WO2011122686A1 - 電力変換回路の制御装置 - Google Patents

電力変換回路の制御装置 Download PDF

Info

Publication number
WO2011122686A1
WO2011122686A1 PCT/JP2011/058367 JP2011058367W WO2011122686A1 WO 2011122686 A1 WO2011122686 A1 WO 2011122686A1 JP 2011058367 W JP2011058367 W JP 2011058367W WO 2011122686 A1 WO2011122686 A1 WO 2011122686A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
arithmetic
signal
circuit
arithmetic circuit
Prior art date
Application number
PCT/JP2011/058367
Other languages
English (en)
French (fr)
Inventor
黒川不二雄
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Priority to JP2012508373A priority Critical patent/JP5699389B2/ja
Priority to US13/638,545 priority patent/US9350264B2/en
Priority to KR1020127025756A priority patent/KR20130031245A/ko
Priority to EP11762910.5A priority patent/EP2555401A4/en
Publication of WO2011122686A1 publication Critical patent/WO2011122686A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control

Definitions

  • the present invention relates to a control device for a power conversion circuit that generates an on / off control signal for a power conversion switch based on detection signals such as an output voltage, an output current, and a switch current, and the characteristics of each A / D converter
  • the present invention relates to a power conversion control technology capable of performing efficient control utilizing (qualities).
  • detection signals such as an output voltage, an output current, and a switch current may be used for calculation of a plurality of control elements.
  • Figure 13 shows a power conversion system for detecting an output voltage e o of the power conversion circuit 9, the power conversion switches of the power conversion circuit 9 by the control device 8 (see Patent Document 1).
  • Control device 8 sends out the output voltage e o analog proportional control element 8211 is converted into a digital voltage value E_OUT by the A / D converter 81, and sent to the differential and integral control element 8212.
  • the calculation result (output signal D1) of the proportional control element 8211 and the calculation result (output signal D2) of the differentiation / integration control element 8212 are sent to the adder 822 in the subsequent stage, and the adder 822 is the calculation cycle of the proportional control element 8211.
  • the addition result (output signal D) is output to the drive signal generator 83 at the subsequent stage.
  • an A / D converter usually has a lower sampling rate if the resolution becomes higher.
  • the sampling rate is increased, the resolution decreases.
  • An object of the present invention is to provide a control device for a power conversion circuit that generates an on / off control signal for a power conversion switch based on detection signals such as an output voltage, an output current, and a switch current.
  • a / D conversion is performed by an A / D converter with high resolution / low sampling speed characteristics (qualities) and an A / D converter with low resolution / high sampling speed characteristics. It is an object of the present invention to provide a control device for a power conversion circuit capable of performing an efficient calculation utilizing the characteristics of each A / D converter based on data.
  • control during steady state may have low quantization accuracy, but the time resolution needs to be high, while the control during transient (the output is dynamic).
  • the time resolution may be low, but the quantization accuracy needs to be high.
  • the power conversion circuit of the present invention is summarized as (1) to (6).
  • Switch operation time data is generated based on at least one detection signal among output voltage, output current, input voltage, input current, switch current, and reactor current, and on / off for the power conversion switch based on the switch operation time data.
  • a first A / D converter that performs A / D conversion by inputting the detection signal and a first arithmetic circuit that generates a first arithmetic signal by inputting a digital signal from the first A / D converter;
  • a control unit A second A / D converter that performs A / D conversion by inputting the detection signal and a second arithmetic circuit that generates a second arithmetic signal by inputting a digital signal from the second A / D converter;
  • An operation management circuit for managing operations of the first control unit, the second control unit, and the switch operation time data generation unit;
  • the first A / D converter and the second A / D converter are: The sampling rate of the first A / D converter> the sampling rate of the second A / D converter.
  • the resolution of the first A / D converter ⁇ the resolution of the second A / D converter.
  • the first arithmetic circuit and the second arithmetic circuit are: Unit arithmetic time of the first arithmetic circuit ⁇ unit arithmetic time of the second arithmetic circuit
  • Unit arithmetic time It has a relationship of time required for each arithmetic circuit to generate one arithmetic result,
  • the first arithmetic circuit inputs a digital signal from the first A / D converter to generate a first arithmetic signal
  • the second arithmetic circuit inputs a digital signal from the second A / D converter.
  • the switch operation time data generation unit To generate a second calculation signal, The switch operation time data generation unit generates the switch operation time data of the power conversion switch by combining the first calculation signal and the second calculation signal; A control device for a power conversion control device.
  • the switch operation time data may specifically be one or both of a switch-on time and a switch-off time.
  • the on / off control may be one that regulates the on-time and off-time with a constant period, or may regulate the on-time and off-time instead of the constant period.
  • a third calculation signal is input by inputting a signal from the third A / D converter that inputs the same detection signal as the detection signal or a detection signal different from the detection signal, and a signal from the third A / D converter.
  • a third control unit including a third arithmetic circuit to be generated; The operation management circuit manages operations of the first control unit, the second control unit, and the third control unit,
  • the first A / D converter, the second A / D converter, and the third A / D converter are: Sampling rate of the first A / D converter> sampling rate of the second A / D converter ⁇ sampling rate of the third A / D converter or Sampling speed of first A / D converter> Sampling speed of third A / D converter ⁇ Sampling speed of second A / D converter Resolution of first A / D converter ⁇ Resolution of second A / D converter ⁇ 3A / D converter resolution or The resolution of the first A / D converter ⁇ the resolution of the third A / D converter ⁇ the
  • the first arithmetic circuit, the second arithmetic circuit, and the third arithmetic circuit are: Unit calculation time of the first calculation circuit ⁇ Unit calculation time of the second calculation circuit ⁇ Unit calculation time of the third calculation circuit or The unit arithmetic time of the first arithmetic circuit ⁇ the unit arithmetic time of the third arithmetic circuit ⁇ the unit arithmetic time of the second arithmetic circuit,
  • the switch operation time data generation unit synthesizes the first calculation signal, the second calculation signal, and the third calculation signal, and generates the switch operation time data of the power conversion switch; (1)
  • the control apparatus for a power conversion control apparatus according to (1).
  • the number of calculations of the first arithmetic circuit per one on / off cycle of the power conversion switch is greater than the number of calculations of the second arithmetic circuit (1) to (4)
  • the number of calculations of the first arithmetic circuit per one on / off period of the power conversion switch is greater than the number of calculations of the second arithmetic circuit, and the power conversion switch is turned on / off one time.
  • the control result of the power conversion circuit according to any one of (1) to (4), wherein the calculation result of the first arithmetic circuit is updated at least once in a cycle.
  • “high resolution / low sampling rate” and “low resolution / high sampling rate” A / D converters are used, and when the output changes dynamically, “low resolution / high sampling rate”.
  • the calculation by the control unit occupies a large specific gravity, and for the static change, the calculation by the control unit of “high resolution / low sampling speed” occupies a large specific gravity.
  • both of the A / D converter used for the control unit of “high resolution / low sampling rate” and the A / D converter used for the control unit of “low resolution / high sampling rate” Since the cost is low, the manufacturing cost of the control device can be reduced.
  • a / D converters with 8 bits or less are inexpensive, but those with a higher number of bits are dramatically more expensive.
  • a low-speed A / D converter exceeding 8 bits can be manufactured by combining a plurality of A / D converters having 8 bits or less, for example.
  • the output is highly stable against dynamic changes, an output capacitor having a small capacity can be employed, and as a result, the power conversion circuit can be reduced in size.
  • the sum of the power consumption of a high-speed 8-bit A / D converter and the power consumption of a low-speed 16-bit A / D converter is far greater than the power consumption of a high-speed 16-bit A / D converter. Since it is small (for example, about 0.1 times), it is suitable for the power supply of a recent electronic device that may repeat the sleep mode and the active mode at intervals of several tens of seconds to several minutes.
  • FIG. 7A is a diagram illustrating a state in which the output of the first arithmetic circuit and the output of the second arithmetic circuit are added by the arithmetic unit
  • FIG. 9B is a diagram illustrating a specific calculation. It is a figure which shows the example which made the calculation frequency of the 1st arithmetic circuit per 1 on / off period of the switch for power conversions the same as the calculation frequency of the 2nd arithmetic circuit.
  • FIG. 1 is an explanatory view showing an embodiment of the present invention.
  • the control device 1A of FIG. 1 controls the output voltage e o of the power conversion circuit 2 (typically near the low voltage control) shows an example of.
  • a DC power source 201 and a load 202 are connected to the power conversion circuit 2, and the power conversion switch is driven by the control device 1A.
  • the power conversion circuit 2 includes a power conversion switch SW, a commutation diode FD, an inductance L, and a capacitor C, as shown in the circuit diagram of FIG. load 202 is connected to the side, the output voltage e o is sent to the control apparatus 1A, the control apparatus 1A sends out an on-off control signal D SW corresponding to the output voltage e o power conversion switch SW Yes.
  • the control device 1A includes a first control unit 11A, a second control unit 12A, a switch-off time data generation unit (switch operation time data generation unit of the present invention) 14, a drive signal generation unit 15, and an operation management circuit 16A.
  • the operation management circuit 16A manages the adjustment of the operation timing of the first control unit 11A, the second control unit 12A, the switch-off time data generation unit 14, the drive signal generation unit 15, and the like.
  • the first control unit 11A includes a first A / D converter 111, a first arithmetic circuit 112, and a filter 113.
  • the 1A / D converter 111 as a detection signal to the output voltage e o of the power conversion circuit 2 performs A / D conversion and input via the filter 113.
  • the first arithmetic circuit 112 receives the digital signal from the first A / D converter 111 and generates a first arithmetic signal.
  • the second control unit 12A includes a second A / D converter 121, a second arithmetic circuit 122, and a filter 123.
  • the 2A / D converter 121 as a detection signal to the output voltage e o of the power conversion circuit 2 performs A / D conversion and input via the filter 123.
  • the second arithmetic circuit 122 receives the digital signal from the second A / D converter 121 and generates a second arithmetic signal.
  • FIG. 1 shows a case where the first arithmetic circuit 112 performs proportional control and the second arithmetic circuit 122 performs integral control or differential / integral control.
  • the switch-off time data generation unit 14 outputs the output signal (the calculation result of the first calculation circuit 112) D1 of the first control unit 11A and the output signal (the calculation result of the second calculation circuit 122) D2 of the second control unit 12A.
  • switch operation time data D that is, a signal indicating the switch operation time (in this embodiment, an off-time signal) is generated and sent to the drive signal generation unit 15.
  • the drive signal generation unit 15 sends the on / off control signal DSW to the power conversion switch of the power conversion circuit 2 to drive the switch.
  • FIG. 3A shows how D1 and D2 are added by an arithmetic unit (indicated by ALU).
  • the proportional element K P (N rp ⁇ N n, m ) is calculated
  • the differential element K D (N n ⁇ 2 ⁇ N n ⁇ 3 )
  • An integral element K I (N rI ⁇ N n ⁇ 2 ) is calculated.
  • K P , K D , and K I are constants
  • N rp and N rp are comparison constants
  • N n, m are sampling values in the sampling period (short period) of the first A / D converter 111
  • N n ⁇ 2 and N n ⁇ 1 are sampling values in the sampling period (long period) of the second A / D converter 121.
  • K P (N rp ⁇ N n, m ) is calculated with 8 bits
  • K D (N n ⁇ 2 ⁇ N n ⁇ 3 ) + K I (N rI ⁇ N n ⁇ 2 ) is It shows how it is calculated with 16 bits.
  • the first A / D converter 111 and the second A / D converter 121 are The sampling rate of the first A / D converter 111> the sampling rate of the second A / D converter 121; and The resolution of the first A / D converter 111 ⁇ the resolution of the second A / D converter 121.
  • first arithmetic circuit 112 and the second arithmetic circuit 122 are Unit arithmetic time of first arithmetic circuit 112 ⁇ unit arithmetic time of second arithmetic circuit 122
  • Unit arithmetic time The time required for each arithmetic circuit to generate one arithmetic result has a relationship.
  • a high-speed, 8-bit type is used as the first A / D converter 111
  • a low-speed, 16-bit type is used as the second A / D converter 121 (for example, Can be made by combining two 8-bit A / D converters).
  • the number of calculations of the first arithmetic circuit 112 per one on / off cycle of the power conversion switch can be made the same as the number of calculations of the second arithmetic circuit 122.
  • Eout is a digital value of the output voltage eo of the power conversion circuit
  • D1 is a digital output value of the first arithmetic circuit 112
  • D2 is an output voltage value of the second arithmetic circuit 122.
  • the number of calculations of the first arithmetic circuit 112 per one on / off period of the power conversion switch is made larger than the number of calculations of the second arithmetic circuit 122, and the switch-off time data is generated.
  • the unit 14 can update the calculation result of the first arithmetic circuit 112 in one on / off cycle of the power conversion switch. Thereby, the switch-off time data generation unit 14 can generate the off timing in a cycle shorter than the calculation time of the second arithmetic circuit 122.
  • FIG. 6 is a view showing a modification of the embodiment of FIG.
  • the control device 1C includes a first control unit 11C, a second control unit 12C, a switch-off time data generation unit 14, a drive signal generation unit 15, and an operation management circuit 16C.
  • the first control unit 11C includes a first A / D converter 111, a first arithmetic circuit 112, a filled filter 113, and an amplifier 115 provided between the first A / D converter 111 and the filter 113.
  • the configuration of the second control unit 12C is the same as the configuration of the second control unit 12A in FIG.
  • Amplifier 115 may enter the output voltage e o of the power conversion circuit 2, and A / D converted by eight bits cut out a predetermined width of the amplified detected value.
  • FIG. 7A shows the output voltage eo
  • FIG. 7B shows a state where the amplified detection value is cut out.
  • the first controller 11C can perform processing with substantially high resolution while using the 8-bit A / D converter (first A / D converter 111).
  • FIG. 10 is an explanatory view showing a third embodiment of the present invention.
  • the control device 1D includes a first control unit 11D, a second control unit 12D, a third control unit 13D, a switch-off time data generation unit 14, a drive signal generation unit 15, and an operation management circuit 16D.
  • the configuration of the first control unit 11D and the second control unit 12D is the same as the configuration of the first control unit 11A and the first control unit 12A in FIG.
  • the third control unit 13D includes a third A / D converter 131, a third arithmetic circuit 132, and a filter 133.
  • the third arithmetic circuit 132 receives the digital signal from the third A / D converter 131 and generates a third arithmetic signal (output signal D3).
  • the operation management circuit 16D manages the operations of the first control unit 11D, the second control unit 12D, and the third control unit 13D.
  • the first A / D converter 111, the second A / D converter 121, and the third A / D converter 131 are: Sampling rate of the first A / D converter> sampling rate of the second A / D converter ⁇ sampling rate of the third A / D converter or The sampling rate of the first A / D converter> the sampling rate of the third A / D converter> the sampling rate of the second A / D converter; and Resolution of the first A / D converter ⁇ resolution of the second A / D converter ⁇ resolution of the third A / D converter or The resolution of the first A / D converter ⁇ the resolution of the third A / D converter ⁇ the resolution of the second A / D converter, and
  • the first arithmetic circuit 112, the second arithmetic circuit 122, and the third arithmetic circuit 132 are Unit calculation time of the first calculation circuit ⁇
  • the switch-off time data generation unit 14 includes a first calculation signal (output signal D1) generated by the first control unit 11D, a second calculation signal (output signal D2) generated by the second control unit 12D, and a third control unit.
  • the third operation signal (output signal D3) generated by 13D is combined to generate switch operation time data (output signal D meaning off-time data) of the power conversion switch SW.
  • the power conversion circuit 2 includes a power conversion switch SW, a commutation diode FD, an inductance L, and a capacitor C, and a DC power supply 201 is provided on the input side.
  • the switch 202 is connected to the switch 202, and the switch current i SW (detection is performed by the resistor r SW ) and the output voltage eo are sent to the control device 1.
  • the third control unit 13 performs control based on the switch current i SW , thereby performing control with reduced influence of voltage fluctuation of the DC power supply 201.
  • FIG. 13 is an explanatory view showing a fourth embodiment of the present invention.
  • the second control unit 12 includes a second A / D converter 121 and a third A / D converter 123, and the second A / D converter 121 receives the output voltage eo and inputs it. A / D conversion is performed, and the third A / D converter 123 receives the switch current i SW and performs A / D conversion.
  • the second control unit 12 performs a filter operation based on the output voltage eo and the switch current iSW .
  • the operation management circuit 16 manages the operations of the first control unit 11 and the second control unit 12.
  • the unit arithmetic time of the first arithmetic circuit 112 ⁇ the unit arithmetic time of the second arithmetic circuit 122 is satisfied.
  • the first arithmetic circuit 112 receives the digital signal from the first A / D converter 111 and generates a first arithmetic signal (output signal D1)
  • the second arithmetic circuit 122 includes the second A / D converter 121 and A digital signal from the third A / D converter 123 is input to generate a second operation signal (output signal D2).
  • the switch-off time data generation unit 14 combines the first calculation signal (output signal D1) output from the first control unit 11 and the second calculation signal (output signal D2) output from the second control unit 12, Off-time data (output signal D) of the power conversion switch SW is generated.
  • stable control is performed by the second arithmetic circuit 122 of the second control unit 12 performing control by filter arithmetic.
  • FIG. 14 is a view showing a modification of the fourth embodiment of FIG.
  • the first control unit 11 includes a first A / D converter 111, a first arithmetic circuit 112, a first A / D converter 111, and an amplifier 115 provided before the first A / D converter 111. Consists of.
  • the amplifier 115 may enter the output voltage e o of the power conversion circuit 2, by cutting a predetermined width of the amplified detected value to convert A / D, substantially the resolution of the 1A / D converter 111 And can be controlled with high accuracy. Furthermore, highly stable control can be performed by the second arithmetic circuit 122 (filter circuit).
  • FIG. 15 is an explanatory view showing a fifth embodiment of the present invention.
  • the control device 1 includes a third control unit 13 in addition to the first control unit 11 and the second control unit 12.
  • the third control unit 13 includes a third A / D converter 131 and a third arithmetic circuit 132.
  • the third A / D converter 131 receives the switch current i SW and performs A / D conversion.
  • the third arithmetic circuit 132 receives the digital signal from the third A / D converter 131 and generates a third arithmetic signal (output signal D3).
  • the operation management circuit 16 manages the operations of the first control unit 11, the second control unit 12, and the third control unit 13.
  • the unit arithmetic time of the first arithmetic circuit 112 ⁇ the unit arithmetic time of the third arithmetic circuit 132 ⁇ the unit arithmetic time of the second arithmetic circuit 122 is satisfied.
  • the switch-off time data generation unit 14 includes a first calculation signal (output signal D1) generated by the first control unit 11, a second calculation signal (output signal D2) generated by the second control unit 12, and a third control unit. 13 is combined with the third calculation signal (output signal D3) generated by 13 to generate the off-time data (output signal D) of the switch SW for power conversion.
  • the power conversion circuit 2 for example, the circuit (see FIG. 11) shown in the third embodiment is applied.
  • the third control unit 13 performs control based on the switch current i SW , thereby performing control with reduced influence of voltage fluctuation of the DC power supply 201.
  • the output voltage e o or has further been described that detect and control the switch current i SW, in the present invention, the output current i o of the power conversion circuit 2, the input voltage e i , Input current i i and reactor current i L can be detected and controlled.
  • the on / off control signal that is, the signal indicating the switch operation time is the off time signal.
  • the present invention is not limited to this and the switch operation time is meant.
  • the present invention can be applied to a case where the signal is an on-time signal, an on-time signal, and an off-time signal.
  • the power conversion circuit is mostly operated by an analog control device, and the operation characteristics of the analog control circuit depend on the characteristics of the constituent elements. For this reason, there are various disadvantages such as variations in accuracy and quality of component characteristics, and limitation of the operating range due to element characteristics, and development of a digital control device is desired. If an equivalent power supply that operates with a digital controller is to be produced, for example, a high-speed 16-bit A / D converter becomes expensive. For this reason, the market demands a digital control device of the same price range as an analog control device. In the case of an analog control circuit, a large-capacity capacitor must be used as the output capacitor of the power conversion circuit, but the control circuit of the present invention. It is realized with a digital circuit. Therefore, since the control circuit can be reduced in size as compared with the analog control circuit, it can be expected to reduce the price.

Abstract

 各A/D変換器の特性(資質)を生かした効率的な制御を行うことができる電力変換制御技術を提供する。 前記検出信号と同一の検出信号または前記検出信号と異なる検出信号を入力する第3A/D変換器および前記第3A/D変換器からの信号を入力して第3演算信号を生成する第3演算回路を含む第3制御部を備え、前記動作管理回路は前記第1制御部と前記第2制御部と前記第3制御部の動作を管理する。

Description

電力変換回路の制御装置
 本発明は、出力電圧、出力電流、スイッチ電流等の検出信号に基づき、電力変換用スイッチのためのオン・オフ制御信号を生成する電力変換回路の制御装置に関し、各A/D変換器の特性(資質)を生かした効率的な制御を行うことができる電力変換制御技術に関する。
技術背景
 電力変換回路の制御装置では、出力電圧、出力電流、スイッチ電流等の検出信号を複数の制御要素の演算に使用することがある。
 図13は電力変換回路9の出力電圧eoを検出し、制御装置8により電力変換回路9の電力変換用スイッチをする電力変換システムを示している(特許文献1参照)。
 制御装置8は、アナログの出力電圧eoをA/D変換器81によりディジタル電圧値E_OUTに変換して比例制御要素8211に送出するとともに、微分・積分制御要素8212にも送出している。
 比例制御要素8211の演算結果(出力信号D1)および微分・積分制御要素8212の演算結果(出力信号D2)は後段の加算器822に送られ、加算器822は比例制御要素8211の演算サイクルで、加算結果(出力信号D)を後段の駆動信号生成部83に出力している。
PCT/JP2009/053773
 ところで、一般に、A/D変換器は、通常、分解能が高くなればサンプリング速度は低くなる。もちろん、逆にサンプリング速度を高くしようとすると分解能は低下するといった特性を有している。
 このようなことから、図13の制御装置8において比例制御要素8211の応答を高速にするべく、A/D変換器81のサンプリング速度を高くすると、分解能が低下し、結果として微分・積分制御要素8212の精度が悪くなる。
 逆に、微分・積分制御要素8212の精度を高めるべく、A/D変換器81の分解能を高くすると、サンプリング速度が低下し、結果として比例制御要素8211の応答が悪くなる。
 本発明の目的は、出力電圧、出力電流、スイッチ電流等の検出信号に基づき、電力変換用スイッチのためのオン・オフ制御信号を生成する電力変換回路の制御装置において、同一検出信号を、“高分解能/低サンプリング速度”特性(資質)のA/D変換器および“低分解能/高サンプリング速度”特性のA/D変換器によりA/D変換し、各後段の制御演算部ではそれぞれの変換データに基づき、前記各A/D変換器の特性を生かした効率的な演算を行うことができる電力変換回路の制御装置を提供することである。
 本発明者は、定常時における制御(出力が静的に変化する際の制御)では、量子化精度は低くてよいが、時間分解能が高い必要がある一方で、過渡時における制御(出力が動的に変化する際の制御)では、時間分解能は低くてよいが、量子化精度が高い必要があることに着目した。
 そして、ある演算(上記した単一の処理)の、ある部分を低ビット(たとえば、8ビット)で計算し、他の部分を高ビット(16ビット)で計算することで、高速低ビット(たとえば、8ビット)のA/D変換器と、低速高いビット(たとえば、16ビット)のA/D変換器とを使用することで、価格が格段に高い高速高ビットのA/D変換器を使用することなく、当該高速高ビットのA/D変換器を使用したと同様の電力変換回路の制御装置を提供することができる、との知見を得て本発明をなすに至った。
 本発明の電力変換回路は(1)から(6)を要旨とする。
(1)
 出力電圧、出力電流、入力電圧、入力電流、スイッチ電流、リアクトル電流のうち少なくとも1つの検出信号に基づきスイッチ動作時間データを生成し、当該スイッチ動作時間データに基づき電力変換用スイッチのためのオン・オフ制御信号を生成する電力変換回路の制御装置において、
 前記検出信号を入力してA/D変換を行なう第1A/D変換器および前記第1A/D変換器からのディジタル信号を入力して第1演算信号を生成する第1演算回路を含む第1制御部と、
 前記検出信号を入力してA/D変換を行なう第2A/D変換器および前記第2A/D変換器からのディジタル信号を入力して第2演算信号を生成する第2演算回路を含む第2制御部と、
 前記スイッチ動作時間データを生成するスイッチ動作時間データ生成部と、
 前記第1制御部と前記第2制御部と前記スイッチ動作時間データ生成部との動作を管理する動作管理回路と、
を備え、
 前記第1A/D変換器と前記第2A/D変換器とが、
   第1A/D変換器のサンプリング速度>第2A/D変換器のサンプリング速度
   第1A/D変換器の分解能<第2A/D変換器の分解能
の関係を有し、
 前記第1演算回路と前記第2演算回路とが、
   第1演算回路の単位演算時間<第2演算回路の単位演算時間
 単位演算時間:各演算回路が1つの演算結果を生成するのに要する時間
の関係を有し、
 前記第1演算回路が前記第1A/D変換器からのディジタル信号を入力して第1演算信号を生成するとともに、前記第2演算回路が前記第2A/D変換器からのディジタル信号を入力して第2演算信号を生成し、
 前記スイッチ動作時間データ生成部が、前記第1演算信号と前記第2演算信号とを合成して前記電力変換用スイッチの前記スイッチ動作時間データを生成する、
ことを特徴とする電力変換制装置の制御装置。
 なお、スイッチ動作時間データは、具体的には、スイッチオン時間,スイッチオフ時間の一方、あるいは双方であってもよい。また、オン・オフ制御は、周期が一定でオン時間やオフ時間を律するものであってもよいし、周期が一定ではなくオン時間やオフ時間を律するものであってもよい。
(2) さらに、前記検出信号と同一の検出信号または前記検出信号と異なる検出信号を入力する第3A/D変換器および前記第3A/D変換器からの信号を入力して第3演算信号を生成する第3演算回路を含む第3制御部を備え、
 前記動作管理回路は前記第1制御部と前記第2制御部と前記第3制御部の動作を管理し、
 前記第1A/D変換器と前記第2A/D変換器と前記第3A/D変換器とが、
   第1A/D変換器のサンプリング速度>第2A/D変換器のサンプリング速度≧第3A/D変換器のサンプリング速度
 または、
   第1A/D変換器のサンプリング速度>第3A/D変換器のサンプリング速度≧第2A/D変換器のサンプリング速度
   第1A/D変換器の分解能<第2A/D変換器の分解能≦第3A/D変換器の分解能
 または、
   第1A/D変換器の分解能<第3A/D変換器の分解能≦第2A/D変換器の分解能
の関係を有し、
 前記第1演算回路が前記第1A/D変換器からのディジタル信号を入力して前記第1演算信号を生成し、前記第2演算回路が前記第2A/D変換器からのディジタル信号を入力して前記第2演算信号を生成し、前記第3演算回路が前記第3A/D変換器からのディジタル信号を入力して前記第3演算信号を生成し、
 前記第1演算回路と前記第2演算回路と前記第3演算回路とが、
   第1演算回路の単位演算時間<第2演算回路の単位演算時間≦第3演算回路の単位演算時間
 または、
   第1演算回路の単位演算時間<第3演算回路の単位演算時間≦第2演算回路の単位演算時間
の関係を有し、
 前記スイッチ動作時間データ生成部が、前記第1演算信号と前記第2演算信号と前記第3演算信号とを合成し、前記電力変換用スイッチの前記スイッチ動作時間データを生成する、
ことを特徴とする(1)に記載の電力変換制装置の制御装置。
(3) 前記第3A/D変換器の前段に、ローパスフィルタを備えたことを特徴とする(2)に記載の電力変換回路の制御装置。
(4) 前記第1A/D変換器の前段に、前記検出信号の検出値を所定のレンジ幅切り出して増幅する増幅器を備えたことを特徴とする(1)から(3)の何れかに記載の電力変換回路の制御装置。
(5) 前記電力変換用スイッチの1オン・オフ周期あたりの前記第1演算回路の計算回数が、前記第2演算回路の前記計算回数よりも多いことを特徴とする(1)から(4)の何れかに記載の電力変換回路の制御装置。
(6) 前記電力変換用スイッチの1オン・オフ周期あたりの前記第1演算回路の計算回数が、前記第2演算回路の前記計算回数よりも多く、かつ前記電力変換用スイッチの1オン・オフ周期において、前記第1演算回路の計算結果が、少なくとも1回更新されることを特徴とする(1)から(4)の何れかに記載の電力変換回路の制御装置。
 本発明によれば、“高分解能/低サンプリング速度”および“低分解能/高サンプリング速度”のA/D変換器を使用し、出力が動的に変化したときは“低分解能/高サンプリング速度”の制御部による演算が大きな比重を占め、静的な変化に対しては“高分解能/低サンプリング速度”の制御部による演算が大きな比重を占める。
 本発明では、“高分解能/低サンプリング速度”の制御部に使用されるA/D変換器および“低分解能/高サンプリング速度”の制御部に使用されるA/D変換器の何れもが、低コストなので、制御装置の低製造コスト化が可能である。
 具体的には、A/D変換器は、8ビット以下のものが安価であるが、それよりビット数が高いものは飛躍的に価格が高くなる。また、8ビットを超える低速のA/D変換器は、たとえば8ビット以下のA/D変換器を複数組み合わせて作製することができる。
 また本発明では、出力の動的変化に対する安定性が高いので、出力キャパシタとして小容量のものを採用でき、結果として電力変換回路の小型化に貢献できる。
 さらに、たとえば高速8ビットのA/D変換器の消費電力と低速16ビットのA/D変換器の消費電力の合算は、高速16ビットのA/D変換器の消費電力よりも、圧倒的に小さい(たとえば、0.1倍程度)なので、数十秒から数分の間隔でスリープモードとアクティブモードをくり返すことがある近時の電子機器の電源に好適である。
電圧制御を行う本発明の電力変換回路の制御装置の実施形態を示す説明図である。 図1の実施形態に用いられる具体的回路図を示す説明図である。 (A)に第1演算回路の出力と第2演算回路の出力とが演算器により加算される様子を示す図、(B)は具体的な演算を示す図である。 電力変換用スイッチの1オン・オフ周期あたりの第1演算回路の計算回数を、第2演算回路の計算回数と同じにした例を示す図である。 電力変換用スイッチの1オン・オフ周期あたりの第1演算回路の計算回数を、第2演算回路の計算回数よりも多く例を示す図である。 第1A/D変換器の前段に増幅器を配置して部分的に分解能を高くした実施形態を示す図である。 図6の回路の動作説明図である。 図6の回路の動作説明図である。 本発明の第3実施形態を示す説明図である。 第3実施例に用いられる具体的回路図を示す説明図である。 本発明の第4実施形態を示す説明図である。 本発明の第5実施形態を示す説明図である。 本発明の第5実施形態の変形例を示す説明図である。 本発明の第5実施形態を示す説明図である。 本発明の制御例を示す説明図である。 本発明の他の制御例を示す説明図である。 従来の電力変換回路の制御装置の説明図である。
 図1は本発明の一実施形態を示す説明図である。図1の制御装置1Aでは、電力変換回路2の出力電圧eoを制御(典型的にあは低電圧制御)する例を示している。
 図1において、電力変換回路2には直流電源201と負荷202とが接続されており、電力変換用スイッチは、制御装置1Aにより駆動される。
 電力変換回路2は、本実施形態では、図2の回路図に示すように、電力変換用スイッチSWと転流ダイオードFDとインダクタンスLとキャパシタCとからなり、入力側に直流電源201が、出力側に負荷202が接続されており、出力電圧eoが制御装置1Aに送出され、制御装置1Aは出力電圧eoに応じたオン・オフ制御信号DSWを電力変換用スイッチSWに送出している。
 制御装置1Aは第1制御部11Aと第2制御部12Aとスイッチオフ時間データ生成部(本発明のスイッチ動作時間データ生成部)14と駆動信号生成部15と動作管理回路16Aとを備えている。ここで、動作管理回路16Aは、第1制御部11A,第2制御部12A,スイッチオフ時間データ生成部14,駆動信号生成部15などの動作タイミングの調整等の管理をしている。
 第1制御部11Aは、第1A/D変換器111と第1演算回路112とフィルタ113とを有している。第1A/D変換器111は、電力変換回路2の出力電圧eoを検出信号として、フィルタ113を介して入力してA/D変換を行なう。第1演算回路112は、第1A/D変換器111からのディジタル信号を入力して第1演算信号を生成する。
 第2制御部12Aは、第2A/D変換器121と第2演算回路122とフィルタ123とを有している。第2A/D変換器121は、電力変換回路2の出力電圧eoを検出信号として、フィルタ123を介して入力してA/D変換を行なう。第2演算回路122は、第2A/D変換器121からのディジタル信号を入力して第2演算信号を生成する。
 図1の制御装置1Aでは、第1演算回路112が比例制御を行い、第2演算回路122が積分制御または微分・積分制御を行う場合を示している。
 スイッチオフ時間データ生成部14は、第1制御部11Aの出力信号(第1演算回路112の演算結果)D1と第2制御部12Aの出力信号(第2演算回路122の演算結果)D2とを合成して、スイッチ動作時間データD、すなわちスイッチ動作時間を意味する信号(本実施形態では、オフ時間信号)を生成し、これを駆動信号生成部15に送出する。そして、駆動信号生成部15は、オン・オフ制御信号DSWを電力変換回路2の電力変換用スイッチに送出して当該スイッチを駆動する。
 図3(A)に、D1とD2とが演算器(ALUで示す)により加算される様子を示す。
 たとえば、第1演算回路112では、比例要素のKP(Nrp-Nn,m)の演算がなされ、第1演算回路212では微分要素KD(Nn-2-Nn-3)と、積分要素KI(NrI-Nn-2)の演算がなされる。
 ここで、KP,KD,KIは定数、Nrp,Nrpは比較用定数、Nn,mは、第1A/D変換器111のサンプリング周期(短周期)でのサンプリング値、Nn-2,Nn-1は、第2A/D変換器121のサンプリング周期(長周期)でのサンプリング値である。
 図3(B)では、KP(Nrp-Nn,m)が8ビットで演算され、KD(Nn-2-Nn-3)+KI(NrI-Nn-2)が16ビットで演算され様子を示している。
 本発明では、第1A/D変換器111と第2A/D変換器121とが、
   第1A/D変換器111のサンプリング速度>第2A/D変換器121のサンプリング速度
の関係を有し、かつ、
   第1A/D変換器111の分解能<第2A/D変換器121の分解能
の関係を有している。
 また、第1演算回路112と第2演算回路122とが、
   第1演算回路112の単位演算時間<第2演算回路122の単位演算時間
 単位演算時間:各演算回路が1つの演算結果を生成するのに要する時間
の関係を有している。
 具体的には、図1の制御装置1Aでは、第1A/D変換器111として、高速・8ビットのものを使用し、第2A/D変換器121として、低速・16ビットのもの(たとえば、8ビットのA/D変換器を2つ組み合わせて作製することができる)を使用している。
 本発明では、図4に示すように、電力変換用スイッチの1オン・オフ周期あたりの第1演算回路112の計算回数を、第2演算回路122の計算回数と同じにすることができる。図4において、Eoutは、電力変換回路の出力電圧eoのディジタル値であり、D1は第1演算回路112のディジタル出力値、D2は第2演算回路122の出力電圧値である。
 また、図5に示すように、電力変換用スイッチの1オン・オフ周期あたりの第1演算回路112の計算回数を、第2演算回路122の計算回数よりも多くし、かつスイッチオフ時間データ生成部14が、電力変換用スイッチの1オン・オフ周期において、第1演算回路112の計算結果を更新することができる。
 これにより、スイッチオフ時間データ生成部14は、第2演算回路122の計算時間よりも短いサイクルで、オフタイミングを生成することができる。
 図6は図1の実施形態の変形例を示す図である。図6では、制御装置1Cは、第1制御部11Cと第2制御部12Cとスイッチオフ時間データ生成部14と駆動信号生成部15と動作管理回路16Cとを備えている。
 第1制御部11Cは、第1A/D変換器111と、第1演算回路112と、フィルた113と、第1A/D変換器111とフィルタ113との間に設けた増幅器115とからなる。第2制御部12Cの構成は、図1の第2制御部12Aの構成と同じである。
 増幅器115は電力変換回路2の出力電圧eoを入力し、増幅された検出値の所定の値幅を切り出して8ビットでA/D変換することができる。図7(A)に出力電圧eoを示し、図7(B)に増幅された検出値を切り出した様子を示す。
 これにより、第1制御部11Cでは8ビットのA/D変換器(第1A/D変換器111)を使用していながら、実質上高い分解能での処理を行うことができる。
 図10は本発明の第3実施形態を示す説明図である。
 図10では、制御装置1Dは、第1制御部11Dと第2制御部12Dと第3制御部13Dとスイッチオフ時間データ生成部14と駆動信号生成部15と動作管理回路16Dとを備えている。
 第1制御部11D,第2制御部12Dの構成は、図1の第1制御部11A、第1制御部12Aの構成と同じである。
 第3制御部13Dは、第3A/D変換器131と第3演算回路132とフィルタ133とを備えている。第3演算回路132は、第3A/D変換器131からのディジタル信号を入力して第3演算信号(出力信号D3)を生成する。
 動作管理回路16Dは第1制御部11Dと第2制御部12Dと第3制御部13Dの動作を管理する。
 本実施形態では、第1A/D変換器111と第2A/D変換器121と第3A/D変換器131とが、
   第1A/D変換器のサンプリング速度>第2A/D変換器のサンプリング速度≧第3A/D変換器のサンプリング速度
 または、
   第1A/D変換器のサンプリング速度>第3A/D変換器のサンプリング速度≧第2A/D変換器のサンプリング速度
の関係を有しかつ、
   第1A/D変換器の分解能<第2A/D変換器の分解能≦第3A/D変換器の分解能
 または、
   第1A/D変換器の分解能<第3A/D変換器の分解能≦第2A/D変換器の分解能
の関係を有し、かつ、
 第1演算回路112と第2演算回路122と第3演算回路132とが、
   第1演算回路の単位演算時間<第2演算回路の単位演算時間≦第3演算回路の単位演算時間
 または、
   第1演算回路の単位演算時間<第3演算回路の単位演算時間≦第2演算回路の単位演算時間
の関係を有している。
 そして、スイッチオフ時間データ生成部14は第1制御部11Dが生成する第1演算信号(出力信号D1)と第2制御部12Dが生成する第2演算信号(出力信号D2)と第3制御部13Dが生成する第3演算信号(出力信号D3)とを合成し、電力変換用スイッチSWのスイッチ動作時間データ(オフ時間データを意味する出力信号D)を生成する。
 電力変換回路2は、本実施形態では、図11の回路図に示すように、電力変換用スイッチSWと転流ダイオードFDとインダクタンスLとキャパシタCとからなり入力側に直流電源201が、出力側に負荷202が接続されており、スイッチ電流iSW(検出は抵抗rSWにより行われる)および出力電圧eoが制御装置1に送出されている。
 本実施形態においては、第3制御部13がスイッチ電流iSWに基づく制御を行うことで、直流電源201の電圧変動の影響を低減した制御が行われる。
 図13は本発明の第4実施形態を示す説明図である。
 図13では、第2制御部12が、第2A/D変換器121と第3A/D変換器123とを備えており、第2A/D変換器121は出力電圧eoを入力してこれをA/D変換し、第3A/D変換器123はスイッチ電流iSWを入力してA/D変換を行う。第2制御部12が、出力電圧eoとスイッチ電流iSWとに基づくフィルタ演算を行っている。
 本実施形態でも、動作管理回路16は第1制御部11と第2制御部12の動作を管理する。本実施形態では、
   第1A/D変換器111のサンプリング速度≧第3A/D変換器113のサンプリング速度>第2A/D変換器121のサンプリング速度
の関係を有しており、かつ、
   第1演算回路112の単位演算時間<第2演算回路122の単位演算時間
の関係を有している。
 第1演算回路112が第1A/D変換器111からのディジタル信号を入力して第1演算信号(出力信号D1)を生成するとともに、第2演算回路122が第2A/D変換器121およびと第3A/D変換器123からのディジタル信号を入力して第2演算信号(出力信号D2)を生成する。
 そして、スイッチオフ時間データ生成部14は第1制御部11が出力する第1演算信号(出力信号D1)と第2制御部12が出力する第2演算信号(出力信号D2)とを合成し、電力変換用スイッチSWのオフ時間データ(出力信号D)を生成する。
 本実施形態では、第2制御部12の第2演算回路122がフィルタ演算による制御を行うことで、安定した制御が行われる。
 図14は図13の第4実施形態の変形例を示す図である。図14では、第1制御部11は、第1A/D変換器111と、第1演算回路112と第1A/D変換器111と、第1A/D変換器111の前段に設けた増幅器115とからなる。
 増幅器115は電力変換回路2の出力電圧eoを入力し、増幅された検出値の所定の値幅を切り出してA/D変換することができるので、第1A/D変換器111の分解能を実質上高めることができ、高精度の制御が行われる。さらに、第2演算回路122(フィルタ回路)により安定性が高い制御を行うことができる。
 図15は本発明の第5実施形態を示す説明図である。
 図15では、制御装置1は、第1制御部11および第2制御部12のほか、第3制御部13を備えている。第3制御部13は、第3A/D変換器131と第3演算回路132を備えている。第3A/D変換器131は、スイッチ電流iSWを入力してA/D変換を行なう。第3演算回路132は、第3A/D変換器131からのディジタル信号を入力して第3演算信号(出力信号D3)を生成する。
 動作管理回路16は第1制御部11と第2制御部12と第3制御部13の動作を管理する。本実施形態では、
   第1A/D変換器111のサンプリング速度>第3A/D変換器113のサンプリング速度≧第2A/D変換器121のサンプリング速度
の関係を有しており、かつ、
   第1演算回路112の単位演算時間<第3演算回路132の単位演算時間≦第2演算回路122の単位演算時間
の関係を有している。
 そして、スイッチオフ時間データ生成部14は第1制御部11が生成する第1演算信号(出力信号D1)と第2制御部12が生成する第2演算信号(出力信号D2)と第3制御部13が生成する第3演算信号(出力信号D3)とを合成し、電力変換用スイッチSWのオフ時間データ(出力信号D)を生成する。
 電力変換回路2は、たとえば第3実施形態において示した回路(図11参照)が適用される。
 本実施形態においては、第3制御部13がスイッチ電流iSWに基づく制御を行うことで、直流電源201の電圧変動の影響を低減した制御が行われる。
 なお、上記の実施形態では、出力電圧eo、あるいはさらにスイッチ電流iSWを検出して制御を行う場合を説明したが、本発明では、電力変換回路2の出力電流io,入力電圧ei,入力電流ii,リアクトル電流iLを検出して制御を行うことができる。
 また、上記の実施形態では、オン・オフ制御信号、すなわちスイッチ動作時間を意味する信号が、オフ時間信号である場合を説明したが、本発明ではこれに限定されず、スイッチ動作時間を意味する信号が、オン時間信号である場合、オン時間信号およびオフ時間信号である場合等に適用できる。
 従来、電力変換回路は、アナログ制御装置により運転され場合が、殆どであり、アナログ制御回路では、動作特性が、構成素子の特性に依存する。このため、部品特性の精度や品質のバラつき、素子特性に起因する動作範囲の限定など、種々の短所があり、ディジタル制御装置の開発が望まれている。
 ディジタル制御装置で動作する同等電源を作製しようとすると、たとえば高速16ビットのA/D変換器が高価となる。このため、市場は、アナログ制御装置と同価格帯のディジタル制御装置を要求している。
 なお、アナログ制御回路の場合には、電力変換回路の出力コンデンサとして大容量のものを採用しなくてはならないが、本発明の制御回路は。ディジタル回路で実現される。したがって、アナログ制御回路に比較して、制御回路を小型化できるので、これに伴う低価格化も期待できる。
 1 制御装置
 2 電力変換回路
 11 第1制御部
 12 第2制御部
 13 第3制御部
 14 スイッチオフ時間データ生成部
 15 駆動信号生成部
 16 動作管理回路
 111 第1A/D変換器
 112 第1演算回路
 113,123,131 第3A/D変換器
 115,1151,1152 増幅器
 121 第2A/D変換器
 122 第2演算回路
 132 第3演算回路
 201 直流電源
 202 負荷
 C キャパシタ
 D,D1,D2,D3 出力信号
 E ディジタル電圧値
 FD 転流ダイオード
 L インダクタンス
 SW 電力変換用スイッチ
 ei 入力電圧
 eo 出力電圧
 iL リアクトル電流
 iSW スイッチ電流
 ii 入力電流
 io 出力電流

Claims (6)

  1.  出力電圧、出力電流、入力電圧、入力電流、スイッチ電流、リアクトル電流のうち少なくとも1つの検出信号に基づきスイッチ動作時間データを生成し、当該スイッチ動作時間データに基づき電力変換用スイッチのためのオン・オフ制御信号を生成する電力変換回路の制御装置において、
     前記検出信号を入力してA/D変換を行なう第1A/D変換器および前記第1A/D変換器からのディジタル信号を入力して第1演算信号を生成する第1演算回路を含む第1制御部と、
     前記検出信号を入力してA/D変換を行なう第2A/D変換器および前記第2A/D変換器からのディジタル信号を入力して第2演算信号を生成する第2演算回路を含む第2制御部と、
     前記スイッチ動作時間データを生成するスイッチ動作時間データ生成部と、
     前記第1制御部と前記第2制御部と前記スイッチ動作時間データ生成部との動作を管理する動作管理回路と、
    を備え、
     前記第1A/D変換器と前記第2A/D変換器とが、
       第1A/D変換器のサンプリング速度>第2A/D変換器のサンプリング速度
       第1A/D変換器の分解能<第2A/D変換器の分解能
    の関係を有し、
     前記第1演算回路と前記第2演算回路とが、
       第1演算回路の単位演算時間<第2演算回路の単位演算時間
     単位演算時間:各演算回路が1つの演算結果を生成するのに要する時間
    の関係を有し、
     前記第1演算回路が前記第1A/D変換器からのディジタル信号を入力して第1演算信号を生成するとともに、前記第2演算回路が前記第2A/D変換器からのディジタル信号を入力して第2演算信号を生成し、
     前記スイッチ動作時間データ生成部が、前記第1演算信号と前記第2演算信号とを合成して前記電力変換用スイッチの前記スイッチ動作時間データを生成する、
    ことを特徴とする電力変換制装置の制御装置。
  2.  さらに、前記検出信号と同一の検出信号または前記検出信号と異なる検出信号を入力する第3A/D変換器および前記第3A/D変換器からの信号を入力して第3演算信号を生成する第3演算回路を含む第3制御部を備え、
     前記動作管理回路は前記第1制御部と前記第2制御部と前記第3制御部の動作を管理し、
     前記第1A/D変換器と前記第2A/D変換器と前記第3A/D変換器とが、
       第1A/D変換器のサンプリング速度>第2A/D変換器のサンプリング速度≧第3A/D変換器のサンプリング速度
     または、
       第1A/D変換器のサンプリング速度>第3A/D変換器のサンプリング速度≧第2A/D変換器のサンプリング速度
       第1A/D変換器の分解能<第2A/D変換器の分解能≦第3A/D変換器の分解能
     または、
       第1A/D変換器の分解能<第3A/D変換器の分解能≦第2A/D変換器の分解能
    の関係を有し、
     前記第1演算回路が前記第1A/D変換器からのディジタル信号を入力して前記第1演算信号を生成し、前記第2演算回路が前記第2A/D変換器からのディジタル信号を入力して前記第2演算信号を生成し、前記第3演算回路が前記第3A/D変換器からのディジタル信号を入力して前記第3演算信号を生成し、
     前記第1演算回路と前記第2演算回路と前記第3演算回路とが、
       第1演算回路の単位演算時間<第2演算回路の単位演算時間≦第3演算回路の単位演算時間
     または、
       第1演算回路の単位演算時間<第3演算回路の単位演算時間≦第2演算回路の単位演算時間
    の関係を有し、
     前記スイッチ動作時間データ生成部が、前記第1演算信号と前記第2演算信号と前記第3演算信号とを合成し、前記電力変換用スイッチの前記スイッチ動作時間データを生成する、
    ことを特徴とする請求項1に記載の電力変換制装置の制御装置。
  3.  前記第1A/D変換器、前記第2A/D変換器、前記第3A/D変換器の前段に、フィルタを備えたことを特徴とする請求項1または2に記載の電力変換回路の制御装置。
  4.  前記第1A/D変換器の前段に、前記検出信号の検出値を所定のレンジ幅切り出して増幅する増幅器を備えたことを特徴とする請求項1から3の何れかに記載の電力変換回路の制御装置。
  5.  前記電力変換用スイッチの1オン・オフ周期あたりの前記第1演算回路の計算回数が、前記第2演算回路の前記計算回数よりも多いことを特徴とする請求項1から4の何れかに記載の電力変換回路の制御装置。
  6.  前記電力変換用スイッチの1オン・オフ周期あたりの前記第1演算回路の計算回数が、前記第2演算回路の前記計算回数よりも多く、かつ前記電力変換用スイッチの1オン・オフ周期において、前記第1演算回路の計算結果が、少なくとも1回更新されることを特徴とする請求項1から4の何れかに記載の電力変換回路の制御装置。
PCT/JP2011/058367 2010-03-31 2011-03-31 電力変換回路の制御装置 WO2011122686A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012508373A JP5699389B2 (ja) 2010-03-31 2011-03-31 電力変換回路の制御装置
US13/638,545 US9350264B2 (en) 2010-03-31 2011-03-31 Control device of power converter circuit
KR1020127025756A KR20130031245A (ko) 2010-03-31 2011-03-31 전력변환회로의 제어장치
EP11762910.5A EP2555401A4 (en) 2010-03-31 2011-03-31 Power conversion circuit control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010084702 2010-03-31
JP2010-084702 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122686A1 true WO2011122686A1 (ja) 2011-10-06

Family

ID=44712379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058367 WO2011122686A1 (ja) 2010-03-31 2011-03-31 電力変換回路の制御装置

Country Status (5)

Country Link
US (1) US9350264B2 (ja)
EP (1) EP2555401A4 (ja)
JP (1) JP5699389B2 (ja)
KR (1) KR20130031245A (ja)
WO (1) WO2011122686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147278A1 (ja) * 2012-03-31 2013-10-03 国立大学法人長崎大学 制御装置および電力変換回路の制御装置
JP2016011922A (ja) * 2014-06-30 2016-01-21 新電元工業株式会社 電圧測定回路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092248B (zh) * 2012-12-31 2014-09-17 华为技术有限公司 一种前馈控制方法及装置
KR102544497B1 (ko) * 2021-05-20 2023-06-20 한국과학기술원 양방향 전압 제어 발진기를 이용한 대역 통과 아날로그 디지털 변환기

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304959A (ja) * 2003-03-31 2004-10-28 Tdk Corp 電源装置及びその制御装置
WO2009122833A1 (ja) * 2008-03-31 2009-10-08 国立大学法人長崎大学 電力変換回路の制御装置および制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258832A (ja) * 1996-03-21 1997-10-03 Hitachi Metals Ltd 流量制御方法及び流量制御装置
JP3381254B2 (ja) * 2000-03-16 2003-02-24 サンケン電気株式会社 交流−直流変換装置
US7710092B2 (en) * 2003-02-10 2010-05-04 Power-One, Inc. Self tracking ADC for digital power supply control systems
US7449869B2 (en) * 2004-09-01 2008-11-11 Artesyn Technologies, Inc. Digital current mode controller with low frequency current sampling
JP4774953B2 (ja) * 2005-11-28 2011-09-21 株式会社日立製作所 時間インターリーブad変換器
US7180439B1 (en) * 2006-03-16 2007-02-20 Analog Devices, Inc. Multi-path digital power supply controller
KR100771854B1 (ko) * 2006-08-22 2007-11-01 삼성전자주식회사 전원 전압의 변동을 보상할 수 있는 저 노이즈 직류-직류변환기
US7652459B2 (en) * 2007-02-23 2010-01-26 Intel Corporation Adaptive controller with mode tracking and parametric estimation for digital power converters
US8487600B2 (en) * 2007-04-10 2013-07-16 Aleksandar Prodic Continuous-time digital controller for high-frequency DC-DC converters
US7893674B2 (en) * 2007-09-26 2011-02-22 Qualcomm, Incorporated Switch mode power supply (SMPS) and methods thereof
JP5055083B2 (ja) * 2007-10-19 2012-10-24 日立コンピュータ機器株式会社 デジタル制御電源装置
US7733261B2 (en) * 2008-09-16 2010-06-08 Texas Instruments Incorporated Hybrid analog to digital converter circuit and method
US8143871B1 (en) * 2008-11-20 2012-03-27 Linear Technology Corporation Dynamically-compensated controller
US8816661B2 (en) * 2009-01-28 2014-08-26 International Rectifier Corporation Hybrid analog/digital power supply circuit including analog summer circuit to produce an error voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304959A (ja) * 2003-03-31 2004-10-28 Tdk Corp 電源装置及びその制御装置
WO2009122833A1 (ja) * 2008-03-31 2009-10-08 国立大学法人長崎大学 電力変換回路の制御装置および制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUROKAWA F ET AL.: "A Novel Digital Control Method for DC-DC Converter", POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, vol. 13TH, 1 September 2008 (2008-09-01), pages 2434 - 2438, XP031343935 *
KUROKAWA F ET AL.: "A Novel Digital PID Controlled DC-DC Converter", POWER ELECTRONICS ELECTRICAL DRIVES AUTOMATION AND MOTION (SPEEDAM), 2010 INTERNATIONAL SYMPOSIUM ON, 14 June 2010 (2010-06-14), pages 50 - 53, XP031727627 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147278A1 (ja) * 2012-03-31 2013-10-03 国立大学法人長崎大学 制御装置および電力変換回路の制御装置
JP2013215029A (ja) * 2012-03-31 2013-10-17 Nagasaki Univ 制御装置および電力変換回路の制御装置
US9595891B2 (en) 2012-03-31 2017-03-14 Nagasaki University Control device and control device of power conversion circuit
JP2016011922A (ja) * 2014-06-30 2016-01-21 新電元工業株式会社 電圧測定回路

Also Published As

Publication number Publication date
KR20130031245A (ko) 2013-03-28
EP2555401A1 (en) 2013-02-06
EP2555401A4 (en) 2017-07-19
US20130094259A1 (en) 2013-04-18
JPWO2011122686A1 (ja) 2013-07-08
US9350264B2 (en) 2016-05-24
JP5699389B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
US9748971B2 (en) Analogue-to-digital converter
JP5699389B2 (ja) 電力変換回路の制御装置
JP2006501715A (ja) 2つの制御経路を有するデジタルコントローラ
JP5786368B2 (ja) 入力電圧検出回路を備えたデジタル制御スイッチング電源装置
KR101621367B1 (ko) 디지털 제어방식의 이중모드 ldo 레귤레이터 및 그 제어 방법
US8362832B2 (en) Half-bridge three-level PWM amplifier and audio processing apparatus including the same
US9331574B2 (en) Controller of the power inverter circuit and a control method
US20190288704A1 (en) Modulators
US9013340B1 (en) Protection circuit for analog-to-digital converter, digital power supply, digital signal processing method, processing module, and circuit protection method
JP2008035027A (ja) デルタシグマ変調型da変換装置
US9768800B1 (en) Envelope dependent output stage scalability
JP2010279134A (ja) 電源装置及び電源装置の制御回路
JP2011166959A (ja) デジタル制御スイッチング電源装置
JP2011097778A (ja) デジタル制御スイッチング電源装置
JP2007228659A (ja) Dc−dcコンバータ
JP2010119041A (ja) アナログ出力装置
JP2010226454A (ja) ゲインコントロール回路及びそれを有する電子ボリューム回路
JP4148077B2 (ja) D級信号増幅回路
JP2007194990A (ja) 多段型ノイズシェーピング型量子化器
JP5210918B2 (ja) 利得可変増幅器
JP4712785B2 (ja) パルス変調器およびd/a変換器
JP2008193159A (ja) 信号処理装置
KR20160069602A (ko) 디지털 방식의 직류-직류 벅 변환기 및 그의 출력 제어 방법
JP2010049396A (ja) 半導体装置および撮像装置
JP2006038569A (ja) エンコーダデータノイズ除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025756

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012508373

Country of ref document: JP

Ref document number: 2011762910

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638545

Country of ref document: US