WO2009119713A1 - 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法 - Google Patents

管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法 Download PDF

Info

Publication number
WO2009119713A1
WO2009119713A1 PCT/JP2009/056062 JP2009056062W WO2009119713A1 WO 2009119713 A1 WO2009119713 A1 WO 2009119713A1 JP 2009056062 W JP2009056062 W JP 2009056062W WO 2009119713 A1 WO2009119713 A1 WO 2009119713A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
screw element
measurement
axis
tube
Prior art date
Application number
PCT/JP2009/056062
Other languages
English (en)
French (fr)
Inventor
本田 達朗
谷田 睦
誠司 平岡
泰久 加佐
コンラッド フリードリッヒ
エルハルト グリューナー
Original Assignee
住友金属工業株式会社
カール マール ホールディング ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社, カール マール ホールディング ゲーエムベーハー filed Critical 住友金属工業株式会社
Priority to AU2009229943A priority Critical patent/AU2009229943B2/en
Priority to CA2718224A priority patent/CA2718224C/en
Priority to EP09726056.6A priority patent/EP2259015B1/en
Priority to US12/934,822 priority patent/US8804104B2/en
Priority to PL09726056.6T priority patent/PL2259015T3/pl
Priority to BRPI0910043-1A priority patent/BRPI0910043B1/pt
Priority to CN200980111112.1A priority patent/CN101981408B/zh
Priority to MX2010010441A priority patent/MX2010010441A/es
Priority to JP2009527633A priority patent/JP4486700B2/ja
Publication of WO2009119713A1 publication Critical patent/WO2009119713A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2425Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of screw-threads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • G01B5/16Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures between a succession of regularly spaced objects or regularly spaced apertures
    • G01B5/163Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures between a succession of regularly spaced objects or regularly spaced apertures of screw-threads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/204Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures of screw-threads

Definitions

  • the present invention is applied to a screw element measuring device for measuring a screw element at a pipe end portion of a threaded pipe such as an oil well pipe, and an automatic continuous processing line such as a pipe manufacturing line and a finishing line including a threaded pipe inspection process.
  • the present invention relates to a screw element measuring system including the screw element measuring device.
  • the present invention also relates to a screw element measuring method using the screw element measuring apparatus.
  • FIG. 6 is a cross-sectional view showing an example of a tube end portion of a threaded tube
  • FIG. 7 is a partially enlarged view of the threaded portion of FIG.
  • the screw A2 at the end of the tube has a threaded portion A5 provided with a thread A3 and a thread groove A4, a parallel portion A7 provided on the tip side of the screw A5, and a tip of the tube.
  • It may include a seal portion A6 that is provided and has a tapered shape, and is designed and processed to an appropriate size.
  • this screw is an important quality control item because tolerance is defined for each element of each part having a complicated shape.
  • Patent Document 1 in a method of irradiating light parallel to a screw groove and detecting light passing through a screw, an image of a contact tip of a contact sensor is shown on a measured screw shape diagram (hereinafter referred to as a screw profile). It is disclosed to superimpose so as to be virtually inscribed and to measure the screw element using the coordinates of the virtual contact tip at this time.
  • the method described in Patent Document 1 is based on the assumption that a conventional result is a true value by deriving an output close to a test result that has been performed by a person using an API gauge (contact gauge with a contact tip). This method aims to obtain a highly accurate output.
  • Patent Document 2 while measuring the end face position and inclination of the mechanical seal with a contact method, and obtaining the position and inclination of the screw end face, and measuring the outer diameter of the seal part and the screw part etc. with a contact type, A configuration in which an outer shape (surface irregularity), that is, a screw profile, is measured by a non-contact type (optical type) is disclosed. That is, it is a method of measuring and synthesizing the exact shape of the screw joint in a non-contact manner based on the inclination of the screw shaft measured by the contact method and the outer diameter of the screw portion.
  • This measurement method is based on high-accuracy data measured by the contact method, and the accuracy of the screw shaft is corrected by correcting the inclination of the screw shaft, while the screw profile that requires a large number of measurement points is optical. It aims at speeding up by measuring.
  • As an optical measurement a method is used in which a laser beam is projected as parallel light, and a position where this beam is blocked by the screw is detected by a photodetector placed through the screw.
  • Japanese Patent Application Laid-Open No. H10-228561 also discloses that the thermal expansion is taken into account as an influence of temperature, the temperature of the reference sample is measured, and the result is used for correction.
  • flank surface A8 on the inner side in the pipe axial direction of the thread of the pipe end A flank surface (hereinafter referred to as a hook-shaped flank surface A8h), the flank surface A8 on the side where a load is applied with respect to the tensile force in the tube axis direction, approaches the thread center portion as it goes from the distal end portion to the base end portion of the thread A3. ) Is used.
  • a screw element for the hook-shaped flank A8h makes automatic measurement even more difficult.
  • the present invention has been made in view of such a problem, and a screw element measuring device capable of accurately measuring a screw element related to a flank surface among screw elements at a tube end of a threaded tube, and a screw including the screw element measuring device
  • An object of the present invention is to provide a screw element measuring method using the element measuring system and the screw element measuring apparatus.
  • the inventors of the present invention examined the problems of the conventional method. As a result, the following knowledge was obtained.
  • Patent Documents 1 and 2 describe that a screw profile is measured in a method of irradiating light parallel to a screw groove and detecting light passing through the screw.
  • the screw profile is curved, in the optical detection method for detecting parallel light, the flank surface may be hidden by the shadow of the ridge line of the thread and the flank surface may not be detected accurately.
  • the flank is detected when detecting the position of the flank surface at the center in the height direction of the thread. The error caused by the fact that the surface is hidden by the shadow of the thread ridge line cannot be ignored.
  • the spatial coordinate axis in this description is an orthogonal coordinate system.
  • the centripetal axis in the tube gripping mechanism to be described later is taken as the X axis.
  • An axis perpendicular to the X axis and parallel to the horizontal plane is defined as the Y axis, and an axis perpendicular to the XY plane (vertical direction) is defined as the Z axis.
  • FIG. 8 is a diagram for explaining a state of projecting a locus of a central position of a flank surface of a flank in a general screw.
  • FIG. 8A shows a state where the locus of the central position of the flank surface in the thread direction intersects with the plane U perpendicular to the Y axis.
  • FIG. 8B shows a projection onto the plane V perpendicular to the X axis when the intersection of the plane U and the Y axis in FIG. 8A is on the central position of the flank in the thread direction.
  • FIG. 8C shows the flank surface and the plane when the intersection of the plane U and the Y axis in FIG. 8A is on the central position of the flank in the thread direction (the state shown in FIG. 8B). The line of intersection with U is shown.
  • the error is suppressed as compared with the case of irradiating parallel light in the direction along the Z axis, but the projected portion of the intersection line between the flank surface and the plane U onto the X2 axis is still detected as a shadow. .
  • FIG. 9 is a diagram illustrating an example of an intersection line between the flank plane and the plane U in the X2-Z2 coordinates in order to estimate an error when the parallel light is irradiated in the direction along the Z2 axis.
  • the screw in FIG. 9 is a calculation result of an outer radius of 90 mm, a screw thread height of 3 mm, and a screw pitch of 6 mm, and a flank surface having a shape perpendicular to the screw axis.
  • the measurement error at the center position of the thread height of the flank is 2 ⁇ m due to the shadow of the thread ridgeline. In the case of a hook-like flank surface, this error further increases.
  • FIG. 10 is a diagram for explaining the influence caused by this angle difference.
  • FIG. 10 shows the difference between the angle formed by the light projecting direction (Z2 axis) with respect to the Z axis and the lead angle due to the angular difference between the screw axis and the tube axis in the screw having the same shape as FIG.
  • the cross line between the flank surface and the plane U in the X2-Z2 axis coordinate system in the plane U when there is a difference between 0.029 ° and 0.11 ° is shown. Since the projected portion of the intersection line on the X2 axis is a shadow, the flank surface in the case where there is a difference of 0.11 ° between the angle formed by the light projecting direction (Z2 axis) with respect to the Z axis and the lead angle.
  • the measurement error at the center of the thread height is 33 ⁇ m in the X-axis direction. Similarly, when there is a difference of 0.059 °, the error is 17 ⁇ m, and when there is a difference of 0.029 °, the error is 9 ⁇ m.
  • a gripping mechanism with high centripetal accuracy means that when a straight and round rod is gripped, the deviation between the axis of this rod and the gripping center of the gripping mechanism is sufficiently small (for example, the deviation is well below 0.1 mm).
  • the deviation between the tube axis and the gripping center of the gripping mechanism is caused by the bending of the tube, the roundness disorder, the influence of the roughness of the tube surface, the centripetal error of the gripping mechanism (the gripping due to the gripping mechanism). This is because a shift between the center and the tube axis) occurs.
  • the shift between the gripping center of the gripping mechanism and the tube axis is added to the shift between the tube shaft and the screw shaft, making it more difficult to obtain the screw shaft position.
  • Patent Document 2 in order to obtain the coordinates, three rods are inserted into the inner surface of the tube and inscribed so that the measuring stage is moved by the reaction force generated by the inscribed rod, and the center of the measuring stage is obtained. It is trying to make the point coincide with the tube center point, that is, coincide with the screw center.
  • the screw shaft of the screw formed by lathe processing and the tube shaft of the threaded tube in the non-turned portion do not necessarily match. For this reason, the operation of making the measurement stage center point coincide with the tube center point as described above may not make the measurement stage center point coincide with the screw center.
  • the screw element measuring apparatus is an apparatus for measuring the screw element at the tube end of a threaded tube, which is made to solve the above-described problem, and is a light source with respect to the tube axis.
  • the contact sensor is brought into contact with the optical sensor for measuring the first screw element and the screw flank surface.
  • a contact sensor for measuring the second screw element, a first screw element obtained from the optical sensor, and a second screw element obtained from the contact sensor are provided. It has an arithmetic processing means for combining and calculating a screw element.
  • the screw element measuring method is a measuring method for measuring the screw element at the tube end of a threaded tube, and leaks to the tube axis side opposite to the light source using an optical sensor.
  • the first probe element is measured by detecting light substantially parallel to the thread groove, and the contact probe is brought into contact with the screw flank surface using the contact-type sensor.
  • the step of measuring the second screw element by detecting the spatial coordinates of the contact probe in the step, the first screw element obtained from the optical sensor and the second screw element obtained from the contact sensor are synthesized. And a step of calculating a screw element.
  • the screw flank surface includes a hook-like flank surface having a hook shape.
  • the screw element measuring device and the screw element measuring method configured as described above, by detecting light substantially parallel to the screw groove out of the light leaking to the side opposite to the light source with respect to the tube axis, One screw element is measured. Further, the second screw element is measured by bringing the contact probe of the contact sensor into contact with the screw flank surface and detecting the spatial coordinates of the contact probe at the time of contact. The first and second screw elements detected respectively are synthesized by the arithmetic processing means, and the screw element of the screw to be measured is calculated.
  • the first screw element which is a screw element that is not related to the screw flank surface
  • the thread ridge line as described above
  • the second screw element which is a screw element related to the screw flank surface, which causes measurement errors due to shadows, is measured by a contact-type sensor, and these are combined to increase the screw element including the screw element related to the screw flank surface. It can be measured with high accuracy.
  • the screw element relating to the hook-shaped flank surface having a large amount of error hidden by the shadow of the thread ridge line and a large error can be measured with high accuracy only by optical measurement.
  • light substantially parallel to the screw groove is light (light beam) that is optically parallel, but the light beam direction (optical axis direction) is a light beam that is completely parallel to the screw groove. It is not limited.
  • the light substantially parallel to the screw groove includes a light beam whose optical axis direction is completely parallel to the Z axis described above and a light beam whose optical axis direction is between the Z axis and the screw groove. It is.
  • a case where only measurement by the optical sensor is performed and a case where both measurement by the optical sensor and measurement by the contact sensor are performed can be selected.
  • the first screw element that is the measurement result by the optical sensor is output as the measured screw element as it is, and the first screw element that is the measurement result by the optical sensor and the measurement result by the contact sensor. It is possible to select a case where a composite of two screw elements is output as a measured screw element.
  • the screw element measuring device of the present invention when applied as a measuring device in a continuous processing line of a pipe, the time allowed for measurement may be very short. It can be said that it is not always necessary to automatically measure all elements in all pipes in order to control quality in a continuous processing line using this screw element measuring apparatus. Since the measurement with the optical sensor is completed in a relatively short time, all the measurements with the optical sensor are performed, and the contact type measurement is performed for each predetermined number. Management becomes possible. That is, contact measurement is performed for each predetermined number, and if there is no abnormality, it can be determined that the tube between them is a non-defective product with respect to the second screw element related to the flank surface.
  • a defective product When a defective product is detected by contact measurement, it can be determined retroactively by a predetermined number of times or a detailed reinspection can be performed. Properly setting the specified number does not hinder productivity, but damage caused when a non-defective product is judged (when discarding all the specified number or going back to the specified number Cost and time damage) can also be suppressed relatively small.
  • an abnormality or defect is detected for the first screw element that is not related to the flank surface by measuring only with an optical sensor for a predetermined number, the abnormality or defect can be detected without performing measurement with a contact sensor. It is possible to quickly detect an operation abnormality such as screw formation and provide feedback.
  • a threaded tube is formed by forming a screw on a steel tube, and expands / contracts depending on the temperature. Therefore, there is a problem that the screw element also varies depending on the temperature.
  • a method of measuring a reference sample and correcting a thermal expansion error of the screw element measured by the screw element measuring apparatus based on the result is known. However, in this method, if a temperature difference occurs between the reference sample and the threaded tube to be measured, an error correspondingly occurs.
  • the thermal expansion coefficient of steel is about 1 ⁇ 10 5 (1 / ° C.)
  • the outer diameter of the tube having a radius of 90 mm changes by about 18 ⁇ m.
  • the temperature difference between the reference sample and the measurement target is the difference in dimensions and heat capacity between the reference sample and the measurement target, and the heat history that has passed through the screw element measurement (that is, the history of the ambient temperature and the heating / cooling of the measurement target itself). ⁇ It is caused by the difference in heat history during rolling and processing.
  • the temperature of the threaded tube is obtained, and the temperature correction is performed on the measured value of the screw element according to the temperature.
  • the following four methods (1) to (4) are conceivable as methods for obtaining the temperature of the threaded tube.
  • (1) A method of measuring the temperature of a threaded tube during measurement of a screw element or immediately before and after that.
  • (2) Measure the ambient temperature of the tube transport mechanism that transports the threaded tube to the measurement position of the screw element and the ambient temperature of the standby position when the threaded tube is waiting until the measurement starts at the measurement position, A method in which the measurement result is the temperature of the threaded tube.
  • it is configured to include a rotating means for rotating the threaded tube around a tube axis or a screw axis, and a rotation angle detecting means for detecting a rotation angle of the rotating means.
  • the threaded tube can be rotated by the rotating unit around the tube axis or the screw shaft, and the rotation angle can be detected by the rotation angle detecting unit, a plurality of locations (for example, 2 in the circumferential direction of the threaded tube).
  • a plurality of locations for example, 2 in the circumferential direction of the threaded tube.
  • a screw element measuring system includes a screw element measuring device having the above-described configuration, a gripping mechanism for fixing a threaded tube, and a height adjusting mechanism for adjusting the height of the threaded tube. And a height adjusting mechanism for substantially matching the center axis of the threaded tube with the gripping center of the gripping mechanism or the measurement base axis of the screw element measuring device.
  • the screw element measuring device When measuring a threaded tube to be processed in a continuous processing line etc. with the screw element measuring device with the above configuration, it is necessary to synthesize the optical measurement result and the contact measurement result, so that both measurements are completed. In the meantime, the threaded tube to be measured is gripped by the gripping mechanism to be stationary.
  • the height adjustment mechanism can adjust the height at which the threaded tube is placed so that the measurement base axis of the screw element measuring device and the center axis of the threaded tube are aligned. As a result, even when tubes with different diameters are successively transferred to the screw element measuring device in a continuous processing line or the like, the variation of the measurement position can be kept within the radius variation of the tube, so that the screw element can be more quickly processed.
  • the centripetal accuracy of the screw shaft by the gripping mechanism is preferably within about 2 mm.
  • the position to be detected by this light receiving means can be determined systematically and reliably detected. It can be said that obtaining the centripetal accuracy of the screw shaft of about several mm is possible even when there is a deviation between the screw shaft and the tube shaft.
  • the height of the threaded tube is adjusted using the height adjustment mechanism to supplement the centripetal function of the gripping mechanism, and the center axis of the threaded tube is adjusted to the gripping center of the gripping mechanism. May be moved so as to substantially match.
  • the tube axis of the threaded tube that has been transported is greatly deviated from the gripping center of the gripping mechanism, so that the center of the threaded tube is not centered well, or the threaded tube is excessively tilted at the measurement position. Can be prevented.
  • the distance between the measurement base axis of the screw element measuring device and the screw axis of the threaded tube to be measured is detected.
  • the position of the screw flank surface is measured by a contact type sensor to compensate for an error caused by the measurement by the optical sensor.
  • the synthesis accuracy when the first screw element, which is the measurement result of the optical sensor, and the second screw element, which is the measurement result of the contact sensor is low, the screw element cannot be measured with high accuracy. It is necessary to increase the accuracy.
  • the coordinates in both measurements can be matched with sufficient accuracy by comparing predetermined reference values (reference positions) of data obtained in both measurement results.
  • the influence of errors occurring in the light receiving axis direction (direction substantially parallel to the thread groove) of the optical sensor including the Z axis direction becomes a problem.
  • this error (1) an error caused by the depth of field of the optical system and (2) an error caused by a mismatch between the measurement base axis of the contact sensor and the screw axis of the threaded tube to be measured can be considered. .
  • the depth of field of the optical sensor is more tolerant to fluctuations of the screw shaft in the light receiving axis direction.
  • the deeper is preferable.
  • the depth of field is determined by the performance of the optical system. For example, when using a parallel light beam obtained by using a CCD camera as the light receiving means and using a commercially available telecentric lens of about 1 ⁇ as the condensing optical system, the error in (1) is 0.5 mm ( ⁇ 0.25 mm).
  • the error of (2) if the measurement base axis of the contact sensor does not match the screw axis of the threaded tube to be measured, the measured value of the contact sensor will be relative to the actually measured screw flank surface position. The screw flank surface position moved in the X-axis (screw shaft) direction by an amount corresponding to the lead angle is output. The amount of movement of the screw flank surface position becomes a measurement error of the contact sensor.
  • FIG. 12 is a diagram for explaining a case where the distance between the measurement base axis of the contact sensor and the thread axis of the threaded tube to be measured changes.
  • Table 1 below shows an error in the position of the screw flank surface in the X-axis direction in the case of FIG.
  • this lead angle error can be said to be within an allowable range if the distance between the measurement base axis of the contact sensor and the screw shaft (screw shaft height) is about 0.5 mm.
  • the error of the screw flank surface position in the X-axis direction exceeds 10 ⁇ m, and the measurement result exceeds the allowable range.
  • the error of (1) is dominant, it is preferable that the distance between the measurement base axis of the contact sensor and the screw axis is within about ⁇ 0.25 mm.
  • the measurement basic axis of the contact sensor is measured. More accurate measurement results by measuring the screw element after making the position and the position of the threaded shaft of the threaded tube to be measured with high accuracy and correcting the position of the measured data. Can be obtained.
  • the first screw element which is a screw element not related to the screw flank surface is measured by detecting light substantially parallel to the screw groove, while the optical measurement is performed as described above.
  • the second screw element, which is a screw element related to the screw flank surface, which causes a measurement error due to the shadow of the ridge line of the screw thread as described above is measured by a contact sensor, and these are combined to form the screw element. It is possible to measure with high accuracy including screw elements related to the surface.
  • the screw element relating to the hook-shaped flank surface having a large amount of error hidden by the shadow of the thread ridge line and a large error can be measured with high accuracy only by optical measurement.
  • the height at which the threaded tube is placed so that the measurement adjusting shaft of the screw element measuring device and the center axis of the threaded tube are aligned by the height adjusting mechanism. Can be adjusted. For this reason, even when tubes with different diameters are successively transferred to the screw element measuring device in a continuous processing line or the like, the variation of the measurement position can be kept within the radius variation of the tube, and the screw element can be moved more quickly. Can be measured.
  • the height of the threaded tube is adjusted using the height adjustment mechanism to supplement the centripetal function of the gripping mechanism, and the center of the threaded tube is centered on the gripping center of the gripping mechanism.
  • the axes can be moved so as to substantially coincide. For this reason, since the tube axis of the threaded tube that has been transported is greatly deviated from the gripping center of the gripping mechanism, the center of the threaded tube is not centered well, or the threaded tube is excessively inclined at the measurement position. Can be prevented.
  • FIG. 1 is a schematic configuration diagram of an embodiment of a screw element measuring system to which a screw element measuring device according to the present invention is applied. It is an expansion perspective view which shows the movement stage of the optical sensor and contact-type sensor of the screw element measuring apparatus in FIG. It is a side view of the height adjustment mechanism in the screw element measurement system of FIG. It is explanatory drawing about the measuring method of a flank surface by the contact-type sensor of this embodiment. It is explanatory drawing about a mode that a 1st screw element and a 2nd screw element are synthesize
  • FIG. 6 is a schematic sectional view parallel to the axial direction of the tube end portion on which the hook screw is formed
  • FIG. 7 is an enlarged view of one screw thread in FIG. In FIG. 6 and FIG. 7, the thread pitch and size are intentionally changed for the sake of clarity.
  • the screw A2 formed at the tube end of the threaded tube A1 as shown in FIGS. 6 and 7 includes a screw portion A5 having the shape of a thread A3 and a thread groove A4, and a seal portion formed at the tip of the tube end. A6 and a parallel part A7 connecting the screw part A5 and the seal part A6.
  • the screw flank surface A8 between the screw thread A3 and the screw groove A4 is a hook-shaped flank surface A8h. As shown in FIG.
  • the hook-shaped flank surface A8h is inclined so as to be positioned on the tube end surface side of the threaded tube in the screw axis direction from the tip end A3t of the screw thread A3 to the base end A3b.
  • Inclination angle ⁇ of such hook-shaped flank surface A8h (the angle when positioned on the threaded tube center side in the screw axis direction from the tip end A3t of the thread A3 toward the base end A3b is a positive angle) Is ⁇ 20 ° ⁇ ⁇ ⁇ 0 °, many are ⁇ 5 ° ⁇ ⁇ ⁇ 0 °, and a particularly typical one is ⁇ 3 °.
  • the screw elements of such screws vary depending on the type and structure of the screw, but are roughly the following screw elements.
  • the first screw element that can be measured only by the optical sensor 2 described later and the second screw element that is difficult to measure only by the optical sensor 2 are classified. .
  • the first screw element is a measurement element that does not relate to the detailed / strict measurement of the screw flank surface, and includes all elements that can be measured using the optical sensor 2.
  • thread part outer diameter, seal part outer diameter, parallel part outer diameter, thread groove diameter, thread height, thread groove depth, thread taper (axial change in thread diameter, axial change in thread groove diameter), It includes seal taper, taper change, circumferential deviation (ellipticity) of various outer diameters, seal portion axial length, parallel portion axial length, and the like.
  • angular part (ridgeline) of a screw thread, or a screw thread or a screw valley required for measuring a 2nd screw element are also contained.
  • the second screw element is a measurement element related to the detailed and exact measurement of the screw flank surface, and is an element that cannot be measured by the above-described optical sensor or cannot obtain sufficient measurement accuracy. That is, for example, screw flank surface coordinates, in particular, screw flank surface coordinates, screw flank surface angles, screw flank surface spacing (screw width, thread valley width, screw thread) at a part away (hidden) from the thread ridge line. Pitch, lead angle), and profile of the thread section including the thread flank surface. Moreover, the curvature radius of a seal part, the pipe inner peripheral surface diameter of a seal part, the taper of an inner peripheral surface, etc. are also included.
  • FIG. 1 is a schematic configuration diagram of an embodiment of a screw element measuring system to which a screw element measuring apparatus according to the present invention is applied
  • FIG. 2 is a movement of an optical sensor and a contact sensor of the screw element measuring apparatus in FIG. It is an expansion perspective view which shows a stage.
  • the screw element measuring apparatus 1 of the present embodiment leaks to the opposite side of the light source 21 with respect to the tube axis XA (described here as being substantially equal to the screw axis).
  • the contact probe 31 is brought into contact with the optical flank 2 for measuring the first screw element and the screw flank surface A8 including the hook-like flank surface A8h by detecting light substantially parallel to the screw groove A4.
  • the contact-type sensor 3 that measures the second screw element by detecting the spatial coordinates of the contact probe 31 at the time of contact, the first screw element obtained from the optical sensor 2, and the contact-type sensor 3 Arithmetic processing means 4 for calculating the screw element by synthesizing the second screw element obtained from the above.
  • the screw element measuring system 5 to which the screw element measuring device 1 is applied includes the screw element measuring device 1 and a gripping mechanism 6 for fixing the threaded tube A1, as shown in FIGS.
  • a height adjusting mechanism 7 that adjusts the height of the threaded tube A1 and substantially matches the center axis of the threaded tube with the gripping center of the gripping mechanism 6 or the measurement base axis of the screw element measuring device 1 And a height adjusting mechanism 7 to be operated.
  • the screw element measuring system 5 includes a pipe control device 8 that controls the movement and rotation of the threaded pipe A1 as well as controlling the movement of the screw element measuring apparatus 1, and the arithmetic processing means 4 includes: A command is given to the pipe control device 8, and the state of the threaded tube A1 and the measured values measured by the screw element measuring device 1 are totaled and calculated.
  • the screw element measuring system 5 is configured such that at least the threaded portion A5 of the threaded tube A1 is introduced into the atmosphere adjusting chamber 12 in which room temperature and humidity are suitably adjusted during measurement.
  • the arithmetic processing means 4 and the pipe control device 8 are constituted by a general purpose or dedicated computer, and the arithmetic processing means 4 receives information (design values, etc.) of the threaded pipe A1 to be measured as a host computer (not shown). Or the measured and calculated screw elements can be transferred to a host computer, and the measurement results can be output to output means (not shown) such as a monitor or printer. In addition, the arithmetic processing means 4 calculates necessary screw elements such as a screw diameter and a screw pitch as numerical data from the measurement result. It is also possible to compare the obtained numerical data (screw element) with the design value.
  • the pipe control device 8 moves the predetermined threaded pipe A1 on the processing line to the measurement state as shown in FIG. 1 in conjunction with the host computer and the arithmetic processing means 4 and measures it while holding it. In addition, the control for sending out to the downstream processing line is also performed.
  • Such a thread element measuring system 5 is applied on a continuous processing line (not shown) of the threaded tube A1. More specifically, the screw element measuring device is configured so that the threaded tube A1 to be measured by a tube conveying mechanism (not shown) provided on the continuous processing line substantially coincides with the measurement basic axis of the screw element measuring device 1. It is measured after being conveyed (along the tube axis XA direction).
  • the height adjusting mechanism 7 of the present embodiment also functions as a part of a tube transport mechanism that transports the threaded tube A1 in the tube axis direction. More specifically, the height adjusting mechanism 7 has a V roll (not shown) with a reduced central roll diameter, and the tube axis XA of the threaded tube A1 is the V roll in the XY plan view.
  • the threaded tube A1 is conveyed in the tube axis direction by rotating the V-roll in a state substantially coincident with the groove position.
  • the measurement base axis X1 of the screw element measuring device 1 and the gripping center X6 of the gripping mechanism 6 are arranged so as to substantially coincide with the groove position of the V roll in the XY plan view.
  • FIG. 3 is a side view of a height adjustment mechanism in the screw element measurement system of FIG.
  • the height adjustment mechanism 7 is configured.
  • the height adjustment mechanism 7 adjusts the height for each height setting value corresponding to the outer diameter of the threaded tube A1 to be measured.
  • the height setting value is stored and controlled in advance in the pipe control device 8 or the like.
  • the height adjustment accuracy by the height adjustment mechanism 7 may be about several millimeters, but a higher one is preferable.
  • the threaded tube A1 thus adjusted in height by the height adjusting mechanism 7 and conveyed by the V-roll is composed of the tube axis XA (screw shaft) of the threaded tube A1 and the gripping center X6 (and the gripping mechanism 6).
  • the screw element measuring device 1 is inserted into the gripping mechanism 6 in a state where it substantially coincides with the measurement basic axis X1).
  • a tube end detection device 9 is arranged at a predetermined distance downstream of the gripping mechanism 6 in the conveying direction of the threaded tube A1. When the tube end detection device 9 detects the threaded tube A1, the tube feeding by the tube transport mechanism (V roll) is stopped. It should be noted that the stop position accuracy at the tube end of the threaded tube A1 at this time can be easily set to about 2 mm.
  • Stop signal sent to the pipe control device 8 by stopping the threaded pipe A1 (actually, the movement of the threaded pipe A1 may be detected, or the threaded pipe A1 may be stopped by stopping the V roll)
  • the tube control device 8 transmits a control signal to the gripping mechanism 6 to cause the gripping mechanism 6 to grip the threaded tube A1.
  • the gripping mechanism 6 of the threaded tube A1 one having a structure similar to that of a chuck mechanism or the like provided for gripping a highly round cylindrical rod and performing a lathe of about 10 ⁇ m can be used.
  • the gripping mechanism 6 is provided with a rotating means (not shown) for rotating the threaded tube A1 around the tube axis and a rotation angle detecting means (not shown) for detecting the rotation angle of the rotation. .
  • the distance between the gripping position of the threaded tube A1 by the gripping mechanism 6 and the tube end surface of the threaded tube A1 is as short as possible within a range in which screw element measurement is possible. Thereby, the influence of the bending of a pipe
  • the screw shaft at the tube end is generally several mm in each of the horizontal direction (X-axis and Y-axis directions) and the height direction (Z-axis direction) even if the tubes have the same design dimensions. Variations occur. This is because the two factors of the fluctuation of the bending of the pipe itself and the fluctuation of the deviation between the screw shaft and the pipe shaft are combined.
  • the screw element measuring apparatus 1 of the present embodiment is an optical type attached to high-precision X, Y, Z axis moving stages 10X, 10Y, 10Z arranged on a measurement base 10, respectively.
  • the sensor 2 and the contact sensor 3 are configured.
  • the optical sensor 2 and the contact sensor 3 are configured to be three-dimensionally movable by moving on the X, Y, and Z axis moving stages 10X, 10Y, and 10Z. These three-dimensional movement amounts are processed in the arithmetic processing means 4 by recording displacement with respect to a predetermined reference position.
  • a measurement base axis X1 is set as a measurement reference in the Z direction.
  • the optical sensor 2 and the contact sensor 3 are respectively moved to the X, Y, and Z axis moving stages 10X, 10Y, and 10Z so that the optical sensor 2 and the contact sensor 3 can be moved independently.
  • the X, Y, and Z axis moving stages 10X, 10Y, and 10Z are shared by the optical sensor 2 and the contact sensor 3 (on a set of X, Y, and Z axis moving stages).
  • the optical sensor 2 and the contact sensor 3 may be arranged on the In the present embodiment, the measurement base 10 and the gripping mechanism 6 are disposed on the anti-vibration shaking rack 13 in the atmosphere adjustment chamber 12, and the threaded tube A1 gripped by the gripping mechanism 6 is shaken. In addition to preventing the optical sensor 2 and the contact sensor 3 from shaking, the measurement error is reduced.
  • the measurement base axis X1 of the screw element measuring device 1 and the screw axis of the threaded tube to be measured are measured before measuring the screw element.
  • the distance (screw shaft height) is detected so that the detected screw shaft height is substantially zero, that is, the position of the measurement base axis X1 of the screw element measuring device 1 is substantially the same as the screw shaft position.
  • the position of the measurement base axis X1 of the screw element measuring device 1 is adjusted.
  • the optical sensor 2 is used as a means for detecting the screw shaft height.
  • a dedicated measuring device may be used separately from the optical sensor 2.
  • the light receiving means 22 is positioned immediately above the approximate screw shaft at a predetermined measurement site (a portion other than the screw portion A5 such as the parallel portion A7 or the seal portion A6) of the threaded tube A1.
  • a predetermined measurement site a portion other than the screw portion A5 such as the parallel portion A7 or the seal portion A6 of the threaded tube A1.
  • the optical sensor 2 is moved in the X-axis direction and the Y-axis direction.
  • the position of the measurement base axis X1 (Z-axis coordinates) is temporarily set, and the measurement site is photographed by the light receiving means 22 while moving the optical sensor 2 in the Z-axis direction.
  • the contrast of the image photographed by the light receiving means 22 is evaluated, and the position of the optical sensor 2 (Z-axis coordinates with the measurement base axis X1 set as the measurement reference) when the contrast becomes maximum is detected.
  • the screw shaft height is calculated based on the detected position of the optical sensor 2 and the design values such as the dimensions of the optical sensor 2 and the outer radius of the measurement site. In other words, the position (Z-axis coordinate) of the screw shaft with the measurement base axis X1 set as the measurement reference is detected.
  • the screw shaft height calculated in this way was set to be substantially 0, that is, the position of the changed measurement base axis X1 was set to be substantially the same as the detected screw shaft position.
  • the position of the measurement base axis X1 is changed.
  • the height of the measurement base axis X1 of the screw element measuring device 1 based on the position of the optical sensor 2 where the contrast of the photographed image is maximized, It is possible to include the position of the screw shaft (Z-axis coordinates) within the focal range.
  • the screw element measuring device As described above, by detecting the distance between the measurement base axis X1 of the screw element measuring device and the screw shaft of the threaded tube to be measured before the measurement by the screw element measuring device, the screw element measuring device, particularly the contact type The screw element is measured after the position of the measurement base axis X1 of the sensor 3 and the position of the screw axis of the threaded tube A1 to be measured are matched with high accuracy, and position correction is performed on the measured data. As a result, a more accurate measurement result can be obtained.
  • the screw shaft position and the measurement base axis X1 of the screw element measuring device 1 can be made to coincide with each other in the height direction with an accuracy of about 0.1 mm to 0.2 mm. It is useful with sufficient accuracy.
  • the optical sensor 2 includes a light source 21 such as a halogen lamp that emits light toward the threaded portion A5 of the threaded tube A1, and the light source 21 with respect to the tube axis XA ( ⁇ threaded axis) of the threaded tube A1.
  • a light source 21 such as a halogen lamp that emits light toward the threaded portion A5 of the threaded tube A1
  • the light source 21 with respect to the tube axis XA ( ⁇ threaded axis) of the threaded tube A1.
  • the light receiving means 22 for detecting light substantially parallel to the thread groove A4
  • the light source 21 and the light receiving means 22 are paired with the X, Y.
  • Z-axis moving stages 10X, 10Y, and 10Z are configured to be movable.
  • the rotary stage 10R is integrally rotatable. Specifically, the optical sensor 2 on the rotary stage 10R is rotated around the Y axis based on a known lead angle (design value).
  • the light substantially parallel to the thread groove A4 is not limited to a light beam whose optical axis direction is completely parallel to the thread groove A4, and the optical axis direction is completely Z axis.
  • a light flux in a parallel direction and a light flux whose optical axis direction is between the Z axis and the thread groove A4 are also included. It is not limited to the case of being completely parallel to the thread groove A4.
  • the bending of the pipe end portion of the threaded pipe A1 to be measured has occurred, This is because even if the light receiving means 22 is tilted (by the lead angle) based on the value, it may be difficult to increase the parallelism to the actual thread groove A4.
  • the image obtained by the measurement by the optical sensor 2 appears to have the thread A3 or the ridge line of the thread groove A4 spread (shown in FIG. 7).
  • the position of the ridgeline (edge) of the screw thread A3 or the thread groove A4 cannot be determined.
  • the position of the edge on at least one side can be determined with reference to the central portion in the screw axis direction of the screw thread A3 (or screw groove A4).
  • the optical sensor 2 is rotated around the Y axis, and measured, for example, by tilting it in a direction approximately in the middle between the direction corresponding to the previously known lead angle (design value) and the Z axis. To do. If the light receiving unit 22 can receive a parallel light component, the light projected from the light source 21 may be parallel light or may not be parallel light.
  • a CCD camera having a photographing range of about 5 mm ⁇ 5 mm to 10 mm ⁇ 10 mm (light receiving element having a pixel interval of about several ⁇ m to 10 ⁇ m) can be used.
  • a CCD camera using a telecentric lens parallel light can be easily received by the light receiving element.
  • resolution and accuracy of one-fifth to several tenths of a pixel size can be obtained by performing sub-pixel processing.
  • the light projected by using a laser, a telecentric lens or the like as the light source 21 is converted into parallel light, while the light receiving means 22 is provided with a telecentric lens as described above. It is also possible to employ an optical system that is not used.
  • the above-described measurement base axis X1 is set as the reference height. That is, the optical sensor 2 is focused on the measurement base axis X1, and a profile around the screw is photographed. Specifically, while irradiating light from the light source 21 to the edge of the screw (located at substantially the same height as the screw axis and the Z-direction position), the light receiving means 22 uses the outer shape of the threaded tube A1 (by a tube or screw) Take a picture of the shaded area. By using the CCD camera having the telecentric lens described above as the light receiving means 22, light substantially parallel to the optical axis of the light receiving means 22 can be condensed near the edge of the screw and imaged.
  • the brightness detection results for the pixel group existing in the area having the detection brightness E2 and the surrounding area are represented by the horizontal axis coordinates of the position of each pixel (the center position of each pixel corresponding to the real space).
  • the detected luminance at the pixel is plotted in an orthogonal coordinate system with the vertical axis coordinate.
  • Data plotted in this orthogonal coordinate system has a monotonically increasing or monotonic decreasing relationship in the region having the detected luminance E2. This relationship is approximated by an appropriate function (for example, a linear function).
  • horizontal axis coordinates corresponding to a preset threshold value of detection luminance (threshold value for detecting the coordinates of the edge of the screw) are calculated based on the function.
  • the calculated horizontal axis coordinates are set as the coordinates of the edge of the screw.
  • the screw outer shape that is, the profile (excluding the flank surface) at the measurement location by the optical sensor 2 is obtained. Since the dimension range of the screw to be measured generally exceeds the photographing range of the light receiving means 22, the optical sensor 2 is moved to a predetermined position by the respective axis moving stages 10X, 10Y, and 10Z and repeatedly measured. After that, the arithmetic processing means 4 can calculate the measurement value of the necessary first screw element such as a profile by performing a process of connecting the measurement images at a plurality of locations.
  • the contact sensor 3 After the measurement by the optical sensor 2 as described above, the contact sensor 3 is moved and controlled, and the second screw element related to the screw flank surface is measured.
  • a measuring device generally called a three-dimensional measuring machine can be applied.
  • the contact sensor 3 is provided with a contact probe 31 that can move three-dimensionally on the axis moving stages 10X, 10Y, and 10Z.
  • the movement position of the contact probe 31 is read by, for example, a high-precision linear encoder, and the position data is sent to the arithmetic processing means 4.
  • a substantially spherical contact 31a is provided at the tip of the contact probe 31, and a minute force applied to the contact 31a at the moment when the contact 31a contacts the measurement object is detected, and the contact 31a at that time is detected.
  • the center position coordinates of the spherical surface are calculated.
  • the diameter of the contact 31a is preferably measured at 0.5 mm or less, more preferably 0.1 mm or more and 0.3 mm or less. Since the three-dimensional coordinate deviation from the attachment position of the contact probe 31 to the contact 31a is constant, it is calibrated in advance based on the reference sample measurement result so that the center position coordinate of the contact 31a can be calculated from the movement position of the contact probe 31. Is done.
  • FIG. 4 is an explanatory diagram of a flank measurement method using the contact sensor according to the present embodiment.
  • a movement plan is prepared in advance so that the contact probe 31 (contact 31a) can move relative to the screw A2 based on the design data of the screw A2 to be measured.
  • the position of the screw valley, the height of the screw shaft, and the approximate position of the flank surface are input to the arithmetic processing means 4 as coordinates. In this way, the movement plan is corrected based on the various coordinates obtained as the measurement result of the optical sensor 2, and the movement route of the contact 31a is determined.
  • the inclination of the contact 31a is adjusted to an angle larger than the inclination of the flank surface A8 (A8h) to be measured. That is, the contact 31a is adjusted so that the other part (support part) of the contact probe 31 does not contact the flank surface A8 (A8h) or the thread ridge line part.
  • the contact probe 31 is moved in the Z-axis direction so that the contact 31a is adjusted to the same position as the measurement base axis X1 (that is, the screw shaft position described above). .
  • the contact 31a is moved in the Y axis direction to a position away from the screw groove A4 by a predetermined distance.
  • the contact probe 31 is moved in the X-axis direction and in the direction approaching the flank surface A8 (A8h) to be measured, and the contactor at the moment when the contactor 31a contacts the flank surface A8 (A8h).
  • the coordinates 31a (XY coordinates) are read.
  • the contact probe 31 is moved so that the contact 31a is separated from the flank surface A8 (A8h) by a predetermined distance in the X-axis direction, and is also predetermined in the Y-axis direction (in the direction away from the screw shaft in FIG. 4).
  • the contact probe 31 is moved again in the X-axis direction and in the direction approaching the flank surface A8 (A8h) to be measured, and the contactor at the moment when the contact probe 31 is again in contact with the flank surface A8 (A8h).
  • the coordinates 31a (XY coordinates) are read. By repeating such coordinate detection a required number of times set in advance according to the screw specifications, the flank surface position is determined as a set of obtained coordinate points.
  • the determined flank surface position is positioned as the ridge line of the thread A3 or the thread valley A4 measured by the optical sensor 2, and the position of the entire thread portion A5 is specified.
  • the second screw element related to the flank surface is obtained from the position data related to the flank surface specified in this way.
  • FIG. 5 is an explanatory view about signs that the 1st screw element and the 2nd screw element are compounded.
  • FIG. 5 (a) shows a profile based on the measurement result of the first screw element
  • FIG. 5 (b) shows a profile based on the measurement result of the second screw element
  • FIG. 5 for the sake of convenience, only the hook-shaped flank surface A8h is measured with the second screw element. Specifically, as shown in FIG.
  • the first screw element and the second screw element are synthesized as coordinate points in the XY plane on the measurement base axis X1 (screw axis position) described above.
  • the flank surface A8 (A8h) is synthesized so that the second screw element is preferentially adopted.
  • FIG. 5 (c) only the solid line portion is employed, and the profile near the hook-shaped flank surface A8h obtained as the measurement result (FIG. 5 (a)) of the first screw element indicated by the broken line is not employed. .
  • the threaded tube A1 is gripped by the gripping mechanism 6 by the rotating means of the gripping mechanism 6 after the measurement at the predetermined location.
  • the measurement is performed again after rotating a predetermined angle around the center and detecting the rotation angle of the screw by the rotation angle detecting means.
  • the rotation angle of the threaded tube A1 or the rotation angle of the gripping mechanism 6 can be used approximately.
  • the rotating means does not necessarily have to be incorporated in the gripping mechanism 6, and a separate rotating means may be provided.
  • the position of the screw shaft detected before the rotation causes the threaded tube A1 to be positioned at a predetermined angle (for example, 90) by the gripping mechanism 6. °) Calculate in advance which position to move to after rotation. Then, after actually rotating the threaded tube A1 by the predetermined angle by the gripping mechanism 6, the optical sensor 2 and the contact sensor 3 are moved and measured based on the calculated position of the screw shaft after the movement. It is preferable.
  • the screw element measurement system 5 of the present embodiment includes a temperature sensor 11 that measures the temperature of the threaded tube A1 to be measured, and performs temperature correction on the measured value of the screw element according to the temperature. Do. In this case, by correcting the value of the measured screw element based on the temperature of the threaded tube A1 that is actually used for measurement, it is possible to prevent a temperature difference from occurring due to a difference in measurement object and measurement time. More accurate measurement results can be obtained.
  • thermal expansion of the screw element measuring device 1 itself can be considered. That is, the movement amount (sensor position) when the optical sensor 2 or the contact sensor 3 is moved by the axis movement stages 10X, 10Y, and 10Z may cause an error due to thermal expansion.
  • an encoder using quartz glass or low thermal expansion glass as a substrate is used as a sensor position detection method, such an error is acceptable.
  • the temperature of the threaded tube A1 substantially matches the factory temperature adjusted appropriately. For this reason, it is good also as correcting the value of the measured screw element based on the said measurement temperature by measuring the atmospheric temperature of the position which the threaded pipe
  • the position of the temperature sensor 11 can also be arranged at a position other than the position exemplarily shown in FIG. That is, it does not necessarily have to be near the screw portion A5.
  • the central part of the threaded tube A1 may be used. Further, even if the temperature of the threaded tube A1 is measured upstream of the line of this measurement system, if the time delay until the screw element measurement is small and the temperature fluctuation is small, the temperature measurement value can be used for temperature correction. Is possible.
  • the screw element measuring apparatus 1 of the present embodiment As described above, according to the screw element measuring apparatus 1 of the present embodiment, light that is substantially parallel to the thread groove A4 is detected from the light leaking to the opposite side of the tube axis from the light source. Thus, the first screw element is measured. Further, the second screw element is measured by bringing the contact probe 31 of the contact sensor 3 into contact with the screw flank surface A8 (A8h) and detecting the spatial coordinates of the contact probe 31 (contact 31a) at the time of contact. . The first and second screw elements detected respectively are synthesized by the arithmetic processing means 4, and the screw element of the screw to be measured is calculated.
  • the first screw element that is not related to the screw flank surface A8 (A8h) is measured, while the optical measurement is as described above.
  • the second screw element which is a screw element related to the screw flank surface A8 (A8h), which causes a measurement error due to the shadow of the ridgeline of the screw thread A3, is measured by the contact sensor 3, and these are combined to obtain the screw element.
  • the screw element related to the hook-shaped flank surface A8h which has a large amount of error hidden by the shadow of the ridgeline of the screw thread A3 and a large error, can be measured with high accuracy only by optical measurement.
  • the threaded tube A1 is arranged so that the height adjusting mechanism 7 causes the measurement base axis X1 of the screw element measuring device 1 and the center axis of the threaded tube A1 to coincide with each other.
  • the height to be placed can be adjusted. For this reason, even when tubes having different diameters are sequentially conveyed to the screw element measuring apparatus 1 in a continuous processing line or the like, the variation of the measurement position can be accommodated within the radius variation of the tube, and the screw element can be more quickly performed. Can be measured.
  • the height of the threaded tube A1 is adjusted using the height adjusting mechanism 7 in order to supplement the centripetal function of the gripping mechanism 6, and the gripping center of the gripping mechanism 6 is Can be moved so that the central axis of the threaded tube A1 substantially coincides. For this reason, since the tube axis of the threaded tube A1 that has been conveyed is greatly deviated from the gripping center of the gripping mechanism 6, the centering of the threaded tube A1 is not performed well, or the threaded tube A1 is excessively inclined at the measurement position. It is possible to prevent the measurement of elements from being hindered.
  • the screw element measurement system 5 of the present embodiment it is possible to select a case where only the measurement by the optical sensor 2 is performed or a case where both the measurement by the optical sensor 2 and the measurement by the contact sensor 3 are performed. Composed.
  • the first screw element that is the measurement result by the optical sensor 2 is output as the measured screw element as it is, and the measurement result by the first screw element and the contact sensor 3 that is the measurement result by the optical sensor 2. It is possible to speed up the measurement of the screw element without causing any trouble in quality control by switching at an appropriate timing the output of the synthesized second screw element as the measured screw element. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

光学式センサ2により、管軸に対して光源21とは反対側に漏れ出た光のうち、ねじ溝A4に対して略平行な光を検出することにより、第1ねじ要素が測定される。また、ねじフランク面A8に接触式センサ3の接触プローブ31を接触させ、接触時における接触プローブ31の空間座標を検出することにより、第2ねじ要素が測定される。それぞれ検出された第1および第2ねじ要素は、演算処理手段4により合成されて、測定対象のねじのねじ要素が演算される。

Description

管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法
 本発明は、油井管等のねじ付き管の管端部のねじ要素を測定するねじ要素測定装置およびねじ付き管の検査工程を含む管の製造ラインおよび精整ライン等の自動連続処理ラインにおいて適用可能な前記ねじ要素測定装置を含むねじ要素測定システムに関する。また、本発明は、前記ねじ要素測定装置を用いたねじ要素測定方法に関する。
 従来から油井管等において管端部同士を継ぐ上で、当該管端部にねじを形成し、このねじで継ぐ方法が使われてきた。このねじは、油井の深化や腐食環境性に対する要請に伴い、ねじ形状等において種々の改善がなされてきている(例えば、非特許文献1参照)。このねじ(後述する図6のねじ部から先端のシール部を含む)の形状は、油井管としての品質にとって重要である。
 このようなねじは、場合によっては、長さにして数十m、重さにして数百kg重に及ぶ管の端部に形成され、且つ、複雑・高精度なねじ形状を有するものである。
 図6は、ねじ付き管の管端部の一例を示す断面図であり、図7は、図6のねじ部における部分拡大図である。図6に示すように、管端部のねじA2には、ねじ山A3およびねじ溝A4が設けられるねじ部A5、当該ねじ部A5の先端側に設けられる平行部A7、および管の先端部に設けられテーパ形状を有するシール部A6を含む場合があり、おのおの適切な寸法に設計・加工されている。また、このねじは、複雑な形状の各部の要素それぞれに公差が定められ、重要な品質管理項目となっている。
 従来、これらの品質管理項目は、人手によって測定されていたが、省力やヒューマンエラー抑制、測定の高速化および高精度化の観点から、より高精度な自動測定技術の開発が試行されてきた。
 具体的には、管端部のねじ加工後の検品のために当該管端部に設けられたねじのねじ要素を測定する技術として、光源からの平行光をねじ溝に対して略平行に照射し、管軸に対して前記光源とは反対側に漏れ出た光を検出する光学式センサを有し、当該光学式センサの検出結果に基づいてねじ要素を測定する自動測定装置が公知である(例えば、特許文献1,2参照)。
 特許文献1には、ねじ溝に平行な光を照射し、ねじを通過する光を検出する方法において、測定したねじ形状線図(以後、ねじプロファイルと呼ぶ)に接触式センサのコタクトチップのイメージを仮想的に内接するよう重ねあわせ、この時の仮想的コンタクトチップの座標を用いて、ねじ要素を測定することが開示されている。特許文献1に記載の方法は、以前は人がAPIゲージ(コンタクトチップ付き接触式ゲージ)等を用いて行っていた検査結果に近い出力を導くことにより、従来結果を真値と仮定した上で精度の高い出力を得ることを目指した方法である。なお、この方法では、光源にハロゲンランプ、光検出器にはCCDカメラが用いられている。
 また、特許文献2においては、メカニカルシールの端面位置や傾きを接触式で測定し、ねじ端面の位置や傾きを求めるとともに、シール部やねじ部等の外径を接触式で測定する一方で、外形(表面の凸凹形状)すなわちねじプロファイルについては非接触式(光学式)で測定する構成が開示されている。つまり、接触式で測定されたねじ軸の傾きやねじ部の外径を基準にして、ねじ継ぎ手の正確な形状を非接触式で測定し、合成する方法である。この測定法は、接触式で測定した高精度なデータを元に、ねじ軸の傾き補正などを行うことで高精度化を図りつつ、測定点数が多数必要とされるねじプロファイルについては光学式で測定することで迅速化を狙ったものである。光学式の測定としては、平行光としてレーザービームを投影して、ねじを介して対面におかれた光検出器により、このビームがねじにより遮られた位置を検出する方法が用いられている。また、特許文献2では、温度の影響として熱膨張を勘案し、基準サンプルを温度測定した上でその結果を用いて補正を行うことも開示されている。
小笠原昌雄、「最近の油井管継手」鐵と鋼:日本鐵工協會々誌、1993年5月1日、Vol.79、No.5、pp.N352-N355 特許第3552440号公報 特開昭63-212808号公報
 しかし、上記技術では、未だ全てのねじ要素について、自動的且つ迅速・高精度に測定できる技術を提供するに至っていない。特に、ねじ部A5におけるねじ山A3とねじ溝A4との間にあるフランク面A8(図6,7参照)に関するねじ要素については、未だ十分な測定精度を得ることは困難である。
 加えて、最近、ねじ形状が複雑化してきており、測定の困難さは一層増大している。例えば、非特許文献1および図7に示されるように、油井管等においては、管端部同士を継ぐ際に、当該管端部のねじ山の管軸方向内方側のフランク面A8、すなわち管軸方向の引っ張り力に対し負荷のかかる側のフランク面A8が、前記ねじ山A3の先端部から基端部に行くに従ってねじ山中央部に近づくフランク面(以下、フック状フランク面A8hと称する)となっているねじが形成されたねじ付き管が使用されている。このようなフック状フランク面A8hに関するねじ要素は、自動測定をより一層困難にしている。
 本発明はかかる問題に鑑みなされたものであり、ねじ付き管の管端部のねじ要素のうちフランク面に関するねじ要素をも高精度に測定することができるねじ要素測定装置、これを備えたねじ要素測定システムおよびねじ要素測定装置を用いたねじ要素測定方法を提供することを目的とする。
 本発明の発明者らは、上記従来の方法の問題点について検討した。この結果、以下の知見を得た。
<1.フランク面測定に光学式センサを用いることによる問題>
 まず、図7に示すような、ねじ山とねじ溝との間にある面であるフランク面に関するねじ要素測定の問題点について検討した。ねじ付き管の品質評価において、ねじ(管の管端部において旋盤加工されたねじ軸と同一軸を有する加工部位)のフランク面の位置を必要とするものには、例えば、ねじ山の幅、ねじ溝の幅、ねじピッチまたはリード角等が挙げられる。これらは、ねじ軸(ねじ外周に接する面またはねじ溝の底面の対称軸)に平行且つフランク面におけるねじ山の高さ方向中央部を通る座標軸を基準に測定することができる。例えば、ねじピッチやリード角は、隣り合うねじ山の対応するフランク面のねじ山高さ方向中央部同士の間隔から求められる。
 ここで、特許文献1および2には、ねじ溝に平行な光を照射し、ねじを通過する光を検出する方法において、ねじプロファイルを測定することが記載されている。しかし、ねじプロファイルは曲線を描いているため、平行光を検出する光学式検出方法においては、フランク面がねじ山の稜線の影に隠れ、フランク面を正確に検出できない場合がある。例えば、図6および図7に示すような、フランク面がねじ軸に対して垂直またはそれに近い角度を有するねじプロファイルにおいて、ねじ山の高さ方向中央部でフランク面の位置を検出する際にフランク面がねじ山の稜線の影に隠れることにより生じる誤差は無視できないものとなる。
 以下、この点について詳しく説明する。なお、本説明の空間座標軸としては、直交座標系とする。管軸およびねじ軸に略沿った方向で、後述する管の把持機構における求心軸をX軸とする。X軸に直交し且つ水平面に平行な軸をY軸とし、X-Y平面に垂直な軸(鉛直方向)をZ軸とする。
 図8は、一般的なねじにおけるフランク面のねじ山方向中央部位置の軌跡を投影する際の様子を説明するための図である。図8(a)は、フランク面のねじ山方向中央部位置の軌跡とY軸に垂直な平面Uとが交差した様子を示す。図8(b)は、図8(a)における平面UとY軸との交点がフランク面のねじ山方向中央部位置上にあるときのX軸に垂直な面Vへの投影図を示す。図8(c)は、図8(a)における平面UとY軸との交点がフランク面のねじ山方向中央部位置上にあるとき(図8(b)に示す状態)のフランク面と平面Uとの交線を示す。
 この場合、Z軸に沿った方向に平行光を照射すると、図8(c)に示すように、フランク面と平面Uとの交線がX軸方向に広がっているため、平行光の照射方向に直交する投影面上に当該広がった部分による影が生じ、フランク面の位置検出が妨げられる。この影の影響を少なくするため、リード角分(=η°)投光方向を傾け、図8(c)におけるZ2軸に沿った方向に平行光を照射する。この場合は、Z軸に沿った方向に平行光を照射する場合に比べて誤差が抑制されるものの、フランク面と平面Uとの交線のX2軸への投影部分が依然として影として検出される。
 Z2軸に沿った方向に平行光を照射した際の誤差を見積もるために、図9は、X2-Z2座標におけるフランク面と平面Uとの交線の一例を示す図である。図9におけるねじは、外半径90mm、ねじ山高さ3mm、およびねじピッチ6mmを有し、フランク面がねじ軸に対し垂直な形状を持つものの計算結果である。この場合、ねじ山の稜線による影により、フランク面のねじ山高さ中央位置の測定誤差は2μmとなる。
 また、フック状フランク面の場合、この誤差がさらに増大することとなる。上記と同様に外半径90mm、ねじ山高さ3mm、およびねじピッチ6mmを有し、フランク面の角度(ねじ山の基端部から先端部に行くに従ってフランク面がねじ山のX軸方向中央部に位置するときの角度を正の角度とする)が-3°(図7に示すθ=-3°)の場合、上述したねじ山の稜線による影により約78μmの誤差が生じ、ねじ山高さが1.5mmの場合でも約39μmの誤差が生じ、ねじ付き管の品質評価として用いることができない誤差を生じる。
 以上のように、特許文献1および2に記載のねじ要素測定装置のようにねじ溝に平行光を照射してフランク面に関するねじ要素を測定しても、ねじ山の影が生じることにより不可避的な誤差を生じてしまう結果となる。従って、フランク面に関連するねじ要素(ねじ山幅、ねじ溝幅、リード角、ねじピッチ、フランク面角度等)が高精度に測定できない結果となる。
<2.ねじ要素測定装置上の測定位置と実際に測定される位置とが相違する問題>
 次に、ねじ要素測定装置とねじ付き管との位置のずれによって生じる測定誤差の問題点について検討した。
 例えば、ねじ要素測定装置を管の連続処理ラインに適用して測定する場合、搬送されてきたねじ付き管を把持機構により自動的に把持した上でねじ要素測定装置によりねじ要素を測定する。この際、ねじ要素測定装置の測定基軸または把持機構の把持中心と、搬送されてきたねじ付き管のねじ軸とのずれが大きいと正確なねじ要素が測定できない問題がある。
 また、実際のねじ付き管は、ねじ付き管の管軸(管の中央部の中心軸)とねじ軸(管端部の中心軸)とがわずかながらずれていることが多い。
 実際のねじ加工した鋼管において、ねじ軸と管軸とのずれとして両者の角度差を調べた結果、0.057°(1/1000の傾き)程度、場合によっては、例えば、0.11°(2/1000の傾き)の角度差が生じることがあった。
 図10は、この角度差により生じる影響を説明する図である。図10は、図9と同じ形状のねじにおいて、上記のねじ軸と管軸との角度差に起因して、投光方向(Z2軸)がZ軸に対して成す角度とリード角との間に0.029°~0.11°の差があった場合の平面U内のX2-Z2軸座標系におけるフランク面と平面Uとの交線を示している。この交線のX2軸への投影分が影となるので、投光方向(Z2軸)がZ軸に対して成す角度とリード角との間に0.11°の差がある場合におけるフランク面のねじ山高さ中央位置の測定誤差は、X軸方向に33μmとなる。同様に、0.059°の差がある場合に誤差17μmとなり、0.029°の差がある場合に誤差9μmとなる。この様にねじ軸と管軸との微少なずれは、フランク面の位置測定の誤差要因として重大な要因となる。しかし、この様なねじ軸と管軸との微少なずれ(1/1000程度)は容易には検出できず、測定のためねじ付き管を把持したり、所定の位置に設置する際に、このずれを制御することは非常に難しい。
 そのため、特許文献1に示されるような平行光のみによる測定においては、ねじ軸の方向が管軸方向に対して前記程度のずれを持つ事は許容せざるを得ず、フランク面のねじ山高さ中央位置等のフランク面位置測定には許容できない大きな誤差が生じることとなる。そしてフランク面に関する(フランク面のねじ山方向中央部の座標を必要とする)ねじ要素、例えば、フランク面の角度、ねじ山幅、ねじ谷幅、リード角やねじピッチ等の測定結果に、許容できない大きな測定誤差が伝播することとなり、高精度な測定は望めないことになる。
 加えて、チャックのような把持機構にねじ付き管を把持した状態で測定する場合でも、測定するねじ付き管の測定する場所以外の旋盤加工を施していない圧延面を把持することになる。このため、図11に示すように、求心精度が高い把持機構を使用したとしても、ねじ付き管を把持した際に、管軸と把持機構の把持中心との間には、前述したねじ軸と管軸とのずれと同程度あるいはそれ以上のずれが生じてしまう。なお、求心精度の高い把持機構とは、真直で真円の棒を把持した際に、この棒の軸と把持機構の把持中心とのずれが十分小さい(例えば、ずれが0.1mmを十分下回る)ものを意味する。上記のように管軸と把持機構の把持中心とのずれが生じるのは、管の曲がりや真円度の乱れ、管表面の粗さの影響や把持機構の求心誤差(把持機構に起因した把持中心と管軸とのずれ)等が重なって生じるためである。この把持機構の把持中心と管軸とのずれが、管軸とねじ軸とのずれに加わり、ねじ軸位置を求めることは一層困難になる。
 また、特許文献2の測定方法においては、ねじ軸を接触式センサにより検出する構成が開示されているが、この方法には、いくつかの問題がある。特許文献2のねじ軸検出方法においては、管端のシール部の変位(X軸方向に相当する変位)を管周方向に数箇所測定し、その変位に基づいて管端面の傾きを求め、管端面に垂直な方向がねじ軸の向きであるとして当該ねじ軸の傾きを測定している。この方法における問題点は、管端シール部の最もキズや汚れを嫌う部位にセンサを接触させる必要があることである。この部位にセンサを接触させることによって、キズや汚れが生じ易くなる。シール部のキズは製品品質を著しく低下させるため許容できない。また汚れが付着した場合には、シール部の洗浄が必要となり、生産性を大きく阻害する結果となる。
 加えて特許文献2の方法では、ねじ軸を求めるにあたり、管軸とねじ軸とが一致することを前提として、管中心点(管軸上の所定の一点)と測定ステージ中心点とを一致させる旨が記載されている。ねじ軸を高精度に求めるには、上記ねじ軸の傾き以外に、少なくともねじ軸上の所定の一点(ねじ中心)の座標を特定する必要がある。特許文献2では、この座標を求めるために、管の内面に3本のロッドを挿入し、内接させることにより、ロッドが内接することによって生じた反力によって測定ステージを移動させ、測定ステージ中心点を管中心点に一致させる、すなわちねじ中心に一致させようとしている。しかしながら、旋盤加工により形成されたねじのねじ軸と、旋盤加工されていない部分のねじ付き管の管軸とは、前述のように必ずしも一致していない。このため、上記のように測定ステージ中心点を管中心点に一致させる動作が、測定ステージ中心点をねじ中心に一致させることにはならない場合がある。また、ロッドを管の内面に適切且つ安定的に内接させることは難しい。
 このように、上記方法においても実際に測定されるねじのねじ軸と測定中心との間には無視できない差が生じるため、ねじ軸を十分な精度で求めることできない。また、この方法では、測定項目が増加してしまうため、それに伴う姿勢制御および位置制御が増加し、測定の迅速化が困難である。
 以上のように、ねじ要素測定装置の測定基軸または把持機構の把持中心と、搬送されてきたねじ付き管のねじ軸とのずれが大きいと正確なねじ要素が測定できない結果となる。
 本発明は、上記のような本発明者らの新しい知見に基づいて完成されたものである。
 すなわち、本発明に係るねじ要素測定装置は、前記課題を解決するべくなされたものであり、ねじ付き管の管端部のねじ要素を測定する装置であって、管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝に対して略平行な光を検出することにより、第1ねじ要素を測定する光学式センサと、ねじフランク面に接触プローブを接触させ、接触時における当該接触プローブの空間座標を検出することにより、第2ねじ要素を測定する接触式センサと、前記光学式センサから得られた第1ねじ要素及び前記接触式センサから得られた第2ねじ要素を合成してねじ要素を演算する演算処理手段とを有することを特徴とするものである。
 また、本発明に係るねじ要素測定方法は、ねじ付き管の管端部のねじ要素を測定する測定方法であって、光学式センサを用いて、管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝に対して略平行な光を検出することにより、第1ねじ要素を測定する工程と、接触式センサを用いて、ねじフランク面に接触プローブを接触させ、接触時における当該接触プローブの空間座標を検出することにより、第2ねじ要素を測定する工程と、前記光学式センサから得られた第1ねじ要素及び前記接触式センサから得られた第2ねじ要素を合成してねじ要素を演算する工程とを有することを特徴とするものである。
 好ましくは、前記ねじフランク面は、フック形状を有するフック状フランク面を含んでいる。
 上記構成のねじ要素測定装置およびねじ要素測定方法によれば、管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝に対して略平行な光を検出することにより、第1ねじ要素が測定される。また、ねじフランク面に接触式センサの接触プローブを接触させ、接触時における接触プローブの空間座標を検出することにより、第2ねじ要素が測定される。
 それぞれ検出された第1および第2ねじ要素は、演算処理手段により合成されて、測定対象のねじのねじ要素が演算される。
 このように、ねじ溝に対して略平行な光を検出することにより、ねじフランク面に関しないねじ要素である第1ねじ要素を測定する一方、光学式測定では上述したようなねじ山の稜線の影により測定誤差が生じてしまう、ねじフランク面に関するねじ要素である第2ねじ要素については接触式センサにより測定し、これらを合成することにより、ねじ要素をねじフランク面に関するねじ要素を含めて高精度に測定することができる。
 特に、光学式測定のみではねじ山の稜線の影に隠れる量が大きく誤差が大きいフック状フランク面に関するねじ要素についても高精度に測定することができる。
 なお、ねじ溝に対して略平行な光とは、光学的に平行な光(光束)であるものの、その光束の方向(光軸方向)がねじ溝に対して完全に平行な方向の光束に限られるものではない。ねじ溝に対して略平行な光には、その光軸方向が前述したZ軸に完全に平行な方向の光束や、その光軸方向がZ軸とねじ溝との間の方向の光束も含まれる。
 好ましくは、前記光学式センサによる測定のみを行う場合と、前記光学式センサによる測定及び前記接触式センサによる測定の双方を行う場合とが選択可能に構成される。
 この場合、光学式センサによる測定結果である第1ねじ要素をそのまま測定されたねじ要素として出力させる場合と、光学式センサによる測定結果である第1ねじ要素および接触式センサによる測定結果である第2ねじ要素を合成したものを測定されたねじ要素として出力させる場合とを選択することができる。
 特に、本発明のねじ要素測定装置を管の連続処理ラインにおける測定装置として適用する場合においては、測定に許容される時間が非常に短い場合がある。本ねじ要素測定装置を用いて連続処理ライン内で品質を管理する上では、必ずしも全ての管で全要素を自動測定する必要はないと言える。光学式センサによる測定は、比較的短時間で完了するので、光学式センサによる測定を全数行い、所定の本数毎に接触式測定を行うことで、本発明によるねじ要素の自動測定を利用した品質管理が可能になる。すなわち、所定の本数毎に接触測定を行って、異常のない場合には、その間の管は、フランク面に関する第2ねじ要素に関して良品であると判断することができる。接触測定により不良品を検知した場合には、所定本数分、遡って不良と判定したり、詳細な再検査を行うことができる。所定本数を適切に設定することにより、生産性を阻害することない一方で、良品でない判定が発生した時の損害(所定本数分遡って全廃棄したり、所定本数分遡って再測定を行う際の費用的及び時間的損害)も比較的小さく抑制することができる。また、所定本数の間、光学式センサのみによる測定でフランク面に関しない第1ねじ要素について異常や欠陥を検出した場合は、接触式センサによる測定を行うことなく異常や欠陥を検出できるため、より迅速にねじ形成等の操業の異常を察知して、フィードバックすることが可能となる。もちろん、この様な方法は、連続処理ラインの生産速度が測定速度に比べて充分遅い場合や本発明に係る装置を多数設置することが可能で処理を分散できる場合には、全数のねじ付き管に対し光学的センサおよび接触式センサによる全要素測定が可能であることは言うまでもない。
<3.熱膨張の問題>
 前述したように、ねじ付き管は、例えば、鋼管にねじを形成したものであり、温度に応じて膨張/収縮するため、ねじ要素も温度に応じて変化してしまう問題がある。これに関し、従来、基準サンプルを測定し、その結果を元に、ねじ要素測定装置で測定されたねじ要素の熱膨張誤差を補正する方法が公知となっている。
 しかし、この方法では、基準サンプルと測定対象であるねじ付き管との間で温度差が生じるとその分誤差が生じる。例えば、鋼の熱膨張係数は、1×10(1/℃)程度なので、管の温度が10℃変化すると、半径90mmの管の外径は、約18μm変化する。この基準サンプルと測定対象との温度差は、基準サンプルと測定対象との寸法や熱容量の差や、ねじ要素の測定までに経た熱履歴(すなわち、雰囲気温度の履歴や測定対象そのものの加熱・冷却・圧延・加工等の熱履歴)の差によって生じる。
 そこで、好ましくは、前記ねじ付き管の温度を求めて、当該温度に応じて、測定されたねじ要素の値に対して温度補正を行うように構成される。なお、ねじ付き管の温度を求める方法としては、例えば、以下の(1)~(4)の4つの方法が考えられる。
 (1)ねじ要素の測定最中またはその直前直後にねじ付き管の温度を測定する方法。
 (2)ねじ要素の測定位置までねじ付き管を搬送する管搬送機構の雰囲気温度や、前記測定位置で測定開始までねじ付き管が待機している場合における待機位置の雰囲気温度を測定し、その測定結果をねじ付き管の温度とする方法。
 (3)ねじ付き管の寸法、材質、ねじ要素測定までの工程や工程スケジュールに基づいて、ねじ要素の測定時におけるねじ付き管の温度を予測する方法。
 (4)ねじ付き管の実測温度やねじ付き管を搬送する管搬送機構の雰囲気温度実測値に対し、ねじ付き管の寸法、材質、ねじ要素測定までの工程や工程スケジュールに基づいて設定した補正値を加えるような演算を施し、その演算結果をねじ付き管の温度とする方法。
 この場合、実際に測定に用いられるねじ付き管の温度に基づいて、測定されたねじ要素の値を補正することにより、測定対象及び測定時間の相違によって温度差が生じることが防止されるため、より高精度な測定結果を得ることができる。
 好ましくは、前記ねじ付き管を管軸またはねじ軸を中心として回転させる回転手段と、前記回転手段の回転角度を検出する回転角度検出手段とを備えるように構成される。
 この場合、管軸またはねじ軸を中心にねじ付き管を回転手段により回転させ、その回転角度を回転角度検出手段により検出することができるため、ねじ付き管の周方向において複数箇所(例えば、2~8箇所)でねじ要素測定を行うことにより、周方向検査結果としてより厳密な品質保証が可能になる。また、外径測定における周方向のばらつきを求めることができ、より高精度な真円度を求めることができる。なお、ねじ部や平行部、シール部、管部の真円度は、外径のばらつきや最大外径と最小外径との差として求めることができる。
 また、本発明に係るねじ要素測定システムは、上記構成のねじ要素測定装置と、ねじ付き管を固定するための把持機構と、前記ねじ付き管の高さを調整する高さ調整機構であって、前記ねじ付き管の中心軸と前記把持機構の把持中心または前記ねじ要素測定装置の測定基軸とを略一致させる高さ調整機構とを備えたことを特徴とするものである。
 連続処理ライン等で処理されるねじ付き管を上記構成のねじ要素測定装置で測定する際には、光学式測定結果と接触式測定結果を合成する必要があるので、両方の測定が終了するまでの間、把持機構により測定対象であるねじ付き管を把持することにより静止させる。
 また、高さ調整機構により、ねじ要素測定装置の測定基軸とねじ付き管の中心軸を一致させるように、ねじ付き管が載置される高さを調整することができる。
これにより、連続処理ライン等において、直径の異なる管が順次ねじ要素測定装置へ搬送されてきた場合でも、測定位置の変動を管の半径変動程度内に収めることができるため、より迅速にねじ要素を測定することができる。
 例えば、光学式センサの受光手段として撮影範囲が3mm×3mmから10mm×10mm程度のCCDカメラ等を用いた場合、把持機構によるねじ軸の求心精度をおよそ2mm以内にしておくことが好ましい。測定対象である管の外径設計値を予め記憶しておくことにより、この受光手段で検出すべき位置を計画的に決定し且つ確実に検出することができる。なお、数mm程度のねじ軸の求心精度を得ることは、前述のねじ軸と管軸との間にずれがある場合でも可能な値と言える。
 また、把持機構にねじ付き管を持ち込む際、把持機構の求心機能を補うべく、ねじ付き管の高さを高さ調整機構を用いて調整し、把持機構の把持中心にねじ付き管の中心軸を略一致させるように移動させることとしてもよい。これにより、搬送してきたねじ付き管の管軸が把持機構の把持中心と大きくずれていることにより、上手く求心しなかったり、測定位置においてねじ付き管の傾きが過大になることによりねじ要素の測定が阻害されるのを防止することができる。
 好ましくは、前記第1および第2ねじ要素の測定前に、前記ねじ要素測定装置の測定基軸と測定されるねじ付き管のねじ軸との距離を検出するように構成される。
 上記ねじ要素測定装置においては、ねじフランク面の位置を接触式センサで測定することにより、光学式センサでの測定で生じる誤差を補っている。ただし、光学式センサの測定結果である第1ねじ要素と接触式センサの測定結果である第2ねじ要素とを合成する際の合成精度が低いと高精度なねじ要素の測定ができないため、合成精度を高くする必要がある。X軸およびY軸座標については、両測定結果のそれぞれにおいて得られたデータの所定の基準値(基準位置)同士を比較する等により、両測定における座標を十分な精度で合致させることができる。
 これに対し、Z軸方向を含む光学式センサの受光軸方向(ねじ溝に略平行な方向)に生じる誤差の影響が問題となる。この誤差としては、(1)光学系の被写界深度による誤差および(2)接触式センサの測定基軸と測定されるねじ付き管のねじ軸とが一致していないことによって生じる誤差が考えられる。
 (1)の誤差については、光学式センサの被写界深度が深い方がねじ軸の前記受光軸方向への変動に対しても寛容であるため、確実に測定するためには被写界深度が深い方が好ましい。被写界深度は、光学系の性能によって決まる。例えば、受光手段としてCCDカメラを用いるとともに、その集光光学系として市販される1倍程度のテレセントリックレンズ等を用いることで得られる平行光束を用いる場合、(1)の誤差は、0.5mm(±0.25mm)程度である。
 (2)の誤差については、接触式センサの測定基軸と測定されるねじ付き管のねじ軸とが一致していないと、接触式センサの測定値は、実際に測定したねじフランク面位置に対し、リード角に相応した分だけX軸(ねじ軸)方向へ移動したねじフランク面位置として出力されてしまう。このねじフランク面位置の移動分が接触式センサの測定誤差となる。
 図12は、接触式センサの測定基軸と測定されるねじ付き管のねじ軸との距離が変化した場合を説明するための図である。また、以下の表1に、図12の場合におけるX軸方向のねじフランク面位置の誤差を示す。下記表1に示すように、このリード角分の誤差は、接触式センサの測定基軸とねじ軸との距離(ねじ軸高さ)が0.5mm程度であれば許容範囲内と言えるが、1mm以上である場合、X軸方向のねじフランク面位置の誤差が10μmを超え、測定結果として許容範囲を超えてしまう。
Figure JPOXMLDOC01-appb-T000001

 このように、(1)の誤差が支配的であるため、接触式センサの測定基軸とねじ軸との距離を±0.25mm程度以内とすることが好ましい。
 上記知見に基づいて、前記ねじ要素測定装置による測定前に、前記ねじ要素測定装置の測定基軸と測定されるねじ付き管のねじ軸との距離を検出することにより、接触式センサの測定基軸の位置と測定されるねじ付き管のねじ軸の位置とを高精度に一致させた上でねじ要素を測定したり、測定されたデータに対して位置補正を行うことにより、より高精度な測定結果を得ることができる。
 本発明に係るねじ要素測定装置によれば、ねじ溝に対して略平行な光を検出することにより、ねじフランク面に関しないねじ要素である第1ねじ要素を測定する一方、光学式測定では上述したようなねじ山の稜線の影により測定誤差が生じてしまう、ねじフランク面に関するねじ要素である第2ねじ要素については接触式センサにより測定し、これらを合成することにより、ねじ要素をねじフランク面に関するねじ要素を含めて高精度に測定することができる。
 特に、光学式測定のみではねじ山の稜線の影に隠れる量が大きく誤差が大きいフック状フランク面に関するねじ要素についても高精度に測定することができる。
 また、本発明に係るねじ要素測定システムによれば、高さ調整機構により、ねじ要素測定装置の測定基軸とねじ付き管の中心軸を一致させるように、ねじ付き管が載置される高さを調整することができる。このため、連続処理ライン等において、直径の異なる管が順次ねじ要素測定装置へ搬送されてきた場合でも、測定位置の変動を管の半径変動程度内に収めることができ、より迅速にねじ要素を測定することができる。
 加えて、把持機構にねじ付き管を持ち込む際、把持機構の求心機能を補うべく、ねじ付き管の高さを高さ調整機構を用いて調整し、把持機構の把持中心にねじ付き管の中心軸を略一致させるように移動させることができる。このため、搬送してきたねじ付き管の管軸が把持機構の把持中心と大きくずれていることにより、上手く求心しなかったり、測定位置においてねじ付き管の傾きが過大になることによりねじ要素の測定が阻害されるのを防止することができる。
本発明に係るねじ要素測定装置が適用されたねじ要素測定システムの一実施形態の概略構成図である。 図1におけるねじ要素測定装置の光学式センサおよび接触式センサの移動ステージを示す拡大斜視図である。 図1のねじ要素測定システムにおける高さ調整機構の側面図である。 本実施形態の接触式センサによるフランク面の測定方法についての説明図である。 第1ねじ要素および第2ねじ要素が合成される様子についての説明図である。 フックねじが形成された管端部の軸線方向に平行な概略断面図である。 図6のねじ部における部分拡大図である。 一般的なねじにおけるフランク面のねじ山方向中央部位置の軌跡を投影する際の様子を説明するための図である。 Z2軸に沿った方向に平行光を照射した際のX2-Z2座標におけるフランク面と平面Uとの交線の一例を示す図である。 ねじ軸と管軸との角度差により生じる影響を説明する図である。 把持機構の把持中心と管軸とねじ軸とのずれを説明する図である。 接触式センサの測定基軸と測定されるねじ付き管のねじ軸との距離が変化した場合を説明するための図である。
 以下、本発明の好ましい実施形態について、添付図面を参照しつつ説明する。
 まず、本発明に係るねじ要素測定装置の測定対象であるねじ付き管のうち、管端部にフック状フランク面を有するフックねじの構成について説明する。なお、本発明に係るねじ要素測定装置は、フックねじ以外の一般的なねじ形状を有するねじ付き管についても測定可能である。
 図6はフックねじが形成された管端部の軸線方向に平行な概略断面図であり、図7は図6における、ひとつのねじ山の拡大図である。なお、図6および図7においては見易くするためねじ山のピッチや大きさ等を実際とはわざと変えてある。
 図6および図7に示すようなねじ付き管A1の管端部に形成されたねじA2は、ねじ山A3およびねじ溝A4形状を有するねじ部A5と、管端部先端に形成されたシール部A6と、前記ねじ部A5およびシール部A6を繋ぐ平行部A7とを有している。
 そして、ねじ山A3とねじ溝A4との間にあるねじフランク面A8のうち、ねじ山A3のねじ軸方向のねじ付き管中央側のねじフランク面がフック状フランク面A8hとなっている。このフック状フランク面A8hは、図7に示すように、ねじ山A3の先端部A3tから基端部A3bに行くに従ってねじ軸方向のねじ付き管の管端面側に位置するように傾斜している。
 このようなフック状フランク面A8hの傾斜角θ(ねじ山A3の先端部A3tから基端部A3bに行くに従ってねじ軸方向のねじ付き管中央側に位置するときの角度を正の角度とする)は、-20°≦θ≦0°であり、多くは-5°≦θ<0°であり、特に代表的なものは、-3°である。
 このようなねじのねじ要素としては、ねじの種類・構造によっても変わるが、およそ次のねじ要素を対象としている。なお、本実施形態においては、説明の都合上、後述する光学式センサ2のみで測定可能な第1ねじ要素と光学式センサ2のみでの測定が困難な第2ねじ要素とに区分している。
 第1ねじ要素は、ねじフランク面の詳細・厳密な測定に関わらない測定要素であり、光学式センサ2を用いて測定可能な要素の全てを含む。例えば、ねじ部外径、シール部外径、平行部外径、ねじ溝径、ねじ山高さ、ねじ溝深さ、ねじテーパ(ねじ山径の軸方向変化、ねじ溝径の軸方向変化)、シールテーパ、テーパの変化、各種外径の周方向偏差(楕円度)、シール部軸方向長さ、平行部軸方向長さ等を含んでいる。また、品質管理項目ではないが、第2ねじ要素を測定する上で必要な、ねじ山の角部(稜線)あるいはねじ山またはねじ谷のおよその寸法やプロファイル等も含まれる。
 第2ねじ要素は、ねじフランク面の詳細・厳密な測定に関わる測定要素であり、上述の光学式センサで測定できないあるいは十分な測定精度が得られない要素である。すなわち、例えば、ねじフランク面座標、特に、ねじ山の稜線から離れた(隠れた)部位におけるねじフランク面座標、ねじフランク面の角度、ねじフランク面の間隔(ねじ山幅、ねじ谷幅、ねじピッチ、リード角)、ねじフランク面を含むねじ部断面のプロファイル等を含んでいる。また、シール部の曲率半径やシール部の管内周面径や内周面のテーパ等も含まれる。
 次に、上記のようなフックねじA2が形成されたねじ付き管A1の管端部に形成されたねじ要素を測定するための本発明に係るねじ要素測定装置および当該装置が適用されたねじ要素測定システムについて説明する。
 図1は本発明に係るねじ要素測定装置が適用されたねじ要素測定システムの一実施形態の概略構成図であり、図2は図1におけるねじ要素測定装置の光学式センサおよび接触式センサの移動ステージを示す拡大斜視図である。
 本実施形態のねじ要素測定装置1は、図1および図2に示すように、管軸XA(ここではねじ軸に略等しいものとして説明する)に対して光源21とは反対側に漏れ出た光のうち、ねじ溝A4に対して略平行な光を検出することにより、第1ねじ要素を測定する光学式センサ2と、フック状フランク面A8hを含むねじフランク面A8に接触プローブ31を接触させ、接触時における当該接触プローブ31の空間座標を検出することにより、第2ねじ要素を測定する接触式センサ3と、前記光学式センサ2から得られた第1ねじ要素及び前記接触式センサ3から得られた第2ねじ要素を合成してねじ要素を演算する演算処理手段4とを有している。
 さらに、前記ねじ要素測定装置1が適用されたねじ要素測定システム5は、図1および図2に示すように、前記ねじ要素測定装置1と、ねじ付き管A1を固定するための把持機構6と、前記ねじ付き管A1の高さを調整する高さ調整機構7であって、前記ねじ付き管の中心軸と前記把持機構6の把持中心または前記ねじ要素測定装置1の測定基軸とを略一致させる高さ調整機構7とを備えている。加えて、ねじ要素測定システム5は、ねじ要素測定装置1の移動を制御するとともに、ねじ付き管A1の移動や回転を制御する管制御装置8を有しており、前記演算処理手段4は、前記管制御装置8に指令を与えるとともに、ねじ付き管A1の状態およびねじ要素測定装置1において測定された測定値を集計し演算する。
 なお、ねじ要素測定システム5は、ねじ付き管A1の少なくともねじ部A5が測定時において室温や湿度が好適に調整された雰囲気調整室12内に導入されるように構成される。
 前記演算処理手段4および管制御装置8は、汎用または専用のコンピュータで構成され、前記演算処理手段4は、測定対象であるねじ付き管A1の情報(設計値等)を上位のコンピュータ(図示せず)から入手したり、測定・演算されたねじ要素を上位のコンピュータに転送したり、モニタやプリンタ等の出力手段(図示せず)に測定結果を出力可能に構成されている。
 加えて、演算処理手段4は、前記測定結果から必要なねじ要素、例えば、ねじ径やねじピッチ等を数値データとして算出する。また、得られた数値データ(ねじ要素)を設計値と比較することも可能である。管制御装置8は、上位コンピュータや演算処理手段4と連動して処理ライン上の所定のねじ付き管A1を図1に示すような測定状態にまで移送して、把持した状態で測定した上で、再び下流の処理ラインへ送り出す制御も行う。
 このようなねじ要素測定システム5は、ねじ付き管A1の連続処理ライン(図示せず)上に適用される。より詳しくは、前記連続処理ライン上に設けられた管搬送機構(図示せず)により測定すべきねじ付き管A1がねじ要素測定装置1の測定基軸に略一致するようにしてねじ要素測定装置に向けて(管軸XA方向に沿って)搬送された上で測定される。
 このとき、本実施形態の高さ調整機構7は、ねじ付き管A1を管軸方向へ搬送する管搬送機構の一部としても機能する。より具体的には、高さ調整機構7は、中央のロール径が絞られたVロール(図示せず)を有し、ねじ付き管A1の管軸XAがX-Y平面視において当該Vロールの溝位置に略一致した状態で当該Vロールを回転させることによりねじ付き管A1を管軸方向へ搬送する。前記ねじ要素測定装置1の測定基軸X1および前記把持機構6の把持中心X6は、X-Y平面視において前記Vロールの溝位置と略一致するように配置されている。
 図3は、図1のねじ要素測定システムにおける高さ調整機構の側面図である。
 図3に示すように、ねじ付き管A1の高さ方向(Z軸方向)に関しては、前記Vロールによるねじ付き管A1の支持位置を高さ方向(Z軸方向)に調整可能な昇降機構が高さ調整機構7として構成されている。この高さ調整機構7により、測定されるねじ付き管A1の外径に応じた高さ設定値毎にその高さが調整される。当該高さ設定値は、予め前記管制御装置8等において記憶され、制御される。なお、高さ調整機構7による高さ調整精度は、数mm程度でもよいが、より高い方が好ましい。
 このようして高さ調整機構7により高さ調整され、前記Vロールにより搬送されたねじ付き管A1は、ねじ付き管A1の管軸XA(ねじ軸)と把持機構6の把持中心X6(およびねじ要素測定装置1の測定基軸X1)とが略一致した状態で把持機構6に挿通される。
 前記把持機構6に対してねじ付き管A1搬送方向下流側には、所定の距離を隔てて管端検出装置9が配置されている。当該管端検出装置9がねじ付き管A1を検出することにより、前記管搬送機構(Vロール)による管送りが停止される。なお、このときのねじ付き管A1の管端部における停止位置精度を2mm程度とすることは容易に可能である。
 ねじ付き管A1の停止によって管制御装置8に送られた停止信号(実際にねじ付き管A1の動きを検出することとしてもよいし、Vロールの停止をもってねじ付き管A1の停止としてもよい)に基づき、管制御装置8は、把持機構6に対し制御信号を送信し、把持機構6にねじ付き管A1を把持させる。なお、ねじ付き管A1の把持機構6としては、真円度の高い円柱棒を把持し10μm程度の旋盤等を行うために供されるチャック機構等と同様の構造を有するものが利用できる。また、把持機構6には、ねじ付き管A1を管軸を中心として回転させる回転手段(図示せず)および当該回転の回転角度を検出する回転角度検出手段(図示せず)が設けられている。
 ここで、把持機構6によるねじ付き管A1の把持位置とねじ付き管A1の管端面との距離は、ねじ要素測定が可能な範囲で極力短いことが好ましい。これにより、管の曲がりの影響を極力抑制することができる。具体的には200mm~400mm程度が好ましい。なお、管端部のねじ軸は、一般的に、設計寸法が同一の管であっても、水平方向(X軸,Y軸方向)および高さ方向(Z軸方向)に関して、それぞれ数mmの変動が生じる。これは、管自体の曲がりの変動、及び、ねじ軸と管軸とのずれの変動という二つの要因が合わさった変動だからである。
 続いて、本実施形態のねじ要素測定装置1のより具体的な構成について説明する。
 本実施形態のねじ要素測定装置1は、図2に示すように、測定ベース10上に配設された高精度のX,Y,Z軸移動ステージ10X,10Y,10Zにそれぞれ取り付けられた光学式センサ2と接触式センサ3とによって構成される。光学式センサ2および接触式センサ3は、前記X,Y,Z軸移動ステージ10X,10Y,10Z上を移動することにより三次元的に移動可能に構成される。これらの三次元移動量は、所定の基準位置に対する変位を記録することにより、前記演算処理手段4において処理されるが、特に、Z方向の測定基準として測定基軸X1が設定されている。
 本実施形態においては、光学式センサ2および接触式センサ3を独立して移動可能なように、光学式センサ2および接触式センサ3のそれぞれにX,Y,Z軸移動ステージ10X,10Y,10Zが設けられた構成となっているが、X,Y,Z軸移動ステージ10X,10Y,10Zを光学式センサ2および接触式センサ3で共用する(1組のX,Y,Z軸移動ステージ上に光学式センサ2および接触式センサ3を配置する)こととしてもよい。
 なお、本実施形態においては、前記測定ベース10および把持機構6は、前記雰囲気調整室12内の防震振架台13上に配置されており、把持機構6に把持されたねじ付き管A1の揺れを防止するとともに、光学式センサ2および接触式センサ3の揺れを防止することにより、測定誤差を低減化させている。
 本実施形態におけるねじ要素測定装置1を用いたねじ要素の測定においては、ねじ要素の測定前に、まず、前記ねじ要素測定装置1の測定基軸X1と測定されるねじ付き管のねじ軸との距離(ねじ軸高さ)を検出し、この検出したねじ軸高さが略0になるように、すなわち、ねじ要素測定装置1の測定基軸X1の位置がねじ軸位置と略同じになるように、ねじ要素測定装置1の測定基軸X1の位置を調整する。このねじ軸高さを検出する手段として、本実施形態においては光学式センサ2を流用する。なお、光学式センサ2とは別に専用の測定装置を用いてもよい。
 ねじ軸高さの検出においては、まず、ねじ付き管A1の所定の測定部位(平行部A7またはシール部A6等のねじ部A5以外の部位)におけるおよそのねじ軸の直上に受光手段22が位置するように、光学式センサ2をX軸方向及びY軸方向に移動させる。その上で、測定基軸X1の位置(Z軸座標)を仮に設定し、光学式センサ2をZ軸方向に移動させつつ、受光手段22により前記測定部位を撮影する。この際、受光手段22が撮影した像のコントラストを評価し、このコントラストが最大となったときの光学式センサ2の位置(前記仮に設定した測定基軸X1を測定基準としたZ軸座標)を検出する。そして、この検出した光学センサ2の位置と、光学センサ2の寸法や前記測定部位の外半径等の設計値とに基づいて、ねじ軸高さを算出する。換言すれば、仮に設定した測定基軸X1を測定基準としたねじ軸の位置(Z軸座標)を検出する。
 そして、このようにして算出されたねじ軸高さが略0になるように、すなわち、変更後の測定基軸X1の位置が前記検出されたねじ軸位置と略同じになるように、仮に設定した測定基軸X1の位置を変更する。このように、ねじ要素測定装置1の測定基軸X1の高さを、撮影した像のコントラストが最大となる光学センサ2の位置に基づいて調整することにより、受光手段22の被写界深度(合焦範囲)内にねじ軸の位置(Z軸座標)を含ませることが可能である。
 以上のように、ねじ要素測定装置による測定前に、ねじ要素測定装置の測定基軸X1と測定されるねじ付き管のねじ軸との距離を検出することにより、ねじ要素測定装置、特に、接触式センサ3の測定基軸X1の位置と測定されるねじ付き管A1のねじ軸の位置とを高精度に一致させた上でねじ要素を測定したり、測定されたデータに対して位置補正を行うことにより、より高精度な測定結果を得ることができる。
 この方法を用いて高さ調節することにより、0.1mmから0.2mm程度の精度でねじ軸位置とねじ要素測定装置1の測定基軸X1とを高さ方向に一致させることができ、この程度の精度で十分有用である。
 なお、上記方法とは別に、レーザ三角法を用いた方法等、種々の方法を用いてねじ軸高さを検出することも可能である。
 前記光学式センサ2は、光をねじ付き管A1のねじ部A5に向けて照射するハロゲンランプ等の光源21と、ねじ付き管A1の管軸XA(≒ねじ軸)に対して光源21とは反対側に漏れ出た光のうち、ねじ溝A4に対して略平行な光を検出する受光手段22とを有しており、前記光源21および受光手段22は、一対となって前記X,Y,Z軸移動ステージ10X,10Y,10Z上を移動可能なように構成されている。
 加えて、光学式センサ2の移動ステージには、光源21および受光手段22の向きをねじ付き管A1のねじ溝A4に対して略平行となるようにY軸周りに前記光源21および受光手段22を一体的に回転可能な回転ステージ10Rが含まれている。具体的には予め知られているリード角(設計値)に基づいて、回転ステージ10R上の光学式センサ2をY軸回りに回転させる。
 なお、ねじ溝A4に対して略平行な光とは、その光軸方向がねじ溝A4に対して完全に平行な方向の光束に限られるものではなく、その光軸方向がZ軸に完全に平行な方向の光束や、その光軸方向がZ軸とねじ溝A4との間の方向の光束も含まれる。
ねじ溝A4に対して完全に平行な場合に限らないのは、実際には、測定されるねじ付き管A1の管端部において曲がりが生じていることにより、前記予め知られているリード角の値に基づいて受光手段22を(リード角分)傾けても実際のねじ溝A4に対して平行度を高くすることが困難な場合があるからである。受光手段22の方向がねじ溝A4の方向に対してずれると、光学式センサ2による測定で得られる像には、ねじ山A3またはねじ溝A4の稜線が広がって見えてしまい(図7に示す影の広がりABを参照)、正確なねじ山A3またはねじ溝A4の稜線(エッジ)の位置が判別できない。本発明に係るねじ要素測定装置1においては、ねじ山A3(またはねじ溝A4)のねじ軸方向中央部を基準にして少なくとも一方側(例えば、管端側)のエッジの位置を判別し得るように、光学式センサ2をY軸回りに回転させて、例えば、前記予め知られているリード角(設計値)に対応する方向とZ軸との間の略中間の方向に傾けた上で測定することとしている。
 なお、受光手段22において平行光成分が受光可能であれば、光源21から投光する光は平行光であってもよいし、平行光でなくてもよい。
 前記受光手段22としては、5mm×5mmから10mm×10mm程度の撮影範囲(数μmから10μm程度の画素間隔を有する受光素子)を有するCCDカメラを用いることができる。好ましくは、テレセントリックレンズを用いたCCDカメラを用いることにより、受光素子において平行光を容易に受光することができる。
 CCDカメラでの撮影結果は、サブピクセル処理を行うことにより、画素寸法の数分の1から数十分の1の分解能と精度が得られる。
 なお、幾何光学的に等価な効果を有するのであれば、光源21としてレーザやテレセントリックレンズ等を用いて投光する光を平行光とする一方、受光手段22には、上記のようなテレセントリックレンズを用いない光学系を採用することも可能である。
 このような光学式センサ2を用いて、管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝A4に対して略平行な光を検出することにより、ねじフランク面に関わらない第1ねじ要素が測定される。
 光学式センサ2による第1ねじ要素の測定においては、前述した測定基軸X1を基準高さとする。すなわち、光学式センサ2の焦点を前記測定基軸X1に合致させ、ねじ周囲のプロファイルを撮影する。具体的には、光源21からねじの縁(前記ねじ軸とZ方向位置に関して略同じ高さに位置する)に光を照射しつつ、受光手段22においてねじ付き管A1の外形(管やねじによって光が遮られた部分が影となる)を撮影する。
 受光手段22として前述したテレセントリックレンズを有するCCDカメラを用いることにより、ねじの縁近傍で受光手段22の光軸に略平行な光を集光し、結像することができる。得られた画像のうち、管やねじによって遮られた箇所(画素位置)は暗く検出され(検出輝度E0)、遮られなかった箇所は明るく検出される(検出輝度E1)。そして、両者の中間的な明るさ(検出輝度E2)として検出される箇所がねじの縁や境界となる。このように検出輝度をE0,E1,E2として区分することにより、検出輝度E0,E1で囲まれる画素位置(境界線位置)のすぐ内側の点をねじの縁の座標として高精度に検出する。
 また、ねじの縁の座標を検出する他の方法として、前述したサブピクセル処理を用いることも可能である。具体的には、検出輝度E2を有する領域及びその周辺領域に存在する画素群についての輝度検出結果を、各画素の位置(実空間に対応する各画素の中心位置)を横軸座標とし、各画素での検出輝度を縦軸座標とする直交座標系にプロットする。この直交座標系でプロットされたデータは、検出輝度E2を有する領域において、単調増加または単調減少の関係となる。この関係を適当な関数(例えば、一次関数)で近似する。そして、予め設定した検出輝度のしきい値(ねじの縁の座標を検出するためのしきい値)に対応する横軸座標を、前記関数に基づき算出する。この算出した横軸座標をねじの縁の座標とする。以上に説明したようなサブピクセル処理を行うことにより、ねじの縁の座標を、画素寸法よりも高分解能・高精度に検出することが可能である。
 このようにして得られたねじの縁の座標点の集合から光学式センサ2による測定箇所におけるねじ外形、すなわちプロファイル(フランク面を除く)が求められる。
 なお、測定すべきねじの寸法範囲は、一般的に、前記受光手段22の撮影範囲を超えるため、光学式センサ2を各軸移動ステージ10X,10Y,10Zにより所定の位置へ移動させて繰り返し測定した上で、前記演算処理手段4において、複数箇所における測定画像を繋ぎ合わせる処理を行うことにより、プロファイル等の必要な第1ねじ要素の測定値を算出することができる。
 上記のような光学式センサ2による測定の後、接触式センサ3を移動制御して、ねじフランク面に関わる第2ねじ要素の測定を行う。
 接触式センサ3としては、三次元測定機と一般的に呼ばれる測定装置を適用することができる。
 接触式センサ3には、前記各軸移動ステージ10X,10Y,10Z上を三次元移動可能な接触プローブ31が設けられている。接触プローブ31の移動位置は、例えば、高精度なリニアエンコーダにより読み取られ、演算処理手段4にその位置データが送られる。接触プローブ31の先端には、略球状の接触子31aが設けられており、接触子31aが測定対象に接触した瞬間の接触子31aに加わる微少な力が検知され、その際の接触子31aの球面の中心位置座標が算出される。本実施形態において、接触子31aの直径は、0.5mm以下で好適に測定されるが、0.1mm以上0.3mm以下がより好ましい。
 なお、接触プローブ31の取り付け位置から接触子31aまでの三次元的座標偏差は一定なので、接触プローブ31の移動位置から接触子31aの中心位置座標を算出できるように基準サンプル測定結果等により予め校正される。
 図4は、本実施形態の接触式センサによるフランク面の測定方法についての説明図である。
 接触プローブ31(接触子31a)は、測定すべきねじA2の設計データに基づいて当該ねじA2に対して相対的に移動可能なように移動プランが予め準備される。一方で、前記光学式センサ2の測定結果としてねじ谷の位置、ねじ軸高さ、フランク面のおよその位置が座標として演算処理手段4に入力される。このように光学式センサ2の測定結果として得られた各種座標に基づいて前記移動プランを修正し、接触子31aの移動ルートが決定される。加えて、接触子31aは、測定すべきフランク面A8(A8h)の傾きより大きい角度に傾き調整される。すなわち、接触子31aより接触プローブ31の他の部分(支柱部分)がフランク面A8(A8h)やねじ山稜線部に接触することのないように調整される。
 具体的には、図4に示すように、まず、接触プローブ31をZ軸方向に移動させ、接触子31aが測定基軸X1(すなわち前述したねじ軸位置)と同じ位置になるように調整される。次に、X軸方向のねじ溝A4位置において、Y軸方向に接触子31aをねじ溝A4から所定距離離れた位置まで移動させる。その上で、接触子31aがX軸方向かつ測定するフランク面A8(A8h)に近接する方向に接触プローブ31を移動させ、前記フランク面A8(A8h)に接触子31aが接触した瞬間の接触子31aの座標(X-Y座標)が読み取られる。
 続いて、接触子31aがフランク面A8(A8h)からX軸方向に所定距離離間するように接触プローブ31を移動させるとともに、Y軸方向(図4においては、ねじ軸から離間する方向)に所定距離移動させた上で、再度接触子31aがX軸方向かつ測定するフランク面A8(A8h)に近接する方向に接触プローブ31を移動させ、再びフランク面A8(A8h)に接触した瞬間の接触子31aの座標(X-Y座標)が読み取られる。このような座標検出をねじ仕様に応じて予め設定された必要回数だけくり返すことにより、得られた座標点の集合としてフランク面位置が決定される。この決定されたフランク面位置は、前記光学式センサ2で測定されたねじ山A3やねじ谷A4の稜線と位置付けられ、ねじ部A5全体における位置が特定される。このようにして特定されたフランク面に関する位置データよりフランク面に関わる第2ねじ要素が得られる。
 以上のように、光学式センサ2で測定された第1ねじ要素と接触式センサ3で測定された第2ねじ要素は、前記演算処理手段4において合成される。
 図5は、第1ねじ要素および第2ねじ要素が合成される様子についての説明図である。図5(a)は、第1ねじ要素の測定結果に基づくプロファイルを示し、図5(b)は、第2ねじ要素の測定結果に基づくプロファイルを示し、図5(c)は、合成後のプロファイルを示す。なお、図5においては、便宜上、フック状フランク面A8hのみ第2ねじ要素で測定した結果を示している。
 具体的には、図5に示すように、前述した測定基軸X1(ねじ軸位置)上のX-Y平面における座標点として第1ねじ要素および第2ねじ要素が合成される。特に、フランク面A8(A8h)については、第2ねじ要素が優先的に採用されるように合成される。図5(c)においては、実線部のみ採用しており、破線で示す第1ねじ要素の測定結果(図5(a))として得られたフック状フランク面A8h付近のプロファイルは不採用としている。
 上記のようなねじ要素の測定をねじ付き管A1の周方向複数箇所において測定する場合には、所定箇所における上記測定の後、把持機構6の回転手段によりねじ付き管A1を把持機構6の把持中心回りに所定角度回転させ、回転角度検出手段によりねじの回転角度を検出した上で、再度上記測定が行われる。この際のねじの回転角度は、近似的にねじ付き管A1の回転角度あるいは把持機構6の回転角度を用いることができる。
 なお、回転手段は必ずしも把持機構6に組み込まれていなくてもよく、別途回転手段を設けてもよい。
 また、把持機構6の把持中心(管軸)とねじ軸とがずれている場合には、回転前において検出したねじ軸の位置が、把持機構6によってねじ付き管A1を所定角度(例えば、90°)回転させた後にどの位置に移動するかを予め算出しておく。そして、実際に把持機構6によってねじ付き管A1を前記所定角度回転させた後に、前記算出した移動後のねじ軸の位置に基づき、光学式センサ2および接触式センサ3を移動制御し、測定することが好ましい。
 本実施形態においては、上記のねじ要素測定の結果得られた値に対して温度補正が行われる。すなわち、本実施形態のねじ要素測定システム5は、測定対象のねじ付き管A1の温度を測定する温度センサ11を備え、当該温度に応じて、測定されたねじ要素の値に対して温度補正を行う。
 この場合、実際に測定に用いられるねじ付き管A1の温度に基づいて、測定されたねじ要素の値を補正することにより、測定対象及び測定時間の相違によって温度差が生じることが防止されるため、より高精度な測定結果を得ることができる。
 また、ねじ要素測定装置1自体の熱膨張も考えられる。すなわち、光学式センサ2や接触式センサ3を各軸移動ステージ10X,10Y,10Zにより移動させる際の移動量(センサ位置)が熱膨張により誤差を生じる可能性がある。この点については、センサ位置検出方法として、石英ガラスや低熱膨張ガラスを基板としたエンコーダを利用すると、このような誤差は許容できる程度となる。
 なお、ねじ付き管A1の温度は、適切に調整された工場内温度に略一致している。このため、対象とするねじ付き管A1の通過する位置あるいはその近傍の雰囲気温度を測定することにより、当該測定温度に基づいて、測定されたねじ要素の値を補正することとしてもよい。また、より高精度な補正をするためには、ねじ要素の測定最中またはその直前直後にねじ付き管A1またはねじA2の温度を測定した上で、ねじ要素測定結果に補正を行うことが好ましい。
 ただし、温度センサ11の位置は、図1に例示的に示された位置以外の位置においても配置可能である。すなわち、必ずしもねじ部A5の近傍でなくてもよい。例えば、ねじ付き管A1の中央部等でも良い。また、本測定システムのライン上流においてねじ付き管A1の温度を測定することとしても、ねじ要素測定までの時間遅れが小さく温度変動が小さいのであれば、その温度測定値を温度補正に用いることが可能である。
 以上のように、本実施形態のねじ要素測定装置1によれば、管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝A4に対して略平行な光を検出することにより、第1ねじ要素が測定される。また、ねじフランク面A8(A8h)に接触式センサ3の接触プローブ31を接触させ、接触時における接触プローブ31(接触子31a)の空間座標を検出することにより、第2ねじ要素が測定される。
 それぞれ検出された第1および第2ねじ要素は、演算処理手段4により合成されて、測定対象のねじのねじ要素が演算される。
 このように、ねじ溝A4に対して略平行な光を検出することにより、ねじフランク面A8(A8h)に関しないねじ要素である第1ねじ要素を測定する一方、光学式測定では上述したようなねじ山A3の稜線の影により測定誤差が生じてしまう、ねじフランク面A8(A8h)に関するねじ要素である第2ねじ要素については接触式センサ3により測定し、これらを合成することにより、ねじ要素をねじフランク面A8(A8h)に関するねじ要素を含めて高精度に測定することができる。
 特に、光学式測定のみではねじ山A3の稜線の影に隠れる量が大きく誤差が大きいフック状フランク面A8hに関するねじ要素についても高精度に測定することができる。
 また、本実施形態のねじ要素測定システム5によれば、高さ調整機構7により、ねじ要素測定装置1の測定基軸X1とねじ付き管A1の中心軸を一致させるように、ねじ付き管A1が載置される高さを調整することができる。このため、連続処理ライン等において、直径の異なる管が順次ねじ要素測定装置1へ搬送されてきた場合でも、測定位置の変動を管の半径変動程度内に収めることができ、より迅速にねじ要素を測定することができる。
 加えて、把持機構6にねじ付き管A1を持ち込む際、把持機構6の求心機能を補うべく、ねじ付き管A1の高さを高さ調整機構7を用いて調整し、把持機構6の把持中心にねじ付き管A1の中心軸を略一致させるように移動させることができる。このため、搬送してきたねじ付き管A1の管軸が把持機構6の把持中心と大きくずれていることにより、上手く求心しなかったり、測定位置においてねじ付き管A1の傾きが過大になることによりねじ要素の測定が阻害されるのを防止することができる。
 本実施形態のねじ要素測定システム5においては、前記光学式センサ2による測定のみを行う場合と、前記光学式センサ2による測定及び前記接触式センサ3による測定の双方を行う場合とが選択可能に構成される。
 この場合、光学式センサ2による測定結果である第1ねじ要素をそのまま測定されたねじ要素として出力させる場合と、光学式センサ2による測定結果である第1ねじ要素および接触式センサ3による測定結果である第2ねじ要素を合成したものを測定されたねじ要素として出力させる場合とを適切なタイミングで切り替えることにより、品質管理に支障をきたすことなく、ねじ要素測定の迅速化を図ることができる。
 以上、本発明に係る実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。

Claims (9)

  1.  ねじ付き管の管端部のねじ要素を測定する装置であって、
     管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝に対して略平行な光を検出することにより、第1ねじ要素を測定する光学式センサと、
     ねじフランク面に接触プローブを接触させ、接触時における当該接触プローブの空間座標を検出することにより、第2ねじ要素を測定する接触式センサと、
     前記光学式センサから得られた第1ねじ要素及び前記接触式センサから得られた第2ねじ要素を合成してねじ要素を演算する演算処理手段とを有することを特徴とするねじ要素測定装置。
  2.  前記ねじフランク面は、フック形状を有するフック状フランク面を含むことを特徴とする請求項1に記載のねじ要素測定装置。
  3.  前記光学式センサによる測定のみを行う場合と、前記光学式センサによる測定及び前記接触式センサによる測定の双方を行う場合とを選択可能に構成されることを特徴とする請求項1または2に記載のねじ要素測定装置。
  4.  前記ねじ付き管の温度を求め、当該温度に応じて、測定されたねじ要素の値に対して温度補正を行うことを特徴とする請求項1~3のいずれかに記載のねじ要素測定装置。
  5.  前記ねじ付き管を管軸またはねじ軸を中心として回転させる回転手段と、前記回転手段の回転角度を検出する回転角度検出手段とを備えたことを特徴とする請求項1~4のいずれかに記載のねじ要素測定装置。
  6.  請求項1~5のいずれかに記載のねじ要素測定装置と、
     ねじ付き管を固定するための把持機構と、
     前記ねじ付き管の高さを調整する高さ調整機構であって、前記ねじ付き管の中心軸と前記把持機構の把持中心または前記ねじ要素測定装置の測定基軸とを略一致させる高さ調整機構とを備えたことを特徴とするねじ要素測定システム。
  7.  前記第1および第2ねじ要素の測定前に、前記ねじ要素測定装置の測定基軸と測定されるねじ付き管のねじ軸との距離を検出することを特徴とする請求項6に記載のねじ要素測定システム。
  8.  ねじ付き管の管端部のねじ要素を測定する測定方法であって、
     光学式センサを用いて、管軸に対して光源とは反対側に漏れ出た光のうち、ねじ溝に対して略平行な光を検出することにより、第1ねじ要素を測定する工程と、
     接触式センサを用いて、ねじフランク面に接触プローブを接触させ、接触時における当該接触プローブの空間座標を検出することにより、第2ねじ要素を測定する工程と、
     前記光学式センサから得られた第1ねじ要素及び前記接触式センサから得られた第2ねじ要素を合成してねじ要素を演算する工程とを有することを特徴とするねじ要素測定方法。
  9.  前記ねじフランク面は、フック形状を有するフック状フランク面を含むことを特徴とする請求項8に記載のねじ要素測定方法。
PCT/JP2009/056062 2008-03-27 2009-03-26 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法 WO2009119713A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2009229943A AU2009229943B2 (en) 2008-03-27 2009-03-26 Device for measuring screw element at pipe end, system for measuring screw element and method for measuring screw element
CA2718224A CA2718224C (en) 2008-03-27 2009-03-26 Apparatus, system, and method for measuring thread features on pipe or tube end
EP09726056.6A EP2259015B1 (en) 2008-03-27 2009-03-26 Device for measuring screw element at pipe end, system for measuring screw element and method for measuring screw element
US12/934,822 US8804104B2 (en) 2008-03-27 2009-03-26 Apparatus, system, and method for measuring thread features on pipe or tube end
PL09726056.6T PL2259015T3 (pl) 2008-03-27 2009-03-26 Urządzenie do pomiaru elementu śrubowego na końcu rury, system do pomiaru elementu śrubowego oraz sposób pomiaru elementu śrubowego
BRPI0910043-1A BRPI0910043B1 (pt) 2008-03-27 2009-03-26 Aparelho, sistema, e método para medir características de rosca em extremidade de cano ou tubo
CN200980111112.1A CN101981408B (zh) 2008-03-27 2009-03-26 管端部的螺纹要素测量装置、螺纹要素测量系统和螺纹要素测量方法
MX2010010441A MX2010010441A (es) 2008-03-27 2009-03-26 Aparato, sistema y metodo para medir caracteristicas de la rosca en extremos de tubos o conductos.
JP2009527633A JP4486700B2 (ja) 2008-03-27 2009-03-26 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-083221 2008-03-27
JP2008083221 2008-03-27

Publications (1)

Publication Number Publication Date
WO2009119713A1 true WO2009119713A1 (ja) 2009-10-01

Family

ID=41113901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056062 WO2009119713A1 (ja) 2008-03-27 2009-03-26 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法

Country Status (14)

Country Link
US (1) US8804104B2 (ja)
EP (1) EP2259015B1 (ja)
JP (1) JP4486700B2 (ja)
CN (1) CN101981408B (ja)
AR (1) AR071076A1 (ja)
AU (1) AU2009229943B2 (ja)
BR (1) BRPI0910043B1 (ja)
CA (1) CA2718224C (ja)
MX (1) MX2010010441A (ja)
MY (1) MY151213A (ja)
PL (1) PL2259015T3 (ja)
RU (1) RU2449244C1 (ja)
SA (1) SA109300190B1 (ja)
WO (1) WO2009119713A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093372A1 (ja) * 2010-01-29 2011-08-04 住友金属工業株式会社 欠陥検査装置
CN102564385A (zh) * 2011-12-12 2012-07-11 陕西汉江机床有限公司 滚珠丝杠副内循环螺母检测装置
JP2015167276A (ja) * 2014-03-03 2015-09-24 西日本家電リサイクル株式会社 薄型テレビの分解装置
KR20190030616A (ko) * 2017-09-14 2019-03-22 리브에르-베르잔테크니크 게엠베하 웜 스레드 형태의 머시닝 영역을 갖는 기구의 기하학적 치수의 자동 결정을 위한 방법
JP2019517671A (ja) * 2016-06-03 2019-06-24 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ねじ山測定装置
CN117367337B (zh) * 2023-12-08 2024-02-20 太原中金天威不锈钢管股份有限公司 基于机器视觉的不锈钢钢管尺寸测量装置及方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013593A1 (ja) * 2008-07-30 2010-02-04 住友金属工業株式会社 長尺材の寸法測定装置
WO2010132794A2 (en) * 2009-05-15 2010-11-18 University Of Delaware Method and apparatus for measuring microrelief of an object
CN102169339B (zh) * 2011-01-18 2013-02-20 洛阳锐腾机械技术有限公司 接箍拧接扭矩图形实时显示及存档的方法
US8860952B2 (en) 2011-06-09 2014-10-14 Quest Metrology, LLC Optical thread profiler
JP5288297B2 (ja) * 2011-12-27 2013-09-11 新日鐵住金株式会社 ねじ付き管の端部形状測定方法
KR101401042B1 (ko) * 2012-04-13 2014-05-29 삼성중공업 주식회사 도막 형성 장치 및 도막 형성 방법
DE102012008433A1 (de) * 2012-04-30 2013-10-31 Sms Meer Gmbh Vorrichtung und Verfahren zur 3D-Erfassung eines Rohres
CN103673838B (zh) * 2012-09-12 2016-04-13 昆山广禾电子科技有限公司 牙孔检测装置
JP6093538B2 (ja) * 2012-10-11 2017-03-08 株式会社ミツトヨ ねじ形状測定方法
CN103234416A (zh) * 2013-04-17 2013-08-07 浙江旺盛动力机电有限公司 螺纹传动机
CN103308016B (zh) * 2013-06-03 2015-09-09 南京航空航天大学 螺纹检测仪微位移传感器驱动机构及其平衡状态调节方法
EP3044536B1 (de) * 2013-09-13 2017-11-22 Carl Zeiss Industrielle Messtechnik GmbH Verfahren und vorrichtung zur vermessung von innengewinden eines werkstücks mit einem optischen sensor
CN103528523A (zh) * 2013-11-06 2014-01-22 湖北工业大学 一种基于三维立体建模的螺纹检测方法及系统
CN105980837A (zh) * 2014-02-04 2016-09-28 Nsk美国有限公司 用于检验端部区域支撑的转向柱组件的设备和方法
FR3057664B1 (fr) * 2016-10-19 2018-10-19 Vallourec Oil And Gas France Dispositif de determination de la qualite d'assemblage de composants tubulaires filetes
CN106403756B (zh) * 2016-10-20 2019-09-20 深圳市中图仪器股份有限公司 一种长管类锥螺纹的测量装置、锥度塞规夹具及锥度环规夹具
US10119810B2 (en) * 2016-11-14 2018-11-06 Tubular Solutions, Inc. Method and apparatus for digital thread inspection
RU176009U1 (ru) * 2016-12-28 2017-12-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Устройство для определения положения и ориентации объектов
WO2018152458A1 (en) * 2017-02-17 2018-08-23 Grant Prideco, L.P. Apparatus and methods for measuring thread depth on a threaded member
IT201700068751A1 (it) * 2017-06-21 2018-12-21 Torneria Ferraro S P A Metodo di verifica di ingranaggi a vite senza fine.
JP2019028010A (ja) * 2017-08-03 2019-02-21 株式会社ミツトヨ パイプ測定装置
JP2019035639A (ja) * 2017-08-14 2019-03-07 株式会社ミツトヨ ねじ軸測定装置、ねじ軸測定方法および調整用治具
DE102017126198B4 (de) * 2017-11-09 2021-11-11 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und System zur lehrenlosen Vermessung eines Gewindes
AT520613A1 (de) * 2017-11-13 2019-05-15 Voestalpine Tubulars Gmbh & Co Kg Vorrichtung zur optischen Vermessung des Außengewinde-Profils von Rohren
CN108154507B (zh) * 2017-12-29 2023-06-13 长春师范大学 螺纹管异物检测系统
WO2019183777A1 (zh) * 2018-03-26 2019-10-03 西门子公司 车削螺纹自动诊断方法、系统、数据处理系统和存储介质
US11313675B2 (en) 2018-05-02 2022-04-26 Nippon Steel Corporation Thread shape measuring apparatus and measuring method
TWI670487B (zh) * 2018-12-06 2019-09-01 財團法人國家實驗研究院 光學影像螺紋檢測系統及其方法
WO2020232041A1 (en) * 2019-05-14 2020-11-19 Schlumberger Technology Corporation On-machine thread inspection apparatus and method
CN110390380A (zh) * 2019-08-20 2019-10-29 昆山艾伯格机器人科技有限公司 一种螺纹检测装置及方法
CZ308523B6 (cs) * 2019-08-30 2020-10-21 Vysoká Škola Báňská - Technická Univerzita Ostrava Způsob bezkontaktního nasnímání profilů rotačních objektů a vyhodnocení jejich vnějších rozměrů a zařízení k provádění způsobu
CN110631490B (zh) * 2019-09-04 2021-08-24 江苏理工学院 一种螺纹通止检测装置及检测方法
CN111397565B (zh) * 2020-03-05 2022-03-22 湖北隐冠轴业有限公司 一种汽车轮毂轴圆度检测修整装置及其使用方法
CN111536849A (zh) * 2020-04-27 2020-08-14 丽水市莲都区凯江云泽机械厂 一种车窗软轴螺距检测设备
CN111982044B (zh) * 2020-08-12 2022-10-28 宁波江丰电子材料股份有限公司 一种螺纹孔的三坐标检测方法
CN112013764A (zh) * 2020-08-19 2020-12-01 中车四方车辆有限公司 一种螺纹检测、成像、标识设备
CN112629407B (zh) * 2020-11-24 2024-03-22 西安理工大学 基于图像分析的螺纹钢尺寸测量方法
DE102021202213A1 (de) 2021-03-08 2022-09-08 Sms Group Gmbh Verfahren und Vorrichtung zur optischen Vermessung eines Gewindes
WO2023061517A1 (en) * 2021-10-11 2023-04-20 Vysoka Skola Banska - Technicka Univerzita Ostrava Method of non-contact scanning of profiles of rotating objects and evaluation of their external dimensions
CN116451474B (zh) * 2023-04-19 2023-12-29 沈阳航空航天大学 一种螺纹牙斜面数学表达式的建立方法
CN117214185B (zh) * 2023-11-08 2024-01-30 中国石油大学(华东) 一种油气管具管螺纹自动测量装置
CN117869665B (zh) * 2024-03-11 2024-05-24 山西省城乡规划设计研究院有限公司 一种地面铺设管路定位装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212808A (ja) 1987-02-27 1988-09-05 Sumitomo Metal Ind Ltd ネジ形状測定装置
JPH05231857A (ja) * 1992-02-19 1993-09-07 Furukawa Electric Co Ltd:The 螺旋状凹凸部の測定装置
JP3552440B2 (ja) 1996-01-25 2004-08-11 Jfeスチール株式会社 ねじ要素の測定方法および装置
JP2006078327A (ja) * 2004-09-09 2006-03-23 Sumitomo Metal Ind Ltd 油井管用特殊ねじ継手のねじ部の検査方法
JP2007010393A (ja) * 2005-06-29 2007-01-18 Jfe Steel Kk ねじ形状測定装置
JP2007033174A (ja) * 2005-07-26 2007-02-08 Universal Seikan Kk キャップ付ボトル缶の測定方法及び測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515481A (en) * 1966-09-09 1970-06-02 Optomechanisms Inc Lead screw measuring means
US4184265A (en) * 1978-01-12 1980-01-22 Hydril Company Thread gage
DE3217995A1 (de) * 1982-05-13 1983-11-17 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Verfahren und vorrichtung zum vermessen von gewinden
US4629224A (en) * 1983-04-26 1986-12-16 Hydril Company Tubular connection
CN2283228Y (zh) * 1997-03-28 1998-06-03 西安同视机电科技有限责任公司 外螺纹参数非接触自动测量装置
RU2151999C1 (ru) * 1998-12-25 2000-06-27 Галиулин Равиль Масгутович Способ контроля параметров наружной резьбы и устройство для его осуществления
CN2527961Y (zh) * 2002-01-17 2002-12-25 中国石油天然气集团公司管材研究所 面阵ccd石油管螺纹参数智能化测试装置
US7745805B2 (en) * 2002-06-17 2010-06-29 Johnson Thread-View Systems Product inspection system and a method for implementing same that incorporates a correction factor
DE10319947B4 (de) * 2003-05-02 2010-06-02 Hommel-Etamic Gmbh Einrichtung zur Messung der Umfangsgestalt rotationssymmetrischer Werkstücke

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212808A (ja) 1987-02-27 1988-09-05 Sumitomo Metal Ind Ltd ネジ形状測定装置
JPH05231857A (ja) * 1992-02-19 1993-09-07 Furukawa Electric Co Ltd:The 螺旋状凹凸部の測定装置
JP3552440B2 (ja) 1996-01-25 2004-08-11 Jfeスチール株式会社 ねじ要素の測定方法および装置
JP2006078327A (ja) * 2004-09-09 2006-03-23 Sumitomo Metal Ind Ltd 油井管用特殊ねじ継手のねじ部の検査方法
JP2007010393A (ja) * 2005-06-29 2007-01-18 Jfe Steel Kk ねじ形状測定装置
JP2007033174A (ja) * 2005-07-26 2007-02-08 Universal Seikan Kk キャップ付ボトル缶の測定方法及び測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAO OGASAWARA: "Tetsu-to-Hagane", vol. 79, 1 May 1993, THE JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, article "Current Status of Tubular Connections for OCTG", pages: N352 - N355

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093372A1 (ja) * 2010-01-29 2011-08-04 住友金属工業株式会社 欠陥検査装置
US9121833B2 (en) 2010-01-29 2015-09-01 Nippon Steel & Sumitomo Metal Corporation Defect inspecting apparatus
CN102564385A (zh) * 2011-12-12 2012-07-11 陕西汉江机床有限公司 滚珠丝杠副内循环螺母检测装置
JP2015167276A (ja) * 2014-03-03 2015-09-24 西日本家電リサイクル株式会社 薄型テレビの分解装置
JP2019517671A (ja) * 2016-06-03 2019-06-24 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ねじ山測定装置
KR20190030616A (ko) * 2017-09-14 2019-03-22 리브에르-베르잔테크니크 게엠베하 웜 스레드 형태의 머시닝 영역을 갖는 기구의 기하학적 치수의 자동 결정을 위한 방법
JP2019066463A (ja) * 2017-09-14 2019-04-25 リープヘル−フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウォームねじ形状の加工領域を有する工具の幾何寸法の自動測定方法
JP7134029B2 (ja) 2017-09-14 2022-09-09 リープヘル-フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウォームねじ形状の加工領域を有する工具の幾何寸法の自動測定方法
KR102637456B1 (ko) 2017-09-14 2024-02-19 리브에르-베르잔테크니크 게엠베하 웜 스레드 형태의 머시닝 영역을 갖는 기구의 기하학적 치수의 자동 결정을 위한 방법
CN117367337B (zh) * 2023-12-08 2024-02-20 太原中金天威不锈钢管股份有限公司 基于机器视觉的不锈钢钢管尺寸测量装置及方法

Also Published As

Publication number Publication date
US8804104B2 (en) 2014-08-12
JPWO2009119713A1 (ja) 2011-07-28
MX2010010441A (es) 2011-07-01
EP2259015A4 (en) 2014-09-10
MY151213A (en) 2014-04-30
JP4486700B2 (ja) 2010-06-23
CA2718224C (en) 2013-08-06
SA109300190B1 (ar) 2013-08-27
EP2259015B1 (en) 2017-05-17
AU2009229943B2 (en) 2012-04-12
US20110164244A1 (en) 2011-07-07
AR071076A1 (es) 2010-05-26
AU2009229943A1 (en) 2009-10-01
BRPI0910043A2 (pt) 2015-12-29
BRPI0910043B1 (pt) 2019-04-30
RU2449244C1 (ru) 2012-04-27
EP2259015A1 (en) 2010-12-08
PL2259015T3 (pl) 2017-10-31
CA2718224A1 (en) 2009-10-01
CN101981408B (zh) 2013-03-27
CN101981408A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4486700B2 (ja) 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法
US9733070B2 (en) Shape measuring apparatus, structure manufacturing system, stage apparatus, shape measuring method, structure manufacturing method, program, and recording medium
US20130222579A1 (en) Measurement apparatus and correction method of the same
RU2706826C1 (ru) Устройство для измерения резьбы
CN111141767A (zh) 测量用x射线ct装置和使用该装置的ct重建方法
WO2023185550A1 (zh) 一种筒体嵌套装配对中的视觉测量引导装置、方法及系统
CN109759953B (zh) 大口径平面镜的轮廓检测装置及其检测方法
Wang et al. Optimization measurement for the ballscrew raceway profile based on optical measuring system
JP2001332611A (ja) キャリア形状測定機
JP7286485B2 (ja) 計測用x線ct装置
JPS63191007A (ja) ネジの検査測定方法
JPH03161223A (ja) ワークのはめ合い方法
JP6604258B2 (ja) ねじ付き管のねじ形状測定装置
JP7310541B2 (ja) 位置測定方法
JP6757391B2 (ja) 測定方法
KR20210145010A (ko) 웨이퍼 검사 장치
JP2020109374A (ja) 表面検査装置および表面検査方法
JP6482061B2 (ja) マスクステージ及びステージ装置
Filonov et al. Laser Measuring System for Tool and Surface Relative Positioning When Robotic Processing
JP7405586B2 (ja) テーパ面の形状及び面性状検査装置
JP5672919B2 (ja) マスク検査装置、描画方法、及びウェハ露光方法
US20230386066A1 (en) Image processing device and machine tool
JPS62272107A (ja) 実装部品検査方法
JP2003227713A (ja) 3次元形状測定機及びその誤差校正方法
JPH09243304A (ja) 形状測定装置、及びそれを用いた被測定面の位置決め方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111112.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009527633

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2718224

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PI 2010004342

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 2009229943

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/010441

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: P991/2010

Country of ref document: AE

REEP Request for entry into the european phase

Ref document number: 2009726056

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009726056

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009229943

Country of ref document: AU

Date of ref document: 20090326

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010143871

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12934822

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0910043

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100927