WO2009122714A1 - 肺炎球菌検出方法 - Google Patents

肺炎球菌検出方法 Download PDF

Info

Publication number
WO2009122714A1
WO2009122714A1 PCT/JP2009/001474 JP2009001474W WO2009122714A1 WO 2009122714 A1 WO2009122714 A1 WO 2009122714A1 JP 2009001474 W JP2009001474 W JP 2009001474W WO 2009122714 A1 WO2009122714 A1 WO 2009122714A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
antibody
pneumococcal
present
detection
Prior art date
Application number
PCT/JP2009/001474
Other languages
English (en)
French (fr)
Inventor
優 赤松
容子 西條
Original Assignee
大塚製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚製薬株式会社 filed Critical 大塚製薬株式会社
Priority to CA2720039A priority Critical patent/CA2720039A1/en
Priority to US12/935,704 priority patent/US8241857B2/en
Priority to ES09726757.9T priority patent/ES2556354T3/es
Priority to JP2010505390A priority patent/JP5509067B2/ja
Priority to CN200980111519.4A priority patent/CN101981452B/zh
Priority to KR1020107021865A priority patent/KR101678428B1/ko
Priority to EP09726757.9A priority patent/EP2261666B1/en
Publication of WO2009122714A1 publication Critical patent/WO2009122714A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1275Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Streptococcus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56944Streptococcus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/315Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci
    • G01N2333/3156Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/10Detection of antigens from microorganism in sample from host

Definitions

  • the present invention relates to an immunological measurement method for detecting or quantifying pneumococcal antigen in a living body.
  • Streptococcus pneumoniae is the most frequently detected causative bacterium for community-acquired pneumonia and lower respiratory tract infections, and is one of the causative and mortality-causing organisms not only in Japan but also worldwide. . Since pneumococcal infections are not only frequent but prone to becoming severe, it is important to select an appropriate antibiotic at the start of treatment. Also, from the viewpoint of the principle of infectious disease treatment, determining the causative bacteria as early as possible can select the right treatment as soon as possible, improving the prognosis, reducing medical costs, and preventing the development of resistant bacteria It is important because it leads to In view of these backgrounds, there is a demand for a diagnostic agent that rapidly detects pneumococcal antigens at an early stage of infection.
  • Non-patent Document 1 Details of the structure of pneumococci have been reported by Sorensen et al. (Non-patent Document 1).
  • a capsule is located on the outermost side of the fungus, and a polysaccharide antigen called a capsular polysaccharide is coordinated on the capsule. Dozens of serotypes based on the difference in the structure of this capsular polysaccharide have been reported.
  • a cell wall and a plasma membrane are sequentially located inside the capsule, C-polysaccharide (C-ps) is located on the cell wall, and teichoic acid called F-antigen is located on the cell membrane. Alternatively, lipoteichoic acid is coordinated.
  • C-ps is known as a common antigen conserved in all pneumococci, and it has been reported that the polysaccharide part of F-antigen has the same sugar sequence as C-ps.
  • Non-patent Documents 2 and 3 a method for detecting C-ps antigen in sputum by ELISA using an anti-C-ps antibody
  • Non-patent Documents 4 and 5 methods for detecting antigens in serum and urine by immunoelectrophoresis for capsular polysaccharides
  • kits for detecting pneumococcal antigen in cerebrospinal fluid, serum, and urine by a latex agglutination method were used in the past. This method is thought to detect polysaccharide moieties such as capsular polysaccharides (Non-Patent Document 6, Non-Patent Document 7).
  • kits using the latex agglutination method are rarely used at present due to the complexity of operation and the problem of sensitivity.
  • Urinary antigen rapid detection kit detects C-ps in urine by immunochromatography (Patent Document 1). This method is noninvasive because it detects urinary antigens, and the measurement time is as fast as about 15 minutes (Non-patent Document 8).
  • Non-patent Document 9 In the case of measurement of urinary antigens, there is a problem in that false positives occur due to pneumococci that are continuously excreted in urine for a long time after treatment (Non-patent Document 9).
  • Non-patent Document 10 In addition, in the case of infants, there are problems that it is difficult to collect urine and that false positives occur due to the influence of resident pneumococci (Non-patent Document 10). Furthermore, it has been pointed out that the sensitivity of this kit is slightly low (Non-patent Document 11).
  • Non-patent Document 12 More recently developed Streptococcus pneumoniae antigen detection kit (Non-patent Document 12) can be used to detect sputum or nasal or nasopharyngeal swabs, It rapidly detects pneumococcal antigen (C-ps) in otorrhea.
  • This kit is more sensitive than the above-mentioned urinary antigen diagnostic kit, allows clinical samples such as wiping fluid to be used without concentrating, and enables measurement from the middle ear fluid, which has been difficult in the past. obtain. Also, unlike urine samples, sample collection from infants is easy. However, the sensitivity of some specimens such as those derived from the middle ear and the sinuses is still insufficient with this kit, and the development of a more sensitive detection method is desired.
  • Non-Patent Documents 13 to 15 reports of detecting bacteria containing pneumococcal antigens by immunological detection using anti-F-antigen antibodies (Non-Patent Documents 13 to 15), but these methods cause cross-reactions between bacterial species. There was a problem in terms of accuracy, such as the risk of false negatives.
  • An object of the present invention is to provide an immunological detection method and an antibody therefor that enable detection or quantification of a pneumococcal antigen from a biological specimen in a simple, rapid and highly sensitive manner.
  • the present inventors examined a method that enables detection or quantification of pneumococcal antigen with higher sensitivity.
  • a method that enables detection or quantification of pneumococcal antigen with higher sensitivity As a result, among the pneumococcal polysaccharide antigens, focusing on pneumococcal F-antigen, which was not actually used for the detection of pneumococcal antigen, an antibody that specifically recognizes this was prepared.
  • an antibody that specifically recognizes this was prepared.
  • the pneumococcal antigen in a biological specimen can be measured with higher sensitivity, easier and faster than conventional methods, and the present invention has been completed.
  • the present invention provides an antibody that specifically recognizes Streptococcus pneumoniae F-antigen.
  • the present invention also provides a method for detecting or quantifying pneumococcal antigen, which comprises detecting or quantifying pneumococcal F-antigen in a biological sample by an immunological assay using the antibody.
  • the present invention provides a pneumococcal antigen detection kit containing the antibody.
  • a novel antibody that specifically recognizes Streptococcus pneumoniae F-antigen is provided. Also provided is a method for conveniently and rapidly detecting or quantifying pneumococcal antigen in a biological sample using an immunological measurement method using the antibody. According to the method of the present invention, the pneumococcal antigen can be detected or quantified with higher sensitivity than before, so that not only urine, sputum, nasal cavity, or nasopharyngeal swabs, but also higher detection sensitivity than before can be obtained. Even in the required specimens such as the middle ear and sinuses, a reliable measurement result can be obtained without requiring the specimen concentration operation.
  • Streptococcus pneumoniae is a pathogenic fungus such as meningitis, otitis media, and sepsis
  • the method of the present invention is clinically useful in that it can improve the accuracy and time required for the identification of the pathogenic bacteria of these diseases. Have sex.
  • Reactivity of antisera (No. 1 to 11) derived from five rabbits diluted 10,000 times to F-antigen solid phase plate (F-Ag) and BSA solid phase plate (BSA). Evaluation of ELISA measurement system.
  • Sensitivity evaluation of ELISA measurement system by measuring pneumococcal culture (ATCC 49619) extract.
  • C-ps ELISA Sandwich ELISA measuring system using anti-C-ps polyclonal antibody
  • F-Ag ELISA Sandwich ELISA measuring system using anti-F-antigen polyclonal antibody.
  • Specificity evaluation of the antibody of the present invention Reaction specificity of anti-sera-derived anti-F-antigen polyclonal antibody (No. 1 to 11) obtained in Example 1 and known anti-F-antigen antibody (HAS).
  • HAS anti-F-antigen antibody
  • Specificity evaluation of an ELISA measurement system using the antibody of the present invention Reactivity to the cells shown in Table 1.
  • C Composition of the laminated strip.
  • D Plastic case containing a strip. Sensitivity evaluation and measurement mode of immunochromatography for F-antigen detection. A: Measurement mode using a sample solution.
  • B Immunochromatography using purified F-antigen-like antigens of various concentrations as specimens.
  • C Immunochromatography using extracts of pneumococcal cultures (ATCC 49619) having various bacterial cell concentrations as specimens.
  • the inventors of the present invention have made a new focus on F-antigen, which has not been used in conventional pneumococcal antigen detection kits, and produced anti-F-antigen antibodies.
  • the obtained anti-F-antigen antibody of the present invention is surprisingly different from the conventional anti-F-antigen monoclonal antibody, and does not substantially cross Haemophilus influenzae (FIG. 4).
  • the ELISA system also showed little cross-reactivity against a variety of other bacterial species including Haemophilus influenzae (FIG. 5).
  • the anti-F of the present invention -Antigen antibody did not react substantially with C-ps (FIG. 2). That is, the anti-F-antigen antibody of the present invention is a novel antibody that is highly F-antigen-specific and recognizes a polysaccharide part, which is completely different from conventional anti-F-antigen antibodies and anti-C-ps antibodies. . Furthermore, when the sensitivity of the pneumococcal antigen measurement system using the anti-F-antigen antibody of the present invention was measured, it was remarkably highly sensitive to the same specimen as compared to the measurement system using the C-ps antibody. ( Figure 3).
  • the anti-F-antigen antibody of the present invention can be obtained by the method shown in Reference Examples described later.
  • F-antigen is prepared by a known method (for example, Poxton et al., Biochem. J. 175: 1033-1042 (1978)).
  • the prepared F-antigen can be used as an immunogen as it is.
  • the prepared F-antigen is used as an immunogen after coupling with a carrier protein according to a known method (eg, maleimide method, pyridyl disulfide method, etc.).
  • An anti-F-antigen antibody can be obtained by a known method using the obtained immunogen.
  • an anti-F-antigen antibody having higher specificity against pneumococci without cross-reactivity with Haemophilus influenzae can be obtained.
  • the carrier protein used for coupling examples include, but are not limited to, BSA (Bovine Serum Albumin), KLH (Keyhole Limeto Hemocyanin), OVA (Ovalbumin), Ascaris extract (roundworm extract). What is necessary is just to use normally.
  • the crosslinking agent for coupling the carrier protein and F-antigen is not particularly limited as long as it is usually used for linking proteins or peptides. Of these, heterobivalent reaction reagents that crosslink SH groups and amino groups are preferred. Specific examples include m-maleimidobenzoyl-N-hydroxysuccinimide (MBS), N- (4-maleimidobutyryloxy) succinimide (GMBS).
  • the antibody of the present invention may be a monoclonal antibody or a polyclonal antibody as long as it has anti-F-antigen responsiveness, and further includes an antibody having an amino acid sequence substantially the same as these.
  • the antibodies of the present invention also include whole molecules of antibodies, recombinants thereof and fragments or modifications thereof, as well as bivalent and monovalent antibodies.
  • the monoclonal antibody immunizes the immunogen subcutaneously, abdominally or in the muscle of a mouse or rat as it is or with an adjuvant such as Freund, to produce a hybridoma of immune related cells and myeloma cells of the immunized individual, It is produced by selecting a hybridoma that produces a specific antibody of interest from among them.
  • an antigen in an amount of 0.1 to 100 ⁇ g / body, or an antigen in an amount of 0.1 to 100 ⁇ g / body, preferably 1 to 10 ⁇ g / body as an absolute amount of a carrier protein used for coupling is used. In other words, it is performed once to several times every other week.
  • Polyclonal antibodies are prepared by immunizing the above immunogen with an adjuvant such as Freund under the skin of a rabbit or goat. Immunization is performed using, for example, an antigen in an amount of 10 to 500 ⁇ g / body, or an antigen in an amount of 0.1 to 1000 ⁇ g / body, preferably 10 to 500 ⁇ g / body, as the absolute amount of carrier protein used for coupling. It is performed once to several times every other week. By collecting blood from the immunized individual and using a known method such as affinity purification using Protein A or the like or an ion exchange resin, an IgG fraction can be obtained. If necessary, other purification operations such as gel filtration purification may be performed in combination.
  • an adjuvant such as Freund under the skin of a rabbit or goat. Immunization is performed using, for example, an antigen in an amount of 10 to 500 ⁇ g / body, or an antigen in an amount of 0.1 to 1000 ⁇ g / body, preferably 10 to 500 ⁇ g / body, as
  • Antibodies having substantially the same amino acid sequence means one or a plurality (for example, 1 to 30, preferably 1 to 3) of the amino acid sequence of the original antibody as long as it has anti-F-antigen responsiveness.
  • An antibody comprising an amino acid sequence in which 20 amino acids, more preferably 1-10, and even more preferably 1-5 amino acids are deleted, substituted, inserted or added. Techniques for substituting, deleting, inserting or adding one or a plurality of amino acid sequences in a specific amino acid sequence are known, and various methods such as site-directed mutagenesis can be used.
  • Antibodies having substantially the same amino acid sequence also means that the antibody has 80% or more sequence identity with the amino acid sequence of the original antibody, preferably 85% or more as long as it has anti-F-antigen responsiveness. Examples include antibodies having sequence identity, more preferably 90% or more sequence identity, and still more preferably 95% or more sequence identity. Amino sequence identity is calculated, for example, by the Lippman-Pearson method (Lipman-Pearson method; Science, 227, 1435 (1985)). Specifically, using the homology analysis (Search Homology) program of genetic information processing software Genetyx-Win (Ver. 5.1.1; software development), the unit size to compare (ktup) should be set to 2. Is calculated by
  • Antibody fragments include Fab, F (ab ′) 2 , Fv, Fab / c, or single chain Fv (scFv). These antibody fragments can be obtained by treating the antibody with an enzyme such as papain or pepsin, or by constructing genes encoding these fragments and expressing them in any host cell (for example, Co., MS et al., J. Immunol. (1994) 152, 2968-2976, Better, M. & Horwitz, AH Methods in Enzymology (1989) 178, 476-496, Academic Press, Inc. , Pureckthun, A. & Skerra, A.
  • ScFv can be obtained by linking the H chain V region and L chain V region of an antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. US A. (1988) 85, 5879-5883).
  • a gene encoding such a connecting peptide may be constructed and expressed in any host cell.
  • An antibody modification product can be obtained by chemically modifying an antibody.
  • a recombinant antibody can be produced by expressing an antibody gene having an arbitrary mutation in a host cell. Methods for obtaining antibody recombinants and antibody modifications are well known in the art.
  • the present invention also provides a method for detecting or quantifying pneumococcal antigens, comprising detecting or quantifying pneumococcal F-antigen in a biological sample by an immunological assay using the anti-F-antigen antibody of the present invention.
  • a quantitative method Since the detection method of the present invention can detect pneumococcal antigens simply, rapidly and with high sensitivity, it enables rapid and accurate diagnosis. Further, by using the quantification method of the present invention, it is possible to easily, quickly, and accurately determine the effect of a drug on a disease caused by pneumococci. Thus, both of these methods contribute to the early selection of appropriate treatments.
  • the biological specimen used in the measurement method of the present invention is not particularly limited.
  • a biological tissue, organ or body fluid for example, sputum, nasal cavity or nasopharyngeal swab, middle ear reservoir, Specimens derived from otorrhea, sinus fluid, cerebrospinal fluid, urine, blood, lymph, etc.
  • the specimen is derived from sputum, nasal cavity or nasopharyngeal swab, middle ear fluid, ear leakage, sinus fluid, cerebrospinal fluid, urine, blood, lymph.
  • the specimen may be subjected to normal pretreatment such as surfactant, acid, alkali treatment, extraction by heating, concentration, dilution and the like, if necessary.
  • the method of the present invention has higher sensitivity than the conventional method, sufficient measurement sensitivity could not be obtained by the conventional method such as middle ear fluid, ear leakage, sinus fluid, cerebrospinal fluid, blood-derived specimen, etc.
  • a specimen is also a preferred embodiment of the method of the present invention.
  • Streptococcus pneumoniae is a causative bacterium such as meningitis, otitis media, septicemia, etc., so middle ear fluid, ear leakage, sinus fluid, cerebrospinal fluid, blood-derived specimens should be measured by the method of the present invention.
  • the pathogenic bacteria of these diseases can be identified with higher accuracy.
  • any immunoassay known in the art can be used.
  • Illustrative examples include radioimmunoassay (RIA), enzyme immunoassay (EIA) such as ELISA, latex agglutination (LTIA), and immunochromatography.
  • RIA radioimmunoassay
  • EIA enzyme immunoassay
  • ELISA ELISA
  • LTIA latex agglutination
  • immunochromatography Use of the sandwich method is preferable from the viewpoint of improvement in detection sensitivity.
  • immunochromatography is preferable from the viewpoint of simplicity and speed.
  • Examples of the label used in the immunological measurement include any label used in the art.
  • enzymes such as horseradish peroxidase (HRP), alkaline phosphatase, ⁇ -galactosidase, radioisotopes (RI) such as 125 I, 32 P, 14 C, 35 S or 3 H, FITC, tetramethylrhodamine isocyanate
  • fluorescent materials such as chemiluminescence, and visualization materials such as gold colloid and colored latex particles.
  • F-antigen-like antigen F-antigen was prepared with reference to the method of Poxton et al. (Biochem. J. 175: 1033-1042 (1978)).
  • pneumococci were cultured using sheep blood agar medium or brain heart infusion liquid medium, and pneumococcal pellets were collected by scraping or centrifugation. The collected pellet was suspended in an appropriate amount of purified water and then sonicated. After the heating treatment, the pellet was collected by centrifugation. Suspension in purified water, ultrasonic crushing, and centrifugation were repeated several times to sufficiently remove water-soluble components.
  • the obtained water-insoluble pellet was added to boiling SDS, adjusted to a final concentration of 2.5% SDS, and then stirred at room temperature for several hours. After centrifugation, the pellet was washed with water. Centrifugation and water washing were repeated several times to recover insoluble components. The insoluble component was stirred as a 10% final concentration TCA solution for several hours or more under refrigeration. After centrifugation, the supernatant was collected, TCA was removed with diethyl ether or the like, and dialyzed against purified water. A white powder was obtained after lyophilization of this solution. This white powder was considered to be a mixture of F-antigen and nucleic acid. However, since nucleic acid has no immunogenicity, this powder was used as an antigen for preparing anti-F-antigen antibody (F-antigen-like antigen). Used in the process.
  • Example 1 Production of anti-F-antigen antibody
  • Example 2 Production of anti-F-antigen antibody
  • the immunization amount is 10 to 500 ⁇ g / body when immunized with F-antigen alone, and 0.1 to 1000 ⁇ g / body as the absolute amount of carrier protein used for coupling when coupled with a carrier protein, preferably 10 Using .about.500 .mu.g / body, it was performed once to several times every other week.
  • a part of the antiserum was collected and the reactivity with the antigen used for immunization was confirmed, and then a large amount of blood or a whole blood was collected.
  • large-scale blood collection large-scale blood collection was performed several times within a range that does not burden the individual while continuing immunization.
  • the obtained whole blood was centrifuged and stored frozen as antiserum.
  • the antiserum was thawed in an appropriate amount and purified by affinity purification using Protein A or the like, ion exchange resin or the like to obtain an IgG fraction. Moreover, gel filtration purification was combined as needed.
  • the immunogen obtained in Reference Example 1 is immunized as it is, subcutaneously, intraperitoneally or intramuscularly in mice or rats, or with adjuvant such as Freund.
  • the immunization amount is 0.1 to 100 ⁇ g / body when immunized with F-antigen alone, and 0.1 to 100 ⁇ g / body as the absolute amount of carrier protein used for coupling when coupled with a carrier protein. 1-10 ⁇ g / body is used, and immunization is performed once to several times every other week.
  • the spleen, thymus and lymph nodes were removed, and the immune-related cells obtained therefrom and a mouse myeloma cell line such as P3U1 were polyethylene glycol.
  • the hybridoma is prepared by fusing by a known method such as the method. From the prepared hybridomas, a hybridoma that reacts with the target antigen is selected by a limiting dilution method.
  • the monoclonal antibody is purified from the culture supernatant or ascites of the selected hybridoma by affinity purification using protein A or the like, ion exchange resin or the like. Moreover, it carries out combining gel filtration refinement
  • Example 2 titer of anti-F-antigen antibody
  • Antiserum obtained from 11 rabbits prepared in Example 1 No. 1 to No. 5: 5 immunized antigens with KLH as carrier protein and crosslinked with sulfo-SMCC, No. 6 to No. 9) : Four immunized antigens cross-linked with sulfo-KMUS using Ascaris extract as a carrier protein, No. 10, 11: Two immunized with F-antigen alone, appropriately diluted (No. 1-5: 50, 000 times, No. 6 to 9: 50,000 times, No. 10, 11: 1,000 times) and then reacted with F-antigen-like antigen-immobilized plate to evaluate the titer of antiserum.
  • Example 3 Antigen reactivity of sandwich ELISA using anti-F-antigen antibody
  • Example 3 Antigen reactivity of sandwich ELISA using anti-F-antigen antibody
  • an IgG fraction was obtained by Protein A purification and gel filtration purification, and then a measurement system by sandwich ELISA using these polyclonal antibodies was constructed and its performance was evaluated.
  • No. Samples (0.041 to 10 ng / mL) containing F-antigen-like antigen or C-ps were added to a solid phase plate on which purified antibodies derived from 5 sera were fixed, and reacted with antibodies.
  • the plate was washed and then biotinylated No.
  • HRP horseradish peroxidase
  • the anti-F-antigen antibody of the present invention specifically recognizes only F-antigen. Further, since the anti-F-antigen antibody of the present invention does not show any cross-reactivity with C-ps (FIG. 2), it is a novel one that is completely different from the conventionally used anti-C-ps antibody. Was suggested.
  • Example 4 Bacterial reactivity of sandwich ELISA using anti-F-antigen antibody
  • the reactivity of the two types of sandwich ELISA measurement systems prepared in Example 3 to the pneumococcal cell extract was examined.
  • As the bacterial cell extract a solution obtained by crushing pneumococci obtained by culture (ATCC 49619) using a surfactant or ultrasonic waves was used.
  • the measurement system using the anti-F-antigen antibody of the present invention is 100 times more sensitive than the measurement system using the anti-C-ps antibody, and the pneumococcal antigen is extracted from the pneumococcal cell extract.
  • the measurement system using the anti-F-antigen antibody of the present invention is 100 times more sensitive than the measurement system using the anti-C-ps antibody, and the pneumococcal antigen is extracted from the pneumococcal cell extract.
  • Example 5 Cell specificity of sandwich ELISA using anti-F-antigen antibody
  • anti-F-antigen antibodies and F-antigen detection systems Kolberg et al., Microbial Pathogenesis 22: 321-329 (1997) or Stuartz et al., J. Clin. Microbiol. 36: 2346-2348 (1998)
  • Is used as an epitope Is used as an epitope. Therefore, it is suggested that these antibodies and detection systems have a drawback of having strong cross-reactivity with C-ps and Haemophilus influenzae in addition to F-antigen. Therefore, the cross-reactivity between the bacterial species of the sandwich ELISA measurement system using the anti-F-Antigen polyclonal antibody of the present invention derived from the antiserum (No.
  • Example 1 After crossing sonicated cultured cells reactive compared pneumococcus (ATCC49619) and Haemophilus influenzae (Type B, ATCC31441) between Haemophilus influenzae, commercial protein assay kit (Bicinchoninic acid method: BCA measurement kit (Pierce), and the protein was quantified. After dilution with D-PBS, the protein was immobilized on an ELISA plate at a concentration of 1.0 ⁇ g / mL overnight. After blocking by a general method, each antiserum prepared in Example 1 diluted appropriately (No. 1 to 5: 50,000 times, No. 6 to 9: 50,000 times, No. 10, 11: 1, 000 times) or the HAAS antibody dilution (125 times).
  • No. 1 obtained by immunization with F-antigen single antigen.
  • the HAS antibody having epitopes 10 and 11 and phosphocholine as an epitope reacted with both pneumococcal disruption antigen and Haemophilus influenzae disruption antigen.
  • antiserum No. obtained by immunization with the coupling antigen.
  • the antiserum obtained using F-antigen antigen that is not coupled to a carrier protein as an immunogen contains an antibody having phosphorylcholine as an epitope similar to HAS antibody.
  • the anti-F-antigen antibody that recognizes the polysaccharide moiety of the present invention was highly pneumococcal specific as compared with the conventionally known anti-F-antigen antibody having phosphorylcholine as an epitope. Furthermore, since the anti-F-antigen antibody of the present invention has no reactivity with Haemophilus influenzae that is susceptible to clinical infection with pneumococci clinically, it is useful for clinical tests in that it is not affected by Haemophilus influenzae. It is.
  • Immunochromatography can be performed according to a general method.
  • a configuration such as a strip as shown in FIG. 6 can be used.
  • the configuration includes a sample apply portion (sample pad) at one end on a substrate such as a plastic mount, followed by a portion where a labeled anti-F-Antigen antibody is held dry (conjugate pad), a nitrocellulose portion, and A portion (absorbing pad) for absorbing excess sample is provided. If a solution of labeled anti-F-antigen antibody is absorbed from the sample pad along with the sample, a conjugate pad is not necessary.
  • a porous material for example, filter paper
  • glass fiber for example, cellulose or cotton, or a mixture thereof
  • nitrocellulose has a pore size of 1.0 to 20 ⁇ m ( The preferred range is 5.0-15.0 ⁇ m.
  • Nitrocellulose is coated with the purified anti-F-antigen polyclonal antibody described above at a concentration of 0.1 to 10 mg / ml (preferably 0.2 to 5 mg / mL) (test line).
  • a goat or mouse IgG having anti-rabbit IgG activity is applied at a position of 0.1 to 10 mg / ml (control line).
  • blocking is performed with protein or polymer.
  • proteins such as skim milk, BSA, casein, and gelatin, and polymers such as polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) can be used.
  • a gold colloid having a size of 20 to 150 nm (preferably 30 to 100 nm) is desirable, and colored Latex particles and other noble metal colloids can also be used.
  • These labels are bound to the antibody by an appropriate method such as direct adsorption to colloids or Latex particles, covalent bond via other proteins, and further covalent bond via a functional group on Latex.
  • proteins such as skim milk, BSA, casein, and gelatin, and polymers such as PVA, PVP, and PEG can be used as in nitrocellulose.
  • the labeled anti-F-antigen polyclonal antibody prepared by the above method was impregnated with the porous material described above together with proteins such as skim milk, BSA, casein, gelatin, polymers such as PVA, PVP, PEG, and sugars. Later, it is dried to form a conjugate pad.
  • the immunochromatographic strip assembled by bonding this conjugate pad, sample pad, absorbent pad and nitrocellulose prepared as described above to the substrate can be used as a single strip by placing it in a plastic case or by attaching a laminate seal. (FIGS. 6C and D).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 簡便、迅速且つ高感度に生体由来検体からの肺炎球菌抗原の検出又は定量を可能にする、免疫学的検出方法及びそのための抗体の提供。本発明は、肺炎球菌F-antigenを特異的に認識する抗体を提供する。本発明はまた、上記抗体を用いた免疫学的測定法により、生体由来検体中の肺炎球菌F-antigenを検出又は定量することを特徴とする、肺炎球菌抗原の検出又は定量方法を提供する。本発明はまた、上記抗体を含有する、肺炎球菌抗原検出キットを提供する。

Description

肺炎球菌検出方法
 本発明は、生体中の肺炎球菌抗原を検出又は定量するための、免疫学的測定方法に関する。
 肺炎球菌(Streptococcus pneumoniae)は市中肺炎や下気道感染症の原因菌として最も検出頻度の高い菌であり、日本だけではなく全世界においても罹患率、死亡率の高い原因菌の一つである。肺炎球菌感染症は、頻度が高いだけではなく、重症化しやすいため、治療開始時の適切な抗菌薬選択が重要である。また、感染症治療の原則からみても、原因菌をできる限り早期に確定することは、的確な治療法を早期に選択することができるため、予後の改善、医療コストの削減、耐性菌発現防止につながることから、重要である。これらの背景から、肺炎球菌由来抗原を感染早期の段階で、迅速に検出する診断薬が求められている。
 肺炎球菌の構造については、Sorensen等により詳細が報告されている(非特許文献1)。菌の最も外側には莢膜(capsular)が位置し、莢膜には莢膜多糖と呼ばれる多糖抗原が配位する。この莢膜多糖の構造の違いに基づく、数十種類以上の血清型が報告されている。一方、莢膜の内側には細胞壁(Cell wall)及び細胞膜(Plasma membrane)が順次位置しており、細胞壁にはC-polysaccharide(C-ps)が、また細胞膜にはF-antigenと呼ばれるテイコ酸又はリポテイコ酸が、それぞれ配位している。C-psは全ての肺炎球菌で保存されている共通抗原として知られており、またF-antigenの多糖部分はC-psと同じ糖の配列を有することが報告されている。
 免疫測定法を利用した肺炎球菌の抗原検出方法としては、従来、抗C-ps抗体を用いたELISAにより喀痰中のC-ps抗原を検出する方法(非特許文献2、非特許文献3)や、莢膜多糖を対象とした免疫電気泳動法により血清中、尿中の抗原を検出する方法(非特許文献4、非特許文献5)が報告されている。
 また、既存の肺炎球菌検出キットとしては、古くは、ラテックス凝集法により、髄液、血清、尿中の肺炎球菌抗原を検出するキットが用いられていた。この方法は、莢膜多糖等の多糖部分を検出すると考えられる(非特許文献6、非特許文献7)。しかし、ラテックス凝集法を用いたキットは、操作の煩雑さや感度の問題から、現在はほとんど使用されていない。
 現在では、より簡便な検出法が用いられている。Binax Inc.の尿中抗原迅速検出キット(Binax NOW(登録商標)Streptococcus pneumoniae Urinary antigen Test)は、イムノクロマトグラフィー法により、尿中のC-psを検出する(特許文献1)。この方法は、尿中抗原を検出するため非侵襲的であり、測定時間も15分程度と迅速である(非特許文献8)。しかし、尿中抗原の測定の場合、肺炎球菌が治療後も長期に渡って尿中に排出され続けることにより、偽陽性が生じるという問題がある(非特許文献9)。また、乳幼児の場合、採尿が困難であること、及び常在性の肺炎球菌の影響による偽陽性が生じるという問題もある(非特許文献10)。さらに、このキットについては、感度が若干低いとの指摘もされている(非特許文献11)。
 より最近開発された肺炎球菌抗原検出キット(非特許文献12)は、抗C-psポリクローナル抗体(ウサギ)を用いたイムノクロマトグラフィーにより、喀痰又は鼻腔や上咽頭のぬぐい液、又は中耳貯留液や耳漏中の肺炎球菌抗原(C-ps)を迅速に検出するものである。このキットは、上述の尿中抗原診断キットと比較して高感度であり、ぬぐい液等の臨床検体を濃縮操作なしに利用でき、さらに従来困難であった中耳貯留液からの測定を可能にし得る。また、尿検体と異なり、乳幼児からの検体採取が容易である。しかし、中耳や副鼻腔由来の検体等の一部検体については、このキットでもなお感度は十分とはいえず、さらに高感度な検出方法の開発が望まれる。
 前述のように、肺炎球菌の抗原検出キットとしては、莢膜抗原及びC-psを検出するものが報告されている。このうち、多様性の高い莢膜抗原は、その多様な型に応じた抗体の準備が必要となるため、簡易測定の対象としては適当でない。C-psについても、前述の既存の検出キットの結果を見る限り、さらなる高感度化が必要である。
 一方、F-antigenは、これまでのところ、日常の臨床検査には利用されていない。抗F-antigen抗体を用いた免疫学的検出法により肺炎球菌抗原を含む菌を検出した報告があるが(非特許文献13~15)、これらの方法は、菌種間での交差反応が生じたり偽陰性の危険があるなど、精度の面で問題があった。
先行技術文献
米国特許第6,824,997号
Sorensen,Danish Medical Bulletin 42:47-53(1995) Holmbergら,J.Clin.Microbiol.22:111-115(1985) Sjogrenら,Diagn.Microbiol.Infect.Dis.6:239-248(1987) Coonrodら,J.Lab.Clin.Med.81:778-786(1973) Feiginら,The Journal of Pediatrics 89:773-775(1976) Ajelloら,J.Clin.Microbiol.25:1388-1391(1987) Ballardら,Pediatr.Infect.Dis.J.6:630-634(1987) 小林隆夫ら、感染症学雑誌 第76巻第12号:995-1002(2002) 舘田一博、モダンメディア 第51巻第6号:129-132(2005) 成相昭吉ら、感染症学雑誌 第78巻第1号:18-21(2004) Tzengら,J.Microbiol.Immunol.Infect.39:39-44(2006) 東川幸嗣ら、小児科臨床 58(1):139-143(2005) Kolbergら,Microbial Pathogenesis 22:321-329(1997) Stuertzら,J.Clin.Microbiol.36:2346-2348(1998) Mattieら,J.Antimicrob.Chemother.56:154-159(2005)
 本発明の課題は、簡便、迅速且つ高感度に、生体由来検体からの肺炎球菌抗原の検出又は定量を可能にする免疫学的検出方法及びそのための抗体を提供することにある。
 本発明者らは、より高感度に肺炎球菌抗原の検出又は定量を可能にする方法について検討した。その結果、肺炎球菌の多糖抗原のうち、従来肺炎球菌抗原の検出に実際上用いられていなかった肺炎球菌F-antigenに着目し、これを特異的に認識する抗体を作製し、そしてこの抗体を用いた免疫学的測定方法を利用することで、生体由来検体中の肺炎球菌抗原を従来の方法よりも高感度で、簡便且つ迅速に測定できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、肺炎球菌F-antigenを特異的に認識する抗体を提供する。また、本発明は、当該抗体を用いた免疫学的測定法により、生体由来検体中の肺炎球菌F-antigenを検出又は定量することを特徴とする、肺炎球菌抗原の検出又は定量方法を提供する。さらに本発明は、当該抗体を含有する、肺炎球菌抗原検出キットを提供する。
 本発明によれば、肺炎球菌F-antigenを特異的に認識する新規抗体が提供される。また、当該抗体を用いた免疫学的測定方法を利用した、生体由来検体中の肺炎球菌抗原を簡便且つ迅速に検出又は定量する方法が提供される。本発明の方法によれば、肺炎球菌抗原を従来よりも高感度に検出又は定量することが可能となるため、尿、喀痰や鼻腔若しくは上咽頭ぬぐい液のみならず、従来よりも高い検出感度を要求する中耳や副鼻腔由来の検体等においても、検体の濃縮操作を要さずに、信頼性のある測定結果を得ることができる。さらに、肺炎球菌は髄膜炎、中耳炎、敗血症等の起炎菌となることから、本発明の方法は、これらの疾患の起炎菌同定の精度及び所要時間を向上させ得るという、臨床的有用性を有する。
10,000倍希釈した5羽のウサギ由来の抗血清(No.1~11)のF-antigen固相プレート(F-Ag)およびBSA固相プレート(BSA)への反応性。 ELISA測定系の評価。A:抗F-antigenポリクローナル抗体を用いたサンドイッチELISA測定系。B:抗C-psポリクローナル抗体を用いたサンドイッチELISA測定系。F-Ag;F-antigen様抗原含有サンプル、C-ps;C-ps抗原含有サンプル。 肺炎球菌培養株(ATCC49619)抽出液の測定による、ELISA測定系感度評価。C-ps ELISA:抗C-psポリクローナル抗体を用いたサンドイッチELISA測定系、F-Ag ELISA:抗F-antigenポリクローナル抗体を用いたサンドイッチELISA測定系。 本発明の抗体の特異性評価。実施例1で得られた抗血清由来の抗F-antigenポリクローナル抗体(No.1~11)、及び公知の抗F-antigen抗体(HAS)の反応特異性。 本発明の抗体を用いたELISA測定系の特異性評価。表1に示す菌体に対する反応性。 イムノクロマトストリップの例示的構成。A:使用前のストリップ。ニトロセルロース部分にラインは確認されない。B:使用後のストリップ。陰性であれば1本のライン(上段)、陽性であれば2本のライン(下段)が確認できる。C:ラミネート加工されたストリップの構成。D:ストリップを収めたプラスティックケース。 F-antigen検出用イムノクロマトグラフィーの感度評価及び測定態様。A:検体溶液を用いた測定態様。B:種々の濃度の精製F-antigen様抗原を検体とするイムノクロマトグラフィー。C:種々の菌体濃度の肺炎球菌培養株(ATCC49619)抽出液を検体とするイムノクロマトグラフィー。
発明の詳細な説明
 本発明者らは、従来の肺炎球菌抗原検出キットでは用いられていなかったF-antigenに新たに着目し、抗F-antigen抗体の作製を行った。得られた本発明の抗F-antigen抗体は、驚くべきことに、従来の抗F-antigenモノクローナル抗体と異なりHaemophilus influenzaeには実質的に交差性を示さず(図4)、また本抗体により作製したELISA系も、Haemophilus influenzaeを含む他の多様な菌種に対してほとんど交差反応を示さなかった(図5)。更に、F-antigenとC-psとが共通の多糖構造を有するとのこれまでの報告(例えば、Sorensen,Danish Medical Bulletin 42:47-53(1995))にもかかわらず、本発明の抗F-antigen抗体は、C-psと実質的に反応しなかった(図2)。すなわち、本発明の抗F-antigen抗体は、従来の抗F-antigen抗体や抗C-ps抗体とは全く異なる、高度にF-antigen特異的であり、多糖類部分を認識する新規抗体である。さらに、本発明の抗F-antigen抗体を用いた肺炎球菌抗原測定系の感度を測定したところ、C-ps抗体を用いた測定系と比較して、同じ検体に対して顕著に高感度であることがわかった(図3)。
 本発明の抗F-antigen抗体は、後述の参考例に示される方法で得ることができる。まず、公知の方法(例えば、Poxtonら,Biochem.J.175:1033-1042(1978))によりF-antigenを調製する。調製されたF-antigenは、そのまま免疫原として使用することができる。好ましくは、調製されたF-antigenを、公知の方法(例えば、マレイミド法、ピリジルジスルフィド法等)に従ってキャリアー蛋白質とカップリングした後、免疫原として使用する。得られた免疫原を用いて、公知の方法により抗F-antigen抗体を得ることができる。カップリングした抗原を免疫原とすることにより、Haemophilus influenzaeとの交差反応性のない、より肺炎球菌に対する特異性の高い抗F-antigen抗体を得ることができる。
 カップリングに使用されるキャリアー蛋白質としては、例えば、BSA(Bovine Serum Albumin)、KLH(Keyhole Limpet Hemocyanin)、OVA(Ovalbumin)、Ascaris抽出物(回虫粗抽出物)等が挙げられるが、これらに限定されず、通常使用されるものであればよい。キャリアー蛋白質とF-antigenとをカップリングするための架橋剤としては、蛋白質又はペプチド同士の連結に通常使用されるものであれば特に限定されない。このうち、SH基とアミノ基を架橋するヘテロ二価反応試薬が好ましく、具体例としては、m-マレイミドベンゾイル-N-ヒドロキシスクシンイミド(MBS)、N-(4-マレイミドブチリルオキシ)スクシンイミド(GMBS)、N-(6-マレイミドカプロイルオキシ)スクシンイミド(EMCS)、N-(8-マレイミドカプリルオキシ)スクシンイミド(HMCS)、N-(11-マレイミドウンデカノイルオキシ)スクシンイミド(KMUS)、N-((4-(2-マレイミドエトキシ)スクシニル)オキシ)スクシンイミド(MESS)、N-スクシンイミジル-4-(N-マレイミドメチル)-シクロヘキサン-1-カルボキシレート(SMCC)、m-マレイミドベンゾイル-N-ヒドロキシスルホスクシンイミド(sulfo-MBS)、N-(4-マレイミドブチリルオキシ)スルホスクシンイミド(sulfo-GMBS)、N-(6-マレイミドカプロイルオキシ)スルホスクシンイミド(sulfo-EMCS)、N-(8-マレイミドカプリルオキシ)スルホスクシンイミド(sulfo-HMCS)、N-(11-マレイミドウンデカノイルオキシ)スルホスクシンイミド(sulfo-KMUS)、スルホスクシンイミジル-4-(N-マレイミドメチル)-シクロヘキサン-1-カルボキシレート(sulfo-SMCC)等が挙げられる。
 本発明の抗体は、抗F-antigen応答性を有する限り、モノクローナル抗体であってもポリクローナル抗体であってもよく、さらにこれらと実質的に同一なアミノ酸配列を有する抗体を包含する。本発明の抗体はまた、抗体の全体分子、その組換え体及びそれらの断片若しくは修飾物、ならびに二価抗体及び一価抗体を含む。
 モノクローナル抗体は、上記免疫原を、マウスやラットの皮下、腹腔又は筋肉内に、そのまま又はフロイント等のアジュバンドと共に免疫し、免疫された個体の免疫関連細胞とミエローマ細胞とのハイブリドーマを作製し、その中から目的の特異的抗体を産生するハイブリドーマを選択することによって作製される。免疫は、例えば、0.1~100μg/bodyの量の抗原、あるいはカップリングに使用したキャリアー蛋白質の絶対量として0.1~100μg/body、望ましくは1~10μg/bodyの量の抗原を用いて、隔週で1回から数回程度行われる。
 ポリクローナル抗体は、上記免疫原を、ウサギやヤギの皮下にフロイント等のアジュバンドと共に免疫することで作製される。免疫は、例えば、10~500μg/bodyの量の抗原、あるいはカップリングに使用したキャリアー蛋白質の絶対量として0.1~1000μg/body、望ましくは10~500μg/bodyの量の抗原を用いて、隔週で1回から数回程度行われる。免疫された個体から血液を採取し、Protein A等を用いたアフィニティー精製やイオン交換樹脂等の公知の方法を用いることによって、IgG画分が得られる。必要に応じて、ゲル濾過精製等の他の精製操作を組み合わせて行ってもよい。
 「実質的に同一なアミノ酸配列を有する抗体」とは、抗F-antigen応答性を有する限りにおいて、もとの抗体のアミノ酸配列から1又は複数個(例えば、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列からなる抗体をいう。特定アミノ酸配列において、1又は複数個のアミノ酸配列を置換、欠失、挿入又は付加する技術は公知であり、例えば、部位特異的突然変異誘発などのような各種方法を利用することができる。
 「実質的に同一なアミノ酸配列を有する抗体」としてはまた、抗F-antigen応答性を有する限りにおいて、もとの抗体のアミノ酸配列と、80%以上の配列同一性、好ましくは85%以上の配列同一性、より好ましくは90%以上の配列同一性、さらにより好ましくは95%以上の配列同一性を有する抗体が挙げられる。アミノ配列の同一性は、例えば、リップマン-パーソン法(Lipman-Pearson法;Science,227,1435(1985))によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Win(Ver.5.1.1;ソフトウェア開発)のホモロジー解析(Search Homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 抗体の断片としては、Fab、F(ab’)、Fv、Fab/c、または単鎖Fv(scFv)が挙げられる。これらの抗体断片は、抗体をパパインやペプシン等の酵素で処理するか、またはこれらの断片をコードする遺伝子を構築し、それを任意の宿主細胞中で発現させることで得ることができる(例えば、Co,M.S.et al.,J.Immunol.(1994)152,2968-2976、Better,M.&Horwitz,A.H.Methods in Enzymology(1989)178,476-496,Academic Press,Inc.、Plueckthun,A.&Skerra,A.Methods in Enzymology(1989)178,476-496,Academic Press,Inc.、Lamoyi,E.,Methods in Enzymology(1989)121,652-663、Rousseaux,J.et al.,Methods in Enzymology(1989)121,663-669、Bird,R.E.et al.,TIBTECH(1991)9,132-137参照)。
 scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを介して連結される(Huston,J.S.et al.、Proc.Natl.Acad.Sci.U.S.A.(1988)85,5879-5883)。あるいは、このような連結ペプチドをコードする遺伝子を構築し、任意の宿主細胞中で発現させてもよい。抗体修飾物は、抗体に化学的な修飾を施すことによって得ることができる。抗体の組換え体は、任意の突然変異を起こさせた抗体遺伝子を宿主細胞中で発現させることによって作製することができる。抗体組換え体及び抗体修飾物を得る方法は、当該分野で周知である。
 本発明はまた、本発明の抗F-antigen抗体を用いた免疫学的測定法により、生体由来検体中の肺炎球菌F-antigenを検出又は定量することを特徴とする、肺炎球菌抗原の検出又は定量方法を提供する。本発明の検出方法は、簡便、迅速且つ高感度に肺炎球菌抗原を検出することができるので、迅速且つ的確な診断を可能にする。また、本発明の定量方法を用いることにより、肺炎球菌に起因する疾患に対する薬剤の効果等を、簡便、迅速且つ高精度に判定することができる。よって、これらの方法はいずれも、適切な治療法の早期選択に貢献する。
 本発明の測定方法に用いられる生体由来検体としては、特に限定されるものではないが、例えば、生体由来の組織、器官又は体液(例えば、喀痰、鼻腔若しくは上咽頭ぬぐい液、中耳貯留液、耳漏、副鼻腔貯留液、脳脊髄液、尿、血液、リンパ液等)に由来する検体、及びこれらの培養物由来の検体が挙げられる。好ましくは、検体は、喀痰、鼻腔若しくは上咽頭ぬぐい液、中耳貯留液、耳漏、副鼻腔貯留液、脳脊髄液、尿、血液、リンパ液に由来する。検体は、必要に応じて、界面活性剤や酸、アルカリ処理、加熱等による抽出、濃縮、希釈等の通常の前処理を施され得る。
 本発明の方法は従来法よりも高感度であるため、中耳貯留液、耳漏、副鼻腔貯留液、脳脊髄液、血液由来の検体等の、従来法では十分な測定感度が得られなかった検体を用いることもまた、本発明方法の好ましい態様である。例えば、肺炎球菌は髄膜炎、中耳炎、敗血症等の起炎菌となることから、中耳貯留液、耳漏、副鼻腔貯留液、脳脊髄液、血液由来の検体を本発明の方法で測定すれば、これらの疾患の起炎菌をより高精度に同定することができる。
 本発明の方法で用いられる免疫学的測定法としては、当該分野で公知の任意の免疫測定方法を使用することができる。例示的には、ラジオイムノアツセイ(RIA)、ELISA等のエンザイムイムノアツセイ(EIA)、ラテックス凝集法(LTIA)及びイムノクロマトグラフィーが挙げられる。検出感度の向上の点で、サンドイッチ法の使用が好ましい。また、簡便さ及び迅速さの観点では、イムノクロマトグラフィーが好ましい。イムノクロマトグラフィー法を用いる場合、ベッドサイドや患者来院中の短時間での診断が可能となる。
 上記免疫学的測定において使用される標識としては、当該分野で使用される任意の標識が挙げられる。例示的には、西洋ワサビペルオキシダーゼ(HRP)やアルカリフオスファターゼ、βガラクトシダーゼ等の酵素、125I、32P、14C、35S又はH等のラジオアイソトープ(RI)、FITC、テトラメチルローダミンイソシアネート等の蛍光物質、ケミルミネッセンス等の発光物質、及び金コロイド、着色ラテックス粒子等の可視化物質が挙げられる。さらに、ビオチンで一次標識後、上記標識により標識されたアビジンを用いる増感系や、ジゴキシゲニン等の低分子物質で一次標識後、上記標識により標識された抗体等の当該低分子物質に親和性を有する物質を用いる検出法も挙げられる。
 上記本発明の検出又は定量方法を利用した、肺炎球菌抗原を検出するキットもまた提供される。本発明のキットは、肺炎球菌F-antigenを特異的に認識する抗体を含み得る。また本発明のキットは、免疫測定に使用する他の試薬や材料を含み得る。例えば、本発明のキットは、本発明の抗体とともに、イムノクロマト、ELISA又はラテックス凝集法のための固相(例えば、ストリップ、プレート、ビーズ等)、及び標識物質等の試薬などを含み得る。
 以下に、本発明の実施例を記載するが、本発明はこれらの実施例に限定されるものではない。
(参考例1:抗F-antigen抗体作製用の免疫原の調製)
1)F-antigen様抗原の調製
 Poxtonらの方法(Biochem.J.175:1033-1042(1978))を参考に、F-antigenの調製を行った。まず羊血液寒天培地や、ブレインハートインヒュージョン液体培地を用いて肺炎球菌を培養し、掻き取り法や遠心法により肺炎球菌のペレットを回収した。回収したペレットを、適量の精製水に懸濁後、超音波破砕した。加温処理後、遠心操作によりペレットを回収した。精製水への懸濁、超音波破砕、遠心を数回繰り返し、水溶性成分を十分に除いた。得られた水不溶性のペレットをBoiled SDSに加え、終濃度2.5% SDSに調整後、室温で数時間攪拌した。遠心後、ペレットを水で洗浄した。遠心・水洗浄を数回繰り返し、不溶性成分を回収した。不溶性成分は終濃度10% TCA溶液として冷蔵下で数時間以上攪拌した。遠心後上清を回収し、ジエチルエーテル等でTCAを除いた後、精製水に対して透析した。本溶液を凍結乾燥後、白色の粉末が得られた。この白色粉末は、F-antigenと核酸の混合物と考えられたが、核酸は免疫原性を有しないため、本粉末を抗F-antigen抗体作製用の抗原(F-antigen様抗原)として、後の工程で使用した。
2)F-antigen様抗原の純度評価
 本白色粉末の1mgを採取し超純水1mLに溶解後、市販の蛋白定量キット(Bicinchoninic acid法:BCA測定キット、Pierce社)を用いて蛋白質の混在を評価した。検出感度31.25μg/mL以下であり、蛋白質の混在は極めて低いことが示された。
3)免疫原の調製
 Szuらの報告(Infection and Immunity 54:448-455(1986))を参考に、得られたF-antigen様抗原をキャリアー蛋白質(KLH(カブトガニヘモシアニン)もしくは市販のAscaris抽出物(製造元エル・エス・エル、発売元コスモ・バイオ株式会社))にカップリングした。キャリアー蛋白質とカップリングした抗原及びカップリングなしの抗原(F-antigen単独)を、各々免疫原として使用した。換言すると、以下の手順を行った。
 1:リン酸緩衝液に懸濁したキャリアー蛋白質をジチオスレイトールや2-メルカプトエタノール等のSH基還元剤で処理した。処理後、ゲル濾過や透析等の手法を用いてリン酸緩衝液に置き換えた。
 2:上記操作と並行して、適量のF-antigen様抗原をリン酸緩衝液に溶解した。続いて遊離SHとアミノ基を架橋する二価反応試薬(sulfo-SMCC又はsulfo-KMUS)をF-antigen様抗原1mgに対し0.1~2mg(好ましくは0.2~1mg)の割合で溶解液に添加した。
 3:室温で反応後、透析やゲル濾過等の手法により過剰量の二価反応試薬を除去した。
 4:1の操作により得たSH還元キャリアー蛋白質1mg当たりに、2の操作で得た二価反応試薬処理F-antigen抗原を0.1~10mg(好ましくは0.5~5mg)の範囲で添加した。
 5:冷蔵下で十分な時間反応後、再度透析処理を行った。本溶液をF-antigen抗体作製用の免疫原として使用した。
(実施例1:抗F-antigen抗体の作製)
1)抗F-antigenポリクローナル抗体の作製
 参考例1で得られた免疫原を、ウサギ(n=11)の皮下にフロイント等のアジュバンドと共に免疫した。免疫量は、F-antigen単独で免疫した場合は10~500μg/bodyを、キャリアー蛋白質とカップリングした場合はカップリングに使用したキャリアー蛋白質の絶対量として0.1~1000μg/body、望ましくは10~500μg/bodyを用い、隔週で1回から数回程度行った。抗血清を部分採取し、免疫に用いた抗原に対する反応性を確認した後、大量採血もしくは全採血を行った。大量採血の場合は、免疫を継続しながら、個体に負担の掛からない範囲で数回の大量採血を行った。得られた全血を遠心分離後、抗血清として凍結保管した。抗血清を適量解凍し、Protein A等を用いたアフィニティー精製やイオン交換樹脂等により精製して、IgG画分を得た。また、必要に応じてゲル濾過精製を組み合わせた。
2)抗F-antigenモノクローナル抗体の作製
 参考例1で得られた免疫原をマウス又はラットの皮下、腹腔又は筋肉内にそのまま、もしくはフロイント等のアジュバンドと共に免疫する。免疫量は、F-antigen単独で免疫した場合は0.1~100μg/bodyを、キャリアー蛋白質とカップリングした場合はカップリングに使用したキャリアー蛋白質の絶対量として0.1~100μg/body、望ましくは1~10μg/bodyを用い、隔週で1回から数回程度の免疫を行う。抗血清を部分採取し、免疫に用いた抗原に対する反応性を確認した後、脾臓、胸腺やリンパ節を摘出し、そこから得られた免疫関連細胞とP3U1等のマウスミエローマ細胞株とをポリエチレングリコール法など公知の方法で融合し、ハイブリドーマを作製する。作製されたハイブリドーマの中から、限界希釈法により目的とする抗原に反応するハイブリドーマを選択する。選択されたハイブリドーマの培養上清や腹水からProtein A等を用いたアフィニティー精製やイオン交換樹脂等により、モノクローナル抗体を精製する。また、必要に応じてゲル濾過精製を組み合わせて行う。
(実施例2:抗F-antigen抗体の力価)
 実施例1で作製した11個体のウサギから得られた抗血清(No.1~No.5:KLHをキャリアー蛋白としsulfo-SMCCで架橋した抗原を免疫した5羽、No.6~No.9:Ascaris抽出物をキャリアー蛋白としsulfo-KMUSで架橋した抗原を免疫した4羽、No.10,11:F-antigen単独で免役した2羽)を、適宜希釈(No.1~5:50,000倍、No.6~9:50,000倍、No.10,11:1,000倍)後、F-antigen様抗原固相化プレートに反応させ、抗血清の力価を評価した。結果を図1に示す。11個体全ての抗血清がF-antigen様抗原固相化プレートに強く反応することが確認された。また、本抗血清はコントロールにおいた牛血清アルブミン(BSA)固相化プレートには全く反応しないことも確認された。これらの結果から、上記方法で作製された全ての抗血清は、強い抗F-antigen応答性を示すことが明らかとなった。
(実施例3:抗F-antigen抗体を用いたサンドイッチELISAの抗原反応性)
 実施例1の抗血清のうちNo.1及びNo.5から、Protein A精製及びゲル濾過精製によりIgG画分を得た後、これらのポリクローナル抗体を用いたサンドイッチELISAによる測定系を構築し、その性能を評価した。換言すると、No.5血清由来の精製抗体を固定した固相プレートに、F-antigen様抗原又はC-psを含むサンプル(0.041~10ng/mL)を各々添加し、抗体と反応させた。抗F-antigen抗体を用いた測定系では、プレートを洗浄後、ビオチン標識したNo.1血清由来の精製抗体を添加し、サンプルと反応させた。プレートを再度洗浄し、西洋ワサビペルオキシダーゼ(HRP)標識したストレプトアビジンを加えてビオチンと反応させた。続いて、HRPの発色を吸光度計により測定した。同様の手法により、市販C-psを用いて作製した抗C-psポリクローナル抗体によるサンドイッチ測定系を構築し、HRPの発色を測定した。
 測定された吸光度に基づいて、両測定系の性能を評価した。これまでの報告において、C-psとF-antigenとは共通の多糖構造を有することが示されていた(Sorensen,Danish Medical Bulletin 42:47-53(1995))ことから、両測定系ともにC-psとF-antigenとに交差反応することが予想された。しかし、図2に示すように、本発明の抗F-antigenポリクローナル抗体を用いたサンドイッチELISA測定系は、F-antigen様抗原は検出するがC-psは全く検出しなかった(図2A)。同様に、C-psを用いたサンドイッチELISA測定系は、C-psは検出するがF-antigen様抗原は全く検出しなかった(図2B)。
 これらの結果から、本発明の抗F-antigen抗体が、F-antigenのみを特異的に認識することが示された。また、本発明の抗F-antigen抗体は、C-psとの交差反応を全く示さないことから(図2)、従来使用されてきた抗C-ps抗体とは全く異なる新規なものであることが示唆された。
(実施例4:抗F-antigen抗体を用いたサンドイッチELISAの菌体反応性)
 実施例3で作製した2種類のサンドイッチELISA測定系の、肺炎球菌菌体抽出液に対する反応性を調べた。菌体抽出液には、培養により得た肺炎球菌(ATCC49619)を界面活性剤又は超音波等を用いて破砕した溶液を使用した。図3に示すように、本発明の抗F-antigen抗体を用いた測定系は、抗C-ps抗体を用いた測定系よりも100倍高感度に、肺炎球菌菌体抽出液から肺炎球菌抗原を検出した。このことから、本発明の抗F-antigen抗体を用いたELISA測定系により、従来使用されているC-ps測定系よりも顕著に高感度に、生体由来検体中の肺炎球菌を検出できることが確認された。なお、図2に示すように、精製抗原を測定した場合の感度は両測定系でほぼ同等(0.1ng/mL程度)であることから、生体由来検体での感度差が肺炎球菌における両抗原の発現量の差に起因する可能性が示唆される。
(実施例5:抗F-antigen抗体を用いたサンドイッチELISAの菌体特異性)
 公知の抗F-antigen抗体やF-antigen検出系(Kolbergら,Microbial Pathogenesis 22:321-329(1997)又はStuertzら,J.Clin.Microbiol.36:2346-2348(1998))では、ホスホリルコリン部分をエピトープとして利用する。したがって、これらの抗体や検出系には、F-antigen以外にもC-ps及びHaemophilus influenzae等に強い交差反応性を有するという欠点があることが示唆される。
 そこで、実施例1で得られた抗血清(No.1~11)由来の本発明の抗F-Antigenポリクローナル抗体を用いたサンドイッチELISA測定系の菌種間での交差反応性を調べた。比較のため、ホスホリルコリンをエピトープとするマウスモノクローナル抗体HAS(Statens serum institut,Denmark、参考文献:Infection and immunity 1984;43:876-878,Microbial Pathogenesis 1993;14:299-305)を用いて同様の実験を行った。
1)Haemophilus influenzaeとの間の交差反応性の比較
 肺炎球菌(ATCC49619)及びHaemophilus influenzae(Type B,ATCC31441)の培養菌体を超音波破砕後、市販の蛋白定量キット(Bicinchoninic acid法:BCA測定キット、Pierce社)により蛋白定量を行い、D-PBS希釈後1.0μg/mLの濃度でELISA用プレートに一晩固相化した。一般的手法によりブロッキング後、適宜希釈した実施例1で作製した各抗血清(No.1~5:50,000倍、No.6~9:50,000倍、No.10,11:1,000倍)または、上記HAS抗体の希釈液(125倍)を反応させた。続いて、HRP標識した抗ウサギIgG抗体またはHRP標識した抗マウスIgM抗体により発色させ、HRPの発色を吸光度計により測定した。なお、コントロールプレートとしてBSA固相プレートを使用した。結果を図4に示す。
 F-antigen単独抗原を免疫して得られたNo.10,11の両抗血清、及びホスホコリンをエピトープとするHAS抗体は、肺炎球菌破砕抗原にもHaemophilus influenzae破砕抗原にも反応した。一方、カップリング抗原を免疫して得られた抗血清No.1~No.9では、No.8のみに弱い交差があったものの、Haemophilus influenzaeには反応性を示さず、高度に肺炎球菌特異的であった。したがって、F-antigenをキャリアー蛋白に架橋することで作製される抗原を免疫原として用いて得られた抗体は、HAS抗体のようなHaemophilus influenzaeとの交差反応を起こさないことから、ホスホコリンを認識しない抗F-antigen抗体であることが示
唆される。一方、キャリアー蛋白質とカップリングされていないF-antigen抗原を免疫原として得られた抗血清は、HAS抗体と同様のホスホリルコリンをエピトープとする抗体を含有することが明らかになった。
2)多菌種間での交差反応性の比較
 さらに、多菌種間での交差反応性を調べた。表1の菌を用いる以外、本実施例の1)と同様の方法を用いて、本発明の抗体の反応性を測定した。結果を図5に示す。本発明の抗体は、Stuertzら(Stuertzら,J.Clin.Microbiol.36:2346-2348(1998))の抗体と同様、S.mitisとの交差反応性を有するものの、他の菌種との間には全く交差反応を示さなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明の多糖類部分を認識する抗F-antigen抗体は、従来知られたホスホリルコリンをエピトープとする抗F-antigen抗体と比較して、高度に肺炎球菌特異的であった。さらに、本発明の抗F-antigen抗体は、臨床的に肺炎球菌との混合感染を起こしやすいHaemophilus influenzaeとの反応性を有さないことから、Haemophilus influenzaeによる影響を受けない点で臨床検査に有用である。また、上述の実施例3で示した本発明抗体を用いたELISA測定系の感度(0.041~10ng/mL)は、従来報告されているELISA測定系の感度(例えば上述のStuertzらにおける3.1~50ng/mL)と比較して、顕著に高い(約75倍)。
(参考例2:イムノクロマトグラフィーの構成)
 イムノクロマトグラフィーは、一般的手法に従って行う事ができる。例示的には、図6に示すようなストリップ等の構成を用いることができる。例えば、当該構成は、プラスティック台紙等の基板上の片側末端にサンプルアプライ部分(サンプルパッド)を、続いて標識抗F-Antigen抗体を乾燥保持させた部分(コンジュゲートパッド)、ニトロセルロース部分、および過剰なサンプルを吸収する部分(吸収パッド)を備える。標識抗F-antigen抗体の溶液をサンプルとともにサンプルパッドから吸収させる場合には、コンジュゲートパッドは必要ない。サンプルパッド、コンジュゲートパッド及び吸収パッドとしてはガラス繊維、セルロース若しくはコットン等、又はそれらの混合体から形成される多孔質素材(例えば、濾紙)が望ましく、ニトロセルロースは、ポアサイズ1.0~20μm(好ましくは5.0~15.0μm)のものが望ましい。
 ニトロセルロースには、上記の精製抗F-antigenポリクローナル抗体を0.1~10mg/ml(好ましくは0.2~5mg/mL)の濃度で塗布し(テストライン)、さらに、テストラインと別の位置に抗ウサギIgG活性を有するヤギやマウスのIgG等を0.1~10mg/mlの濃度で塗布する(コントロールライン)。乾燥後、蛋白や高分子等でブロッキングを行う。ブロッキングにはスキムミルク、BSA、カゼイン、ゼラチン等の蛋白質や、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)等の高分子が使用可能である。
 抗体の標識としては、20~150nmのサイズ(好ましくは30~100nm)の金コロイドが望ましく、さらには着色Latex粒子や他の貴金属コロイドも使用可能である。これらの標識は、コロイドやLatex粒子への直接的な吸着や他の蛋白等を介した共有結合、更にLatex上の官能基を介した共有結合等の適切な方法により、抗体に結合させる。標識のブロッキングはニトロセルロース同様にスキムミルク、BSA、カゼイン、ゼラチン等の蛋白質や、PVA、PVP、PEG等の高分子が使用可能である。上記方法により作製した標識抗F-antigenポリクローナル抗体は、スキムミルク、BSA、カゼイン、ゼラチン等の蛋白質や、PVA、PVP、PEG等の高分子および糖類などと共に上記で述べた多孔質素材に含浸させた後に乾燥させて、コンジュゲートパッドとする。このコンジュゲートパッド、サンプルパッド、吸収パッドおよび上記のとおり作製したニトロセルロースを基板に貼り付けて組み立てたイムノクロマトストリップは、プラスティックケース内に納めて、またはラミネートシールを貼ることによってストリップ単体で、使用可能である(図6C及びD)。
(実施例6:抗F-antigen抗体を用いたサンドイッチイムノクロマトグラフィーの性能評価)
 金コロイド標識抗F-antigen抗体を乾燥保持させたコンジュゲートパッドを備えるイムノクロマトストリップを作製した。界面活性剤を含有するリン酸緩衝液等で中耳炎、肺炎および髄膜炎等に由来する浸出液、拭い液、喀痰、血液、髄液、尿等のサンプルを希釈後、その希釈液(検体抽出液)にストリップを挿入し、サンプルを展開した(図7A)。展開開始後15分で、陽性・陰性の判定を目視で行った。結果、F-antigen様抗原が10~0.6ng/mLの範囲でテストライン部位に赤色ラインが確認され、陽性と判断できた。一方、F-antigen様抗原に代えて緩衝液を供した場合にはテストライン部位には赤色ラインが確認できす陰性と判断できた(図7B)。更に同様な手法により、菌量既知の菌体抽出液を同イムノクロマトストリップにて測定した結果、緩衝液だけを流した0濃度では先と同様にテストラインは確認できなかったが、肺炎球菌抽出液では10CFU/mlまでテストラインを確認でき、陽性と判定できた(図7C)。

Claims (6)

  1.  肺炎球菌F-antigenを特異的に認識する抗体。
  2.  Haemophilus influenzae抗原及び肺炎球菌C-ps抗原との交差反応性を実質的に示さない、請求項1記載の抗体。
  3.  請求項1又は2記載の抗体を用いた免疫学的測定法により、生体由来検体中の肺炎球菌F-antigenを検出又は定量することを特徴とする、肺炎球菌抗原の検出又は定量方法。
  4.  前記生体由来検体が、中耳又は副鼻腔由来検体である、請求項3記載の方法。
  5.  請求項1又は2記載の抗体を含有する、肺炎球菌抗原検出キット。
  6.  請求項3記載の方法を行うための、請求項5記載のキット。
PCT/JP2009/001474 2008-03-31 2009-03-31 肺炎球菌検出方法 WO2009122714A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2720039A CA2720039A1 (en) 2008-03-31 2009-03-31 Method for detection of pneumococcus
US12/935,704 US8241857B2 (en) 2008-03-31 2009-03-31 Method for detection of pneumococcus
ES09726757.9T ES2556354T3 (es) 2008-03-31 2009-03-31 Método para la detección de neumococos
JP2010505390A JP5509067B2 (ja) 2008-03-31 2009-03-31 肺炎球菌検出方法
CN200980111519.4A CN101981452B (zh) 2008-03-31 2009-03-31 肺炎球菌检测方法
KR1020107021865A KR101678428B1 (ko) 2008-03-31 2009-03-31 폐렴구군 검출방법
EP09726757.9A EP2261666B1 (en) 2008-03-31 2009-03-31 Method for detection of pneumococcus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-089619 2008-03-31
JP2008089619 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122714A1 true WO2009122714A1 (ja) 2009-10-08

Family

ID=41135117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001474 WO2009122714A1 (ja) 2008-03-31 2009-03-31 肺炎球菌検出方法

Country Status (8)

Country Link
US (1) US8241857B2 (ja)
EP (1) EP2261666B1 (ja)
JP (1) JP5509067B2 (ja)
KR (1) KR101678428B1 (ja)
CN (1) CN101981452B (ja)
CA (1) CA2720039A1 (ja)
ES (1) ES2556354T3 (ja)
WO (1) WO2009122714A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241191A1 (en) * 1998-09-18 2008-10-02 Binax, Inc. Process and materials for the rapid detection of streptococcus pneumoniae employing purified antigen-specific antibodies
JP2013205336A (ja) * 2012-03-29 2013-10-07 Mitsubishi Chemical Medience Corp イムノクロマトグラフ用試験具
US9134303B1 (en) 1998-08-25 2015-09-15 Alere Scarborough, Inc. ICT immunoassay for Legionella pneumophila serogroup 1 antigen employing affinity purified antibodies thereto
WO2020111272A1 (ja) * 2018-11-30 2020-06-04 旭化成株式会社 細菌感染による急性副鼻腔炎の起炎菌の検出方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955843B2 (ja) * 2011-06-30 2016-07-20 積水メディカル株式会社 免疫学的測定方法に用いられるコンジュゲート
CN105319359B (zh) * 2014-08-18 2017-02-08 董俊 人肺炎链球菌量子点免疫层析检测卡及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824997B1 (en) 1998-09-18 2004-11-30 Binax, Inc. Process and materials for the rapid detection of streptococcus pneumoniae employing purified antigen-specific antibodies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222500A (ja) * 1998-02-03 1999-08-17 Unitika Ltd モノクローナル抗体、この抗体を産生するハイブリドーマ、この抗体を用いたd−3−メトキシ−4−ヒドロキシフェニルグリコールの測定方法及び測定用試薬
AU2001288961A1 (en) 2000-09-12 2002-06-18 U.S. Army Medical Research And Materiel Command Lipoteichoic acid immunogenic compositions and methods of making and using thereof
GB0409750D0 (en) * 2004-04-30 2004-06-09 Chiron Srl Integration of meningococcal conjugate vaccination
US20080095777A1 (en) * 2004-09-22 2008-04-24 Glaxosmithkline Biologicals S.A. Immunogenic Composition for Use in Vaccination Against Staphylococcei

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824997B1 (en) 1998-09-18 2004-11-30 Binax, Inc. Process and materials for the rapid detection of streptococcus pneumoniae employing purified antigen-specific antibodies

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
AJELLO ET AL., J. CLIN. MICROBIOL., vol. 25, 1987, pages 1388 - 1391
AKIYOSHI NARIAI ET AL., THE JOURNAL OF THE JAPANESE ASSOCIATION FOR INFECTIOUS DISEASES, vol. 78, no. 1, 2004, pages 18 - 21
BALLARD ET AL., PEDIATR. INFECT. DIS. J., vol. 6, 1987, pages 630 - 634
BETTER, M.; HORWITZ, A. H.: "Methods in Enzymology", vol. 178, 1989, ACADEMIC PRESS, INC., pages: 476 - 496
BIRD, R. E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
CO, M. S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
COONROD ET AL., J. LAB. CLIN. MED, vol. 81, 1973, pages 778 - 786
FEIGIN ET AL., THE JOURNAL OF PEDIATRICS, vol. 89, 1976, pages 773 - 775
HOLMBERG ET AL., J. CLIN. MICROBIOL., vol. 22, 1985, pages 111 - 115
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883
INFECTION AND IMMUNITY, vol. 43, 1984, pages 876 - 878
KAZUHIRO TATEDA, MODERN MEDIA, vol. 51, no. 6, 2005, pages 129 - 132
KOJI HIGASHIKAWA ET AL., JOURNAL OF CLINICAL PEDIATRICS, vol. 58, no. 1, 2005, pages 139 - 143
KOLBERG ET AL., MICROBIAL PATHOGENESIS, vol. 22, 1997, pages 321 - 329
KOLBERG J. ET AL.: "Detection of the phosphorylcholine epitope in streptococci, haemophilus and pathogenic neisseriae by immunoblotting", MICROBIAL PATHOGENESIS, vol. 22, 1997, pages 321 - 329, XP003025677 *
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
MATTIE ET AL., J. ANTIMICROB. CHEMOTHER., vol. 56, 2005, pages 154 - 159
MATTIE H. ET AL.: "Pharmacodynamics of antibiotics with respect to bacterial killing of and release of lipoteichoic acid by Streptococcus pnuemoniae", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 56, 2005, pages 154 - 159, XP003025678 *
MICROBIAL PATHOGENESIS, vol. 14, 1993, pages 299 - 305
PLUECKTHUN, A.; SKERRA, A.: "Methods in Enzymology", vol. 178, 1989, ACADEMIC PRESS, INC., pages: 476 - 496
POXTON ET AL., BIOCHEM. J., vol. 175, 1978, pages 1033 - 1042
ROUSSEAUX, J. ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669
SCIENCE, vol. 227, 1985, pages 1435
See also references of EP2261666A4 *
SJOGREN ET AL., DIAGN. MICROBIOL. INFECT. DIS., vol. 6, 1987, pages 239 - 248
SORENSEN, DANISH MEDICAL BULLETIN, vol. 42, 1995, pages 47 - 53
STUERTZ ET AL., J. CLIN. MICROBIOL., vol. 36, 1998, pages 2346 - 2348
STUERTZ K. ET AL.: "Enzyme Immunoassay Detecting Teichoic and Lipoteichoic Acids versus Cerebrospinal Fluid Culture and latex Agglutination for Diagnosis of Streptococcus pneumoniae Meningitis", JOUR. CLIN. MICROBIOL., vol. 36, no. 8, 1998, pages 2346 - 2348, XP003025676 *
SZU ET AL., INFECTION AND IMMUNITY, vol. 54, 1986, pages 448 - 455
TAKAO KOBAYASHI ET AL., THE JOURNAL OF THE JAPANESE ASSOCIATION FOR INFECTIOUS DISEASES, vol. 76, no. 12, 2002, pages 995 - 1002
TZENG ET AL., J. MICROBIOL. IMMUNOL. INFECT., vol. 39, 2006, pages 39 - 44

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134303B1 (en) 1998-08-25 2015-09-15 Alere Scarborough, Inc. ICT immunoassay for Legionella pneumophila serogroup 1 antigen employing affinity purified antibodies thereto
US9989529B2 (en) 1998-08-25 2018-06-05 Alere Scarborough, Inc. Method for detection of Legionella bacteria employing purified antigen-specific antibodies
US20080241191A1 (en) * 1998-09-18 2008-10-02 Binax, Inc. Process and materials for the rapid detection of streptococcus pneumoniae employing purified antigen-specific antibodies
US9310369B2 (en) 1998-09-18 2016-04-12 Alere Scarborough, Inc. Process and materials for the rapid detection of Streptococcus pneumoniae employing purified antigen-specific antibodies
US9921220B2 (en) 1998-09-18 2018-03-20 Alere Scarborough, Inc. Process and materials for the rapid detection of Streptococcus pneumoniae employing purified antigen-specific antibodies
JP2013205336A (ja) * 2012-03-29 2013-10-07 Mitsubishi Chemical Medience Corp イムノクロマトグラフ用試験具
WO2020111272A1 (ja) * 2018-11-30 2020-06-04 旭化成株式会社 細菌感染による急性副鼻腔炎の起炎菌の検出方法
JPWO2020111272A1 (ja) * 2018-11-30 2021-09-30 旭化成株式会社 細菌感染による急性副鼻腔炎の起炎菌の検出方法

Also Published As

Publication number Publication date
JP5509067B2 (ja) 2014-06-04
KR20100132964A (ko) 2010-12-20
US8241857B2 (en) 2012-08-14
JPWO2009122714A1 (ja) 2011-07-28
EP2261666A4 (en) 2011-04-27
EP2261666A1 (en) 2010-12-15
ES2556354T3 (es) 2016-01-15
CN101981452A (zh) 2011-02-23
KR101678428B1 (ko) 2016-11-22
EP2261666B1 (en) 2015-12-02
US20110020848A1 (en) 2011-01-27
CN101981452B (zh) 2017-05-17
CA2720039A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US10995135B2 (en) Mycoplasma pneumoniae immunological detection method and kit
JP3202772B2 (ja) ヘリコバクターピロリ検出用の抗原調製物
TWI392735B (zh) 口蹄疫融合瘤細胞株、其單株抗體、及包含該單株抗體的elisa檢測試劑及套組
JP5509067B2 (ja) 肺炎球菌検出方法
JP7175147B2 (ja) マイコプラズマ・ニューモニエの免疫学的検出法およびキット
JP7178224B2 (ja) マイコプラズマ・ニューモニエの免疫学的検出法及びキット
JP4268358B2 (ja) 抗体および免疫学的測定方法
JP5204036B2 (ja) 肺炎球菌の検出方法
WO2001081927A1 (fr) Procede de detection du streptococcus sobrinus et anticorps contre ce dernier
JP2017132712A (ja) モノクローナル抗体、検出方法、及び検出装置
JP2001302697A (ja) ポリクローナル抗体及びその製造方法
JP2007300817A (ja) 細菌の検出方法、検出用試薬及び検出用キット。
JP2002275199A (ja) 抗体作製方法及び抗酸菌の免疫学的検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111519.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505390

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2720039

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009726757

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107021865

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12935704

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE