설명은 생략하도록 한다.
도 10에는 플립칩 구조의 발광 소자가 예시된다. 도 10을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성된다. 그리고, 상기 제2 도전형의 반도체층(40) 상에 슈퍼래티스(superlattices) 구조층(90), 제1 전류 퍼짐층(100), 제2 전류 퍼짐층(120), 및 제3 전류 퍼짐층(130)이 형성된다.
비록 도시되지는 않았지만, 상기 슈퍼래티스 구조층(90) 및 제1 전류 퍼짐층(100)은 도 2에 도시된 바와 같이, 반복하여 교대로 적층될 수도 있다.
상기 제3 전류 퍼짐층(130), 제2 전류 퍼짐층(120), 제1 전류 퍼짐층(100), 슈퍼래티스 구조층(90), 제2 도전형의 반도체층(40), 활성층(30) 및 제1 도전형의 반도체층(20)은 메사 식각(MESA etching)에 의해 부분적으로 제거되어, 상기 제1 도전형의 반도체층(20)이 상측 방향으로 부분적으로 노출된다.
그리고, 상기 제1 도전형의 반도체층(20) 상에는 제1 전극층(80)이 형성되고, 상기 제3 전류 퍼짐층(130) 상에는 제2 전극층(70)이 형성된다.
상기 제1 전극층(80)은 상기 제1 도전형의 반도체층(20)과 오믹 접촉 계면을 형성하고, 상기 제2 전극층(70)은 상기 제3 전류 퍼짐층(130)과 쇼키 접촉 계면을 형성한다. 예를 들어, 상기 제1 전극층(80)은 Cr/Al과 같은 금속으로 형성될 수 있으며, 상기 제2 전극층(70)은 Pd/Au와 같은 금속으로 형성될 수 있다.
한편, 상기 제1 전류 퍼짐층(100)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 그룹 3족 질화물계 전도성 박막으로 형성될 수 있다. 상기 제1 전류 퍼짐층(100)은 화학식 InxAlyGa(1-x-y)N (0≤x, 0≤y, x+y≤1)으로 표기되는 6nm 이상의 두께를 지닌 단층(single layer) 또는 다층(multi-layer)으로 형성될 수 있다. 또한, 상기 제1 전류 퍼짐층(100)은 Si, Mg, Zn 등을 도핑하여 형성할 수도 있다. 예를 들어, 상기 제1 전류 퍼짐층(100)은 Si가 도핑된 질화갈륨(GaN) 또는 Si가 도핑된 알루미늄 질화갈륨(AlGaN)으로 형성될 수도 있다.
상기 제2 전류 퍼짐층(120)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 투명 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제2 전류 퍼짐층(120)은 ITO 또는 ZnO와 같이 600nm 이하의 파장 영역에서 70% 이상의 광 투과율을 갖는 물질로서, 5nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
상기 제3 전류 퍼짐층(130)은 오믹 접촉 계면을 형성하며, 50Ω/□ 이하의 면저항을 갖는 반사성 전도성 박막으로 형성될 수 있다. 예를 들어, 상기 제3 전류 퍼짐층(130)은 Ag 또는 Al과 같이 600nm 이하의 파장 영역에서 70% 이상의 광 반사율을 갖는 물질로서, 200nm 이상의 두께를 지닌 단층 구조 또는 다층 구조로 형성될 수 있다.
따라서, 상기 활성층(30)에서 방출된 빛은 상기 제3 전류 퍼짐층(130)에 의해 반사되어 상기 성장 기판(10) 방향으로 방출된다.
한편, 상기 제1 전류 퍼짐층(100)은 요철 패턴으로 형성된 광 추출 구조(110)가 형성된다. 상기 광 추출 구조(110)는 상기 제1 전류 퍼짐층(100)을 건식 식각 또는 습식 식각하여 요철 패턴을 형성한 것으로, 발광 소자 내에서 전반사되는 빛을 최소화하여 발광 소자의 광 추출 효율을 향상시킨다.
제8 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90), 제1 전류 퍼짐층(100), 제2 전류 퍼짐층(120) 및 제3 전류 퍼짐층(130)이 오믹 접촉 계면을 형성하므로 전류를 골고루 분산시켜 발광 소자의 발광 효율을 증대시킬 수 있다.
또한, 제8 실시예에 따른 발광 소자는 상기 슈퍼래티스 구조층(90) 상에 형성된 제1 전류 퍼짐층(100)의 상면에 광 추출 구조(110)를 형성함으로써, 발광 소자의 전기적 특성을 저하시키지 않으면서 광 추출 효율을 증대시킬 수 있다.
제8 실시예에 따른 발광 소자는 반사성 전도성 박막으로 형성된 제3 전류 퍼짐층(130)을 형성함으로써, 상기 활성층(30)에서 발생된 빛이 상기 성장 기판(10) 방향으로 방출되도록 한다. 이 경우 상기 제3 전류 퍼짐층(130)은 200nm 이상으로 두껍게 형성할 수 있기 때문에 저항이 낮은 장점이 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예는 광원으로 사용되는 발광 소자에 적용될 수 있다.

Claims (15)

  1. 제1 도전형의 반도체층;
    상기 제1 도전형의 반도체층 상에 활성층;
    상기 활성층 상에 제2 도전형의 반도체층;
    상기 제2 도전형의 반도체층 상에 슈퍼래티스 구조층; 및
    상기 슈퍼래티스 구조층 상에 투과성 전도성 박막으로 형성된 제1 전류 퍼짐층을 포함하는 발광 소자.
  2. 제 1항에 있어서,
    상기 제1 전류 퍼짐층은 상면에 요철 패턴으로 형성된 광 추출 구조가 형성되는 발광 소자.
  3. 제 1항에 있어서,
    상기 제1 전류 퍼짐층 상에 투과성 전도성 박막으로 형성된 제2 전류 퍼짐층을 포함하는 발광 소자.
  4. 제 3항에 있어서,
    상기 제2 전류 퍼짐층은 상면에 요철 패턴으로 형성된 광 추출 구조가 형성되는 발광 소자.
  5. 제 1항에 있어서,
    상기 슈퍼래티스 구조층은 InN, InGaN, InAlN, AlGaN, GaN, AlInGaN, AlN, SiC, SiCN, MgN, ZnN, 또는 SiN 중 적어도 어느 하나를 포함하는 단층 또는 다층 구조로 형성되는 발광 소자.
  6. 제 1항에 있어서,
    상기 제1 전류 퍼짐층은 그룹 3족 질화물계 전도성 박막으로 형성되는 발광 소자.
  7. 제 3항에 있어서,
    상기 제2 전류 퍼짐층은 ITO 또는 ZnO를 포함하여 형성되는 발광 소자.
  8. 제1 도전형의 반도체층;
    상기 제1 도전형의 반도체층 상에 활성층;
    상기 활성층 상에 제2 도전형의 반도체층;
    상기 제2 도전형의 반도체층 상에 슈퍼래티스 구조층;
    상기 슈퍼래티스 구조층 상에 투과성 전도성 박막으로 형성된 제1 전류 퍼짐층; 및
    상기 제1 전류 퍼짐층 상에 반사성 전도성 박막으로 형성된 제3 전류 퍼짐층을 포함하는 발광 소자.
  9. 제 8항에 있어서,
    상기 제1 전류 퍼짐층은 상면에 요철 패턴으로 형성된 광 추출 구조가 형성되는 발광 소자.
  10. 제 8항에 있어서,
    상기 제1 전류 퍼짐층과 상기 제3 전류 퍼짐층 사이에 투과성 전도성 박막으로 형성된 제2 전류 퍼짐층을 포함하는 발광 소자.
  11. 제 10항에 있어서,
    상기 제1 전류 퍼짐층은 상면에 요철 패턴으로 형성된 광 추출 구조가 형성되는 발광 소자.
  12. 제 8항에 있어서,
    상기 슈퍼래티스 구조층은 InN, InGaN, InAlN, AlGaN, GaN, AlInGaN, AlN, SiC, SiCN, MgN, ZnN, 또는 SiN 중 적어도 어느 하나를 포함하는 단층 또는 다층 구조로 형성되는 발광 소자.
  13. 제 8항에 있어서,
    상기 제1 전류 퍼짐층은 그룹 3족 질화물계 전도성 박막으로 형성되는 발광 소자.
  14. 제 10항에 있어서,
    상기 제2 전류 퍼짐층은 ITO 또는 ZnO를 포함하여 형성되는 발광 소자.
  15. 제 8항에 있어서,
    상기 제3 전류 퍼짐층은 Ag 또는 Al을 포함하여 형성되는 발광 소자.
PCT/KR2009/001886 2008-04-12 2009-04-13 발광 소자 WO2009126010A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/937,453 US9543467B2 (en) 2008-04-12 2009-04-13 Light emitting device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20080033967A KR101480552B1 (ko) 2008-04-12 2008-04-12 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
KR10-2008-0033967 2008-04-12
KR1020080033966A KR101428068B1 (ko) 2008-04-12 2008-04-12 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
KR10-2008-0033966 2008-04-12
KR10-2008-0033987 2008-04-13
KR10-2008-0033986 2008-04-13
KR1020080033987A KR101449032B1 (ko) 2008-04-13 2008-04-13 플립칩 구조의 그룹 3족 질화물계 반도체 발광다이오드소자 및 이의 제조 방법
KR1020080033986A KR101428069B1 (ko) 2008-04-13 2008-04-13 플립칩 구조의 그룹 3족 질화물계 반도체 발광다이오드소자 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
WO2009126010A2 true WO2009126010A2 (ko) 2009-10-15
WO2009126010A3 WO2009126010A3 (ko) 2010-01-14

Family

ID=41162419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001886 WO2009126010A2 (ko) 2008-04-12 2009-04-13 발광 소자

Country Status (2)

Country Link
US (1) US9543467B2 (ko)
WO (1) WO2009126010A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369644A3 (en) * 2010-03-26 2014-09-24 LG Innotek Co., Ltd. Light emitting diode, method of manufacturing the same, light emitting diode package and lighting system including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9330911B2 (en) * 2011-08-22 2016-05-03 Invenlux Limited Light emitting device having group III-nitride current spreading layer doped with transition metal or comprising transition metal nitride
KR20130035658A (ko) * 2011-09-30 2013-04-09 서울옵토디바이스주식회사 발광 다이오드 소자용 기판 제조 방법
US9576868B2 (en) * 2012-07-30 2017-02-21 General Electric Company Semiconductor device and method for reduced bias temperature instability (BTI) in silicon carbide devices
CN103367581A (zh) * 2013-07-26 2013-10-23 东南大学 一种具有电子阻挡层结构的发光二极管
CN103474538B (zh) * 2013-09-25 2016-06-22 湘能华磊光电股份有限公司 Led外延片、其制作方法及包含其的led芯片
TWI536602B (zh) * 2013-10-25 2016-06-01 隆達電子股份有限公司 發光二極體
CN104241468A (zh) * 2014-08-27 2014-12-24 迪源光电股份有限公司 一种高外量子效率GaN基LED外延片及其制作方法
JP2016192527A (ja) * 2015-03-31 2016-11-10 ウシオ電機株式会社 半導体発光素子及びその製造方法
DE102017104719A1 (de) * 2017-03-07 2018-09-13 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterkörper und Halbleiterchip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128227A (ja) * 2004-10-26 2006-05-18 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
KR20070015709A (ko) * 2005-08-01 2007-02-06 엘지이노텍 주식회사 질화물 발광 소자 및 그 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69425186T3 (de) * 1993-04-28 2005-04-14 Nichia Corp., Anan Halbleitervorrichtung aus einer galliumnitridartigen III-V-Halbleiterverbindung und Verfahren zu ihrer Herstellung
JP3680558B2 (ja) 1998-05-25 2005-08-10 日亜化学工業株式会社 窒化物半導体素子
WO1999046822A1 (fr) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Dispositif semi-conducteur electroluminescent au nitrure
EP1403932B1 (en) * 2001-07-04 2012-09-05 Nichia Corporation Light emitting nitride semiconductor device
KR100571818B1 (ko) * 2003-10-08 2006-04-17 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
KR100601945B1 (ko) * 2004-03-10 2006-07-14 삼성전자주식회사 탑에미트형 질화물계 발광소자 및 그 제조방법
JP2006269759A (ja) * 2005-03-24 2006-10-05 Sharp Corp 窓構造半導体レーザ装置およびその製造方法
KR20070028095A (ko) 2005-09-07 2007-03-12 엘지전자 주식회사 저저항 발광 다이오드
JP2008060331A (ja) 2006-08-31 2008-03-13 Rohm Co Ltd 半導体発光素子
TWI338387B (en) * 2007-05-28 2011-03-01 Delta Electronics Inc Current spreading layer with micro/nano structure, light-emitting diode apparatus and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128227A (ja) * 2004-10-26 2006-05-18 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
KR20070015709A (ko) * 2005-08-01 2007-02-06 엘지이노텍 주식회사 질화물 발광 소자 및 그 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369644A3 (en) * 2010-03-26 2014-09-24 LG Innotek Co., Ltd. Light emitting diode, method of manufacturing the same, light emitting diode package and lighting system including the same

Also Published As

Publication number Publication date
US20110140077A1 (en) 2011-06-16
US9543467B2 (en) 2017-01-10
WO2009126010A3 (ko) 2010-01-14

Similar Documents

Publication Publication Date Title
WO2009126010A2 (ko) 발광 소자
WO2009131401A2 (ko) 발광 소자 및 그 제조방법
WO2009128669A2 (ko) 발광 소자 및 그 제조방법
WO2020101381A1 (en) Light emitting diode, manufacturing method of light emitting diode and display device including light emitting diode
WO2009134029A2 (ko) 반도체 발광소자
WO2009120011A2 (ko) 발광소자 및 그 제조방법
WO2009145483A2 (ko) 발광 소자 및 그 제조방법
WO2009125953A2 (ko) 발광 소자
WO2016105146A1 (ko) 발광소자 및 이를 포함하는 발광소자 어레이
WO2013022227A2 (ko) 전류 확산 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
WO2017155284A1 (ko) 반도체 소자, 표시패널 및 표시패널 제조방법
WO2013015472A1 (ko) 반도체 발광소자 및 그 제조방법
WO2016104946A1 (ko) 발광 소자 및 이를 구비한 발광 소자 패키지
WO2014058224A1 (ko) 발광소자
WO2016159638A1 (en) Uv light emitting diode
WO2021210919A1 (ko) 단일칩 복수 대역 발광 다이오드
WO2009139603A2 (ko) 반도체 발광소자
WO2017052344A1 (ko) 발광소자, 발광소자 패키지 및 발광장치
WO2015199388A1 (ko) 발광소자
WO2022240179A1 (ko) 복수 대역 발광 다이오드
WO2010018946A2 (ko) 반도체 발광소자 및 그 제조방법
WO2020138842A1 (en) Micro light emitting diode and manufacturing method of micro light emitting diode
WO2017119730A1 (ko) 발광 소자
WO2009125983A2 (ko) 발광 소자 및 그 제조방법
WO2015190735A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729682

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12937453

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.02.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09729682

Country of ref document: EP

Kind code of ref document: A2