RU2484516C2 - Способ оценки состояний силовой электронной системы - Google Patents

Способ оценки состояний силовой электронной системы Download PDF

Info

Publication number
RU2484516C2
RU2484516C2 RU2009134011/08A RU2009134011A RU2484516C2 RU 2484516 C2 RU2484516 C2 RU 2484516C2 RU 2009134011/08 A RU2009134011/08 A RU 2009134011/08A RU 2009134011 A RU2009134011 A RU 2009134011A RU 2484516 C2 RU2484516 C2 RU 2484516C2
Authority
RU
Russia
Prior art keywords
vector
state
function
sampling
norm
Prior art date
Application number
RU2009134011/08A
Other languages
English (en)
Other versions
RU2009134011A (ru
Inventor
Себастьян ГАУЛОХЕР
Георгиос ПАПАФОТИОУ
Original Assignee
Абб Рисерч Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абб Рисерч Лтд filed Critical Абб Рисерч Лтд
Publication of RU2009134011A publication Critical patent/RU2009134011A/ru
Application granted granted Critical
Publication of RU2484516C2 publication Critical patent/RU2484516C2/ru

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/12Observer control, e.g. using Luenberger observers or Kalman filters

Abstract

Изобретение относится к области способов оценки в технике регулирования. Технический результат - обеспечение оценки состояния для широкого спектра силовых электронных систем. Предложен способ оценки состояний силовой электронной системы (1), содержащей преобразователь (4), в котором векторы x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0 изменяют таким образом, чтобы сумма от сложения векторной нормы от вычитания вектора (k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы за моменты дискретизации k=-N+1, …, 0 была минимальной, затем выбирают вектор x(k) состояния системы в момент дискретизации k=0. 2 н. и 10 з.п. ф-лы.

Description

Область техники
Изобретение относится к области способов оценки в технике регулирования. Оно исходит из способа оценки состояний силовой электронной системы в соответствии с ограничительной частью независимого пункта формулы.
Уровень техники
В настоящее время силовые электронные системы используются во многих областях. Такая силовая электронная система включает в себя обычно преобразователь с множеством управляемых силовых полупроводниковых выключателей и соответствующей управляющей схемой для силовой полупроводниковой схемы. С преобразователем обычно соединены одна или несколько нагрузок, которые, однако, могут сильно изменяться в зависимости от времени, например вследствие сбоев. Такой нагрузкой могут быть, например, один или несколько двигателей, причем возможна вообще любая электрическая нагрузка. Состояния силовой электронной системы, например индуктивный нагрузочный ток и емкостное нагрузочное напряжение, затрагиваются такими изменениями и с трудом, т.е. лишь с большими затратами, или вообще не поддаются определению, например посредством измерения. Следовательно, необходимо оценивать состояния силовой электронной системы, причем оцененные состояния могут обрабатываться затем в блоке управления. Распространенным способом оценки состояний в силовой электронной системе является использование дискретного во времени фильтра Кальмана, как это описано, например, в "Braided extended Kalman filters for sensorless estimation in inductionmotors at high-low/zero speed", IET Control Theory, Appl., 2007. Для проведения оценки состояний, например с использованием дискретного во времени фильтра Кальмана, необходимо осуществить сначала следующие этапы:
а) определение векторов y(k) выходных величин для моментов дискретизации k=-N+1 до k=0, где N является задаваемым горизонтом дискретизации, а y - выходной величиной, например выходным напряжением преобразователя, которое определяется, например, путем измерения;
б) определение векторов u(k) регулирующих воздействий для моментов дискретизации k=-N+1 до k=0, причем регулирующим воздействием является, например, коэффициент регулирования преобразователя;
в) определение первой функции f(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы, при этом функция зависит от вектора u(k) регулирующего воздействия и от вектора u(k) состояния системы в момент дискретизации k;
г) определение второй функции g(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы, при этом функция зависит от вектора u(k) регулирующего воздействия и от вектора u(k) состояния системы в момент дискретизации k.
Проблема при использовании дискретного во времени фильтра Кальмана для оценки состояний х силовой электронной системы заключается в том, что побочные условия состояний, например, то, что ток индуктивной нагрузки и/или напряжение емкостной нагрузки ограничены или могут быть отрицательными, они могут быть учтены только с очень большими затратами или вообще не могут быть учтены. Другую проблему для фильтра Кальмана представляют функции модели системы f(x(k), u(k)), g(x(k), u(k)), которые являются кусочными аффинно-линейными функциями и описывают данную силовую электронную систему. Проблема в том, что их также либо нельзя учесть, либо можно учесть только с очень большими затратами при оценке посредством дискретного во времени фильтра Кальмана.
Раскрытие изобретения
Задачей изобретения является создание способа оценки состояний силовой электронной системы, который обеспечивал бы оценку состояний для широкого спектра силовых электронных систем и был бы прост в реализации. Эта задача решается посредством признаков п.1 формулы. В зависимых пунктах приведены предпочтительные варианты осуществления изобретения.
В способе оценки состояний силовой электронной системы система содержит преобразовательную схему. Способ включает в себя следующие этапы:
а) определение векторов y(k) выходных величин для моментов дискретизации от k=-N+1 до k=0, причем N является задаваемым горизонтом дискретизации;
б) определение векторов u(k) регулирующих воздействий для моментов дискретизации от k=-N+1 до k=0;
в) определение первой функции f(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы, причем указанная функция зависит от вектора u(k) регулирующего воздействия и от вектора х(k) состояния системы в момент дискретизации k;
г) определение второй функции g(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы, причем указанная функция зависит от вектора u(k) регулирующего воздействия и от вектора х(k) состояния системы в момент дискретизации k.
Согласно изобретению, оценка вектора х(k) состояния системы в момент дискретизации k=0 включает в себя следующие этапы:
д) изменение векторов х(k) и х(k+1) состояния системы для каждого из моментов дискретизации от k=-N+1 до k=0, так что сумма от сложения векторной нормы от вычитания вектора х(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы по всем моментам дискретизации k=-N+1 до k=0 становится минимальной;
е) выбор вектора х(k) состояния системы в момент дискретизации k=0;
причем первая f(x(k), u(k)) и вторая g(x(k), u(k)) функции модели системы являются аффинно-линейными или, в качестве альтернативы, кусочно аффинно-линейными.
Требуемые оцененные состояния в текущий момент k=0 содержатся тогда в качестве элементов вектора х(k) состояния системы в момент дискретизации k=0, т.е. в векторе х(0) состояния системы. Предпочтительно предложенный способ позволяет без проблем учитывать при оценке состояний также побочные условия, выражающиеся кусочными аффинно-линейными взаимосвязями состояний и входов. Если силовая электронная система описывается кусочными аффинно-линейными функциями g(x(k), u(k)) ее модели, то такие функции g(x(k), u(k)) модели системы также могут быть очень просто учтены при оценке состояний. В целом, предложенный способ обеспечивает, тем самым, оценку состояний для очень широкого спектра силовых электронных систем и может быть реализован очень просто.
Эти и другие задачи, преимущества и признаки изобретения становятся очевидными из нижеследующего подробного описания предпочтительных вариантов его осуществления в сочетании с чертежом.
Краткое описание чертежей
На чертеже:
- фиг.1: вариант схемы силовой электронной системы с блоком управления и устройством, осуществляющим оценку ее состояний предложенным способом.
Используемые на чертеже ссылочные позиции и их значение приведены в перечне позиций. В принципе, на чертеже одинаковые детали обозначены одинаковыми ссылочными позициями. Описанные варианты являются примером объекта изобретения и не обладают ограничивающим действием.
Осуществление изобретения
На фиг.1 изображен вариант схемы силовой электронной системы 1 с блоком 3 управления и устройством 2, осуществляющим оценку ее состояний х предложенным способом. Одна или несколько соединенных с системой 1 нагрузок для наглядности не показаны. Система 1 включает в себя преобразователь 4 с множеством управляемых силовых полупроводниковых выключателей и соответствующей управляющей схемой 5 для управления ими посредством управляющего сигнала S. Такая управляющая схема 5 формирует управляющий сигнал S, например, посредством широтно-импульсной модуляции исходя из регулирующего воздействия u, которым является, например, коэффициент регулирования преобразователя. Выходной величиной у системы 1 является, например, выходное напряжение преобразователя, определяемое, например, путем измерения. Оцениваемыми состояниями х системы 1 являются, например, ток индуктивной нагрузки и напряжение емкостной нагрузки. Ниже предложенный способ описан более подробно. На этапе а) определяются векторы y(k) выходных величин для моментов дискретизации k=-N+1 до k=0, причем N является задаваемым горизонтом дискретизации. Элементы векторов y(k) выходных величин являются тогда выходными величинами y, например определяемыми путем измерения выходными напряжениями преобразователя для моментов дискретизации от k=-N+1 до k=0. На этапе б) определяются векторы u(k) регулирующих воздействий для моментов дискретизации от k=-N+1 до k=0, причем элементы векторов u(k) являются регулирующими воздействиями и для моментов дискретизации от k=-N+1 до k=0, например коэффициентами регулирования. На этапе в) определяется первая функция f(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы 1, зависящая от вектора u(k) регулирующего воздействия и от вектора х(k) состояния системы в момент дискретизации k. Далее на этапе г) определяется вторая функция g(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы 1, зависящая от вектора u(k) регулирующего воздействия и от вектора х(k) состояния системы в момент дискретизации k.
Первая функция f(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы 1 определяется, в целом, следующим образом:
f ( x ( k ) ) , u ( k ) ) = { A 1 x ( k ) + B 1 u ( k ) + v 1 , F 1 x ( k ) + E 1 u ( k ) G 1 A 2 x ( k ) + B 2 u ( k ) + v 2 , F 2 x ( k ) + E 2 u ( k ) G 2 ... A M x ( k ) + B M u ( k ) + v M , F M x ( k ) + E M u ( k ) G M
Figure 00000001
'
где A1…AM, B1…ВМ, F1…FM и E1…ЕМ обозначают матрицы, v1…vM - векторы, а векторы G1…G2 - пределы, которые определяют первую функцию f(x(k), u(k)) модели системы как аффинно-линейную или кусочно аффинно-линейную. Следует сказать, что за счет подходящего выбора векторов G1…GM, v1…vM и матриц A1…AM, B1…BM, F1…FM, E1…EM может быть получена также непрерывная аффинно-линейная функция, если система 1 описывается таким образом.
Вторая функция g(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы 1 определяется, в целом, следующим образом:
g ( x ( k ) , u ( k ) ) = { C 1 x ( k ) + D 1 u ( k ) + w 1 , F 1 x ( k ) + E 1 u ( k ) G 1 C 2 x ( k ) + D 2 u ( k ) + w 2 , F 2 x ( k ) + E 2 u ( k ) G 2 .. C M x ( k ) + D M u ( k ) + w M , F M x ( k ) + E M u ( k ) G M
Figure 00000002
,
где C1…СМ, D1…DM, F1…FM и E1…ЕМ обозначают матрицы, v1…vM - векторы, а векторы G1…G2 - пределы, которые определяют вторую функцию g(x(k), u(k)) модели системы как аффинно-линейную или кусочно аффинно-линейную. Следует сказать, что за счет подходящего выбора векторов G1…GM, w1…wM и матриц С1…CM, D1…DM, F1…FM, E1…EM может быть достигнута также непрерывная аффинно-линейная функция, если система 1 описывается таким образом.
Согласно изобретению оценка вектора х(k) состояния системы в момент дискретизации k=0, т.е. в текущий момент происходит описанными ниже дополнительными этапами:
д) изменение векторов х(k) и х(k+1) состояния системы для каждого из моментов дискретизации от k=-N+1 до k=0, так что сумма от сложения векторной нормы от вычитания вектора х(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы за моменты дискретизации от k=-N+1 до k=0 становится минимальной;
е) выбор вектора х(k) состояния системы в момент дискретизации k=0.
Требуемые оцененные состояния х в текущий момент k=0 содержатся тогда в качестве векторных элементов вектора х(k) состояния системы в момент дискретизации k=0, т.е. в векторе х(0) состояния системы. Этими векторными элементами были бы тогда, например, ток индуктивной нагрузки и напряжение емкостной нагрузки в момент дискретизации k=0. Предпочтительно предложенный способ позволяет без проблем учитывать при оценке состояний х также их побочные условия. Если система 1 описывается аффинно-линейными или кусочно аффинно-линейными функциями f(x(k), u(k)), g(x(k), u(k)) ее модели, то такие функции f(x(k), u(k)), g(x(k), u(k)) модели системы могут быть очень просто учтены при оценке состояний х. Предложенный способ обеспечивает, тем самым, оценку состояний х для очень широкого спектра силовых электронных систем 1 и может быть реализован очень просто.
Оцененные предложенным способом состояния х могут быть затем обработаны в блоке 3 управления, т.е., например, отрегулированы до соответствующих заданных состояний xref. Блок 3 управления работает преимущественно по принципу прогностического управления на основе модели, как это известно, например, из ЕР 1670135 А1. Однако возможен любой другой принцип управления или любая другая характеристика управления.
Упомянутую выше сумму можно описать как сумму J по следующей формуле:
J = Σ k = N + 1 0 ( x ( k + 1 ) f ( x ( ( k ) , u ( k ) ) w x q + y ( k ) g ( x ( k ) , u ( k ) ) w y q )
Figure 00000003
где Wx и Wy обозначают соответственно матрицы оценки в отношении векторов х(k), х(k+1) состояния и вектора y(k) выходной величины. Показатель q обозначает выбираемую векторную норму. Предпочтительно в качестве векторной нормы от вычитания вектора х(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы выбирается норма суммы абсолютных значений, т.е. для выражения
x ( k + 1 ) f ( x ( k ) , u ( k ) ) w x q
Figure 00000004
,
где q=1.
Кроме того, предпочтительно также выбирается норма суммы абсолютных значений в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы, т.е. для выражения
y ( k + 1 ) g ( x ( k ) w y q ,
Figure 00000005
где также q=1. Предпочтительно норма суммы абсолютных значений, т.е. q=1, реализуется очень просто.
В качестве альтернативы возможно также, чтобы в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы, и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы, соответственно, выбиралась евклидова норма, т.е. q=2.
В качестве другой альтернативы возможно также, чтобы в качестве векторной нормы от вычитания вектора х(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы, соответственно, выбиралась максимальная норма, т.е. q=∞.
Следует сказать, что возможны и другие нормы. Кроме того, можно представить себе, чтобы нормы для отдельных вычитаний выбирались также по-разному, т.е. возможно было бы, например, чтобы в качестве векторной нормы от вычитания вектора х(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы выбиралась норма суммы абсолютных значений, тогда q=1, а в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы - евклидова норма, т.е. q=2. При этом возможны любые комбинации.
Как уже сказано, векторы х(k) и х(k+1) состояния системы для каждого из моментов дискретизации от k=-N+1 до k=0 изменяются таким образом, чтобы сумма J по всем моментам дискретизации от k=-N+1 до k=0 становилась минимальной. Эти изменения векторов х(k) и х(k+1) состояния системы для каждого из моментов дискретизации от k=-N+1 до k=0 могут быть объединены в таблице (справочной таблице), тогда каждому вектору y(k) выходной величины и вектору u(k) регулирующего воздействия для каждого из моментов дискретизации от k=-N+1 до k=0 соответствуют вектор х(k) и вектор х(k+1) состояния системы. Из таблицы следует тогда взять лишь нужный вектор х(k) состояния системы в момент дискретизации k=0, т.е. вектор х(0), при этом элементы вектора х(0) состояния системы являются требуемыми оцененными состояниями х в данный, т.е. текущий, момент k=0. Эта таблица может быть составлена заранее, т.е. «оф-лайн», так что не требуется производить онлайнового расчета с большим объемом вычислений с тем критерием, что сумма J становится минимальной. Упомянутая таблица может храниться в устройстве оценки 2 или на отдельном накопителе, k которому обращается устройство оценки 2.
Если же имеется достаточно ресурсов вычислительной мощности, например за счет процессора, в частности цифрового сигнального процессора, то изменения векторов х(k) и х(k+1) состояния системы для каждого из моментов дискретизации от k=-N+1 до k=0 могут вычисляться непрерывно, т.е. «онлайн».
Перечень ссылочных позиций
1 - силовая электронная система
2 - устройство оценки
3 - регулирующий блок
4 - преобразователь
5 - схема управления.

Claims (11)

1. Способ оценки состояний силовой электронной системы (1), содержащей преобразователь (4), включающий этапы:
а) определение векторов y(k) выходных величин для моментов дискретизации k=-N+1, …, 0, где N является задаваемым горизонтом дискретизации;
б) определение векторов u(k) регулирующих воздействий для моментов дискретизации k=-N+1, …, 0,
в) определение первой функции f(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы, причем указанная функция зависит от вектора u(k) регулирующего воздействия и от вектора x(k) состояния системы в момент дискретизации k;
г) определение второй функции g(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы, причем указанная функция зависит от вектора u(k) регулирующего воздействия и от вектора x(k) состояния системы в момент дискретизации k,
отличающийся тем, что
оценка вектора x(k) состояния системы в момент дискретизации k=0 дополнительно включает этапы, на которых:
д) изменяют векторы x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0, так чтобы сумма от сложения векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы по всем моментам дискретизации k=-N+1, …, 0 стала минимальной; и
е) выбирают вектор x(k) состояния системы в момент дискретизации k=0;
при этом первая f(x(k), u(k)) и вторая g(x(k), u(k)) функции модели системы являются аффинно-линейными.
2. Способ по п.1, отличающийся тем, что в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы соответственно выбирают норму суммы абсолютных значений.
3. Способ по по п.1, отличающийся тем, что в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы соответственно выбирают евклидову норму.
4. Способ по п.1, отличающийся тем, что в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы соответственно выбирают максимальную норму.
5. Способ по п.1, отличающийся тем, что изменения векторов x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0 объединяют в таблице соответствия, причем каждому вектору y(k) выходной величины и вектору u(k) регулирующего воздействия для каждого из моментов дискретизации k=-N+1, …, 0 соответствуют вектор x(k) и вектор x(k+1) состояния системы.
6. Способ по п.1, отличающийся тем, что изменения векторов x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0 вычисляют непрерывно.
7. Способ оценки состояний силовой электронной системы (1), содержащей преобразователь (4), включающий этапы:
а) определение векторов y(k) выходных величин для моментов дискретизации k=-N+1, …, 0, где N является задаваемым горизонтом дискретизации;
б) определение векторов u(k) регулирующих воздействий для моментов дискретизации k=-N+1, …, 0;
в) определение первой функции f(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы (1), причем указанная функция зависит от вектора u(k) регулирующего воздействия и от вектора x(k) состояния системы в момент дискретизации k;
г) определение второй функции g(x(k), u(k)) модели системы в момент дискретизации k для описания силовой электронной системы (1), причем указанная функция зависит от вектора u(k) регулирующего воздействия и от вектора x(k) состояния системы в момент дискретизации k,
отличающийся тем, что
оценка вектора x(k) состояния системы в момент дискретизации k=0 дополнительно включает этапы, на которых:
д) изменяют векторы x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0, так чтобы сумма от сложения векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы по всем моментам дискретизации k=-N+1, …, 0 стала минимальной; и
е) выбирают вектор x(k) состояния системы в момент дискретизации k=0;
при этом первая f(x(k), u(k)) и вторая g(x(k), u(k)) функции модели системы являются кусочно аффинно-линейными.
8. Способ по п.7, отличающийся тем, что в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы соответственно выбирают норму суммы абсолютных значений.
9. Способ по по п.7, отличающийся тем, что в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы соответственно выбирают евклидову норму.
10. Способ по п.7, отличающийся тем, что в качестве векторной нормы от вычитания вектора x(k+1) состояния системы и первой функции f(x(k), u(k)) модели системы и в качестве векторной нормы от вычитания вектора y(k) выходной величины и второй функции g(x(k), u(k)) модели системы соответственно выбирают максимальную норму.
11 Способ по п.7, отличающийся тем, что изменения векторов x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0 объединяют в таблице соответствия, причем каждому вектору y(k) выходной величины и вектору u(k) регулирующего воздействия для каждого из моментов дискретизации k=-N+1, …, 0 соответствуют вектор x(k) и вектор x(k+1) состояния системы.
12. Способ по п.7, отличающийся тем, что изменения векторов x(k) и x(k+1) состояния системы для каждого из моментов дискретизации k=-N+1, …, 0 вычисляют непрерывно.
RU2009134011/08A 2008-09-11 2009-09-10 Способ оценки состояний силовой электронной системы RU2484516C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP081641490 2008-09-11
EP08164149A EP2163955B1 (de) 2008-09-11 2008-09-11 Verfahren zur Schätzung von Kapazitiven und Induktiven Zuständen eines Motors auf einem Kalman Filter basierend

Publications (2)

Publication Number Publication Date
RU2009134011A RU2009134011A (ru) 2011-03-20
RU2484516C2 true RU2484516C2 (ru) 2013-06-10

Family

ID=40404340

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009134011/08A RU2484516C2 (ru) 2008-09-11 2009-09-10 Способ оценки состояний силовой электронной системы

Country Status (10)

Country Link
US (1) US8364459B2 (ru)
EP (1) EP2163955B1 (ru)
JP (1) JP5456422B2 (ru)
KR (1) KR20100031083A (ru)
CN (1) CN101673086B (ru)
AT (1) ATE502328T1 (ru)
CA (1) CA2677528A1 (ru)
DE (1) DE502008002889D1 (ru)
PL (1) PL2163955T3 (ru)
RU (1) RU2484516C2 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512474B (zh) * 2018-02-09 2020-07-14 旋智电子科技(上海)有限公司 电机电流调整方法及电机电流调整装置
CN110705035B (zh) * 2019-09-09 2021-04-30 清华大学 大容量电力电子系统的离散状态事件驱动解耦仿真方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19751375A1 (de) * 1997-11-20 1999-05-27 Christian Dipl Ing Obermeier Verfahren zur Rekonstruktion von Lastkräften bzw. Lastmomenten sowie Beschleunigungen bei elektrischen Antrieben aus den Informationen der Klemmengrößen im geschlossenen Drehzahl- oder Lageregelkreis
EP1253706A1 (de) * 2001-04-25 2002-10-30 ABB Schweiz AG Leistungselektronische Schaltungsanordnung und Verfahren zur Uebertragung von Wirkleistung
EP1670135A1 (de) * 2004-12-10 2006-06-14 Abb Research Ltd. Verfahren zum Betrieb einer rotierenden elektrischen Maschine
EA007837B1 (ru) * 2002-12-27 2007-02-27 Шлюмбергер Текнолоджи Б.В. Система и способ для детектирования состояния буровой установки
RU2326271C2 (ru) * 2002-10-04 2008-06-10 Дженерал Электрик Компани Способ (варианты) и система для обнаружения признаков замедления и помпажа компрессора

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115391A (en) * 1990-01-26 1992-05-19 At&T Bell Laboratories Kalman filter-based optimizer and method and optimizing
EP1052558B1 (de) * 1999-05-14 2002-08-07 Abb Research Ltd. Verfahren und Einrichtung zur Zustandsschätzung
CA2495147C (en) * 2002-08-09 2013-02-12 O. Patrick Kreidl Control systems and methods using a partially-observable markov decision process (po-mdp)
JP2005301508A (ja) * 2004-04-08 2005-10-27 Fanuc Ltd 制御装置
CN100486073C (zh) * 2007-05-15 2009-05-06 浙江大学 考虑负荷电压特性的非线性动态状态估计算法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19751375A1 (de) * 1997-11-20 1999-05-27 Christian Dipl Ing Obermeier Verfahren zur Rekonstruktion von Lastkräften bzw. Lastmomenten sowie Beschleunigungen bei elektrischen Antrieben aus den Informationen der Klemmengrößen im geschlossenen Drehzahl- oder Lageregelkreis
EP1253706A1 (de) * 2001-04-25 2002-10-30 ABB Schweiz AG Leistungselektronische Schaltungsanordnung und Verfahren zur Uebertragung von Wirkleistung
RU2326271C2 (ru) * 2002-10-04 2008-06-10 Дженерал Электрик Компани Способ (варианты) и система для обнаружения признаков замедления и помпажа компрессора
EA007837B1 (ru) * 2002-12-27 2007-02-27 Шлюмбергер Текнолоджи Б.В. Система и способ для детектирования состояния буровой установки
EP1670135A1 (de) * 2004-12-10 2006-06-14 Abb Research Ltd. Verfahren zum Betrieb einer rotierenden elektrischen Maschine

Also Published As

Publication number Publication date
ATE502328T1 (de) 2011-04-15
JP5456422B2 (ja) 2014-03-26
CN101673086B (zh) 2014-06-04
PL2163955T3 (pl) 2011-08-31
CA2677528A1 (en) 2010-03-11
DE502008002889D1 (de) 2011-04-28
US20100070247A1 (en) 2010-03-18
KR20100031083A (ko) 2010-03-19
CN101673086A (zh) 2010-03-17
JP2010094013A (ja) 2010-04-22
EP2163955A1 (de) 2010-03-17
RU2009134011A (ru) 2011-03-20
US8364459B2 (en) 2013-01-29
EP2163955B1 (de) 2011-03-16

Similar Documents

Publication Publication Date Title
US9958356B2 (en) Process and device for testing the powertrain of at least partially electrically driven vehicles
EP1913455B1 (en) Dc-dc converter with switchable estimators
EP2183656B1 (en) Method and system for optimizing filter compensation coefficients for a digital power control system
KR101021745B1 (ko) 배터리 셀 모듈의 추정 상태를 결정하는 시스템, 방법 및 그 제조물
EP1593014B1 (en) Digital signal processor architecture optimized for controlling switched mode power supply
KR20100019256A (ko) 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
WO2010059900A1 (en) Digital compensator for power supply applications
US20110267016A1 (en) Switching regulation controller, switching regulator and controlling method for switching regulation
KR20120065293A (ko) 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
JP6859585B2 (ja) バッテリーの電力限界を決定するための方法及びバッテリー管理システム
US20160149489A1 (en) Switching Voltage Regulator Input Power Estimation
EP2478628A1 (en) An adaptive analog compensator for a power supply
JP5487438B2 (ja) 電力変換回路の制御装置および制御方法
CN110854894A (zh) 基于模型预测控制的光伏储能系统中逆变电路的控制方法
JP6314543B2 (ja) 蓄電池の充電状態推定方法及び装置
JP2008164417A (ja) 二次電池の内部抵抗推定装置
US7312597B2 (en) Actuation circuit for a switch in a switch-mode converter for improving the response to sudden changes
RU2484516C2 (ru) Способ оценки состояний силовой электронной системы
US20070150767A1 (en) Information processing apparatus and power supply control method
JP2019041449A (ja) Dc/dcコンバータの制御装置
US8050877B2 (en) Method for the determination of work/power
CN116505780B (zh) 一种双有源桥变换器无电流传感器模型预测方法及装置
CN110224594B (zh) 一种直流降压电路的输出电压控制方法和装置
Vyncke et al. Simulation-based weight factor selection and FPGA prediction core implementation for finite-set model based predictive control of power electronics
Kato et al. Efficient multi-rate steady-state analysis of a power electronic system by the envelope following method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150911