WO2009119848A1 - エッチング方法 - Google Patents

エッチング方法 Download PDF

Info

Publication number
WO2009119848A1
WO2009119848A1 PCT/JP2009/056387 JP2009056387W WO2009119848A1 WO 2009119848 A1 WO2009119848 A1 WO 2009119848A1 JP 2009056387 W JP2009056387 W JP 2009056387W WO 2009119848 A1 WO2009119848 A1 WO 2009119848A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
bond
organic compound
substituted
Prior art date
Application number
PCT/JP2009/056387
Other languages
English (en)
French (fr)
Inventor
瑞穂 森田
純一 打越
健二 足達
隆文 永井
Original Assignee
国立大学法人大阪大学
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, ダイキン工業株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2010505871A priority Critical patent/JP5306328B2/ja
Publication of WO2009119848A1 publication Critical patent/WO2009119848A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0041Photosensitive materials providing an etching agent upon exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an etching method characterized in that an organic compound having an NF bond is applied to the surface of a solid material and exposed.
  • the fluorocarbon-based gas or NF 3 used in the dry etching method has a high global warming potential and a very large environmental load. Also, a dry etching method using fluorine gas has been reported (see, for example, Patent Document 1), but fluorine gas is very reactive and toxic and difficult to handle. A scrubber that circulates is required.
  • hydrofluoric acid As wet etching methods, hydrofluoric acid, hydrofluoric acid (HF-HNO 3 ), buffered hydrofluoric acid, and the like are used. Needs appropriate facilities.
  • the lithography process performed by these etching methods has a very large number of processes, is complicated, and causes an increase in cost.
  • micro electro mechanical elements MEMS, Micro Electro Mechanical Systems
  • lenses, and mirrors are very complicated and complicated as described above.
  • the present inventors have conducted extensive research, and as a result, an organic compound having an NF bond is applied to a solid material and exposed to light, so that the number of steps is less than that of the conventional method.
  • a suitable etching method was found and the present invention was completed.
  • the present invention has the following configuration.
  • Item 1 (1) forming a thin film containing at least one organic compound having an NF bond on the surface of the solid material; and (2) thin film side containing at least one organic compound having an NF bond in the solid material.
  • a method for etching a solid material which comprises a step of exposing from a solid.
  • Item 2 The etching method according to Item 1, wherein the organic compound having an NF bond has a structural unit represented by Formula (1).
  • Item 3. The etching method according to Item 1 or 2, wherein the organic compound having an NF bond is represented by Formula (A1), (A2), or (A3).
  • R is a single bond or an alkylene group having 1 to 5 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 One of R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, R 6 ′, R 7 ′, R 8 ′ and R 9 ′ with a single bond A chain is formed. Also,
  • Item 4. The etching method according to Item 3, wherein, in the formula (A1), R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and all are hydrogen atoms or alkyl groups having 1 to 15 carbon atoms.
  • Item 5 The etching method according to Item 3 or 4, wherein is a perfluoroalkanesulfonate.
  • Item 5 The etching method according to Item 3 or 4, wherein is tetrafluoroborate.
  • Item 7. The etching method according to any one of Items 1 to 6, further comprising at least one ionic liquid.
  • Item 8 The etching method according to any one of Items 1 to 7, wherein the solid material is a semiconductor or an insulator.
  • Item 9 The etching method according to Item 8, wherein the semiconductor is at least one selected from the group consisting of silicon, silicon carbide, germanium, gallium arsenide, gallium aluminum arsenic, indium phosphide, indium antimony, gallium nitride, and aluminum nitride.
  • Item 10 The etching method according to Item 8, wherein the insulator is at least one selected from the group consisting of zirconium oxide, hafnium oxide, tantalum oxide, silicates thereof, silicon oxide, and silicon nitride.
  • the step of forming a thin film containing at least one organic compound having an NF bond on the surface of the solid material may be performed by spin coating, dipping, spraying, ink jetting, or doctor blade method.
  • Item 11 The etching method according to any one of Items 1 to 10, which is a step of applying an organic compound partially having an NF bond.
  • Item 12. The etching method according to any one of Items 1 to 11, wherein the thin film containing an organic compound having an NF bond formed in the step (1) is crystalline, polycrystalline, amorphous, or liquid.
  • Item 13 The etching method according to any one of Items 1 to 12, wherein the exposure is performed by irradiating visible light, ultraviolet rays, infrared rays, X-rays, electron beams, ion beams, or laser beams.
  • step (2) The etching method according to any one of Items 1 to 13, comprising a step of removing a thin film containing at least one organic compound having an NF bond together with a residue between the thin film and the solid material.
  • Item 15. (1) forming a thin film containing at least one organic compound having an NF bond on the surface of the solid material; and (2) thin film side containing at least one organic compound having an NF bond in the solid material.
  • the manufacturing method of the etching processed material including the process exposed from.
  • Item 16 An etched product produced by the production method according to Item 15.
  • the method for etching a solid material of the present invention includes: (1) forming a thin film containing at least one organic compound having an NF bond on the surface of the solid material; and (2) thin film side containing at least one organic compound having an NF bond in the solid material.
  • step (1) a thin film containing at least one organic compound having an NF bond is formed on the surface of the solid material.
  • the organic compound having an NF bond is known as a fluorinating agent and is preferably represented by the formula (1).
  • Bronsted acids that produce methanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, nitrobenzenesulfonic acid, dinitrobenzenesulfonic acid, trinitrobenzenesulfonic acid, trifluoromethanesulfonic acid, trifluoroethanesulfone Acid, perfluorobutanesulfonic acid, perfluorooctanesulfonic acid, perfluoro (2-ethoxyethane) sulfonic acid, perfluoro (4-ethylcyclohexane) sulfonic acid, trichloromethanesulfonic acid, difluoromethanesulfonic acid, trifluoroethanesulfone Acid, fluorosulfonic acid, chlorosulfonic acid, camphorsulfonic acid, bromocamphorsulfonic acid, ⁇ 4 -cholesten
  • Aryl substituted boron compounds such as: (FSO 2 ) 2 NH, (PhSO 2 ) 2 NH (Ph is a phenyl group), (CF 3 SO 2 ) 2 NH, (C 2 F 5 SO 2 ) 2 NH, (C 4 F 9 SO 2) 2 NH, (HCF 2 CF 2 SO 2) 2 NH, CF 3 SO 2 NHSO 2 C 6 F 13,
  • Acidic amide compounds such as: (FSO 2 ) 3 CH, (CF 3 SO 2 ) 3 CH, (PhOSO 2 ) 3 CH (Ph is a phenyl group), (CF 3 SO 2 ) 2 CH 2 , (CF 3 SO 2 ) 3 CH, (C 4 F 9 SO 2 ) 3 CH, (C 8 F 17 SO 2 ) 3 CH and other carbon acid compounds.
  • conjugate base for example, - BF 4, - PF 6 , - AsF 6, - SbF 6, - AlF 4, - AlCl 4, - SbCl 6, - SbCl 5 F, - Sb 2 F 11, - B 2 F 7, - OClO 3, - OSO 2 F, - OSO 2 Cl, - OSO 2 OH, - OSO 2 OCH 3, - OSO 2 CH 3, - OSO 2 CF 3, - OSO 2 CCl 3, - OSO 2 C 4 F 9, - OSO 2 C 6 H 5, - OSO 2 C 6 H 4 CH 3, - OSO 2 C 6 H 4 NO 2, - N (SO 2 CF 3) 2 are particularly preferred. Among them, tetrafluoroborate (- BF 4) or perfluoroalkane sulfonate (- OSO 2 CF 3, - OSO 2 C 4 F 9 , etc.) is preferred.
  • Examples of the organic compound having an NF bond satisfying the formula (1) include an N-fluoropyridinium compound (A), an N-fluoroquinuclidinium salt (B), and an N-fluoro-1,4-diazonia. And bicyclo [2.2.2] octane compound (C).
  • Preferred compounds as the N-fluoropyridinium compound (A) are those represented by the following formula (A1), (A2) or (A3).
  • R is a single bond or an alkylene group having 1 to 5 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 One of R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, R 6 ′, R 7 ′, R 8 ′ and R 9 ′ with a single bond A chain is formed. Also,
  • N-fluoropyridinium salts (A) used in the present invention particularly preferable compounds include the following formula (A1a):
  • R 1a , R 2a , R 3a , R 4a and R 5a are the same or different, and all are hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, haloalkyl groups having 1 to 4 carbon atoms, halogen atoms, A phenyl group optionally substituted with a methyl group or halogen, an alkoxy group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, an acyloxy group having 2 to 4 carbon atoms, an alkoxycarbonyl group having 2 to 4 carbon atoms Cyano group or nitro group;
  • R is an integer of 0 to 5, preferably 0 to 2
  • the others are the same or different, all of which are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, or a halogen atom Is]
  • an N-fluoropyridinium salt selected from the group consisting of the compound represented by formula (A2a).
  • R 1a , R 2a , R 3a , R 4a , R 5a , R 1a ′ , R 2a ′ , R 3a ′ , R 4a ′ and R 5a ′ are the same or different, and all are hydrogen atoms, carbons
  • N-fluoroquinuclidinium salt (B) a particularly preferable compound is represented by the following formula (B):
  • N-fluoro-1,4-diazoniabicyclo [2.2.2] octane compound (C) are those represented by the formula (C):
  • R c is a hydroxyl group, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 10 carbon atoms;
  • the N-fluoropyridinium compound (A) is preferable because it has an aromatic ring skeleton that can easily accept electrons.
  • only one type of organic compound having an NF bond may be used, or two or more types may be used in combination.
  • the above organic compounds having an NF bond may be arbitrarily combined, and the composition ratio may be adjusted as appropriate.
  • organic compounds having an NF bond are also preferably used to improve the function by combining these organic compounds having an NF bond with a compatible second component.
  • a compatible second component for example, by adding an ionic liquid, it is possible to adjust film viscosity, uniformity, ease of application, adhesion such as wettability with a solid material, and the like.
  • Specific ionic liquids include imidazolium salts, pyridinium salts, and ammonium salts described in reagent catalogs that contain ionic liquids from Aldrich, or reagent catalogs that contain aliphatic ionic liquids from Kanto Chemical Co., Inc. And compounds such as phosphonium salts.
  • a counter cation or counter anion having a long alkyl chain length or a relatively large molecular weight of these ions is preferably used.
  • Specific examples include 1-Hexadecyl-3-methylimidazolium chloride, 1-Hexylpylidinium trifluoromethanesulfonate, Trihexyltetradecylphosphonium-dicyanamide, and the like.
  • an organic solvent having a high compatibility with an organic compound having an NF bond, a polymer, an oil, or the like may be mixed and used.
  • organic solvent examples include acetonitrile, propionitrile, benzonitrile, methyl ethyl ketone, t-butyl methyl ketone, acetone, methyl acetate, ethyl acetate, methyl formate, ethyl formate, diethyl ether, diisopropyl ether, tetrahydrofuran, 2-methyltetrahydrofuran.
  • polymer examples include a hydrophilic polymer having a polar group in the molecule, such as polyvinyl alcohol, polyoxyalkylene, and an ion exchange polymer having compatibility with an organic compound having an NF bond, a fluorine-containing polymer.
  • hydrophilic polymer having a polar group in the molecule such as polyvinyl alcohol, polyoxyalkylene, and an ion exchange polymer having compatibility with an organic compound having an NF bond, a fluorine-containing polymer.
  • alkyl ether polymers examples include alkyl ether polymers.
  • oils animal and plant oils such as squalene and fatty acid esters, and synthetic oils such as silicone oil composed of dimethylsiloxane can be used.
  • a semiconductor or an insulator can be used as the solid material.
  • silicon such as single crystal silicon, polycrystalline silicon, amorphous silicon, silicon carbide (SiC), germanium, gallium arsenide, gallium aluminum arsenide, indium phosphide, indium antimony, gallium nitride, aluminum nitride, etc.
  • the semiconductor for example, silicon such as single crystal silicon, polycrystalline silicon, amorphous silicon, silicon carbide (SiC), germanium, gallium arsenide, gallium aluminum arsenide, indium phosphide, indium antimony, gallium nitride, aluminum nitride, etc.
  • the insulator include metal oxides such as zirconium oxide, hafnium oxide, tantalum oxide, aluminum oxide, titanium oxide, and chromium oxide, and silicates thereof, silicon oxide such as silicon dioxide and quartz, silicon nitride, Sapphire can be used.
  • These solid materials may be those whose surfaces are mirror-polished, or those whose surfaces on which only a thin film containing an organic compound having an NF bond is formed are mirror-polished. Good.
  • the organic compound having an NF bond in the thin film containing the organic compound having an NF bond formed in the step (1) is preferably used in any of crystal, polycrystal, amorphous, and liquid.
  • a thin film containing an organic compound having an NF bond can be uniformly applied to the surface of the solid material and can be prevented from flowing out easily without keeping the applied surface horizontal.
  • Advantages such as easy transport of solid materials during etching processing, and it is possible to perform etching by setting the application surface of the substrate in various directions, and it is possible to etch the entire surface of solid materials Can be demonstrated.
  • the applied organic compound having an NF bond is preferably amorphous or liquid.
  • (1A) A step of dissolving an organic compound having an N—F bond in a solvent, applying it to the surface of a solid material, and removing the solvent can be mentioned.
  • the organic compound having an NF bond is liquid or can be liquefied by heating or the like
  • the liquefied one can be applied to the surface of the solid material.
  • (1B) A step in which an organic compound having an NF bond is liquefied and applied to the surface of a solid material is also included.
  • the solvent for dissolving the organic compound having an NF bond is not particularly limited, and examples thereof include acetonitrile, propionitrile, benzonitrile, Methyl ethyl ketone, t-butyl methyl ketone, acetone, methyl acetate, ethyl acetate, methyl formate, ethyl formate, diethyl ether, diisopropyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, dimethoxyethane, diethylene glycol dimethyl ether, tri Ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, ⁇ -valerolacto , Sul
  • a method for applying a solvent in which an organic compound having an NF bond is dissolved or a liquefied organic compound having an NF bond to a solid material is not particularly limited.
  • spin coating It can be applied by the method, dipping method, spray method, ink jet method or doctor blade method. In that case, you may apply
  • coating by the inkjet method are preferable.
  • the film thickness when applying the organic compound having an NF bond is not particularly limited, but if it is thin, the effect of etching the solid material is not seen, and if it is thick, the light irradiated in step (2) is dispersed, From the viewpoint of difficulty in fine processing, 100 nm to 500 ⁇ m is preferable, and 200 nm to 100 ⁇ m is more preferable. In addition, when etching deeply, it is preferable to apply thickly.
  • the method for removing the solvent is not particularly limited, but for example, a method for removing it by heat treatment at 0.1 kPa to 0.1 MPa at 25 to 100 ° C., or a room temperature (25 ° C. Degree) and a method of blowing air under normal pressure (about 0.1 MPa).
  • step (1B) when an organic compound having an NF bond can be liquefied by heating, the heat treatment is preferably 0 to 150 ° C., although it depends on the melting point, freezing point, and the like. . Also, the melting point is lowered by mixing another compound having compatibility with an organic compound having an NF bond having a different structure or an organic compound having an NF bond such as an ionic liquid, an organic acid salt, or an amine salt, Liquefaction is also preferably used.
  • organic compound (I) having an NF bond N-fluoro-3-methylpyridinium tetrafluoroborate (melting point 59 ° C.) and organic compound (IV) having an NF bond
  • N fluoro-4-methylpyridinium tetrafluoroborate (melting point 66 ° C.)
  • the melting point is lowered to ⁇ 17 ° C. Therefore, when the thin film is used as a solid, each of I and IV is used alone, and when used as a liquid, an organic compound having at least two kinds of NF bonds may be mixed and used. .
  • a thin film containing an organic compound having an NF bond When a thin film containing an organic compound having an NF bond is formed on a solid material by the above method, if the thin film contains a liquid or liquid material, it may be dried thereafter.
  • the drying conditions may be appropriately adjusted depending on the organic compound having an NF bond to be used.
  • an organic compound having an NF bond may be liquefied by heating and applied, and then solidified by cooling. In this case, the heating may be at or above the melting point of the organic compound having an NF bond, and the cooling temperature may be at or below the freezing point.
  • step (2) exposure is performed from the organic compound side having an NF bond.
  • Examples of the exposure method include a method of irradiating visible light, ultraviolet rays, infrared rays, X-rays, electron beams, ion beams, laser beams and the like.
  • the entire surface coated with the organic compound having an NF bond may be irradiated, but in the case of partial irradiation, a masking method can be used, but a projector or the like can be used simply.
  • a desired location can be irradiated. Among these lights, visible light or ultraviolet light is preferable.
  • X-rays when X-rays are used, the spatial resolution can be improved.
  • visible light has a wavelength of about 400 to 800 nm
  • ultraviolet light has a wavelength of about 10 to 400 nm
  • infrared light has a wavelength of about 800 nm to 25 ⁇ m
  • X-ray has a wavelength of about 0.01 to 70 nm
  • electron beam has an acceleration.
  • the voltage is about 0.1 kV to 200 kV
  • the ion beam means an acceleration voltage of about 1 kV to 200 kV.
  • the laser beam is excellent in that the light irradiation range can be controlled accurately and easily, and can be used regardless of the pulse width, output, wavelength, oscillation method and medium.
  • the exposure intensity is preferably 0.001 to 100 W / mm 2 , more preferably 0.01 to 10 W / mm 2 .
  • the exposure time is preferably 1 second to 24 hours, more preferably 10 seconds to 5 hours.
  • the exposure dose is preferably 0.001 to 100 W ⁇ h / mm 2 , more preferably 0.01 to 10 W ⁇ h / mm 2 .
  • the etching rate can be improved by placing in a state where the fluoride derived from the solid material can be easily removed. Specifically, the etching rate can be improved by etching under heating, etching under reduced pressure, or a combination thereof.
  • the second processing operation before the step of removing the thin film containing an organic compound having an NF bond from the solid material.
  • this continuous etching operation a complicated shape can be processed in one step.
  • the advantages of the solid material processing process obtained here cannot be achieved by normal etching operations.
  • by adjusting the light irradiation intensity in stages it is possible to process a structure other than a linear shape. Specifically, slopes, phase structures, etc. can be created.
  • Step (3) As described above, after etching the solid material by the steps (1) and (2), (3) A solid material etched into a desired shape may be obtained by removing a thin film containing at least one organic compound having an NF bond together with a residue between the thin film and the solid material.
  • a specific method for removing the thin film containing at least one organic compound having an NF bond is not particularly limited.
  • examples thereof include a
  • the thin film containing at least one organic compound having an NF bond After removing the thin film containing at least one organic compound having an NF bond, it is immersed again in the organic solvent, and subjected to stirring, ultrasonic irradiation, or the like as necessary to obtain a solid such as a silicon substrate. Residues adhering to the material can be more reliably removed.
  • the etching method of the present invention can be used to manufacture semiconductors and microelectromechanical elements without using high environmental loads that cause global warming, or reactive, toxic and dangerous fluorine gas or hydrofluoric acid.
  • MEMS Micro Electro Mechanical Systems
  • Manufacturing lens manufacturing, X-ray mirror manufacturing, mirror manufacturing, etc. Since it is possible to etch from various directions, more complicated shapes with the same equipment configuration Etched products can be produced easily and safely.
  • FIG. 1 is a schematic cross-sectional view showing a step of selectively etching a silicon substrate in a first embodiment of the present invention.
  • an N-fluoropyridinium salt 3 is applied on a silicon substrate 4, and then a photomask 2 attached to the photomask substrate 1 is laminated.
  • the layer of the N-fluoropyridinium salt 3 is removed to obtain a solid material having an etching mark 6.
  • FIG. 2 is a schematic sectional view showing a step of selectively etching a silicon substrate in a second embodiment of the present invention.
  • the difference from the first embodiment is that the photomask 2 is directly laminated on the layer of the N-fluoropyridinium salt 3, and the other portions are the same.
  • an N-fluoropyridinium salt 3 is applied on a silicon substrate 4 and then a photomask 2 is laminated.
  • the layer of the N-fluoropyridinium salt 3 is removed to obtain a solid material having etching marks 6.
  • FIG. 3 is a schematic sectional view showing a step of selectively etching a silicon substrate in a third embodiment of the present invention.
  • a photomask 2 is selectively laminated at a desired location without being laminated, and other portions are the same.
  • an N-fluoropyridinium salt 3 is applied on a silicon substrate 4, and then selectively exposed using a projector or the like.
  • the layer of the N-fluoropyridinium salt 3 is removed to obtain a solid material having an etching mark 6.
  • FIG. 4 is a schematic cross-sectional view showing a step of selectively etching a silicon substrate in a fourth embodiment of the present invention.
  • the difference from the first embodiment, the second embodiment, and the third embodiment is that the photomask 2 is not laminated or selectively exposed to a desired location without being laminated. , N-fluoropyridinium salt 3 is applied, and other portions are the same.
  • an N-fluoropyridinium salt 3 is applied to a desired location on the silicon substrate 4.
  • the layer of the N-fluoropyridinium salt 3 is removed to obtain a solid material having an etching mark 6.
  • Organic compound (I) having NF bond N-fluoro-3-methylpyridinium tetrafluoroborate
  • Silicon substrate (1) produced by CZ method (dopant: B, p-type, plane orientation (100), resistivity: 8-25 ⁇ cm, thickness 550 ⁇ m)
  • Silicon substrate (2) produced by CZ method (dopant: B, p-type, plane orientation (111), resistivity: 0.1 to 100 ⁇ cm, thickness 525 ⁇ m)
  • Silicon substrate (3) produced by CZ method (dopant: P, n-type, plane orientation (100), resistivity: 8.8 to 13.2 ⁇ cm, thickness 450 ⁇ m)
  • Gallium arsenide substrate (6) produced by LEC method (dopant: none, plane orientation (100), thickness 350 ⁇ m) 4H-n type silicon carbide substrate (7): produced by bulk crystal growth method-hexagonal crystal (dop
  • Xenon lamp manufactured by Hamamatsu Photonics Co., Ltd., high stability xenon lamp L2274 type (output 150 W, transmission wavelength 220 to 2000 nm, radiation intensity 2 ⁇ w / cm 2 ⁇ nm ⁇ 1 )
  • Projector XV-Z3000 type, manufactured by Sharp Corporation (lamp output: 275 W, maximum brightness: 1200 lumens)
  • Step B Application of organic compound having NF bond>
  • the silicon substrate pretreated and dried in step A was impregnated in a 60% by mass acetonitrile solution of the organic compound (I) having an NF bond prepared in a beaker, and the NF bond was formed on the silicon substrate surface.
  • the organic compound (I) having Acetonitrile was evaporated and dried at room temperature and normal pressure.
  • ⁇ Process C Light irradiation> A silicon substrate having a width of 0.5 cm is placed on the silicon substrate coated with the organic compound (I) having an NF bond in the process B and irradiated with white light including ultraviolet rays, visible light, and infrared rays for 30 minutes by a xenon lamp. (Exposure wavelength 220 to 2000 nm, exposure intensity 0.21 W / mm 2 ). (See Figures 1 and 2)
  • Step D Removal of thin film containing organic compound having NF bond>
  • the thin film containing an organic compound having an NF bond on the surface of the silicon substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • etching evaluation> The surface of the silicon substrate obtained in the process D was measured with a phase shift interference microscope (manufactured by ZYGO, NewView). It was confirmed that only the silicon substrate surface exposed without masking was etched at an etching amount (depth) of 25 nm and an average etching rate of 0.83 nm / min.
  • Example 2 A processed silicon substrate was obtained in the same manner as in Example 1 except that ultraviolet rays having an exposure wavelength of 220 to 420 nm were irradiated at an exposure intensity of 0.21 W / mm 2 for 1 hour using a xenon lamp. It was confirmed that only the silicon substrate surface exposed without masking was etched at an etching amount of 47 nm and an average etching rate of 0.78 nm / min.
  • Example 3 Processed silicon as in Example 1 except that a xenon lamp was used to irradiate light in the visible to infrared region with an exposure wavelength of 410 to 2000 nm at an exposure intensity of 0.21 W / mm 2 for 1 hour. A substrate was obtained. It was confirmed that only the surface of the silicon substrate exposed without masking was etched at an etching amount of 44 nm and an average etching rate of 0.74 nm / min.
  • Example 4 A silicon substrate processed in the same manner as in Example 1 except that visible light with an exposure wavelength of 450 to 740 nm was irradiated into a 3 mm wide line at an exposure intensity of 0.38 W / mm 2 for 4 hours each using a projector. Got. It was confirmed that only the selectively exposed silicon substrate surface was etched at an etching amount of 32 nm and an average etching rate of 0.13 nm / min.
  • Example 5 A processed silicon substrate in the same manner as in Example 1 except that visible light with an exposure wavelength of 450 to 740 nm was irradiated into a 3 mm wide line at an exposure intensity of 0.38 W / mm 2 for 2 hours each using a projector. Got. It was confirmed that only the silicon substrate surface at the selectively exposed portion was etched at an etching amount of 23 nm and an average etching rate of 0.19 nm / min.
  • Example 6 A processed silicon substrate in the same manner as in Example 1 except that visible light having an exposure wavelength of 450 to 485 nm was irradiated into a 3 mm wide line at an exposure intensity of 0.08 W / mm 2 for 2 hours each using a projector. Got. It was confirmed that only the silicon substrate surface at the selectively exposed portion was etched at an etching amount of 16 nm and an average etching rate of 0.14 nm / min.
  • Example 7 A silicon substrate processed in the same manner as in Example 1 except that visible light with an exposure wavelength of 550 to 565 nm was irradiated into a 3 mm wide line at an exposure intensity of 0.07 W / mm 2 for 2 hours each using a projector. Got. It was confirmed that only the silicon substrate surface at the selectively exposed portion was etched at an etching amount of 18 nm and an average etching rate of 0.15 nm / min.
  • Example 8 A processed silicon substrate in the same manner as in Example 1 except that visible light having an exposure wavelength of 625 to 740 nm was irradiated in a line shape of 3 mm width at an exposure intensity of 0.05 W / mm 2 for 2 hours each using a projector. Got. It was confirmed that only the surface of the silicon substrate that was selectively exposed was etched at an etching amount of 14 nm and an average etching rate of 0.12 nm / min.
  • Example 9 A processed silicon substrate in the same manner as in Example 1 except that visible light with an exposure wavelength of 450 to 740 nm was irradiated into a 3 mm wide line at an exposure intensity of 0.19 W / mm 2 for 4 hours each using a projector. Got. It was confirmed that only the silicon substrate surface at the selectively exposed portion was etched at an etching amount of 8 nm and an average etching rate of 0.033 nm / min.
  • Example 10 An organic compound (II) having an NF bond is used as the organic compound having an NF bond to be coated on a silicon substrate, and further, visible light having an exposure wavelength of 450 to 740 nm is applied using a projector, with an exposure intensity of 0.
  • a processed silicon substrate was obtained in the same manner as in Example 1 except that irradiation was performed for 1 hour each in a line shape of 3 mm width at 38 W / mm 2 . It was confirmed that only the surface of the silicon substrate that was selectively exposed was etched at an etching amount of 12 nm and a speed of 0.2 nm / min.
  • Example 11 Other than using a silicon substrate (2) as a solid material and using a projector to irradiate visible light with an exposure wavelength of 450 to 740 nm in a line shape of 3 mm width with an exposure intensity of 0.38 W / mm 2 for 1 hour each. Obtained a processed silicon substrate in the same manner as in Example 1. It was confirmed that only the silicon substrate surface at the selectively exposed portion was etched at an etching amount of 32 nm and an average etching rate of 0.54 nm / min.
  • Example 12 Other than using a silicon substrate (3) as a solid material and using a projector to irradiate visible light having an exposure wavelength of 450 to 740 nm in a line shape of 3 mm width with an exposure intensity of 0.38 W / mm 2 for 20 hours each. Obtained a processed silicon substrate in the same manner as in Example 1. It was confirmed that only the silicon substrate surface at the selectively exposed portion was etched at an etching amount of 13 nm and an average etching rate of 0.018 nm / min.
  • Example 13 As an organic compound having an NF bond to be applied on a silicon substrate, an organic compound (III) having an NF bond is used, and an xenon lamp is used to include ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm.
  • a processed silicon substrate was obtained in the same manner as in Example 1 except that white light was irradiated in a line shape of 10 mm width at an exposure intensity of 0.84 W / mm 2 for 30 minutes. It was confirmed that only the surface of the selectively exposed silicon substrate surface was etched at an etching amount of 63 nm and an average etching rate of 2.1 nm / min.
  • Example 14 Pretreatment of substrate> A 2 cm square germanium substrate (4) was washed with UV ozone water for 10 minutes, 50% hydrofluoric acid aqueous solution for 1 minute, and ultrapure water for 10 minutes.
  • Step B Application of organic compound having NF bond> 2: 1 (total 0.9 g) of the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond was applied to the surface of the germanium substrate pretreated and dried in the step A. The ratio was mixed and applied.
  • ⁇ Process C Light irradiation> Using a projector, visible light having an exposure wavelength of 440 to 620 nm is applied to the germanium substrate coated with the organic compound having an NF bond in step B in a line shape of 1.5 mm width at an exposure intensity of 58 mW / cm 2. Irradiated for hours.
  • Step D Removal of thin film containing organic compound having NF bond> A thin film containing an organic compound having an NF bond on the surface of the germanium substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • Example 15 Pretreatment of substrate> A 2 cm square amorphous silicon carbide substrate (5) was washed with UV ozone water for 10 minutes, with 50% hydrofluoric acid aqueous solution for 10 minutes, and with ultra ultrapure water for 5 minutes.
  • Step B Application of organic compound having NF bond> 2: 1 (total 0.9 g) of the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond on the surface of the silicon carbide substrate pretreated and dried in the step A It mixed and apply
  • ⁇ Process C Light irradiation> Using a xenon lamp, white light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm is applied to a silicon carbide substrate coated with an organic compound having an NF bond in step B at an exposure intensity of 520 mW / cm 2 . Irradiated for 2 hours.
  • Step D Removal of thin film containing organic compound having NF bond>
  • the thin film containing an organic compound having an NF bond on the surface of the silicon carbide substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • Example 16 Pretreatment of substrate> A 2 cm square gallium arsenide substrate (6) was ultrasonically cleaned with acetone for 5 minutes and then with ethanol for 5 minutes to remove organic contamination. This was rinsed with pure water three times, and then impregnated with Semico Clean 23 (manufactured by Furuuchi Chemical Co., Ltd.) for 10 minutes to remove the oxide film.
  • Semico Clean 23 manufactured by Furuuchi Chemical Co., Ltd.
  • Step B Application of organic compound having NF bond>
  • the gallium arsenide substrate that has been pretreated and dried in step A is rinsed with pure water and dried, and then the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond are reduced to 2 1 (total 0.9 g) was mixed and applied.
  • ⁇ Process C Light irradiation> Using a xenon lamp with a 2 mm wide silicon piece as a mask on a gallium arsenide substrate coated with an organic compound having an NF bond in step B, white containing ultraviolet light, visible light and infrared light having an exposure wavelength of 220 to 2000 nm Light was irradiated for 2 hours at an exposure intensity of 520 mW / cm 2 .
  • Step D Removal of thin film containing organic compound having NF bond>
  • the thin film containing an organic compound having an NF bond on the surface of the gallium arsenide substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • Example 17 Pretreatment of substrate> The 2 cm square silicon substrate (1) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 3 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes. Thereafter, it was further washed with ozone water for 10 minutes, and then rinsed with ultrapure water for 10 minutes.
  • Step B Application of organic compound having NF bond> 2: 1 (total 0.9 g) of an organic compound (I) having an NF bond and an organic compound (IV) having an NF bond on the silicon substrate surface pretreated and dried in the step A The ratio was mixed and applied.
  • Step C Light irradiation> A silicon substrate coated with an organic compound having an NF bond in Step B is placed in a pressure-resistant glass container with a suction port, and a white color containing ultraviolet light, visible light and infrared light having an exposure wavelength of 220 to 2000 nm is used using a xenon lamp. Light was irradiated for 2 hours at an exposure intensity of 520 mW / cm 2 . During light irradiation, the inside of the container was evacuated using a diaphragm vacuum pump (21 Torr).
  • Step D Removal of thin film containing organic compound having NF bond>
  • the thin film containing an organic compound having an NF bond on the surface of the silicon substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • Example 18 Pretreatment of substrate> The 2 cm square silicon substrate (1) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 3 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes. Thereafter, it was further washed with ozone water for 10 minutes, and then rinsed with ultrapure water for 10 minutes.
  • Step B Application of organic compound having NF bond> An organic compound (I) having an NF bond, an organic compound (IV) having an NF bond, and 1-hexadecyl-3-methyl, which is an ionic liquid, on the surface of a silicon substrate pretreated and dried in step A Imidazolium chloride was mixed and applied at a ratio of 2: 1: 3 (total 1.8 g).
  • ⁇ Process C Light irradiation> White light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm using a xenon lamp on a silicon substrate coated with an organic compound having an NF bond in step B and placing a 2 mm wide silicon piece as a mask.
  • White light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm using a xenon lamp on a silicon substrate coated with an organic compound having an NF bond in step B and placing a 2 mm wide silicon piece as a mask.
  • Step D Removal of thin film containing organic compound having NF bond>
  • the thin film containing an organic compound having an NF bond on the surface of the silicon substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • Example 19 A processed silicon substrate was obtained in the same manner as in Example 18 except that 1-hexylpyridinium trifluoromethanesulfonate was used as the ionic liquid. It was confirmed that only the surface of the silicon substrate where there was no mask was etched at an etching amount of 7 nm and an average etching rate of 0.058 nm / min.
  • Example 20 A processed silicon substrate was obtained in the same manner as in Example 18 except that trihexyltetradecylphosphonium dicyanamide was used as the ionic liquid. It was confirmed that only the surface of the silicon substrate where there was no mask was etched at an etching amount of 35 nm and an average etching rate of 0.29 nm / min.
  • Example 21 An organic compound (V) having an NF bond is used as the organic compound having an NF bond, and a dimethylformamide solution (30% w / v) of the organic compound (V) having an NF bond is applied. Then, it was processed in the same manner as in Example 18 except that visible light with an exposure wavelength of 440 to 620 nm was irradiated into a 1.5 mm wide line shape for 20 hours each with an exposure intensity of 58 mW / cm 2 using a projector. A silicon substrate was obtained. Only the silicon substrate surface of the selectively exposed location was confirmed to be etched at an etching amount of 23 nm and an average etching rate of 0.019 nm / min.
  • Example 22 The 2 cm square silicon substrate (1) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 3 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes. Thereafter, it was further washed with ozone water for 10 minutes, and then rinsed with ultrapure water for 10 minutes.
  • the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond were mixed and applied to the substrate at a ratio of 2: 1 (total 0.9 g).
  • This material was placed in a cylindrical pressure-resistant glass container having a diameter of 3 cm and a height of 5 cm. Further, this container was connected to a pressure resistant container having an internal volume of 10 mL by a pressure resistant rubber and a SUS joint made of Swagelok. The inside of the SUS container was sucked with a vacuum pump, and the inside of the glass container was replaced with nitrogen.
  • White light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm was irradiated from the outside of the glass container at an exposure intensity of 520 mW / cm 2 for 2 hours.
  • the gas generated inside the glass container was collected in the SUS container.
  • the gas in the SUS container was analyzed by FT-IR (Burker, IFS-125HR type, glass cell, cell length 20.7 cm) (collected gas in the same experimental apparatus without light irradiation was used as a control sample) ).
  • Example 23 The 2 cm square silicon substrate (1) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 3 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes. Thereafter, it was further washed with ozone water for 10 minutes, and then rinsed with ultrapure water for 10 minutes.
  • the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond were mixed and applied to this substrate in a ratio of 2: 1 (total 0.9 g).
  • This material was allowed to stand in a cylindrical pressure-resistant glass container having a diameter of 3 cm and a height of 5 cm, and placed on the surface of the material using a 2 mm wide silicon slice as a mask.
  • the inside of the container is sucked with a vacuum pump, and while maintaining the internal pressure at 21 torr, white light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm is applied for 1.5 hours at an exposure intensity of 520 mW / cm 2 with a xenon lamp. Irradiated. Further, the container is opened, the silicon piece is shifted 45 degrees, and white light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm is applied at a light exposure intensity of 520 mW / cm 2 by a xenon lamp under reduced pressure (internal pressure: 21 torr). Irradiated for 0.5 hours.
  • the thin film containing an organic compound having an NF bond on the silicon substrate surface was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds. Then, it observed by the white light phase shift micro interference method. As shown in FIG. 9, it was confirmed that etching progressed in two stages.
  • Example 24 The 2 cm square silicon substrate (1) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 3 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes. Thereafter, it was further washed with ozone water for 10 minutes, and then rinsed with ultrapure water for 10 minutes.
  • the organic compound I having an NF bond and the organic compound IV having an NF bond were mixed and applied to the substrate at a ratio of 2: 1 (total 0.9 g).
  • a 3LCD projector light irradiation was performed over 4 mm with irradiation intensity having a stepwise change as shown in FIG.
  • the relationship between the irradiation position (mm) and the irradiation intensity (mW / cm 2 ) is as follows. 0 mm: 349.47 mW / cm 2 ; 1 mm: 181.09 mW / cm 2 ; 2 mm: 75.56 mW / cm 2 ; 3 mm: 21.76 mW / cm 2 ; 4 mm: 6.65 mW / cm 2 ; All are 450 to 700 nm.
  • the thin film containing an organic compound having an NF bond on the silicon substrate surface was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds. Then, it observed by the white light phase shift micro interference method. As shown in FIG. 12, it was confirmed that the silicon surface was etched with an inclination corresponding to the irradiation intensity.
  • Example 25 A 2 cm square 4Hn type silicon carbide substrate (7) was washed with UV ozone water for 10 minutes, further washed with dilute hydrofluoric acid aqueous solution for 10 minutes, and rinsed with ultrapure water for 10 minutes.
  • the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond were mixed and applied to this substrate in a ratio of 2: 1 (total 0.9 g).
  • This material was allowed to stand in a cylindrical pressure-resistant glass container having a diameter of 3 cm and a height of 5 cm, and placed on the surface of the material using a 2 mm wide silicon slice as a mask.
  • a xenon lamp was irradiated with white light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm at an exposure intensity of 520 mW / cm 2 for 40 hours.
  • the thin film containing an organic compound having an NF bond on the silicon substrate surface was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds. Thereafter, when the etching amount was estimated by a line profile using a stylus type roughness measuring instrument, it was found that etching was performed at an etching amount of 400 nm and an average etching rate of 0.17 nm / min.
  • Example 26 A 2 cm square silicon germanium substrate (8) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 3 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes.
  • An organic compound (I) having an NF bond and an organic compound (IV) having an NF bond were mixed and applied to this substrate in a ratio of 2: 1 (total 0.9 g), and a silicon having a width of 2 mm.
  • the section was placed on the material surface as a mask.
  • White light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm was irradiated with an xenon lamp at an exposure intensity of 520 mW / cm 2 for 2 hours.
  • the thin film containing an organic compound having an NF bond on the surface of the SiGe substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.
  • Example 27 A 2 cm square indium phosphide substrate (9) was washed with UV ozone water for 10 minutes, rinsed with ultrapure water for 10 minutes, further washed with dilute hydrofluoric acid aqueous solution for 1 minute, and rinsed with ultrapure water for 10 minutes.
  • the dried InP substrate is rinsed with pure water and dried, and then the organic compound (I) having an NF bond and the organic compound (IV) having an NF bond are 2: 1 (total)
  • the mixture was applied at a ratio of 0.9 g) and placed on the surface of the material using a 2 mm wide silicon slice as a mask.
  • White light including ultraviolet light, visible light, and infrared light having an exposure wavelength of 220 to 2000 nm was irradiated with an xenon lamp at an exposure intensity of 520 mW / cm 2 for 2 hours.
  • the thin film containing an organic compound having an NF bond on the surface of the InP substrate was immersed in acetonitrile and removed by ultrasonic cleaning for 20 seconds. Further, the remaining residue was soaked in acetone and removed by ultrasonic irradiation for 20 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)

Abstract

 地球温暖化を引き起こす環境負荷が高いガス類、又は反応性、毒性の高く危険なフッ素ガス、フッ酸を用いることなく実施できる安全かつ簡便なエッチング方法を提供する。 (1)N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程、及び (2)固体材料に、N-F結合を有する有機化合物を少なくとも1種含む薄膜側から露光する工程 を含む固体材料のエッチング方法。  前記エッチング方法は、工程(2)の後に、 (3)N-F結合を有する有機化合物を少なくとも1種含む薄膜を、該薄膜と固体材料との間の残渣とともに除去する工程 を含んでいてもよい。

Description

エッチング方法
 本発明は、N-F結合を有する有機化合物を固体材料の表面に塗布し、露光することを特徴とするエッチング方法に関する。
 半導体製造工程におけるエッチング方法としては、ドライエッチング方法とウェットエッチング方法がある。
 一般に、ドライエッチング方法に用いられるフルオロカーボン系ガス又はNFは、地球温暖化係数が高く、環境に対する負荷が非常に大きい。また、フッ素ガスを用いるドライエッチング方法も報告されている(例えば、特許文献1参照)が、フッ素ガスは反応性、毒性が非常に高く、取り扱いが困難であり、残ガスの処理についてもアルカリ水を循環するスクラバーが必要となる。
 また、ウェットエッチング方法としては、フッ酸、フッ硝酸(HF-HNO)、バッファードフッ酸等を用いる方法が行われているが、いずれも高い腐食性と毒性を有しており、取り扱いには然るべき施設を必要とする。
 以上から、これらのエッチング方法によって行うリソグラフィー工程は、その工程数が非常に多く、煩雑でありコスト増の原因となっている。
 また、微小電気機械素子(MEMS、Micro Electro Mechanical Systems)、レンズ、ミラーの製造工程も上記と同様に、その工程数が非常に多く、煩雑である。
特開2002-313776号公報
 本発明は、地球温暖化を引き起こす環境負荷が高いガス類、又は反応性、毒性の高く危険なフッ素ガス、フッ酸を用いることなく実施できる安全かつ簡便なエッチング方法を提供することを目的とする。
 上記課題を解決するために本発明者らは鋭意研究を重ねた結果、N-F結合を有する有機化合物を固体材料に塗布し、露光することにより、工程数が従来の方法に比べて少ない安全なエッチング方法を見出し、本発明を完成させた。本発明は以下の構成からなる。
 項1.(1)N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程、及び
(2)固体材料に、N-F結合を有する有機化合物を少なくとも1種含む薄膜側から露光する工程
を含む固体材料のエッチング方法。
 項2.N-F結合を有する有機化合物が、式(1)で示される構造単位を有する項1に記載のエッチング方法。
Figure JPOXMLDOC01-appb-C000010
(式中、
Figure JPOXMLDOC01-appb-C000011
はブレンステッド酸の共役塩基である。)
 項3.N-F結合を有する有機化合物が、式(A1)、(A2)又は(A3)で示される項1又は2に記載のエッチング方法。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[式(A1)~(A3)中、隣接するRとR、RとR、RとR又はRとRは連結して、-CR=CR-CR=CR-を形成していてもよく、また、R’とR’、R’とR’、R’とR’又はR’とR’は連結して、-CR’=CR’-CR’=CR’-を形成していてもよく、R、R、R、R、R、R、R、R、R、R’、R’、R’、R’、R’、R’、R’、R’及びR’は同じか又は異なり、いずれも、水素原子;ハロゲン原子;ニトロ基;ヒドロキシ基;シアノ基;カルバモイル基;ハロゲン原子、水酸基、炭素数1~5のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~5のアシル基、炭素数1~5のアシルオキシ基及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルケニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリール基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数2~15のアルコキシカルボニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数7~15のアリールオキシカルボニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキルスルホニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールスルホニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキルスルフィニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールスルフィニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルコキシ基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールオキシ基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシルオキシ基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシルチオ基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルカンスルホニルオキシ基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい基炭素数6~15のアリールスルホニルオキシ基;炭素数1~5のアルキル基及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよいカルバモイル基;炭素数1~5のアシル基及びハロゲン原子よりなる群から選ばれる少なくとも1種で置換されていてもよいアミノ基;ハロゲン原子、炭素数6~10のアリール基及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のN-アルキルピリジニウム塩基;ハロゲン原子、炭素数6~10のアリール基及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数11~15のN-アリールピリジニウム塩基;又は有機ポリマー鎖であり、R、R、R、R、R、R、R、R、R、R’、R’、R’、R’、R’、R’、R’、R’及びR’は種々の組合せでヘテロ原子を介して又は介さずに環構造を形成してもよく、式(A2)において、R、R、R、R、R、R、R、R及びRの1つが
Figure JPOXMLDOC01-appb-C000015
(Rは単結合又は炭素数1~5のアルキレン基)であり、式(A3)において、R、R、R、R、R、R、R、R及びRのうちの1つとR’、R’、R’、R’、R’、R’、R’、R’及びR’のうちの1つとは単結合で結合鎖を形成している。また、
Figure JPOXMLDOC01-appb-C000016
はブレンステッド酸の共役塩基である。]
 項4.式(A1)中、R、R、R、R及びRが同じか又は異なり、いずれも水素原子又は炭素数1~15のアルキル基である項3に記載のエッチング方法。
 項5.式(A1)及び(A3)中、
Figure JPOXMLDOC01-appb-C000017
がパーフルオロアルカンスルホナートである項3又は4に記載のエッチング方法。
 項6.式(A1)及び(A3)中、
Figure JPOXMLDOC01-appb-C000018
がテトラフルオロボレートである項3又は4に記載のエッチング方法。
 項7.さらに、少なくとも1種のイオン液体を含む項1~6のいずれかに記載のエッチング方法。
 項8.固体材料が、半導体又は絶縁体である項1~7のいずれかに記載のエッチング方法。
 項9.半導体が、シリコン、シリコンカーバイト、ゲルマニウム、ガリウムヒ素、ガリウムアルミニウムヒ素、インジウムリン、インジウムアンチモン、窒化ガリウム及び窒化アルミニウムよりなる群から選ばれる少なくとも1種である項8に記載のエッチング方法。
 項10.絶縁体が、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、及びこれらのシリケート、シリコン酸化物並びにシリコン窒化物よりなる群から選ばれる少なくとも1種である項8に記載のエッチング方法。
 項11.N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程が、スピンコート法、浸漬法、スプレー法、インクジェット法又はドクターブレード法により、固体材料の表面の全面又は部分的にN-F結合を有する有機化合物を塗布する工程である、項1~10のいずれかに記載のエッチング方法。
 項12.工程(1)で形成されたN-F結合を有する有機化合物を含む薄膜が、結晶、多結晶、アモルファス又は液体である項1~11のいずれかに記載のエッチング方法。
 項13.露光が、可視光、紫外線、赤外線、X線、電子ビーム、イオンビーム又はレーザービームを照射する項1~12のいずれかに記載のエッチング方法。
 項14.工程(2)の後に、
(3)N-F結合を有する有機化合物を少なくとも1種含む薄膜を、該薄膜と固体材料との間の残渣とともに除去する工程
を含む項1~13のいずれかに記載のエッチング方法。
 項15.(1)N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程、及び
(2)固体材料に、N-F結合を有する有機化合物を少なくとも1種含む薄膜側から露光する工程
を含むエッチング処理物の製造方法。
 項16.項15に記載の製造方法により製造されたエッチング処理物。
 本発明によれば、地球温暖化を引き起こす環境負荷が高いガス類、又は反応性、毒性の高く危険なフッ素ガス、フッ酸を用いることなく、安全で簡便なエッチング方法を提供できる。
本発明の第1の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。 本発明の第2の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。 本発明の第3の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。 本発明の第4の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。 実施例14の白色光位相シフト顕微干渉法による断面観察の結果を示すグラフである。 実施例15の白色光位相シフト顕微干渉法による断面観察の結果を示すグラフである。 実施例16の白色光位相シフト顕微干渉法による断面観察の結果を示すグラフである。 実施例18の白色光位相シフト顕微干渉法による断面観察の結果を示すグラフである。 実施例23の白色光位相シフト顕微干渉法による断面観察の結果を示すグラフである。 実施例23の白色光位相シフト顕微干渉法による表面観察の結果を示すグラフである。 実施例24の段階的な変化を持った照射強度を示す写真である。 実施例24の白色光位相シフト顕微干渉法による断面観察の結果を示すグラフである。
符号の説明
 1 フォトマスク基板
 2 フォトマスク
 3 N-フルオロピリジニウム塩
 4 シリコン基板
 5 化学反応部
 6 エッチング加工痕
 7 選択的露光
 本発明の固体材料のエッチング方法は、
(1)N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程、及び
(2)固体材料に、N-F結合を有する有機化合物を少なくとも1種含む薄膜側から露光する工程
を含む。
 以下、各工程について、説明する。
 工程(1)
 工程(1)では、N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する。
 N-F結合を有する有機化合物は、フッ素化剤として知られているものであり、式(1)で示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中、
Figure JPOXMLDOC01-appb-C000020
はブレンステッド酸の共役塩基である。)
 式(1)において、
Figure JPOXMLDOC01-appb-C000021
を生成するブレンステッド酸としては、例えば、メタンスルホン酸、ブタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、ニトロベンゼンスルホン酸、ジニトロベンゼンスルホン酸、トリニトロベンゼンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロエタンスルホン酸、パーフルオロブタンスルホン酸、パーフルオロオクタンスルホン酸、パーフルオロ(2-エトキシエタン)スルホン酸、パーフルオロ(4-エチルシクロヘキサン)スルホン酸、トリクロロメタンスルホン酸、ジフルオロメタンスルホン酸、トリフルオロエタンスルホン酸、フルオロスルホン酸、クロロスルホン酸、カンファースルホン酸、ブロモカンファースルホン酸、Δ-コレステン-3-オン-6-スルホン酸、1-ヒドロキシ-p-メンタン-2-スルホン酸、p-スチレンスルホン酸、β-スチレンスルホン酸、ビニルスルホン酸、パーフルオロ-3,6-ジオキサ-4-メチル-7-オクテンスルホン酸等のスルホン酸;硫酸、リン酸、硝酸等の鉱酸;過塩素酸、過臭素酸、過ヨウ素酸、塩素酸、臭素酸等のハロゲン酸;モノメチル硫酸、モノエチル硫酸等のモノアルキル硫酸;酢酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、ジクロロ酢酸、アクリル酸等のカルボン酸;HAlF、HBF、HB、HPF、HSbF、HSbF、HSb11、HAsF、HAlCl、HAlClF、HAlFCl、HBCl、HBClF、HBBrF、HSbCl、HSbClF等のルイス酸とハロゲン化水素との化合物;HBPh(Phはフェニル基)、
Figure JPOXMLDOC01-appb-C000022
等のアリール置換ホウ素化合物;(FSONH、(PhSONH(Phはフェニル基)、(CFSONH、(CSONH、(CSONH、(HCFCFSONH、CFSONHSO13
Figure JPOXMLDOC01-appb-C000023
等の酸性アミド化合物;(FSOCH、(CFSOCH、(PhOSOCH(Phはフェニル基)、(CFSOCH、(CFSOCH、(CSOCH、(C17SOCH等の炭素酸化合物等があげられる。
 安定性の高いN-F結合を有する有機化合物を得るためには、
Figure JPOXMLDOC01-appb-C000024
として酢酸(pKa:4.56)よりも強い酸性度のブレンステッド酸の共役塩基が特に好ましい。
 前記共役塩基としては、例えば、BFPFAsFSbFAlFAlClSbClSbClF、Sb11OClOOSOF、OSOCl、OSOOH、OSOOCHOSOCHOSOCFOSOCClOSOOSOOSOCHOSONON(SOCF等が特に好ましい。なかでも、テトラフルオロボレート(BF)又はパーフルオロアルカンスルホネート(OSOCFOSO等)が好ましい。
 式(1)を満たすN-F結合を有する有機化合物としては、例えば、N-フルオロピリジニウム化合物(A)、N-フルオロキヌクリジニウム塩(B)、N-フルオロ-1,4-ジアゾニアビシクロ[2.2.2]オクタン化合物(C)などが挙げられる。
 N-フルオロピリジニウム化合物(A)として好ましい化合物は、次の式(A1)、(A2)又は(A3)で示されるものである。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 式(A1)~(A3)中、隣接するRとR、RとR、RとR又はRとRは連結して、-CR=CR-CR=CR-を形成していてもよく、また、R’とR’、R’とR’、R’とR’又はR’とR’は連結して、-CR’=CR’-CR’=CR’-を形成していてもよく、R、R、R、R、R、R、R、R、R、R’、R’、R’、R’、R’、R’、R’、R’及びR’は同じか又は異なり、いずれも、水素原子;ハロゲン原子;ニトロ基;ヒドロキシ基;シアノ基;カルバモイル基;ハロゲン原子、水酸基、炭素数1~5のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~5のアシル基、炭素数1~5のアシルオキシ基及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルケニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリール基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数2~15のアルコキシカルボニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数7~15のアリールオキシカルボニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキルスルホニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールスルホニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキルスルフィニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールスルフィニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルコキシ基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールオキシ基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシルオキシ基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシルチオ基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルカンスルホニルオキシ基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい基炭素数6~15のアリールスルホニルオキシ基;炭素数1~5のアルキル基及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよいカルバモイル基;炭素数1~5のアシル基及びハロゲン原子よりなる群から選ばれる少なくとも1種で置換されていてもよいアミノ基;ハロゲン原子、炭素数6~10のアリール基及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のN-アルキルピリジニウム塩基;ハロゲン原子、炭素数6~10のアリール基及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数11~15のN-アリールピリジニウム塩基;又は有機ポリマー鎖であり、R、R、R、R、R、R、R、R、R、R’、R’、R’、R’、R’、R’、R’、R’及びR’は種々の組合せでヘテロ原子を介して又は介さずに環構造を形成してもよく、式(A2)において、R、R、R、R、R、R、R、R及びRの1つが
Figure JPOXMLDOC01-appb-C000028
(Rは単結合又は炭素数1~5のアルキレン基)であり、式(A3)において、R、R、R、R、R、R、R、R及びRのうちの1つとR’、R’、R’、R’、R’、R’、R’、R’及びR’のうちの1つとは単結合で結合鎖を形成している。また、
Figure JPOXMLDOC01-appb-C000029
は式(1)と同じ、
Figure JPOXMLDOC01-appb-C000030
と同じである。
 本発明に用いられるN-フルオロピリジニウム塩(A)のうち、とくに好ましい化合物としては、つぎの式(A1a):
Figure JPOXMLDOC01-appb-C000031
 (式中、R1a、R2a、R3a、R4a及びR5aは同じか又は異なり、いずれも水素原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、ハロゲン原子、メチル基もしくはハロゲンで置換されていてもよいフェニル基、炭素数1~4のアルコキシ基、炭素数2~4のアシル基、炭素数2~4のアシルオキシ基、炭素数2~4のアルコキシカルボニル基、シアノ基又はニトロ基;
Figure JPOXMLDOC01-appb-C000032
がpKaが4.56以下のブレンステッド酸の共役塩基である)
で表される化合物(A1a)、及び次の式(A2a):
Figure JPOXMLDOC01-appb-C000033
[式中、R1a、R2a、R3a、R4a及びR5aのうち1つが
Figure JPOXMLDOC01-appb-C000034
(rは0~5、好ましくは0~2の整数)であり、その他が同じか又は異なり、いずれも水素原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基又はハロゲン原子である]
で表される化合物(A2a)よりなる群から選ばれるN-フルオロピリジニウム塩があげられる。
 また、次の式(A3a):
Figure JPOXMLDOC01-appb-C000035
(式中、R1a、R2a、R3a、R4a、R5a、R1a’、R2a’、R3a’、R4a’及びR5a’は同じか又は異なり、いずれも水素原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、ハロゲン原子、メチル基もしくはハロゲンで置換されていてもよいフェニル基、炭素数1~4のアルコキシ基、炭素数2~4のアシル基、炭素数2~4のアシルオキシ基、炭素数2~4のアルコキシカルボニル基、シアノ基又はニトロ基であり、R1a、R2a、R3a、R4a、R5aのうち1つはR1a’、R2a’、R3a’、R4a’、R5a’のうちの1つと単結合で結合鎖を形成し、
Figure JPOXMLDOC01-appb-C000036
が、pKaが4.56以下のブレンステッド酸の共役塩基である)
で表される化合物(A3a)も挙げられる。
 N-フルオロキヌクリジニウム塩(B)として、特に好ましい化合物は、次の式(B):
Figure JPOXMLDOC01-appb-C000037
 
(式中、
Figure JPOXMLDOC01-appb-C000038
は式(1)と同じである)
で示されるものである。
 また、N-フルオロ-1,4-ジアゾニアビシクロ[2.2.2]オクタン化合物(C)として特に好ましい化合物は、式(C):
Figure JPOXMLDOC01-appb-C000039
(式中、Rは、水酸基、炭素数1~5のアルキル基、炭素数1~5のハロアルキル基、炭素数6~10のアリール基;
Figure JPOXMLDOC01-appb-C000040
は同じか又は異なり、いずれも式(1)と同じである)
で示されるものである。
 これらのN-F結合を有する有機化合物のなかでも、電子を受け取りやすい芳香環の骨格を有しているという点から、N-フルオロピリジニウム化合物(A)が好ましい。
 本発明において、N-F結合を有する有機化合物は、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。N-F結合を有する有機化合物を2種類以上組み合わせて使用する場合は、上記のN-F結合を有する有機化合物を任意に組み合わせればよく、その組成比も適宜調整して用いればよい。
 さらに、これらN-F結合を有する有機化合物と、相溶性を有する第2の成分を組み合わせて、機能を向上させることも好ましく用いられる。例えば、イオン液体を加えることで、膜の粘度、均一性、塗布の容易さ、固体材料との濡れ性等の密着性等を調整することが出来る。
 具体的なイオン液体としては、アルドリッチ社のイオン液体を掲載した試薬カタログ、又は関東化学(株)の脂肪族イオン液体を掲載した試薬カタログに記載されている、イミダゾリウム塩、ピリジニウム塩、アンモニウム塩、ホスホニウム塩等の化合物を挙げることが出来る。
 例えば、水素終端を有するシリコン基板における密着性を向上させる目的では、対カチオン若しくは対アニオンのアルキル鎖長の長いもの、又はこれらイオンの分子量の比較的大きいものが好ましく用いられる。
 具体的な例としては、1-Hexadecyl-3-methylimidazolium chloride、1-Hexylpylidinium trifluoromethanesulfonate、Trihexyltetradecylphosphonium dicyanamide等が挙げられる。
 また第2の成分として、N-F結合を有する有機化合物と相溶性の高い有機溶媒、高分子、オイル等を混合して用いても良い。
 有機溶媒としては、例えば、アセトニトリル、プロピオニトリル、ベンゾニトリル、メチルエチルケトン、t-ブチルメチルケトン、アセトン、酢酸メチル、酢酸エチル、ギ酸メチル、ギ酸エチル、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン、γ-バレロラクトン、スルホラン、メチルスルホラン等が挙げられる。
 また高分子としては、N-F結合を有する有機化合物との相溶性が有る、ポリビニルアルコール、ポリオキシアルキレン、イオン交換用高分子等、極性基を分子内に含んだ親水性高分子、含フッ素アルキルエーテルポリマー等が挙げられる。
 オイルとしては、スクワレン、脂肪酸エステル等の動植物油でも、ジメチルシロキサン等から構成されるシリコンオイル等の合成油でも用いることが出来る。
 固体材料としては、半導体や絶縁体等を使用することができる。
 半導体としては、例えば、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン、シリコンカーバイト(SiC)、ゲルマニウム、ガリウムヒ素、ガリウムアルミニウムヒ素、インジウムリン、インジウムアンチモン、窒化ガリウム、窒化アルミニウム等を使用できる。また、絶縁体としては、例えば、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、酸化アルミニウム、酸化チタン、酸化クロム等の金属酸化物及びこれらのシリケート、二酸化ケイ素、石英等のシリコン酸化物、シリコン窒化物、サファイア等を使用できる。
 なお、これらの固体材料は、全面が鏡面研摩仕上げされたものを用いてもよいし、N-F結合を有する有機化合物を含む薄膜を形成する面のみが鏡面研摩仕上げされたものを用いてもよい。
 工程(1)で形成されたN-F結合を有する有機化合物を含む薄膜中のN-F結合を有する有機化合物は、結晶、多結晶、アモルファス、液体のいずれでも好ましく用いられる。このうち薄膜の粘度の面においては、N-F結合を有する有機化合物を含む薄膜が、固体材料表面に均一に塗布され、塗布面を水平に保たなくても容易に流出しない状態を取れるなら、エッチング加工時の固体材料の運搬が容易となり、また基板の塗布面をさまざまな方向に設定し、エッチングを行うことが可能となり、固体材料の全表面をエッチングすることも可能となる等の利点を発揮できる。一方で、照射する光を乱反射させないためには、塗布されたN-F結合を有する有機化合物は、アモルファス又は液体であることが好ましい。
 ここで、N-F結合を有する有機化合物を含む薄膜を固体材料の表面に形成する工程としては、具体的には、
(1A)N-F結合を有する有機化合物を溶媒に溶解させ、固体材料の表面に塗布し、溶媒を除去する工程
等が挙げられる。
 なお、N-F結合を有する有機化合物が液状であるか、加熱等により液状化できる場合は、液状化したものを固体材料の表面に塗布することもできる。その場合、N-F結合を有する有機化合物からなる薄膜を固体材料の表面に形成する工程として、
(1B)N-F結合を有する有機化合物を液状化させ、固体材料の表面に塗布する工程、も挙げられる。
 工程(1)として、工程(1A)を採用する場合、N-F結合を有する有機化合物を溶解させる溶媒としては、特に制限されるわけではないが、例えば、アセトニトリル、プロピオニトリル、ベンゾニトリル、メチルエチルケトン、t-ブチルメチルケトン、アセトン、酢酸メチル、酢酸エチル、ギ酸メチル、ギ酸エチル、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン、γ-バレロラクトン、スルホラン、メチルスルホラン等が挙げられる。なかでも、N-F結合を有する有機化合物の溶解度が高い点から、アセトニトリル、アセトン、テトラヒドロフラン、ジメトキシエタンが好ましい。
 N-F結合を有する有機化合物を溶解させた溶媒、又は液状化させたN-F結合を有する有機化合物を、固体材料に塗布する方法としては、特に制限されるものではなく、例えば、スピンコート法、浸漬法、スプレー法、インクジェット法又はドクターブレード法により、塗布することができる。その際、固体材料の全面に塗布してもよいし、部分的にのみ塗布してもよい。なお、部分的に塗布する場合は、マスクをしてスプレーする方法又はインクジェット法で塗布する方法が好ましい。
 N-F結合を有する有機化合物を塗布する際の膜厚は、特に制限はないが、薄いと固体材料をエッチングする効果が見られず、厚いと工程(2)で照射する光が分散し、微細加工しにくい点から、100nm~500μmが、さらには200nm~100μmが好ましい。なお、深くエッチングする場合は、厚く塗布することが好ましい。
 工程(1A)において、溶媒を除去する方法としては、特に制限されるわけではないが、例えば、0.1kPa~0.1MPa、25~100℃で熱処理して除去する方法、また常温(25℃程度)、常圧(0.1MPa程度)下で送風する方法などで行うことができる。
 工程(1)として工程(1B)を採用する場合、N-F結合を有する有機化合物が、加熱により液状化できる場合、その熱処理は、融点、凝固点等にもよるが、0~150℃が好ましい。また構造の異なるN-F結合を有する有機化合物や、イオン液体、有機酸塩、アミン塩等のN-F結合を有する有機化合物と相溶性を有する別の材料を混合させる等により融点を下げ、液状化させることも好ましく用いられる。
 ここで具体的な例を挙げれば、N-F結合を有する有機化合物(I):N-フルオロ-3-メチルピリジニウム テトラフルオロボレート(融点59℃)とN-F結合を有する有機化合物(IV):N-フルオロ-4-メチルピリジニウム テトラフルオロボレート(融点66℃)とを2:1で混合すると、融点は-17℃に低下する。このことから、薄膜を固体として用いる際には、IとIVとをそれぞれ単独で用い、液体として用いる際には、少なくとも2種類以上のN-F結合を有する有機化合物を混合して用いれば良い。
 なお、上記方法でN-F結合を有する有機化合物を含む薄膜を固体材料上に形成した際、薄膜が液状又は液状のものを含んでいる場合は、その後乾燥してもよい。乾燥条件は、使用するN-F結合を有する有機化合物により適宜調整すればよい。また加熱によりN-F結合を有する有機化合物を液状化させて塗布した後、冷却により固化させても良い。この場合、加熱はN-F結合を有する有機化合物の融点以上であれば良く、冷却温度は凝固点以下であれば良い。
 工程(2)
 次に、工程(2)では、N-F結合を有する有機化合物側から露光する。
 露光する方法としては、例えば、可視光、紫外線、赤外線、X線、電子ビーム、イオンビーム、レーザービーム等を照射する方法が挙げられる。この際、N-F結合を有する有機化合物が塗布された面全体に照射してもよいが、部分的に照射する場合は、マスクする方法も使用できるが、プロジェクタ等を用いても、簡便に所望の箇所を照射することができる。これらの光のなかでも、可視光又は紫外線が好ましい。また、X線を使用した場合には、空間分解能を向上させることができる。
 なお、ここで、可視光とは波長400~800nm程度、紫外線とは波長10~400nm程度、赤外線とは波長800nm~25μm程度、X線とは波長0.01~70nm程度、電子ビームとは加速電圧が0.1kV~200kV程度、イオンビームとは加速電圧が1kV~200kV程度のものをいう。また、レーザービームは、光の照射範囲を正確かつ容易にコントロールできる点で優れており、パルス巾、出力、波長、発振方式及び媒体にこだわらず使用可能である。
 露光強度は、0.001~100W/mmが、さらには0.01~10W/mmが好ましい。また、露光時間は、1秒~24時間が、さらには10秒~5時間が好ましい。さらに、露光量は、0.001~100W・h/mmが、さらには0.01~10W・h/mmが好ましい。
 工程(2)で露光することにより、塗布したN-F結合を有する有機化合物を現像することなく、固体材料の光を照射した箇所を直接エッチングすることができる。この原理は、必ずしも明確ではないが、実施例に記述したように、シリコンのエッチング時に発生したガスの分析において、SiFが検出されている。この結果からは、光照射により固体材料から電子励起が起こってN-F結合を有する有機化合物と反応し、ここで発生した活性種が固体材料と反応して、エッチングが進行するものと推定される。
 以上の機構を考慮して、固体材料由来のフッ化物が容易に除去できる状態に置けば、エッチング速度を向上させることが可能である。具体的には、加熱下でのエッチング、減圧下でのエッチング、又はこれらの組合せにより、エッチング速度の向上が達成できる。
 さらには、N-F結合を有する有機化合物を含む薄膜を、固体材料から除去する工程の前に、第2の加工操作を行うことも好ましく行われる。この連続エッチング操作によれば、複雑な形状を1工程で加工できる。ここで得られる固体材料の加工プロセスの利点は、通常のエッチング操作では達成できない。またさらには、光照射強度を段階的に調節することで、直線的な形状以外の構造体の加工も可能にする。具体的には、斜面、局面構造体等の作成ができる。
 工程(3)
 以上のように、工程(1)及び(2)により固体材料をエッチングした後、
(3)N-F結合を有する有機化合物を少なくとも1種含む薄膜を、該薄膜と固体材料との間の残渣とともに除去する工程
により、所望の形状にエッチングされた固体材料を得てもよい。
 この際、N-F結合を有する有機化合物を少なくとも1種含む薄膜を除去する具体的な方法としては、特に限定されるわけではないが、例えば、アセトニトリル、プロピオニトリル、ベンゾニトリル、メチルエチルケトン、t-ブチルメチルケトン、アセトン、酢酸メチル、酢酸エチル、ギ酸メチル、ギ酸エチル、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン、γ-バレロラクトン、スルホラン、メチルスルホラン等の有機溶媒に浸漬する方法、回転させながら前記有機溶媒を吹き付ける方法などがあげられる。
 なお、N-F結合を有する有機化合物を少なくとも1種含む薄膜を除去した後、再度上記有機溶媒中に浸漬し、必要に応じて攪拌、超音波照射等を施すことで、シリコン基板等の固体材料上に付着する残渣をより確実に除去することができる。
 本発明のエッチング方法は、上述のように、地球温暖化を引き起こす環境負荷が高いガス類、又は反応性、毒性の高く危険なフッ素ガス、フッ酸を用いることなく、半導体製造、微小電気機械素子(MEMS、Micro Electro Mechanical Systems)製造、レンズ製造、X線ミラー製造、ミラー製造等に適用することができ、様々な方向からエッチングすることが可能であるため、同じ装置構成でより複雑な形状のエッチング処理物を簡便にかつ安全に製造することができる。
 以下、図面を用いて、本発明のエッチング方法の実施態様について、具体的に説明する。なお、以下では、説明を簡便にするために、固体材料としてシリコン基板、N-F結合を有する有機化合物としてN-フルオロピリジニウム塩を使用した場合について説明する。
 第1の実施態様
 図1は、本発明の第1の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。
 まず、図1(a)に示すように、シリコン基板4の上に、N-フルオロピリジニウム塩3を塗布し、その後、フォトマスク基板1に貼り付けたフォトマスク2を積層させる。
 その後、フォトマスク2を通して露光することで、図1(b)に示すように、N-フルオロピリジニウム塩3とシリコン基板4との界面で化学反応が生じ、シリコン基板4を選択的にエッチングできる。
 その後、必要に応じて、図1(c)に示すように、N-フルオロピリジニウム塩3の層を除去することで、エッチング加工痕6を有する固体材料が得られる。
 第2の実施態様
 図2は、本発明の第2の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。
 なお、第1の実施態様との違いは、フォトマスク2を直接N-フルオロピリジニウム塩3の層に積層させる点にあり、その他の箇所は同一である。
 まず、図2(a)に示すように、シリコン基板4の上に、N-フルオロピリジニウム塩3を塗布し、その後、フォトマスク2を積層させる。
 その後、フォトマスク2を通して露光することで、図2(b)に示すように、N-フルオロピリジニウム塩3とシリコン基板4との界面で化学反応が生じ、シリコン基板4を選択的にエッチングできる。
 その後、必要に応じて、図2(c)に示すように、N-フルオロピリジニウム塩3の層を除去することで、エッチング加工痕6を有する固体材料が得られる。
 第3の実施態様
 図3は、本発明の第3の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。
 なお、第1の実施態様及び第2の実施態様との違いは、フォトマスク2を積層させずに、所望の箇所に選択的に露光させる点にあり、その他の箇所は同一である。
 まず、図3(a)に示すように、シリコン基板4の上に、N-フルオロピリジニウム塩3を塗布し、その後、プロジェクタ等を用いて、選択的に露光する。
 その結果、図3(b)に示すように、N-フルオロピリジニウム塩3とシリコン基板4との界面で化学反応が生じ、シリコン基板4を選択的にエッチングできる。
 その後、必要に応じて、図3(c)に示すように、N-フルオロピリジニウム塩3の層を除去することで、エッチング加工痕6を有する固体材料が得られる。
 第4の実施態様
 図4は、本発明の第4の実施態様におけるシリコン基板を選択的にエッチングする工程を示す概略断面図である。
 なお、第1の実施態様、第2の実施態様及び第3の実施態様との違いは、フォトマスク2を積層させたり、所望の箇所に選択的に露光させたりせずに、所望の箇所に、N-フルオロピリジニウム塩3を塗布することにあり、その他の箇所は同一である。
 まず、図4(a)に示すように、シリコン基板4の上の所望の箇所に、N-フルオロピリジニウム塩3を塗布する。
 その後、露光することで、図4(b)に示すように、N-フルオロピリジニウム塩3とシリコン基板4との界面で化学反応が生じ、シリコン基板4を選択的にエッチングできる。
 その後、必要に応じて、図4(c)に示すように、N-フルオロピリジニウム塩3の層を除去することで、エッチング加工痕6を有する固体材料が得られる。
 以下、実施例に基づいて、本発明を具体的に説明するが、本発明は、これらのみに限定されるものではない。
 なお、以下の実施例において、N-F結合を有する有機化合物、固体材料及び照射光源としては、以下のものを使用した。
 <N-F結合を有する有機化合物> 
 N-F結合を有する有機化合物(I):N-フルオロ-3-メチルピリジニウム テトラフルオロボレート
Figure JPOXMLDOC01-appb-C000041
 N-F結合を有する有機化合物(II):N-フルオロピリジニウム トリフルオロメタンスルホネート
Figure JPOXMLDOC01-appb-C000042
 N-F結合を有する有機化合物(III):N-フルオロピリジニウム テトラフルオロボレート
Figure JPOXMLDOC01-appb-C000043
 N-F結合を有する有機化合物(IV):N-フルオロ-4-メチルピリジニウム テトラフルオロボレート
Figure JPOXMLDOC01-appb-C000044
 N-F結合を有する有機化合物(V):1-クロロメチル-4-フルオロ-1,4-ジアゾニアビシクロ[2,2,2]オクタン ビス(テトラフルオロボレート)
Figure JPOXMLDOC01-appb-C000045
<固体材料>
 シリコン基板(1):CZ法により作製(ドーパント:B、p型、面方位(100)、抵抗率:8~25Ωcm、厚さ550μm)
 シリコン基板(2):CZ法により作製(ドーパント:B、p型、面方位(111)、抵抗率:0.1~100Ωcm、厚さ525μm)
 シリコン基板(3):CZ法により作製(ドーパント:P、n型、面方位(100)、抵抗率:8.8~13.2Ωcm、厚さ450μm)
 ゲルマニウム基板(4):融液成長法により作製(ドーパント:In、p型、面方位(100)、抵抗率:0.3~0.5Ωcm、厚さ450μm)
 ガリウムヒ素基板(6):LEC法により作製(ドーパント:なし、面方位(100)、厚さ350μm)
 4H-n型シリコンカーバイド基板(7):バルク結晶成長法により作製-六方晶(ドーパント:N、n型、面方位(0001)、抵抗率:0.018Ωcm、厚さ372μm)
 シリコンゲルマニウム基板(8):Si基板上へのエピタキシャル成長法により作製(組成:Ge27%、面方位(100)、厚さ1.3μm)
 インジウムリン基板(9):圧制御引上げ法(VCZ法)により作製(n型、面方位(100)、抵抗率:9.2×10-4Ωcm、厚さ:639μm)
<照射光源>
 キセノンランプ:浜松ホトニクス(株)製、高安定キセノンランプL2274型(出力150W、透過波長220~2000nm、放射強度2μw/cm・nm-1
 プロジェクタ:シャープ(株)製、XV-Z3000型(ランプ出力:275W、最高輝度:1200ルーメン)
 実施例1
 <工程A:基板の前処理>
 2cm角のシリコン基板(1)を超純水で3分間洗浄し、97%硫酸と30%過酸化水素水(硫酸:過酸化水素水=4:1(体積比))で10分間処理してシリコン基板上の有機物を除去した。これを超純水で10分間洗浄した後、希フッ酸で1分間処理して表面の酸化皮膜を除去した。さらに、97%硫酸と30%過酸化水素水(硫酸:過酸化水素水=4:1(体積比))で10分間処理して表面を親水性にし、最後に超純水で10分間洗浄した。
 <工程B:N-F結合を有する有機化合物の塗布>
 工程Aにより前処理して乾燥させたシリコン基板を、ビーカー中に調製したN-F結合を有する有機化合物(I)の60質量%アセトニトリル溶液中に含浸して、シリコン基板表面にN-F結合を有する有機化合物(I)を塗布した。室温、常圧下にアセトニトリルを蒸散させて乾燥した。
 <工程C:光照射>
 工程BでN-F結合を有する有機化合物(I)を塗布したシリコン基板に、マスクとして0.5cm巾のシリコン基板を乗せてキセノンランプにより紫外線、可視光、赤外線を含む白色光を30分間照射した(露光波長220~2000nm、露光強度0.21W/mm)。(図1、2参照)
 <工程D:N-F結合を有する有機化合物を含む薄膜の除去>
 シリコン基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 <工程E:エッチング評価>
 工程Dにより得られたシリコン基板を位相シフト干渉顕微鏡(ZYGO社製、NewView)により表面を計測した。マスクをしないで露光した箇所のシリコン基板表面のみが、エッチング量(深さ)25nm、平均エッチング速度0.83nm/minでエッチングされていることを確認した。
 実施例2
 キセノンランプを用いて、露光波長220~420nmの紫外線を、露光強度0.21W/mmで1時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。マスクをしないで露光した箇所のシリコン基板表面のみが、エッチング量47nm、平均エッチング速度0.78nm/minでエッチングされていることを確認した。
 実施例3
 キセノンランプを用いて、露光波長410~2000nmの可視~赤外領域の波長の光を、露光強度0.21W/mmで1時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。マスクをしないで露光した箇所のシリコン基板表面のみが、エッチング量44nm、平均エッチング速度0.74nm/minでエッチングされていることを確認した。
 実施例4
 プロジェクタを用いて、露光波長450~740nmの可視光を、露光強度0.38W/mmで3mm幅のライン状に各4時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量32nm、平均エッチング速度0.13nm/minでエッチングされていることを確認した。
 実施例5
 プロジェクタを用いて、露光波長450~740nmの可視光を、露光強度0.38W/mmで3mm幅のライン状に各2時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量23nm、平均エッチング速度0.19nm/minでエッチングされていることを確認した。
 実施例6
 プロジェクタを用いて、露光波長450~485nmの可視光を、露光強度0.08W/mmで3mm幅のライン状に各2時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量16nm、平均エッチング速度0.14nm/minでエッチングされていることを確認した。
 実施例7
 プロジェクタを用いて、露光波長550~565nmの可視光を、露光強度0.07W/mmで3mm幅のライン状に各2時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量18nm、平均エッチング速度0.15nm/minでエッチングされていることを確認した。
 実施例8
 プロジェクタを用いて、露光波長625~740nmの可視光を、露光強度0.05W/mmで3mm幅のライン状に各2時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量14nm、平均エッチング速度0.12nm/minでエッチングされていることを確認した。
 実施例9
 プロジェクタを用いて、露光波長450~740nmの可視光を、露光強度0.19W/mmで3mm幅のライン状に各4時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量8nm、平均エッチング速度0.033nm/minでエッチングされていることを確認した。
 実施例10
 シリコン基板上に塗布するN-F結合を有する有機化合物として、N-F結合を有する有機化合物(II)を用い、さらに、プロジェクタを用いて、露光波長450~740nmの可視光を、露光強度0.38W/mmで3mm幅のライン状に各1時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量12nm、速度0.2nm/minでエッチングされていることを確認した。
 実施例11
 固体材料としてシリコン基板(2)を用い、さらに、プロジェクタを用いて、露光波長450~740nmの可視光を、露光強度0.38W/mmで3mm幅のライン状に各1時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量32nm、平均エッチング速度0.54nm/minでエッチングされていることを確認した。
 実施例12
 固体材料としてシリコン基板(3)を用い、さらに、プロジェクタを用いて、露光波長450~740nmの可視光を、露光強度0.38W/mmで3mm幅のライン状に各20時間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量13nm、平均エッチング速度0.018nm/minでエッチングされていることを確認した。
 実施例13
 シリコン基板上に塗布するN-F結合を有する有機化合物として、N-F結合を有する有機化合物(III)を用い、キセノンランプを用いて、露光波長220~2000nmの紫外線、可視光、赤外線を含む白色光を、露光強度0.84W/mmで10mm幅のライン状に30分間照射したこと以外は実施例1と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量63nm、平均エッチング速度2.1nm/minでエッチングされていることを確認した。
 実施例14
 <工程A:基板の前処理>
 2cm角のゲルマニウム基板(4)を、UVオゾン水で10分間、50%フッ酸水溶液で1分間、超純水で10分間洗浄した。
 <工程B:N-F結合を有する有機化合物の塗布>
 工程Aにより前処理して乾燥させたゲルマニウム基板表面に、N-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。
 <工程C:光照射>
 工程BでN-F結合を有する有機化合物を塗布したゲルマニウム基板に、プロジェクタを用いて、露光波長440~620nmの可視光を、露光強度58mW/cmで1.5mm幅のライン状に各70時間照射した。
 <工程D:N-F結合を有する有機化合物を含む薄膜の除去>
 ゲルマニウム基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 <工程E:エッチング評価>
 以上の操作により処理した資料表面を白色光位相シフト顕微干渉法により観察し、選択的に露光した箇所のゲルマニウム基板表面のみが、エッチング量25nm、平均エッチング速度0.0060nm/minでエッチングされていることを確認した。なお、白色光位相シフト顕微干渉法による表面観察の結果を、図5に示す。
 実施例15
 <工程A:基板の前処理>
 2cm角のアモルファスシリコンカーバイド基板(5)を、UVオゾン水で10分間、50%フッ酸水溶液で10分間、超超純水で5分間洗浄した。
 <工程B:N-F結合を有する有機化合物の塗布>
 工程Aにより前処理して乾燥させたシリコンカーバイド基板表面に、N-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。
 <工程C:光照射>
 工程BでN-F結合を有する有機化合物を塗布したシリコンカーバイド基板に、キセノンランプを用いて、露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。
 <工程D:N-F結合を有する有機化合物を含む薄膜の除去>
 シリコンカーバイド基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 <工程E:エッチング評価>
 以上の操作により処理した資料表面を白色光位相シフト顕微干渉法により観察し、マスクのない箇所のシリコンカーバイド基板表面のみが、エッチング量500nm、平均エッチング速度4.2nm/minでエッチングされていることを確認した。なお、白色光位相シフト顕微干渉法による表面観察の結果を、図6に示す。
 実施例16
 <工程A:基板の前処理>
 2cm角のガリウムヒ素基板(6)を、アセトンで5分間、続いてエタノールで5分間超音波洗浄し、有機物の汚染を除去した。これを純水で3回すすぎ、次にセミコクリーン23(フルウチ化学(株)製)に10分間含浸して酸化皮膜を除去した。
 <工程B:N-F結合を有する有機化合物の塗布>
 工程Aにより前処理して乾燥させたガリウムヒ素基板を純水ですすぎ、乾燥させた後、N-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。
 <工程C:光照射>
 工程BでN-F結合を有する有機化合物を塗布したガリウムヒ素基板に、マスクとして2mm巾のシリコン片を乗せてキセノンランプを用いて、露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。
 <工程D:N-F結合を有する有機化合物を含む薄膜の除去>
 ガリウムヒ素基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 <工程E:エッチング評価>
 以上の操作により処理した資料表面を白色光位相シフト顕微干渉法により観察し、マスクのない箇所のガリウムヒ素基板表面のみが、エッチング量20nm、平均エッチング速度0.17nm/minでエッチングされていることを確認した。なお、白色光位相シフト顕微干渉法による表面観察の結果を、図7に示す。
 実施例17
 <工程A:基板の前処理>
 2cm角のシリコン基板(1)を、UVオゾン水で10分間洗浄後、超純水で3分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。その後さらに、オゾン水で10分間洗浄した後、超純水で10分間リンスした。
 <工程B:N-F結合を有する有機化合物の塗布>
 工程Aにより前処理して乾燥させたシリコン基板表面に、N-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。
 <工程C:光照射>
 工程BでN-F結合を有する有機化合物を塗布したシリコン基板を、吸引口の付いた耐圧ガラス容器に入れ、キセノンランプを用いて、露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。なお、光照射時には、この容器内を、ダイヤフラム式真空ポンプを用いて真空引きを行った(21Torr)。
 <工程D:N-F結合を有する有機化合物を含む薄膜の除去>
 シリコン基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 <工程E:エッチング評価>
 以上の操作により処理した資料表面を白色光位相シフト顕微干渉法により観察し、シリコン基板表面が、エッチング量2μm、平均エッチング速度17nm/minでエッチングされていることを確認した。このように、光照射を減圧下に行うことで、エッチング速度が大幅に上昇することがわかった。
 実施例18
 <工程A:基板の前処理>
 2cm角のシリコン基板(1)を、UVオゾン水で10分間洗浄後、超純水で3分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。その後さらに、オゾン水で10分間洗浄した後、超純水で10分間リンスした。
 <工程B:N-F結合を有する有機化合物の塗布>
 工程Aにより前処理して乾燥させたシリコン基板表面に、N-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とイオン液体である1-ヘキサデシル-3-メチルイミダゾリウムクロライドとを2:1:3(合計1.8g)の比に混合して塗布した。
 <工程C:光照射>
 工程BでN-F結合を有する有機化合物を塗布したシリコン基板に、マスクとして2mm巾のシリコン切片を乗せてキセノンランプを用いて、露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。
 <工程D:N-F結合を有する有機化合物を含む薄膜の除去>
 シリコン基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 <工程E:エッチング評価>
 以上の操作により処理した資料表面を白色光位相シフト顕微干渉法により観察し、マスクのない箇所のシリコン基板表面のみが、エッチング量35nm、平均エッチング速度0.29nm/minでエッチングされていることを確認した。なお、白色光位相シフト顕微干渉法による表面観察の結果を、図8に示す。
 実施例19
 イオン液体として1-ヘキシルピリジニウムトリフルオロメタンスルホネートを使用したこと以外は実施例18と同様に、加工されたシリコン基板を得た。マスクのない箇所のシリコン基板表面のみが、エッチング量7nm、平均エッチング速度0.058nm/minでエッチングされていることを確認した。
 実施例20
 イオン液体としてトリヘキシルテトラデシルホスホニウムジシアンアミドを使用したこと以外は実施例18と同様に、加工されたシリコン基板を得た。マスクのない箇所のシリコン基板表面のみが、エッチング量35nm、平均エッチング速度0.29nm/minでエッチングされていることを確認した。
 実施例21
 N-F結合を有する有機化合物として、N-F結合を有する有機化合物(V)を使用し、このN-F結合を有する有機化合物(V)のジメチルホルムアミド溶液(30%w/v)を塗布し、プロジェクタを用いて、露光波長440~620nmの可視光を、露光強度58mW/cmで1.5mm幅のライン状に各20時間照射したこと以外は実施例18と同様に、加工されたシリコン基板を得た。選択的に露光した箇所のシリコン基板表面のみが、エッチング量23nm、平均エッチング速度0.019nm/minでエッチングされていることを確認した。
 実施例22
 2cm角のシリコン基板(1)を、UVオゾン水で10分間洗浄後、超純水で3分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。その後さらに、オゾン水で10分間洗浄した後、超純水で10分間リンスした。
 この基板にN-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。この材料を直径3cm、高さ5cmの円柱型耐圧ガラス製容器の中に静置した。さらにこの容器とSUS製内容量10mLの耐圧容器とを耐圧ゴムとスエージロック製SUS継ぎ手で接続した。このSUS容器内を真空ポンプで吸引しておき、ガラス容器内部は窒素で置換した。ガラス容器外部からキセノンランプにより露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。
 照射後、ガラス容器内部に発生したガスをSUS製容器内に捕集した。SUS容器内部のガスをFT-IR(Burker社、IFS-125HR型、ガラスセル、セル長20.7cm)で分析した(光照射無しでの同様の実験装置内の捕集ガスを対照サンプルとした)。
 波数1060~980cm-1の領域の吸収強度からSiFが大気圧換算で2800ppm観測された。以上の結果から、光照射によりエッチングにおいてSiFが発生することが判る。
 実施例23
 2cm角のシリコン基板(1)を、UVオゾン水で10分間洗浄後、超純水で3分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。その後さらに、オゾン水で10分間洗浄した後、超純水で10分間リンスした。
 この基板にN-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。この材料を直径3cm、高さ5cmの円柱型耐圧ガラス製容器の中に静置し、2mm巾のシリコン切片をマスクとして、材料表面に載せた。
 この容器内を真空ポンプで吸引し、内圧を21torrに保ったまま、キセノンランプにより露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで1.5時間照射した。さらに容器を開け、シリコン片を45度ずらして、さらに減圧下(内圧:21torr)にキセノンランプにより露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで0.5時間照射した。
 照射後、シリコン基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。その後、白色光位相シフト顕微干渉法により観察した。図9に示すように、2段階にエッチングが進行していることを確認した。
 さらに、白色光位相シフト顕微干渉法により表面観察した。その結果を図10に示す。この結果からも、2段階にエッチングが進行していることを確認できた。
 実施例24
 2cm角のシリコン基板(1)を、UVオゾン水で10分間洗浄後、超純水で3分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。その後さらに、オゾン水で10分間洗浄した後、超純水で10分間リンスした。
 この基板にN-F結合を有する有機化合物IとN-F結合を有する有機化合物IVとを2:1(合計0.9g)の比に混合して塗布した。3LCDプロジェクタを用いて、図11のような段階的な変化を持った照射強度により、4mmに亘って光照射を行った。
 なお、照射位置(mm)と照射強度(mW/cm)の関係は以下のとおりである。0mm:349.47mW/cm;1mm:181.09mW/cm;2mm:75.56mW/cm;3mm:21.76mW/cm;4mm:6.65mW/cm;また、照射波長はいずれも450~700nmである。
 照射後、シリコン基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。その後、白色光位相シフト顕微干渉法により観察した。図12に示すように、シリコン表面が照射強度に応じた傾斜を持ってエッチングされていることを確認した。
 実施例25
 2cm角の4H-n型シリコンカーバイド基板(7)を、UVオゾン水で10分間洗浄後、さらに希フッ酸水溶液で10分間洗浄後に、超純水で10分間リンスした。
 この基板にN-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布した。この材料を直径3cm、高さ5cmの円柱型耐圧ガラス製容器の中に静置し、2mm巾のシリコン切片をマスクとして、材料表面に載せた。
 キセノンランプにより露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで40時間照射した。
 照射後、シリコン基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。その後、触針式形状粗さ計測器によるラインプロファイルによりエッチング量を見積もったところ、エッチング量400nm、平均エッチング速度0.17nm/minでエッチングされていることが判った。
 実施例26
 2cm角のシリコンゲルマニウム基板(8)を、UVオゾン水で10分間洗浄後、超純水で3分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。
 この基板にN-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布し、2mm巾のシリコン切片をマスクとして、材料表面に載せた。
 キセノンランプにより露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。
 照射後、SiGe基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 その後、白色光位相シフト顕微干渉法により観察した。マスクのない箇所のSiGe基板表面のみが、エッチング量1000nm、平均エッチング速度8.33nm/minでエッチングされていることを確認した。
 実施例27
 2cm角のインジウムリン基板(9)を、UVオゾン水で10分間洗浄後、超純水で10分間リンスし、さらに希フッ酸水溶液で1分間洗浄後に、超純水で10分間リンスした。
 この工程後、乾燥させたInP基板を純水ですすぎ、乾燥させた後、N-F結合を有する有機化合物(I)とN-F結合を有する有機化合物(IV)とを2:1(合計0.9g)の比に混合して塗布し、2mm巾のシリコン切片をマスクとして、材料表面に載せた。
 キセノンランプにより露光波長220~2000nmの紫外線、可視光及び赤外線を含む白色光を、露光強度520mW/cmで2時間照射した。
 照射後、InP基板表面のN-F結合を有する有機化合物を含む薄膜を、アセトニトリル中に漬けて、20秒間超音波洗浄して除去した。さらに、残った残渣をアセトン中に漬けて、20秒間超音波照射して除去した。
 その後、白色光位相シフト顕微干渉法により観察した。マスクのない箇所のInP基板表面のみが、エッチング量20nm、平均エッチング速度0.17nm/minでエッチングされていることを確認した。
 実施例1~27の評価結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049

Claims (16)

  1. (1)N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程、及び
    (2)固体材料に、N-F結合を有する有機化合物を少なくとも1種含む薄膜側から露光する工程
    を含む固体材料のエッチング方法。
  2. N-F結合を有する有機化合物が、式(1)で示される構造単位を有する請求項1に記載のエッチング方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    Figure JPOXMLDOC01-appb-C000002
    はブレンステッド酸の共役塩基である。)
  3. N-F結合を有する有機化合物が、式(A1)、(A2)又は(A3)で示される請求項1又は2に記載のエッチング方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [式(A1)~(A3)中、隣接するRとR、RとR、RとR又はRとRは連結して、-CR=CR-CR=CR-を形成していてもよく、また、R’とR’、R’とR’、R’とR’又はR’とR’は連結して、-CR’=CR’-CR’=CR’-を形成していてもよく、R、R、R、R、R、R、R、R、R、R’、R’、R’、R’、R’、R’、R’、R’及びR’は同じか又は異なり、いずれも、水素原子;ハロゲン原子;ニトロ基;ヒドロキシ基;シアノ基;カルバモイル基;ハロゲン原子、水酸基、炭素数1~5のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~5のアシル基、炭素数1~5のアシルオキシ基及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルケニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリール基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数2~15のアルコキシカルボニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数7~15のアリールオキシカルボニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキルスルホニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールスルホニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルキルスルフィニル基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールスルフィニル基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルコキシ基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のアリールオキシ基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシルオキシ基;少なくとも1種のハロゲン原子で置換されていてもよい炭素数1~15のアシルチオ基;ハロゲン原子及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数1~15のアルカンスルホニルオキシ基;ハロゲン原子及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい基炭素数6~15のアリールスルホニルオキシ基;炭素数1~5のアルキル基及び炭素数6~10のアリール基よりなる群から選ばれる少なくとも1種で置換されていてもよいカルバモイル基;炭素数1~5のアシル基及びハロゲン原子よりなる群から選ばれる少なくとも1種で置換されていてもよいアミノ基;ハロゲン原子、炭素数6~10のアリール基及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数6~15のN-アルキルピリジニウム塩基;ハロゲン原子、炭素数6~10のアリール基及び炭素数1~5のアルキル基よりなる群から選ばれる少なくとも1種で置換されていてもよい炭素数11~15のN-アリールピリジニウム塩基;又は有機ポリマー鎖であり、R、R、R、R、R、R、R、R、R、R’、R’、R’、R’、R’、R’、R’、R’及びR’は種々の組合せでヘテロ原子を介して又は介さずに環構造を形成してもよく、式(A2)において、R、R、R、R、R、R、R、R及びRの1つが
    Figure JPOXMLDOC01-appb-C000006
    (Rは単結合又は炭素数1~5のアルキレン基)であり、式(A3)において、R、R、R、R、R、R、R、R及びRのうちの1つとR’、R’、R’、R’、R’、R’、R’、R’及びR’のうちの1つとは単結合で結合鎖を形成している。また、
    Figure JPOXMLDOC01-appb-C000007
    はブレンステッド酸の共役塩基である。]
  4. 式(A1)中、R、R、R、R及びRが同じか又は異なり、いずれも水素原子又は炭素数1~15のアルキル基である請求項3に記載のエッチング方法。
  5. 式(A1)及び(A3)中、
    Figure JPOXMLDOC01-appb-C000008
    がパーフルオロアルカンスルホナートである請求項3又は4に記載のエッチング方法。
  6. 式(A1)及び(A3)中、
    Figure JPOXMLDOC01-appb-C000009
    がテトラフルオロボレートである請求項3又は4に記載のエッチング方法。
  7. さらに、少なくとも1種のイオン液体を含む請求項1~6のいずれかに記載のエッチング方法。
  8. 固体材料が、半導体又は絶縁体である請求項1~7のいずれかに記載のエッチング方法。
  9. 半導体が、シリコン、シリコンカーバイト、ゲルマニウム、ガリウムヒ素、ガリウムアルミニウムヒ素、インジウムリン、インジウムアンチモン、窒化ガリウム及び窒化アルミニウムよりなる群から選ばれる少なくとも1種である請求項8に記載のエッチング方法。
  10. 絶縁体が、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、及びこれらのシリケート、シリコン酸化物並びにシリコン窒化物よりなる群から選ばれる少なくとも1種である請求項8に記載のエッチング方法。
  11. N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程が、スピンコート法、浸漬法、スプレー法、インクジェット法又はドクターブレード法により、固体材料の表面の全面又は部分的にN-F結合を有する有機化合物を塗布する工程である、請求項1~10のいずれかに記載のエッチング方法。
  12. 工程(1)で形成されたN-F結合を有する有機化合物を含む薄膜が、結晶、多結晶、アモルファス又は液体である請求項1~11のいずれかに記載のエッチング方法。
  13. 露光が、可視光、紫外線、赤外線、X線、電子ビーム、イオンビーム又はレーザービームを照射する請求項1~12のいずれかに記載のエッチング方法。
  14. 工程(2)の後に、
    (3)N-F結合を有する有機化合物を少なくとも1種含む薄膜を、該薄膜と固体材料との間の残渣とともに除去する工程
    を含む請求項1~13のいずれかに記載のエッチング方法。
  15. (1)N-F結合を有する有機化合物を少なくとも1種含む薄膜を固体材料の表面に形成する工程、及び
    (2)固体材料に、N-F結合を有する有機化合物を少なくとも1種含む薄膜側から露光する工程
    を含むエッチング処理物の製造方法。
  16. 請求項15に記載の製造方法により製造されたエッチング処理物。
PCT/JP2009/056387 2008-03-28 2009-03-27 エッチング方法 WO2009119848A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505871A JP5306328B2 (ja) 2008-03-28 2009-03-27 エッチング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-085942 2008-03-28
JP2008085942 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119848A1 true WO2009119848A1 (ja) 2009-10-01

Family

ID=41114034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056387 WO2009119848A1 (ja) 2008-03-28 2009-03-27 エッチング方法

Country Status (2)

Country Link
JP (1) JP5306328B2 (ja)
WO (1) WO2009119848A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139048A (ja) * 2009-12-01 2011-07-14 Osaka Univ 少なくとも片面が粗面化された太陽電池用基板
WO2013024823A1 (ja) 2011-08-12 2013-02-21 国立大学法人大阪大学 エッチング方法及び太陽電池用固体材料の表面加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260477A (ja) * 1993-03-05 1994-09-16 Nippondenso Co Ltd 選択エッチング方法
JP2005268380A (ja) * 2004-03-17 2005-09-29 Renesas Technology Corp ウェットエッチング装置、およびウェットエッチング方法。
WO2007058284A1 (ja) * 2005-11-18 2007-05-24 Mitsubishi Gas Chemical Company, Inc. ウエットエッチング方法及びウエットエッチング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260477A (ja) * 1993-03-05 1994-09-16 Nippondenso Co Ltd 選択エッチング方法
JP2005268380A (ja) * 2004-03-17 2005-09-29 Renesas Technology Corp ウェットエッチング装置、およびウェットエッチング方法。
WO2007058284A1 (ja) * 2005-11-18 2007-05-24 Mitsubishi Gas Chemical Company, Inc. ウエットエッチング方法及びウエットエッチング装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139048A (ja) * 2009-12-01 2011-07-14 Osaka Univ 少なくとも片面が粗面化された太陽電池用基板
WO2013024823A1 (ja) 2011-08-12 2013-02-21 国立大学法人大阪大学 エッチング方法及び太陽電池用固体材料の表面加工方法
CN103733357A (zh) * 2011-08-12 2014-04-16 国立大学法人大阪大学 蚀刻方法和太阳能电池用固体材料的表面加工方法
JPWO2013024823A1 (ja) * 2011-08-12 2015-03-05 国立大学法人大阪大学 エッチング方法及び太陽電池用固体材料の表面加工方法

Also Published As

Publication number Publication date
JPWO2009119848A1 (ja) 2011-07-28
JP5306328B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
TWI440993B (zh) Wafer cleaning method
US6310018B1 (en) Fluorinated solvent compositions containing hydrogen fluoride
TWI460263B (zh) Protective film forming liquid
CN102934207B (zh) 保护膜形成用化学溶液
CN103299403B (zh) 保护膜形成用化学溶液
TWI601810B (zh) Preparation of a protective film-forming solution
JP2010272852A (ja) シリコンウェハ用洗浄剤
CN102971835B (zh) 保护膜形成用化学溶液以及晶片表面的清洗方法
JP6191372B2 (ja) ウェハの洗浄方法
KR102391370B1 (ko) 웨이퍼의 표면 처리 방법 및 당해 방법에 이용하는 조성물
WO2015129884A1 (ja) シリコン基板
KR101657572B1 (ko) 발수성 보호막 및 보호막 형성용 약액
WO2017159447A1 (ja) 撥水性保護膜形成剤、撥水性保護膜形成用薬液、及びウェハの洗浄方法
JP5306328B2 (ja) エッチング方法
JP5850939B2 (ja) エッチング方法及び太陽電池用固体材料の表面加工方法
TWI495715B (zh) A liquid for forming a water-repellent protective film, and a method for cleaning the wafer using the same
JP2017168804A (ja) ウェハの洗浄方法及び該洗浄方法に用いる薬液
JP2011139048A (ja) 少なくとも片面が粗面化された太陽電池用基板
WO2005119367A1 (ja) 撥水性組成物、撥水性薄膜および撥水性親水性パターンを有する薄膜
KR20200089305A (ko) 표면 처리제 및 표면 처리체의 제조 방법
JP7161121B2 (ja) 撥水性保護膜形成用薬液、その調製方法、及び表面処理体の製造方法
JP2013058723A (ja) エッチング方法
JP2013182963A (ja) エッチング方法
JP2007248726A (ja) 親水性領域と撥水性領域を有する処理基材およびその製造方法
CN104662645A (zh) 保护膜形成用化学溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505871

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724977

Country of ref document: EP

Kind code of ref document: A1