WO2009123088A1 - 分離膜およびその製造方法並びにその分離膜を用いた分離膜モジュール - Google Patents

分離膜およびその製造方法並びにその分離膜を用いた分離膜モジュール Download PDF

Info

Publication number
WO2009123088A1
WO2009123088A1 PCT/JP2009/056448 JP2009056448W WO2009123088A1 WO 2009123088 A1 WO2009123088 A1 WO 2009123088A1 JP 2009056448 W JP2009056448 W JP 2009056448W WO 2009123088 A1 WO2009123088 A1 WO 2009123088A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
ester group
polymer
hollow fiber
membrane
Prior art date
Application number
PCT/JP2009/056448
Other languages
English (en)
French (fr)
Inventor
上野 良之
雅規 藤田
菅谷 博之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US12/935,414 priority Critical patent/US8613361B2/en
Priority to ES09727576T priority patent/ES2778726T3/es
Priority to EP09727576.2A priority patent/EP2286902B1/en
Priority to CA2719356A priority patent/CA2719356C/en
Priority to KR1020107024364A priority patent/KR101525642B1/ko
Priority to CN200980115515.3A priority patent/CN102015081B/zh
Priority to JP2009521041A priority patent/JP4888559B2/ja
Publication of WO2009123088A1 publication Critical patent/WO2009123088A1/ja
Priority to US14/077,850 priority patent/US9561478B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00416Inorganic membrane manufacture by agglomeration of particles in the dry state by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/383Polyvinylacetates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2187Polyvinylpyrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • B01D2323/385Graft polymerization involving radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Definitions

  • a medical separation membrane that comes into contact with bodily fluids or blood is a serious problem when protein or platelets adhere to it, causing the performance of the separation membrane to deteriorate or causing a biological reaction.
  • water treatment membranes such as a water purifier
  • adhesion of protein or organic substance causes the performance fall of a separation membrane.
  • Patent Document 1 a method of imparting hydrophilicity to a membrane and suppressing soiling by mixing polyvinyl pyrrolidone, which is a hydrophilic polymer, with polysulfone at the stage of the film-forming stock solution is disclosed (Patent Document 1). .
  • Patent Document 2 discloses a method for hydrophilization by coating a film with polyvinyl acetal diethylaminoacetate and a hydrophilizing agent.
  • this method there is a concern that polyvinyl acetal diethylaminoacetate covers the hydrophilizing agent, and the effect on non-adhesion is drastically reduced.
  • the membrane since the membrane is immersed in each solution of polyvinyl acetal diethylaminoacetate and a hydrophilizing agent, there is a concern that the separation performance of the membrane may be lowered.
  • Patent Document 3 a method of introducing a water-insoluble hydrophilic component such as polyvinyl pyrrolidone by radiation or heat into the formed film after insolubilization (Patent Document 3) or a polysulfone-based separation membrane
  • Patent Document 4 A method of forming a coating layer insolubilized by radiation crosslinking after contacting with a hydrophilic polymer solution such as polyvinylpyrrolidone is disclosed (Patent Document 4).
  • an aqueous polymer such as polyvinylpyrrolidone and a polysulfone-based polymer have a problem that it is difficult to form a coating layer because the interaction between molecules is weak.
  • Patent Document 5 a method is disclosed in which a polyvinyl alcohol aqueous solution having a saponification degree within a certain range is brought into contact with a polysulfone separation membrane to efficiently form a coating layer on the membrane surface by the hydrophobic interaction between polysulfone and vinyl acetate.
  • Patent Document 5 since this document is not a method relating to non-adhesiveness, the present inventors have examined and found that the performance of the separation membrane is significantly reduced when polyvinyl alcohol is simply coated on the separation membrane. Moreover, it is known that the hydroxyl group of polyvinyl alcohol tends to activate complement when it comes into contact with blood.
  • Non-patent Document 1 Japanese Patent Publication No. 2-18695 JP-A-8-131791 Japanese Patent Publication No.8-9668 JP-A-6-238139 JP 2006-198611 A Medical nanotechnology Kyorin books pp115-116
  • An object of the present invention is to provide a high-performance separation membrane module that improves the drawbacks of the prior art and has less adhesion of proteins and organic substances.
  • a separation membrane made of a polymer having a functional layer on one surface of the membrane, and the peak area percentage of carbon derived from ester groups by X-ray electron spectroscopy (ESCA) on the surface of the functional layer is 0.1 (number of atoms %) Or more and 10 (number of atoms) or less, and the peak area percentage of the carbon derived from the ester group by X-ray electron spectroscopy (ESCA) on the opposite surface of the functional layer is 10 (number of atoms%) or less.
  • a separation membrane wherein the amount of carbon derived from ester groups on the surface of the functional layer is greater than the amount of carbon on the opposite surface of the functional layer. 3. 3. The separation membrane according to 1 or 2, wherein the ester group is derived from an ester group-containing polymer. 4). 4. The separation membrane according to any one of 1 to 3, wherein the separation membrane contains a hydrophobic polymer. 5). 5. The separation membrane according to 4, wherein the hydrophobic polymer is a polysulfone polymer. 6). 6. The separation membrane according to any one of 1 to 5, wherein the separation membrane is a hollow fiber membrane. 7. The separation membrane according to any one of 1 to 6, which contains a water-soluble polymer having a solubility in 100 g of water at 20 ° C.
  • a method for producing a separation membrane containing a hydrophobic polymer comprising a step of coating an ester group-containing polymer, wherein an adsorption equilibrium constant between the ester group-containing polymer and the hydrophobic polymer is 330 pg / (mm 2 ⁇ ppm)
  • a method for producing a separation membrane wherein the pressure difference is 1100 pg / (mm 2 ⁇ ppm) or less, and a pressure difference is generated inside and outside the separation membrane when contacting the ester group-containing polymer solution.
  • a separation membrane module comprising a separation membrane produced by the method according to any one of 12 to 14.
  • the separation membrane and separation membrane module in the present invention are characterized in that ester groups are localized on the surface of the separation membrane functional layer, have high separation performance, and are compatible with blood and protein / organic matter. It can be widely used for applications that require the property of being difficult to adhere.
  • FIG. 1 shows an embodiment of an artificial kidney used in the present invention.
  • the circuit in the ⁇ 2 -microglobulin clearance measurement carried out in Examples 1 to 10 and Comparative Examples 1 to 7 is shown.
  • the separation membrane of the present invention is a separation membrane module characterized in that it has a functional layer on one surface of the membrane, and ester groups are localized on the surface of the separation membrane functional layer.
  • the presence of the ester group on the surface of the separation membrane functional layer suppresses the adhesion of proteins and platelets. It is said that the protein is attached to the material surface because the higher-order structure of the protein changes, the hydrophobic site inside is exposed, and a hydrophobic interaction occurs with the material surface.
  • water whose mobility is constrained by hydrogen bonds so-called bound water, is present around the protein and on the material surface. Therefore, in order for proteins to adhere to the material surface, the interaction between the bound waters is important. Therefore, when the hydrophilicity of the material surface is strong, the bound water around the protein is also trapped, and it is said that protein adhesion cannot be sufficiently suppressed.
  • ester group is hydrophilic, it does not induce a higher-order structural change of the protein, and Since the hydrophilicity is not too strong, it can be assumed that the bound water around the protein is not trapped.
  • ester group is localized on the surface of the separation membrane functional layer, and the carbon derived from the ester group by X-ray electron spectroscopy (hereinafter sometimes referred to as ESCA) on the surface of the functional layer.
  • the peak area percentage is 0.1 (atomic%) or higher, preferably 0.5 (atomic%) or higher, and more preferably 1 (atomic%) or higher.
  • 10 (atomic%) or less, further 5 (atomic%) or less is preferable.
  • the peak area of carbon derived from the ester group by X-ray electron spectroscopy (ESCA) on the opposite surface of the functional layer The percentage is preferably 10 (number of atoms%) or less, preferably 5 (number of atoms%) or less, and more preferably 1 (number of atoms%) or less.
  • the amount of carbon derived from the ester group on the surface of the functional layer is larger than that on the opposite surface of the functional layer because separation performance can be improved.
  • the amount of carbon derived from the ester group on the surface of the functional layer is suitably 10% or more, preferably 15% or more, more preferably 20% or more, more preferably 30% or more, compared to the opposite surface.
  • the amount of carbon derived from ester groups on the surface can be determined by X-ray electron spectroscopy (ESCA). A value measured at 90 ° is used as the measurement angle. When the measurement angle is 90 °, a region having a depth of about 10 nm from the surface is detected. Moreover, the average value of three places is used for a measurement place.
  • the peak of the carbon derived from the ester group (COO) can be obtained by dividing the peak appearing at +4.0 to 4.2 eV from the main peak derived from C1s CH or C—C. By calculating the ratio of the peak area with respect to all elements, the carbon amount (number of atoms%) derived from the ester group can be obtained.
  • C O-derived component and COO-derived component. Therefore, peak splitting is performed with five components.
  • the COO-derived component is a peak appearing at +4.0 to 4.2 eV from the main peak of CHx or C—C (around 285 eV).
  • the peak area ratio of each component is calculated by rounding off the first decimal place. It can obtain
  • the surface of the functional layer mentioned here is the surface to be contacted with the material to be treated, and in the case of liquid treatment, the surface to be in contact with the liquid to be treated.
  • the surface of the functional layer through which blood as the liquid to be treated flows corresponds to the inner surface
  • the opposite surface through which the dialysate flows corresponds to the outer surface.
  • the ester group can be introduced into the functional layer surface.
  • the surface reaction may cause a decrease in the performance of the separation membrane, and there are various condition restrictions for actual application.
  • an ester group derived from the polymer can be introduced into the functional layer surface relatively easily.
  • the polymer containing an ester group include those having an ester group in the main chain such as polylactic acid and polyester, carboxylic acid vinyl esters such as vinyl acetate, acrylic acid esters such as methyl acrylate and methoxyethyl acrylate, and methyl methacrylate.
  • a polymer using a monomer having an ester group in the side chain such as methacrylic acid ester such as ethyl methacrylate and hydroxyethyl methacrylate, and vinyl acetate can be used.
  • ester group-containing polymer a polymer containing an aromatic ring such as polyethylene terephthalate is not preferable for use in the present invention because the degree of hydrophobicity is too strong.
  • those containing an ester group in the side chain such as carboxylic acid vinyl ester, acrylic acid ester, and methacrylic acid ester are preferable.
  • vinyl acetate is excellent in suppressing the adhesion of proteins and platelets.
  • the localization of the ester group-containing polymer on the surface of the separation membrane functional layer is important for improving the membrane performance. If the ester group-containing polymer is not localized on the surface and there are many in the film thickness direction, water molecules are bound by the influence of hydrogen bonds, etc. It is thought that water molecules and waste products dissolved in it are difficult to pass through the membrane.
  • the abundance of the ester group-containing polymer present on the functional layer surface of the membrane is preferably 30% or more than the abundance of the ester group-containing polymer inside the membrane, more preferably 100% or more, Is preferably 300% or more.
  • Whether the amount of the ester group-containing polymer existing on the film surface is larger than the amount of the ester group-containing polymer inside the film is determined by, for example, ESCA and total reflection infrared spectroscopy (hereinafter referred to as ATR). You can know by combining. This is because ESCA measures the depth of the surface up to about 10 nm, and ATR measures the composition up to several ⁇ m deep, although it is a surface measurement.
  • the unit amount ratio value obtained by ESCA is: If it is 30% or more larger than the value obtained by ATR, it can be said that the ester group-containing polymer abundance on the film surface in the present invention is 30% or more larger than the inside of the film.
  • the value of each measurement is an average value of three points.
  • ester group-containing polymer on the surface of the separation membrane functional layer, for example, the following method may be mentioned.
  • wet film-forming is performed from a film-forming stock solution, high-molecular weight polymers gather on the surface to prevent entropy loss, and hydrophilic polymers tend to gather to prevent enthalpy loss.
  • the molecular weight of the ester group-containing polymer is equal to or higher than the molecular weight of polyvinylpyrrolidone, It can be concentrated on the surface.
  • the affinity of the ester group-containing polymer with polysulfone is high, the enthalpy effect is more dominant than the entropy effect, and the ester group is concentrated not inside the surface but inside the separation membrane.
  • copolymers with water-soluble units such as vinyl pyrrolidone units are more preferred than homopolymers containing only ester group units because of their lower affinity with polysulfone.
  • the separation membrane is a hollow fiber membrane
  • the injection solution is allowed to flow inside when discharging from the double annular die, and an ester group-containing polymer may be added to this injection solution.
  • the ester group-containing polymer in the injection solution diffuses to the membrane-forming stock solution side, so that it can be localized on the inner surface.
  • a method of coating the surface of the functional layer of the separation membrane with an ester group-containing polymer after forming the hollow fiber membrane is simple and preferably used. Further, the ester group-containing polymer and the hollow fiber membrane may be immobilized by a chemical reaction. In addition, after coating, crosslinking to the separation membrane by radiation or heat treatment is a suitable means for suppressing elution of the ester group-containing polymer.
  • a hydrophobic polymer is preferably used as the polymer used as the material for the separation membrane of the present invention.
  • the hydrophobic polymer refers to a polymer having a solubility in 100 g of water at 20 ° C. of less than 0.001 g.
  • Specific examples include polysulfone-based polymers, polystyrene, polyurethane, polyethylene, polypropylene, polycarbonate, polyvinylidene fluoride, and polyacrylonitrile, but are not limited thereto.
  • a polysulfone-based polymer is preferably used because it easily forms a separation membrane and easily coats an ester group-containing polymer.
  • the polysulfone-based polymer has an aromatic ring, a sulfonyl group and an ether group in the main chain, and examples thereof include polysulfone, polyethersulfone and polyallylethersulfone.
  • polysulfone represented by the following chemical formulas (1) and (2) is preferably used, but the present invention is not limited to these.
  • N in the formula is an integer such as 50 to 80, for example.
  • polysulfone examples include Udel polysulfone P-1700, P-3500 (manufactured by Solvay), Ultrason S3010, S6010 (manufactured by BASF), Victrex (Sumitomo Chemical), Radel A (manufactured by Solvay), Ultra Polysulfone such as Son E (manufactured by BASF) is exemplified.
  • the polysulfone used in the present invention is preferably a polymer composed only of the repeating unit represented by the above formula (1) and / or (2). However, it does not interfere with the effects of the present invention. It may be polymerized or modified. Although it does not specifically limit, it is preferable that another copolymerization monomer is 10 weight% or less.
  • polysulfone-based polymers are generally highly hydrophobic and adhere to many organic substances such as proteins.
  • activated proteins and platelets are found to adhere to the surface where the ester group is present when the amount of the ester group is small compared to the amount of polysulfone, and the ester group on the surface of the separation membrane functional layer is It was concluded that a certain amount or more is required uniformly at any part of the surface of the separation membrane functional layer.
  • the present inventors considered to represent the ratio of the amount of the ester group divided by the amount of the polysulfone as an index indicating the amount of the ester group present, and as a result of various investigations, In three different places, the infrared absorption peak intensity (A CO ) derived from the ester group C ⁇ O near 1730 cm ⁇ 1 , and the infrared absorption peak intensity (A CC) derived from the benzene ring C ⁇ C of polysulfone near 1580 cm ⁇ 1.
  • Ratio (A CO ) / (A CC ) is selected, and the average value is preferably 0.005 or more, more preferably 0.01 or more, still more preferably 0.02 or more, and the ratio is 0 It was found that the ratio of the measurement points being 0.001 or less is preferably 10% or less, more preferably 5% or less.
  • the average value of (A CO ) / (A CC ) is preferably 1 or less, more preferably 0.5 or less, because if the average value is too large, the performance of the separation membrane may be lowered.
  • the ratio of (A CO ) / (A CC ) is calculated as follows.
  • the measurement range is 3 ⁇ m ⁇ 3 ⁇ m, the number of integration is 30 times or more, and the infrared absorption spectrum is measured at 25 points by the absorption intensity. This 25-point measurement is measured at three different locations.
  • the obtained infrared absorption spectrum draw reference lines 1549 ⁇ 1620 cm -1, the peak area of the portion surrounded by the positive portion of the reference line and the spectral and A CC, likewise, 1711-1759Cm -1 Then, a reference line is drawn, and the ratio (A CO ) / (A CC ) between the two is calculated using the peak area as A CO .
  • the separation membrane is a hollow fiber membrane module incorporating a large number of hollow fiber membranes
  • the ester group-containing polymer when Kollidon VA64 (BASF), which is a copolymer of vinylpyrrolidone and vinyl acetate (6/4), is used as the ester group-containing polymer, the amount of VA64 in the stock solution is 1 to 10% by weight,
  • the die temperature is preferably 20 to 60 ° C.
  • the dry part temperature is 10 to 60 ° C.
  • the relative humidity is 70 to 95% RH.
  • the composition ratio of the injection solution, the injection solution temperature, the composition of the film-forming stock solution, and the like have an effect.
  • the addition amount to the injection solution is 5 to 30% by weight
  • the injection solution temperature is 10 to 60 ° C.
  • the polysulfone polymer concentration is 14 to 25% by weight as the composition of the film forming stock solution
  • polyvinylpyrrolidone In the case of using 2 to 10% by weight is preferable.
  • the weight average molecular weight of the polysulfone-based polymer is preferably small so that VA64 is easily diffused into the membrane, and 100,000 or less, further 50,000 or less is suitably used.
  • Polysulfone polymers In the case of post-treatment such as coating, the concentration of the ester group-containing polymer in the coating solution, the contact time, and the temperature at the time of coating are affected.
  • the VA64 concentration is preferably 1 to 5000 ppm
  • the contact time is 10 seconds or more
  • the temperature is 10 to 80 ° C.
  • the higher the flow rate of the VA64 aqueous solution the more uniformly it can be coated, but if it is too fast, a sufficient amount cannot be coated, so 200 to 1000 mL / min is preferable. It is a range.
  • the separation membrane contains a water-soluble polymer having a solubility in 100 g of water at 20 ° C. of 1 g or more, preferably 10 g or more, from the viewpoint of suppressing adhesion of proteins and platelets. preferable. It is thought that an appropriate balance between hydrophilicity and hydrophobicity on the surface is important for suppressing adhesion of proteins and platelets. In fact, in addition to the ester group-containing polymer, when there is a water-soluble polymer that is more hydrophilic than the ester group-containing polymer, the effect of inhibiting the adhesion of proteins and platelets is further improved.
  • the amount of the water-soluble polymer contained in the separation membrane is preferably 0.1% by weight or more, more preferably 1% by weight or more. Moreover, since there exists a tendency for film
  • the amount of the water-soluble polymer on the functional layer surface is preferably 10% by weight or more, more preferably 15% by weight or more. Moreover, since the hydrophilic effect will become strong too much, 50 weight% or less is preferable, More preferably, it is 40 weight% or less.
  • the amount of ester group-containing polymer in the separation membrane can be determined by elemental analysis or nuclear magnetic resonance (NMR) measurement. The amount of the water-soluble polymer on the functional layer surface can be determined by ESCA or the like.
  • the ester group-containing polymer is a copolymer having a water-soluble unit and an ester group unit
  • the copolymer a block copolymer, an alternating copolymer, or a random copolymer is preferably used rather than a graft copolymer. This is presumably because, in the graft polymer, the unit part grafted to the main chain has many opportunities to come into contact with proteins and the like, and thus the characteristics of the graft chain part have a greater influence than the characteristics of the copolymer.
  • an alternating copolymer and a random copolymer are more preferable than a block copolymer.
  • the block copolymer it is considered that the characteristics of each unit are clearly separated.
  • a copolymer having at least one selected from a random copolymer and an alternating copolymer is preferably used.
  • the molar ratio of ester group units in the ester group-containing polymer is preferably 0.3 or more and 0.7 or less. If the molar ratio of the ester group units is less than 0.3, the effect of suppressing the adhesion of ester groups is reduced. Moreover, when it exceeds 0.7, the effect of a water-soluble unit will reduce.
  • the molar ratio of these units can be calculated by NMR or elemental analysis.
  • water-soluble unit examples include a vinyl pyrrolidone group, an ethylene glycol group, and a vinyl alcohol group.
  • a vinylpyrrolidone-vinyl acetate copolymer has an appropriate balance between hydrophilicity and hydrophobicity and is preferably used.
  • the balance between hydrophilicity and hydrophobicity of the entire surface is also important, and the amount of vinylpyrrolidone units on the surface is preferably 10% by weight or more, more preferably 15% by weight or more.
  • 50 weight% or less is preferable, More preferably, it is 40 weight% or less.
  • the amount of the vinyl pyrrolidone unit on the surface is, as described above, when polyvinyl pyrrolidone is contained in the separation membrane, the total value derived from the copolymer of the vinyl pyrrolidone unit and the ester group unit and from the polyvinyl pyrrolidone. become.
  • the amount of vinyl pyrrolidone unit on the surface can be determined by ESCA.
  • the water-soluble polymer has good compatibility with the hydrophobic polymer serving as a support for the separation membrane, it is preferable because it can be added to the separation membrane stock solution and used as a pore-forming agent.
  • polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are preferably used for the polysulfone-based polymer.
  • a method for introducing a polymer containing an ester group to the surface of the functional layer a method in which the polymer is mixed with a separation membrane forming stock solution and a molding method, a method in which the polymer is mixed with an injection solution, a separation membrane, A method of coating after molding is preferably used. Further, after coating, a method of insolubilization by radiation irradiation, heat treatment or the like, a method of immersing the separation membrane in a mixed solution of hydrophobic monomers, and causing a polymerization reaction on the surface of the separation membrane, etc.
  • the method of coating the surface of the separation membrane with a polymer containing an ester group is a preferable method because it can be carried out simply and in a small amount.
  • a solution in which an ester group-containing polymer is dissolved in a solvent may be applied to the separation membrane and adsorbed, or the separation membrane material and the ester group-containing polymer may be fixed with an adhesive.
  • the ester group-containing polymer solution itself causes a pressure difference to be introduced onto the film surface, but after contacting the solution, it may be pressurized with another solution such as gas or water.
  • the adsorption equilibrium constant is preferably 330 pg / (mm 2 ⁇ ppm) or more, a more preferable range is 500 pg / (mm 2 ⁇ ppm) or more, and a more preferable range is 550 pg / (mm 2 ⁇ ppm) or more. It is. Further, it is particularly preferably 600 pg / (mm 2 ⁇ ppm) or more.
  • a polymer having an adsorption binding constant with the hydrophobic polymer constituting the separation membrane exceeds 1100 pg / (mm 2 ⁇ ppm), the polymer is excessively adsorbed when brought into contact with the separation membrane.
  • Separation membrane performance deteriorates, for example, protein removal efficiency deteriorates due to a decrease in membrane pore diameter. Therefore, it is preferably 1100pg / (mm 2 ⁇ ppm) or less, more preferably 1000pg / (mm 2 ⁇ ppm) or less, more preferably ranges are 900pg / (mm 2 ⁇ ppm) or less, and particularly preferably The range is 850 pg / (mm 2 ⁇ ppm) or less.
  • the pressure difference between the inside and outside of the separation membrane is preferably 5 kPa or more, more preferably 10 kPa or more, and even more preferably 20 kPa or more.
  • the separation membrane may leak, so 100 kPa or less is preferable, more preferably 70 kPa or less, and even more preferably 50 kPa or less.
  • the inner side of the separation membrane referred to here means the surface side of the separation membrane functional layer in contact with the treatment liquid, and the outer side means the opposite side. Taking a hollow fiber membrane for an artificial kidney as an example, the surface of the functional layer through which blood as the treatment liquid flows corresponds to the inside, and the opposite surface through which the dialysate flows corresponds to the outside.
  • the adsorption equilibrium constant is a value calculated by measurement using a surface plasmon resonance apparatus (hereinafter abbreviated as SPR).
  • SPR is a device that analyzes the change in mass of the surface of a thin film from the change in the resonance angle of laser light irradiated at a constant angle.
  • the hydrophobic polymer contained in the separation membrane is spin-coated on a gold chip for SPR,
  • the adsorption equilibrium constant is determined from the adsorption isotherm created from the values obtained by forming a thin film and flowing each ester group-containing polymer aqueous solution of which the concentration is arbitrarily selected in the range of 5 to 1000 ppm. To derive.
  • the ratio of the ester unit in the copolymer is preferably 0.3 or more and 0.7 or less, more preferably 0.35 or more, 0, from the suppression effect and solubility of protein and platelet adhesion. .55 or less is preferable.
  • the water-soluble unit is made of vinyl pyrrolidone
  • the performance of the separation membrane by coating hardly deteriorates, so that it is preferably used.
  • a copolymer of vinyl acetate and vinyl pyrrolidone is preferable.
  • a copolymer of vinyl alcohol and vinyl acetate may have low membrane performance, possibly because water molecules are constrained by the influence of a hydrogen bond due to a hydroxyl group and the solute hardly passes through the membrane.
  • the performance degradation may be larger than that of a copolymer of vinyl acetate and vinylpyrrolidone because the adsorption equilibrium constant is high.
  • a method of insolubilization by irradiation, heat treatment or the like after coating is a preferable method because it can reduce elution of the ester group-containing polymer.
  • radiation irradiation or heat treatment may be performed while the separation membrane is immersed in an ester group-containing polymer solution.
  • the separation membrane may be immersed in a copolymer solution of a vinyl pyrrolidone unit and a hydrophobic unit, and then the solution may be extracted, followed by radiation irradiation or heat treatment.
  • the ester group-containing polymer is more likely to be fixed and insolubilized on the separation membrane when a certain amount of solvent is present.
  • the solvent becomes radicals upon irradiation and this is the starting point, and the polymer and the material of the separation membrane are also radicalized, and the copolymer is crosslinked and insolubilized to the membrane. Therefore, it is preferable that 0.2 weight times or more, further 1.0 weight times of the solvent remains with respect to the dry weight of the separation membrane.
  • water is used suitably from a viewpoint of handleability.
  • the separation membrane module is not filled with water, there is less fear of elution in the time until radiation irradiation, and therefore it is preferable that only the separation membrane is in a wet state.
  • the separation membrane is preferably 6.0 times or less, more preferably 4.0 times or less, with respect to the dry weight of the separation membrane. Further, after immersing the separation membrane in the ester group-containing polymer solution, it may be replaced with water or the like and then subjected to radiation irradiation or heat treatment. Furthermore, radiation or heat treatment may be performed after extracting the substituted water.
  • the peak area percentage of the carbon derived from the ester group of the separation membrane functional layer is 0.1 (number of atoms%) or more, and when dissolved in a good solvent of the polymer forming the separation membrane, insoluble components are included.
  • the water content of the insoluble component is 95% or more, preferably 97% or more, protein adhesion can be more effectively suppressed while suppressing elution of the polymer from the separation membrane.
  • a certain degree of hydrophilicity is required.
  • the separation membrane has a water-soluble polymer such as polyvinylpyrrolidone and no insoluble component is contained, the effect of suppressing adhesion may not be high depending on the type of protein. This is presumably because the protein is trapped in the diffuse layer of polyvinylpyrrolidone present on the membrane surface. If the diffuse layer is in a certain degree of cross-linking, it can be presumed that protein penetration can be suppressed.
  • the water content of an insoluble component requires as follows.
  • the dried separation membrane is dissolved with a good solvent to a concentration of 2% by weight.
  • the solution was filtered using a filter paper to obtain an insoluble component.
  • the insoluble component is replaced with water. Excess water was removed, and the weight (w) of the insoluble component in the water-containing state was measured. Then, the weight (d) of the insoluble component after sufficiently drying was measured.
  • the water content can be calculated by the following formula.
  • Moisture content (%) (w ⁇ d) ⁇ 100 / w
  • dimethylacetamide is a good solvent.
  • the moisture content can be 95% or more by controlling the radiation dose, heating temperature, and time.
  • the radiation dose is preferably 5 to 50 kGy and the heating condition is preferably 120 to 300 ° C., although it varies depending on the polymer.
  • the dispersion state of the polymer in the hollow fiber membrane also affects the crosslinking reaction. That is, the crosslinkable polymer is preferably finely dispersed in the hollow fiber membrane.
  • Factors affecting the dispersion state of the polymer in the hollow fiber membrane include the composition ratio of the stock solution, the stirring speed, the stirring time, the time to film formation after dissolution, and the case where an ester group-containing polymer is added to the injection solution. In the case of coating an injection solution composition, an injection solution temperature, and an ester group-containing polymer, a coating method and the like can be mentioned.
  • the ratio of polyvinyl pyrrolidone in the membrane forming stock solution is 15 to 35 with respect to the total polymer weight. % By weight is preferred.
  • the amount of polyvinyl pyrrolidone is small, the hydrophilic ratio decreases, so that the water content decreases even after the crosslinking reaction. If the amount is too large, the polyvinyl pyrrolidone cannot be finely dispersed, so that the crosslinking reaction proceeds and the water content decreases.
  • the stirring speed is 30 rpm or more, preferably 50 rpm or more
  • the dispersion state of polyvinylpyrrolidone can be increased, which is preferable.
  • the microphase separation starts to occur in the film-forming stock solution after a lapse of time after dissolution, the polyvinyl pyrrolidone is not finely dispersed. Therefore, it is preferable to spin within 1 week after dissolution.
  • the separation membrane Even if the adsorption equilibrium constant is high, if the concentration of the ester group-containing polymer solution is low, the separation membrane may not be sufficiently coated. On the other hand, if the concentration is too high, the amount of eluate increases and the performance of the separation membrane is often lowered.
  • the specific concentration varies depending on the type of the polymer, but in general, it is preferably 0.0001% by weight or more and 1% by weight or less, and more preferably 0.001% by weight or more and 0.1% by weight or less. Is preferred.
  • the content is preferably 0.05% by weight or more and 1% by weight or less.
  • vinyl pyrrolidone / vinyl acetate (6/4) copolymer and vinyl pyrrolidone / vinyl acetate (5/5) copolymer 0.001% by weight or more and 1% by weight or less are preferable.
  • 0.005 wt% or more and 0.1 wt% or less is preferable.
  • vinylpyrrolidone / vinyl acetate (3/7) copolymer and polyvinyl acetate 0.001% by weight or more and 0.5% by weight or less are preferable.
  • by making an antioxidant coexist even if it lowers the lower limit of the said density
  • the oxygen concentration around the separation membrane when irradiated with radiation is desirably 10% or less.
  • the inside of the module is purged with nitrogen gas and then sealed, so that the oxygen concentration is lowered and the radiation is irradiated.
  • the separation membrane may be coated with an ester group-containing polymer and then incorporated into the module, or the separation membrane module may be coated with an ester group-containing polymer solution.
  • radiation irradiation or heat treatment may be performed as described above.
  • ⁇ rays, ⁇ rays, ⁇ rays, X rays, ultraviolet rays, electron beams and the like are used.
  • blood purification modules such as artificial kidneys need to be sterilized.
  • radiation sterilization methods using ⁇ rays and electron beams have been frequently used from the viewpoint of low residual toxicity and simplicity. That is, when an ester group-containing polymer is coated on the separation membrane, insolubilization of the copolymer can be achieved simultaneously with sterilization.
  • an irradiation dose of 15 kGy or more is preferable. This is because 15 kGy or more is effective for sterilizing blood purification modules and the like with ⁇ rays.
  • the irradiation dose is 100 kGy or more, the ester group-containing polymer is deteriorated in blood compatibility because three-dimensional crosslinking or decomposition of the ester moiety occurs.
  • the separation membrane in the step of coating the separation membrane with an ester group-containing polymer and insolubilizing with radiation, components other than the polymer, for example, an antioxidant, may be contained in the solution. Further, the separation membrane may be coated with an ester group-containing polymer solution and then contacted with an antioxidant solution.
  • the amount of radicals generated can be adjusted by adding an antioxidant.
  • an antioxidant may be used in combination.
  • the separation membrane is coated with the ester group-containing polymer solution, the addition amount of the ester group-containing polymer can be reduced by adding an antioxidant.
  • an antioxidant such as ethanol is used in combination with a vinylpyrrolidone / vinyl acetate (6/4) copolymer and a vinylpyrrolidone / vinyl acetate (5/5) copolymer, the copolymer is described above.
  • the lower limit value of the preferred range can be reduced to 1/10 or less.
  • antioxidant refers to a molecule that has the property of easily giving electrons to other molecules.
  • water-soluble vitamins such as vitamin C, polyphenols, alcohols such as methanol, ethanol, propanol, ethylene glycol, propylene glycol and glycerin, sugars such as glucose, galactose, mannose and trehalose, sodium hydrosulfite, pyro Examples include, but are not limited to, inorganic salts such as sodium sulfite and sodium dithionate, uric acid, cysteine, and glutathione. These antioxidants may be used alone or in combination of two or more. When the method of the present invention is used for a medical device, it is necessary to consider its safety, and therefore, an antioxidant having low toxicity is preferably used.
  • the concentration of the solution containing the antioxidant varies depending on the type of the antioxidant contained, the radiation dose, etc. If the concentration of the antioxidant is too low, the radicals generated from the solvent cannot be sufficiently erased, so that deterioration of the separation membrane and the like cannot be prevented. In addition, if a large amount of antioxidant is added, radicals are sufficiently eliminated, and the amount of copolymer immobilized on the separation membrane decreases, which increases the amount of eluate and suppresses adhesion of proteins and platelets. A sufficient effect cannot be obtained.
  • the antioxidant ethanol, n-propanol, 2-propanol, ethylene glycol, propylene glycol and glycerin are preferably used, and the concentration range is 0.01 wt% or more and 90 wt% or less.
  • the concentration range is 0.01 wt% or more and 90 wt% or less.
  • 0.01% by weight or more and 10% by weight or less is preferably used, and more preferably 0.05% by weight or more and 1% by weight or less.
  • propylene glycol and glycerin the content is 0.1% by weight or more and 90% by weight, and more preferably 0.5% by weight or more and 70% by weight or less.
  • the separation membrane of the present invention is a membrane that selectively removes a specific substance contained in a liquid to be treated, such as blood or an aqueous solution, by adsorption or the size of the substance.
  • the separation membrane of the present invention has a high adhesion inhibitory property, it can be suitably used as a separation membrane for water treatment or a biological component separation membrane. It is particularly suitable for blood purification modules such as artificial kidneys.
  • the blood purification module refers to a module having a function of circulating blood outside the body to remove waste and harmful substances in the blood, such as an artificial kidney and an exotoxin adsorption column.
  • the artificial kidney module includes a coil type, a flat plate type, and a hollow fiber membrane type, and the hollow fiber membrane type is preferable from the viewpoint of processing efficiency.
  • a separation membrane module There are various methods for manufacturing a separation membrane module depending on its application. For example, the steps can be divided into a separation membrane manufacturing step and a step of incorporating the separation membrane into the module.
  • polysulfone and polyvinylpyrrolidone are used as a good solvent for polysulfone (N , N-dimethylacetamide, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, dioxane and the like) and a stock solution dissolved in a poor solvent (concentration is preferably 10 to 30% by weight, preferably 15 to 25% by weight) Is more preferable), when the injection solution is discharged from the double annular die, the injecting solution is flowed inward, and the dry part is run and then led to the coagulation bath.
  • the humidity of the dry part has an effect, so that the phase separation behavior near the outer surface is accelerated by replenishing moisture from the outer surface of the membrane while the dry part is running. ⁇ Diffusion resistance can be reduced.
  • the relative humidity is preferably 60 to 100% RH.
  • the method of incorporating the hollow fiber membrane into the module is not particularly limited, but an example is as follows. First, the hollow fiber membrane is cut to a required length, bundled in a necessary number, and then put into a cylindrical case. Then, a temporary cap is put on both ends, and a potting agent is put on both ends of the hollow fiber membrane. At this time, the method of adding the potting agent while rotating the module with a centrifuge is a preferable method because the potting agent is uniformly filled. After the potting agent is solidified, both ends are cut so that both ends of the hollow fiber membrane are open, and a hollow fiber membrane module is obtained.
  • Measurement method (1) X-ray photoelectron spectroscopy (ESCA) measurement The hollow fiber membrane was cut into a semi-cylindrical shape with a single blade, and the inner surface and the outer surface of the hollow fiber membrane were measured at three points. The measurement sample was rinsed with ultrapure water, dried at room temperature and 0.5 Torr for 10 hours, and then subjected to measurement. Measurement equipment and conditions are as follows.
  • Measuring device ESCALAB220iXL Excitation X-ray: monochromatic Al K ⁇ 1,2 line (1486.6 eV) X-ray diameter: 0.15mm Photoelectron escape angle: 90 ° (inclination of detector with respect to sample surface)
  • the carbon amount derived from the ester group the peak appearing at +4.0 to 4.2 eV from the C1s CH or C—C main peak (near 285 eV) is a peak derived from the ester group (COO), so that Then, the ratio of the peak area with respect to all elements (all elements other than hydrogen atoms cannot be detected since hydrogen atoms cannot be detected) was calculated, and the carbon amount (number of atoms%) derived from the ester group was determined.
  • the molecular weight of the vinyl pyrrolidone unit is 111 and the molecular weight of the polysulfone unit is 442. Therefore, the amount of vinyl pyrrolidone unit on the surface is the amount of nitrogen (a (number of atoms)) and the amount of sulfur. It calculated from the following formula from the value of (b (number of atoms%)).
  • the amount of ester group-containing polymer on the separation membrane surface can be calculated by using ESCA as in (1).
  • ESCA was used to measure the amount ratio of vinyl acetate units on the surface.
  • the measuring apparatus and conditions were the same as (1).
  • the internal vinyl acetate unit amount ratio was determined by performing ATR measurement.
  • the measurement conditions were a resolution of 4 and an integration count of 64.
  • the intensity of the C ⁇ O peak derived from the ester group near 1730 cm ⁇ 1 (A CO ) and the intensity of the C ⁇ C absorption peak derived from the benzene ring of polysulfone near 1580 cm ⁇ 1 (A CC ) were determined.
  • ATR is a measurement depth from the surface to about 2-3 ⁇ m.
  • This film was subjected to ATR measurement, and a calibration curve of the intensity ratio of (A CO ) and (A CC ) to the vinyl acetate unit quantity ratio was obtained.
  • the ATR measurement was performed on the inner surface of the hollow fiber membrane, and the internal vinyl acetate unit amount ratio was obtained from the intensity ratio of (A CO ) and (A CC ) using the above calibration curve.
  • the hollow fiber membrane was cut into a semicylindrical shape with a single blade, rinsed with ultrapure water, and then dried at room temperature and 0.5 Torr for 10 hours.
  • the inner surface of the dried hollow fiber membrane was measured by a microscopic ATR method of IRT-3000 manufactured by JASCO. The measurement was carried out with a visual field area (aperture) of 100 ⁇ m ⁇ 100 ⁇ m, the number of integrations being 30 times per point, and the aperture being moved by 3 ⁇ m, and a total of 25 points, 5 points each in length and width.
  • a reference line is drawn, and the peak area of the part surrounded by the reference line and the positive part of the spectrum is the infrared absorption peak area A derived from the benzene ring C ⁇ C of polysulfone. CC .
  • a reference line was drawn at 1711 to 1759 cm ⁇ 1 to obtain an infrared absorption peak area A CO derived from the ester group C ⁇ O.
  • the adsorption equilibrium constant was determined by surface plasmon resonance measurement. After fixing an Au sensor chip manufactured by GE Healthcare Bioscience Co., Ltd. to a spin coater, a 0.1 wt% chlorobenzene solution of polysulfone (Amoco Udel-P3500) or a 0.1 wt% dimethylsulfoxide solution of polyacrylonitrile was dropped with a Pasteur pipette. Immediately after that, the Au sensor chip having a thin layer of polysulfone or polyacrylonitrile was prepared by spin drying at 3000 rpm for 1 minute.
  • the amount adsorbed on the surface of polysulfone or polyacrylonitrile was set to 0 after washing with water for 2000 seconds immediately after the insertion of the sensor chip, and the difference at the time when each operation 2 was completed. In addition, when it becomes higher than the value after performing water washing immediately after the insertion of the sensor chip at the time when the operation 4 is completed, it is considered that various polymers are not completely peeled off by 0.025 wt% triton, and the increment is It added to the amount of adsorption. The above operation was repeated at 5 to 1000 ppm.
  • This cylindrical tube was washed with physiological saline and then filled with physiological saline. Immediately after collecting human venous blood, heparin was added to 50 U / ml. After discarding the physiological saline solution in the cylindrical tube, 1.0 ml of the blood was placed in the cylindrical tube and shaken at 37 ° C. for 1 hour within 10 minutes after blood collection. Thereafter, the hollow fiber membrane was washed with 10 ml of physiological saline, blood components were fixed with 2.5 wt% glutaraldehyde physiological saline, and washed with 20 ml of distilled water. The washed hollow fiber membrane was dried under reduced pressure at room temperature of 0.5 Torr for 10 hours.
  • This hollow fiber membrane was attached to a sample stage of a scanning electron microscope with a double-sided tape. Thereafter, a thin film of Pt—Pd was formed on the hollow fiber membrane surface by sputtering to prepare a sample.
  • the inner surface of the hollow fiber membrane was observed with a field emission type scanning electron microscope (S800 manufactured by Hitachi, Ltd.) at a magnification of 1500 times. In one field of view (4.3 ⁇ 10 3 ⁇ m 2 )
  • the number of adherent platelets was counted.
  • the average value of the number of adhering platelets in 10 different visual fields near the center in the longitudinal direction of the hollow fiber was defined as the number of adhering platelets (pieces / 4.3 ⁇ 10 3 ⁇ m 2 ).
  • the end portion in the longitudinal direction of the hollow fiber was removed from the target of the number of adhesion because blood pools were easily formed.
  • the platelet adhesion number is 40 (pieces / 4.3 ⁇ 10 3 ⁇ m 2 ) or less, further 20 (pieces / 4.3 ⁇ 10 3 ⁇ m 2 ) or less, preferably 10 ( Pieces / 4.3 ⁇ 10 3 ⁇ m 2 ) or less.
  • citric acid was immediately added to 10% by volume.
  • the blood was centrifuged at 3000 rpm for 15 minutes at 4 ° C. to obtain plasma.
  • Anti-human fibrinogen (HPR) antibody was diluted 10,000 times with a 0.1% by weight skim milk / PBS-T solution, added with 1 mL, and then rotated and stirred at room temperature for 2 hours with a rotator. After washing twice with 0.1 wt% skim milk / PBS-T solution, it was washed twice with 0.1 wt% skim milk / PBS solution. 1 mL of TMB one solution was added and stirred with a micromixer. In view of the color development, 200 ⁇ L of 6N hydrochloric acid was added to stop the reaction (the reaction was controlled so that the absorbance of the control described later falls within the range of 1 to 1.5). Absorbance at 450 nm was measured.
  • Fibrinogen relative adhesion rate (%) As / Ac ⁇ 100.
  • ⁇ 2 -Microglobulin ( ⁇ 2 -MG) Clearance Measurement To evaluate the performance of the hollow fiber membrane, the clearance of ⁇ 2 -microglobulin was measured.
  • ⁇ 2 -microglobulin is a protein to be removed in dialysis treatment, and in recent years, its clearance is often used as a membrane performance index. .
  • the bovine blood to which disodium ethylenediaminetetraacetate was added was adjusted so that the hematocrit was 30 ⁇ 3% and the total protein amount was 6.5 ⁇ 0.5 g / dL.
  • ⁇ 2 -microglobulin concentration was added to 1 mg / l and stirred.
  • the cow blood was divided into 2 L for circulation and 1.5 L for clearance measurement.
  • TR2000S manufactured by Toray Medical Co., Ltd. was used. TR2000S corresponds to the Bi pump, the F pump, and the dialysis apparatus in FIG.
  • Dialysate (Kindaly fluid AF2 manufactured by Fuso Pharmaceutical Co., Ltd.) A solution and B solution were set in the dialysis machine. RO water was allowed to flow from the dialysate side to the blood side. The dialysate concentration was 13 to 15 mS / cm, the temperature was 34 ° C. or more, and the dialysate side flow rate was set to 500 ml / min.
  • the water removal rate of the water permeable device was set to 10 ml / (min ⁇ m 2 ). Place the Bi circuit inlet into the beaker with 2L (37 ° C) of bovine blood adjusted as described above, start the Bi pump, discard the 90 seconds of liquid discharged from the Bo circuit outlet, and immediately The outlet part and the Do circuit outlet part were put in a circulation beaker to be in a circulation state.
  • the F pump of the dialysis machine was moved and circulated for 1 hour, and then the Bi pump and the F pump were stopped.
  • the Bi circuit inlet was placed in the clearance-measured bovine blood adjusted as described above, and the Bo circuit outlet was placed in a waste beaker. The liquid flowing out from the Do circuit outlet was discarded.
  • the Di pump was started.
  • the blood pump was started and the space between the trap and the Bi chamber was opened.
  • the clearance was calculated from the concentration of ⁇ 2 -microglobulin in each solution according to the following formula. Since measured values may differ depending on the lot of bovine blood, all data used in the examples used bovine blood of the same lot.
  • This stock solution was sent to a spinneret part at a temperature of 50 ° C., and a solution consisting of 63 parts by weight of dimethylacetamide and 37 parts by weight of water was injected from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm of the annular slit part.
  • a solution consisting of 63 parts by weight of dimethylacetamide and 37 parts by weight of water was injected from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm of the annular slit part.
  • After discharging and forming a hollow fiber membrane After discharging and forming a hollow fiber membrane, it passes through a 350 mm dry zone atmosphere at a temperature of 30 ° C. and a dew point of 28 ° C., and then passed through a coagulation bath at a temperature of 40 ° C. consisting of 20% by weight of dimethylacetamide and 80% by weight of water.
  • the inner surface of the hollow fiber membrane that is, the amount of the functional layer polyvinyl pyrrolidone was 23% by weight, and the amount of polyvinyl pyrrolidone in the membrane was calculated by elemental analysis and found to be 3.1% by weight.
  • the hollow fiber membrane is filled into the case so that the total membrane area is 1.6 m 2 , both ends of the hollow fiber membrane are fixed to the case end with a potting material, and a part of the end of the potting material is cut. Thus, the hollow fiber membranes at both ends were opened to obtain a hollow fiber membrane module.
  • PSf Polysulfone
  • Amoco Udel-P3500 Polysulfone
  • This stock solution is sent to a spinneret at a temperature of 50 ° C., and a solution comprising 63 parts of dimethylacetamide and 37 parts of water is injected as an injection from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm.
  • a coagulation bath having a temperature of 40 ° C. comprising 20% by weight of dimethylacetamide and 80% by weight of water Passing through a water washing step of 60 ° C./90 seconds, the hollow fiber membrane (hollow fiber membrane 2) was taken up as a wound bundle.
  • Polysulfone (Amoco Udel-P3500) 18 parts by weight, chloroacetamidomethylated polysulfone 2 parts by weight, PVP (ISP) K30 10 parts by weight, dimethylacetamide 69 parts by weight and water 1 part by weight were dissolved by heating to form a film forming stock solution. It was.
  • This stock solution is sent to a spinneret at a temperature of 40 ° C., and a solution composed of 35 parts of dimethylacetamide and 65 parts of water is injected as an injection from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm.
  • a solution composed of 35 parts of dimethylacetamide and 65 parts of water is injected as an injection from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm.
  • the hollow fiber membrane After forming the hollow fiber membrane, after passing through a dry zone atmosphere having a dry length of 300 mm having a temperature of 27 ° C. and a dew point of 11 ° C., the hollow fiber membrane is passed through a coagulation bath made of 100% by weight of water at a temperature of 40 ° C. (Hollow fiber membrane 3) was used as a wound bundle.
  • the membrane-forming stock solution is fed to a spinneret at a temperature of 50 ° C., and the injection solution is discharged from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm to form a hollow fiber membrane.
  • a coagulation bath at a temperature of 40 ° C. consisting of 20% by weight of dimethylacetamide and 80% by weight of water, and a water washing step of 60 to 75 ° C. for 90 seconds, 130
  • a hollow fiber membrane (hollow fiber membrane 4) obtained by passing through a drying step of 2 ° C. for 2 minutes and undergoing a crimping step of 160 ° C. was used as a wound bundle.
  • a hollow fiber membrane (hollow fiber membrane 5) was prepared in the same manner as described above using a solution having a composition in which Kollidon VA64 was not added to the injection solution.
  • Polyacrylonitrile (PAN) hollow fiber membrane 15 parts by weight of polyacrylonitrile having a weight average molecular weight of 600,000 and 85 parts by weight of dimethyl sulfoxide were mixed and stirred at 103 ° C. for 16 hours to prepare a spinning dope.
  • nitrogen gas was injected into the hollow interior at a pressure of 74 mmAq. Then, it introduce
  • allylamine / vinyl acetate copolymer 47 g of allylamine hydrochloride was dissolved in 110 g of methanol, and 103 g of vinyl acetate was added. Furthermore, after adding 41 g of azobisisobutyronitrile as a polymerization initiator, the mixture was heated to 60 ° C. and reacted for 24 hours, and then 41 g of azobisisobutyronitrile was added, and further at 60 ° C. for 24 hours. Reacted. At the end of the polymerization reaction, the remaining monomer and the homopolymer were removed to obtain an allylamine hydrochloride-vinyl acetate copolymer. By elemental analysis, the allylamine content in the copolymer was calculated to be 28 mol%.
  • Example 1 Vinyl pyrrolidone / vinyl acetate (6/4) copolymer (BASF Co., Ltd., “Coridon VA64”) 0.1% by weight aqueous solution prepared above, blood side inlet (Bi) To 500 mL from the blood side outlet (Bo). Next, by passing 500 mL from the blood side inlet (Bi) to the dialysate side inlet (Di), VA64 was accumulated on the inner surface of the hollow fiber membrane. The liquid temperature at this time was 30 degreeC, and the flow rate was 500 mL / min. In order to accumulate VA64 that has entered the hollow fiber membrane on the inner surface, the filling solution was pushed out from the dialysate side to the blood side with 100 kPa compressed air.
  • the filling solution on the blood side was blown to maintain the aqueous solution only in the hollow fiber membrane.
  • each of the dialysate side and the blood side was blown with nitrogen for 1 minute each, and the inside of the module was replaced with nitrogen, and then the entire module was irradiated with 25 kGy of ⁇ rays to be immobilized on the membrane.
  • the hollow fiber of the module was cut out and subjected to various tests. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. That is, VA64 could be uniformly and many localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high. In addition, the adsorption equilibrium constant has shown the result of the polysulfone film and Kollidon VA64.
  • Example 2 The same operation as in Example 1 was performed except that a 0.01% by weight aqueous solution of vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. That is, VA64 could be uniformly and many localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high.
  • ⁇ 2 -microglobulin removal performance is higher than that of Comparative Example 1 is that VA64 covers the functional layer surface and the effect of suppressing adhesion of proteins and the like is higher than the effect of narrowing the pore diameter. This is probably because there was little performance degradation due to clogging of the membrane by proteins.
  • the water content of the insoluble component was 95.2%, and the relative adsorption rate of fibrinogen was 65%.
  • Example 3 The same operation as in Example 1 was performed except that a 0.001% by weight aqueous solution of vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. That is, a large amount of VA64 could be localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high. In addition, the reason why the platelet adhesion inhibitory ability was slightly reduced as compared with Examples 1 and 2 was that the amount of ester groups on the surface of the functional layer was less than that of Examples 1 and 2 and was uneven. It is thought that.
  • Example 4 A vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) is the same as in Example 1 except that a mixed aqueous solution of 0.001% by weight and ethanol 0.1% by weight was used. The operation was performed. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. That is, VA64 could be uniformly and many localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high.
  • the reason why the platelet adhesion inhibitory activity is higher than in Example 3 is considered to be because of the effect of protecting ⁇ rays on ester groups by ethanol.
  • the water content of the insoluble component was 97.3%, and the relative adsorption rate of fibrinogen was 28%.
  • fibrinogen adhesion was suppressed to less than half.
  • Example 5 A vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) is the same as in Example 1 except that a mixed aqueous solution of 0.0005 wt% and ethanol 0.1 wt% is used. The operation was performed. The results were as shown in the table. That is, VA64 could be uniformly and many localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high.
  • Example 6 The vinyl pyrrolidone / vinyl acetate (6/4) copolymer (BASF Co., Ltd., “Collidon VA64”) 0.01% by weight aqueous solution was filled in the same operation as in Example 1, but no blow with compressed air was performed. The film was immobilized on the membrane by irradiating 25 kGy of ⁇ rays. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table.
  • VA64 can be localized and uniformly localized on the surface of the functional layer, and platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance can be achieved. it was high. This is considered to be because VA64 was adsorbed on the membrane surface even when the hollow fiber membrane was immersed in the solution because VA64 has a high adsorption equilibrium constant with respect to polysulfone.
  • Example 7 The same operation as in Example 1 was performed except that a 0.1% by weight aqueous solution of vinylpyrrolidone / vinyl acetate (7/3) copolymer (manufactured by BASF, “Lubicol VA73”) was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. That is, a large amount of VA73 could be localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high.
  • Example 1 the reason why the platelet adhesion inhibiting property is slightly reduced as compared with Example 1 is that the amount of ester groups on the surface of the functional layer is smaller than that of Example 1 and is not uniform. .
  • the adsorption equilibrium constant has shown the result of the polysulfone film and Kollidon VA73.
  • Example 8 The same operation as in Example 1 was performed, except that a 0.01% by weight aqueous solution of vinylpyrrolidone / vinyl acetate (7/3) copolymer (manufactured by BASF, “Lubicol VA73”) was used. The results were as shown in the table. That is, a large amount of VA73 could be localized on the surface of the functional layer. Platelet adhesion was suppressed as compared with Comparative Example 1, but it was slightly higher than Example 3. This is probably because VA73 has few ester groups in the molecule, and the balance between hydrophilicity and hydrophobicity is worse than that of VA64, and therefore it is inferior in adhesion suppression.
  • Example 9 Vinylpyrrolidone / vinyl acetate (3/7) copolymer (BASF Co., Ltd., “Lubicol V A37 ”) A 0.1 wt% 60 wt% aqueous methanol solution was passed through 500 mL from the blood side inlet to the blood side outlet of the hollow fiber membrane module. Next, 500 mL from the blood side inlet to the dialysate side inlet. did. Further, water was passed in the same manner and the inside of the module was replaced with water, and then blown and irradiated with ⁇ rays in the same manner as in Example 1. The results were as shown in the table.
  • Example 10 A 0.01% by weight aqueous solution of a vinylpyrrolidone / vinyl acetate (3/7) copolymer (manufactured by BASF, “Lubicol VA37”) was prepared.
  • the aqueous solution was slightly cloudy, but no insoluble matter was visually observed.
  • the same operation as in Example 9 was performed on the aqueous solution.
  • the results are as shown in the table, and it was possible to achieve both high separation membrane performance and platelet adhesion inhibition. That is, VA37 could be localized and uniformly localized on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high.
  • Example 11 The same operation as in Example 9 was carried out except that 0.01 wt% of polyvinyl acetate and 60 wt% aqueous methanol solution were used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. Polyvinyl acetate, which is almost insoluble in water, was introduced into the membrane, achieving both high separation membrane performance and platelet adhesion inhibition. That is, a large amount of polyvinyl acetate could be localized uniformly on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high. The adsorption equilibrium constant could not be calculated because polyvinyl acetate hardly dissolves in water.
  • Example 12 The same operation as in Example 1 was performed except that a 0.1% by weight aqueous solution of polyvinyl alcohol (PVA) (molecular weight 10,000, saponification degree 80%) was used. The results were as shown in the table. That is, a large amount of PVA could be localized on the surface of the functional layer. Although the ⁇ 2 -microglobulin removal performance was slightly low, it can be seen that the high value was maintained as compared with Comparative Example 7.
  • PVA polyvinyl alcohol
  • Example 1 The same operation as in Example 1 was performed except that water was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. Although ⁇ 2 -microglobulin removal performance was high, it was a surface to which platelets adhered well. The water content of the insoluble component was 94.7%, and the relative adsorption rate of fibrinogen was 110%.
  • Example 2 The same operation as in Example 1 was performed except that a 0.1% by weight aqueous solution of PVP (manufactured by BASF, K90) was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. Although ⁇ 2 -microglobulin removal performance was high, it was a surface to which platelets adhered well. In addition, the adsorption equilibrium constant has shown the result of the polysulfone film and PVP.
  • PVP manufactured by BASF, K90
  • Example 3 The same operation as in Example 1 was performed except that a 0.1 wt% aqueous solution of polyethylene glycol (molecular weight: 6000) was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. Although ⁇ 2 -microglobulin removal performance was high, it was a surface to which platelets adhered well. In addition, the adsorption equilibrium constant has shown the result of the polysulfone film and polyethyleneglycol.
  • Example 4 A vinyl pyrrolidone / styrene copolymer (7/3) (ANTRA (trademark) 430, manufactured by IS Corporation) was used in the same manner as in Example 1 except that a 0.1 wt% aqueous solution was used. In addition, about the measurement of ester group origin carbon content, it performed twice on the same conditions. The results were as shown in the table. Even though “ANTRA” (registered trademark) 430, which is a copolymer of a hydrophilic unit and a hydrophobic unit, was used, it was a surface to which platelets adhere well. This is thought to be due to the low suppression of platelet adhesion because the hydrophobicity of styrene is too strong.
  • ANTRA registered trademark
  • Example 5 A vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) is the same as in Example 1 except that a mixed aqueous solution of 0.0001% by weight and ethanol 0.1% by weight was used. The operation was performed. The results were as shown in the table. That is, since VA64 cannot be localized on the functional layer surface, the platelet adhesion inhibitory property was hardly recognized. The water content of the insoluble component was 97.1%, and the relative adsorption rate of fibrinogen was 105%. Compared to Example 4, the water content of the insoluble component is about the same, but since the amount of ester groups on the inner surface of the hollow fiber membrane is small, it is considered that fibrinogen adhesion could not be suppressed.
  • Example 6 The same operation as in Example 1 was carried out except that 1% by weight of vinylpyrrolidone / vinyl acetate (6/4) copolymer (BASF Corp., “Collidon VA64”) was used. The results were as shown in the table. That is, since the amount of VA64 on the surface of the functional layer was too large, the platelet adhesion was suppressed, but the ⁇ 2 -microglobulin removal performance was remarkably low.
  • a polysulfone (PSf) hollow fiber membrane (hollow fiber membrane 2) was used.
  • Example 13 A plastic tube mini-module having an effective length of 100 mm, in which 36 polysulfone (PSf) hollow fiber membranes (hollow fiber membrane 2) were passed through the plastic tube and both ends were fixed with an adhesive, was prepared and thoroughly washed with pure water. Next, 3 mL of a 0.01% by weight aqueous solution of vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) was passed through the inside of the hollow fiber membrane, and then the inside of the hollow fiber membrane. 3 mL was allowed to flow outward from. Thereafter, the inner and outer solutions were blown out and then irradiated with 25 kGy of ⁇ rays. After the ⁇ -ray irradiation, various tests were performed after thoroughly washing with pure water.
  • PSf polysulfone
  • hollow fiber membrane 2 hollow fiber membrane 2
  • the clearance of ⁇ 2 -microglobulin was measured by the following method. That is, ⁇ 2 -microglobulin was added to bovine serum at 37 ° C. so that the concentration was 5 mg / L. This was flowed to the blood side of the minimodule at 1 mL / min, and 37 ° C. physiological saline was flowed to the dialysate side at 20 mL / min. After circulation for 2 hours, the bovine serum on the blood side and the physiological saline on the dialysate side were collected in total and requested for analysis by SRL, and the concentration of ⁇ 2 -microglobulin was measured. The clearance converted to 1.8 m 2 was calculated from the measurement result.
  • the ⁇ 2 -microglobulin clearance measurement in the mini-module has a variation in the numerical value from experiment to experiment, so that a control was added for each experiment and a comparison was made between experiments.
  • a hollow fiber membrane made of Toray's artificial kidney “Tresulfone” TS-1.6UL was used for the control.
  • TS-1.6UL used for control was the same production lot.
  • the relative removal rate (%) was obtained by comparing the measurement result of TS-1.6UL as a percentage, and comparison was made between these values.
  • Example 14 After introducing a 60% by weight methanol aqueous solution of 0.01% by weight polyvinyl acetate in the same manner as in Example 13, the methanol was replaced with water in the same manner as described above using pure water. Similarly, blowing, nitrogen substitution, and ⁇ -ray irradiation were performed. The results were as shown in the table, that is, a large amount of polyvinyl acetate could be localized uniformly on the surface of the functional layer, and the platelet adhesion inhibitory and ⁇ 2 -microglobulin removal performance was high.
  • Example 11 The reason why the platelet adhesion inhibitory effect was slightly inferior to that of Example 11 is considered to be due to the absence of PVP, which is a water-soluble polymer, and the platelet adhesion inhibitory effect was somewhat less than that of Example 13. The reason for the inferiority is thought to be that there is no vinylpyrrolidone unit in the polyvinyl acetate molecule.
  • Example 9 The same operation as in Example 13 was performed except that water was used. The results were as shown in the table. That is, it was a surface to which platelets adhered well.
  • Example 15 a hollow fiber membrane (hollow fiber membrane 3) containing chloroacetamidomethylated polysulfone (CAPMS) was used.
  • CAPMS chloroacetamidomethylated polysulfone
  • Example 15 A plastic tube mini-module having an effective length of 100 mm, in which 36 hollow fiber membranes containing chloroacetamidomethylated polysulfone (CAMPS) were passed through a plastic tube and both ends were fixed with an adhesive, was thoroughly washed with pure water. Next, since the reaction between the chloroacetamidomethyl group and the amino group easily proceeds, the allylamine / vinyl acetate copolymer was mainly immobilized on the functional layer surface of the hollow fiber membrane.
  • CAMPS chloroacetamidomethylated polysulfone
  • the clearance of ⁇ 2 -microglobulin was measured in the same manner as in Example 13. The results were as shown in the table. That is, a large amount of VA64 could be immobilized uniformly on the surface of the functional layer, and the platelet adhesion inhibitory property and ⁇ 2 -microglobulin removal performance were high. Compared to Comparative Example 10, the reason why ⁇ 2 -microglobulin removal performance is high is that VA64 is immobilized on the surface of the functional layer and has a high anti-adhesion effect on proteins and the like. This is probably because there were few. In addition, since the present Example is chemical fixation to a film
  • Example 10 A plastic tube module having an effective length of 100 mm, in which 36 chloroacetamidomethylated polysulfone-containing hollow fiber membranes were passed through a plastic tube and both ends were fixed with an adhesive, was prepared and thoroughly washed with pure water. Next, a 60 wt% aqueous isopropanol solution (adjusted to pH 9.0) was passed through only the inside of the hollow fiber membrane module and allowed to stand at room temperature for 1 hour. Thereafter, it was washed and replaced with pure water. Various tests were performed on the hollow fiber membrane. The clearance of ⁇ 2 -microglobulin was performed as in Example 11. The results were as shown in the table. That is, it was a surface to which platelets adhere well, and ⁇ 2 -microglobulin removal performance was lower than that of Example 15.
  • Example 16 the comparison of the addition of the ester group-containing polymer to the injection solution (hollow fiber membranes 4 and 5) was performed.
  • Example 16 A plastic tube mini-module having an effective length of 100 mm, in which 36 hollow fiber membranes 4 were passed through a plastic tube and both ends were fixed with an adhesive, was thoroughly washed with pure water. The water inside and outside the hollow fiber membrane was extracted by compressed air blow, and then irradiated with 25 kGy of ⁇ rays. After the ⁇ -ray irradiation, various tests were performed after thoroughly washing with pure water. As for the performance of the hollow fiber membrane, the clearance of ⁇ 2 -microglobulin was measured in the same manner as in Example 13. The results were as shown in the table. That is, platelet adhesion was suppressed and ⁇ 2 -microglobulin removal performance was high.
  • Example 11 36 hollow fiber membranes 5 were passed through a plastic tube, and the same operation as in Example 16 was performed. The obtained hollow fiber membranes were also evaluated in the same manner. The results were as shown in the table. That is, it was a surface to which platelets adhered well, and the ⁇ 2 -microglobulin removal performance was lower than that of Example 16.
  • Example 17 For the following Example 17 and Comparative Examples 12 and 13, a polyacrylonitrile (PAN) hollow fiber membrane (hollow fiber membrane 6) was used.
  • PAN polyacrylonitrile
  • Example 17 A plastic tube mini module having an effective length of 100 mm, in which 36 hollow fiber membranes 6 were passed through a plastic tube and both ends were fixed with an adhesive, was thoroughly washed with pure water. After passing 3 mL of a 0.1% by weight aqueous solution of vinylpyrrolidone / vinyl acetate (6/4) copolymer (manufactured by BASF, “Collidon VA64”) inside the hollow fiber membrane, from the inside to the outside of the hollow fiber membrane 3 mL was allowed to pass therethrough. Thereafter, the inner and outer solutions were extracted and then irradiated with 25 kGy of ⁇ rays. After the ⁇ -ray irradiation, various tests were performed after thoroughly washing with pure water.
  • aqueous solution of vinylpyrrolidone / vinyl acetate (6/4) copolymer manufactured by BASF, “Collidon VA64”
  • the clearance of ⁇ 2 -microglobulin was measured in the same manner as in Example 13. The results were as shown in the table. That is, platelet adhesion was suppressed and ⁇ 2 -microglobulin removal performance was high. Compared with Comparative Examples 12 and 13, the reason why ⁇ 2 -microglobulin removal performance is high is that VA64 covers the surface of the functional layer and has a high effect of suppressing the adhesion of proteins and the like, resulting in performance degradation due to clogging of the membrane with proteins. This is probably because there were few. The adsorption equilibrium constant indicates the result of PAN film and Kollidon VA64.
  • Example 12 Except for using 36 hollow fiber membranes 6 through a plastic tube and using pure water instead of vinylpyrrolidone / vinyl acetate (6/4) copolymer, the same operation as in Example 17 was performed. The results were as shown in the table. That is, it was a surface to which platelets adhered well, and the ⁇ 2 -microglobulin removal performance was lower than that of Example 17.
  • Example 13 Except for using 36 hollow fiber membranes 6 through a plastic tube and using 0.1% by weight aqueous solution of PVP (BASF, K90) instead of vinylpyrrolidone / vinyl acetate (6/4) copolymer. The same operation as in Example 17 was performed. The results were as shown in the table. That is, it was a surface to which platelets adhered well, and the ⁇ 2 -microglobulin removal performance was lower than that of Example 17. In addition, the adsorption equilibrium constant has shown the result of PAN film and PVP.
  • PVP BASF, K90

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

 有機物やタンパク質、血小板付着などの付着が少ない分離膜モジュールを提供する。  ポリマーからなる分離膜であって、膜の片側表面に機能層を有し、該機能層表面のX線電子分光法(ESCA)によるエステル基由来の炭素のピーク面積百分率が0.1(原子数%)以上、10(原子数%)以下であり、かつ、機能層の反対表面のX線電子分光法(ESCA)によるエステル基の由来の炭素のピーク面積百分率が10(原子数%)以下であることを特徴とする分離膜及びこれが内蔵された分離膜モジュールとする。

Description

分離膜およびその製造方法並びにその分離膜を用いた分離膜モジュール
 本発明は、分離膜および分離膜モジュールに関するものであり、分離性能が高く、かつ、血液適合性やタンパク質、有機物の非付着が要求される用途に好適に用いられる。例えば、血液浄化用の分離膜では血液適合性やタンパク質の非付着が要求され、浄水器用膜、上水浄化膜、下水浄化膜、逆浸透膜や、生体成分分離用膜などではタンパク質や有機物の非付着が要求される。したがって、かかる分野において本発明の分離膜、分離膜モジュールが好適に用いられる。
 体液や血液と接触する医療用の分離膜は、タンパク質や血小板が付着すると分離膜の性能低下や、生体反応を引き起こす原因となり、深刻な問題となる。また、浄水器などの水処理膜においても、タンパク質や有機物の付着が、分離膜の性能低下を引き起こす。かかる問題に対して、分離膜を親水化することによる解決が試みられており、様々な検討がなされている。例えば、ポリスルホンに親水性高分子であるポリビニルピロリドンを、製膜原液の段階で混合させて成形することで、膜に親水性を与え、汚れを抑制する方法が開示されている(特許文献1)。しかしながら、これらの方法では、表面に親水性を付与するには、製膜原液中の親水性高分子量を多くする必要があることや、基材となる高分子と相溶性のある親水性高分子に限定されることや、材料の使用用途に合わせて、最適な原液組成を検討しなければならないなどの制約を受ける。
 また、特許文献2には、ポリビニルアセタールジエチルアミノアセテートと親水化剤を膜にコーティングして親水化を図る方法が開示されている。この方法では、ポリビニルアセタールジエチルアミノアセテートが親水化剤を覆ってしまい、非付着に関する効果は激減することが懸念される。また、膜をポリビニルアセタールジエチルアミノアセテートおよび親水化剤の各溶液に浸漬させるために、膜の分離性能についても低下することが懸念される。
 製膜の工程中で、形成された膜に対し、放射線または熱により、水不溶化するポリビニルピロリドンなどの親水性成分を水不溶化させて導入する方法(特許文献3)や、ポリスルホン系の分離膜をポリビニルピロリドンなどの親水性高分子溶液と接触させた後、放射線架橋により不溶化した被膜層を形成する方法(特許文献4)が開示されている。しかしながら、ポリビニルピロリドンなどの水性高分子とポリスルホン系高分子は、分子間の相互作用が弱いために、被膜層を形成させることが困難という問題があった。
 そのため、ある範囲のケン化度のポリビニルアルコール水溶液をポリスルホン系分離膜と接触させて、ポリスルホンと酢酸ビニルの疎水性相互作用により、効率的に膜表面の被膜層を形成させる方法が開示されている(特許文献5)。しかしながら、該文献は非付着性に関しての方法ではないために、本発明者らが検討した結果、ポリビニルアルコールを分離膜に単純に被覆すると、分離膜の性能低下が著しいことがわかった。また、ポリビニルアルコールの水酸基は、血液と接触した際に、補体を活性化しやすいことが知られている。
 さらには、ポリビニルピロリドンやポリエチレングリコールのような親水性高分子で、材料表面を被覆しても、タンパク質などの付着は一時的にしか抑制できないとも言われている(非特許文献1)。すなわち、高性能な分離膜で血液適合性を満たす分離膜モジュールは未だ確立されていない。
特公平2-18695号公報 特開平8-131791号公報 特公平8-9668号公報 特開平6-238139号公報 特開2006-198611号公報 医療ナノテクノロジー 杏林図書 pp115-116
 本発明の目的は、かかる従来技術の欠点を改良し、タンパク質や有機物の付着が少ない高性能な分離膜モジュールを提供することにある。
 本発明者らは上記課題を達成するため鋭意検討を進めた結果、血液適合性に優れ、タンパク質や有機物の付着が少ない本発明の分離膜および分離膜モジュールは、下記の1~15の構成によって達成されることを見出した。
1.ポリマーからなる分離膜であって、膜の片側表面に機能層を有し、該機能層表面のX線電子分光法(ESCA)によるエステル基由来の炭素のピーク面積百分率が0.1(原子数%)以上、10(原子数%)以下であり、かつ、機能層の反対表面のX線電子分光法(ESCA)によるエステル基の由来の炭素のピーク面積百分率が10(原子数%)以下であることを特徴とする分離膜。
2.機能層表面におけるエステル基由来の炭素量が機能層の反対表面における前記炭素量よりも多いことを特徴とする分離膜。
3.前記エステル基が、エステル基含有ポリマー由来であることを特徴とする1または2に記載の分離膜。
4.前記分離膜が疎水性ポリマーを含有していることを特徴とする1~3のいずれかに記載の分離膜。
5.前記疎水性ポリマーがポリスルホン系ポリマーであることを特徴とする4に記載の分離膜。
6.前記分離膜が中空糸膜であることを特徴とする1~5のいずれかに記載の分離膜。
7.20℃の水100gに対する溶解度が1g以上である水溶性ポリマーを含有していることを特徴とする1~6いずれかに記載の分離膜。
8.前記エステル基含有ポリマーが、カルボン酸ビニルエステル、アクリル酸エステルおよびメタクリル酸エステル、から選ばれる少なくとも一つをユニットにもつことを特徴とする3に記載の分離膜。
9.前記エステル基含有ポリマーが、ポリ酢酸ビニルまたは酢酸ビニルとビニルピロリドンとの共重合体であることを特徴とする3または8に記載の分離膜。
10.血液浄化用であることを特徴とする1~9のいずれかに記載の分離膜。
11.1~10のいずれかに記載の分離膜が内蔵されたことを特徴とする分離膜モジュール。
12.疎水性ポリマーを含有する分離膜の製造方法であって、エステル基含有ポリマーをコーティングする工程を含み、該エステル基含有ポリマーと該疎水性ポリマーとの吸着平衡定数が330pg/(mm・ppm)以上1100pg/(mm・ppm)以下であり、エステル基含有ポリマー溶液を接触させる際、分離膜の内外で圧力差を生じさせることを特徴とする分離膜の製造方法。
13.前記コーティング工程が、分離膜にエステル基含有ポリマー溶液を接触させ、放射線照射および/または熱処理することによって行われることを特徴とする12に記載の分離膜の製造方法。
14.12または13に記載の方法により製造された分離膜であって、血液浄化用途であることを特徴とする分離膜。
15.12~14のいずれかに記載の方法により製造された分離膜を内蔵することを特徴とする分離膜モジュール。
 本発明における分離膜および分離膜モジュールは、エステル基が、分離膜機能層の表面に局在化していることを特徴とするものであり、分離性能が高く、かつ、血液適合性やタンパク質・有機物が付着しにくい性質が要求される用途に幅広く用いることができる。
本発明に用いられる人工腎臓の一態様を示す。 実施例1~10、比較例1~7で実施したβ-ミクログロブリン クリアランス測定における回路を示す。
符号の説明
1 中空糸膜
2 ケース
3 ポッティング剤
4 血液側入口(Bi)
5 血液側出口1(Do)
6 透析液側入口(Di)
7 透析液側出口(Do)
8 基準線
9 透析装置
10 中空糸膜モジュール
11 Biポンプ
12 Fポンプ
13 廃棄用容器
14 循環用血液
15 クリアランス測定用血液
16 Bi回路
17 Bo回路
18 Di回路
19 Do回路
20 温水槽
 本発明の分離膜は膜の片側表面に機能層を有し、エステル基が、分離膜機能層の表面に局在化していることを特徴とする分離膜モジュールである。
 エステル基が分離膜機能層の表面にあることにより、タンパク質や血小板の付着が抑制される。タンパク質の材料表面への付着は、タンパク質の高次構造が変化し、内部にある疎水性部位が露出し、材料表面との間に疎水性相互作用が生じるためであると言われている。一方で、タンパク質の周囲や材料表面には、水素結合により運動性が束縛された水、いわゆる結合水が存在する。従って、タンパク質が材料表面へ付着するには、結合水同士の相互作用が重要である。そのため、材料表面の親水性が強いと、タンパク質周囲の結合水もトラップされるために、タンパク質の付着を充分に抑制することができないと言われている。エステル基によるタンパク質の付着抑制効果についてのメカニズムは充分に分かっていないが、上記のことから考えると、エステル基は親水性であるために、タンパク質の高次構造変化を誘起することがなく、かつ、その親水性の度合いも強すぎないために、タンパク質周囲の結合水をトラップすることもないと推察できる。
 以上のことから、エステル基が分離膜機能層の表面に局在化していることが重要であり、機能層表面のX線電子分光法(以下ESCAと記すことがある)によるエステル基由来の炭素のピーク面積百分率が、0.1(原子数%)以上、好ましくは0.5(原子数%)以上、さらには1(原子数%)以上が好ましい。また、エステル基量が多すぎると、分離膜の性能の低下などが見受けられることがあるので、10(原子数%)以下、さらには5(原子数%)以下が好ましい。
 また、機能層の反対表面にもエステル基が多く存在すると、分離膜の性能が低下してしまうために、機能層反対表面のX線電子分光法(ESCA)によるエステル基由来の炭素のピーク面積百分率は10(原子数%)以下、好ましくは5(原子数%)以下、さらには1(原子数%)以下が好ましい。
 さらに、タンパク質の付着などは、機能層表面で抑制できれば良いので、機能層表面のエステル基由来の炭素量が機能層の反対表面よりも多いほうが、分離性能を向上させることができるので好適である。ここで、機能層表面のエステル基由来の炭素量は、反対表面に比べて、10%以上、好ましくは15%以上、さらには20%以上、より好ましくは30%以上多いことが好適である。
 表面のエステル基由来の炭素量は、X線電子分光法(ESCA)によって求めることができる。測定角としては90°で測った値を用いる。測定角90°は表面からの深さが約10nmまでの領域が検出される。また、測定個所は3箇所の平均値を用いる。エステル基(COO)由来の炭素のピークはC1sのCHやC-C由来のメインピークから+4.0~4.2eVに現れるピークをピーク分割することによって求めることができる。全元素に対する該ピーク面積の割合を算出することで、エステル基由来の炭素量(原子数%)が求まる。より具体的には、C1sには、主にCHx,C-C,C=C,C-S由来の成分、主にC-O,C-N由来の成分、π-π*サテライト由来の成分、C=O由来の成分、COO由来の成分の5つの成分から構成される。従って、5つ成分でピーク分割を行う。COO由来の成分は、CHxやC-Cのメインピーク(285eV付近)から+4.0~4.2eVに現れるピークである。この各成分のピーク面積比は、小数点第1桁目を四捨五入し、算出する。C1sの炭素量(原子数%)から、COO由来の成分のピーク面積比を乗じることで求めることができる。ピーク分割の結果、0.4%以下であれば、検出限界以下とした。
 なお、ここでいうところの機能層の表面とは、被処理物質、液体処理の場合は被処理液と接触する側の表面である。人工腎臓用中空糸膜を例に挙げると、被処理液である血液が流れる機能層の表面は内表面に、透析液が流れるその反対表面は外表面に相当する。
 分離膜成形後に、エステル基を含有した反応性化合物で機能層表面を化学修飾させれば、エステル基を機能層表面に導入することができる。しかしながら、表面反応は分離膜の性能低下等を引き起こす可能性もあり、実際に適用するには種々の条件制約がある。
 そこで、エステル基を含有したポリマーを用いると、比較的簡便にポリマー由来のエステル基を機能層表面に導入することができる。エステル基を含有したポリマーとしては、ポリ乳酸やポリエステルなどの主鎖にエステル基が含有されたものや、酢酸ビニルなどのカルボン酸ビニルエステル、メチルアクリレート、メトキシエチルアクリレートなどのアクリル酸エステル、メチルメタクリレート、エチルメタクリレート、ヒドロキシエチルメタクリレートなどのメタクリル酸エステルのように側鎖にエステル基が含有されたものを単量体としたポリマーや、酢酸ビニルとが挙げられる。また、エステル基含有ポリマーとして、ポリエチレンテレフタレートのように、芳香環を含んでいるポリマーは、疎水性の度合いが強く成りすぎるために、本発明において使用することは好ましくはない。タンパク質や血小板の付着の抑制機能向上のためには、カルボン酸ビニルエステル、アクリル酸エステル、メタクリル酸エステルなどの側鎖にエステル基が含有されたものが好ましい。中でも、酢酸ビニルは、タンパク質や血小板の付着の抑制性に優れている。
 また、エステル基含有ポリマーが、分離膜機能層の表面に局在化していることは膜の性能向上には重要である。これはエステル基含有ポリマーが、表面に局在化しておらず、膜厚方向にも多く存在している場合には、水素結合などの影響により、水分子が束縛されるため、血液中に含まれる水分子やそれに溶解した老廃物などが膜を通過しにくくなるためではないかと考えられる。
 以上のことから、膜の機能層表面に存在するエステル基含有ポリマーの存在量が、膜内部のエステル基含有ポリマーの存在量よりも30%以上多いことが好ましく、より好ましくは100%以上、さらには300%以上が好ましい。
 膜表面に存在するエステル基含有ポリマーの存在量が、膜内部のエステル基含有ポリマーの存在量よりも多いかどうかは、例えば、ESCAと全反射赤外分光法(以下ATRと記すことがある)を組み合わせることによって知ることができる。これは、ESCAは、表面の約10nmまでの深さを測定するものであり、ATRは表面測定ではあるが、数μmまでの深さの組成を測定するものであることによる。ポリスルホン分離膜を例に挙げると、膜中の任意の箇所におけるポリスルホンユニットの存在量に対するエステル基含有ポリマーの存在量の比をユニット量比とすると、ESCAで得られたユニット量比の値が、ATRで得られた値よりも30%以上大きければ、本発明でいう膜表面のエステル基含有ポリマー存在量が、膜内部よりも30%以上大きいとすることができる。なお、各測定の値は3点の平均値とする。
 エステル基含有ポリマーを、分離膜機能層の表面に局在化させるためには、例えば、以下のような方法が挙げられる。製膜原液から湿式製膜する場合、表面にはエントロピーロスを防ぐために高分子量のポリマーが集まり、エンタルピーロスを防ぐために、親水性ポリマーが集まる傾向にある。従って、例えば、ポリスルホン膜の場合、ポリスルホンとポリビニルピロリドンおよび、エステル基含有ポリマーの3成分ポリマーからなる原液を作成し、エステル基含有ポリマーの分子量を、ポリビニルピロリドンの分子量と同等以上にすることで、表面に濃縮させることができる。しかしながら、エステル基含有ポリマーのポリスルホンとの親和性が高ければ、エントロピー効果よりもエンタルピーの効果が優勢になり、エステル基は表面ではなく、分離膜内部に濃縮されることになる。一般的には、エステル基ユニットのみを含むホモポリマーよりも、ビニルピロリドンユニットなど、ホモポリマーでは水溶性を示すユニットとの共重合体のほうが、ポリスルホンとの親和性が弱いために好適に用いられる。また、分離膜が中空糸膜の場合には、二重環状口金から吐出する際に内側に注入液を流すが、この注入液にエステル基含有ポリマーを添加しても良い。中空糸膜が相分離し、膜構造が決定する前に、注入液中のエステル基含有ポリマーが、製膜原液側に拡散するため、内表面に局在化させることができる。さらには、中空糸膜を製膜後に、分離膜の機能層表面をエステル基含有ポリマーでコーティングしたりする方法は簡便で好適に用いられる。また、エステル基含有ポリマーと中空糸膜を化学反応によって、固定化しても良い。なお、コーティング後、放射線や熱処理によって、分離膜に架橋させることは、エステル基含有ポリマーの溶出を抑えるために好適な手段である。
 本発明の分離膜の素材となるポリマーには、疎水性ポリマーが好適に用いられる。本発明において、疎水性ポリマーとは、20℃の水100gに対する溶解度が0.001g未満であるポリマーを指す。具体的には、ポリスルホン系ポリマー、ポリスチレン、ポリウレタン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリフッ化ビニリデン、ポリアクリロニトリルなどが挙げられるが、これに限定されるものではない。この中でも、ポリスルホン系ポリマーは、分離膜を形成させやすく、また、エステル基含有ポリマーをコーティングしやすいため好適に用いられる。ここでいうところのポリスルホン系ポリマーとは、主鎖に芳香環、スルフォニル基およびエーテル基をもつものであり、ポリスルホン、ポリエーテルスルホン、ポリアリルエーテルスルホンなどが挙げられる。例えば、次式(1)、(2)の化学式で示されるポリスルホンが好適に使用されるが、本発明ではこれらに限定されない。式中のnは、例えば50~80の如き整数である。
Figure JPOXMLDOC01-appb-C000001
 ポリスルホンの具体例としては、ユーデルポリスルホンP-1700、P-3500(ソルベイ社製)、ウルトラソンS3010、S6010(BASF社製)、ビクトレックス(住友化学)、レーデルA(ソルベイ社製)、ウルトラソンE(BASF社製)等のポリスルホンが挙げられる。又、本発明で用いられるポリスルホンは上記式(1)及び/又は(2)で表される繰り返し単位のみからなるポリマーが好適ではあるが、本発明の効果を妨げない範囲で他のモノマーと共重合していたり、変性体であっても良い。特に限定するものではないが、他の共重合モノマーは10重量%以下であることが好ましい。
 一方で、ポリスルホン系ポリマーは総じて疎水性が強く、タンパク質などの有機物を多く付着する。特に活性化したタンパク質や血小板は、ポリスルホン量に比したエステル基の存在量が少ない場合、エステル基が存在する表面にも付着することを発見し、分離膜機能層の表面にあるエステル基は、分離膜機能層表面のどの部位でも、均一に、一定量以上が必要である、という結論に到った。そこで、本発明者等は、かかるエステル基の存在量を示す指標として、エステル基の存在量をポリスルホンの存在量で除した比で表すことを考え、種々検討した結果、分離膜機能層表面の異なる3箇所において、1730cm-1付近のエステル基C=O由来の赤外吸収ピーク強度(ACO)の、1580cm-1付近のポリスルホンのベンゼン環C=C由来の赤外吸収ピーク強度(ACC)に対する比(ACO)/(ACC)を選定し、その平均値が好ましくは0.005以上、より好ましくは0.01以上、さらに好ましくは0.02以上であり、かつ当該比が0.001以下である測定点の割合が10%以下が好ましく、より好ましくは5%以下であることがわかった。なお、(ACO)/(ACC)の平均値は、大きすぎると分離膜の性能低下を引き起こすことがあるため、1以下が好ましく、さらには0.5以下が好ましい。
(ACO)/(ACC)の比は、以下のように算出する。機能層表面について、測定範囲を3μm×3μm、積算回数は30回以上として赤外吸収スペクトルを吸収強度で25点測定する。この25点測定を、異なる3箇所で測定する。得られた赤外吸収スペクトルについては、1549~1620cm-1で基準線を引き、その基準線とスペクトルの正部分で囲まれた部分のピーク面積をACCとし、同様に、1711-1759cm-1で基準線を引き、そのピーク面積をACOとして、両者の比(ACO)/(ACC)を算出する。
 分離膜は多数の中空糸膜を内蔵した中空糸膜モジュールの場合、異なる3箇所としては、モジュールの両端部分と中央部分を測定することが好ましい。さらには、中空糸の測定本数は3本以上測定することが好ましい。
 前記(ACO)/(ACC)を上述した範囲内にする手段としては、エステル基含有ポリマーを製膜原液に添加する場合には、製膜原液の組成比、また紡糸時の口金温度、吐出部の温湿度などの諸条件を合わせることが重要である。これらの諸条件は、エステル基含有ポリマーの種類や分子量によっても異なる。例えば、エステル基含有ポリマーとしてビニルピロリドンと酢酸ビニルの共重合体(6/4)であるコリドンVA64(BASF社)を用いた場合には、製膜原液中のVA64量は1~10重量%、口金温度としては20~60℃、乾式部の温度は10~60℃で相対湿度は70~95%RHが好適な範囲である。また、注入液にエステル基含有ポリマーを添加する場合には、注入液の組成比、注入液温度、製膜原液の組成などが影響を及ぼす。例えば、VA64の場合、注入液への添加量としては5~30重量%、注入液温度としては10~60℃、製膜原液の組成としてポリスルホン系ポリマー濃度は14~25重量%、またポリビニルピロリドンを用いる場合には2~10重量%が好ましい。VA64が膜内に拡散しやいようにポリスルホン系ポリマーの重量平均分子量は小さいほうが好ましく、10万以下、さらには5万以下が好適に用いられる。ポリスルホン系ポリマーまた、コーティング等の後処理をする場合には、コーティング液におけるエステル基含有ポリマーの濃度や、接触時間、コーティング時の温度が影響を及ぼす。例えば、VA64水溶液でコーティングする場合には、VA64濃度は1~5000ppm、接触時間は10秒以上、温度は10~80℃が好適である。また、コーティングをバッチ式ではなく連続的に行う場合には、VA64水溶液の流速は速いほうが均一にコーティング可能であるが、速すぎると十分な量をコーティングできないので、200~1000mL/minが好適な範囲である。
 また、分離膜は、エステル基含有ポリマー以外に、20℃の水100gに対する溶解度が1g以上、好ましくは10g以上である水溶性ポリマーを含有していることが、タンパク質や血小板の付着抑制の観点から好ましい。表面の適度な親水性と疎水性のバランスが、タンパク質や血小板の付着抑制のために重要なのではないかと考えられている。実際に、エステル基含有ポリマー以外に、エステル基含有ポリマーより親水性の強い水溶性ポリマーが存在した場合には、タンパク質や血小板の付着抑制効果がさらに向上する。水溶性ポリマーとしては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールなどが好適である。分離膜に含有される水溶性ポリマー量としては、0.1重量%以上が好ましく、より好ましくは1重量%以上である。また、含有量が多すぎると膜性能が低くなる傾向にあるため30重量%以下が好ましく、より好ましくは10重量%以下である。また、機能層表面の水溶性ポリマー量としては、10重量%以上が好ましく、より好ましくは15重量%以上である。また、多すぎても親水性の効果が強くなりすぎるため、50重量%以下が好ましく、より好ましくは40重量%以下である。分離膜中のエステル基含有ポリマー量は、元素分析や核磁気共鳴(NMR)測定によって求めることができる。機能層表面の水溶性ポリマー量は、ESCAなどによって求めることができる。
 さらに、エステル基含有ポリマーが、水溶性ユニットとエステル基のユニットを持つ共重合体であれば、1分子のなかで適度な親水性と疎水性のバランスが取れるので好適である。したがって、共重合体としては、グラフト共重合体よりもブロック共重合体や交互共重合体、ランダム共重合体が好適に用いられる。これは、グラフト重合体では、主鎖にグラフトしたユニット部分がタンパク質などと接触する機会が多いため、共重合体としての特性よりも、グラフト鎖部分の特性が大きく影響するためと考えられる。また、ブロック共重合体よりも交互共重合体、ランダム共重合体がより好ましい。ブロック共重合体では、それぞれのユニットの特性がはっきりと分かれるためであると考えられる。1分子のなかでの親水性と疎水性のバランスという点では、ランダム共重合体および交互共重合体から選ばれる少なくとも一つを有する共重合体が好適に用いられる。エステル基含有ポリマー中のエステル基ユニットのモル比は0.3以上、0.7以下が好ましい。エステル基ユニットのモル比が0.3未満であれば、エステル基の付着抑制効果が低減する。また、0.7を超えると、水溶性ユニットの効果が低減する。
 これらのユニットのモル比は、NMRや元素分析などによって算出することができる。
 前記水溶性ユニットとしては、ビニルピロリドン基、エチレングリコール基、ビニルアルコール基などが挙げられる。特に、ビニルピロリドン-酢酸ビニルの共重合体は、適度な親水性と疎水性のバランスであり、好適に用いられる。また、表面全体としての親水性と疎水性のバランスも重要であり、表面のビニルピロリドンユニットの量としては、10重量%以上が好ましく、より好ましくは15重量%以上である。また、多すぎても親水性の効果が強くなりすぎるため、50重量%以下が好ましく、より好ましくは40重量%以下である。なお、表面のビニルピロリドンユニットの量としては、上述したように、分離膜にポリビニルピロリドンが含まれる場合は、ビニルピロリドンユニットとエステル基ユニットの共重合ポリマー由来と、ポリビニルピロリドン由来との合計の値になる。表面のビニルピロリドンユニットの量は、ESCAにより求めることができる。
 また、前記の水溶性ポリマーが分離膜の支持体となる疎水性ポリマーと相溶性が良い場合には、分離膜原液に添加し、造孔剤として使用できるので好適である。例えば、ポリスルホン系ポリマーに対して、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)が好適に用いられる。
 エステル基を含有したポリマーを機能層表面に導入する方法としては、上述したように、ポリマーを分離膜の製膜原液に混和しておいて成形する方法や、注入液に混和させる方法、分離膜成形後にコーティングする方法が好適に用いられる。さらにコーティング後、放射線照射、熱処理などにより不溶化する方法、分離膜を疎水性モノマーの混合溶液に浸漬し、重合反応を分離膜表面上で起こさせる方法などが挙げられる。
 これらのなかでも、エステル基を含有したポリマーを分離膜表面にコーティングする方法は、簡便かつ少量で実施できるため好適な方法である。例えば、エステル基含有ポリマーを溶媒に溶解させた溶液を分離膜に塗布し吸着させても良いし、接着剤のようなもので、分離膜素材とエステル基含有ポリマーを固定化させても良い。また、エステル基含有ポリマーを分離膜表面に接触させる際に、分離膜の表(機能層)と裏との間に圧力差を生じさせ、これを利用して膜表面に濃縮させる方法は効率的であり、好適に用いられる。圧力差としては、加圧であっても減圧であっても良い。なお、エステル基含有ポリマー溶液そのものにより、圧力差を生じさせて膜表面に導入する方法もあるが、当該溶液を接触させた後、気体や、水など他の溶液で加圧しても良い。
 特に、エステル基を含有したポリマーを分離膜に表面コーティングする際には、分離膜の支持体となる疎水性ポリマーとエステル基含有ポリマーの吸着平衡定数が高いほうが、分離膜の表面を一様に覆うことができることがわかった。また、エステル基含有ポリマーの大きさが、分離膜の孔径よりも小さい場合には、分離膜の内外で圧力差を生じさせても、エステル基含有ポリマーは、膜を通過するので、機能層表面にエステル基含有ポリマーを効率的に局在化させられない。しかしながら、吸着平衡定数が高ければ、分子量に関係なく、効率的にエステル基含有ポリマーを表面に局在化させられることがわかった。すなわち、吸着平衡定数は、330pg/(mm・ppm)以上であると好ましく、より好ましい範囲は500pg/(mm・ppm)以上であり、さらに好ましい範囲は550pg/(mm・ppm)以上である。さらには、600pg/(mm・ppm)以上であると特に好ましい。一方で、分離膜を構成する疎水性ポリマーとの吸着結合定数が1100pg/(mm・ppm)を超えるポリマーを使用すると、分離膜と接触させた際に過剰にポリマーが吸着し、それに伴って膜孔が小径化することでタンパク質の除去効率が悪くなるなど、分離膜性能が低下する。したがって、1100pg/(mm・ppm)以下であることが好ましく、より好ましくは1000pg/(mm・ppm)以下であり、さらに好ましい範囲は900pg/(mm・ppm)以下であり、特に好ましい範囲は850pg/(mm・ppm)以下である。
 なお、吸着平衡定数が高い場合には、膜への吸着量が多く、性能が下がる場合が多い。ただし、このときは、コーティング溶液の濃度を下げたり、コーティング溶液の量を少なくすることで対処できうる。
 分離膜の内外で圧力差としては、好ましくは5kPa以上、より好ましくは10kPa以上、さらに好ましくは20kPa以上である。また、圧力差が高い場合には、分離膜がリークしてしまう場合があるので、100kPa以下が好ましく、より好ましくは70kPa以下、さらに好ましくは50kPa以下である。なお、ここで言うところの分離膜の内側とは、処理液と接する分離膜機能層の表面側、外側とはその反対側を言う。人工腎臓用中空糸膜を例に挙げると、被処理液である血液が流れる機能層の表面は内側に、透析液が流れるその反対表面は外側に相当する。
 本発明において、吸着平衡定数は、表面プラズモン共鳴装置(以下、SPRと略す)を用いて測定することにより算出した値である。SPRは、一定角度で照射させたレーザー光の共鳴角の変化から薄膜表面の質量変化を解析する装置であり、分離膜に含有されている疎水性ポリマーをSPR用の金チップにスピンコートし、薄膜を形成させ、5~1000ppmの範囲で濃度を任意に選定して変えたエステル基含有ポリマー水溶液をそれぞれ流した時の各吸着量を求め、その値から作成した吸着等温線により、吸着平衡定数を導き出す。
 コーティングする場合は、分離膜を変形させない溶媒を用いる必要があるため、水やアルコール水溶液が好適に用いられる。しかしながら、エステル基含有ポリマーは、水やアルコールに溶けにくいものが多い。したがって、上記酢酸ビニル等のみからなるポリマーに比べ、これらに水溶性ユニットを共重合させた共重合体が、このような観点からも好適に用いられる。
 この場合、上述したように、タンパク質や血小板付着の抑制効果と溶解性から、共重合体中のエステルユニットの比は0.3以上、0.7以下が好ましく、さらには0.35以上、0.55以下が好ましい。特に水溶性ユニットがビニルピロリドンからなる場合は、コーティングによる分離膜の性能がほとんど低下しないため、好適に用いられる。特に、酢酸ビニルとビニルピロリドンとの共重合体が好ましい。なお、ビニルアルコールと酢酸ビニルの共重合体は、水酸基による水素結合などの影響により水分子が束縛され、溶質が膜を通過しにくいためか、膜性能が低い場合がある。さらに、ポリスルホン系の分離膜にコーティングした場合、吸着平衡定数も高いためか、酢酸ビニルとビニルピロリドンとの共重合体に比べて、性能の低下が大きい場合もある。
 さらに、コーティング後、放射線照射、熱処理などにより不溶化する方法は、エステル基含有ポリマーの溶出を低減できるため好適な方法である。例えば、分離膜をエステル基含有ポリマー溶液に浸漬した状態で放射線照射や熱処理を行えば良い。あるいは、分離膜をビニルピロリドンユニットと疎水性ユニットとの共重合体溶液に浸漬した後、溶液を抜き出した後、放射線照射や熱処理をしても良い。放射線照射する場合には、若干量の溶媒が存在したほうが、エステル基含有ポリマーが分離膜に固定、不溶化されやすい。これは、溶媒が放射線照射によりラジカルとなり、これが起点となって、該ポリマーや分離膜の素材もラジカル化し、共重合体が膜へ架橋、不溶化するためと考えられる。したがって、分離膜の乾燥重量に対して、0.2重量倍以上、さらには1.0重量倍の溶媒が残存していることが好ましい。なお、溶媒としては、取り扱い性の観点から水が好適に用いられる。一方で、分離膜モジュール内に水が充填されていないほうが、放射線照射までの時間に溶出する懸念が少ないので、分離膜のみ湿潤状態であることが好ましい。具体的には、分離膜の乾燥重量に対して、6.0重量倍以下、さらには4.0重量倍以下が好ましい。また、分離膜をエステル基含有ポリマー溶液に浸漬した後、水などに置換してから放射線照射や熱処理を行っても良い。さらには、置換した水などを抜き出した後、放射線照射や熱処理をしても良い。
 また、分離膜機能層のエステル基由来の炭素のピーク面積百分率が0.1(原子数%)以上であり、かつ、分離膜を形成するポリマーの良溶媒で溶かした際に、不溶性成分が含まれ、該不溶性成分の含水率が95%以上、好ましくは97%以上である場合には、分離膜からのポリマーの溶出を抑えつつ、タンパク質の付着をより効果的に抑制することができる。タンパク質の付着を抑制するためには、ある程度の親水性が必要である。しかしながら、分離膜中にポリビニルピロリドンのような水溶性ポリマーを有しつつ、不溶性成分が含まれない場合には、タンパク質の種類によっては、付着の抑制効果が高くない場合がある。これは、膜表面に存在するポリビニルピロリドンの散漫層にタンパク質が潜りこんでトラップされるためと考えられる。散漫層がある程度の架橋状態であれば、タンパク質の潜りこみを抑制できるとためと推測できる。
 不溶性成分の含水率については、次のように求められる。乾燥した分離膜を、良溶媒で2重量%の濃度に溶解する。該溶液を濾紙を用いて濾過し、不溶性成分を得た。良溶媒で可溶性成分を十分に洗浄後、不溶性成分を水で置換する。余分な水を取り除き、含水状態の不溶性成分重量(w)を測定後、十分に乾燥させた後の不溶性成分重量(d)を測定した。含水率は下式により算出できる。
含水率(%)=(w-d)×100/w
 例えば、ポリスルホン系ポリマーとポリビニルピロリドン、ビニルピロリドン/酢酸ビニル(6/4)からなる分離膜の場合は、ジメチルアセトアミドが良溶媒になる。
 不溶性成分を形成させるには、分離膜に放射線や熱処理を行うによって、分子間や分子内で架橋反応を起こさせることが好適である。また、放射線照射線量や加熱温度、時間をコントロールすることで含水率を95%以上とすることができる。ポリマーによって異なるが、一般的に、放射線量としては5~50kGyが、加熱条件としては120~300℃が好適である。また、放射線を照射する際に、抗酸化剤を用いることで、架橋反応を制御することも可能である。抗酸化剤の詳細については、後述する。
 また、中空糸膜内のポリマーの分散状態も、架橋反応に影響を及ぼす。すなわち、架橋性のポリマーが、中空糸膜内で微分散していることが好ましい。中空糸膜内のポリマーの分散状態に影響を与える因子としては、製膜原液の組成比、撹拌速度、撹拌時間、溶解後の製膜までの時間、エステル基含有ポリマーを注入液に添加する場合には、注入液組成、注入液温度、エステル基含有ポリマーをコーティングする際には、コーティング方法などが挙げられる。
 例えば、ポリスルホンとポリビニルピロリドンからなる中空糸膜に、ビニルピロリドン/酢酸ビニル(6/4)共重合体をコーティングする場合、製膜原液におけるポリビニルピロリドンの比は全ポリマー重量に対して、15~35重量%が好ましい。ポリビニルピロリドンが少ないと、親水性の割合が少なくなるために、架橋反応後も含水率が低くなる。また、多すぎてもポリビニルピロリドンが微分散できなくなるために架橋反応が進行し、含水率が低下する。また、撹拌速度としては30rpm以上、好ましくは50rpm以上であった場合には、ポリビニルピロリドンの分散状態を高めることができるので好適である。さらに、溶解後、時間が経つと製膜原液内でミクロ相分離が生じ始めるために、ポリビニルピロリドンが微分散されなくなるために、溶解後1週間以内に紡糸することが好ましい。また、エステル基含有ポリマーをコーティングする際には、分離膜の内外で圧力差を生じさせることが効果的である。
 なお、吸着平衡定数が高くとも、エステル基含有ポリマー溶液の濃度が低いと、分離膜を充分にコーティングできない場合がある。また、濃度が高すぎると、溶出物が増えたり、分離膜性能の低下も引き起こされる場合が多い。具体的な濃度は、該ポリマーの種類によってことなるが、一般的には、0.0001重量%以上、1重量%以下が好ましく、さらには、0.001重量%以上、0.1重量%以下が好ましい。
 例えば、ビニルピロリドン/酢酸ビニル(7/3)共重合体の場合は、0.05重量%以上、1重量%以下が好ましい。ビニルピロリドン/酢酸ビニル(6/4)共重合体、およびビニルピロリドン/酢酸ビニル(5/5)共重合体の場合は、0.001重量%以上、1重量%以下が好ましい。さらには、0.005重量%以上、0.1重量%以下が好ましい。ビニルピロリドン/酢酸ビニル(3/7)共重合体、およびポリ酢酸ビニルの場合は、0.001重量%以上、0.5重量%以下が好ましい。また、詳細は、後述するが、抗酸化剤を共存させることで、上記濃度の下限値を更に下げても、タンパク質や血小板などの付着抑制効果を発現可能である。
 また、浸漬させたエステル基含有ポリマー溶液や水などを抜き出す方法としては、減圧乾燥、高温乾燥、低温送風乾燥、ブロー乾燥など、種々の方法を用いることができる。なお、放射線を照射する際に、酸素が存在すると、酸素ラジカルなどが発生し、分離膜素材の高分子材料が分解してしまうことが知られている。従って、放射線照射する際の分離膜周囲の酸素濃度は10%以下であることが望ましい。分離膜モジュールに放射線照射する場合は、例えば、モジュール内を窒素ガスでパージした後、密閉することで、酸素濃度を低下させ、放射線照射すれば良い。
 なお、コーティングを行う段階としては、分離膜をエステル基含有ポリマーでコーティングした後にモジュールに組み込んでも良いし、分離膜モジュール内をエステル基含有ポリマー溶液で充填することで、コーティングしても良い。コーティング後、上述したように放射線照射や熱処理を行っても良い。
 本発明における放射線はα線、β線、γ線、X線、紫外線、電子線などが用いられる。また、人工腎臓などの血液浄化用モジュールは滅菌することが必要であり、近年は残留毒性の少なさや簡便さの点から、γ線や電子線を用いた放射線滅菌法が多用されている。すなわち、分離膜にエステル基含有ポリマーをコーティングさせた場合、滅菌と同時に該共重合体の不溶化も同時に達成できる。
 基材の滅菌と改質を同時に行う場合は、15kGy以上の照射線量が好ましい。血液浄化用モジュール等をγ線で滅菌するには15kGy以上が効果的なためである。しかしながら、照射線量が100kGy以上であると、エステル基含有ポリマーは、3次元架橋やエステル部分の分解などが起きるため、血液適合性が低下する。
 また、分離膜にエステル基含有ポリマーをコーティングさせ、放射線により不溶化する工程において、溶液中に該ポリマー以外の成分、例えば、抗酸化剤が入っていても良い。さらには、エステル基含有ポリマー溶液で分離膜をコーティングした後、抗酸化剤溶液と接触させても良い。
 抗酸化剤を入れることで、発生するラジカル量を調整することができる。例えば、血液浄化用モジュールで、放射線照射による不溶化と滅菌を兼ねる際に、両者いずれかの線量では分離膜などが劣化する場合、それを防止するために抗酸化剤を併用すれば良い。また、分離膜をエステル基含有ポリマー溶液でコーティングする際に、抗酸化剤を添加することで、エステル基含有ポリマーの添加量を減量させることができる。例えば、ビニルピロリドン/酢酸ビニル(6/4)共重合体、およびビニルピロリドン/酢酸ビニル(5/5)共重合体に、エタノールなどの抗酸化剤を併用した場合、該共重合体について、上述した好適な範囲の下限値を1/10以下にすることが可能である。これは、抗酸化剤が、放射線によるエステル基の分解反応などを抑制するためと考えられる。ここでいう抗酸化剤とは、他の分子に電子を与えやすい性質を持つ分子のことを言う。例えば、ビタミンCなどの水溶性ビタミン類、ポリフェノール類、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、グリセリンなどのアルコール類、グルコース、ガラクトース、マンノース、トレハロースなどの糖類、ソジウムハイドロサルファイト、ピロ亜硫酸ナトリウム、二チオン酸ナトリウムなどの無機塩類、尿酸、システイン、グルタチオン、などが挙げられるが、これらに限定されるものではない。これらの抗酸化剤は単独で用いてもよいし、2種類以上混合して用いてもよい。本発明の方法を医療用具に用いる際は、その安全性を考慮する必要があるため、抗酸化剤は毒性の低いものが好適に用いられる。
 抗酸化剤を含有する溶液の濃度については、含有する抗酸化剤の種類、放射線の照射線量などにより異なる。抗酸化剤の濃度が低すぎると、溶媒から発生するラジカルの消去が十分にできないため、分離膜などの劣化を防ぐことができない。また、抗酸化剤を多量に入れると、ラジカルが十分に消去されてしまうために、共重合体の分離膜への固定化量が落ちるために、溶出物の増加やタンパク質や血小板などの付着抑制効果も十分に得られない。以上のことから、抗酸化剤としては、エタノール、n-プロパノール、2-プロパノール、エチレングリコール、プロピレングリコール、グリセリンが好適に用いられ、その濃度範囲は、0.01重量%以上、90重量%以下が好適に用いられる。特にエタノール、n-プロパノール、2-プロパノールの場合は、0.01重量%以上、10重量%以下が好適に用いられ、さらに好ましくは0.05重量%以上、1重量%以下である。プロピレングリコール、グリセリンの場合は、0.1重量%以上、90重量%、さらに好ましくは、0.5重量%以上、70重量%以下である。
 本発明の分離膜とは血液や水溶液などの処理する液体に含まれる特定の物質を、吸着もしくは物質の大きさなどにより、選択的に除去する膜のことである。
 本発明の分離膜は、高い付着抑制性を有するので、水処理用分離膜や生体成分分離膜として好適に用いることができる。特に、人工腎臓などの血液浄化用モジュールに適する。ここで、血液浄化用モジュールとは、血液を体外に循環させて、血中の老廃物や有害物質を取り除く機能を有したモジュールのことをいい、人工腎臓や外毒素吸着カラムなどがある。また、人工腎臓用モジュールとしては、コイル型、平板型、中空糸膜型があるが、処理効率などの点から、中空糸膜型が好ましい。
 分離膜モジュールの製造としては、その用途により、種々の方法があるが、例えば工程としては、分離膜の製造工程と、その分離膜をモジュールに組み込むという工程にわけることができる。
 血液浄化用モジュールとして、人工腎臓の製造方法についての一例を示す。まず、分離膜である中空糸膜の製造方法としては、ポリスルホンとポリビニルピロリドン(重量比率20:1~1:5が好ましく、5:1~1:1がより好ましい)をポリスルホンの良溶媒(N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン、ジオキサンなどが好ましい)および貧溶媒の混合溶液に溶解させた原液(濃度は、10~30重量%が好ましく、15~25重量%がより好ましい)を二重環状口金から吐出する際に内側に注入液を流し、乾式部を走行させた後凝固浴へ導く。この際、乾式部の湿度が影響を与えるために、乾式部走行中に膜外表面からの水分補給によって、外表面近傍での相分離挙動を速め、孔径拡大し、結果として透析の際の透過・拡散抵抗を減らすことも可能である。ただし、相対湿度が高すぎると外表面での原液凝固が支配的になり、かえって孔径が小さくなり、結果として透析の際の透過・拡散抵抗を増大する傾向がある。そのため、相対湿度としては60~100%RHが好適である。また、注入液組成としてはプロセス適性から原液に用いた溶媒を基本とする組成からなるものを用いることが好ましい。注入液濃度としては、例えばジメチルアセトアミドを用いたときは、45~80重量%、さらには60~75重量%の水溶液が好適に用いられる。
 中空糸膜をモジュールに内蔵する方法としては、特に限定されないが、一例を示すと次の通りである。まず、中空糸膜を必要な長さに切断し、必要本数を束ねた後、筒状ケースに入れる。その後両端に仮のキャップをし、中空糸膜両端部にポッティング剤を入れる。このとき遠心機でモジュールを回転させながらポッティング剤を入れる方法は、ポッティング剤が均一に充填されるために好ましい方法である。ポッティング剤が固化した後、中空糸膜の両端が開口するように両端部を切断し、中空糸膜モジュールを得る。
 以下実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 以下実施例と比較例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 1.測定方法
 (1)X線光電子分光法(ESCA)測定
 中空糸膜を片刃で半円筒状にそぎ切り、中空糸膜の内表面および外表面を各3点測定した。測定サンプルは、超純水でリンスした後、室温、0.5Torrにて10時間乾燥させた後、測定に供した。測定装置、条件としては、以下の通り。
測定装置: ESCALAB220iXL
励起X線: monochromatic Al Kα1,2 線(1486.6eV)
X線径: 0.15mm
光電子脱出角度: 90 °(試料表面に対する検出器の傾き)
 エステル基由来の炭素量としては、C1sのCHやC-Cのメインピーク(285eV付近)から+4.0~4.2eVに現れるピークが、エステル基(COO)由来のピークであるため、ピーク分割を行った後、全元素(水素原子は検出できないので、水素原子以外の全元素)に対する該ピーク面積の割合を算出し、エステル基由来の炭素量(原子数%)を求めた。
 また、分離膜支持体がポリスルホンの場合、ビニルピロリドンユニットの分子量は111、ポリスルホンユニットの分子量は442であるから、表面のビニルピロリドンユニット量は、窒素量(a(原子数%))と硫黄量(b(原子数%))の値から、下式より算出した。
表面ビニルピロリドン量(重量%)=(a×111/(a×111+b×442))×100
 また、分離膜支持体がポリアクリロニトリルの場合、アクリルユニットの炭素数は3、窒素数は1、ビニルピロリドンの炭素数は6、酸素数は1、窒素数は1であるので、それらの比率から算出することができる。
 (2)分離膜表面および内部の酢酸ビニルユニット量比の測定
 分離膜表面のエステル基含有ポリマー量は、(1)の通りESCAを用いることで算出できる。表面の酢酸ビニルユニット量比の測定には、ESCAを用いた。測定装置および条件は(1)と同じにした。
 表面の酢酸ビニルユニット量比は、(1)と同様にして得られたエステル基由来の炭素量(原子数%)C1sピークにエステル基(COO)のピークが現れることから、ピーク分割することで得られる。また、ポリスルホン量は、ポリスルホンの繰り返しユニット当たりに1個の硫黄原子が存在するので、硫黄量を求めることで得られる。したがって、表面酢酸ビニルユニット量比=エステル基量(原子数%)/硫黄量(原子数%)とした。
 内部の酢酸ビニルユニット量比は、ATR測定を行うことによって求めた。測定条件は分解能4、積算回数64回とした。1730cm-1付近のエステル基由来のC=Oのピークの強度(ACO)と、1580cm-1付近のポリスルホンのベンゼン環由来のC=C吸収ピークの強度(ACC)を求めた。ATRは表面から約2~3μmまでの測定深さである。
 各種濃度のポリスルホンとポリ酢酸ビニルをN,N-ジメチルアセトアミドに溶解させた。各種濃度の溶液を、ホットプレートで110℃に加熱したガラス板の上に滴下し、厚さ203μmとなるようキャストした。キャスト後、5分間ホットプレート上で放置し、溶媒を蒸発させた後、ガラス板ごと水浴へ浸漬し透明フィルムを得た(水浴に浸漬させるのは、フィルムをガラス板からはがしやすくさせるためである)。
 このフィルムについてATR測定を行い、(ACO)と(ACC)の強度比と酢酸ビニルユニット量比の検量線を求めた。
 中空糸膜内表面についてATR測定を行い、(ACO)と(ACC)の強度比から、上記の検量線を用いて、内部の酢酸ビニルユニット量比とした。
 なお、ポリアクリロニトリルの場合は2200cm-1付近のニトリル基由来のC≡Nのピークの強度(ACN)と、ACOの比を上記と同様にしてフィルムで検量線を作成し、内部の酢酸ビニルユニット量比を求めた。
 (3)赤外吸収スペクトルによるエステル基分布の測定方法
 中空糸膜を片刃で半円筒状にそぎ切り、超純水でリンスした後、室温、0.5Torrにて10時間乾燥させた。この乾燥中空糸膜の内表面をJASCO社製IRT-3000の顕微ATR法により測定した。測定は視野領域(アパーチャ)を100μm×100μmとし、積算回数を1点につき30回、アパーチャを3μmずつ動かし、縦横各5点、の計25点で測定を行った。得られたスペクトルの波長1549~1620cm-1で、基準線を引き、その基準線とスペクトルの正部分で囲まれた部分のピーク面積をポリスルホンのベンゼン環C=C由来の赤外吸収ピーク面積ACCとした。同様に、1711-1759cm-1で、基準線を引き、エステル基C=O由来の赤外吸収ピーク面積ACOとした。
 上記の操作をモジュール1本当たり3本の異なる中空糸について、それぞれ同一中空糸で異なる3箇所測定し、(ACO)/(ACC)の平均値および、0.001以下の割合を算出した。
 (4)吸着平衡定数の算出
 吸着平衡定数は、表面プラズモン共鳴測定によって求めた。GEヘルスケアバイオサイエンス株式会社製のAuセンサーチップをスピンコーターに固定させた後、ポリスルホン(アモコ社 Udel-P3500)の0.1重量%クロロベンゼン溶液もしくは、ポリアクリロニトリルの0.1重量%ジメチルスルホキシド溶液をパスツールピペットで1、2滴滴下させた。その直後3000rpmで1分間回転乾燥させることで、ポリスルホンもしくはポリアクリロニトリルが表面に薄層化したAuセンサーチップを作成した。このセンサーチップをGEヘルスケアバイオサイエンス株式会社製BIACORE3000に挿入し、2000秒間センサーチップを水洗浄した後、以下の操作を5、10、50、100、500、1000ppmの各濃度の各種のポリマー水溶液にて繰り返した。
1.各種のポリマー水溶液を20μL/minで750μL流してポリスルホン表面もしくはポリアクリロニトリルに吸着させた。
2.2000秒間水洗浄を行った。
3.0.025重量%トリトンを20μL/minで750μL流し、吸着させた各種ポリマーを剥離させた。
4.2000秒間水洗浄を行った。
 ポリスルホンもしくはポリアクリロニトリル表面への吸着量は、センサーチップ挿入直後に2000秒間水洗浄した後の値を0として、各、操作2が終了した時点での差の値とした。なお、操作4が終了した時点で、センサーチップ挿入直後水洗浄を行った後の値より高くなった場合は、0.025重量%トリトンにより各種ポリマーが完全に剥離されなかったとみなし、その増分は吸着量に加算した。以上の操作を5~1000ppmで繰り返し、上記によって得られた吸着等温線(横軸が各種ポリマーの濃度、縦軸が吸着量)から、高分子とその吸着表面における一般的な溶液吸着モデル(フロインドリッヒ式近似)(式1)を用いて最小二乗法により当てはめ、該吸着平衡定数を算出した。
Q=KC (式1)
(Q:単位面積当たり吸着量、K:吸着平衡定数、n:フロインドリッヒ定数)。
 (5)不溶性成分の含水率測定
 乾燥した中空糸膜を2g/vol%になるようにジメチルアセトアミドで5時間以上撹拌、溶解させた。濾紙(「アドバンテック」(登録商標)No.7 東洋濾紙社製)で不溶性成分を濾過させた後、ジメチルアセトアミドで可溶性成分を十分に洗浄した。遠沈管に不溶性成分(ゲル状物)を回収し、さらにジメチルアセトアミドで十分に撹拌後、遠心により該ゲルを沈降させ、上澄みを取り除くことを3回以上繰り返した。その後、上澄みを取り除いた後、純水を添加し、十分に撹拌後、遠心により該ゲルを沈降させ、上澄みを取り除くこと5回繰り返し、ジメチルアセトアミドを純水に置換した。余剰の水分を抜き取り、含水した重量(w)を測定した。得られた含水ゲルについて、凍結乾燥を24時間以上行い、完全に乾燥後、重量(d)を測定した。下記式により含水率を算出した。
含水率(%)=(w-d)×100/w。
 (6)中空糸膜のヒト血小板付着試験方法
 18mmφのポリスチレン製の円形板に両面テープを貼り付け、そこに中空糸膜を固定した。貼り付けた中空糸膜を片刃で半円筒状にそぎ切り、中空糸膜の内表面を露出させた。中空糸内表面に汚れや傷、折り目などがあると、その部分に血小板が付着し、正しい評価ができないことがあるので注意を要する。筒状に切ったFalcon(登録商標)チューブ(18mmφ、No.2051)に該円形板を、中空糸膜を貼り付けた面が、円筒内部にくるように取り付け、パラフィルムで隙間を埋めた。この円筒管内を生理食塩液で洗浄後、生理食塩液で満たした。人間の静脈血を採血後、直ちにヘパリンを50U/mlになるように添加した。前記円筒管内の生理食塩液を廃棄後、前記血液を、採血後10分以内に、円筒管内に1.0ml入れて37℃にて1時間振盪させた。その後、中空糸膜を10mlの生理食塩液で洗浄し、2.5重量%グルタルアルデヒド生理食塩液で血液成分の固定を行い、20mlの蒸留水にて洗浄した。洗浄した中空糸膜を常温0.5Torrにて10時間減圧乾燥した。この中空糸膜を走査型電子顕微鏡の試料台に両面テープで貼り付けた。その後、スパッタリングにより、Pt-Pdの薄膜を中空糸膜表面に形成させて、試料とした。この中空糸膜の内表面をフィールドエミッション型走査型電子顕微鏡(日立社製S800)にて、倍率1500倍で試料の内表面を観察し、1視野中(4.3×103μm2)の付着血小板数を数えた。中空糸長手方向における中央付近で、異なる10視野での付着血小板数の平均値を血小板付着数(個/4.3×103μm2)とした。中空糸の長手方向における端の部分は、血液溜まりができやすいため付着数の計測対象からはずした。
 抗血栓性が良好な材料としては、血小板付着数が40(個/4.3×103μm2)以下、さらには20(個/4.3×103μm2)以下、好ましくは10(個/4.3×103μm2)以下である。
 (7)フィブリノーゲンの相対付着率測定
 中空糸膜へのタンパク質の付着として、凝固系タンパク質の1つである、フィブリノーゲンの相対吸着率を測定した。
 プラスチック管に中空糸膜を36本通し、両端を接着剤で固定した有効長100mmのプラスチック管ミニモジュールを作製し、純水で十分に洗浄した。
 次に、人間の静脈血を採血後、直ちにクエン酸を10容量%になるように添加した。該血液を4℃にて3000rpm、15分間遠心し、血漿を得た。
 血漿1mLを流速0.5mL/minで2時間循環させた。ミニモジュールから中空糸を24cm相当切り出し、約1mm長に細切しエッペンチューブに入れた。リン酸緩衝液(以下、PBSと略記)にて洗浄した(1mL×3回、血液が残っている場合には繰り返した)。トゥイーン-20(片山化学)をPBSで0.05重量%になるように調整した(以下、PBS-Tと略記)。スキムミルクを0.1重量%になるように、PBS-Tに溶解させ、該溶液で3回洗浄した。抗ヒトフィブリノーゲン(HPR)抗体を0.1重量%のスキムミルク/PBS-T溶液で10000倍に希釈し、1mL添加した後、室温にて2時間ローテーターで回転、撹拌させた。0.1重量%のスキムミルク/PBS-T溶液で2回洗浄した後、0.1重量%のスキムミルク/PBS溶液で2回洗浄した。TMB one solutionを1mL添加し、ミクロミキサーで撹拌した。発色具合をみて6Nの塩酸を200μL添加し、反応停止した(後述のコントロールの吸光度が1~1.5の範囲に入るように反応をコントロールする)。450nmの吸光度を測定した。コントロールとして東レ社製人工腎臓“トレスルホン”TS-1.6ULを用いた。コントロールの吸光度(Ac)と対象サンプルの吸光度(As)から、フィブリノーゲンの相対付着量を下記式により求めた。
フィブリノーゲンの相対付着率(%)=As/Ac×100。
 (8)β-ミクログロブリン(β-MG) クリアランス測定
 中空糸膜の性能評価として、β-ミクログロブリンのクリアランスを測定した。β-ミクログロブリンは、透析治療において、除去対象となるタンパク質であり、近年では、そのクリアランスが、膜の性能指標としてよく使われているので、本実施例においても、その値を指標とした。
 エチレンジアミン四酢酸二ナトリウムを添加した牛血液について、ヘマトクリットが30±3%、総タンパク量が6.5±0.5g/dLとなるように調整した。
 次に、β-ミクログロブリン濃度が1mg/lになるように加え、撹拌した。かかる牛血液について、その2Lを循環用に、1.5Lをクリアランス測定用として分けた。
 回路を図2のようにセットした。透析装置としては、東レメディカル株式会社製 TR2000Sを用いた。TR2000Sは、図2のうち、Biポンプ、Fポンプ、および透析装置にあたる。
 透析装置に、透析液(キンダリー液AF2号 扶桑薬品工業株式会社製)A液およびB液をセットした。透析液側から血液側に向けてRO水を流した。透析液濃度13~15mS/cm、温度34℃以上、透析液側流量を500ml/minに設定した。
 透水装置の除水速度を10ml/(min・m)に設定した。Bi回路入口部を上記で調整した牛血液2L(37℃)の入った循環用ビーカーに入れ、Biポンプをスタートし、Bo回路出口部から排出される液体90秒間分を廃棄後、ただちにBo回路出口部および、Do回路出口部を循環用ビーカーに入れて循環状態とした。
 続いて透析装置のFポンプを動かし、循環を1時間行った後、BiポンプおよびFポンプを停止した。
 次に、Bi回路入口部を上記で調整したクリアランス測定用の牛血液に入れ、Bo回路出口部を廃棄用ビーカーに入れた。Do回路出口部から流出する液体は廃棄した。
 Diポンプをスタートした。また、血液ポンプをスタートするとともに、トラップとBiチャンバーの間を開放した。
 スタートから2分経過後、クリアランス測定用の牛血液(37℃)からサンプルを10ml採取し、Bi液とした。スタートから4分30秒経過後に、Bo回路出口部からサンプルを10ml採取し、Bo液とした。これらのサンプルは、-20℃以下の冷凍庫で保存した。
 各液のβ-ミクログロブリンの濃度からクリアランスを下記式によって算出した。牛血液のロットによって測定値が異なる場合があるので、実施例に用いたデータは全て同一ロットの牛血液を使用した。
   Co(ml/min)=(CBi-CBo)×Q/CBi  
 上式において、C=β-ミクログロブリンクリアランス(ml/min)、CBi=Bi液におけるβ-ミクログロブリン濃度、CB=Bo液におけるβ-ミクログロブリン濃度、Q=Biポンプ流量(ml/min)である。
 2.中空糸膜モジュールの作製
(1)ポリスルホン/ポリビニルピロリドン(PSf/PVP)混合中空糸膜
 ポリスルホン(アモコ社 Udel-P3500)16重量部、ポリビニルピロリドン(インターナショナルスペシャルプロダクツ社;以下ISP社と略す)K30 3重量部、ポリビニルピロリドン(ISP社K90)3重量部をジメチルアセトアミド77重量部、水1重量部を加熱溶解し、製膜原液とした。
 この原液を温度50℃の紡糸口金部へ送り、環状スリット部の外径0.35mm、内径0.25mmの2重スリット管から注入液としてジメチルアセトアミド63重量部、水37重量部からなる溶液を吐出させ、中空糸膜を形成させた後、温度30℃、露点28℃の、350mmのドライゾーン雰囲気を経て、ジメチルアセトアミド20重量%、水80重量%からなる温度40℃の凝固浴を通過させ、60~75℃・90秒の水洗工程、130℃の乾燥工程を2分通過させ、160℃のクリンプ工程を経て得られた中空糸膜(中空糸膜1)を巻き取り束とした。
 なお、この中空糸膜の内表面、すなわち、機能層ポリビニルピロリドン量は23重量%、膜中のポリビニルピロリドン量を元素分析により算出した結果、3.1重量%であった。この中空糸膜を総膜面積が1.6mになるようにケースに充填し、かつ中空糸膜の両端をポッティング材によりケース端部に固定し、ポッティング材の端部の一部をカッティングすることで両端の中空糸膜を開口させて、中空糸膜モジュールとした。
 (2)ポリスルホン(PSf)中空糸膜
 ポリスルホン(アモコ社 Udel-P3500)18重量部をジメチルアセトアミド81部、水1部を加熱溶解し、製膜原液とした。
 この原液を温度50℃の紡糸口金部へ送り、環状スリット部の外径0.35mm、内径0.25mmの2重スリット管から注入液としてジメチルアセトアミド63部、水37部からなる溶液を吐出させ、中空糸膜を形成させた後、温度30℃、露点28℃の、乾式長350mmのドライゾーン雰囲気を通過した後、ジメチルアセトアミド20重量%、水80重量%からなる温度40℃の凝固浴を通過させ、60℃/90秒の水洗工程を通過させ、中空糸膜(中空糸膜2)を巻き取り束とした。
 (3)クロロアセトアミドメチル化ポリスルホン含有中空糸膜
 7.13wt%に調製したポリスルホン(アモコ社 Udel-P3500)のニトロベンゼン溶液175.3gを8℃に冷却し、これに別に-5℃で30分間撹拌することにより調製した5.30wt%のN-メチロール-2-クロロアセトアミドの硫酸溶液を33g添加し反応を8℃で行ない、クロロアセトアミドメチル化ポリスルホン(クロロアミドメチル基置換度0.39)を得た。
 ポリスルホン(アモコ社 Udel-P3500)18重量部、クロロアセトアミドメチル化ポリスルホン2重量部、PVP(ISP社)K30 10重量部、をジメチルアセトアミド69重量部、水1重量部を加熱溶解し、製膜原液とした。
 この原液を温度40℃の紡糸口金部へ送り、環状スリット部の外径0.35mm、内径0.25mmの2重スリット管から注入液としてジメチルアセトアミド35部、水65部からなる溶液を吐出させ、中空糸膜を形成させた後、温度27℃、露点11℃の、乾式長300mmのドライゾーン雰囲気を通過した後、水100重量%からなる温度40℃の凝固浴を通過させ、中空糸膜(中空糸膜3)を巻き取り束とした。
 (4)注入液へのポリマー添加検討
 ポリスルホン(アモコ社 Udel-P3500(重量平均分子量4.7万))18重量部、ポリビニルピロリドン(インターナショナルスペシャルプロダクツ社;以下ISP社と略す)K30 9重量をジメチルアセトアミド72重量部、水1重量部を加熱溶解し、製膜原液とした。
 ジメチルアセトアミド63重量部、水37重量部の溶液にビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)10重量部を溶解させて注入液とした。
 製膜原液を温度50℃の紡糸口金部へ送り、環状スリット部の外径0.35mm、内径0.25mmの2重スリット管から注入液を吐出させ、中空糸膜を形成させた後、温度30℃、露点28℃の、350mmのドライゾーン雰囲気を経て、ジメチルアセトアミド20重量%、水80重量%からなる温度40℃の凝固浴を通過させ、60~75℃・90秒の水洗工程、130℃の乾燥工程を2分通過させ、160℃のクリンプ工程を経て得られた中空糸膜(中空糸膜4)を巻き取り束とした。
 また、注入液にコリドンVA64を添加しない組成の溶液を用いて、上記と同様にして中空糸膜(中空糸膜5)を作成した。
 (5)ポリアクリロニトリル(PAN)中空糸膜
 重量平均分子量が60万のポリアクリロニトリル15重量部とジメチルスルホキシド85重量部とを混合し、103℃で16時間撹拌し紡糸原液を調製した。得られた紡糸原液を外径/内径=0.6/0.3mmφの環状スリット型中空口金から、1.2g/minの割合で、空気中に吐出した。同時に中空内部には窒素ガスを74mmAqの圧力で注入した。その後、50℃の水中へ導入し、中空糸膜(中空糸膜6)を巻き取り束とした。
 3.アリルアミン/酢酸ビニル共重合体の作成
 アリルアミン塩酸塩47gをメタノール110gに溶解させ、酢酸ビニル103gを添加した。さらに、重合開始剤として、アゾビスイソブチロニトリル41gを添加した後、60℃に加熱し、24時間反応させた後、アゾビスイソブチロニトリル41gを追添し、さらに60℃で24時間反応させた。重合反応終了時、残存モノマーと単独重合体を除去し、アリルアミン塩酸塩-酢酸ビニル共重合体を得た。元素分析により、共重合体中のアリルアミン含有量は28モル%と計算された。
 下記の実施例1~12および比較例1~8については、ポリスルホン/ポリビニルピロリドン(PSf/PVP)混合中空糸膜(中空糸膜1)を使用した。
 (実施例1) ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.1重量%水溶液を上記で作成した中空糸膜モジュールの血液側入口(Bi)から血液側出口(Bo)に500mL通液した。次に血液側入口(Bi)から透析液側入口(Di)に500mL通液することで、中空糸膜の内表面に、VA64を集積させた。このときの液温は30℃、流速は500mL/minであった。中空糸膜内部に入り込んだVA64を内表面に、より集積させるために、100kPaの圧縮空気で透析液側から血液側へ充填液を押しだした。この後、血液側の充填液をブローし、中空糸膜のみに水溶液が保持された状態にした。さらに窒素で透析液側、血液側それぞれを各1分間ブローし、モジュール内を窒素で置換した後、該モジュール全体に25kGyのγ線を照射することで、膜に固定化させた。該モジュールの中空糸を切り出し、各種試験を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。すなわち、機能層表面にVA64を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。なお、吸着平衡定数は、ポリスルホンフィルムとコリドンVA64の結果を示している。
 (実施例2)
 ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.01重量%水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。すなわち、機能層表面にVA64を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。また、比較例1と比べて、β-ミクログロブリン除去性能が高い理由としては、VA64が機能層表面を覆い、細孔径が狭小化する効果よりも、タンパク質などの付着抑制効果が高いため、タンパク質による膜の目詰まりによる性能低下が少なかったためと考えられる。また、不溶性成分の含水率は95.2%であり、フィブリノーゲンの相対吸着率は65%であった。
 (実施例3)
 ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.001重量%水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。すなわち、機能層表面にVA64を多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。また、実施例1、2と比べて血小板付着抑制性がやや低下した理由としては、実施例1、2と比べて機能層表面のエステル基量が少なく、不均一になっていることに起因していると考えられる。
 (実施例4)
 ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.001重量%とエタノール0.1重量%の混合水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。すなわち、機能層表面にVA64を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。VA64と同一の処理濃度にも関わらず、実施例3と比べて血小板付着抑制性が高い理由としては、エタノールによるエステル基へのγ線保護効果があったためと考えられる。また、不溶性成分の含水率は97.3%であり、フィブリノーゲンの相対吸着率は28%であった。実施例1と比較して、血小板付着数は同じでもフィブリノーゲンの付着は半分以下に抑えられた。
 (実施例5)
 ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.0005重量%とエタノール0.1重量%の混合水溶液を用いた以外は、実施例1と同様の操作を行った。結果は表の通りであった。すなわち、機能層表面にVA64を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。
 (実施例6)
  ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.01重量%水溶液を実施例1と同様の操作に充填したのみで、圧縮空気によるブローは行わず、25kGyのγ線を照射することで、膜に固定化させた。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。すなわち、膜をVA64溶液に浸漬させた状態でγ線照射しても、機能層表面にVA64を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。これは、VA64がポリスルホンに対して、高い吸着平衡定数を有しているために、中空糸膜を溶液に浸漬した状態でも、VA64が膜表面に吸着した結果と考えられる。
 (実施例7)
 ビニルピロリドン/酢酸ビニル(7/3)共重合体(BASF社製、“ルビスコールVA73“)0.1重量%水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。すなわち、機能層表面にVA73を多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。また、実施例1と比べて血小板付着抑制性がやや低下した理由としては、機能層表面のエステル基量が実施例1よりも少なく、不均一になっていることに起因していると考えられる。なお、吸着平衡定数は、ポリスルホンフィルムとコリドンVA73の結果を示している。
 (実施例8)
 ビニルピロリドン/酢酸ビニル(7/3)共重合体(BASF社製、“ルビスコールVA73“)0.01重量%水溶液を用いた以外は、実施例1と同様の操作を行った。結果は表の通りであった。すなわち、機能層表面にVA73を多く局在化することができた。血小板付着は比較例1に比べて、抑制されているが、実施例3と比べても、やや多い値となった。これは、VA73は分子内のエステル基が少なく、親水性と疎水性のバランスがVA64よりも悪いため、付着抑制性に劣っていると考えられる。
 (実施例9)

 ビニルピロリドン/酢酸ビニル(3/7)共重合体(BASF社製、“ルビスコールV
A37“)0.1重量%の60重量%メタノール水溶液を中空糸膜モジュールの血液側入
口から血液側出口に500mL通液した。次に血液側入口から透析液側入口に500mL
した。さらに水を同様に通液し、モジュール内を水で置換した後、実施例1と同様に、ブ
ローし、γ線照射した。結果は表の通りであった。すなわち、水に難溶のビニルピロリ
ドン/酢酸ビニル(3/7)共重合体をアルコール水溶液にて分離膜に導入し、水に置換後、γ線を照射しても、高い分離膜性能と血小板付着抑制性を両立できた。すなわち、機能層表面にVA37を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。また、吸着平衡定数は、ポリスルホンフィルムとルビスコールVA37の結果を示した。
 (実施例10)
 ビニルピロリドン/酢酸ビニル(3/7)共重合体(BASF社製、“ルビスコールVA37“)について、0.01重量%水溶液を調整した。該水溶液は、やや白濁していたが、目視では不溶物は認められなかった。該水溶液について、実施例9と同様の操作を行った。結果は表の通りであり、高い分離膜性能と血小板付着抑制性を両立できた。すなわち、機能層表面にVA37を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。
 (実施例11)
 ポリ酢酸ビニル0.01重量%の60重量%メタノール水溶液を用いた以外は、実施例9と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。水にほとんど溶けないポリ酢酸ビニルを膜に導入し、高い分離膜性能と血小板付着抑制性を両立できた。すなわち、機能層表面にポリ酢酸ビニルを均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。なお、吸着平衡定数は、ポリ酢酸ビニルが水にほとんど溶解しないため、算出できなかった。
 (実施例12)
 ポリビニルアルコール(PVA)(分子量1万、ケン化度80%)0.1重量%水溶液用いた以外は、実施例1と同様の操作を行った。結果は表の通りであった。すなわち、機能層表面にPVAを多く局在化することができた。β-ミクログロブリン除去性能がやや低い値であったが、比較例7に比べると高い値を保持できていることがわかる。
 (比較例1)
 水を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。β-ミクログロブリン除去性能は高かったが、血小板がよく付着する表面であった。また、不溶性成分の含水率は94.7%であり、フィブリノーゲンの相対吸着率は110%であった。
 (比較例2)
 PVP(BASF社製、K90)0.1重量%水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。β-ミクログロブリン除去性能は高かったが、血小板がよく付着する表面であった。なお、吸着平衡定数は、ポリスルホンフィルムとPVPの結果を示している。
 (比較例3)
 ポリエチレングリコール(分子量6000)0.1重量%水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。β-ミクログロブリン除去性能は高かったが、血小板がよく付着する表面であった。なお、吸着平衡定数は、ポリスルホンフィルムとポリエチレングリコールの結果を示している。
 (比較例4)
 ビニルピロリドン/スチレン共重合体(7/3)(アイエスピー社製 ANTRA(商標)430)0.1重量%水溶液を用いた以外は、実施例1と同様の操作を行った。なお、エステル基由来炭素量の測定については同じ条件で2度行った。結果は表の通りであった。エステル基は含有しないが、親水性ユニットと疎水性ユニットの共重合ポリマーである「ANTRA」(登録商標)430を用いても、血小板がよく付着する表面であった。これは、スチレンの疎水性が強すぎるために、血小板付着抑制が低いものと考えられる。
 (比較例5)
 ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.0001重量%とエタノール0.1重量%の混合水溶液を用いた以外は、実施例1と同様の操作を行った。結果は表の通りであった。すなわち、機能層表面にVA64を局在化することができないために、血小板付着抑制性がほとんど認められなかった。また、不溶性成分の含水率は97.1%であり、フィブリノーゲンの相対吸着率は105%であった。実施例4と比較して、不溶性成分の含水率は同じ程度であるが、中空糸膜内表面のエステル基量が少ないために、フィブリノーゲンの付着も抑制できなかったと考えられる。
 (比較例6)
 ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)1重量%を用いた以外は、実施例1と同様の操作を行った。結果は表の通りであった。すなわち、機能層表面のVA64量が多すぎるために、血小板付着抑制性はあるが、β-ミクログロブリン除去性能が顕著に低かった。
 (比較例7)
 PVA(分子量1万、ケン化度80%)0.1重量%水溶液を中空糸膜モジュールの血液側入口(Bi)から血液側出口(Bo)を経由し、次いで透析液側入口(Di)から透析液側出口(Do)にワンパスで、流速200mL/minで30分間通液した。その後、実施例1と同様に、ブロー、窒素置換、γ線照射を行った。結果は表の通りであった。すなわち、中空糸膜の内側と外側に万遍なく通液することで、膜厚部分の細孔部分を含めてPVAが多く存在したために、β-ミクログロブリン除去性能が顕著に低かったものと考えられる。
 (比較例8)
 ポリ酢酸ビニル0.1重量%の60重量%メタノール水溶液を中空糸膜モジュールの透析液側出口(Do)から血液側出口(Bo)に500mL通液した。次に血液側入口(Bi)から血液側出口(Bo)に500mL通液した。その後、純水を用いて上記と同じ操作にてメタノールを水に置換した後、実施例1と同様にブロー、窒素置換、γ線照射を行った。結果は表の通りであった。すなわち、機能層の反対側にも多くのポリ酢酸ビニルが存在しているために、β-ミクログロブリン除去性能が顕著に低かった。
 下記の実施例13、14および比較例9については、ポリスルホン(PSf)中空糸膜(中空糸膜2)を使用した。
 (実施例13)
 プラスチック管にポリスルホン(PSf)中空糸膜(中空糸膜2)を36本通し、両端を接着剤で固定した有効長100mmのプラスチック管ミニモジュールを作製し、純水で十分に洗浄した。次に、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.01重量%水溶液を中空糸膜の内側に3mL通液した後、中空糸膜の内側から外側に向けて3mL通液させた。その後、内側および外側の溶液をブローで抜き出した後、25kGyのγ線を照射した。γ線照射後、純水にて十分に洗浄した後、各種試験を行った。
 なお、中空糸膜の性能としては、以下の方法で、β-ミクログロブリンのクリアランスを測定した。すなわち、濃度が5mg/Lになるように、β-ミクログロブリンを37℃の牛血清に加えた。これを前記ミニモジュールの血液側に1mL/minで流し、透析液側に37℃の生理食塩液を20mL/minで流した。2時間循環させた後、血液側の牛血清と、透析液側の生理食塩液を全量回収してエスアールエル(株)に分析を依頼し、β-ミクログロブリンの濃度を測定した。測定結果から1.8mに換算したクリアランスを算出した。
 また、ミニモジュールでのβ-ミクログロブリンのクリアランス測定は、実験毎の数値のばらつきがあるため、実験毎にコントロールを加えて、実験間の比較を行った。コントロールには、東レ社製人工腎臓“トレスルホン”TS-1.6ULの中空糸膜を用いた。コントロールに用いるTS-1.6ULは、製造ロットが同一のものを使用した。TS-1.6ULの測定結果と百分率で比較して、相対除去率(%)を求め、この数値をもって実験間の比較を行った。
 結果は表の通りであった。すなわち、機能層表面にVA64を均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。また、実施例2に比べて、血小板付着の抑制効果がやや劣ったのは、水溶性ポリマーであるPVPが存在していないためと考えられる。なお、吸着平衡定数は、ポリスルホンフィルムとコリドンVA64の結果を示しているため、実施例1と同じ値である。
 (実施例14)
 ポリ酢酸ビニル0.01重量%の60重量%メタノール水溶液を実施例13と同様の操作で導入した後、純水を用いて上記と同じ操作にてメタノールを水に置換した後、実施例13と同様にブロー、窒素置換、γ線照射を行った。結果は表の通りであったすなわち、機能層表面にポリ酢酸ビニルを均一に、多く局在化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。また、実施例11に比べて血小板付着の抑制効果がやや劣ったのは、水溶性ポリマーであるPVPが存在していないためと考えられ、さらに実施例13と比べて血小板付着の抑制効果がやや劣ったのは、ポリ酢酸ビニルの分子内にビニルピロリドンユニットがないためと考えられる。
 (比較例9)
 水を用いた以外は、実施例13と同様の操作を行った。結果は表の通りであった。すなわち、血小板がよく付着する表面であった。
 下記の実施例15および比較例10については、クロロアセトアミドメチル化ポリスルホン(CAPMS)含有中空糸膜(中空糸膜3)を使用した。
 (実施例15)
 プラスチック管にクロロアセトアミドメチル化ポリスルホン(CAMPS)含有中空糸膜を36本通し、両端を接着剤で固定した有効長100mmのプラスチック管ミニモジュールを作製し、純水で十分に洗浄した。次に、クロロアセトアミドメチル基とアミノ基は容易に反応が進行するので、アリルアミン/酢酸ビニル共重合体を、主として中空糸膜の機能層表面に固定化することを行った。すなわち、中空糸膜の内側と外側に充填された水を抜き出した後、アリルアミン/酢酸ビニル共重合体5重量%の60重量%イソプロパノール水溶液(pH9.0に調整)を、中空糸膜モジュールの内側だけに通液し、室温で1時間反応させた。反応後、60重量%イソプロパノール水溶液で未反応のアリルアミン/酢酸ビニル共重合体を洗浄後、純水で洗浄、置換した。該中空糸膜について、各種試験を行った。
 中空糸膜の性能としては、実施例13と同様にしてβ-ミクログロブリンのクリアランスを測定した。結果は表の通りであった。すなわち、機能層表面にVA64を均一に、多く固定化することができ、血小板付着抑制性およびβ-ミクログロブリン除去性能が高かった。比較例10と比べて、β-ミクログロブリン除去性能が高い理由としては、VA64が機能層表面に固定化され、タンパク質などの付着抑制効果が高いため、タンパク質による膜の目詰まりによる性能低下が少なかったためと考えられる。なお、本実施例は、膜への化学固定であり、コーティングではないため、CAPMSとアリルアミン/酢酸ビニル共重合体との吸着平衡定数は測定しなかった。
 (比較例10)
 プラスチック管にクロロアセトアミドメチル化ポリスルホン含有中空糸膜を36本通し、両端を接着剤で固定した有効長100mmのプラスチック管モジュールを作製し、純水で十分に洗浄した。次に、60重量%イソプロパノール水溶液(pH9.0に調整)を、中空糸膜モジュールの内側だけに通液し、室温で1時間静置させた。その後、純水で洗浄、置換した。該中空糸膜について、各種試験を行った。なお、β-ミクログロブリンのクリアランスは実施例11の通りに行った。結果は表の通りであった。すなわち、血小板がよく付着する表面であり、β-ミクログロブリン除去性能も実施例15よりも低かった。
 下記の実施例16および比較例11については、注入液へのエステル基含有ポリマーの添加の比較(中空糸膜4,5)を行った。
 (実施例16)
 プラスチック管に中空糸膜4を36本通し、両端を接着剤で固定した有効長100mmのプラスチック管ミニモジュールを作製し、純水で十分に洗浄した。中空糸膜の内部および外側の水を圧空ブローにて抜き出した後、25kGyのγ線を照射した。γ線照射後、純水にて十分に洗浄した後、各種試験を行った。中空糸膜の性能としては、実施例13と同様にしてβ-ミクログロブリンのクリアランスを測定した。結果は表の通りであった。すなわち、血小板の付着を抑制し、β-ミクログロブリン除去性能が高かった。比較例11と比べて、β-ミクログロブリン除去性能が高い理由としては、VA64が機能層表面を覆い、タンパク質などの付着抑制効果が高いため、タンパク質による膜の目詰まりによる性能低下が少なかったためと考えられる。
 (比較例11)
 プラスチック管に中空糸膜5を36本通し、実施例16と同様の操作を行い、得られた中空糸膜についても、同様の評価を行った。結果は表の通りであった。すなわち、血小板がよく付着する表面であり、β-ミクログロブリン除去性能も実施例16よりも低かった。
 下記の実施例17および比較例12,13については、ポリアクリロニトリル(PAN)中空糸膜(中空糸膜6)を使用した。
 (実施例17)
 プラスチック管に中空糸膜6を36本通し、両端を接着剤で固定した有効長100mmのプラスチック管ミニモジュールを作製し、純水で十分に洗浄した。ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製、“コリドンVA64“)0.1重量%水溶液を中空糸膜の内側に3mL通液した後、中空糸膜の内側から外側に向けて3mL通液させた。その後、内側および外側の溶液を抜き出した後、25kGyのγ線を照射した。γ線照射後、純水にて十分に洗浄した後、各種試験を行った。中空糸膜の性能としては、実施例13と同様にしてβ-ミクログロブリンのクリアランスを測定した。結果は表の通りであった。すなわち、血小板の付着を抑制し、β-ミクログロブリン除去性能が高かった。比較例12や13と比べて、β-ミクログロブリン除去性能が高い理由としては、VA64が機能層表面を覆い、タンパク質などの付着抑制効果が高いため、タンパク質による膜の目詰まりによる性能低下が少なかったためと考えられる。なお、吸着平衡定数は、PANフィルムとコリドンVA64の結果を示している。
 (比較例12)
 プラスチック管に中空糸膜6を36本通し、ビニルピロリドン/酢酸ビニル(6/4)共重合体の代わりに、純水を用いた以外は、実施例17と同様の操作を行った。結果は表の通りであった。すなわち、血小板がよく付着する表面であり、β-ミクログロブリン除去性能も実施例17よりも低かった。
 (比較例13)
 プラスチック管に中空糸膜6を36本通し、ビニルピロリドン/酢酸ビニル(6/4)共重合体の代わりに、PVP(BASF社製、K90)0.1重量%水溶液を用いた以外は、実施例17と同様の操作を行った。結果は表の通りであった。すなわち、血小板がよく付着する表面であり、β-ミクログロブリン除去性能も実施例17よりも低かった。なお、吸着平衡定数は、PANフィルムとPVPの結果を示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (15)

  1. ポリマーからなる分離膜であって、膜の片側表面に機能層を有し、該機能層表面のX線電子分光法(ESCA)によるエステル基由来の炭素のピーク面積百分率が0.1(原子数%)以上、10(原子数%)以下であり、かつ、機能層の反対表面のX線電子分光法(ESCA)によるエステル基の由来の炭素のピーク面積百分率が10(原子数%)以下であることを特徴とする分離膜。
  2. 機能層表面におけるエステル基由来の炭素量が機能層の反対表面における前記炭素量よりも多いことを特徴とする分離膜。
  3. 前記エステル基が、エステル基含有ポリマー由来であることを特徴とする請求項1または2に記載の分離膜。
  4. 前記分離膜が疎水性ポリマーを含有していることを特徴とする請求項1~3のいずれかに記載の分離膜。
  5. 前記疎水性ポリマーがポリスルホン系ポリマーであることを特徴とする請求項4に記載の分離膜。
  6. 前記分離膜が中空糸膜であることを特徴とする請求項1~5のいずれかに記載の分離膜。
  7. 20℃の水100gに対する溶解度が1g以上である水溶性ポリマーを含有していることを特徴とする請求項1~6いずれかに記載の分離膜。
  8. 前記エステル基含有ポリマーが、カルボン酸ビニルエステル、アクリル酸エステルおよびメタクリル酸エステル、から選ばれる少なくとも一つをユニットにもつことを特徴とする請求項3に記載の分離膜。
  9. 前記エステル基含有ポリマーが、ポリ酢酸ビニルまたは酢酸ビニルとビニルピロリドンとの共重合体であることを特徴とする請求項3または8に記載の分離膜。
  10. 血液浄化用であることを特徴とする請求項1~9のいずれかに記載の分離膜。
  11. 請求項1~10のいずれかに記載の分離膜が内蔵されたことを特徴とする分離膜モジュール。
  12. 疎水性ポリマーを含有する分離膜の製造方法であって、エステル基含有ポリマーをコーティングする工程を含み、該エステル基含有ポリマーと該疎水性ポリマーとの吸着平衡定数が330pg/(mm・ppm)以上1100pg/(mm・ppm)以下であり、エステル基含有ポリマー溶液を接触させる際、分離膜の内外で圧力差を生じさせることを特徴とする分離膜の製造方法。
  13. 前記コーティング工程が、分離膜にエステル基含有ポリマー溶液を接触させ、放射線照射および/または熱処理することによって行われることを特徴とする請求項12に記載の分離膜の製造方法。
  14. 請求項12または13に記載の方法により製造された分離膜であって、血液浄化用途であることを特徴とする分離膜。
  15. 請求項12~14のいずれかに記載の方法により製造された分離膜を内蔵することを特徴とする分離膜モジュール。
PCT/JP2009/056448 2008-03-31 2009-03-30 分離膜およびその製造方法並びにその分離膜を用いた分離膜モジュール WO2009123088A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/935,414 US8613361B2 (en) 2008-03-31 2009-03-30 Separation membrane, method of producing the same and separation membrane module using the separation membrane
ES09727576T ES2778726T3 (es) 2008-03-31 2009-03-30 Membrana de separación y módulo que usa la membrana de separación
EP09727576.2A EP2286902B1 (en) 2008-03-31 2009-03-30 Separation membrane and module using the separation membrane
CA2719356A CA2719356C (en) 2008-03-31 2009-03-30 Polymeric separation membrane for blood purification
KR1020107024364A KR101525642B1 (ko) 2008-03-31 2009-03-30 분리막, 그의 제조 방법 및 상기 분리막을 이용한 분리막 모듈
CN200980115515.3A CN102015081B (zh) 2008-03-31 2009-03-30 分离膜及其制备方法以及使用该分离膜的分离膜组件
JP2009521041A JP4888559B2 (ja) 2008-03-31 2009-03-30 血液浄化用分離膜および血液浄化用分離膜モジュールならびに血液浄化用中空糸膜および血液浄化用中空糸膜モジュール
US14/077,850 US9561478B2 (en) 2008-03-31 2013-11-12 Separation membrane, method of producing the same and separation membrane module using the separation membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-089944 2008-03-31
JP2008-089943 2008-03-31
JP2008089943 2008-03-31
JP2008089944 2008-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/935,414 A-371-Of-International US8613361B2 (en) 2008-03-31 2009-03-30 Separation membrane, method of producing the same and separation membrane module using the separation membrane
US14/077,850 Continuation US9561478B2 (en) 2008-03-31 2013-11-12 Separation membrane, method of producing the same and separation membrane module using the separation membrane

Publications (1)

Publication Number Publication Date
WO2009123088A1 true WO2009123088A1 (ja) 2009-10-08

Family

ID=41135464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056448 WO2009123088A1 (ja) 2008-03-31 2009-03-30 分離膜およびその製造方法並びにその分離膜を用いた分離膜モジュール

Country Status (8)

Country Link
US (2) US8613361B2 (ja)
EP (1) EP2286902B1 (ja)
JP (3) JP4888559B2 (ja)
KR (1) KR101525642B1 (ja)
CN (1) CN102015081B (ja)
CA (1) CA2719356C (ja)
ES (1) ES2778726T3 (ja)
WO (1) WO2009123088A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083729A (ja) * 2009-10-16 2011-04-28 Ngk Insulators Ltd 複合分離膜及びその製造方法
WO2012091028A1 (ja) * 2010-12-28 2012-07-05 東レ株式会社 医療材料および中空糸膜モジュール
WO2012133803A1 (ja) * 2011-03-30 2012-10-04 独立行政法人 国立長寿医療研究センター 膜分取培養器、膜分取培養キット、およびこれを用いた幹細胞分取方法、ならびに分離膜
WO2013015046A1 (ja) * 2011-07-27 2013-01-31 旭化成メディカル株式会社 中空糸膜型血液浄化装置
WO2014077095A1 (ja) * 2012-11-15 2014-05-22 東洋紡株式会社 多孔質中空糸膜
WO2014129373A1 (ja) * 2013-02-20 2014-08-28 東レ株式会社 中空糸膜モジュール、中空糸膜の製造方法および中空糸膜モジュールの製造方法
US20140284261A1 (en) * 2011-11-04 2014-09-25 Asahi Kasei Medical Co., Ltd. Separation membrane for blood processing and blood processing apparatus having the membrane installed therein
JP2014207989A (ja) * 2013-03-29 2014-11-06 東レ株式会社 タンパク質吸着材料およびその製造方法、血液浄化器
JP2016077570A (ja) * 2014-10-17 2016-05-16 旭化成メディカル株式会社 血液処理用分離膜及びその膜を組み込んだ血液処理器
WO2019225730A1 (ja) * 2018-05-24 2019-11-28 東レ株式会社 多孔質中空糸膜
WO2021100804A1 (ja) 2019-11-21 2021-05-27 東レ株式会社 多孔質分離膜

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525642B1 (ko) * 2008-03-31 2015-06-03 도레이 카부시키가이샤 분리막, 그의 제조 방법 및 상기 분리막을 이용한 분리막 모듈
JP5633277B2 (ja) * 2009-09-30 2014-12-03 東レ株式会社 分離膜モジュール
JP5857407B2 (ja) * 2010-01-29 2016-02-10 東レ株式会社 中空糸膜および中空糸膜の製造方法
TWI549744B (zh) * 2012-03-28 2016-09-21 東麗股份有限公司 血液製劑淨化用的聚碸系中空絲膜以及中空絲膜模組
KR102316145B1 (ko) * 2014-05-08 2021-10-22 도레이 카부시키가이샤 중공사막 모듈 및 그 제조 방법
US20160045932A1 (en) * 2014-08-18 2016-02-18 Fenwal, Inc. Anti-Thrombogenic Porous Membranes And Methods For Manufacturing Such Membranes
SG10201507931QA (en) * 2014-12-22 2016-07-28 Emd Millipore Corp Removal of microorganisms from cell culture media
KR102496897B1 (ko) 2015-03-31 2023-02-07 도레이 카부시키가이샤 공중합체 및 그것을 사용한 의료 디바이스, 의료용 분리막 모듈, 및 혈액 정화기
EP3315190A1 (en) * 2015-06-23 2018-05-02 Asahi Kasei Medical Co., Ltd. Separation membrane for blood treatment, and blood treatment device incorporating separation membrane
JP6520623B2 (ja) * 2015-10-02 2019-05-29 日本製鉄株式会社 陸上現場におけるアルカリ流出リスクの予測方法
WO2018003949A1 (ja) * 2016-07-01 2018-01-04 東洋紡株式会社 中空糸複合膜モジュール及びその製造方法
CN109475677B (zh) * 2016-08-05 2022-02-08 东丽株式会社 生物体成分附着抑制材料
CN109641097B (zh) * 2016-08-31 2022-04-26 东丽株式会社 医疗用材料、医疗用分离膜、和血液净化器
WO2018061916A1 (ja) 2016-09-30 2018-04-05 東レ株式会社 共重合体及びこれを用いた医療材料
JP6926331B2 (ja) 2017-10-05 2021-08-25 フレセニウス メディカル ケア ホールディングス インコーポレーテッド ポリスルホン−ウレタンコポリマー、それを含む膜および製品、並びに、その製造および使用方法
CN111836678A (zh) * 2018-03-15 2020-10-27 东丽株式会社 流体分离膜
KR102407423B1 (ko) * 2018-03-30 2022-06-10 아사히 가세이 메디컬 가부시키가이샤 혈액 정화기 및 그 제법
CN110787647B (zh) * 2019-11-11 2024-01-19 上海输血技术有限公司 一种血小板去白细胞过滤膜及其制备方法
WO2022133973A1 (en) 2020-12-25 2022-06-30 Guangzhou Bioseal Biotech Co., Ltd. Fibrinogen aseptic filtration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214903A (ja) * 1985-07-11 1987-01-23 Fuji Photo Film Co Ltd 疎水性の微孔性濾過膜を親水化する方法
JPS62197105A (ja) * 1986-02-26 1987-08-31 Toray Ind Inc 複合逆浸透膜
JPH0494727A (ja) * 1990-08-10 1992-03-26 Nitto Denko Corp 透水性にすぐれる芳香族ポリスルホン半透膜の製造方法
JPH06165926A (ja) * 1992-04-29 1994-06-14 Kuraray Co Ltd ポリスルホン系中空繊維膜とその製造方法
JPH0711019A (ja) * 1992-12-30 1995-01-13 Hoechst Ag 均質混合可能なポリマーアロイの半透膜
JPH1099666A (ja) * 1996-10-02 1998-04-21 Agency Of Ind Science & Technol 気体分離膜
JP2002370021A (ja) * 2001-05-03 2002-12-24 Air Products & Chemicals Inc 複合膜
JP2006231333A (ja) * 2002-11-22 2006-09-07 Nikkiso Co Ltd 半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH645391A5 (de) * 1978-02-21 1984-09-28 Ciba Geigy Ag Polymere mit succinylobernsteinsaeureester-resten.
NL7809835A (nl) * 1978-09-28 1980-04-01 Wafilin Bv Gemodificeerd membraan voor membraanfiltratie.
DE3149976A1 (de) * 1981-12-17 1983-06-30 Hoechst Ag, 6230 Frankfurt Makroporoese asymmetrische hydrophile membran aus synthetischem polymerisat
JPS62163703A (ja) 1987-01-05 1987-07-20 Mitsubishi Rayon Co Ltd 親水化多孔質膜及びその製法
US4834886A (en) * 1987-01-08 1989-05-30 Filmtec Corporation Process for making alkali resistant hyperfiltration membrane and resulting product
JP2760509B2 (ja) 1988-07-07 1998-06-04 能美防災株式会社 火災警報装置
US5340480A (en) * 1992-04-29 1994-08-23 Kuraray Co., Ltd. Polysulfone-based hollow fiber membrane and process for manufacturing the same
US5294342A (en) * 1992-10-01 1994-03-15 Hoechst Celanese Corporation Composite porous membranes
JP3366040B2 (ja) 1993-02-16 2003-01-14 旭メディカル株式会社 ポリスルホン系半透膜およびその製造方法
JP3297779B2 (ja) 1994-06-21 2002-07-02 ソニー株式会社 モータ制御回路
JP3358343B2 (ja) 1994-11-15 2002-12-16 宇部興産株式会社 親水化膜とその製造方法
JPH08131793A (ja) 1994-11-15 1996-05-28 Ube Ind Ltd 親水化処理膜
EP1339777A2 (en) * 2000-09-11 2003-09-03 Massachusetts Institute Of Technology Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
ES2299602T3 (es) * 2001-10-04 2008-06-01 Toray Industries, Inc. Sustancia hidrofilica y procedimiento de obtencion de la misma.
JP2003320230A (ja) * 2002-03-01 2003-11-11 Fuji Photo Film Co Ltd ポリスルホン系精密ろ過膜、および該ろ過膜を含有するミクロフィルターカートリッジ
KR101157244B1 (ko) * 2002-08-21 2012-06-15 도레이 카부시키가이샤 개질 기재의 제조 방법 및 분리막 시스템의 개질 방법
ATE511868T1 (de) * 2002-09-12 2011-06-15 Asahi Kasei Kuraray Medical Co Plasma-reinigungsmembran und plasma- reinigungssystem
JP3580314B1 (ja) * 2003-12-09 2004-10-20 東洋紡績株式会社 ポリスルホン系選択透過性中空糸膜束およびその製造方法
JP5011722B2 (ja) 2004-12-24 2012-08-29 東レ株式会社 医療用分離膜の製造方法およびその医療用分離膜を用いた医療用分離膜モジュールの製造方法
CN101151303B (zh) * 2005-03-29 2011-09-07 东丽株式会社 改性基材及改性基材的制造方法
KR101525642B1 (ko) * 2008-03-31 2015-06-03 도레이 카부시키가이샤 분리막, 그의 제조 방법 및 상기 분리막을 이용한 분리막 모듈
TWI398353B (zh) * 2009-03-02 2013-06-11 Ind Tech Res Inst 奈米纖維材料與脫鹽過濾材料
ES2807501T3 (es) * 2010-12-28 2021-02-23 Toray Industries Módulo de membranas de fibra hueca
CN103717302B (zh) * 2011-08-09 2015-11-25 东丽株式会社 吸附用载体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214903A (ja) * 1985-07-11 1987-01-23 Fuji Photo Film Co Ltd 疎水性の微孔性濾過膜を親水化する方法
JPS62197105A (ja) * 1986-02-26 1987-08-31 Toray Ind Inc 複合逆浸透膜
JPH0494727A (ja) * 1990-08-10 1992-03-26 Nitto Denko Corp 透水性にすぐれる芳香族ポリスルホン半透膜の製造方法
JPH06165926A (ja) * 1992-04-29 1994-06-14 Kuraray Co Ltd ポリスルホン系中空繊維膜とその製造方法
JPH0711019A (ja) * 1992-12-30 1995-01-13 Hoechst Ag 均質混合可能なポリマーアロイの半透膜
JPH1099666A (ja) * 1996-10-02 1998-04-21 Agency Of Ind Science & Technol 気体分離膜
JP2002370021A (ja) * 2001-05-03 2002-12-24 Air Products & Chemicals Inc 複合膜
JP2006231333A (ja) * 2002-11-22 2006-09-07 Nikkiso Co Ltd 半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083729A (ja) * 2009-10-16 2011-04-28 Ngk Insulators Ltd 複合分離膜及びその製造方法
US9867917B2 (en) 2010-12-28 2018-01-16 Toray Industries, Inc. Medical material and hollow fiber membrane module
WO2012091028A1 (ja) * 2010-12-28 2012-07-05 東レ株式会社 医療材料および中空糸膜モジュール
RU2596790C2 (ru) * 2010-12-28 2016-09-10 Торэй Индастриз, Инк. Медицинский материал и половолоконный мембранный модуль
CN103282061A (zh) * 2010-12-28 2013-09-04 东丽株式会社 医疗材料和中空纤维膜组件
KR101814854B1 (ko) 2010-12-28 2018-01-04 도레이 카부시키가이샤 의료 재료 및 중공사막 모듈
WO2012133803A1 (ja) * 2011-03-30 2012-10-04 独立行政法人 国立長寿医療研究センター 膜分取培養器、膜分取培養キット、およびこれを用いた幹細胞分取方法、ならびに分離膜
CN103597068A (zh) * 2011-03-30 2014-02-19 独立行政法人国立长寿医疗研究中心 膜分选培养器、膜分选培养试剂盒、和使用其的干细胞分选方法、以及分离膜
JPWO2012133803A1 (ja) * 2011-03-30 2014-07-28 独立行政法人国立長寿医療研究センター 膜分取培養器、膜分取培養キット、およびこれを用いた幹細胞分取方法、ならびに分離膜
JP6016785B2 (ja) * 2011-03-30 2016-10-26 国立研究開発法人国立長寿医療研究センター 膜分取培養器、膜分取培養キット、およびこれを用いた幹細胞分取方法、ならびに分離膜
WO2013015046A1 (ja) * 2011-07-27 2013-01-31 旭化成メディカル株式会社 中空糸膜型血液浄化装置
US20140284261A1 (en) * 2011-11-04 2014-09-25 Asahi Kasei Medical Co., Ltd. Separation membrane for blood processing and blood processing apparatus having the membrane installed therein
US9956334B2 (en) * 2011-11-04 2018-05-01 Asahi Kasei Medical Co., Ltd. Separation membrane for blood processing and blood processing apparatus having the membrane installed therein
WO2014077095A1 (ja) * 2012-11-15 2014-05-22 東洋紡株式会社 多孔質中空糸膜
US10577393B2 (en) 2012-11-15 2020-03-03 Toyobo Co., Ltd. Porous hollow fiber membrane
JPWO2014129373A1 (ja) * 2013-02-20 2017-02-02 東レ株式会社 中空糸膜モジュール、中空糸膜の製造方法および中空糸膜モジュールの製造方法
KR20150123780A (ko) 2013-02-20 2015-11-04 도레이 카부시키가이샤 중공사막 모듈, 중공사막의 제조 방법 및 중공사막 모듈의 제조 방법
WO2014129373A1 (ja) * 2013-02-20 2014-08-28 東レ株式会社 中空糸膜モジュール、中空糸膜の製造方法および中空糸膜モジュールの製造方法
JP2018153638A (ja) * 2013-02-20 2018-10-04 東レ株式会社 中空糸膜モジュール、中空糸膜の製造方法および中空糸膜モジュールの製造方法
JP2014207989A (ja) * 2013-03-29 2014-11-06 東レ株式会社 タンパク質吸着材料およびその製造方法、血液浄化器
JP2016077570A (ja) * 2014-10-17 2016-05-16 旭化成メディカル株式会社 血液処理用分離膜及びその膜を組み込んだ血液処理器
WO2019225730A1 (ja) * 2018-05-24 2019-11-28 東レ株式会社 多孔質中空糸膜
CN112074340A (zh) * 2018-05-24 2020-12-11 东丽株式会社 多孔质中空纤维膜
JPWO2019225730A1 (ja) * 2018-05-24 2021-04-22 東レ株式会社 多孔質中空糸膜
JP7314797B2 (ja) 2018-05-24 2023-07-26 東レ株式会社 多孔質中空糸膜
WO2021100804A1 (ja) 2019-11-21 2021-05-27 東レ株式会社 多孔質分離膜

Also Published As

Publication number Publication date
JP5664732B2 (ja) 2015-02-04
US9561478B2 (en) 2017-02-07
EP2286902B1 (en) 2020-02-19
US8613361B2 (en) 2013-12-24
KR101525642B1 (ko) 2015-06-03
CA2719356C (en) 2020-04-07
US20140061121A1 (en) 2014-03-06
CA2719356A1 (en) 2009-10-08
JP2011078974A (ja) 2011-04-21
JPWO2009123088A1 (ja) 2011-07-28
KR20110009119A (ko) 2011-01-27
ES2778726T3 (es) 2020-08-11
EP2286902A4 (en) 2015-09-16
CN102015081B (zh) 2014-04-30
EP2286902A1 (en) 2011-02-23
JP5464127B2 (ja) 2014-04-09
JP2014042913A (ja) 2014-03-13
JP4888559B2 (ja) 2012-02-29
US20110017654A1 (en) 2011-01-27
CN102015081A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5664732B2 (ja) 分離膜及び分離膜モジュール
JP5407713B2 (ja) ポリスルホン系中空糸膜モジュールおよび製造方法
JP5338431B2 (ja) ポリスルホン系分離膜およびポリスルホン系分離膜モジュールの製造方法
JP6036882B2 (ja) 分離膜および分離膜モジュール並びに分離膜の製造方法および分離膜モジュールの製造方法
TWI613005B (zh) 中空絲膜模組、中空絲膜之製造方法及中空絲膜模組之製造方法
JP5011722B2 (ja) 医療用分離膜の製造方法およびその医療用分離膜を用いた医療用分離膜モジュールの製造方法
US10994248B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP5857407B2 (ja) 中空糸膜および中空糸膜の製造方法
JP5633277B2 (ja) 分離膜モジュール
JP7035537B2 (ja) 分離膜モジュール
JP2012115743A (ja) 中空糸膜モジュール
JP4569315B2 (ja) 改質中空糸膜
JP6547518B2 (ja) 中空糸膜モジュール及びその製造方法
JP4802537B2 (ja) 改質基材
JP5044960B2 (ja) 分離膜の製造方法およびその分離膜を用いた分離膜モジュールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115515.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009521041

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727576

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2719356

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12935414

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009727576

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024364

Country of ref document: KR

Kind code of ref document: A