WO2011093372A1 - 欠陥検査装置 - Google Patents

欠陥検査装置 Download PDF

Info

Publication number
WO2011093372A1
WO2011093372A1 PCT/JP2011/051583 JP2011051583W WO2011093372A1 WO 2011093372 A1 WO2011093372 A1 WO 2011093372A1 JP 2011051583 W JP2011051583 W JP 2011051583W WO 2011093372 A1 WO2011093372 A1 WO 2011093372A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
reflected
inspection
imaging
tube axis
Prior art date
Application number
PCT/JP2011/051583
Other languages
English (en)
French (fr)
Inventor
和孝 穴山
俊之 鈴間
喜之 中尾
正美 池田
研太 坂井
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to EP11737083.3A priority Critical patent/EP2530457B1/en
Priority to JP2011504071A priority patent/JP4789028B2/ja
Priority to BR112012018564-0A priority patent/BR112012018564B1/pt
Publication of WO2011093372A1 publication Critical patent/WO2011093372A1/ja
Priority to US13/551,014 priority patent/US9121833B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires

Definitions

  • the present invention relates to a defect inspection apparatus for inspecting defects on the outer peripheral surface of a pipe.
  • a defect inspection apparatus for inspecting defects on the outer peripheral surface of a pipe is disclosed in Patent Document 1.
  • the defect inspection apparatus of Patent Document 1 includes a light source that illuminates the outer peripheral surface of a tube, and an imaging unit that captures the outer peripheral surface of the tube by receiving reflected light that is emitted from the light source and reflected by the outer peripheral surface of the tube. And an inspection unit that inspects a defect on the outer peripheral surface of the tube by performing image processing on a captured image captured by the imaging unit.
  • FIG. 1 As a pipe to be subjected to such a defect inspection, there is a steel pipe for oil well as shown in FIG.
  • a male screw part 201 and a lip part 202 are provided in this order from the inside in the pipe axis direction at the end of the oil well steel pipe 200.
  • the lip portion 202 is formed in a tapered shape in which the dimension in the direction perpendicular to the tube axis direction becomes smaller as it goes outward (in the tube end side) in the tube axis direction.
  • a plurality of oil well steel pipes 200 are usually used by being joined together via a joint 210.
  • a joint 210 On the inner peripheral surface of the joint 210, there are provided a female screw portion 211 that can be screwed into the male screw portion 201 of the oil well steel pipe 200, and a screwless portion 212.
  • the male thread part 201 of the oil well steel pipe 200 and the female thread part 211 of the joint 210 are screwed together, the outer peripheral surface of the lip part 202 comes into close contact with the non-threaded part 212 of the joint 210.
  • the close contact between the outer peripheral surface of the lip 202 and the threadless portion 212 prevents oil leakage between the oil well steel pipe 200 and the joint 210 when a plurality of oil well steel pipes 200 are used together. Is done.
  • the load surface 203 is an inner side surface (opposite to the tube end side) of both side surfaces of the thread portion 207 in the tube axis direction.
  • the thread bottom surface inspection area 206 refers to the thread bottom surface 204 from the boundary 205 between the load surface 203 and the thread bottom 204 to the portion 208 of the thread bottom 204 that is separated from the boundary 205 inward in the tube axis direction by a predetermined distance. This is the upper area. As described above, since a great stress is generated in the load surface 203 and the screw bottom surface inspection region 206, if there is a defect in the load surface 203 and the screw bottom surface inspection region 206, the oil well steel pipe 200 may be damaged.
  • the load surface 203 is inclined inward in the pipe axis direction with respect to a vertical plane perpendicular to the pipe axis direction.
  • the direction of the optical axis of the imaging means 222 provided in the apparatus of Patent Document 1 is the same as the direction perpendicular to the tube axis direction.
  • the imaging unit 222 of the apparatus of Patent Document 1 in which the direction of the optical axis coincides with the direction perpendicular to the tube axis direction cannot image the load surface 203 inclined inward in the tube axis direction. Therefore, the apparatus of Patent Document 1 cannot inspect the defect of the load surface 203 inclined inward in the tube axis direction.
  • the load surface 203 when the load surface 203 is inclined inward in the tube axis direction, the load surface 203 exists at the same position as the site near the boundary 205 of the screw bottom surface inspection region 206 in the tube axis direction. Since the load surface 203 exists, the reflected light reflected in the direction perpendicular to the tube axis direction at the portion near the boundary 205 of the screw bottom surface inspection region 206 enters the load surface 203. For this reason, as described above, the imaging unit 222 of the apparatus of Patent Document 1 in which the direction of the optical axis coincides with the direction perpendicular to the tube axis direction cannot capture the entire screw bottom inspection region 206 (screw bottom inspection). The region near the boundary 205 of the region 206 cannot be imaged). Therefore, when the load surface 203 is inclined inward in the tube axis direction, the apparatus disclosed in Patent Document 1 cannot inspect the defect over the entire screw bottom surface inspection region 206.
  • Patent Document 1 does not describe inspecting a defect on the outer peripheral surface of the lip portion 202.
  • the present invention provides a defect inspection apparatus capable of accurately inspecting a defect in a load surface and a screw bottom inspection region of a tube whose load surface is inclined inward in the tube axis direction and inspecting a defect on an outer peripheral surface of a lip portion. For the purpose.
  • a male screw part and a lip part are provided in this order from the inner side (opposite to the pipe end side) in the pipe axis direction to the pipe end part, and the load surface of the male screw part is perpendicular to the pipe axis direction. Inclined inward in the tube axis direction with respect to a vertical plane, and the dimension of the lip portion in the direction perpendicular to the tube axis direction decreases as it goes to the outside (tube end side) in the tube axis direction.
  • a defect inspection apparatus for inspecting defects on the outer peripheral surface of a tube having a tapered shape, wherein the optical axis is inclined with respect to the vertical surface by an angle A that satisfies the following formula (1) on the outer side in the tube axis direction,
  • a first light source that illuminates the outer peripheral surface of the lip portion, and is attached to the first light source so that the optical axis is coaxial with the optical axis of the first light source.
  • the outer periphery of the lip portion is emitted from the first light source. Receiving the reflected light reflected by the surface, and imaging the outer peripheral surface of the lip portion.
  • An imaging means a second light source for illuminating the load surface, and attached to the second light source, emitted from the second light source, and the following formula (2) is set inside the tube axis direction with respect to the vertical surface:
  • An optical axis is adjusted so as to receive reflected light reflected by the load surface in a direction inclined by a satisfying angle B, and receiving the reflected light to image the load surface;
  • a third light source that illuminates a thread bottom surface inspection region from a boundary portion between a load surface and a thread bottom surface of the male thread portion to a portion of a thread bottom surface that is spaced a predetermined distance from the boundary portion inward in the tube axis direction;
  • At the screw bottom inspection region in a direction that is attached to the third light source is emitted from the third light source, and is inclined with respect to the vertical plane by an angle C that satisfies the following expression (3) inside the tube axis direction.
  • a defect inspection apparatus comprising: an inspection unit that inspects a defect in the load surface and the screw bottom surface inspection region.
  • b ° is an angle (less than 90 °) formed by the load surface and the vertical surface in a cross section including the tube axis.
  • c ° is the front end of the insertion surface of the male screw portion in contact with the boundary portion between the load surface and the screw bottom surface and the inner end portion of the screw bottom surface in the tube axis direction in the cross section including the tube shaft. This is an angle (less than 90 °) formed by a straight line connecting the portions and the vertical plane.
  • d ° is the insertion surface of the male screw portion in contact with the inner end portion of the thread bottom surface in the tube axis direction and the inner end portion of the thread bottom surface in the tube axis direction in the cross section including the tube axis. Is an angle (less than 90 °) formed by a straight line connecting the leading ends of the two and the vertical plane.
  • the defect inspection apparatus can inspect defects on the outer peripheral surface of the lip portion.
  • the optical axis of the first light source that illuminates the outer peripheral surface of the lip portion is inclined by an angle A that satisfies the above formula (1) on the outer side in the tube axis direction with respect to a vertical surface perpendicular to the tube axis direction.
  • the angle A is a negative angle, it means that the optical axis of the first light source is inclined inward in the tube axis direction with respect to the vertical plane by the absolute value of the angle A.
  • the light from the first light source is a method of the outer peripheral surface of the lip portion. It can be said that the light enters the outer peripheral surface of the lip portion from a direction inclined by an angle of 45 ° or less with respect to the linear direction. For this reason, the light from the first light source is incident on the outer peripheral surface of the lip portion, and the specularly reflected light (incident angle and reflection) is incident on the outer peripheral surface of the lip portion from the first light source and is regularly reflected by the outer peripheral surface.
  • the angle formed by the reflection direction of light reflected from the outer peripheral surface of the lip portion so that the angles are equal to each other is 90 ° at the maximum. Since the optical axis of the first imaging unit is coaxial with the optical axis of the first light source, the direction of the optical axis of the first imaging unit is the same as the direction in which the light from the first light source is incident on the outer peripheral surface of the lip portion. I'm doing it. For this reason, the angle formed by the direction of the optical axis of the first imaging unit and the reflection direction of the regular reflection light is 90 ° or less. The amount of light incident on the outer peripheral surface of the lip portion and reflected by the outer peripheral surface tends to increase as the reflection direction is closer to the reflection direction of the regular reflection light.
  • the first imaging means whose angle between the reflection direction of the regular reflection light and the direction of the optical axis is 90 ° or less emits a large amount of reflected light that is emitted from the first light source and reflected by the outer peripheral surface of the lip portion. Light can be received and the outer peripheral surface of the lip portion can be clearly imaged. Since the first imaging unit can clearly image the outer peripheral surface of the lip portion, the defect inspection apparatus according to the present invention can detect defects on the outer peripheral surface of the lip portion by performing image processing on the captured image captured by the first imaging unit. Can be inspected.
  • the defect inspection apparatus includes a second light source and a second imaging unit.
  • the second light source illuminates the load surface.
  • the light from the second light source is incident on the load surface without reflecting anywhere on the tube, and the light from the second light source is part of the tube other than the load surface ( For example, both meanings of reflecting on the bottom surface of the screw and entering the load surface are included.
  • the second imaging means receives the reflected light emitted from the second light source and reflected from the load surface in a direction inclined by an angle B satisfying the above equation (2) on the inner side in the tube axis direction with respect to the vertical surface.
  • the optical axis is adjusted so that it is possible.
  • the load surface is inclined by b ° inward in the tube axis direction with respect to the vertical surface. For this reason, all the reflected light reflected on the load surface is reflected on the load surface in a direction inclined by an angle larger than b ° inside the tube axis direction with respect to the vertical surface.
  • the reflection direction of the reflected light reflected at the boundary portion between the load surface and the screw bottom surface is a direction inclined by an angle larger than c ° inside the tube axis direction with respect to the vertical surface
  • the reflection is performed.
  • the light is incident on the insertion surface in contact with the inner end of the screw bottom surface in the tube axis direction. Accordingly, the optical axis is adjusted so that the reflected light reflected by the load surface can be received in the direction inclined by the angle B satisfying the above equation (2) on the inner side in the tube axis direction with respect to the vertical surface.
  • the two imaging means can receive the reflected light reflected at each position of the load surface, and can image the load surface by receiving the reflected light. Since the second imaging unit can image the load surface, the defect inspection apparatus according to the present invention can accurately inspect the load surface defect by performing image processing on the captured image captured by the second imaging unit.
  • the defect inspection apparatus includes a third light source and a third imaging unit.
  • the third light source illuminates the screw bottom inspection area.
  • the third light source illuminates the thread bottom surface inspection area means that the light from the third light source is incident on the thread bottom surface inspection area without reflecting anywhere on the tube, and the light from the third light source is incident on the thread bottom surface inspection area. Both meanings of reflecting on a portion of the tube other than (for example, a load surface) and then entering the screw bottom inspection region are included.
  • the third imaging means is a reflected light that is emitted from the third light source and reflected by the screw bottom surface inspection region in a direction inclined by an angle C that satisfies the above expression (3) inside the tube axis direction with respect to the vertical plane.
  • the optical axis is adjusted to receive light.
  • the load surface is inclined by b ° inward in the tube axis direction with respect to the vertical surface.
  • the reflection direction of the reflected light reflected at the boundary portion between the load surface and the screw bottom surface is inclined by b ° or an angle smaller than b ° inside the tube axis direction with respect to the vertical surface. If there is, the reflected light enters the load surface.
  • the reflection direction of the reflected light reflected at the inner end portion in the tube axis direction of the screw bottom inspection region is a direction inclined by an angle larger than d ° inside the tube axis direction with respect to the vertical plane. Then, the reflected light is incident on the insertion surface in contact with the inner end of the screw bottom surface in the tube axis direction. Therefore, the optical axis is adjusted so that the reflected light reflected from the screw bottom surface inspection area can be received in the direction inclined by the angle C satisfying the above equation (3) on the inner side in the tube axis direction with respect to the vertical surface.
  • the third imaging means can receive the reflected light reflected at each position of the screw bottom inspection region, and can pick up the screw bottom inspection region by receiving the reflected light.
  • the defect inspection apparatus can detect defects in the screw bottom inspection region by performing image processing on the picked-up image picked up by the third image pickup unit. Inspection can be performed with high accuracy.
  • the first imaging means is attached to the first light source so that the optical axis of the first imaging means is coaxial with the optical axis of the first light source. For this reason, while maintaining the state where the optical axis of the first imaging means and the optical axis of the first light source are coaxial, the optical axis of the first light source is angled outwardly in the tube axis direction with respect to the vertical plane. Can be adjusted to tilt only. Therefore, in the defect inspection apparatus according to the present invention, the adjustment of the optical axis of the first light source prevents the optical axis of the first imaging unit and the optical axis of the first light source from becoming coaxial, Adjustment for making the optical axis coaxial with the optical axis of the first light source is unnecessary.
  • a single light source member that serves as both the second light source and the third light source, and a single imaging device that serves as the second imaging means and the third imaging means. And a posture in which light from the light source member is incident on the load surface and the imaging device receives light reflected from the light source member reflected by the load surface, and light from the light source member is screwed
  • a configuration includes a mirror that is incident on a bottom surface inspection region and that can switch a posture between a posture in which reflected light from the light source member reflected on the screw bottom surface inspection region is received by the imaging device. It is done.
  • the light source member Functions as a second light source
  • the imaging device functions as a second imaging means.
  • the light source member Functions as a third light source
  • the imaging device functions as third imaging means.
  • a single light source member serves as a 2nd light source and a 3rd light source
  • two light sources (a 2nd light source and a 3rd light source) independently relate to this invention.
  • the defect inspection apparatus since the second image pickup means and the third image pickup means serve as a single image pickup device, the defect inspection apparatus according to the present invention has two image pickup means (second image pickup means and third image pickup means) independently. There is no need to prepare. For this reason, according to said preferable structure, the number of parts of the defect inspection apparatus which concerns on this invention can be reduced.
  • the first imaging means includes a telecentric lens that receives reflected light reflected by the outer peripheral surface of the lip portion, and the second imaging means is provided on the load surface. And a telecentric lens that receives the reflected light reflected, and the third imaging unit includes a telecentric lens that receives the reflected light reflected in the screw bottom surface inspection region.
  • each of the first to third imaging units includes the telecentric lens, the distance between each of the first to third imaging units and the outer peripheral surface of the lip portion, the load surface, and the thread bottom surface inspection region varies. Even so, it is possible to suppress the occurrence of distortion in the captured image captured by each of the first to third imaging units. Therefore, according to the preferable configuration described above, even if the distance between each of the first to third imaging units and the outer peripheral surface of the lip portion, the load surface, and the screw bottom surface inspection region varies, the lip It is possible to inspect for defects in the outer peripheral surface of the part, the load surface, and the screw bottom surface inspection region.
  • the first light source is ring-shaped illumination arranged so as to surround the first imaging means
  • the second light source has an optical axis of the first light source.
  • 2 is a ring-shaped illumination that is coaxial with the optical axis of the image pickup means and that surrounds the second image pickup means.
  • the third light source has an optical axis that is coaxial with the optical axis of the third image pickup means.
  • the present invention includes a fourth light source instead of the second light source and the third light source, and further includes a fourth imaging unit instead of the second imaging means and the third imaging means,
  • the fourth light source illuminates the load surface and the screw bottom surface inspection region, and the fourth imaging means is attached to the fourth light source, emits from the fourth light source, and is the tube axis with respect to the vertical surface.
  • b ° is an angle (less than 90 °) formed by the load surface and the vertical surface in the cross section of the tube including the tube axis.
  • d ° is the insertion surface of the male thread portion in contact with the rear end portion of the thread bottom surface inspection region on the thread bottom surface and the inner end portion of the thread bottom surface in the tube axis direction in the cross section of the tube including the tube axis. Is an angle (less than 90 °) formed by a straight line connecting the leading ends of the two and the vertical plane.
  • the defect inspection apparatus including the fourth light source and the fourth imaging unit includes the above-described second light source, third light source, second imaging unit, and third imaging unit (hereinafter referred to as “second light source”).
  • second light source the image of the outer peripheral surface, load surface, and screw bottom inspection area of the lip portion is image-processed to inspect defects in the outer peripheral surface, load surface, and screw bottom inspection area of the lip portion.
  • the first imaging unit performs imaging of the outer peripheral surface of the lip portion in the same manner as the defect inspection apparatus including the second light source.
  • the fourth light source and the fourth imaging unit perform imaging of the load surface and the screw bottom inspection region.
  • the second imaging unit that images the load surface receives the reflected light reflected by the load surface, so that the tube axis is
  • the optical axis is adjusted so that reflected light reflected in a direction inclined by an angle B inside the direction can be received.
  • the lower limit of the angle B and the angle C is equal to b °, but the upper limit d ° of the angle C is smaller than the upper limit c ° of the angle B. For this reason, the range of the angle C is included in the range of the angle B.
  • the fourth imaging means whose optical axis is adjusted so that it can receive the reflected light that reflects the load surface and the screw bottom surface inspection area in a direction inclined by an angle C inward of the tube axis direction with respect to the vertical surface.
  • the reflected light reflected at the respective positions of the load surface and the screw bottom surface inspection region can be received simultaneously.
  • the fourth imaging means can receive both reflected light at the respective positions of the load surface and the screw bottom inspection region, thereby imaging both the load surface and the screw bottom inspection region in one imaging step.
  • the defect inspection apparatus provided with the fourth imaging means, it is possible to inspect defects in the load surface and the screw bottom inspection region with a small number of imaging operations, and it is possible to shorten the time required for defect inspection in the load surface and the screw bottom inspection region.
  • the fourth light source illuminates the load surface and the screw bottom inspection region means that light from the fourth light source is incident on the load surface and the screw bottom inspection region without reflecting anywhere on the tube.
  • the first imaging means includes a telecentric lens that receives reflected light reflected by the outer peripheral surface of the lip portion
  • the fourth imaging unit may include a telecentric lens that receives reflected light reflected by the load surface and reflected light reflected by the screw bottom surface inspection region.
  • the distance between each of the first imaging means and the fourth imaging means and each of the outer peripheral surface of the lip portion, the load surface, and the screw bottom surface inspection region Even if fluctuates, it is possible to suppress distortion in the captured image captured by the first imaging unit and the fourth imaging unit. For this reason, according to the above preferred configuration, even if the distance between each of the first imaging means and the fourth imaging means and the outer peripheral surface of the lip portion, the load surface, and each of the screw bottom surface inspection regions varies, It is possible to inspect defects in the outer peripheral surface of the lip portion, the load surface, and the screw bottom surface inspection region.
  • the first light source is a ring-shaped illumination arranged so as to surround the first imaging means
  • the fourth light source has a configuration in which the optical axis is coaxial with the optical axis of the fourth imaging unit and is ring-shaped illumination arranged so as to surround the fourth imaging unit.
  • the present invention can provide a defect inspection apparatus that can accurately inspect defects in a load surface and a screw bottom inspection region of a tube whose load surface is inclined inward in the tube axis direction, and can inspect defects in the outer peripheral surface of the lip portion. .
  • FIG. 1 is a diagram showing a schematic configuration of a defect inspection apparatus according to Embodiment 1 of the present invention and a cross section including a tube axis of a tube to be inspected for defects.
  • FIG. 2 is a schematic diagram showing the posture of the mirror shown in FIG.
  • FIG. 2A is a schematic diagram showing the attitude of the mirror when light incident on the mirror from a direction inclined by b ° inside the tube axis direction with respect to a vertical plane perpendicular to the tube axis enters the imaging device. is there.
  • FIG. 1 is a diagram showing a schematic configuration of a defect inspection apparatus according to Embodiment 1 of the present invention and a cross section including a tube axis of a tube to be inspected for defects.
  • FIG. 2 is a schematic diagram showing the posture of the mirror shown in FIG.
  • FIG. 2A is a schematic diagram showing the attitude of the mirror when light incident on the mirror from a direction inclined by b ° inside the tube axis direction with respect
  • FIG. 2B is a schematic diagram showing the attitude of the mirror when light incident on the mirror from a direction inclined by c ° inside the tube axis direction with respect to a vertical plane perpendicular to the tube axis enters the imaging device.
  • FIG. 3 is a schematic diagram showing the posture of the mirror shown in FIG. Specifically, FIG. 3 shows the attitude of the mirror when light incident on the mirror from a direction inclined by d ° inside the tube axis direction with respect to a vertical plane perpendicular to the tube axis enters the imaging device. It is a schematic diagram.
  • FIG. 4 is a schematic diagram of a captured image captured by the first imaging unit shown in FIG.
  • FIG. 5 is a schematic diagram of an image processing filter.
  • FIG. 6 is a schematic diagram of a captured image captured by the first imaging unit illustrated in FIG.
  • FIG. 7 is a schematic diagram of a captured image captured by the imaging apparatus illustrated in FIG.
  • FIG. 8 is a graph showing the distribution of luminance values in the X direction of the pixel line.
  • FIG. 9 is a diagram illustrating a schematic configuration of the defect inspection apparatus according to the third embodiment of the present invention and a cross section including a tube axis of a tube to be defect-inspected.
  • FIG. 10 is a cross-sectional view of an oil well steel pipe and a joint.
  • FIG. 11 is a schematic view of a conventional defect inspection apparatus.
  • FIG. 1 is a diagram illustrating a schematic configuration of a defect inspection apparatus according to the present embodiment and a cross section including a tube axis of a tube to be inspected for defects.
  • the pipe to be inspected for defects is the oil well steel pipe 100.
  • a male screw portion 101 and a lip portion 102 are provided in this order from the inner side (left side in FIG. 1) in the tube axis direction P at the end of the oil well steel pipe 100.
  • the load surface 103 of the male thread portion 101 is inside the tube axis direction P with respect to the vertical plane R perpendicular to the tube axis direction P in the cross section including the tube axis of the oil well steel pipe 100 (counterclockwise direction in FIG. 1). Is inclined by b °.
  • the load surface 103 is a side surface on the inner side in the tube axis direction P among the side surfaces of the thread portion 107.
  • the lip portion 102 is formed in a tapered shape in which the dimension in the direction perpendicular to the tube axis direction P becomes smaller as it goes to the outside (right side in FIG. 1) in the tube axis direction P.
  • the outer peripheral surface of the lip portion 102 forms an angle of a ° with the pipe axis direction P in the cross section including the pipe axis of the oil well steel pipe 100.
  • the defect inspection apparatus includes a first light source 2, a first imaging unit 3, a single light source member 4, a single imaging unit 5, a mirror 6, and an inspection unit (not shown).
  • the first light source 2 is inclined by an angle A satisfying the following expression (1) with respect to the vertical plane R, the optical axis L1 being outside the tube axis direction P (clockwise direction in FIG. 1), and the lip portion 102 Illuminate the outer peripheral surface.
  • the first light source 2 is ring-shaped illumination attached to the first image pickup means 3 so as to surround the first image pickup means 3. a ⁇ 45 ⁇ A ⁇ a + 45 (1)
  • the first imaging means 3 images the outer peripheral surface of the lip portion 102 by receiving the reflected light emitted from the first light source 2 and reflected by the outer peripheral surface of the lip portion 102.
  • the optical axis of the first light source 2 and the first imaging means 3 is coaxial.
  • the first imaging means 3 includes a telecentric lens as a lens for receiving the reflected light reflected by the outer peripheral surface of the lip portion 102.
  • the optical axis L1 of the first light source 2 that illuminates the outer peripheral surface of the lip portion 102 is inclined by the angle A to the outside in the tube axis direction P with respect to the vertical plane R.
  • the light from the first light source 2 enters the outer peripheral surface of the lip portion 102 from a direction inclined by a1 ° of 45 ° or less with respect to the normal direction N of the outer peripheral surface of the lip portion 102. Therefore, the light from the first light source 2 enters the outer peripheral surface of the lip portion 102 (the direction of the optical axis L1 of the first light source 2) and the first light source 2 incident on the outer peripheral surface of the lip portion 102.
  • the angle D formed by the regular reflection direction R2 in which the light is regularly reflected on the outer peripheral surface of the lip 102 so that the incident angle and the reflection angle are equal to each other is 90 ° at the maximum. Since the optical axis of the first imaging unit 3 is coaxial with the optical axis L1 of the first light source 2, the direction of the optical axis of the first imaging unit 3 is that the light from the first light source 2 is the outer peripheral surface of the lip portion 102. Is coincident with the incident direction. For this reason, the angle formed by the direction of the optical axis of the first imaging means 3 and the above-described regular reflection direction R2 is 90 ° or less.
  • the amount of light incident on the outer peripheral surface of the lip portion 102 and reflected by the outer peripheral surface is such that the reflected direction is closer to the direction where the incident angle and the reflection angle with respect to the outer peripheral surface of the lip portion 102 are equal. It tends to grow. For this reason, the first imaging means 3 whose angle between the above-described regular reflection direction R2 and the direction of the optical axis is 90 ° or less is a reflection emitted from the first light source 2 and reflected by the outer peripheral surface of the lip portion 102. A large amount of light can be received, and the outer peripheral surface of the lip 102 can be clearly imaged.
  • the light source member 4 doubles as a second light source and a third light source.
  • the second light source is a light source that illuminates the load surface 103.
  • the third light source is a light source that illuminates the screw bottom inspection region 106.
  • the thread bottom surface inspection area 106 refers to the thread bottom surface 104 from the boundary portion 105 between the load surface 103 and the thread bottom surface 104 to the portion 108 of the thread bottom surface 104 that is separated from the boundary portion 105 inward in the tube axis direction by a predetermined distance. This is the upper area.
  • the light emitted from the light source member 4 is reflected by the mirror 6 and then enters the load surface 103 or the screw bottom surface inspection region 106.
  • the orientation of the mirror 6 can be switched.
  • the incident destination of the light emitted from the light source member 4 can be switched between the load surface 103 and the screw bottom surface inspection region 106. Therefore, the light source member 4 is switched between when it functions as the second light source and when it functions as the third light source by switching the posture of the mirror 6.
  • the light source member 4 is ring-shaped illumination attached to the imaging device 5 so as to surround the imaging device 5.
  • the imaging device 5 serves as both the second imaging means and the third imaging means.
  • the second imaging means is a direction that is attached to the second light source, is emitted from the second light source, and is inclined with respect to the vertical plane R by an angle B that satisfies the following expression (2) inside the tube axis direction P.
  • the optical axis is adjusted so that the reflected light reflected by the load surface 103 can be received, and the load surface 103 is imaged by receiving the reflected light.
  • c ° is an angle (less than 90 °) formed by the straight line S1 and the vertical plane R described above.
  • the straight line S1 is a straight line connecting the above-described boundary portion 105 and the distal end portion 111 of the insertion surface 110 of the male screw portion 101 in contact with the inner end portion 109 of the screw bottom surface 104 in the tube axis direction in a cross section including the tube axis.
  • the insertion surface 110 is a side surface on the outer side in the tube axis direction P among the side surfaces of the thread portion 107.
  • the distal end portion 111 of the insertion surface 110 is a boundary portion between the insertion surface 110 and the screw top surface 112 of the screw thread portion 107.
  • the third imaging means is a direction that is attached to the third light source, is emitted from the third light source, and is inclined with respect to the vertical plane R by an angle C that satisfies the following expression (3) inside the tube axis direction P.
  • the imaging means is configured to image the screw bottom inspection region 106 by adjusting the optical axis so that the reflected light reflected by the screw bottom inspection region 106 can be received and receiving the reflected light.
  • d ° is an angle (less than 90 °) formed by the straight line S2 and the vertical plane R described above.
  • the straight line S ⁇ b> 2 is a straight line connecting the end portion 108 on the inner side in the tube axis direction P of the thread bottom surface inspection region 106 and the tip end portion 111 of the insertion surface 110 in the cross section including the tube axis.
  • the imaging device 5 receives the reflected light reflected by the load surface 103 or the screw bottom surface inspection region 106 via the mirror 6.
  • the reflected light received by the imaging device 5 can be switched between the reflected light from the load surface 103 and the reflected light from the screw bottom surface inspection region 106. That is, by switching the attitude of the mirror 6, the imaging device 5 can be switched between when it functions as the second imaging means and when it functions as the third imaging means.
  • the optical axes of the light source member 4 and the imaging device 5 are coaxial, and each optical axis is inclined outward in the tube axis direction P with respect to the vertical plane R.
  • the imaging device 5 includes a telecentric lens as a lens for receiving the reflected light reflected by the load surface 103 and the reflected light reflected by the screw bottom surface inspection region 106.
  • the mirror 6 is rotatable around an axis orthogonal to the tube axis direction (perpendicular to the paper surface of FIG. 1).
  • the posture of the mirror 6 is such that light from the light source member 4 is incident on the load surface 103 and is reflected by the load surface 103 in a direction inclined by an angle B inside the tube axis direction P with respect to the vertical surface R.
  • a posture in which the reflected light is received by the imaging device 5 hereinafter referred to as “first posture”
  • light from the light source member 4 is incident on the screw bottom surface inspection region 106, and the tube axis direction with respect to the vertical surface R described above.
  • a posture hereinafter referred to as “second posture” in which the reflected light reflected by the bottom surface inspection region 106 in a direction inclined by an angle C inside P is received by the imaging device 5.
  • the mirror 6 is inclined with respect to the vertical plane R by an angle E that satisfies the following expression (4) outside the tube axis direction P.
  • r1 ° and r2 ° are angles representing how many times the mirror 6 is inclined to the outside in the tube axis direction P with respect to the vertical plane R.
  • the mirror 6 is inclined inward in the tube axis direction P with respect to the vertical plane R, and therefore r2 ° is a negative angle.
  • the light incident on the mirror 6 from the direction inclined by b ° or an angle smaller than b ° inside the tube axis direction P with respect to the vertical plane R, and the above-mentioned Light that has entered the mirror 6 from a direction inclined by an angle larger than c ° inside the tube axis direction P with respect to the vertical plane R is not received by the imaging device 5.
  • the load surface 103 is inclined by b ° inside the tube axis direction P with respect to the vertical surface R described above. For this reason, all the reflected light reflected by the load surface 103 is reflected in a direction inclined by an angle larger than b ° inside the tube axis direction with respect to the vertical surface R.
  • the imaging device 5 can receive the reflected light reflected by the load surface 103, and can image the load surface 103 by receiving the reflected light. That is, if the angle E satisfies the above equation (4), the imaging device 5 functions as a second imaging unit.
  • the mirror 6 is inclined with respect to the vertical plane R by an angle E that satisfies the following expression (7) outside the tube axis direction P. r1 °> E ⁇ r3 ° (7)
  • r3 ° is an angle representing how many times the mirror 6 is inclined to the outside in the tube axis direction P with respect to the vertical plane R, similarly to r1 ° and r2 °.
  • r3 ° is a negative angle.
  • the light incident on the mirror 6 from the direction inclined by b ° or an angle smaller than b ° inside the tube axis direction P with respect to the vertical plane R, and the above-mentioned Light that has entered the mirror 6 from a direction inclined by an angle greater than d ° inside the tube axis direction P with respect to the vertical plane R is not received by the imaging device 5.
  • the load surface 103 is inclined with respect to the vertical surface R by an angle b ° inside the tube axis direction P.
  • the reflected light reflected by the boundary 105 in the direction inclined at an angle b ° or smaller than b ° inside the tube axis direction P with respect to the vertical surface R is incident on the load surface 103.
  • the reflected light reflected at the inner end 108 in the tube axis direction of the screw bottom surface inspection region 106 in a direction inclined by an angle larger than the angle d ° inside the tube axis direction P with respect to the vertical plane R described above is , Enters the insertion surface 110. Therefore, if the angle E satisfies the above formula (7), the imaging device 5 can receive the reflected light reflected by the screw bottom inspection region 106, and the screw bottom inspection region 106 can be received by receiving the reflected light. I can image. That is, if the angle E satisfies the above equation (7), the imaging device 5 functions as a third imaging unit.
  • the inspection unit performs image processing on the captured image captured by the first imaging unit 3 and the captured image captured by the imaging device 5 as follows, so that the outer peripheral surface and the load surface of the lip portion 102 are processed. 103 and a defect in the screw bottom inspection region 106 is inspected.
  • FIG. 4 shows a captured image 40 captured by the first imaging means 3, and an arrow Y direction in FIG. 4 and FIGS. 6 and 7 described later is a direction corresponding to the tube axis direction P (tube axis direction P).
  • Y direction the direction corresponding to the above is referred to as “Y direction”.
  • a region having a high luminance value (white region) extending in a direction perpendicular to the Y direction (the arrow X direction in FIGS. 4, 6, and 7; the direction perpendicular to the Y direction is hereinafter referred to as “X direction”).
  • X direction a region having a high luminance value
  • the reason why the luminance value of the lip portion region 48 is high is that a large amount of reflected light reflected by the outer peripheral surface of the lip portion 102 is received by the first imaging means 3.
  • the inspection unit extracts the inspection target region 49 from the captured image 40.
  • the inspection object region 49 is a portion where the lip region 48 is substantially parallel to the X direction.
  • the position information of the inspection target region 49 is calculated in advance from the position of the oil well steel pipe 100 with respect to the first image pickup means 3 at the time of imaging, the outer diameter of the oil well steel pipe 100, and stored in advance in the inspection means.
  • the inspection means performs preprocessing such as noise removal on the region 49.
  • the inspection means recognizes the pixel lines constituting the lip portion region 48 from the pixel lines 41a, 41b, 41c... Extending in the X direction in the inspection target region 49.
  • the certification is performed as follows. First, for each pixel line, the inspection unit calculates the sum of the luminance values of all the pixels constituting each pixel line 41a, 41b, 41c. The inspection unit recognizes a pixel line whose sum of the calculated luminance values is larger than a predetermined threshold as a pixel line constituting the lip part region 48. In the present embodiment, it is assumed that the pixel lines 41n1, 41n2, 41n3, and 41n4 are recognized as pixel lines constituting the lip portion region 48. If the pixel line constituting the lip portion region 48 cannot be recognized, the inspection means ends the image processing for defect inspection at that time.
  • the inspecting means selects one side edge 52 of the linear flaw region 51 corresponding to the linear flaw among all the pixels constituting one pixel line recognized as the pixel line constituting the lip region 48. And the pixel candidates constituting the other side edge 53 (hereinafter referred to as “the other side edge candidate pixels”).
  • the edge candidate pixels on one side and the other side are detected as follows.
  • the inspection unit recognizes a pixel located in a region where the luminance value sharply increases toward one side in the X direction (in the present embodiment, the right side) as an edge candidate pixel on one side, A pixel located in a region where the luminance value sharply decreases as it goes to one side in the X direction is recognized as an edge candidate pixel on the other side.
  • the edge candidate pixels on one side and the other side are recognized because the pixels constituting the linear flaw region 51 are the pixels constituting the other region of the pixel line corresponding to the outer peripheral surface of the lip portion 102.
  • the luminance value is smaller than that.
  • the inspection unit uses the image processing filter illustrated in FIG. 5 to calculate how steeply the luminance value varies toward one side in the X direction.
  • the inspection means can select one side edge candidate pixel and the other side edge candidate from all the pixels constituting all the pixel lines recognized as the pixel line constituting the lip region 48. Detect a pixel. Note that if the edge candidate pixels on one side and the other side cannot be detected, the inspection unit ends the image processing for defect inspection at that time.
  • the inspection unit When the one-side and other-side edge candidate pixels are detected, the inspection unit performs a labeling process on the one-side edge candidate pixels to thereby form pixels that constitute the one-side edge 52 of the linear flaw region 51. Group candidates (hereinafter referred to as “candidate pixel groups on one side”) are detected. Similarly, the inspection means performs a labeling process on the other side edge candidate pixel to thereby detect a candidate pixel group (hereinafter referred to as “the other side edge”) that constitutes the other side edge 53 of the linear flaw region 51. ”Candidate pixel group”).
  • the inspection means determines the length in the Y direction and the longitudinal direction of each of the candidate pixel groups on the one side and the other side, and the candidate pixel group on the one side and the edge on the other side.
  • Each of the candidate pixel groups on one side and the other side of the edge actually forms the one side and the other side edges 52 and 53 of the linear flaw region 51 based on the distance from the candidate pixel group and the like. Judge whether it is a group.
  • the inspection unit determines that each of the candidate pixel groups on one side and the other side is a pixel group that actually configures one side and the other side edges 52 and 53 of the linear flaw region 51.
  • the inspection unit processes the captured image 40 so that the candidate pixel groups on one side and the other side are surrounded by a red frame or the like.
  • the worker can visually recognize the monitor on which the captured image 40 is displayed, whether or not a linear flaw has occurred on the outer peripheral surface of the lip portion 102, and the line It can be seen where the flaws occur.
  • the inspection means recognizes the pixel lines constituting the lip portion region 48 as described above.
  • the inspection means calculates an average W1 of the length W in the Y direction of the region 64 composed of all the pixel lines recognized as the pixel lines constituting the lip region 48.
  • the Y-direction length W of the region 64 is the Y-direction length of a pixel group including pixels whose luminance value is larger than a predetermined threshold among all the pixels constituting the region 14.
  • the inspection means has a flaw 61 in the section. to decide. Then, the inspection unit processes the captured image 40 so that the section is emphasized when the captured image 40 is displayed on the monitor.
  • FIG. 7 shows a captured image 70 captured by the imaging device 5 (that is, the second imaging unit) when the mirror 6 is in the first posture.
  • the captured image 70 includes a region having the lowest luminance value, a second lowest region, and a highest region.
  • the region having the lowest luminance value is a load surface region 71 corresponding to the load surface 103.
  • the region having the second lowest luminance value is a region corresponding to the screw bottom surface inspection region 106 (hereinafter referred to as “screw bottom region 72”).
  • a region having the highest luminance value is a screw top surface region 73 corresponding to the screw top surface 112.
  • the screw bottom inspection region 106 and the screw top surface 112 are substantially parallel, but some of the light reflected by the screw bottom inspection region 106 is incident on the load surface 103 and the insertion surface 110 but not on the imaging device 5. Therefore, the screw bottom surface region 72 has a lower luminance value than the screw top surface region 73.
  • the inspection unit extracts the inspection target region 74 from the captured image 70.
  • the inspection target region 74 is a portion where the load surface region 71, the screw bottom surface region 72, and the screw top surface region 73 are substantially parallel to the X direction.
  • the position information of the inspection target region 74 is calculated in advance from the position of the oil well steel pipe 100 with respect to the imaging device 5 at the time of imaging, the outer diameter of the oil well steel pipe 100, and stored in advance in the inspection means.
  • the inspection unit performs preprocessing such as noise removal on the region.
  • the inspection means recognizes the pixel lines constituting the load surface region 71 from among the pixel lines 75a, 75b, 75c... Of the captured image 70 extending in the X direction in the inspection target region 74.
  • the certification is performed as follows. First, the inspection unit calculates the sum of the luminance values of all the pixels constituting each pixel line 75a, 75b, 75c... For each pixel line. The inspection unit recognizes a pixel line having a calculated sum of luminance values lower than a predetermined threshold as a pixel line constituting the load surface region 71. When the pixel line constituting the load surface area 71 cannot be recognized, the inspection unit ends the image processing for defect inspection at that time.
  • the inspection means shows the distribution in the X direction of the luminance value of one pixel line (hereinafter referred to as “target pixel line”) among the pixel lines recognized as the pixel lines constituting the load surface region 71.
  • a luminance value line (see FIG. 8) and an average (average luminance value) of luminance values of each pixel constituting the pixel line are calculated.
  • the inspection unit determines whether or not the number of intersections between the luminance value line and the average luminance value is equal to or greater than a predetermined threshold value and the average luminance value is less than the predetermined threshold value.
  • the inspection unit When it is determined that the number of intersections is equal to or greater than the predetermined threshold value and the average luminance value is less than the predetermined threshold value, the inspection unit has a flaw in the portion of the load surface 103 corresponding to the target pixel line. Judge. On the other hand, if the inspection unit determines that the number of intersections is equal to or greater than the predetermined threshold and the average luminance value exceeds the predetermined threshold, a flaw occurs in the portion of the load surface 103 corresponding to the target pixel line. Judge that it is not. Similarly, the inspection unit determines whether or not a flaw has occurred in portions corresponding to all the pixel lines recognized as the pixel lines constituting the load surface area 71.
  • the inspection unit processes the captured image 70 so that the pixel line corresponding to the portion of the load surface 103 determined to have a flaw is surrounded by a red frame or the like.
  • the worker can visually check the monitor to determine whether or not the load surface 103 is flawed and in which part the flaw is generated. You can see if there is.
  • Image processing for defect inspection of the screw bottom inspection region 106 is performed on a captured image captured by the imaging device 5 (that is, the third imaging unit) when the mirror 6 is in the second posture.
  • the captured image when the mirror 6 is in the second posture includes a load surface region 71, a screw bottom surface region 72, and a screw top surface region 73, as in the captured image 70 shown in FIG.
  • the captured image 70 in FIG. 7 is an image captured by the image capturing device 5 when the mirror 6 is in the second posture
  • image processing for defect inspection of the screw bottom surface inspection region 106 will be described. .
  • the inspection unit extracts the inspection target region 74 from the captured image 70.
  • the inspection means recognizes the pixel lines constituting the load surface region 71 from among the pixel lines 75a, 75b, 75c... Of the captured image 70 extending in the X direction in the inspection target region 74.
  • the recognition is performed by a method similar to the method in image processing for defect inspection of the load surface 103.
  • the inspection unit recognizes a pixel line constituting the screw top surface region 73 from among the pixel lines 75a, 75b, 75c.
  • the certification is performed as follows. First, the inspection unit calculates the sum of the luminance values of all the pixels constituting each pixel line 75a, 75b, 75c... For each pixel line.
  • the inspection unit recognizes a pixel line having a calculated sum of luminance values equal to or greater than a predetermined threshold as a pixel line constituting the screw top surface region 73.
  • the inspection means recognizes the load surface region 71 from the pixel lines that constitute the load surface region 71 and recognizes the screw top surface region 73 from the pixel lines that constitute the screw top surface region 73.
  • the inspection means recognizes a region between the load surface region 71 and the screw top surface region 73 as the screw bottom surface region 72.
  • the inspection means includes a luminance value line indicating a distribution in the X direction of the luminance value of one pixel line (hereinafter referred to as “target pixel line”) among the pixel lines constituting the screw bottom region 72, and the pixel line.
  • the average of the luminance values of each pixel that constitutes (average luminance value) is calculated.
  • the inspection unit determines whether or not the number of intersections between the luminance value line and the average luminance value is equal to or greater than a predetermined threshold value and the average luminance value is less than the predetermined threshold value.
  • the inspection unit When it is determined that the number of intersections is equal to or greater than a predetermined threshold value and the average luminance value is less than the predetermined threshold value, the inspection unit causes a flaw in a portion of the screw bottom surface inspection region 106 corresponding to the target pixel line.
  • the inspection means determines that the number of intersections is equal to or greater than the predetermined threshold and the average luminance value exceeds the predetermined threshold, the inspection means may damage the site of the screw bottom inspection region 106 corresponding to the target pixel line. Is determined not to occur.
  • the inspection unit determines whether or not a flaw has occurred in the portions corresponding to all the pixel lines constituting the screw bottom region 72.
  • the inspection unit processes the captured image 70 so that the pixel line corresponding to the part of the screw bottom inspection region 106 that is determined to have a flaw is surrounded by a red frame or the like. .
  • the worker can visually check the monitor to determine whether or not the screw bottom inspection area 106 is flawed, and in which part the flaw is scratched. You can see what is happening.
  • the defect inspection apparatus of the present embodiment it is possible to inspect defects on the outer peripheral surface of the lip portion 102, the load surface 103, and the screw bottom surface inspection region 106.
  • the first imaging means 3 is attached to the first light source 2 so that the optical axis of the first imaging means 3 is coaxial with the optical axis L1 of the first light source 2. Therefore, the optical axis of the first light source 2 is in the tube axis direction with respect to the vertical plane R while maintaining the state where the optical axis of the first imaging means 3 and the optical axis L1 of the first light source 2 are coaxial.
  • the angle can be adjusted to be inclined by an angle A outside P.
  • the adjustment of the optical axis L1 of the first light source 2 does not cause the optical axis of the first imaging means 3 and the optical axis L1 of the first light source 2 to be coaxial, Adjustment to make the optical axis of the first imaging means 3 coaxial with the optical axis L1 of the first light source 2 is unnecessary.
  • the light source member 4 also serves as a second light source and a third light source. For this reason, the defect inspection apparatus of this embodiment does not need to be provided with two light sources (second light source and third light source) independently.
  • the imaging device 5 serves as a second imaging unit and a third imaging unit. For this reason, it is not necessary for the defect inspection apparatus of the present embodiment to include two image pickup means (second image pickup means and third image pickup means) independently. For this reason, the defect inspection apparatus of the present embodiment has a small number of parts.
  • the first imaging unit 3 and the imaging device 5 include the telecentric lens, each of the first imaging unit 3 and the imaging device 5, the outer peripheral surface of the lip portion 102, the load surface 103, and the screw bottom surface inspection region 106. Even if the distance between the first and second imaging devices 3 and 5 varies, it is possible to suppress distortion in the captured image captured by the first imaging unit 3 and the imaging device 5. For this reason, in the defect inspection apparatus of the present embodiment, the distance between each of the first imaging unit 3 and the imaging apparatus 5 and each of the outer peripheral surface of the lip portion 102, the load surface 103, and the screw bottom surface inspection region 106 varies. Even in this case, it is possible to inspect the outer peripheral surface of the lip portion 102, the load surface 103, and the thread bottom surface inspection region 106 for defects.
  • the direction of the optical axis of the light source member 4 and the imaging device 5 is inclined outward even if it is inclined inward in the tube axis direction P with respect to the vertical plane R.
  • the light source member 4 can illuminate the load surface 103 or the screw bottom inspection region 106, and the imaging device 5 receives the reflected light reflected by the load surface 103 or the screw bottom inspection region 106. it can.
  • the optical axes of the light source member 4 and the imaging device 5 are inclined outward in the tube axis direction P as in the first imaging unit 3 as in the present embodiment, the outer peripheral surface and the load surface of the lip portion 102 It is possible to inspect for defects in the 103 and the screw bottom surface inspection area 106 and to make the defect inspection apparatus of the present embodiment compact.
  • the optical axis of the imaging device 5 when the imaging device 5 functions as the second imaging means has the largest angle with the vertical plane R at an angle that can be taken by the angle B that satisfies the above formula (2). It is preferable to adjust so that the reflected light reflected in the direction inclined by c ° can be received. If the direction of the optical axis of the imaging device 5 is adjusted so that reflected light reflected in a direction with a small angle with the tube axis direction P can be received, the imaging range of the imaging device 5 can be increased along the tube axis direction P. .
  • the optical axis of the imaging device 5 when the image pickup device 5 functions as the third image pickup means has the smallest angle formed with the tube axis direction P at an angle that can be taken by the angle C satisfying the above equation (3), d °. It is preferable to adjust so that the reflected light reflected in the inclined direction can be received.
  • the imaging range of the imaging device 5 can be increased along the tube axis direction P. .
  • many screw bottom inspection regions 106 can be imaged in one imaging process.
  • the defect inspection apparatus of this embodiment includes a fourth light source instead of the light source member of Embodiment 1, and includes a fourth imaging unit instead of the imaging apparatus of Embodiment 1.
  • the fourth light source illuminates the load surface 103 and the screw bottom inspection region 106 simultaneously.
  • the fourth imaging means is attached to the fourth light source.
  • the fourth imaging means emits from the fourth light source, and the load surface 103 and the screw bottom inspection region in a direction inclined with respect to the vertical surface R by an angle C satisfying the above expression (3) inside the tube axis direction P.
  • the imaging means is configured to image the load surface 103 and the screw bottom inspection region 106 by adjusting the optical axis so that the reflected light reflected by the light source 106 can be received and receiving the reflected light.
  • the optical axis is adjusted so that the reflected light reflected in the direction inclined by the angle B inside the tube axis direction P with respect to the vertical plane R can be received.
  • the reflected light reflected by the load surface 103 can be received.
  • the lower limit of the angle B and the angle C is equal to b °, and the upper limit d ° of the angle C is smaller than the upper limit c ° of the angle B. For this reason, the range of the angle C is included in the range of the angle B.
  • the optical axis is adjusted so that the reflected light reflected by the load surface 103 and the screw bottom surface inspection region 106 can be received in a direction inclined by an angle C inside the tube axis direction P with respect to the vertical surface R.
  • the fourth imaging means can simultaneously receive the reflected light reflected at the respective positions of the load surface 103 and the screw bottom surface inspection region 106.
  • the fourth imaging means captures both the load surface 103 and the screw bottom inspection region 106 in one imaging step by simultaneously receiving the reflected light at each position of the load surface 103 and the screw bottom inspection region 106. it can.
  • defects in the load surface 103 and the screw bottom surface inspection region 106 can be inspected with a small number of imaging times, and the time required for defect inspection of the load surface 103 and the screw bottom surface inspection region 106 is shortened. it can.
  • the defect inspection apparatus 1 of the present embodiment includes a first light source 2 (not shown), a first imaging unit 3 (not shown), a second light source 7, and a second imaging unit 8. , A third light source 9, a third imaging means 10, and an inspection means (not shown).
  • the first light source 2, the first imaging unit 3, and the inspection unit have the same configuration as the defect inspection apparatus of the first embodiment.
  • the second light source 7 is a light source that illuminates the load surface 103.
  • the second imaging means 8 is attached to the second light source 7 and receives the light reflected by the load surface 103.
  • the optical axis of the second image pickup means 8 is adjusted in a direction inclined with respect to the vertical plane R by an angle B that satisfies the above equation (2) inside the tube axis direction P. As described above, all the reflected light reflected by the load surface 103 is reflected by the load surface 103 in a direction inclined with respect to the vertical surface R by an angle larger than b ° inside the tube axis direction.
  • the reflection direction of the reflected light reflected by the boundary portion 105 is a direction inclined with respect to the vertical plane R by an angle larger than the angle c ° inside the tube axis direction P, the reflected light is reflected. Is incident on the insertion surface 110. Therefore, the second imaging means 8 can receive the reflected light reflected by the load surface 103 and can image the load surface 103 by receiving the reflected light.
  • the third light source 9 is a light source that illuminates the screw bottom surface inspection region 106.
  • the third imaging means 10 is attached to the third light source 9 and receives the light reflected by the screw bottom surface inspection region 106.
  • the third imaging means 10 is inside the tube axis direction P with respect to the vertical plane R.
  • the direction of the optical axis is adjusted in a direction inclined by an angle C satisfying the above expression (3).
  • the reflected light reflected by the boundary 105 in the direction inclined at an angle b ° or smaller than b ° inside the tube axis direction P with respect to the vertical surface R is the load surface 103. Is incident on.
  • the third imaging means 10 can receive the reflected light reflected by the screw bottom surface inspection area 106, and can image the screw bottom surface inspection area 106 by receiving the reflected light.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】本発明の課題は、管軸方向の内側に荷重面が傾斜した管の荷重面及びねじ底面検査領域の欠陥を精度良く検査でき、且つ、リップ部の外周面の欠陥を検査できる欠陥検査装置を提供することである。 【解決手段】本発明は、第1光源2と、第1光源から出射しリップ部102の外周面にて反射した反射光の受光によって、リップ部の外周面を撮像する第1撮像手段3と、第2光源7と、第2光源ら出射し、荷重面103にて反射した反射光の受光によって、荷重面を撮像する第2撮像手段8と、第3光源9と、第3光源から出射し、ねじ底面検査領域106にて反射した反射光の受光によってねじ底面検査領域を撮像する第3撮像手段10と、第1~3撮像手段が撮像した撮像画像を画像処理することによって、リップ部の外周面、荷重面、及び、ねじ底面検査領域の欠陥を検査する検査手段とを備えることを特徴とする欠陥検査装置を提供する。

Description

欠陥検査装置
 本発明は、管の外周面の欠陥を検査する欠陥検査装置に関する。
 管の外周面の欠陥を検査する欠陥検査装置が特許文献1に開示されている。特許文献1の欠陥検査装置は、管の外周面を照明する光源と、該光源から出射し、管の外周面にて反射した反射光を受光することによって管の外周面を撮像する撮像手段と、該撮像手段が撮像した撮像画像を画像処理することによって、管の外周面の欠陥を検査する検査手段とを備える。
 このような欠陥検査の対象となる管として、図10に示すような油井用鋼管が挙げられる。油井用鋼管200の端部には、管軸方向の内側から、雄ねじ部201及びリップ部202がこの順で設けられている。リップ部202は、管軸方向の外側(管端側)に向かうにつれ、該管軸方向に垂直な方向の寸法が小さくなるテーパー状に形成されている。
 油井用鋼管200は、通常、継手210を介して複数本が継合わされて使用される。継手210の内周面には、油井用鋼管200の雄ねじ部201に螺合可能な雌ねじ部211と、ねじ無部212とが設けられている。油井用鋼管200の雄ねじ部201と継手210の雌ねじ部211とを螺合させると、リップ部202の外周面が、継手210のねじ無部212に密接する。リップ部202の外周面とねじ無部212とが密接することで、複数本の油井用鋼管200を継合わせて使用する際に、油井用鋼管200と継手210との間からの油漏れが防止される。
 ねじ無部212と密接するリップ部202の外周面に欠陥が存在すると、油井用鋼管200と継手210との間から油漏れが生じる恐れがある。また、油井用鋼管200を継合わせて使用している場合に、雄ねじ部201の荷重面203及びねじ底面検査領域206において、強大な応力が生じることがある。荷重面203とは、ねじ山部207の管軸方向の両側面のうち、内側(管端側と反対側)の側面である。ねじ底面検査領域206とは、荷重面203とねじ底面204との境界部205から、該境界部205より管軸方向の内側に所定の距離だけ離間したねじ底面204の部位208までのねじ底面204上の領域である。上記のように、荷重面203及びねじ底面検査領域206には、強大な応力が生じるため、荷重面203及びねじ底面検査領域206に欠陥が存在すると、油井用鋼管200が破損する恐れがある。
 以上のことから、リップ部202の外周面、荷重面203及びねじ底面検査領域206の欠陥を精度良く検査する必要がある。
 図10に示すように、油井用鋼管200の中には、荷重面203が、管軸方向に垂直な垂直面に対して管軸方向の内側に傾斜したものがある。図11に示すように、特許文献1の装置が備える撮像手段222の光軸の方向は、管軸方向に垂直な方向と一致している。このように、光軸の方向が管軸方向に垂直な方向と一致している特許文献1の装置の撮像手段222では、管軸方向の内側に傾斜した荷重面203を撮像できない。従って、特許文献1の装置は、管軸方向の内側に傾斜した荷重面203の欠陥を検査できない。
 また、荷重面203が管軸方向の内側に傾斜していると、管軸方向について、ねじ底面検査領域206の境界部205寄りの部位と同一位置に、荷重面203が存在する。荷重面203が存在するため、ねじ底面検査領域206の境界部205寄りの部位にて管軸方向に垂直な方向に反射した反射光は荷重面203に入射する。このため、上述のように、光軸の方向が管軸方向に垂直な方向と一致している特許文献1の装置の撮像手段222では、ねじ底面検査領域206の全域を撮像できない(ねじ底面検査領域206の境界部205寄りの部位を撮像できない)。従って、特許文献1の装置は、管軸方向の内側に荷重面203が傾斜していると、ねじ底面検査領域206の全域にわたって欠陥を検査できない。
 さらに、特許文献1には、リップ部202の外周面の欠陥を検査することについては記載されていない。
日本国特公平2-58588号公報
 本発明は、管軸方向の内側に荷重面が傾斜した管の荷重面及びねじ底面検査領域の欠陥を精度良く検査でき、且つ、リップ部の外周面の欠陥を検査できる欠陥検査装置を提供することを目的とする。
 本発明は、管端部に、管軸方向の内側(管端側と反対側)から、雄ねじ部及びリップ部がこの順で設けられ、前記雄ねじ部の荷重面は、前記管軸方向に垂直な垂直面に対して前記管軸方向の内側に傾斜しており、前記リップ部は、前記管軸方向の外側(管端側)に向かうにつれ、前記管軸方向に垂直な方向の寸法が小さくなるテーパー状である管の外周面の欠陥を検査する欠陥検査装置であって、光軸が前記垂直面に対して前記管軸方向の外側に下記式(1)を満たす角度Aだけ傾斜し、前記リップ部の外周面を照明する第1光源と、光軸が前記第1光源の光軸と同軸となるように前記第1光源に取り付けられ、前記第1光源から出射し前記リップ部の外周面にて反射した反射光を受光することによって、前記リップ部の外周面を撮像する第1撮像手段と、前記荷重面を照明する第2光源と、前記第2光源に取り付けられ、前記第2光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(2)を満たす角度Bだけ傾斜した方向に前記荷重面にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって、前記荷重面を撮像する第2撮像手段と、前記荷重面と前記雄ねじ部のねじ底面との境界部から、該境界部より前記管軸方向の内側に所定の距離だけ離間したねじ底面の部位までのねじ底面検査領域を照明する第3光源と、前記第3光源に取り付けられ、前記第3光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(3)を満たす角度Cだけ傾斜した方向に前記ねじ底面検査領域にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって前記ねじ底面検査領域を撮像する第3撮像手段と、前記第1~3撮像手段が撮像した撮像画像を画像処理することによって、前記リップ部の外周面、前記荷重面、及び、前記ねじ底面検査領域の欠陥を検査する検査手段とを備えることを特徴とする欠陥検査装置を提供する。
a-45≦A≦a+45(1)
b<B≦c…(2)
b<C≦d…(3)
 a°は、前記管軸を含む断面において、前記リップ部の外周面と前記管軸方向とが成す角度(90°未満)である。
 b°は、前記管軸を含む断面において、前記荷重面と前記垂直面とが成す角度(90°未満)である。
 c°は、前記管軸を含む断面において、前記荷重面と前記ねじ底面との境界部、及び、前記のねじ底面の前記管軸方向の内側の端部と接する前記雄ねじ部の挿入面の先端部を結ぶ直線と、前記垂直面とが成す角度(90°未満)である。
 d°は、前記管軸を含む断面において、前記ねじ底面検査領域の管軸方向の内側の端部、及び、前記ねじ底面の前記管軸方向の内側の端部と接する前記雄ねじ部の挿入面の先端部を結ぶ直線と、前記垂直面とが成す角度(90°未満)である。
 まず、本発明に係る欠陥検査装置が、リップ部の外周面の欠陥を検査できることについて説明する。リップ部の外周面を照明する第1光源の光軸は、管軸方向に垂直な垂直面に対して管軸方向の外側に上記式(1)を満たす角度Aだけ傾斜している。尚、角度Aが負の角度である場合、角度Aの絶対値分だけ第1光源の光軸は、上記の垂直面に対して管軸方向の内側に傾斜することを意味する。上記のように、第1光源の光軸が上記の垂直面に対して管軸方向の外側に角度Aだけ傾斜していることから、第1光源からの光は、リップ部の外周面の法線方向に対して45°以下の角度だけ傾斜した方向からリップ部の外周面に入射するといえる。このため、第1光源からの光がリップ部の外周面に入射する方向と、第1光源からリップ部の外周面に入射し、該外周面にて正反射した正反射光(入射角と反射角とが等しくなるようにリップ部の外周面にて反射する光)の反射方向との成す角度は最大で90°である。第1撮像手段の光軸は、第1光源の光軸と同軸であるため、第1撮像手段の光軸の方向は、第1光源からの光がリップ部の外周面に入射する方向と一致している。このため、第1撮像手段の光軸の方向と、正反射光の反射方向との成す角度が90°以下となる。リップ部の外周面に入射し、該外周面にて反射した光の光量は、反射方向が正反射光の反射方向に近い方向ほど、光量が大きくなる傾向にある。このため、正反射光の反射方向と、光軸の方向との成す角度が90°以下の第1撮像手段は、第1光源から出射し、リップ部の外周面にて反射した反射光を多量に受光でき、リップ部の外周面を鮮明に撮像できる。第1撮像手段がリップ部の外周面を鮮明に撮像できるので、本発明に係る欠陥検査装置は、第1撮像手段が撮像した撮像画像を画像処理することによって、リップ部の外周面の欠陥を検査できる。
 次に、本発明に係る欠陥検査装置が荷重面の欠陥を精度良く検査できることについて説明する。本発明に係る欠陥検査装置は、第2光源と第2撮像手段とを備える。第2光源は、荷重面を照明する。第2光源が荷重面を照明するとは、第2光源からの光を管のどこにも反射させずに荷重面に入射させること、及び、第2光源からの光を荷重面以外の管の部位(例えば、ねじ底面)にて反射させてから荷重面に入射させることの両方の意味が含まれる。
 第2撮像手段は、第2光源から出射し、上記の垂直面に対して管軸方向の内側に上記式(2)を満たす角度Bだけ傾斜した方向に荷重面にて反射した反射光を受光できるように光軸が調整されている。荷重面は、上記の垂直面に対して管軸方向の内側にb°だけ傾斜している。このため、荷重面にて反射する全ての反射光は、上記の垂直面に対して管軸方向の内側にb°より大きい角度だけ傾斜した方向に荷重面にて反射する。また、荷重面とねじ底面との境界部にて反射した反射光の反射方向が、上記の垂直面に対して管軸方向の内側にc°より大きい角度だけ傾斜した方向であると、該反射光はねじ底面の管軸方向の内側の端部と接する挿入面に入射する。従って、上記の垂直面に対して管軸方向の内側に上記式(2)を満たす角度Bだけ傾斜した方向に荷重面にて反射した反射光を受光できるように光軸が調整されている第2撮像手段は、荷重面の各位置にて反射した反射光を受光でき、該反射光を受光することによって荷重面を撮像できる。第2撮像手段が荷重面を撮像できるので、本発明に係る欠陥検査装置は、第2撮像手段が撮像した撮像画像を画像処理することによって、荷重面の欠陥を精度良く検査できる。
 次に、本発明に係る欠陥検査装置がねじ底面検査領域の欠陥を精度良く検査できることについて説明する。本発明に係る欠陥検査装置は、第3光源と第3撮像手段とを備える。第3光源は、ねじ底面検査領域を照明する。第3光源がねじ底面検査領域を照明するとは、第3光源からの光を管のどこにも反射させずにねじ底面検査領域に入射させること、及び、第3光源からの光をねじ底面検査領域以外の管の部位(例えば、荷重面)にて反射させてからねじ底面検査領域に入射させることの両方の意味が含まれる。
 第3撮像手段は、第3光源から出射し、上記の垂直面に対して管軸方向の内側に上記式(3)を満たす角度Cだけ傾斜した方向にねじ底面検査領域にて反射した反射光を受光できるように光軸が調整されている。上述のように荷重面は、上記の垂直面に対して管軸方向の内側にb°だけ傾斜している。このため、荷重面とねじ底面との境界部にて反射した反射光の反射方向が、上記の垂直面に対して管軸方向の内側にb°又はb°よりも小さい角度だけ傾斜した方向であると、該反射光は荷重面に入射する。また、ねじ底面検査領域の管軸方向の内側の端部にて反射した反射光の反射方向が、上記の垂直面に対して管軸方向の内側にd°より大きい角度だけ傾斜した方向であると、該反射光はねじ底面の管軸方向の内側の端部と接する挿入面に入射する。従って、上記の垂直面に対して管軸方向の内側に上記式(3)を満たす角度Cだけ傾斜した方向にねじ底面検査領域にて反射した反射光を受光できるように光軸が調整されている第3撮像手段は、ねじ底面検査領域の各位置にて反射した反射光を受光でき、該反射光を受光することによってねじ底面検査領域を撮像できる。このように、第3撮像手段がねじ底面検査領域を撮像できるので、本発明に係る欠陥検査装置は、第3撮像手段が撮像した撮像画像を画像処理することによって、ねじ底面検査領域の欠陥を精度良く検査できる。
 また、第1撮像手段の光軸が第1光源の光軸と同軸となるように、第1撮像手段が第1光源に取り付けられている。このため、第1撮像手段の光軸と第1光源の光軸とが同軸となる状態を保持しつつ、第1光源の光軸を上記の垂直面に対して管軸方向の外側に角度Aだけ傾斜するように調整できる。従って、本発明に係る欠陥検査装置においては、第1光源の光軸の調整によって、第1撮像手段の光軸と第1光源の光軸とが同軸でなくなることがなく、第1撮像手段の光軸を第1光源の光軸と同軸にするための調整が不要である。
 本発明に係る欠陥検査装置の好ましい構成として、前記第2光源と前記第3光源とを兼ねる単一の光源部材と、前記第2撮像手段と前記第3撮像手段とを兼ねる単一の撮像装置と、前記光源部材からの光を前記荷重面に入射させると共に、前記荷重面にて反射した前記光源部材からの反射光を前記撮像装置に受光させる姿勢と、前記光源部材からの光を前記ねじ底面検査領域に入射させると共に、前記ねじ底面検査領域にて反射した前記光源部材からの反射光を前記撮像装置に受光させる姿勢との間で姿勢の切り替えが可能なミラーとを備えた構成が挙げられる。
 かかる好ましい構成においては、ミラーの姿勢が光源部材からの光を荷重面に入射させると共に、荷重面にて反射した光源部材からの反射光を撮像装置に受光させる姿勢になったときに、光源部材は第2光源として機能し、撮像装置は第2撮像手段として機能する。また、ミラーの姿勢が光源部材からの光をねじ底面検査領域に入射させると共に、ねじ底面検査領域にて反射した光源部材からの反射光を撮像装置に受光させる姿勢となったときに、光源部材は第3光源として機能し、撮像装置は第3撮像手段として機能する。
 このように、上記の好ましい構成によれば、第2光源と第3光源とを単一の光源部材が兼ねるので、独立別個に2つの光源(第2光源及び第3光源)を本発明に係る欠陥検査装置が備える必要がない。同様に、第2撮像手段と第3撮像手段とを単一の撮像装置が兼ねるので、独立別個に2つの撮像手段(第2撮像手段及び第3撮像手段)を本発明に係る欠陥検査装置が備える必要がない。このため、上記の好ましい構成によれば、本発明に係る欠陥検査装置の部品点数を削減できる。
 本発明に係る欠陥検査装置の好ましい構成として、前記第1撮像手段は、前記リップ部の外周面にて反射した反射光を受光するテレセントリックレンズを備え、前記第2撮像手段は、前記荷重面にて反射した反射光を受光するテレセントリックレンズを備え、前記第3撮像手段は、前記ねじ底面検査領域にて反射した反射光を受光するテレセントリックレンズを備えた構成が挙げられる。
 テレセントリックレンズを第1~3の各撮像手段が備えることで、第1~3の各撮像手段のそれぞれと、リップ部の外周面、荷重面、及び、ねじ底面検査領域のそれぞれとの距離が変動しても、第1~3の各撮像手段が撮像する撮像画像に歪みが生じることが抑制できる。このため、上記の好ましい構成によれば、第1~3の各撮像手段のそれぞれと、リップ部の外周面、荷重面、及び、ねじ底面検査領域のそれぞれとの距離が変動しても、リップ部の外周面、荷重面、及び、ねじ底面検査領域の欠陥を検査できる。
 本発明に係る欠陥検査装置の具体的な構成として、前記第1光源は、前記第1撮像手段を囲うように配置されたリング状の照明であり、前記第2光源は、光軸が前記第2撮像手段の光軸と同軸となり、且つ、前記第2撮像手段を囲うように配置されたリング状の照明であり、前記第3光源は、光軸が前記第3撮像手段の光軸と同軸となり、且つ、前記第3撮像手段の囲うように配置されたリング状の照明である構成が挙げられる。
 また、本発明は、前記第2光源及び前記第3光源に代えて、第4光源を備え、さらに、前記第2撮像手段及び前記第3撮像手段に代えて、第4撮像手段を備え、前記第4光源は、前記荷重面及び前記ねじ底面検査領域を照明し、前記第4撮像手段は、前記第4光源に取り付けられ、前記第4光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(3)を満たす角度Cだけ傾斜した方向に前記荷重面にて反射した反射光と、前記第4光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(3)を満たす角度Cだけ傾斜した方向に前記ねじ底面検査領域にて反射した反射光とを受光できるように光軸が調整され、これらの反射光を受光することによって、前記荷重面及び前記ねじ底面検査領域を撮像し、前記検査手段は、前記第1~3撮像手段が撮像した撮像画像に代えて、前記第1撮像手段及び前記第4撮像手段が撮像した撮像画像を画像処理することによって、前記リップ部の外周面、前記荷重面、及び、前記ねじ底面検査領域の欠陥を検査することを特徴とする欠陥検査装置を提供する。
b<C≦d…(3)
 b°は、前記管軸を含む前記管の断面において、前記荷重面と前記垂直面とが成す角度(90°未満)である。
 d°は、前記管軸を含む前記管の断面において、ねじ底面におけるねじ底面検査領域の後端部、及び、前記ねじ底面の前記管軸方向の内側の端部と接する前記雄ねじ部の挿入面の先端部を結ぶ直線と、前記垂直面とが成す角度(90°未満)である。
 第4光源及び第4撮像手段を備えた欠陥検査装置は、前述した第2光源、第3光源、第2撮像手段及び第3撮像手段(以下、「第2光源等」という)を備えた欠陥検査装置と同様に、リップ部の外周面、荷重面、及び、ねじ底面検査領域の撮像画像を画像処理することによって、リップ部の外周面、荷重面、及び、ねじ底面検査領域の欠陥を検査する。第4光源及び第4撮像手段を備えた欠陥検査装置において、リップ部の外周面の撮像は、第2光源等を備えた欠陥検査装置と同様に第1撮像手段が行う。第4光源及び第4撮像手段を備えた欠陥検査装置において、荷重面及びねじ底面検査領域の撮像は、第4光源及び第4撮像手段が行う。
 前述のように、第2光源等を備えた欠陥検査装置では、荷重面を撮像する第2撮像手段に荷重面にて反射した反射光を受光させるために、上記の垂直面に対して管軸方向の内側に角度Bだけ傾斜した方向に反射した反射光を受光できるように光軸が調整されている。角度Bと角度Cとは、下限がb°で等しいが、角度Cの上限のd°は角度Bの上限のc°より小さい。このため、角度Cの範囲は角度Bの範囲に含まれる。よって、上記の垂直面に対して管軸方向の内側に角度Cだけ傾斜した方向に荷重面及びねじ底面検査領域を反射する反射光を受光できるように光軸が調整された第4撮像手段は、荷重面及びねじ底面検査領域のそれぞれの各位置にて反射した反射光を同時に受光できる。第4撮像手段は、荷重面及びねじ底面検査領域のそれぞれの各位置にて反射光を同時に受光することによって、1回の撮像工程で荷重面及びねじ底面検査領域の両方を撮像できる。このため、第4撮像手段を備える欠陥検査装置によれば、少ない撮像回数で荷重面及びねじ底面検査領域の欠陥を検査でき、荷重面及びねじ底面検査領域の欠陥検査にかかる時間を短くできる。
 尚、第4光源が荷重面及びねじ底面検査領域を照明するとは、第4光源からの光を、管のどこにも反射させずに荷重面及びねじ底面検査領域に入射させることを意味する。
 第4光源及び第4撮像装置を備えた本発明に係る欠陥検査装置の好ましい構成として、前記第1撮像手段は、前記リップ部の外周面にて反射した反射光を受光するテレセントリックレンズを備え、前記第4撮像手段は、前記荷重面にて反射した反射光と、前記ねじ底面検査領域にて反射した反射光とを受光するテレセントリックレンズを備えた構成が挙げられる。
 テレセントリックレンズを第1撮像手段及び第4撮像手段が備えることで、第1撮像手段及び第4撮像手段のそれぞれと、リップ部の外周面、荷重面、及び、ねじ底面検査領域のそれぞれとの距離が変動しても、第1撮像手段及び第4撮像手段が撮像する撮像画像に歪みが生じることが抑制できる。このため、上記の好ましい構成によれば、第1撮像手段及び第4撮像手段のそれぞれと、リップ部の外周面、荷重面、及び、ねじ底面検査領域のそれぞれとの距離が変動しても、リップ部の外周面、荷重面、及び、ねじ底面検査領域の欠陥を検査できる。
 第4光源及び第4撮像装置を備えた本発明に係る欠陥検査装置の具体的な構成として、 前記第1光源は、前記第1撮像手段を囲うように配置されたリング状の照明であり、前記第4光源は、光軸が前記第4撮像手段の光軸と同軸であり、且つ、前記第4撮像手段を囲うように配置されたリング状の照明である構成が挙げられる
 本発明は、管軸方向の内側に荷重面が傾斜した管の荷重面及びねじ底面検査領域の欠陥を精度良く検査でき、且つ、リップ部の外周面の欠陥を検査できる欠陥検査装置を提供できる。
図1は、本発明の実施形態1の欠陥検査装置の概略構成、及び、欠陥が検査される管の管軸を含む断面を示す図である。 図2は、図1に示すミラーの姿勢を示す模式図である。図2(a)は管軸に垂直な垂直面に対して管軸方向の内側にb°だけ傾斜した方向からミラーに入射した光が撮像装置に入射する場合のミラーの姿勢を示す模式図である。図2(b)は管軸に垂直な垂直面に対して管軸方向の内側にc°だけ傾斜した方向からミラーに入射した光が撮像装置に入射する場合のミラーの姿勢を示す模式図である。 図3は、図1に示すミラーの姿勢を示す模式図である。具体的には、図3は、管軸に垂直な垂直面に対して管軸方向の内側にd°だけ傾斜した方向からミラーに入射した光が撮像装置に入射する場合のミラーの姿勢を示す模式図である。 図4は、図1に示す第1撮像手段が撮像した撮像画像の模式図である。 図5は、画像処理フィルタの模式図である。 図6は、図1に示す第1撮像手段が撮像した撮像画像の模式図である。 図7は、図1に示す撮像装置が撮像した撮像画像の模式図である。 図8は、画素ラインのX方向における輝度値の分布を示すグラフである。 図9は、本発明の実施形態3の欠陥検査装置の概略構成、及び、欠陥検査される管の管軸を含む断面を示す図である。 図10は、油井用鋼管及び継手の断面図である。 図11は、従来の欠陥検査装置の概略図である。
<実施形態1>
 以下、本実施形態の欠陥検査装置が行う欠陥検査について説明する。図1は、本実施形態の欠陥検査装置の概略構成、及び、欠陥が検査される管の管軸を含む断面を示す図である。本実施形態においては、欠陥が検査される管は油井用鋼管100である。
 図1に示すように、油井用鋼管100の端部には、管軸方向Pの内側(図1においては左側)から、雄ねじ部101及びリップ部102がこの順で設けられている。雄ねじ部101の荷重面103は、油井用鋼管100の管軸を含む断面において、管軸方向Pに垂直な垂直面Rに対して管軸方向Pの内側(図1においては反時計周り方向)にb°だけ傾斜している。荷重面103とは、ねじ山部107の側面のうち、管軸方向Pの内側の側面である。リップ部102は、管軸方向Pの外側(図1においては右側)に向かうにつれ、管軸方向Pに垂直な方向の寸法が小さくなるテーパー状に形成されている。リップ部102の外周面は、油井用鋼管100の管軸を含む断面において、管軸方向Pとa°の角度を成している。
 本実施形態の欠陥検査装置は、第1光源2と、第1撮像手段3と、単一の光源部材4と、単一の撮像装置5と、ミラー6と、検査手段(図示しない)とを備える。第1光源2は、光軸L1が上記の垂直面Rに対して管軸方向Pの外側(図1においては時計周り方向)に下記式(1)を満たす角度Aだけ傾斜し、リップ部102の外周面を照明する。第1光源2は、第1撮像手段3を囲うように第1撮像手段3に取り付けられたリング状の照明である。
a-45≦A≦a+45…(1)
 第1撮像手段3は、第1光源2から出射しリップ部102の外周面にて反射した反射光を受光することによって、リップ部102の外周面を撮像する。第1光源2と第1撮像手段3とは、光軸が同軸である。尚、本実施形態では、第1撮像手段3は、リップ部102の外周面にて反射した反射光を受光するためのレンズとして、テレセントリックレンズを備えている。
 上記のように、リップ部102の外周面を照明する第1光源2の光軸L1は、上記の垂直面Rに対して管軸方向Pの外側に角度Aだけ傾斜している。換言すれば、第1光源2からの光は、リップ部102の外周面の法線方向Nに対して45°以下のa1°だけ傾斜した方向からリップ部102の外周面に入射する。このため、第1光源2からの光がリップ部102の外周面に入射する方向(第1光源2の光軸L1の方向)と、リップ部102の外周面に入射した第1光源2からの光が入射角と反射角とが等しくなるようにリップ部102の外周面にて正反射する正反射方向R2との成す角度Dは最大で90°である。第1撮像手段3の光軸は、第1光源2の光軸L1と同軸であるため、第1撮像手段3の光軸の方向は、第1光源2からの光がリップ部102の外周面に入射する方向と一致している。このため、第1撮像手段3の光軸の方向と、前述の正反射方向R2との成す角度が90°以下である。リップ部102の外周面に入射し、該外周面にて反射した光の光量は、反射した方向がリップ部102の外周面に対する入射角と反射角とが等しくなる方向に近い方向ほど、光量が大きくなる傾向にある。このため、前述の正反射方向R2と、光軸の方向との成す角度が90°以下の第1撮像手段3は、第1光源2から出射し、リップ部102の外周面にて反射した反射光を多量に受光でき、リップ部102の外周面を鮮明に撮像できる。
 光源部材4は、第2光源と第3光源とを兼ねる。第2光源とは、荷重面103を照明する光源である。第3光源とは、ねじ底面検査領域106を照明する光源である。ねじ底面検査領域106とは、荷重面103とねじ底面104との境界部105から、該境界部105より管軸方向の内側に所定の距離だけ離間したねじ底面104の部位108までのねじ底面104上の領域である。光源部材4から出射した光は、ミラー6にて反射してから、荷重面103又はねじ底面検査領域106に入射する。ミラー6は姿勢を切り替えることができ、ミラー6の姿勢を切り替えることによって、光源部材4から出射した光の入射先を荷重面103とねじ底面検査領域106との間で切り替えることができる。従って、光源部材4は、ミラー6の姿勢の切り替えによって、第2光源として機能するときと、第3光源として機能するときとに切り替えられる。尚、本実施形形態では、光源部材4は、撮像装置5を囲うように撮像装置5に取り付けられたリング状の照明である。
 撮像装置5は、第2撮像手段と第3撮像手段とを兼ねる。第2撮像手段とは、第2光源に取り付けられると共に、第2光源から出射し、上記の垂直面Rに対して管軸方向Pの内側に下記式(2)を満たす角度Bだけ傾斜した方向に荷重面103にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって、荷重面103を撮像する撮像手段である。
 b<B≦c…(2)
 c°は、図1に示すように、直線S1と、上記の垂直面Rとが成す角度(90°未満)である。直線S1は、管軸を含む断面において、上述の境界部105と、ねじ底面104の管軸方向の内側の端部109に接する雄ねじ部101の挿入面110の先端部111とを結ぶ直線である。挿入面110とは、ねじ山部107の側面のうち管軸方向Pの外側の側面である。挿入面110の先端部111とは、挿入面110とねじ山部107のねじ頂面112との境界部である。
 第3撮像手段とは、第3光源に取り付けられると共に、第3光源から出射し、上記の垂直面Rに対して管軸方向Pの内側に下記式(3)を満たす角度Cだけ傾斜した方向にねじ底面検査領域106にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって、ねじ底面検査領域106を撮像する撮像手段である。
 b<C≦d…(3)
 d°は、図1に示すように、直線S2と、上記の垂直面Rとが成す角度(90°未満)である。直線S2は、管軸を含む断面において、ねじ底面検査領域106の管軸方向Pの内側の端部108と、挿入面110の先端部111とを結ぶ直線である。
 図1に示すように、撮像装置5は、ミラー6を介して荷重面103又はねじ底面検査領域106にて反射した反射光を受光する。ミラー6の姿勢を切り替えることによって、撮像装置5が受光する反射光を荷重面103からの反射光とねじ底面検査領域106からの反射光との間で切り替えることができる。即ち、ミラー6の姿勢の切り替えにより、撮像装置5を、第2撮像手段として機能するときと、第3撮像手段として機能するときとに切り替えることができる。尚、本実施形態では、光源部材4及び撮像装置5の光軸は同軸であり、それぞれの光軸は、垂直面Rに対して管軸方向Pの外側に傾斜している。また、本実施形態では、撮像装置5は、荷重面103にて反射した反射光と、ねじ底面検査領域106にて反射した反射光とを受光するためのレンズとして、テレセントリックレンズを備えている。
 ミラー6は、管軸方向と直交する(図1の紙面に直交する)軸周りに回転可能とされている。ミラー6の姿勢は、光源部材4からの光を荷重面103に入射させると共に、上記の垂直面Rに対して管軸方向Pの内側に角度Bだけ傾斜した方向に荷重面103にて反射した反射光を撮像装置5に受光させる姿勢(以下、「第1姿勢」という)と、光源部材4からの光をねじ底面検査領域106に入射させると共に、上記の垂直面Rに対して管軸方向Pの内側に角度Cだけ傾斜した方向に底面検査領域106にて反射した反射光を撮像装置5に受光させる姿勢(以下、「第2姿勢」という)との間で切り替えが可能である。第1姿勢においては、ミラー6は、上記の垂直面Rに対して管軸方向Pの外側に下記式(4)を満たす角度Eだけ傾斜している。
 r1>E≧r2…(4)
 図2に示すように、r1°及びr2°はそれぞれ、上記の垂直面Rに対して管軸方向Pの外側にミラー6が何度傾斜しているかを表す角度である。尚、図2(b)に示す状態では、ミラー6は、上記の垂直面Rに対して管軸方向Pの内側に傾斜しているので、r2°は負の角度である。
 図2(a)に示すように、角度Eがr1°のときは、上記の垂直面Rに対して管軸方向Pの内側にb°だけ傾斜した方向からミラー6に入射した光L2が撮像装置5に入射する。図2(a)より、90°=r1°+(r1°+b°)+e°であることから、下記式(5)を導出できる。
 r1°=(90°-b°-e°)/2…(5)
 尚、e°は、上記の管軸方向Pに対して管軸方向Pの内側に撮像装置5の光軸が何度傾斜しているかを表す角度である。
 また、図2(b)に示すように、角度Eがr2°のときは、上記の垂直面Rに対して管軸方向Pの内側にc°だけ傾斜した方向からミラー6に入射した光L3が撮像装置5に入射する。図2(b)より、90°=(c°+2r2°)+e°であることから、下記式(6)を導出できる。
 r2°=(90°-c°-e°)/2…(6)
 以上のことから、第1姿勢では、上記の垂直面Rに対して管軸方向Pの内側にb°又はb°よりも小さい角度だけ傾斜した方向からミラー6に入射した光、及び、上記の垂直面Rに対して管軸方向Pの内側にc°より大きい角度だけ傾斜した方向からミラー6に入射した光は、撮像装置5に受光されない。一方で、荷重面103は、上記の垂直面Rに対して管軸方向Pの内側にb°傾斜している。このため、荷重面103にて反射する全ての反射光は、上記の垂直面Rに対して管軸方向の内側にb°より大きい角度だけ傾斜した方向に反射する。また、上述の境界部105にて反射した反射光の反射方向が、上記の垂直面Rに対して管軸方向Pの内側にc°より大きい角度だけ傾斜した方向であると、該反射光は、挿入面110に入射する。従って、角度Eが上記式(4)を満たしていれば、撮像装置5は、荷重面103にて反射した反射光を受光でき、該反射光を受光することによって荷重面103を撮像できる。即ち、角度Eが上記式(4)を満たしていれば、撮像装置5は、第2撮像手段として機能する。
 一方、第2姿勢においては、ミラー6は、上記の垂直面Rに対して管軸方向Pの外側に下記式(7)を満たす角度Eだけ傾斜している。
 r1°>E≧r3°…(7)
 図3に示すように、r3°は、r1°及びr2°と同様に、上記の垂直面Rに対して管軸方向Pの外側にミラー6が何度傾斜しているかを表す角度である。尚、図3に示す状態では、ミラー6は、上記の垂直面Rに対して管軸方向Pの内側に傾斜しているので、r3°は負の角度である。角度Eがr3°であるときは、上記の垂直面Rに対して管軸方向Pの内側にd°だけ傾斜した方向からミラー6に入射した光L4が撮像装置5に入射する。図3より、90°=(d°+2r3°)+e°であることから、下記式(8)を導出できる。
 r3°=(90°-d°-e°)/2…(8)
 以上のことから、第2姿勢では、上記の垂直面Rに対して管軸方向Pの内側にb°又はb°よりも小さい角度だけ傾斜した方向からミラー6に入射した光、及び、上記の垂直面Rに対して管軸方向Pの内側にd°より大きい角度だけ傾斜した方向からミラー6に入射した光は、撮像装置5に受光されない。一方で、荷重面103は、上記の垂直面Rに対して管軸方向Pの内側に角度b°傾斜している。このため、上記の垂直面Rに対して管軸方向Pの内側に角度b°又はb°より小さい角度だけ傾斜した方向に上述の境界部105にて反射した反射光は、荷重面103に入射する。また、上記の垂直面Rに対して管軸方向Pの内側に角度d°より大きい角度だけ傾斜した方向にねじ底面検査領域106の管軸方向の内側の端部108にて反射した反射光は、挿入面110に入射する。従って、角度Eが上記式(7)を満たしていれば、撮像装置5は、ねじ底面検査領域106にて反射した反射光を受光でき、該反射光を受光することによってねじ底面検査領域106を撮像できる。即ち、角度Eが上記式(7)を満たしていれば、撮像装置5は、第3撮像手段として機能する。
 検査手段は、以上のように、第1撮像手段3が撮像した撮像画像と、撮像装置5が撮像した撮像画像とを以下のように画像処理することで、リップ部102の外周面、荷重面103、及び、ねじ底面検査領域106の欠陥を検査する。
 まず、リップ部102の外周面の欠陥検査のための画像処理について説明する。以下では、該欠陥検査が、管軸方向Pに伸びる線状きずがリップ部102の外周面に存在するか否かの検査である場合について説明する。図4は、第1撮像手段3が撮像した撮像画像40を示し、図4、及び、後述の図6、7の矢印Y方向は、管軸方向Pに対応する方向である(管軸方向Pに対応する方向を、以下、「Y方向」という)。撮像画像40のうち、Y方向に垂直な方向(図4、6、7の矢印X方向。Y方向に垂直な方向を、以下、「X方向」という)に延びる輝度値の高い領域(白色領域)がリップ部102の外周面に対応するリップ部領域48である。リップ部領域48の輝度値が高いのは、リップ部102の外周面にて反射した反射光が多量に第1撮像手段3に受光されるためである。
 まず、検査手段は、第1撮像手段3が撮像した撮像画像40が入力されると、撮像画像40から検査対象領域49を抽出する。検査対象領域49とは、リップ部領域48がX方向と略平行になる部分である。検査対象領域49の位置情報は、撮像時の第1撮像手段3に対する油井用鋼管100の位置、油井用鋼管100の外径などから予め算出され、予め検査手段に記憶されている。検査手段は、検査対象領域49を抽出すると、該領域49に対してノイズ除去などの前処理を行う。
 次に、検査手段は、検査対象領域49において、X方向に延びる各画素ライン41a、41b、41c…の中から、リップ部領域48を構成する画素ラインを認定する。該認定は、以下のように行われる。まず、検査手段は、画素ライン毎に、各画素ライン41a、41b、41c…を構成する全画素の輝度値の総和を算出する。検査手段は、算出した輝度値の総和が所定の閾値より大きい画素ラインを、リップ部領域48を構成する画素ラインと認定する。本実施形態では、画素ライン41n1、41n2、41n3、41n4をリップ部領域48を構成する画素ラインと認定したものとする。尚、リップ部領域48を構成する画素ラインが認定できない場合は、検査手段は、その時点で、欠陥検査のための画像処理を終了する。
 次に、検査手段は、リップ部領域48を構成する画素ラインと認定した1つの画素ラインを構成する全画素の中から、線状きずに対応する線状きず領域51の一方側の端辺52を構成する画素の候補(以下、「一方側の端辺候補画素」という)、及び、他方側の端辺53を構成する画素の候補(以下、「他方側の端辺候補画素」という)を検出する。一方側及び他方側の端辺候補画素は、以下のように検出される。検査手段は、X方向の一方側(本実施形態では、右側とする)に向かうにつれ輝度値が急峻に増加している領域に位置する画素を一方側の端辺候補画素であると認定し、X方向の一方側に向かうにつれ輝度値が急峻に減少している領域に位置する画素を他方側の端辺候補画素であると認定する。このように一方側及び他方側の端辺候補画素を認定するのは、線状きず領域51を構成する画素は、リップ部102の外周面に対応する画素ラインの他の領域を構成する画素に比べて輝度値が小さいためである。これは、リップ部102の外周面のうち、線状きずが生じた部位では、線状きずが生じることによって、該部位の向きが変化し、該部位にて反射した反射光が、第1撮像手段3に受光され難くなるためである。本実施形態では、検査手段は、図5に示す画像処理フィルタを用いて、X方向の一方側に向かうにつれ輝度値がどの程度急峻に変動するかを算出する。以上のようにして、検査手段は、リップ部領域48を構成する画素ラインと認定した全画素ラインを構成する全画素の中から、一方側の端辺候補画素、及び、他方側の端辺候補画素を検出する。尚、一方側及び他方側の端辺候補画素が検出できない場合は、検査手段は、その時点で、欠陥検査のための画像処理を終了する。
 一方側及び他方側の端辺候補画素を検出した場合、検査手段は、一方側の端辺候補画素についてラベリング処理を施すことによって、線状きず領域51の一方側の端辺52を構成する画素群の候補(以下、「一方側の端辺の候補画素群」という)を検出する。同様に、検査手段は、他方側の端辺候補画素についてラベリング処理を施すことによって、線状きず領域51の他方側の端辺53を構成する画素群の候補(以下、「他方側の端辺の候補画素群」という)を検出する。
 次に、検査手段は、一方側及び他方側の端辺の候補画素群のそれぞれのY方向の長さや長手方向の向き、及び、一方側の端辺の候補画素群と他方側の端辺の候補画素群との間隔などに基づいて、一方側及び他方側の端辺の候補画素群のそれぞれが、線状きず領域51の一方側及び他方側の端辺52、53を実際に構成する画素群であるか否かを判断する。検査手段は、一方側及び他方側の端辺の候補画素群のそれぞれが、線状きず領域51の一方側及び他方側の端辺52、53を実際に構成する画素群であると判断した場合は、一方側及び他方側の端辺の候補画素群に対応するリップ部102の外周面の部位に線状きずが生じていると判断する。そして、検査手段は、撮像画像40をモニタに表示する際に、一方側及び他方側の端辺の候補画素群が赤枠などで囲われるように撮像画像40を加工する。このように撮像画像40を加工することによって、作業員は、撮像画像40が表示されたモニタを視認することで、リップ部102の外周面に線状きずが生じているか否か、及び、線状きずがどの部位に生じているかが分かる。
 また、以下では、図6(a)に示すように、リップ部102の外周面に、管軸方向Pの端部からリップ部102の外周面の中央側に伸びるきず61が存在するか否かを検査する場合について説明する。図6(b)に示すように、検査手段は、上述のようにして、リップ部領域48を構成する画素ラインを認定する。検査手段は、リップ部領域48を構成する画素ラインと認定した全画素ラインからなる領域64のY方向の長さWの平均W1を算出する。領域64のY方向長さWとは、領域14を構成する全画素のうち、その輝度値が所定の閾値よりも大きい画素からなる画素群のY方向の長さである。次に、検査手段は、領域64において、Y方向の長さWが平均W1よりも所定長さ以上短い区間VがX方向において所定画素以上連続する場合、その区間にきず61が生じていると判断する。そして、検査手段は、撮像画像40をモニタに表示する際に、該区間が強調されるように撮像画像40を加工する。
 次に、荷重面103の欠陥検査のための画像処理について説明する。図7は、ミラー6が第1姿勢のときに撮像装置5(即ち、第2撮像手段)が撮像した撮像画像70である。撮像画像70には、輝度値が最も低い領域、2番目に低い領域、最も高い領域が存在する。輝度値が最も低い領域は、荷重面103に対応する荷重面領域71である。輝度値が2番目に低い領域は、ねじ底面検査領域106に対応する領域(以下、「ねじ底面領域72」という)である。輝度値が最も高い領域は、ねじ頂面112に対応するねじ頂面領域73である。ねじ底面検査領域106とねじ頂面112とは略平行であるが、ねじ底面検査領域106で反射した光の中には、荷重面103や挿入面110に入射して撮像装置5に入射しないものがあるため、ねじ底面領域72は、ねじ頂面領域73よりも輝度値が低い。
 検査手段は、撮像画像70が入力されると、撮像画像70から検査対象領域74を抽出する。検査対象領域74とは、荷重面領域71、ねじ底面領域72、ねじ頂面領域73がX方向と略平行となる部分である。検査対象領域74の位置情報は、撮像時の撮像装置5に対する油井用鋼管100の位置、油井用鋼管100の外径などから予め算出され、予め検査手段に記憶されている。検査手段は、検査対象領域74を抽出すると、該領域に対してノイズ除去などの前処理を行う。
 次に、検査手段は、検査対象領域74において、X方向に延びる撮像画像70の各画素ライン75a、75b、75c…の中から、荷重面領域71を構成する画素ラインを認定する。該認定は、以下のように行われる。まず、検査手段は、画素ライン毎に、各画素ライン75a、75b、75c…を構成する全画素の輝度値の総和を算出する。検査手段は、算出した輝度値の総和が所定の閾値より低い画素ラインを、荷重面領域71を構成する画素ラインであると認定する。尚、荷重面領域71を構成する画素ラインが認定できない場合は、検査手段は、その時点で、欠陥検査のための画像処理を終了する。
 次に、検査手段は、荷重面領域71を構成する画素ラインであると認定した画素ラインのうち、1つの画素ライン(以下、「注目画素ライン」という)の輝度値のX方向における分布を示す輝度値線(図8参照)と、該画素ラインを構成する各画素の輝度値の平均(平均輝度値)とを算出する。検査手段は、輝度値線と平均輝度値との交差回数が所定の閾値以上であり、且つ、平均輝度値が所定の閾値未満であるか否かを判断する。上記の交差回数が所定の閾値以上であり、且つ、平均輝度値が所定の閾値未満であると判断した場合、検査手段は、注目画素ラインに対応する荷重面103の部位にきずが生じていると判断する。一方、検査手段は、上記の交差回数が所定の閾値以上であり、且つ、平均輝度値が所定の閾値を超えると判断した場合は、注目画素ラインに対応する荷重面103の部位にきずが生じていないと判断する。同様にして、検査手段は、荷重面領域71を構成する画素ラインと認定した全画素ラインに対応する部位について、きずが生じているか否かを判断する。検査手段は、撮像画像70をモニタに表示する際に、きずが生じていると判断した荷重面103の部位に対応する画素ラインが赤枠などで囲われるように撮像画像70を加工する。このように加工された撮像画像70がモニタに表示されることによって、作業員は、モニタを視認することで、荷重面103にきずが生じているか否か、及び、きずがどの部位に生じているのかが分かる。
 次に、ねじ底面検査領域106の欠陥検査のための画像処理について説明する。ねじ底面検査領域106の欠陥検査のための画像処理は、ミラー6が第2姿勢のときに撮像装置5(即ち、第3撮像手段)が撮像した撮像画像に対して行う。ミラー6が第2姿勢のときの撮像画像は、図7に示す撮像画像70と同様に、荷重面領域71、ねじ底面領域72、及び、ねじ頂面領域73が存在する。尚、ここでは、図7の撮像画像70を、ミラー6が第2姿勢のときに撮像装置5が撮像した撮像画像であるとして、ねじ底面検査領域106の欠陥検査のための画像処理について説明する。
 検査手段は、撮像画像70が入力されると、撮像画像70から検査対象領域74を抽出する。
 次に、検査手段は、検査対象領域74において、X方向に延びる撮像画像70の各画素ライン75a、75b、75c…の中から、荷重面領域71を構成する画素ラインを認定する。該認定は、荷重面103の欠陥検査のための画像処理における方法と同様の方法で行われる。次に、検査手段は、各画素ライン75a、75b、75c…の中から、ねじ頂面領域73を構成する画素ラインを認定する。該認定は、以下のように行われる。まず、検査手段は、画素ライン毎に、各画素ライン75a、75b、75c…を構成する全画素の輝度値の総和を算出する。検査手段は、算出した輝度値の総和が所定の閾値以上の画素ラインを、ねじ頂面領域73を構成する画素ラインと認定する。次に、検査手段は、荷重面領域71を構成する画素ラインから荷重面領域71を認定し、ねじ頂面領域73を構成する画素ラインからねじ頂面領域73を認定する。次に、検査手段は、荷重面領域71とねじ頂面領域73との間の領域をねじ底面領域72と認定する。尚、荷重面領域71、及び、ねじ頂面領域73を構成する画素ラインが認定できない場合は、検査手段は、その時点で、欠陥検査のための画像処理を終了する。
 次に、検査手段は、ねじ底面領域72を構成する画素ラインのうち1つの画素ライン(以下、「注目画素ライン」という)の輝度値のX方向における分布を示す輝度値線と、該画素ラインを構成する各画素の輝度値の平均(平均輝度値)とを算出する。検査手段は、輝度値線と平均輝度値との交差回数が所定の閾値以上であり、且つ、平均輝度値が所定の閾値未満であるか否かを判断する。上記の交差回数が所定の閾値以上であり、且つ、平均輝度値が所定の閾値未満であると判断した場合、検査手段は、注目画素ラインに対応するねじ底面検査領域106の部位にきずが生じていると判断する。一方、検査手段は、上記の交差回数が所定の閾値以上であり、且つ、平均輝度値が所定の閾値を超えると判断した場合は、注目画素ラインに対応するねじ底面検査領域106の部位にきずが生じていないと判断する。同様にして、検査手段は、ねじ底面領域72を構成する全画素ラインに対応する部位について、きずが生じているか否かを判断する。検査手段は、撮像画像70をモニタに表示する際に、きずが生じていると判断したねじ底面検査領域106の部位に対応する画素ラインが赤枠などで囲われるように撮像画像70を加工する。このように加工された撮像画像70がモニタに表示されることによって、作業員は、モニタを視認することで、ねじ底面検査領域106にきずが生じているか否か、及び、どの部位にきずが生じているのかが分かる。
 以上のように、本実施形態の欠陥検査装置によれば、リップ部102の外周面、荷重面103及びねじ底面検査領域106の欠陥を検査できる。
 また、第1撮像手段3の光軸が第1光源2の光軸L1と同軸となるように、第1撮像手段3が第1光源2に取り付けられている。このため、第1撮像手段3の光軸と第1光源2の光軸L1とが同軸となる状態を保持しつつ、第1光源2の光軸を上記の垂直面Rに対して管軸方向Pの外側に角度Aだけ傾斜するように調整できる。従って、本実施形態の欠陥検査装置においては、第1光源2の光軸L1の調整によって、第1撮像手段3の光軸と第1光源2の光軸L1とが同軸でなくなることがなく、第1撮像手段3の光軸を第1光源2の光軸L1と同軸にするための調整が不要である。
 また、光源部材4は、第2光源と第3光源とを兼ねている。このため、独立別個に2つの光源(第2光源及び第3光源)を本実施形態の欠陥検査装置が備える必要がない。同様に、撮像装置5は、第2撮像手段と第3撮像手段とを兼ねている。このため、独立別個に2つの撮像手段(第2撮像手段及び第3撮像手段)を本実施形態の欠陥検査装置が備える必要がない。このため、本実施形態の欠陥検査装置は、部品点数が少ない。
 第1撮像手段3及び撮像装置5がテレセントリックレンズを備えることで、第1撮像手段3及び撮像装置5のそれぞれと、リップ部102の外周面、荷重面103、及び、ねじ底面検査領域106のそれぞれとの距離が変動しても、第1撮像手段3及び撮像装置5が撮像した撮像画像に歪みが生じることが抑制できる。このため、本実施形態の欠陥検査装置は、第1撮像手段3及び撮像装置5のそれぞれと、リップ部102の外周面、荷重面103、及び、ねじ底面検査領域106のそれぞれとの距離が変動しても、リップ部102の外周面、荷重面103、及び、ねじ底面検査領域106の欠陥を検査できる。
 また、本実施形態の欠陥検査装置においては、光源部材4及び撮像装置5の光軸の方向が上記の垂直面Rに対して管軸方向Pの内側に傾斜していても外側に傾斜していても、ミラー6の姿勢の調整によって、荷重面103又はねじ底面検査領域106を光源部材4が照明できると共に、荷重面103又はねじ底面検査領域106にて反射した反射光を撮像装置5が受光できる。このため、本実施形態のように、光源部材4及び撮像装置5の光軸を第1撮像手段3と同じように管軸方向Pの外側に傾斜させると、リップ部102の外周面、荷重面103及びねじ底面検査領域106の欠陥を検査できると共に、本実施形態の欠陥検査装置をコンパクトにすることができる。
 また、撮像装置5が第2撮像手段として機能する際の撮像装置5の光軸は、上記式(2)を満たす角度Bが採り得る角度において、上記の垂直面Rとの成す角度が最も大きいc°だけ傾斜した方向に反射した反射光を受光できるように調整されていることが好ましい。管軸方向Pと成す角度が小さい方向に反射した反射光を受光できるように、撮像装置5の光軸の方向を調整すれば、撮像装置5の撮像範囲を管軸方向Pに沿って大きくできる。このため、c°だけ傾斜した方向に反射した反射光を受光できるように撮像装置5の光軸を調整することで、1回の撮像工程で多くの荷重面103を撮像できる。また、撮像装置5が第3撮像手段として機能する際の撮像装置5の光軸は、上記式(3)を満たす角度Cが採り得る角度において、最も管軸方向Pと成す角度が小さいd°だけ傾斜した方向に反射した反射光を受光できるように調整されていることが好ましい。管軸方向Pと成す角度が小さい方向に反射した反射光を受光できるように、撮像装置5の光軸の方向を調整すれば、撮像装置5の撮像範囲を管軸方向Pに沿って大きくできる。このため、d°だけ傾斜した方向に反射した反射光を受光できるように撮像装置5の光軸を調整することで、1回の撮像工程で多くのねじ底面検査領域106を撮像できる。このように撮像装置5の光軸を調整することで、少ない撮像回数で荷重面103及びねじ底面検査領域106の欠陥を検査でき、荷重面103及びねじ底面検査領域106の欠陥検査にかかる時間を短くできる。
<実施形態2>
 本実施形態の欠陥検査装置は、実施形態1の光源部材に代えて第4光源を備え、実施形態1の撮像装置に代えて第4撮像手段を備える。第4光源は、荷重面103及びねじ底面検査領域106を同時に照明する。第4撮像手段は、第4光源に取り付けられている。第4撮像手段は、第4光源から出射し、上記の垂直面Rに対して管軸方向Pの内側に上記式(3)を満たす角度Cだけ傾斜した方向に荷重面103及びねじ底面検査領域106にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって、荷重面103及びねじ底面検査領域106を撮像する撮像手段である。
 上述のように、実施形態1の撮像装置は、上記の垂直面Rに対して管軸方向Pの内側に角度Bだけ傾斜した方向に反射した反射光を受光できるように光軸が調整されることで、荷重面103にて反射した反射光を受光できる。角度Bと角度Cとは、下限がb°で等しいく、角度Cの上限のd°は、角度Bの上限のc°より小さい。このため、角度Cの範囲は角度Bの範囲に含まれる。よって、上記の垂直面Rに対して管軸方向Pの内側に角度Cだけ傾斜した方向に荷重面103及びねじ底面検査領域106にて反射する反射光を受光できるように光軸が調整された第4撮像手段は、荷重面103及びねじ底面検査領域106のそれぞれの各位置にて反射した反射光を同時に受光できる。第4撮像手段は、荷重面103及びねじ底面検査領域106のそれぞれの各位置にて反射光を同時に受光することによって、1回の撮像工程で荷重面103及びねじ底面検査領域106の両方を撮像できる。このため、本実施形態の欠陥検査装置によれば、少ない撮像回数で荷重面103及びねじ底面検査領域106の欠陥を検査でき、荷重面103及びねじ底面検査領域106の欠陥検査にかかる時間を短くできる。
<実施形態3>
 図9に示すように、本実施形態の欠陥検査装置1は、第1光源2(図示しない)と、第1撮像手段3(図示しない)と、第2光源7と、第2撮像手段8と、第3光源9と、第3撮像手段10と、検査手段(図示しない)とを備える。第1光源2、第1撮像手段3、検査手段は、実施形態1の欠陥検査装置と構成が同じである。
 第2光源7は、荷重面103を照明する光源である。第2撮像手段8は、第2光源7に取り付けられ、荷重面103にて反射した光を受光する。第2撮像手段8の光軸は、上記の垂直面Rに対して管軸方向Pの内側に上記式(2)を満たす角度Bだけ傾斜した方向に調整されている。上述のように、荷重面103にて反射する全ての反射光は、上記の垂直面Rに対して管軸方向の内側にb°より大きい角度だけ傾斜した方向に荷重面103にて反射する。また、上述の境界部105にて反射した反射光の反射方向が、上記の垂直面Rに対して管軸方向Pの内側に角度c°より大きい角度だけ傾斜した方向であると、該反射光は、挿入面110に入射する。従って、第2撮像手段8は、荷重面103にて反射した反射光を受光でき、該反射光を受光することによって荷重面103を撮像できる。
 第3光源9は、ねじ底面検査領域106を照明する光源である。第3撮像手段10は、第3光源9に取り付けられ、ねじ底面検査領域106にて反射した光を受光する、第3撮像手段10は、上記の垂直面Rに対して管軸方向Pの内側に上記式(3)を満たす角度Cだけ傾斜した方向に光軸の方向が調整されている。前述のように、上記の垂直面Rに対して管軸方向Pの内側に角度b°又はb°より小さい角度だけ傾斜した方向に上述の境界部105にて反射した反射光は、荷重面103に入射する。また、上記の垂直面Rに対して管軸方向Pの内側に角度d°より大きい角度だけ傾斜した方向にねじ底面検査領域106の管軸方向の内側の端部108にて反射した反射光は、挿入面110に入射する。従って、第3撮像手段10は、ねじ底面検査領域106にて反射した反射光を受光でき、該反射光を受光することによってねじ底面検査領域106を撮像できる。
2…第1光源、3…第1撮像手段、4…光源部材、5…撮像装置、6…ミラー、7…第2光源、8…第2撮像手段、9…第3光源、10…第3撮像手段

Claims (7)

  1.  管端部に、管軸方向の内側から、雄ねじ部及びリップ部がこの順で設けられ、前記雄ねじ部の荷重面は、前記管軸方向に垂直な垂直面に対して前記管軸方向の内側に傾斜しており、前記リップ部は、前記管軸方向の外側に向かうにつれ、前記管軸方向に垂直な方向の寸法が小さくなるテーパー状である管の外周面の欠陥を検査する欠陥検査装置であって、
     光軸が前記垂直面に対して前記管軸方向の外側に下記式(1)を満たす角度Aだけ傾斜し、前記リップ部の外周面を照明する第1光源と、
     光軸が前記第1光源の光軸と同軸となるように前記第1光源に取り付けられ、前記第1光源から出射し前記リップ部の外周面にて反射した反射光を受光することによって、前記リップ部の外周面を撮像する第1撮像手段と、
     前記荷重面を照明する第2光源と、
     前記第2光源に取り付けられ、前記第2光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(2)を満たす角度Bだけ傾斜した方向に前記荷重面にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって、前記荷重面を撮像する第2撮像手段と、
     前記荷重面と前記雄ねじ部のねじ底面との境界部から、該境界部より前記管軸方向の内側に所定の距離だけ離間したねじ底面の部位までのねじ底面検査領域を照明する第3光源と、
     前記第3光源に取り付けられ、前記第3光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(3)を満たす角度Cだけ傾斜した方向に前記ねじ底面検査領域にて反射した反射光を受光できるように光軸が調整され、該反射光を受光することによって前記ねじ底面検査領域を撮像する第3撮像手段と、
     前記第1~3撮像手段が撮像した撮像画像を画像処理することによって、前記リップ部の外周面、前記荷重面、及び、前記ねじ底面検査領域の欠陥を検査する検査手段とを備えることを特徴とする欠陥検査装置。
    a-45≦A≦a+45(1)
    b<B≦c…(2)
    b<C≦d…(3)
     a°は、前記管軸を含む断面において、前記リップ部の外周面と前記管軸方向とが成す角度(90°未満)である。
     b°は、前記管軸を含む断面において、前記荷重面と前記垂直面とが成す角度(90°未満)である。
     c°は、前記管軸を含む断面において、前記荷重面と前記ねじ底面との境界部、及び、前記のねじ底面の前記管軸方向の内側の端部と接する前記雄ねじ部の挿入面の先端部を結ぶ直線と、前記垂直面とが成す角度(90°未満)である。
     d°は、前記管軸を含む断面において、前記ねじ底面検査領域の管軸方向の内側の端部、及び、前記ねじ底面の前記管軸方向の内側の端部と接する前記雄ねじ部の挿入面の先端部を結ぶ直線と、前記垂直面とが成す角度(90°未満)である。
  2.  前記第2光源と前記第3光源とを兼ねる単一の光源部材と、
     前記第2撮像手段と前記第3撮像手段とを兼ねる単一の撮像装置と、 
     前記光源部材からの光を前記荷重面に入射させると共に、前記荷重面にて反射した前記光源部材からの反射光を前記撮像装置に受光させる姿勢と、前記光源部材からの光を前記ねじ底面検査領域に入射させると共に、前記ねじ底面検査領域にて反射した前記光源部材からの反射光を前記撮像装置に受光させる姿勢との間で姿勢の切り替えが可能なミラーとを備えることを特徴とする請求項1に記載の欠陥検査装置。
  3.  前記第1撮像手段は、前記リップ部の外周面にて反射した反射光を受光するテレセントリックレンズを備え、
     前記第2撮像手段は、前記荷重面にて反射した反射光を受光するテレセントリックレンズを備え、
     前記第3撮像手段は、前記ねじ底面検査領域にて反射した反射光を受光するテレセントリックレンズを備えることを特徴とする請求項1又は2に記載の欠陥検査装置。
  4.  前記第1光源は、前記第1撮像手段を囲うように配置されたリング状の照明であり、
     前記第2光源は、光軸が前記第2撮像手段の光軸と同軸となり、且つ、前記第2撮像手段を囲うように配置されたリング状の照明であり、
     前記第3光源は、光軸が前記第3撮像手段の光軸と同軸となり、且つ、前記第3撮像手段の囲うように配置されたリング状の照明であることを特徴とする請求項1~3の何れか1項に記載の欠陥検査装置。
  5.  前記第2光源及び前記第3光源に代えて、第4光源を備え、
     さらに、前記第2撮像手段及び前記第3撮像手段に代えて、第4撮像手段を備え、
     前記第4光源は、前記荷重面及び前記ねじ底面検査領域を照明し、
     前記第4撮像手段は、前記第4光源に取り付けられ、前記第4光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(3)を満たす角度Cだけ傾斜した方向に前記荷重面にて反射した反射光と、前記第4光源から出射し、前記垂直面に対して前記管軸方向の内側に下記式(3)を満たす角度Cだけ傾斜した方向に前記ねじ底面検査領域にて反射した反射光とを受光できるように光軸が調整され、これらの反射光を受光することによって、前記荷重面及び前記ねじ底面検査領域を撮像し、
     前記検査手段は、前記第1~3撮像手段が撮像した撮像画像に代えて、前記第1撮像手段及び前記第4撮像手段が撮像した撮像画像を画像処理することによって、前記リップ部の外周面、前記荷重面、及び、前記ねじ底面検査領域の欠陥を検査することを特徴とする欠陥検査装置。
    b<C≦d…(3)
     b°は、前記管軸を含む前記管の断面において、前記荷重面と前記垂直面とが成す角度(90°未満)である。
     d°は、前記管軸を含む前記管の断面において、ねじ底面におけるねじ底面検査領域の後端部、及び、前記ねじ底面の前記管軸方向の内側の端部と接する前記雄ねじ部の挿入面の先端部を結ぶ直線と、前記垂直面とが成す角度(90°未満)である。
  6.  前記第1撮像手段は、前記リップ部の外周面にて反射した反射光を受光するテレセントリックレンズを備え、
     前記第4撮像手段は、前記荷重面にて反射した反射光と、前記ねじ底面検査領域にて反射した反射光とを受光するテレセントリックレンズを備えることを特徴とする請求項5に記載の欠陥検査装置。
  7.  前記第1光源は、前記第1撮像手段を囲うように配置されたリング状の照明であり、
     前記第4光源は、光軸が前記第4撮像手段の光軸と同軸であり、且つ、前記第4撮像手段を囲うように配置されたリング状の照明であることを特徴とする請求項5又は6に記載の欠陥検査装置。
PCT/JP2011/051583 2010-01-29 2011-01-27 欠陥検査装置 WO2011093372A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11737083.3A EP2530457B1 (en) 2010-01-29 2011-01-27 Defect inspection device
JP2011504071A JP4789028B2 (ja) 2010-01-29 2011-01-27 欠陥検査装置
BR112012018564-0A BR112012018564B1 (pt) 2010-01-29 2011-01-27 Aparelho de inspeção de defeitos
US13/551,014 US9121833B2 (en) 2010-01-29 2012-07-17 Defect inspecting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010017909 2010-01-29
JP2010-017909 2010-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/551,014 Continuation US9121833B2 (en) 2010-01-29 2012-07-17 Defect inspecting apparatus

Publications (1)

Publication Number Publication Date
WO2011093372A1 true WO2011093372A1 (ja) 2011-08-04

Family

ID=44319355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051583 WO2011093372A1 (ja) 2010-01-29 2011-01-27 欠陥検査装置

Country Status (6)

Country Link
US (1) US9121833B2 (ja)
EP (1) EP2530457B1 (ja)
JP (1) JP4789028B2 (ja)
AR (1) AR080079A1 (ja)
BR (1) BR112012018564B1 (ja)
WO (1) WO2011093372A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148809A (zh) * 2013-02-26 2013-06-12 西安理工大学 石油管外锥管螺纹参数测量装置及测量方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190238796A1 (en) 2017-05-11 2019-08-01 Jacob Nathaniel Allen Object Inspection System And Method For Inspecting An Object
CN111595266A (zh) * 2020-06-02 2020-08-28 西安航天发动机有限公司 空间复杂走向导管视觉识别方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250235A (ja) * 1984-05-25 1985-12-10 Kawasaki Steel Corp ねじ表面の検査方法及び検査装置
JPS61225610A (ja) * 1985-03-29 1986-10-07 Sumitomo Metal Ind Ltd ねじの表面検査装置
JPS6269113A (ja) * 1985-09-20 1987-03-30 Sumitomo Metal Ind Ltd ネジ表面検査装置
JPS63191007A (ja) * 1987-02-02 1988-08-08 Nippon Steel Corp ネジの検査測定方法
JPH03135753A (ja) * 1989-09-22 1991-06-10 Sumitomo Metal Ind Ltd ねじ表面疵検査装置の検出能チェック方法
JP2005181001A (ja) * 2003-12-17 2005-07-07 Tsubakimoto Chain Co 特殊形状物品の形状計測装置
JP2007010393A (ja) * 2005-06-29 2007-01-18 Jfe Steel Kk ねじ形状測定装置
WO2009119713A1 (ja) * 2008-03-27 2009-10-01 住友金属工業株式会社 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法
JP2010038554A (ja) * 2008-07-31 2010-02-18 Jfe Steel Corp 油井管ねじ形状全周測定装置
JP2010210292A (ja) * 2009-03-06 2010-09-24 Jfe Steel Corp ねじ形状測定装置およびねじ形状測定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190841A (ja) * 1984-03-12 1985-09-28 Inatetsuku:Kk 鋳造品の表面の巣を検出する装置
JPS6191506A (ja) * 1984-10-12 1986-05-09 Sumitomo Metal Ind Ltd 傾斜面の長さ・傾斜角測定装置
JPS6191507A (ja) * 1984-10-12 1986-05-09 Sumitomo Metal Ind Ltd 傾斜角測定装置
JPS63212808A (ja) * 1987-02-27 1988-09-05 Sumitomo Metal Ind Ltd ネジ形状測定装置
JPH0258588A (ja) 1988-08-23 1990-02-27 Matsushita Electric Ind Co Ltd フタロシアニンlb膜およびその製法
DE10359837A1 (de) * 2003-12-19 2005-07-21 Kamax-Werke Rudolf Kellermann Gmbh & Co. Kg Verfahren und Vorrichtung zum Überprüfen eines Gewindes eines Verbindungselements auf Beschädigungen
JP5146181B2 (ja) * 2008-07-31 2013-02-20 Jfeスチール株式会社 油井管ねじ形状全周測定における周方向起点位置の設定装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250235A (ja) * 1984-05-25 1985-12-10 Kawasaki Steel Corp ねじ表面の検査方法及び検査装置
JPS61225610A (ja) * 1985-03-29 1986-10-07 Sumitomo Metal Ind Ltd ねじの表面検査装置
JPS6269113A (ja) * 1985-09-20 1987-03-30 Sumitomo Metal Ind Ltd ネジ表面検査装置
JPS63191007A (ja) * 1987-02-02 1988-08-08 Nippon Steel Corp ネジの検査測定方法
JPH03135753A (ja) * 1989-09-22 1991-06-10 Sumitomo Metal Ind Ltd ねじ表面疵検査装置の検出能チェック方法
JP2005181001A (ja) * 2003-12-17 2005-07-07 Tsubakimoto Chain Co 特殊形状物品の形状計測装置
JP2007010393A (ja) * 2005-06-29 2007-01-18 Jfe Steel Kk ねじ形状測定装置
WO2009119713A1 (ja) * 2008-03-27 2009-10-01 住友金属工業株式会社 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法
JP2010038554A (ja) * 2008-07-31 2010-02-18 Jfe Steel Corp 油井管ねじ形状全周測定装置
JP2010210292A (ja) * 2009-03-06 2010-09-24 Jfe Steel Corp ねじ形状測定装置およびねじ形状測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148809A (zh) * 2013-02-26 2013-06-12 西安理工大学 石油管外锥管螺纹参数测量装置及测量方法
CN103148809B (zh) * 2013-02-26 2016-06-08 西安理工大学 石油管外锥管螺纹参数测量装置及测量方法

Also Published As

Publication number Publication date
EP2530457B1 (en) 2021-03-17
JP4789028B2 (ja) 2011-10-05
BR112012018564B1 (pt) 2019-07-02
BR112012018564A2 (pt) 2018-07-31
US9121833B2 (en) 2015-09-01
JPWO2011093372A1 (ja) 2013-06-06
AR080079A1 (es) 2012-03-14
EP2530457A1 (en) 2012-12-05
EP2530457A4 (en) 2018-01-24
US20120327217A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US9247213B2 (en) Apparatus for detecting defect of work
JP5888035B2 (ja) 円筒体又は円柱体材料の表面欠陥検査方法及び装置
CN102413354A (zh) 一种手机摄像模组自动光学检测方法、装置及系统
JP2004012325A (ja) 欠陥検査方法および欠陥検査装置
WO2010005399A2 (en) Hole inspection method and apparatus
JP4789028B2 (ja) 欠陥検査装置
JP2011089826A (ja) ねじ穴または穴の内部表面欠陥検査装置
KR20140146137A (ko) 화상 처리 시스템, 화상 처리 방법 및 화상 처리 프로그램이 기록된 컴퓨터 판독가능한 기록 매체
JP2005265661A (ja) 画像処理方法およびその装置
CN113302479A (zh) 用于燃气涡轮机光学检查的内孔窥视仪
JP5305002B2 (ja) 外観検査装置
US7768633B2 (en) Multiple surface inspection system and method
JP2003262593A (ja) 欠陥検出装置及び欠陥検出方法
KR101604528B1 (ko) 구멍 검사 장치
JP2011149814A (ja) 塗装検査装置及び塗装検査方法
JP2010266366A (ja) 画像の特徴抽出方法並びに工具欠陥検査方法と工具欠陥検査装置
JP4794383B2 (ja) ゴムホースの外観検査装置
JP6432448B2 (ja) ガラス管の検査方法
JP2014222221A (ja) 発光体の検査装置
JP5786631B2 (ja) 表面欠陥検査装置
JP2006201523A (ja) 液晶表示パネルの検査方法および検査装置
JP2010230450A (ja) 物体表面検査装置
JP6595800B2 (ja) 欠損検査装置、及び欠損検査方法
JP6553581B2 (ja) 光コネクタ端面検査装置とその合焦画像データ取得方法
JP4893938B2 (ja) 欠陥検査装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011504071

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011737083

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018564

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012018564

Country of ref document: BR

Free format text: APRESENTE DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM A DIVERGENCIA NO NOME DE UM DOS INVENTORES QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2011/093372 DE 04/08/2011 KAZUTAKA ANAYAMA E O CONSTANTE DA PETICAO INICIAL NO 020120069048 DE 26/07/2012 KAZUNORI ANAYAMA.

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012018564

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018564

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120726