WO2009122833A1 - 電力変換回路の制御装置および制御方法 - Google Patents

電力変換回路の制御装置および制御方法 Download PDF

Info

Publication number
WO2009122833A1
WO2009122833A1 PCT/JP2009/053773 JP2009053773W WO2009122833A1 WO 2009122833 A1 WO2009122833 A1 WO 2009122833A1 JP 2009053773 W JP2009053773 W JP 2009053773W WO 2009122833 A1 WO2009122833 A1 WO 2009122833A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
calculation
calculation unit
conversion circuit
digital
Prior art date
Application number
PCT/JP2009/053773
Other languages
English (en)
French (fr)
Inventor
不二雄 黒川
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Priority to US12/935,832 priority Critical patent/US9331574B2/en
Priority to EP09726977.3A priority patent/EP2267878A4/en
Priority to JP2010505480A priority patent/JP5487438B2/ja
Publication of WO2009122833A1 publication Critical patent/WO2009122833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Definitions

  • the present invention relates to a technique for controlling a power conversion circuit with high accuracy. Specifically, when generating a timing value for switch control, it repeats filter calculation from a calculation result of a differential control amount and a filter calculation result.
  • the present invention relates to a control device for a power conversion circuit that generates a timing value at a repetition interval equal to or smaller than the interval and updates a timing set value of a drive signal generation circuit with the timing value, thereby achieving high control accuracy.
  • the power conversion circuit 8 supplies the power from the power source 101 to the load 102 via the reactor 82 when the switch 81 is on, and releases the energy stored in the reactor 82 when the switch 81 is off. Thus, electric power is supplied to the load 102.
  • a smoothing capacitor 84 is provided on the output side of the power conversion circuit 8.
  • the control device 9 of the power conversion circuit 8 includes an AD conversion circuit 91, a drive timing value generation circuit 92, and a drive signal generation circuit 93.
  • the AD conversion circuit 91 receives the output eo of the power conversion circuit 8, converts it into a digital signal, and outputs it to the drive timing value generation circuit 92.
  • the calculation result D in the drive timing value generation circuit 92 is sent to the drive signal generation circuit 93.
  • the drive signal generation circuit 93 generates a control signal (switch drive signal DSW) based on the calculation result D and drives the switch 81.
  • An object of the present invention is to generate a timing value at a repetition interval equal to or less than a repetition interval of a filter operation from a calculation result of a differential control amount and a calculation result of a filter when generating a timing value for switch control.
  • the timing set value of the drive signal generation circuit is updated to increase the accuracy of the control (specifically, it responds quickly to a sudden change in the power supply or load).
  • the control device for the power conversion circuit of the present invention includes: One or more analog signals necessary for control are acquired from the power conversion circuit, and the one or more analog signals are AD-converted, and one or more digital signals (digital values) corresponding to these analog signals are obtained.
  • AD conversion circuit for generating) A control amount calculation circuit that includes a first calculation unit that performs a differential control amount calculation and a second calculation unit that performs a filter calculation, and each calculation unit inputs the one or more digital quantities and performs each calculation; and Addition of the control amount generated by the second calculation unit and the control amount generated by the first calculation unit at a repetition interval not less than the calculation repetition interval in the first calculation unit and not more than the calculation repetition interval in the second calculation unit
  • a digital-digital adder circuit that generates a drive timing value of the switch of the power conversion circuit,
  • a drive timing value generation circuit comprising: A drive signal generation circuit that inputs the drive timing value and generates a drive signal (drive pulse) of the switch according to the drive timing value; It is provided with.
  • the first calculation unit can perform a proportional control amount calculation in addition to the differential control amount calculation.
  • Filters are classified into FIR filters and IIR filters.
  • the FIR filter includes a moving average filter as is well known.
  • a 1st calculating part can be comprised so that a proportional control calculation, a differential control calculation, or a proportional control calculation and a differential control calculation may be performed, and a 2nd calculating part may perform a filter calculation.
  • the power conversion circuit is typically a DC / DC converter including a switch, a commutation diode, and a reactor.
  • one or more analog signals necessary for control are input current, input voltage, output current, output voltage, current flowing through a predetermined portion of the power conversion circuit, predetermined two of the power conversion circuit, and the like. One of the voltages between the points.
  • the drive timing value generation circuit can also generate drive signals that rise and fall of the drive signal.
  • the rising timing of the drive signal can be generated at a fixed repetition interval to control the falling timing
  • the falling timing of the drive signal can be generated at a fixed repetition interval to control the rising timing.
  • two sets of a control amount arithmetic circuit, a digital adder circuit, and a drive signal generation circuit are prepared (two sets of AD conversion circuits can be shared), and the timing of falling of the drive signal is controlled.
  • one of the rising and falling driving signals of the driving signal can be generated by the control device of the present invention, and the other of the driving signals can be generated by the control device not according to the present invention.
  • the drive signal generation circuit includes a down counter, and when the drive timing set value is updated, (Update value of drive timing set value)-(cumulative count value up to now) The current counter value can be rewritten with.
  • the cumulative count value up to now can be known by providing a counter for counting the cumulative value, and can also be known from the number of input of drive timing values. It is also possible to store the drive timing set value before being updated and know the value by subtracting the down counter value from this set value.
  • the calculation repetition interval of the second calculation unit is an integer multiple of the calculation repetition interval of the first calculation unit
  • the calculation end timing of the second calculation unit (when preparation for outputting the calculation result is ready)
  • the digital addition circuit can perform addition when the differential control amount calculation unit generates the control amount.
  • driving is performed for each calculation end timing of the first calculation unit and each calculation end timing of the second calculation unit.
  • the counter value of the counter provided in the signal generation circuit can be updated.
  • each calculation result can usually be stored in a temporary storage device (data buffer or the like). It may be provided in the first arithmetic unit and the second arithmetic unit, or may be provided in the digital adder circuit.
  • the timing value when the timing signal is generated, the timing value is calculated from the calculation result of the first calculation unit and the calculation result of the second calculation unit to be not less than the calculation repetition interval of the first calculation unit and not more than the calculation repetition interval of the second calculation unit. It is generated at intervals, and the drive timing value set in the drive signal generation circuit is updated by this timing value.
  • FIG. 1 It is a block diagram which shows 1st Embodiment of the control apparatus of this invention. It is explanatory drawing which shows operation
  • FIG. 1 is a basic configuration diagram of a control device 2 of the present invention.
  • the power conversion circuit 1 performs DC / DC conversion of power from a DC power supply 101 and supplies it to a load 102.
  • the control device 2 controls switches constituting the power conversion circuit 1 by PWM (pulse width modulation), and includes an anti-aliasing filter 21, an AD conversion circuit 22, a drive timing value generation circuit 23, and a drive signal generation circuit 24. It consists of.
  • PWM pulse width modulation
  • the anti-aliasing filter 21 is a low-pass filter, and cuts noise (ripple or the like) of the signal So in the input power conversion circuit 1.
  • the signal So is, for example, an output voltage, an output current, an input voltage or an input current of the power conversion circuit 1, a switch current that flows through a switch that constitutes the power conversion circuit 1, a reactor current that flows through a reactor that constitutes the power conversion circuit 1, and the like. is there.
  • the AD conversion circuit 22 receives the signal So that has passed through the anti-aliasing filter 21 and converts it into a digital signal.
  • the drive timing value generation circuit 23 includes a control amount calculation circuit 231 and a digital addition circuit 232.
  • the control amount calculation circuit 231 includes a first calculation unit 2311 and a second calculation unit 2312.
  • the first calculation unit 2311 calculates a differential control amount
  • the second calculation unit 2312 performs calculation of a filter.
  • the calculation of the first calculation unit 2311 and the calculation of the second calculation unit 2312 may be performed serially by a microprocessor or the like, or may be performed in parallel by a DSP or the like.
  • the digital addition circuit 232 can perform the above addition at a time interval that is less than or equal to the calculation repetition interval of the second calculation unit 2312 and greater than or equal to the calculation repetition interval of the proportional control amount calculation unit PRP.
  • the calculation repetition interval of the second calculation unit 2312 is an integral multiple of the calculation repetition interval of the first calculation unit 2311, and the calculation end timing (outputs the calculation result) of the second calculation unit 2312. (When ready) coincides with the calculation end timing of the first calculation unit 2311, the digital addition circuit 232 can perform addition when the differential control amount calculation unit generates a control amount.
  • differential control amount data in an output buffer (not shown) in the first calculation unit 2311 is indicated by D 1, x (x;..., 0, 1, 2,...), And the second calculation unit.
  • the operation data of the filter in the output buffer (not shown) in 2312 is denoted by D 1, y (y;..., 0, 1, 2,%), And the output data of the digital adder circuit 232 is denoted by D (z). (Z;..., 0, 1, 2,%)
  • D (z) The output data of the digital adder circuit 232 is also shown.
  • the digital addition circuit 232 adds the data of the differential control amount data D 1, x of the first calculation unit 2311 and the calculation data D 2, y of the filter of the second calculation unit 2312.
  • the calculation results of the first calculation unit 2311 and the second calculation unit 2312 are stored in the temporary storage device (data buffer or the like) in each calculation unit.
  • a data buffer may be provided, and each calculation result may be temporarily stored in the data buffer.
  • the drive signal generation circuit 24 operates at a repetition interval TSW, generates a control signal (switch drive signal DSW: drive pulse falling timing) based on the timing signal D, and switches the power conversion circuit 1.
  • the first calculation unit 2311 or the second calculation unit 2312 may not use all the data sent from the AD conversion circuit 22.
  • the first calculation unit 2311 may use only the first two consecutive data out of the eight consecutive data sent from the AD conversion circuit 22, and the second calculation unit 2312 may Of the 1024 consecutive data, only the even-numbered data may be used.
  • the first calculation unit 2311 or the second calculation unit 2312 may select data, and a data selection circuit 25 is provided at the subsequent stage of the AD conversion circuit 22 as shown in FIG.
  • the digital data output from the AD conversion circuit 22 may be output to the first calculation unit 2311 and the second calculation unit 2312 according to the repetition interval of each calculation unit.
  • FIG. 4 is an explanatory diagram illustrating an example of the control device 2.
  • the drive timing value generation circuit 23 includes a CPU 2301, a memory 2302, an input interface 2303, an output interface 2304, and a bus 2305.
  • a part of the control device 2 is shown in the configuration of a traditional computer as shown in FIG.
  • the drive signal generation circuit 24 can share the CPU 2301 and the memory 2302 of the drive timing value generation circuit 23.
  • the digital data from the AD conversion circuit 22 is stored in the data storage area of the memory 2302.
  • a plurality of data is stored in the memory 202 by the FIFO method.
  • FIG. 4 shows that the latest three data D k-2 , D k ⁇ 1 , D k are stored, and the data D k + 1 is input to the input interface 2303.
  • FIG. 4 also shows that data D (z) is output from the input interface 2304.
  • the function of the drive timing value generation circuit 23 is achieved by the CPU 2301 and the “first calculation program” and “second calculation program” stored in the memory 2302.
  • the differential operation program is a “first operation program”
  • the filter operation program is a “second operation program”.
  • the differentiation program can be a “first calculation program” or a “second calculation program”.
  • the updated timing value is transferred to the drive signal generation circuit 24 by the set value transfer program.
  • the drive timing value generation circuit 23 performs the calculation by the first calculation unit 2311 a plurality of times during one repetition interval by the second calculation unit.
  • FIG. 5B shows the conventional generation of drive timing values.
  • the drive signal generation circuit 24 includes a down counter whose set value is decremented by a predetermined clock, and the set value of the down counter is sequentially updated by the timing value H.
  • the initial value of the down counter is “512”. It is assumed that the set value is updated to “516” (that is, “4” is increased) when it is counted down to “400” (remaining count: “112”).
  • the drive signal generation circuit 24 can separately have a counter that can count the accumulated value.
  • the drive signal generation circuit 24 turns off the switch of the power conversion circuit 1 with the drive signal DSW when the value of the down counter becomes zero.
  • the switch is turned off, but the above control can be performed to turn on the switch.
  • FIG. 6 is a diagram illustrating a configuration example of the data selection circuit 25 and the drive timing value generation circuit 23 when the data selection circuit 25 is configured by a register RG.
  • the data d from the AD conversion circuit 22 is stored in the register RG.
  • the register RG can store N pieces of data, and these N pieces of data are sequentially pushed when new data is inputted, and are erased in order from the old data.
  • Two of the data stored in the register RG (for example, the latest two data) are sent to the first calculation unit 2311.
  • the first calculation unit 2311 calculates the difference, multiplies the predetermined coefficient, and performs digital addition. To the device 232.
  • the first calculation unit 2311 obtains the differential control amount using the latest two adjacent data, but the present invention is not limited to this.
  • the first arithmetic unit 2311 can use two non-consecutive data input from the AD conversion circuit 22.
  • FIG. 7 is a configuration diagram of the control device 2 of the present invention, and the configuration of the power conversion circuit 1 is the same as that of the power conversion circuit 1 (see FIG. 1 and the like) shown in the first embodiment.
  • the control device 2 controls the switch 11 by PWM, and includes an anti-aliasing filter 21, an AD conversion circuit 22, a drive timing value generation circuit 23, and a drive signal. And generating circuit 24.
  • the anti-aliasing filter 21, the AD conversion circuit 22, and the drive signal generation circuit 24 are substantially the same as those described in the first embodiment.
  • FIG. 7 is a configuration diagram of the control device 2 of the present invention, and the configuration of the power conversion circuit 1 is the same as that of the power conversion circuit 1 (see FIG. 1 and the like) shown in the first embodiment.
  • the control device 2 controls the switch 11 by PWM, and includes an anti-aliasing filter 21, an AD conversion circuit 22, a drive timing value generation circuit 23, and a drive signal. And generating circuit 24.
  • the data selection circuit is not provided in the subsequent stage of the AD conversion circuit 22 (the previous stage of the drive timing value generation circuit 23), but a data selection circuit similar to that described in FIG. 3 can be provided.
  • the drive timing value generation circuit 23 includes a first calculation unit 2311, a second calculation unit 2312, and a digital addition circuit 232.
  • the first calculation unit 2311 includes a proportional control amount calculation unit PRP and a differential control amount calculation unit DIF
  • the second calculation unit 2312 is a filter.
  • Digital adder circuit 232 an output D 1p proportional control amount calculation unit PRP, and an output D 1d of the differential control amount calculating section DIF, the output D 2 and adding the second arithmetic unit 2312, which as a timing signal D This is output to the drive signal generation circuit 24.
  • the calculation in the proportional control amount calculation unit PRP is performed instantaneously. Further, the calculation in the second calculation unit 2312 is much slower than the calculation in the proportional control amount calculation unit PRP. Further, the calculation in the differential control amount calculation unit 231 is not as fast as the calculation in the proportional control amount calculation unit PRP, but is not as slow as the calculation in the second calculation unit 2312.
  • the digital adder circuit 232 performs the calculation data and the second calculation in the first calculation unit 2311 at a time interval that is less than or equal to the calculation repetition interval of the second calculation unit 2312 and more than the calculation repetition interval of the proportional control amount calculation unit PRP. Addition with calculation data in the calculation unit 2312 is performed.
  • FIG. 8 is a diagram illustrating a configuration example of the control circuit 2 that acquires two analog signals necessary for control from the power conversion circuit 1.
  • One of the two analog signals is, for example, an output voltage of the power conversion circuit 1, and the other is a current flowing through the switch of the power conversion circuit 1.
  • the antialiasing filter 21 includes two antialiasing filters 21A and 21B
  • the AD conversion circuit 22 includes two conversion circuits 22A and 22B
  • the data selection circuit 25 includes two selection circuits 25A. , 25B.
  • the drive timing value generation circuit 23 includes two control amount calculation circuits 231A and 231B and an addition circuit 232.
  • the two AD conversion circuits 22A and 22B acquire two analog signals via the two antialiasing filters 21A and 21B, and perform AD conversion to corresponding digital signals (digital values). Is generated.
  • the control amount calculation circuits 231A and 231B acquire digital signals via the selection circuits 25A and 25B, respectively, and generate control amounts.
  • the control amount calculation circuits 231A and 231B include a first calculation unit 2311 and a second calculation unit 2312, respectively.
  • Each first calculation unit 2311 includes a proportional control amount calculation unit PRP and a differential control amount calculation unit DIF.
  • Each second operation unit 2312 includes a filter.
  • the proportional control amount calculation unit in one of the control calculation circuits 231A and 231B is equal to or shorter than the calculation repetition interval of the second calculation unit 2312 in either of the control calculation circuits 231A and 231B.
  • the output of the control amount computing circuit 231A (D 1p, D 1d, D 2)
  • the output of the control amount calculation circuit 231B (D 1p, D 1d, D 2) addition of the I do.
  • the configuration of the power conversion circuit 1 is the same as that of the power conversion circuit 1 shown in FIG. Further, similarly to the first and second embodiments, also in the third embodiment, the control device 2 controls the switch 11 by PWM.
  • the control device 2 includes two anti-aliasing filters 21A and 21B, two AD conversion circuits 22A and 22B, two drive timing value generation circuits 23A and 23B, and a drive signal generation circuit 24.
  • the data selection circuit is not provided in each of the subsequent stages of the AD conversion circuits 22A and 22B (the previous stage of the drive timing value generation circuits 23A and 23B), but the same data selection circuit as described in FIG. Can be provided.
  • the analog signal SoA required for control by the anti-aliasing filter 21A, the AD conversion circuit 22A, and the drive timing value generation circuit 23A is converted into the anti-aliasing filter 21B, the AD conversion circuit 22B, and the drive timing value generation circuit 23B.
  • the analog signal SoB required for control is acquired from the power conversion circuit 1.
  • the analog signal SoA is an output voltage value, for example, and the fall timing of the drive signal can be controlled by the antialiasing filter 21A, the AD conversion circuit 22A, and the drive timing value generation circuit 23A.
  • the analog signal SoB is, for example, a current value flowing through the switch, and the rising timing of the drive signal can be controlled by the antialiasing filter 21B, the AD conversion circuit 22B, and the drive timing value generation circuit 23B.
  • the data selection circuit is not provided in the subsequent stage of the AD conversion circuits 22A and 22B (the previous stage of the drive timing value generation circuits 23A and 23B), but the same data selection circuit as described in FIG. Can be provided.
  • a drive timing value generation circuit can also be comprised from a filter calculating part and a proportional calculating part.
  • FIG. 12A is an explanatory diagram showing an embodiment of a digital signal processing circuit of the present invention.
  • the digital signal processing circuit 11A includes a moving average circuit 111A, a differentiating circuit 112, and an adding circuit 113.
  • the moving average circuit 111A is the first filter circuit of the present invention
  • the differentiating circuit 112 is the second filter circuit of the present invention.
  • FIG. 12B shows a digital signal (discrete value), ..., X (1), X (2), ..., X (M), ... Indicates.
  • the time axis is ..., 1, 2, ..., M-1, M, ... It is shown by.
  • the digital value X is, for example, a deviation of electricity such as voltage, current, and power.
  • the moving average circuit 111A receives the digital value X and calculates a moving average MQ (n).
  • the differentiating circuit 112 receives the digital value X, and calculates the time-sequential n-time phase-lag differential value (compensation amount) CQ (n) generated in the moving average circuit 111A.
  • the adding circuit 113 adds the moving average MQ (n) and the compensation amount CQ (n) to generate a digital signal Dc (n) that compensates for the phase delay. Note that FIG. 12A shows the flow of processing, and does not show the signal value of each part at a certain moment.
  • Equation 1 The difference equation of the moving average MQ at time n in time series is expressed by Equation 1.
  • MQ (n) (1 / M) ⁇ X (k) (Equation 1)
  • M is the number of samples.
  • n is a coefficient corresponding to the sampling time M.
  • FIG. 13A shows a block diagram of the moving average circuit 111A.
  • the Z ⁇ 1 block means that the digital value of the previous sampling is output.
  • a coefficient multiplication circuit (1 / M) is provided at the final stage of the moving average circuit 111A.
  • digital values X (M), X (M ⁇ 1),. .., X (2), X (1) is summed and multiplied by (1 / M).
  • a coefficient multiplication circuit can be provided in the subsequent stage of the moving average circuit 111A and the differentiation circuit 112. It can be used together with a coefficient multiplication circuit provided at the subsequent stage of the moving average circuit 111A.
  • FIG. 13B shows an example of the frequency characteristic of the moving average circuit 111A
  • FIG. 13C shows an example of the phase characteristic of the moving average circuit 111A.
  • the output of the moving average circuit 111A has a phase delay in the practical frequency range.
  • the differentiation circuit 112 in FIG. 12A has a high-pass characteristic, and the compensation amount CQ (n) at time n in time series is expressed by Equation 2.
  • CQ (n) (X (k) ⁇ X (k ⁇ 1)) / ⁇ t (Formula 2)
  • ⁇ t is a discrete time interval
  • k is any value from 2 to M, for example.
  • n is a coefficient corresponding to the sampling time M-1.
  • CQ (n) is a differential value using a discrete value sequence
  • the time interval can be represented by ⁇ 2t as shown in Equation 3.
  • CQ (n) (X (k) ⁇ X (k ⁇ 2)) / ⁇ 2t (Expression 3)
  • k is, for example, any value from 2 to M, for example, any value from 3 to M.
  • FIG. 14A shows an example of the frequency characteristic of the differentiating circuit 112
  • FIG. 14B shows an example of the phase characteristic of the differentiating circuit 112.
  • the adding circuit 113 adds the moving average MQ (n) and the output of the differentiating circuit 112 (compensation amount CQ (n)), so that the influence of the phase delay of MQ (n) depends on CQ (n). Reduced.
  • FIG. 15 is an explanatory diagram showing another embodiment of the digital signal processing circuit of the present invention.
  • the digital signal processing circuit 11B includes an FIR filter circuit 111B, a differentiating circuit 112, an adding circuit 113, and a coefficient multiplying circuit.
  • the moving average circuit 111B is the first filter circuit of the present invention
  • the differentiation circuit 112 is the second filter circuit of the present invention, like the digital signal processing circuit of FIG.
  • the difference equation at time n in the time series of the FIR filter circuit 111B is expressed by Expression 4.
  • FQ (n) ⁇ a k X (k) (Formula 4)
  • M is the number of samples
  • a k is a weighting coefficient.
  • n is a coefficient corresponding to the sampling time M.
  • FIG. 16 shows a block diagram of the FIR filter circuit 111B.
  • the block of Z -1 means that the digital value of the previous sampling is output.
  • a coefficient multiplication circuit (a k ) is provided in the subsequent stage of the block of Z ⁇ 1 , and when X (M) is input to the FIR filter circuit 111B, a M X (M), a M ⁇ 1 X The sum of (M ⁇ 1),..., A 2 X (2), a 1 X (1) is calculated.
  • a coefficient multiplier circuit is provided at the subsequent stage of the FIR filter circuit 111 ⁇ / b> B and the differentiation circuit 112, as in the moving average circuit 111 ⁇ / b> A of FIGS. 1 (A) and 13 (A). it can.
  • the frequency characteristics and phase characteristics of the FIR filter circuit 111B are the same as those shown for the moving average circuit 111A in FIGS. 13B and 13C, and the output FQ (n) of the FIR filter circuit 111B has a practical frequency range. A phase lag occurs.
  • the compensation amount CQ (n) at time n in time series which is the output of the differentiating circuit 112 in FIG.
  • CQ (n) is a differential value using a discrete value sequence, for example, the time interval can be represented by ⁇ 2t, and can be expressed as in Expression 3 described above.
  • a coefficient multiplier circuit is provided at the subsequent stage of the FIR filter circuit 111B and the differentiating circuit 112 as in the moving average circuit 111A of FIGS. 1 (A) and 13 (A). be able to. Also in the digital signal processing circuit 11B of FIG. 15, the phase of the output CQ (n) of the differentiating circuit 112 is advanced in the practical frequency range. Therefore, the addition circuit 113 adds the output FQ (n) of the FIR filter circuit 111B and the output of the differentiation circuit 112 (compensation amount CQ (n)), so that the influence of the phase delay of FQ (n) is CQ. Canceled by (n).
  • FIG. 17 is an explanatory diagram showing an embodiment of the digital control circuit of the present invention.
  • the power conversion circuit is controlled by a digital control circuit equipped with the digital signal processing circuit 11A of FIG. 1
  • the power conversion circuit is controlled by a digital control circuit equipped with the digital signal processing circuit 11B of FIG.
  • the following description also applies to the case of controlling the above.
  • the power conversion circuit 2 includes a switch circuit 21 that inputs the voltage Ei from the power supply 4 and an inductor 22 that is connected to the switch circuit 21 and stores and discharges energy.
  • the switch circuit 21 includes a load 3. (The inductor 22 may be connected between the switch circuit 21 and the load 3 depending on the power conversion method).
  • the digital control circuit 1 includes an input unit 12, an input comparison unit 13, a digital signal processing circuit 11A, and a control signal output unit 14.
  • the input unit 12 has a signal selection function, and can select either the output voltage eo or the output current io, or can select both the output voltage eo and the output current io.
  • the digital control circuit 1 can perform various controls such as a constant voltage mode, a constant current mode, a power mode, an overcurrent limit mode, and an overvoltage limit mode. For example, when the digital control circuit 1 performs control in the constant voltage mode, the input unit 12 selects only eo, and when the load 3 increases rapidly, the input unit 12 switches to only io selection, The digital control circuit 1 performs control in the overcurrent limit mode. Further, in the process of shifting from the constant voltage mode to the overcurrent limiting mode, the input unit 12 selects both eo and io, performs multiplication of eo and io, and the digital control circuit 1 performs control in the power mode. May be performed.
  • the output of the input unit 12 is set to ad.
  • the voltage detection value is not limited to the instantaneous value eo, but may be an average value or an effective value Eo.
  • the detected current value is not limited to the instantaneous value io, and may be an average value or an effective value Io.
  • the input comparison unit 13 following the input unit 12 includes an operational amplifier 131 and an A / D converter 132.
  • the differential amplifier 131 outputs a difference (ad * ⁇ ad) between the power detection value ad and the target value ad *, and the A / D converter 132 converts the difference (ad * ⁇ ad) into a digital signal, and the deviation. It is output to the digital signal processing circuit 11 as (digital discrete value X).
  • the A / D converter 132 is provided after the differential amplifier 131, but the differential amplifier 131 (in this case, a digital comparator) may be provided after the A / D converter 132. it can. Further, an A / D converter may be provided in the previous stage of the input unit 12.
  • the input unit 12 is an A / D converter 1211 and 1212 and a digital multiplier 122
  • the comparison unit 13 is a digital comparator.
  • the output of the digital multiplier 122 is indicated by D
  • the comparator 13 inputs the output D and the target value D * and outputs the digital deviation D * -D as X.
  • a coefficient multiplier circuit 114 is provided at the subsequent stage of the moving average circuit 111A
  • a coefficient multiplier circuit 115 is provided at the subsequent stage of the differentiating circuit 112.
  • the digital signal processing circuit 11A constitutes a part of the control circuit, performs arithmetic processing of the moving average MQ (n) of the digital deviation D X , and the coefficient multiplication circuit 114 applies a predetermined coefficient K to MQ (n). Multiplying by M , the moving average manipulated variable K M ⁇ MQ (n) is output. Further, the differential circuit 112 performs arithmetic processing of the digital deviation X of the differential value CQ (n), the coefficient multiplying circuit 115 multiplies a predetermined coefficient K D in CQ (n), moving average operation amount K D -Outputs CQ (n).
  • the adder circuit 113 adds the output K A ⁇ MQ (n) of the coefficient multiplier circuit 114 and the output differential value K D ⁇ CQ (n) of the coefficient multiplier circuit 115 to obtain a signal Dc (n) compensated for the phase delay. Output.
  • the circuit for calculating the moving average can also be constituted by a shift register as shown in FIG.
  • a circuit for calculating a moving average includes a FIFO 1301, an adder 1302, a shift register 1303, and a coefficient multiplication circuit 1304.
  • the FIFO 1301 sequentially inputs sampling values and stores a plurality of consecutive sampling values.
  • a state in which four sampling values X1, X2, X3, and X4 shown in FIG. 19B are stored is shown.
  • the coefficient multiplication circuit 1304 multiplies ⁇ Xi by a coefficient (including a coefficient (1/4) for averaging) K M / 4, and outputs K M ⁇ (1/4) ⁇ Xi.
  • the shift register 1303 shifts the addition result (for example, binary number: b 1 b 2 b 3 b 4 ) twice to the lower side to calculate (X1 + X2 + X3 + X4) / 2 2, and outputs the shifter 1313 (X1 + X2 + X3 + X4) ) / 2 2 may be multiplied by a coefficient K M to output AM (n).
  • the coefficient multiplication circuit 1304 can be integrated with the shift register 1303.
  • the differentiating circuit 112 can be composed of a FIFO 1121, a subtracting circuit 1122, and a coefficient multiplying circuit 1123.
  • the FIFO 1121 inputs the last two values X 3 and X 4 among X 1, X 2, X 3 and X 4, and outputs these values to the subtraction circuit 1122.
  • Subtraction circuit 1122 outputs the subtracted value (X3-X4) to the coefficient multiplier circuit 1123, the coefficient multiplying circuit 1123 subtracts value (X3-X4) to be multiplied by a coefficient K D derivative value CQ (n) Output.
  • the FIFO 1121 in FIG. 20 can be shared with the FIFO 1301 of the circuit for calculating the moving average shown in FIG.
  • FIG. 21A shows the transient characteristics of the reactor current when the power conversion circuit 2 is simulated by the PID controller
  • FIG. 21B shows the reactor when the power conversion circuit 2 is simulated by the digital control circuit 1. Current transient characteristics are shown. Overshoot when the reactor current flows is greater in FIG. 21 (A), the by choosing appropriately the parameters K M and K D as described above in FIG. 21 (B), the is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】  微分制御量の演算結果とフィルタの演算結果とから、フィルタ演算の繰り返し間隔以下の繰り返し間隔でタイミング値を生成し、このタイミング値により駆動信号生成回路のタイミングセット値を更新することで、制御の高精度化を図る。 【解決手段】  AD変換回路22と、駆動タイミング値生成回路23と、駆動信号生成回路24とを備えている。  駆動タイミング値生成回路23は、制御量演算回路231とデジタルデジタル加算回路232を備えており、制御量演算回路231は微分制御量演算を行う第1演算部2311とフィルタ演算を行う第2演算部2312とを備える。デジタルデジタル加算回路232は、第1演算部2311における演算繰り返し間隔以上、第2演算部2312における演算繰り返し間隔以下の繰り返し間隔で、第2演算部2312が生成した制御量と、第1演算部2311が生成した制御量の加算を行い、電力変換回路のスイッチの駆動タイミング値を生成する。駆動信号生成回路24は、駆動タイミング値を入力して、当該駆動タイミング値により電力変換回路1のスイッチ11の駆動信号を生成する。

Description

電力変換回路の制御装置および制御方法
 本発明は、電力変換回路を高精度で制御する技術に関し、具体的には、スイッチ制御のためのタイミング値の生成に際して、微分制御量の演算結果とフィルタの演算結果とから、フィルタ演算の繰り返し間隔以下の繰り返し間隔でタイミング値を生成し、このタイミング値により駆動信号生成回路のタイミングセット値を更新することで、制御の高精度化を図る電力変換回路の制御装置に関する。
 図11により従来の電力変換回路の制御装置を説明する。図11において、電力変換回路8は、スイッチ81がオンのときにはリアクトル82を介して、電源101からの電力を負荷102に供給し、スイッチ81がオフのときにはリアクトル82に蓄えられたエネルギーを放出することで電力を負荷102に供給する。なお、図11では、電力変換回路8の出力側に平滑キャパシタ84が設けられている。
 電力変換回路8の制御装置9は、AD変換回路91と駆動タイミング値生成回路92と駆動信号生成回路93とからなる。AD変換回路91は電力変換回路8の出力eoを入力し、これをデジタル信号に変換して、駆動タイミング値生成回路92に出力する。
 駆動タイミング値生成回路92における演算結果Dは駆動信号生成回路93に送出される。駆動信号生成回路93は、演算結果Dに基づき制御信号(スイッチ駆動信号DSW)を生成しスイッチ81を駆動する。
 ところが、図11の電力変換回路8において、駆動タイミング値生成回路92にフィルタを用いた場合、電源電圧や電源電流(電源101の端子電圧や電源101を流れる電流)、負荷電圧や負荷電流(負荷102の端子電圧や負荷102に供給される電流)が急激に変化した場合の応答に対する制御ができない。
 本発明の目的は、スイッチ制御のためのタイミング値の生成に際して、微分制御量の演算結果とフィルタの演算結果とから、フィルタ演算の繰り返し間隔以下の繰り返し間隔でタイミング値を生成し、このタイミング値により駆動信号生成回路のタイミングセット値を更新することで、制御の高精度化を図る(具体的には、電源や負荷の急激な変化に速く対応する)ことである。
 本発明の電力変換回路の制御装置は、
 電力変換回路から制御に必要な一または二以上のアナログ信号を取得し、当該一または二以上のアナログ信号をAD変換して、これらのアナログ信号に対応する一または二以上のデジタル信号(デジタル値)を生成するAD変換回路と、
 微分制御量演算を行う第1演算部とフィルタ演算を行う第2演算部とを備え、各演算部がそれぞれ前記一または二以上のデジタル量を入力し各演算を行う制御量演算回路、および、
 前記第1演算部における演算繰り返し間隔以上、前記第2演算部における演算繰り返し間隔以下の繰り返し間隔で、当該第2演算部が生成した制御量と、前記第1演算部が生成した制御量の加算を行い、前記電力変換回路のスイッチの駆動タイミング値を生成するデジタルデジタル加算回路、
からなる駆動タイミング値生成回路と、
 前記駆動タイミング値を入力して、当該駆動タイミング値により前記スイッチの駆動信号(駆動パルス)を生成する駆動信号生成回路と、
を備えたことを特徴とする。
 第1演算部は、微分制御量演算に加えて比例制御量演算を行うこともできる。
 フィルタは、FIRフィルタとIIRフィルタとに分類される。FIRフィルタは、周知のように移動平均フィルタを含む。
 第1演算部が、比例制御演算、微分制御演算、または比例制御演算および微分制御演算を行い、第2演算部がフィルタ演算を行なうように構成できる。
 電力変換回路は、典型的には、スイッチと転流ダイオードとリアクトルとを備えたDC/DCコンバータである。
 制御に必要な一または二以上のアナログ信号は、典型的には、電力変換回路の入力電流,入力電圧、出力電流,出力電圧、電力変換回路の所定箇所を流れる電流、電力変換回路の所定二箇所間の電圧の何れかである。
 駆動タイミング値生成回路は、駆動信号の立上り、立下りの駆動信号を生成することもできる。たとえば、駆動信号の立上りのタイミングを一定の繰り返し間隔で発生させ、立下りのタイミングを制御するようにできるし、駆動信号の立下りのタイミングを一定の繰り返し間隔で発生させ、立上りのタイミングを制御するようにもできる。
 さらに、たとえば、制御量演算回路とデジタル加算回路と駆動信号生成回路の組を2組用意しておき(AD変換回路は2組が共用することができる)、駆動信号の立下りのタイミングを制御するようにもできる。
 また、本発明の制御装置により、駆動信号の立上りまたは立下りの駆動信号の一方を生成し、本発明によらない制御装置により、当該駆動信号の他方を生成するようにできる。
 駆動信号生成回路は、ダウンカウンタを備え、駆動タイミングセット値が更新されたときは、
 (駆動タイミングセット値の更新値)-(現在までの累積カウント値)
で現在のカウンタ値を書き換えることができる。
 現在までの累積カウント値は、累積値を計数するカウンタを設けておくことで知ることができるし、駆動タイミング値の入力回数により知ることもできる。
 また、更新される前の駆動タイミングセット値を記憶しておき、このセット値からダウンカウンタ値を減算することで知ることもできる。
 駆動タイミングセット値の更新時において、
 (駆動タイミングセット値の更新値)-(現在までの累積カウント値)の値が所定範囲となったとき(たとえば、ゼロまたは負となったとき)は、ただちに、駆動信号の立上りまたは立下りの駆動信号を生成することができる。
 たとえば、第2演算部の演算繰り返し間隔が、第1演算部の演算繰り返し間隔の整数倍であり、第2演算部の演算終了タイミング(演算結果を出力する準備が整ったとき)が、第1演算部の演算終了タイミングに一致するときは、デジタル加算回路は、微分制御量演算部が制御量を生成したときに、加算を行うことができる。
 第2演算部の演算繰り返し間隔が、第1演算部の演算繰り返し間隔の整数倍であるか否かよらず、第1演算部の演算終了タイミングおよび第2演算部の演算終了タイミングごとに、駆動信号生成回路に備えられたカウンタのカウンタ値を更新することができる。
 なお、第1演算部および第2演算部の演算結果を加算する際に、各演算結果は、通常、一時記憶装置(データバッファ等)に記憶することができるが、この一時記憶装置は、第1演算部および第2演算部に設けておいてもよいし、デジタル加算回路に設けておいてもよい。
 本発明では、タイミング信号生成に際して、第1演算部の演算結果と、第2演算部の演算結果とからタイミング値を第1演算部の演算繰り返し間隔以上、第2演算部の演算繰り返し間隔以下の間隔で生成し、このタイミング値により、駆動信号生成回路にセットされている駆動タイミング値を更新するようにした。これにより、従来の制御装置に比べて、電源や負荷の急激な変化に速く対応でき、高精度の制御を行うことができる。
本発明の制御装置の第1実施形態を示す構成図である。 本発明の制御装置の動作を示す説明図であり、(A)は第2演算部の演算繰り返し間隔が第1演算部の演算繰り返し間隔の整数倍であり、第2演算部の演算終了タイミングが第1演算部の演算終了タイミングに一致するときに駆動信号生成回路に備えられたカウンタのカウンタ値を更新する様子を示す説明図である。 図1の制御装置の変形例を示す構成図である。 制御装置2の一部をハードウェア的に見た説明図である。 (A)は図1の電力変換回路の制御装置の動作説明図であり、(B)は図6に示した従来の電力変換回路の制御装置の動作説明図である。 本発明の制御装置の第2実施形態を示す構成図である。 本発明の制御装置の第2実施形態を示す構成図である。 本発明の制御装置の第2実施形態において、制御な必要な2つのアナログ信号を取得して制御を行う場合を示す構成図である。 本発明の制御装置の第3実施形態を示す構成図である。 駆動タイミング値生成回路を比例要素とフィルタにより構成した例を示す図である。 従来の制御装置を示す構成図である。
符号の説明
 1 電力変換回路
 2 制御装置
 11 スイッチ
 12 リアクトル
 13 転流ダイオード
 14 平滑キャパシタ
 21,21A,21B アンチエイリアスフィルタ
 22,22A,22B AD変換回路
 23,23A,23B 駆動タイミング値生成回路
 24 駆動信号生成回路
 25 データ選択回路
 231 制御量演算回路
 232 デジタル加算回路
 2311 第1演算部
 2312 第2演算部
 PRP 比例制御量演算部
 DIF 微分制御量演算部
 図1から図3により本発明の第1実施形態を説明する。図1は本発明の制御装置2の基本構成図である。図1において、電力変換回路1は、直流電源101からの電力をDC/DC変換して負荷102に供給している。
 制御装置2は、電力変換回路1を構成するスイッチをPWM(パルス幅変調)により制御するもので、アンチエイリアスフィルタ21と、AD変換回路22と、駆動タイミング値生成回路23と、駆動信号生成回路24とからなる。
 アンチエイリアスフィルタ21は、ローパスフィルタであり、入力される電力変換回路1における信号Soのノイズ(リップル等)をカットする。信号Soは、たとえば、電力変換回路1の出力電圧,出力電流,入力電圧または入力電流、電力変換回路1を構成するスイッチを流れるスイッチ電流、電力変換回路1を構成するリアクトルを流れるリアクトル電流などである。
 AD変換回路22はアンチエイリアスフィルタ21を通過した信号Soを入力し、これをデジタル信号に変換する。
 駆動タイミング値生成回路23は、制御量演算回路231と、デジタル加算回路232とからなる。制御量演算回路231は第1演算部2311と第2演算部2312とからなり、第1演算部2311は微分制御量の演算を行い、第2演算部2312はフィルタの演算とを行なう。第1演算部2311の演算、第2演算部2312の演算は、マイクロプロセッサ等によりシリアルに行なってもよいし、DSP等によりパラレルに行ってもよい。
 デジタル加算回路232は、これらの演算部の演算結果D1およびD2を加算してタイミング信号D(=D1+D2)を生成する。デジタル加算回路232は、第2演算部2312の演算繰り返し間隔以下で、かつ比例制御量演算部PRPにおける演算繰り返し間隔以上の時間間隔で、上記の加算を行うことができる。
 たとえば、図2に示すように、第2演算部2312の演算繰り返し間隔が、第1演算部2311の演算繰り返し間隔の整数倍であり、第2演算部2312の演算終了タイミング(演算結果を出力する準備が整ったとき)が、第1演算部2311の演算終了タイミングに一致するときは、デジタル加算回路232は、微分制御量演算部が制御量を生成したときに、加算を行うことができる。
 図2では、第1演算部2311内の図示しない出力バッファ内の微分制御量データをD1,x(x;・・・,0,1,2,・・・)で示し、第2演算部2312内の図示しない出力バッファ内のフィルタの演算データをD1,y(y;・・・,0,1,2,・・・)で示し、デジタル加算回路232の出力データをD(z)(z;・・・,0,1,2,・・・)で示してある。また、駆動回路生成回路24の図示しないカウンタの値C(デジタル加算回路232の出力データD(z)に同じ)を併せて示してある。
 図2では、
 D(0)=D1,0+D2,0
 D(1)=D1,1+D2,0
 D(2)=D1,2+D2,0
・・・
 D(5)=D1,5+D2,1
・・・
のように、デジタル加算回路232は、第1演算部2311の微分制御量データD1,xと、第2演算部2312のフィルタの演算データD2,yとをデータ加算する。
 なお、上記の例では、第1演算部2311および第2演算部2312の各演算結果を、各演算部内の一時記憶装置(データバッファ等)に記憶する例を示したが、デジタル加算回路232にデータバッファを設けておき、このデータバッファに各演算結果を一時記憶するようにしてもよい。
 駆動信号生成回路24は、本実施形態では繰り返し間隔TSWで動作しており、タイミング信号Dに基づき制御信号(スイッチ駆動信号DSW:駆動パルスの立下りタイミング)を生成し、電力変換回路1のスイッチを制御する。
 第1演算部2311または第2演算部2312は、AD変換回路22から送られてくる全てのデータを使用しない場合がある。たとえば、第1演算部2311は、AD変換回路22から送られてくる連続する8個のデータのうち、最初の連続する2個のみを使用すればよい場合もあろうし、第2演算部2312は、連続する1024個のデータのうち、偶数番目のデータのみを使用すればよい場合もあろう。
 このような場合には、第1演算部2311または第2演算部2312において、データの選択を行ってもよいし、図3に示すように、AD変換回路22の後段にデータ選択回路25を設け、AD変換回路22が出力するデジタルデータを、第1演算部2311と第2演算部2312に、各演算部の繰り返し間隔に応じて出力するようにしてもよい。
 図4および図5により、図1に示した制御装置2の動作例を説明する。
 図4は、制御装置2の一例を示す説明図である。図4では、駆動タイミング値生成回路23が、CPU2301と、メモリ2302と、入力インタフェース2303,出力インタフェース2304と、バス2305を有している。図4では、説明の便宜上、制御装置2の一部を図4のような伝統的なコンピュータの構成で示してある。なお、駆動信号生成回路24は、駆動タイミング値生成回路23のCPU2301やメモリ2302を共用できる。
 図4では、AD変換回路22からのデジタルデータはメモリ2302のデータ保存領域に格納される。メモリ202には、複数のデータがFIFO方式で格納されている。図4では、最新の3つのデータDk-2,Dk-1,Dkが格納され、入力インタフェース2303にはデータDk+1が入力されている様子が示されている。また、図4では、入力インタフェース2304からはデータD(z)が出力されている様子も示されている。
 図4では、駆動タイミング値生成回路23の機能は、CPU2301と、メモリ2302に格納された「第1演算プログラム」,「第2演算プログラム」とにより達成される。
 図4では、微分演算プログラムが「第1演算プログラム」であり、フィルタ演算プログラムが「第2演算プログラム」である。微分プログラムは「第1演算プログラム」とすることもできるし、「第2演算プログラム」とすることもできる。また、更新されたタイミング値は、セット値転送プログラムにより駆動信号生成回路24に転送される。
 図5(A)に示すように、駆動タイミング値生成回路23は、第2演算部による一繰り返し間隔中に、複数回の第1演算部2311により演算を実行する。図5(B)は従来における駆動タイミング値の生成を示している。
 図5(A)では、k周期目のD1,1,D1,2,・・・,D1,Nの演算は、k+1周期目のD2の演算と並行して行なわれる。
 駆動信号生成回路24は、所定クロックによりセット値が減数されるダウンカウンタを備えており、ダウンカウンタのセット値が、タイミング値Hにより順次更新される。
 たとえば、ダウンカウンタの初期セット値「512」だとする。「400」までダウンカウントしたときに(残りカウント数:「112」)、セット値が「516」に更新された(すなわち「4」増加した)とする。
 駆動信号生成回路24は、別途、累積値を計数できるカウンタを持つことができ、この場合には、このカウンタ値は「400」である。したがって、「516-400=116」の値がダウンカウンタにセットされる。
 駆動信号生成回路24は、更新前のセット値(「512」)をメモリ等に記憶しておくこともでき、この場合には、更新前のセット値「512」からダウンカウンタの値「112」を減算することで、累積値を計算できる。したがって、「516-(512-112)=116」の値がダウンカウンタにセットされる。
 駆動信号生成回路24は、ダウンカウンタの値がゼロとなったときに、駆動信号DSWにより、電力変換回路1のスイッチをオフする。なお、この例では、スイッチをオフしているが、スイッチをオンするために上記の制御を行うことができる。
 図6は、データ選択回路25をレジスタRGにより構成したときの、当該データ選択回路25と駆動タイミング値生成回路23との構成例を示す図である。
 図6では、AD変換回路22からのデータdは、レジスタRGに記憶される。レジスタRGはN個のデータを記憶でき、これらN個のデータは、新たなデータが入力されると順次プッシュされ、古いデータから順に消去される。
 レジスタRGに記憶されたデータのうち2つのデータ(たとえば、最新の2データ)は、第1演算部2311に送られ、第1演算部2311では差分を演算して所定係数を乗算してデジタル加算器232に出力する。
 レジスタRGに記憶されたデータの全データは第2演算部2312に送られ、第2演算部2312はフィルタ演算処理(たとえば、FIR演算、移動平均演算等)し、演算結果を加算器232に送る。
 第1演算部2311(微分制御量演算部)は、最新の隣接する2つのデータを用いて微分制御量を求めているが本発明はこれに限定されない。たとえば、第1演算部2311は、AD変換回路22から入力した連続しない2つのデータを用いることもできる。
 図7により本発明の第2実施形態を説明する。図7は本発明の制御装置2の構成図であり、電力変換回路1の構成は第1実施形態で示した電力変換回路1(図1等参照)と同じである。
 また、第1実施形態と同様、第2実施形態でも、制御装置2はスイッチ11をPWMにより制御するもので、アンチエイリアスフィルタ21と、AD変換回路22と、駆動タイミング値生成回路23と、駆動信号生成回路24とからなる。アンチエイリアスフィルタ21、AD変換回路22および駆動信号生成回路24は、第1実施形態で説明したものと概ね同様である。なお、図7では、AD変換回路22の後段(駆動タイミング値生成回路23の前段)にデータ選択回路が設けられていないが、図3で説明したと同様のデータ選択回路を設けることができる。
 図7において、駆動タイミング値生成回路23は、第1演算部2311と第2演算部2312とデジタル加算回路232とからなる。第1演算部2311は比例制御量演算部PRPと微分制御量演算部DIFとからなり、第2演算部2312はフィルタである。
 デジタル加算回路232は、比例制御量演算部PRPの出力D1pと、微分制御量演算部DIFの出力D1dと、第2演算部2312の出力D2とを加算し、これをタイミング信号Dとして駆動信号生成回路24に出力する。
 比例制御量演算部PRPにおける演算は、瞬時になされる。また、第2演算部2312における演算は、比例制御量演算部PRPにおける演算に比べて格段に遅い。また、微分制御量演算部231における演算は、比例制御量演算部PRPにおける演算ほど速くはないが、第2演算部2312における演算ほど遅くはない。本発明では、デジタル加算回路232は、第2演算部2312の演算繰り返し間隔以下で、かつ比例制御量演算部PRPにおける演算繰り返し間隔以上の時間間隔で、第1演算部2311における演算データと第2演算部2312における演算データとの加算を行う。
 図8は、電力変換回路1から制御に必要な2つのアナログ信号を取得する制御回路2の構成例を示す図である。2つのアナログ信号のうちの一方は、たとえば電力変換回路1の出力電圧であり、他方は電力変換回路1のスイッチを流れる電流である。
 図8において、電力変換回路1では、アンチエイリアスフィルタ21は、2つのアンチエイリアスフィルタ21A,21Bからなり、AD変換回路22は2つの変換回路22A,22Bからなり、データ選択回路25は2つの選択回路25A,25Bからなる。
 また、駆動タイミング値生成回路23は、2つの制御量演算回路231A,231Bと、加算回路232からなる。
 図8の電力変換回路1では、2つのAD変換回路22A,22Bが、2つのアナログ信号を、2つのアンチエイリアスフィルタ21A、21Bを介して取得し、AD変換して対応するデジタル信号(デジタル値)を生成する。
 また、制御量演算回路231A,231Bは、それぞれ、選択回路25A,25Bを介してデジタル信号を取得し、制御量を生成する。制御量演算回路231A,231Bは、それぞれ第1演算部2311と第2演算部2312とからなる。各第1演算部2311は、それぞれ比例制御量演算部PRPと微分制御量演算部DIFからなる。また、各第2演算部2312は、それぞれフィルタからなる。
 制御量演算回路231Aの、第1演算部2311(比例制御量演算部PRP,微分制御量演算部DIF)からの出力D1p,D1dおよび第2演算部2312からの出力D2、制御量演算回路231Bの、第1演算部2311(比例制御量演算部PRP,微分制御量演算部DIF)からの出力D1p,D1dおよび第2演算部2312からの出力D2はデジタル加算回路232により加算され加算値Dとして駆動信号生成回路24に送られる。
 図8の回路では、デジタル加算回路232でも、制御演算回路231A,231Bの何れかにおける第2演算部2312の演算繰り返し間隔以下で、かつ制御演算回路231A,231Bの何れかにおける比例制御量演算部PRPの演算繰り返し間隔以上の時間間隔で、制御量演算回路231Aの出力(D1p,D1d,D2)と、制御量演算回路231Bの出力(D1p,D1d,D2)との加算を行う。
 図9により本発明の第3実施形態を説明する。図9において、電力変換回路1の構成は図1に示した電力変換回路1と同じである。また、第1、第2実施形態と同様、第3実施形態でも、制御装置2はスイッチ11をPWMにより制御する。
 第3実施形態では、制御装置2は、2つのアンチエイリアスフィルタ21A,21Bと、2つのAD変換回路22A,22Bと、2つの駆動タイミング値生成回路23A,23Bと、駆動信号生成回路24とにより構成されている。なお、図9では、AD変換回路22A,22Bの後段(駆動タイミング値生成回路23A,23Bの前段)のそれぞれにデータ選択回路が設けられていないが、図3で説明したと同様のデータ選択回路を設けることができる。
 図9では、アンチエイリアスフィルタ21Aと、AD変換回路22Aと、駆動タイミング値生成回路23Aとにより制御に必要なアナログ信号SoAを、アンチエイリアスフィルタ21Bと、AD変換回路22Bと、駆動タイミング値生成回路23Bとにより制御に必要なアナログ信号SoBを、電力変換回路1から取得している。
 第3実施形態では、アナログ信号SoAは、たとえば出力電圧値であり、アンチエイリアスフィルタ21Aと、AD変換回路22Aと、駆動タイミング値生成回路23Aにより
駆動信号の立下りのタイミングを制御することがでる。また、アナログ信号SoBは、たとえばスイッチを流れる電流値であり、アンチエイリアスフィルタ21Bと、AD変換回路22Bと、駆動タイミング値生成回路23Bとにより駆動信号の立上がりのタイミングを制御することがでる。
 なお、図9では、AD変換回路22A,22Bの後段(駆動タイミング値生成回路23A,23Bの前段)にはデータ選択回路が設けられていないが、図3で説明したと同様のデータ選択回路を設けることができる。
 なお、図10に示すように、フィルタ演算部と比例演算部とから駆動タイミング値生成回路を構成することもできる。
以下、本発明のフィルタの応用を説明する。
 図12(A)は本発明のディジタル信号処理回路の一実施形態を示す説明図である。図12(A)において、ディジタル信号処理回路11Aは、移動平均回路111Aと、微分回路112と、加算回路113とを備えている。ここで、移動平均回路111Aは本発明の第1フィルタ回路であり、微分回路112は本発明の第2フィルタ回路である。
 図12(B)に、ディジタル信号(離散値)、
 ・・・,X(1),X(2),・・・,X(M),・・・
を示す。図12(B)では、時間軸を、
  ・・・,1,2,・・・,M-1,M,・・・
で示してある。
 ディジタル値Xは、たとえば、電圧、電流、電力等の電気量の偏差である。
 移動平均回路111Aは、上記のディジタル値Xを入力し、移動平均MQ(n)を演算する。
 微分回路112は、ディジタル値Xを入力し、移動平均回路111Aにおいて生じた、時系列のn時刻の位相遅れの微分値(補償量)CQ(n)を演算する。加算回路113は、移動平均MQ(n)と補償量CQ(n)とを加算して位相遅れを補償したディジタル信号Dc(n)を生成する。なお、図12(A)では、処理の流れを示すもので、ある瞬間における各部の信号値を示すものではない。
 移動平均MQの、時系列のn時刻における差分方程式は式1で表される。
     MQ(n)=(1/M)ΣX(k)・・・(式1)
 ただし、ΣX(k)は、k=1~Mまでの加算値であり、Mはサンプル数である。nは、ここでは、サンプリング時刻Mに対応する係数である。
 図13(A)に、移動平均回路111Aのブロック図を示す。図13(A)において、Z-1のブロックは、1つ前のサンプリングのディジタル値を出力することを意味する。移動平均回路111Aの最終段には、係数乗算回路(1/M)が設けられており、X(n)が入力されると、ディジタル値X(M),X(M-1),・・・,X(2),X(1)の合計値が計算され、これに(1/M)が乗算される。
 図12(A),図13(A)には図示していないが、移動平均回路111Aおよび微分回路112の後段に係数乗算回路を設けることができる。移動平均回路111Aの後段に設けた係数乗算回路と併用できる。
 図13(B)に移動平均回路111Aの周波数特性の例を示し、図13(C)に移動平均回路111Aの位相特性の例を示す。図13(B),(C)からわかるように、移動平均回路111Aの出力には、実用周波数域において位相遅れが生じる。
 図12(A)における微分回路112は、高域通過特性を持ち、時系列のn時刻における補償量CQ(n)は、式2で表される。
     CQ(n)=(X(k)-X(k-1))/Δt・・・(式2)
 ただし、Δtは離散値の時間間隔であり、kはたとえば2~Mのうちの何れかの値である。また、nは、ここでは、サンプリング時刻M-1に対応する係数である。
 なお、CQ(n)は、離散値列を用いた微分値であれば、たとえば時間間隔をΔ2tとして、式3のように表すこともできる。
     CQ(n)=(X(k)-X(k-2))/Δ2t・・・(式3)
 kはたとえば2~Mのうちの何れかの値であり、たとえば3~Mのうちの何れかの値である。
 図14(A)に微分回路112の周波数特性の例を示し、図14(B)に微分回路112の位相特性の例を示す。図13(A),(B)からわかるように、微分回路112の出力には、実用周波数域において位相が進んでいる。したがって、加算回路113が、移動平均MQ(n)と微分回路112の出力(補償量CQ(n))とを加算することで、MQ(n)の位相遅れ分の影響はCQ(n)により低減される。
 図15は本発明のディジタル信号処理回路の他の実施形態を示す説明図である。図15において、ディジタル信号処理回路11Bは、FIRフィルタ回路111Bと、微分回路112と、加算回路113と、係数乗算回路を備えている。ここで、移動平均回路111Bは本発明の第1フィルタ回路であり、図1のディジタル信号処理回路と同様、微分回路112は本発明の第2フィルタ回路である。
 FIRフィルタ回路111Bの、時系列のn時刻における差分方程式は式4で表される。
     FQ(n)=ΣakX(k)・・・(式4)
 ただし、ΣakX(k)は、k=1~Mまでの加算値であり、Mはサンプル数、akは重み係数である。nは、ここでは、サンプリング時刻Mに対応する係数である。
 図16に、FIRフィルタ回路111Bのブロック図を示す。図16において、Z-1のブロックは、1つ前のサンプリングのディジタル値を出力することを意味する。Z-1のブロックの後段には、係数乗算回路(ak)が設けられており、FIRフィルタ回路111BにX(M)が入力されると、aMX(M),aM-1X(M-1),・・・,a2X(2),a1X(1)の合計値が計算される。
 図15,図16には図示していないが、図1(A),図13(A)の移動平均回路111Aと同様、FIRフィルタ回路111Bおよび微分回路112の後段に係数乗算回路を設けることができる。
 FIRフィルタ回路111Bの周波数特性、位相特性は、図13(B),(C)に移動平均回路111Aについて示したと同様であり、FIRフィルタ回路111Bの出力FQ(n)には、実用周波数域において位相遅れが生じる。
 図16における微分回路112の出力である、時系列のn時刻における補償量CQ(n)は、前述した式2で表される。また、CQ(n)は、離散値列を用いた微分値であれば、たとえば時間間隔をΔ2tとして、前述した式3のように表すこともできる。
 なお、図15および図16には図示していないが、図1(A),図13(A)の移動平均回路111Aと同様、FIRフィルタ回路111Bおよび微分回路112の後段に係数乗算回路を設けることができる。
 図15のディジタル信号処理回路11Bでも、微分回路112の出力CQ(n)は、実用周波数域において位相が進んでいる。したがって、加算回路113が、FIRフィルタ回路111Bの出力FQ(n)と微分回路112の出力(補償量CQ(n))とを加算することで、FQ(n)の位相遅れ分の影響はCQ(n)によりキャンセルされる。
 図17は、本発明のディジタル制御回路の実施形態を示す説明図である。本実施形態では、図1のディジタル信号処理回路11Aを搭載したディジタル制御回路により、電力変換回路を制御する例を示すが、図15のディジタル信号処理回路11Bを搭載したディジタル制御回路により電力変換回路を制御する場合も、以下の説明がそのまま当てはまる。
 図17において、電力変換回路2は、電源4からの電圧Eiを入力するスイッチ回路21と、スイッチ回路21に接続されエネルギー蓄積・放出を行うインダクタ22とから構成され、スイッチ回路21には負荷3が接続されている(インダクタ22は、電力変換方式によっては、スイッチ回路21と負荷3との間に接続されることもある)。
 ディジタル制御回路1は、入力部12と、入力比較部13と、ディジタル信号処理回路11Aと、制御信号出力部14とを備えている。入力部12は、信号選択機能を備えており、出力電圧eoと出力電流ioの何れか一方を選択することもできるし、出力電圧eoと出力電流ioの双方を選択することもできる。
 ディジタル制御回路1は定電圧モード、定電流モード、電力モード、過電流制限モード、過電圧制限モード等の種々の制御を行うことができる。
 たとえば、ディジタル制御回路1が定電圧モードで制御を行っているときには、入力部12はeoのみを選択し、負荷3が急増したような場合には、入力部12はioのみの選択に切り換え、ディジタル制御回路1は、過電流制限モードでの制御を行う。また、定電圧モードから過電流制限モードに移行する過程で、入力部12がeoとioとの双方を選択し、eoとioとの乗算を行い、ディジタル制御回路1は、電力モードでの制御を行うこともある。
 ここでは、入力部12の出力をadとする。なお、図示はしないが、電圧検出値は瞬時値eoに限らず、平均値または実効値Eoであってもよい。また電流検出値も瞬時値ioに限らず、平均値または実効値Ioであってもよい。
 入力部12の後段の入力比較部13は、作動増幅器131とA/D変換器132とからなる。差動増幅器131は電力検出値adと目標値ad*との差分(ad*-ad)を出力し、A/D変換器132はこの差分(ad*-ad)をディジタル信号に変換し、偏差(ディジタル離散値X)としてディジタル信号処理回路11に出力する。
 図17では、差動増幅器131の後段にA/D変換器132が設けられているが、A/D変換器132の後段に差動増幅器131(この場合にはディジタル比較器)を設けることができる。また、入力部12の前段に、A/D変換器を設けるようにしてもよい。この場合には、図18に示すように、入力部12は、A/D変換器1211,1212とディジタル乗算器122であり、比較部13はディジタル比較器である。図16ではディジタル乗算器122の出力をDで示し、比較部13は出力Dと目標値D*を入力し、ディジタル偏差D*-DをXとして出力する。
 なお、図17では移動平均回路111Aの後段に係数乗算回路114が設けられ、微分回路112の後段に係数乗算回路115が設けられている。
 ディジタル信号処理回路11Aは、制御回路の一部を構成しており、ディジタル偏差DXの移動平均MQ(n)の演算処理を行い、係数乗算回路114は、MQ(n)に所定の係数KMを乗算して、移動平均操作量KM・MQ(n)を出力する。また、微分回路112は、ディジタル偏差Xの微分値CQ(n)の演算処理を行い、係数乗算回路115は、CQ(n)に所定の係数KDを乗算して、移動平均操作量KD・CQ(n)を出力する。
 加算回路113は、係数乗算回路114の出力KA・MQ(n)と係数乗算回路115の出力微分値KD・CQ(n)とを加算し、位相遅れを補償した信号Dc(n)を出力する。
 移動平均を演算する回路は、図19(A)に示すようにシフトレジスタから構成することもできる。図19(A)では、移動平均を演算する回路は、FIFO1301と、加算器1302と、シフトレジスタ1303と、係数乗算回路1304とからなる。
 図19(A)では、FIFO1301は、サンプリング値を順次入力して、連続した複数のサンプリング値を記憶している。ここでは、図19(B)に示す、4つのサンプリング値X1,X2,X3,X4が記憶されている様子が示されている。
 FIFO1301に記憶されたサンプリング値X1,X2,X3,X4は、加算器1302に入力され、加算器1302はΣXi(=X1+X2+X3+X4)を出力する。
 シフトレジスタ1303は、係数乗算回路1304は、ΣXiに係数(平均化するための係数(1/4)を含む)KM/4を乗算し、KM・(1/4)ΣXiを出力する。
 なお、シフトレジスタ1303により、加算結果(たとえば、2進数:b1234)を、下位側に2回シフトさせて(X1+X2+X3+X4)/22を演算し、シフタ1313の出力(X1+X2+X3+X4)/22に係数KMを乗じて、AM(n)を出力するようにしてもよい。この場合、係数乗算回路1304は、シフトレジスタ1303と一体に構成できる。たとえば、係数KMが1/2であるときには、シフトレジスタ1303の処理において、さらに2進数:b1234全体をさらに1ビット(合計で3ビット)だけ下位側にシフトさせればよいし、係数KMが2であるときには、シフトレジスタ1303の処理において、2進数:b1234全体を1ビットだけ下位側にシフトさせればよい(すなわち、2ビット下位側にシフトさせ、1ビット上位側にシフトさせる処理と同じである)。
 微分回路112は、図20に示すようにFIFO1121と、減算回路1122と、係数乗算回路1123とから構成できる。図20では、FIFO1121は、X1,X2,X3,X4のうち最後の2つの値X3,X4を入力し、この値を減算回路1122に出力している。減算回路1122は、この減算値(X3-X4)を係数乗算回路1123に出力し、係数乗算回路1123は、減算値(X3-X4)に係数KDを乗算して微分値CQ(n)を出力する。
 図20のFIFO1121は、図19(A)に示した移動平均を算出する回路のFIFO1301と共用できる。
 本発明のディジタル制御回路は、負荷変動しない場合において優れた制御特性を発揮することはもちろんであるが、負荷が急増したような場合にも、ピーク値を抑えた制御が可能である。
 図21(A)に電力変換回路2をPID制御装置でシミュレートしたときのリアクトル電流の過渡特性を示し、図21(B)に電力変換回路2をディジタル制御回路1でシミュレートしたときのリアクトル電流の過渡特性を示す。リアクトル電流が流れるときのオーバーシュートは、図21(A)では大きいが、図21(B)では上述したパラメータKMやKDを適切に選ぶことにより、抑えられている。

Claims (5)

  1.  電力変換回路から制御に必要な一または二以上のアナログ信号を取得し、当該一または二以上のアナログ信号をAD変換して、これらのアナログ信号に対応する一または二以上のデジタル信号(デジタル値)を生成するAD変換回路と、
     微分制御量演算を行う第1演算部とフィルタ演算を行う第2演算部とを備え、各演算部がそれぞれ前記一または二以上のデジタル量を入力し各演算を行う制御量演算回路、および、
     前記第1演算部における演算繰り返し間隔以上、前記第2演算部における演算繰り返し間隔以下の繰り返し間隔で、当該第2演算部が生成した制御量と、前記第1演算部が生成した制御量の加算を行い、前記電力変換回路のスイッチの駆動タイミング値を生成するデジタルデジタル加算回路、
    からなる駆動タイミング値生成回路と、
     前記駆動タイミング値を入力して、当該駆動タイミング値により前記スイッチの駆動信号を生成する駆動信号生成回路と、
    を備えたことを特徴とする電力変換回路の制御装置。
  2.  前記デジタル加算回路は、前記微分制御量演算部が制御量を生成したときに、加算を行うことを特徴とする請求項1に記載の電力変換回路の制御装置。
  3.  前記第1演算部は、微分制御量演算に加えて比例制御量演算を行うことを特徴とする請求項1または2に記載の電力変換回路の制御装置。
  4.  前記駆動信号生成回路は、前記駆動信号の立上り信号,立下がり信号の双方または一方を生成することを特徴とする請求項1から3の何れかに記載の電力変換回路の制御装置。
  5.  前記電力変換回路が、前記スイッチと転流ダイオードとリアクトルとを備えたDC/DCコンバータであることを特徴とする請求項1から4の何れかに記載の電力変換回路の制御装置。
PCT/JP2009/053773 2008-03-31 2009-02-28 電力変換回路の制御装置および制御方法 WO2009122833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/935,832 US9331574B2 (en) 2008-03-31 2009-02-28 Controller of the power inverter circuit and a control method
EP09726977.3A EP2267878A4 (en) 2008-03-31 2009-02-28 DEVICE AND METHOD FOR CONTROLLING A CIRCUIT CIRCUIT
JP2010505480A JP5487438B2 (ja) 2008-03-31 2009-02-28 電力変換回路の制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-094408 2008-03-31
JP2008094408 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122833A1 true WO2009122833A1 (ja) 2009-10-08

Family

ID=41135169

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/051668 WO2009122769A1 (ja) 2008-03-31 2009-01-31 電力変換回路の制御装置および制御方法
PCT/JP2009/053773 WO2009122833A1 (ja) 2008-03-31 2009-02-28 電力変換回路の制御装置および制御方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051668 WO2009122769A1 (ja) 2008-03-31 2009-01-31 電力変換回路の制御装置および制御方法

Country Status (5)

Country Link
US (1) US9331574B2 (ja)
EP (1) EP2267878A4 (ja)
JP (2) JP5386754B2 (ja)
KR (1) KR101575383B1 (ja)
WO (2) WO2009122769A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122686A1 (ja) * 2010-03-31 2011-10-06 国立大学法人長崎大学 電力変換回路の制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9467047B2 (en) * 2011-05-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter, power source circuit, and semiconductor device
US8886970B2 (en) 2011-12-08 2014-11-11 Active-Semi, Inc. Power manager tile for multi-tile power management integrated circuit
US8892914B2 (en) 2011-12-08 2014-11-18 Active-Semi, Inc. Programmable fault protect for processor controlled high-side and low-side drivers
US8898491B2 (en) 2011-12-08 2014-11-25 Active-Semi, Inc. Power management IC having a power supply PWM that is controllable using either an analog or a digital feedback path
US8868893B2 (en) 2011-12-13 2014-10-21 Active-Semi, Inc. Multi-mode power manager for power management integrated circuit
US9209689B2 (en) * 2013-11-19 2015-12-08 Terralux, Inc. Output regulation with nonlinear digital control loop compensation
US9584018B2 (en) * 2014-05-08 2017-02-28 Rohm Powervation Limited Method for controlling a DC-to-DC converter
WO2020183023A1 (en) * 2019-03-13 2020-09-17 Advantest Corporation Power supply and method for supplying power to a load using an inner analog control loop

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262868A (ja) * 1989-03-31 1990-10-25 Ricoh Co Ltd 定電圧出力回路
JP2007325365A (ja) * 2006-05-30 2007-12-13 Kawamura Electric Inc 系統連系インバータ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148669B2 (en) * 2004-02-02 2006-12-12 The Regents Of The University Of Colorado, A Body Corporate Predictive digital current controllers for switching power converters
US7456620B2 (en) 2004-12-03 2008-11-25 The Regents Of The University Of Colorado Determining dead times in switched-mode DC-DC converters
JP4592638B2 (ja) * 2006-05-02 2010-12-01 株式会社東芝 スイッチング電源回路
WO2007138513A1 (en) * 2006-05-30 2007-12-06 Nxp B.V. Digitally controlled dc-dc converter
US8319486B2 (en) * 2008-06-13 2012-11-27 The Regents Of The University Of Colorado Method, apparatus and system for extended switched-mode controller
EP2294681A4 (en) * 2008-06-13 2013-07-03 Univ Colorado Regents MONITORING AND CONTROL OF POWER PLAYERS
JP5175642B2 (ja) * 2008-07-04 2013-04-03 ルネサスエレクトロニクス株式会社 電源制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262868A (ja) * 1989-03-31 1990-10-25 Ricoh Co Ltd 定電圧出力回路
JP2007325365A (ja) * 2006-05-30 2007-12-13 Kawamura Electric Inc 系統連系インバータ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122686A1 (ja) * 2010-03-31 2011-10-06 国立大学法人長崎大学 電力変換回路の制御装置
US20130094259A1 (en) * 2010-03-31 2013-04-18 Nagasaki University, National University Corporation Control apparatus of power inverter circuit
JP5699389B2 (ja) * 2010-03-31 2015-04-08 国立大学法人 長崎大学 電力変換回路の制御装置
US9350264B2 (en) 2010-03-31 2016-05-24 Nagasaki University, National University Corporation Control device of power converter circuit

Also Published As

Publication number Publication date
JP5386754B2 (ja) 2014-01-15
EP2267878A4 (en) 2014-10-29
KR20100134714A (ko) 2010-12-23
KR101575383B1 (ko) 2015-12-07
US9331574B2 (en) 2016-05-03
WO2009122769A1 (ja) 2009-10-08
US20110181260A1 (en) 2011-07-28
JP5487438B2 (ja) 2014-05-07
EP2267878A1 (en) 2010-12-29
JPWO2009122769A1 (ja) 2011-07-28
JPWO2009122833A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5487438B2 (ja) 電力変換回路の制御装置および制御方法
KR100593521B1 (ko) 스위치모드 파워서플라이를 컨트롤하기 위한 최적화된디지털 신호프로세서 아키텍쳐
KR101153541B1 (ko) 디지털 전원 제어 시스템들을 위한 자기 추적 adc
JP5566859B2 (ja) 電源回路
US8159205B1 (en) Inductor current measurement for DC to DC converters
JP4823802B2 (ja) インバータ装置及びこのインバータ装置のpwm制御方法
US9502976B2 (en) Power supply circuit and control method for the same
WO2009145318A1 (ja) A/d変換装置、およびサーボ制御装置
JP6203688B2 (ja) 電源回路とその制御方法
JP2008040664A5 (ja)
US8099199B2 (en) Digital controller
JP2011166959A (ja) デジタル制御スイッチング電源装置
JP5461025B2 (ja) Dc−dcコンバータの制御方法、dc−dcコンバータの制御回路、dc−dcコンバータ
JP6122013B2 (ja) デッドタイム及び順電圧の補償を有する傾斜増幅器、方法、コンピュータ読み取り可能媒体、及びコンピュータプログラム
JP4836603B2 (ja) Dc−dcコンバータ
JP6858725B2 (ja) Dc/dcコンバータ、及びdc/dcコンバータの制御方法
JP6805201B2 (ja) Dc/dcコンバータ、及びdc/dcコンバータの制御方法
JP7383029B2 (ja) 遅延線変調器を備えるスイッチオン時間コントローラ
JP5352820B2 (ja) ディジタル信号処理回路およびディジタル制御回路
RU2484516C2 (ru) Способ оценки состояний силовой электронной системы
Vyncke et al. Simulation-based weight factor selection and FPGA prediction core implementation for finite-set model based predictive control of power electronics
JP6639037B2 (ja) スイッチング電源装置
JP6423114B2 (ja) スイッチモード電力変換器用のインダクタ電流の平均値の推定
WO2010038278A1 (ja) ディジタル信号処理回路およびディジタル制御回路
JP2011166892A (ja) 電源装置のディジタル制御器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505480

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009726977

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024419

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12935832

Country of ref document: US