WO2009119176A1 - ロータリジョイント - Google Patents

ロータリジョイント Download PDF

Info

Publication number
WO2009119176A1
WO2009119176A1 PCT/JP2009/052392 JP2009052392W WO2009119176A1 WO 2009119176 A1 WO2009119176 A1 WO 2009119176A1 JP 2009052392 W JP2009052392 W JP 2009052392W WO 2009119176 A1 WO2009119176 A1 WO 2009119176A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
fluid
passage
fluid passage
seal
Prior art date
Application number
PCT/JP2009/052392
Other languages
English (en)
French (fr)
Inventor
高橋 秀和
内山 真己
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP09725041.9A priority Critical patent/EP2258970B1/en
Priority to CN200980111936.9A priority patent/CN101981360B/zh
Priority to US12/934,663 priority patent/US9695942B2/en
Priority to JP2010505438A priority patent/JP5325878B2/ja
Publication of WO2009119176A1 publication Critical patent/WO2009119176A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals
    • F16J15/3484Tandem seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe
    • F16L27/087Joints with radial fluid passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/04Joints or fittings for double-walled or multi-channel pipes or pipe assemblies allowing adjustment or movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/185Adjustable joints, joints allowing movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/124Sealing of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a rotary joint with a mechanical seal device provided in the middle of a refrigerant fluid passage in order to cool a cooling part such as a superconducting field coil of a superconducting motor with a refrigerant. More specifically, the present invention relates to a rotary joint with a mechanical seal device capable of introducing a supplied refrigerant at a very low temperature from a fixed refrigerator to a rotating cooling unit through a relative rotating unit.
  • a superconducting device such as a superconducting motor must supply a cryogenic refrigerant such as liquid nitrogen or liquid helium to a cooling unit such as a superconducting field coil in order to maintain the superconducting state of the superconducting field coil.
  • a cryogenic refrigerant such as liquid nitrogen or liquid helium
  • the refrigerant after being used in the cooling section must be collected in the refrigerator. At this time, it is necessary to maintain the temperature of the supplied refrigerant (referred to as supplied refrigerant) at an extremely low temperature and reduce the amount of expensive supplied refrigerant used.
  • the sealing device that seals the fluid passage of the communication passage that rotates relative to the fluid passage of the fixed portion and the fluid passage of the rotating portion uses a refrigerant to seal the supply refrigerant or the exhaust refrigerant at an extremely low temperature.
  • the ability to seal becomes a problem with temperature.
  • the temperature of the supply refrigerant rises, unless the supply amount of the supply refrigerant is increased, cooling cannot be performed to a predetermined temperature, so that the superconducting function cannot be exhibited. For this reason, there exists a problem which the usage-amount of the supply refrigerant
  • FIG. 9 of Japanese Patent Application Publication No. 2003-65477 (Patent Document 1) (the illustration of FIG. 9 is omitted, but the reference numeral of the drawing of Patent Document 1 is shown after the part name) is “Superconducting coil”.
  • the insertion tube 154 on the fixed side is configured as a non-contact seal by fitting the distal end portion 158 to the inner peripheral surface of the inlet tube 156 in a non-contact state.
  • the insertion tube 154 is simply fitted to the inner peripheral surface of the inlet tube 156 in a non-contact state. Accordingly, when the inlet cryogenic gas 157 supplied from the cryogenic cooler 90 flows through the insertion tube 154 and flows into the inlet tube 156, a part of the inlet cryogenic gas 157 is inserted into the insertion tube 154 and the inlet tube 156. There is a risk of flowing into the cylindrical housing 186 from a gap fitted in a non-contact manner.
  • the inside of the cylindrical housing 186 is maintained in a vacuum state, if the inlet cryogenic gas 157 flows into the cylindrical housing 186, the degree of vacuum in the cylindrical housing 186 is reduced, so that the heat insulating effect by the vacuum is reduced. .
  • cryogenic agent transfer joint 26 is configured such that the high temperature cooling gas 164 flows through the annular space between the outer periphery of the cooling inlet tube 156 through which the inlet cryogenic gas 157 flows and the cooling outlet tube 166, the cooling inlet tube 156.
  • the temperature of the inlet cryogenic gas 157 flowing through the inside may increase due to the high temperature cooling gas 164.
  • the motion gap seal 162 disposed in the cylindrical casing 168 is deteriorated in material due to the cryogenic temperature because the inlet cryogenic gas 157 flows on the inner peripheral side and the high temperature cooling gas 164 flows on the outer peripheral side. As a result, the sealing ability may be reduced.
  • the magnetic fluid seal 176 mounted in the cylindrical housing 196 is described as preventing leakage of the return gas 164 (see paragraph number 0046), its configuration is unknown.
  • the magnetic fluid seal 176 when the inside of the cylindrical housing 186 is evacuated, the magnetic fluid is sucked into the cylindrical housing 186 and the sealing performance of the magnetic fluid seal 176 is reduced. For this reason, the external air flow 177 enters the cylindrical housing 186 through the magnetic fluid seal 176, so that the degree of vacuum in the cylindrical housing 186 decreases.
  • the degree of vacuum in the cylindrical housing 186 decreases, the heat insulating effect of the inlet cryogenic gas 157 cannot be obtained. It is difficult to maintain this high vacuum with a normal magnetic fluid seal.
  • the sliding surface is evacuated and the lubricating liquid on the sliding surface is sucked, so that the sealing surface is worn.
  • the air flow 177 or even the return gas gradually enters the cylindrical housing 186 through the seal surfaces, making it difficult to maintain the cooling fluid at a cryogenic temperature of 30 ° K or lower.
  • the inlet cryogenic gas 157 cannot be maintained below 30 ° K, the superconducting effect of the superconducting coil (coil winding 34) cannot be exhibited.
  • the flow rate of the inlet cryogenic gas 157 more than necessary must be supplied to the superconducting coil side. In this current situation, since the cooling fluid such as helium is expensive, the running cost of the synchronous generator is increased.
  • FIG. 1 or FIG. 3 of Japanese Patent No. 3306452 (Patent Document 2) (not shown, but the reference numeral of the drawing of Patent Document 2 is shown in parentheses after the part name) 1 is a sectional view in which the liquid helium injection pipe (1) is inserted into the inner peripheral surface of the overhanging portion (10) covered with the vacuum layer (2). A gap is formed between the inner peripheral surface of the inserted overhanging portion (10) and the outer peripheral surface of the liquid helium injection pipe (1). This is a configuration in which liquid helium is leaked to the outside by a seal (4) that blocks the outer peripheral gap communicating with the gap.
  • the inlet tube 156 is fitted to the fixed insertion tube 154.
  • the liquid helium injection pipe (1) is connected to the projecting portion (10) at the rotor tip.
  • the protruding portion (10) at the tip of the child comes into contact with the relative surface, it may slide with the fixed insertion tube 154 or the liquid helium injection pipe (1) to generate wear powder.
  • the rotor must be complicated according to the number, and the structure of the sealing device is complicated. To.
  • the present invention has been made in view of the above-described problems, and its problem is to insulate the fluid passage through which the supply refrigerant flows in a high vacuum state and supply the cryogenic supply refrigerant to the cooling unit. It is in. Furthermore, the high vacuum insulation prevents the sealing ability of the second mechanical seal device communicating from the stationary fluid passage to the rotating fluid passage from being lowered by the supplied refrigerant. Another object of the present invention is to improve the efficiency of the configuration of the fluid passage communicating with the stationary fluid passage connected to the refrigerator and the connecting fluid passage on the relatively rotating side. Furthermore, it is in improving the durability of the rotary joint which distribute
  • coolant. Another object of the present invention is to facilitate the assembly of the piping by the structure of the connecting fluid passage to facilitate the manufacture of the fluid passage. Another object is to improve the cooling effect of the refrigerant and reduce the running cost of the refrigerant.
  • the rotary joint of the present invention is a rotary joint for refrigerant that connects between the fluid passages of the stationary-side refrigerant supply device and the rotating-side cooling unit, and is rotatably supported by the main body and penetrates in the axial direction.
  • a connecting portion having a vacuum passage and allowing one end of the vacuum passage to communicate with the communication passage of the cooling portion; an opening portion of a vacuum reference at the other end of the vacuum passage; and the connecting portion and the opening portion.
  • a vacuum cylinder shaft having a connection portion in the middle, a rotary seal ring that is hermetically fitted to the connection portion of the vacuum cylinder shaft and has seal surfaces on both end faces, and is disposed on both axial sides of the rotary seal ring
  • Both fixed sealing rings having opposing sealing surfaces that are in close contact with the opposing sealing surfaces, and a coupling portion at one end is hermetically coupled to a peripheral surface opposite to the opposing sealing surface of each stationary sealing ring, and a fixing portion at the other end
  • a first fluid that is formed between an elastic bellows that is fixedly sealed to the main body and elastically presses the fixed sealing ring against the sealing surface, and that is formed between the elastic bellows on both sides of the rotary sealing ring, and introduces a supply refrigerant.
  • a connecting fluid passage communicating with the fluid passage and having a connecting hole at the other end, one end connected to the connecting hole to communicate with the connecting fluid passage, and the other end communicated with the flow passage on the cooling unit side A first pipe disposed in the vacuum passage of the vacuum cylinder shaft, a connection cover having a suction port for vacuum suction from the opening of the vacuum cylinder shaft, and the connection; Combined with cover and seal A magnetic fluid sealing cover that surrounds the vacuum cylinder shaft, and is fitted in parallel to one peripheral surface between the inner peripheral surface of the magnetic fluid sealing cover and the outer peripheral surface of the vacuum cylindrical shaft and in parallel.
  • the magnetic fluid having a shaft cover that is hermetically fitted to the other peripheral surface, and a magnetic fluid interposed between the protrusion and the pole block, and receiving a magnetic force against the vacuum suction force
  • a magnetic fluid sealing device for blocking between the protrusion and the pole block.
  • the inside of the inner peripheral surface of the vacuum cylinder shaft can be brought into a high vacuum state by the magnetic fluid sealing device capable of reliably sealing against vacuum suction, and the heat insulation effect can be exhibited.
  • the magnetic fluid seal device since the magnetic fluid seal device has no sliding surface that slides, it can effectively prevent the sliding surface from being worn at an early stage and can exhibit durability. For this reason, a high vacuum (10 ⁇ 5 Torr or less) state can be maintained for a long time in the inner peripheral surface of the vacuum cylinder shaft (note that the sealing surface of the conventional sealing device has an excellent sealing ability. Since the lubricant on the sealing surface that slides in a vacuum state is sucked off, it wears out early.
  • the connecting portion of the vacuum cylinder shaft is connected to the connecting portion of the cooling portion and communicates with the inside of the cooling portion, the inside of the cooling portion can also be thermally insulated by this vacuum suction. Accordingly, the first piping and the second piping arranged in the inner peripheral surface of the vacuum cylinder shaft and the connection portion can be effectively thermally insulated from the outside air, so that the supplied refrigerant is kept at an extremely low temperature. it can. Further, the vacuum heat insulation in the inner peripheral surface of the vacuum cylinder shaft can maintain the supplied refrigerant in a liquid state by maintaining the supplied refrigerant flowing in the interval fluid passage at an extremely low temperature.
  • the configuration of the elastic bellows integrated with the fixed seal ring eliminates the need for an O-ring that seals between the sliding surfaces of the fixed seal ring that slide, so that the refrigerant is changed as the O-ring material changes due to extremely low temperatures. Leakage can be prevented.
  • the structure of the elastic bellows is that the opposing sealing surface of the stationary sealing ring is elastically pressed against the sealing surface even in a cryogenic state, and there is no sliding surface for the movement for this elastic sealing. The surface sealing ability can be demonstrated.
  • each 1st piping and 2nd piping are comprised from the piping instead of the fluid passage of the hole which processed the member used as the cylinder shaft for vacuum with the drill etc., the pipe material excellent in the heat insulation effect is selected. be able to.
  • each 1st piping and 2nd piping are piping, while processing and assembly of 1st piping and 2nd piping become easy, piping work also becomes easy, the processing cost as a fluid passage, and assembly Cost can be reduced.
  • At least two pairs of the rotary seal ring and the fixed seal rings on both sides are arranged in the axial direction and adjacent to the one set of the fixed seal rings.
  • a second gap fluid passage is provided between the other set of the fixed sealing rings facing each other, and the second gap fluid passage communicates with a second pipe disposed in the vacuum passage of the vacuum cylinder shaft. The discharged refrigerant that has cooled the cooling section is returned through the second pipe and the second interval fluid passage.
  • the second pipe is arranged in the inner peripheral surface of the vacuum cylinder shaft and is vacuum-insulated, so that the discharged refrigerant can maintain an extremely low temperature.
  • coolant flows through a 2nd space
  • the connecting portion is formed such that the inner peripheral surface is a circular surface or an elliptical surface, or an uneven surface or a gear-shaped surface along the circumferential direction.
  • the connection hole is formed in the above.
  • the rotary joint of the present invention having such a configuration, various shapes such as a circular shape, an elliptical shape, and an uneven shape are provided on the inner peripheral surface of the connecting portion provided in the mechanical seal device of the vacuum cylinder shaft.
  • the number of the second pipes can be increased by providing the second pipe on the side surface projecting to the inner diameter side.
  • this configuration facilitates attachment of the first pipe and the second pipe.
  • the shape of the internal peripheral surface of a connection part can make vacuum suction easy, and can exhibit the effect of the vacuum insulation of a vacuum channel
  • the arrangement of the connection holes in the connection portion can be facilitated according to the number of the first pipes and the second pipes.
  • the rotary sealing ring has a plurality of the second fluid passages arranged along the circumferential direction, and the connection portion also includes the second fluid passages along the circumferential direction.
  • the connection fluid passage communicates with the fluid passage, and the fluid passages of the first pipes communicate with the corresponding connection fluid passages.
  • the rotary joint having such a configuration a large number of second fluid passages can be provided in the rotary seal ring. Therefore, a plurality of supply refrigerants flowing from one first fluid passage can pass through the first interval fluid passage. In the second fluid passage. Since the fluid passages of the first pipes communicate with the plurality of connection fluid passages communicating with the plurality of second fluid passages, it is possible to supply as much supply refrigerant as necessary to the required portions of the respective cooling units. become. Further, the number of the pair of second mechanical seals composed of the fixed sealing ring and the rotating sealing ring can be reduced. At the same time, the axial length of the connecting portion can be shortened. As a result, the production cost and assembly cost of the second mechanical seal device and the connecting parts can be greatly reduced. Also, the rotary joint can be made small.
  • FIG. 1 is a cross-sectional view of one side of a rotary joint according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the first assembly showing the vicinity of the mechanical seal device and piping of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing a configuration in the vicinity of each second mechanical seal device of FIG. 4 is a cross-sectional view of one side of the second assembly of FIG.
  • FIG. 5 is a cross-sectional view of one side of the third assembly of FIG.
  • FIG. 6 is an enlarged cross-sectional view of one side of the magnetic fluid seal shown in FIG.
  • FIG. 7 is a front view in the axial direction of the connecting portion according to the second embodiment of the present invention.
  • FIG. 8 is an axial front view of the rotary seal ring according to the third embodiment of the present invention.
  • FIG. 9 is a schematic sectional view of a superconducting motor to which a rotary joint according to the present invention is attached.
  • FIG. 1 is a cross-sectional view of one side of a rotary joint R according to a first embodiment of the present invention.
  • the hatching is omitted because the figure becomes unclear when hatching is added to the cross section.
  • FIG. 2 is an enlarged cross-sectional view of one side of the first assembly A, showing the mechanical seal device 1 of FIG.
  • FIG. 3 is a further enlarged sectional view showing a configuration in the vicinity of the second mechanical seal device 1 of FIG.
  • FIG. 4 is an enlarged cross-sectional view of one side of the second assembly B on the first bearing portion 60D1 side.
  • FIG. 5 is an enlarged cross-sectional view of one side of the third assembly C on the magnetic fluid seal 40 side.
  • FIG. 6 is an enlarged cross-sectional view of the magnetic fluid seal 40 shown in FIG.
  • the rotary joint R of the present invention will be described below with reference to FIGS.
  • the joint portion 10C with the flange of the rotary joint R is a synchronous rotary machine having a field coil, for example, a rotary shaft with a fluid passage such as a rotary generator or a linear motor, and a fluid passage of the superconducting motor 100 shown in FIG. It connects with the attached rotating shaft 115.
  • a field coil for example, a rotary shaft with a fluid passage such as a rotary generator or a linear motor, and a fluid passage of the superconducting motor 100 shown in FIG. It connects with the attached rotating shaft 115.
  • the superconducting motor 100 of FIG. 9 connected to the rotary joint R of FIG. 1 will be described.
  • the superconducting motor 100 which is not the present invention will be briefly described.
  • the superconducting motor 100 shown in FIG. 9 is a schematic diagram.
  • Three rotors 110 are fitted on the outer peripheral surface of the rotating shaft 115 which is cylindrical and provided with the inner peripheral surface 115A (the reference numeral is only one place).
  • On both sides of the rotor 110 a total of four stators 106 (only one symbol is arranged) are arranged in the axial direction.
  • Each rotor 110 is provided with a cooling unit 105 having a space on the inner peripheral side of the superconducting (SC) coil 103.
  • the cooling section 105 is provided with first pipes 101, 101, 101 that can communicate with the first pipes 20E of the rotary joint R and supply a refrigerant.
  • the refrigerant is supplied to the respective cooling units 105, 105, 105 through the first tubes 101, 101, 101 to cool the superconducting coils 103, 103, 103 (only one symbol is provided).
  • the refrigerant after cooling each superconducting coil 103, 103, 103 passes through a second pipe 20 ⁇ / b> E communicating with the respective second pipes 102, 102, 102 for discharge fluid passages, and a refrigerant supply device (refrigeration not shown) is provided. (Also called machine).
  • Bearings 116 and 116 are provided on both sides of the rotating shaft 115. For convenience, the case where there are three rotors 110 has been described.
  • the number of rotors 110 is not limited to three, and there may be one, two, or three or more. Further, there is a structure different from the illustrated structure of the rotor 110. However, in any case, in order to bring the electric resistance of the superconducting coil close to zero (0) in the synchronous rotating mechanism, the superconducting coil must be cooled to a cryogenic temperature state. The present invention solves this problem.
  • the rotary joint R of the present invention is configured such that the cryogenic supply refrigerant Q1 can be directly supplied from the stationary side to the cooling units 105 through the connecting fluid passages 20D and 20D on the rotating side.
  • the supply refrigerant Q1 or the discharge refrigerant Q2 is disposed in the vacuum passage 10H in a high vacuum state (high vacuum is in the range of 10 ⁇ 3 Torr to 10 ⁇ 7 Torr).
  • the supply refrigerant Q1 can be maintained at an extremely low temperature equal to or lower than the critical temperature by being thermally insulated from the outside air by vacuum. And the 1st piping 20E and the 2nd piping 20E are maintained in the state of a high vacuum, and it blocks
  • the connecting portion 10 ⁇ / b> C of the vacuum cylinder shaft 10 is formed so as to be connected to an attachment portion at one end of the rotating shaft 115 of the superconducting motor 100 so as to rotate together.
  • the first pipe 20 ⁇ / b> E is connected to the first pipe 101 and is provided with a supply fluid passage that allows the supply refrigerant Q ⁇ b> 1 from the first pipe 20 ⁇ / b> E to be supplied into the first pipe 101.
  • the second pipe 20E is also a discharge fluid passage that is connected to the second pipe 102 to allow the used exhaust refrigerant Q2 that has cooled the superconducting coil and the like to be discharged from the second pipe 101 to the second pipe 20E.
  • the first pipe 20E is not limited to the supply fluid passage for the supply refrigerant Q1, and the second pipe 20E is not limited to the discharge fluid path for the discharge refrigerant Q2.
  • the first pipe 20E can also be used for the exhaust fluid passage.
  • the second pipe 20E can be selected as a supply fluid passage.
  • the vacuum tube shaft 10 is connected to the first vacuum tube shaft 10A made entirely of stainless steel (also referred to as a connection component.
  • the connection component does not mean a separate component from the vacuum tube shaft) 10A1 and (2)
  • a joint portion (reference numeral 10B) of the vacuum cylinder shaft 10B is joined, and a bolt (not shown) is screwed in the axial direction to be connected.
  • the first vacuum cylinder shaft 10A is integrally formed by fitting the end portion of the cylinder shaft and the stepped surface of the connecting portion 10A1, and welding the peripheral surface of the fitting portion.
  • the second vacuum cylinder shaft 10B is welded between the fitting surfaces by fitting the end of the cylinder shaft and the stepped surface of the joint portion 10B.
  • the welded joint portion 10B and the connection portion 10A1 are fitted together and fastened with bolts to form a cylinder.
  • the connection between the first vacuum cylinder shaft 10A and the second vacuum cylinder shaft 10B is fastened with a bolt so that the second mechanical seal device 1 can be attached.
  • the first vacuum cylinder shaft 10A and the first The two vacuum cylinder shafts 10B can be integrated without being divided and assembled.
  • the connecting portion 10A1 is integrally fitted to the inner peripheral surface of the first vacuum cylinder shaft 10A.
  • the first vacuum cylinder shaft 10A may be processed and formed in the connection portion 10A1.
  • the second mechanical seal refers to a rotary seal ring 1A and a combination of a pair of fixed seal rings 2A and 2A arranged on both sides of the rotary seal ring 1A. And the whole which combined two or more 2nd mechanical seals is called the mechanical seal apparatus 1.
  • the connecting portion 10A1 has L-shaped connecting fluid passages 20D having a cross section radially and axially arranged in the inside thereof in a set number along the circumferential direction while changing the position in the axial direction.
  • the opening on the end side in the axial direction of each of the connection fluid passages 20D and 20D is formed in the connection hole 20D1, and the end portions of the first pipe 20E and the second pipe 20E are hermetically fitted in the connection holes 20D1, respectively. (Seal by welding or bonding between the fitted peripheral surfaces).
  • the first pipe 20E and the second pipe 20E having the supply or discharge fluid passages are arranged in the inner peripheral surface 10A2 of the first vacuum cylinder shaft 10A to allow the extremely low temperature refrigerants Q1 and Q2 to flow. .
  • the first pipe 20E and the second pipe 20E arranged in the inner peripheral surface 10A2 of the first vacuum cylinder shaft 10A are arranged in a high vacuum that is vacuumed (evacuated) and insulated from the outside by vacuum.
  • the first pipe 20E and the second pipe 20E are made of stainless steel pipe, copper pipe, aluminum pipe, boron nitride, quartz pipe, tempered glass pipe, low-temperature resin (PTFE or the like) pipe, or the like.
  • the outer periphery of the stainless steel tube is covered with a material that can be insulated by using a material such as PTFE, glass, quartz, or the like.
  • FIGS. 2 and 3 are enlarged views of the first assembly A shown in FIG.
  • the inner peripheral surface 1A3 of the rotary seal ring 1A is arranged in two rows on the outer peripheral surface of the connecting portion 10A1 of the vacuum cylinder shaft 10 so as to be axially spaced.
  • the rotary seal ring 1A is assembled by sandwiching the cylindrical spacer 12 between the two rotary seal rings 1A and 1A arranged in parallel, and connecting the outer end in the axial direction of the rotary seal rings 1A and 1A to the connecting portion 10A1.
  • the stepped surface and the end surface of the joint portion 10B of the second vacuum cylinder shaft 10B are fixed in a supported state.
  • Each rotary seal ring 1A, 1A is provided with seal surfaces 1A1, 1A1,... On both end surfaces in the axial direction, and a second fluid penetrating inward and outward between the seal surfaces 1A1, 1A1 of each rotary seal ring 1A, 1A.
  • a passage 20C is provided.
  • the second fluid passage 20C communicates with the inner connection fluid passage 20D.
  • Each rotary seal ring 1A and each fixed seal ring 2A described later are hard and wear-resistant materials such as silicon carbide, carbon, hard alloy, composite resin, etc., and are resistant to the coolants Q1 and Q2.
  • a pair of both fixed sealing rings 2A and 2A are provided on both axial sides of the rotary sealing ring 1A.
  • the fixed seal ring 2A is provided with an opposing seal surface 2A1 in close contact with the seal surface 1A1 on the end surface.
  • a coupling portion 2B1 that is one end of an elastic bellows 2B that annularly surrounds the vacuum cylinder shaft 10 is hermetically coupled to the side surface (rear surface) opposite to the opposing seal surface 2A1 by welding or the like.
  • the elastic bellows 2B is made of a metal such as stainless steel or a nickel-based alloy (such as Inconel 718), and is an accessory part integrally formed with the fixed sealing ring 2A.
  • the fixed portion 2B2 forming the annular shape at the other end of the elastic bellows 2B is hermetically bonded to the inner stepped portion of the seal cover 2B3 by welding or the like. Then, the elastic bellows 2B elastically presses the opposing seal surface 2A1 of the fixed sealing ring 2A in the direction in which it is in close contact with the seal surface 1A1.
  • the first interval fluid passage 20B communicates with the first fluid passage 20A provided with the pipe joint portion 20A1.
  • the first fluid passage 20A is a fluid passage through which the supply refrigerant Q1 is introduced from the cooling supply device.
  • An annular space formed between the peripheral surface and the peripheral surface is the second interval fluid passage 20B. Since the second interval fluid passage 20B does not pass through the second fluid passage 20C provided in the rotary seal ring 1A, it directly communicates with the connection fluid passage 20D. That is, the second interval fluid passage 20B communicating with the second fluid passage 20C of the rotary seal ring 1A and the second fluid passage 20C are not passed between the second interval fluid passage 20B and the connection fluid passage 20D. An interval fluid passage 20B is provided.
  • a seal ring 83A having a C-shaped or U-shaped cross section is attached to seal between the joints. (8 pieces are provided in the axial direction in FIG. 3).
  • This seal ring 83A is formed in a shape in which an elastic hollow O-ring made of metal (material such as Inconel 718) is provided in a U-shaped groove made of PTFE, or in the shape of a C-shaped metal ring. Make it cold resistant.
  • Each seal cover 2B3 and each pipe joint portion 20A1 are sandwiched between a flange portion welded to the end portion of the first outer cylinder 60A and a flange portion welded to the end portion of the second outer cylinder 60B.
  • the cover is formed by covering the outer peripheral side of the second mechanical seal device 1 with a bolt 79 (see FIG. 1 or 2) inserted into a bolt hole penetrating in the axial direction.
  • each pipe communicating with the first fluid passage 20A of each pipe joint portion 20A1 is formed as a resin pipe or a steel pipe (such as a stainless steel pipe), passes through the second vacuum chamber V2 of the second main body 65, and is not shown. Communicates with the supply device.
  • Each of these pipes may be connected to a branch pipe 44A shown in FIG.
  • the supplied refrigerant Q1 supplied to the cooling unit 105 through each second fluid passage 20C provided in each rotary seal ring 1A is extremely low temperature liquid helium, liquid nitrogen, or the like.
  • the discharged refrigerant Q2 returned to the cooling supply device through the second interval fluid passage 20B is a refrigerant after the cooling unit 105 is cooled (the refrigerant may be vaporized).
  • the supply refrigerant Q1 includes liquid helium ( ⁇ 273 ° C. or less), liquid nitrogen ( ⁇ 196 ° C. or less), liquid neon, liquid argon, or the like. These supply refrigerants Q1 are cooled to a cryogenic temperature that can cool the superconducting coil or the like to a superconducting state.
  • the second vacuum chamber V2 of the second main body 65 is in a high vacuum state, and each first fluid passage 20A can be thermally insulated by vacuum.
  • the second vacuum chamber V2 performs vacuum suction V via the branch pipe 44A. Further, it is possible to prevent the temperature of the supply refrigerant Q1 from rising by covering the branch pipe 44A and the pipe of the first fluid passage 20A with a heat insulating material of fiber reinforced resin such as PTFE.
  • the cylindrical second main body 65 that forms a radial direction with respect to the vacuum cylinder shaft 10 is provided on the mounting plate provided on the flange portion of the first outer cylinder 60A and on the flange portion of the second outer cylinder 60B. As shown in FIG. 2, the mounting plate is hermetically coupled using bolts.
  • the second main body 65 is formed in a cylindrical shape that forms a radial direction in the first main body 60.
  • the second main body 65 surrounds the periphery of the axis of the vacuum cylinder shaft 10. It can also be formed into a sealed cylindrical body.
  • the inner diameter of the inner peripheral surface of the first outer cylinder 60A is formed larger than the outer diameter of the outer peripheral surface of the first vacuum cylinder shaft 10A, as shown in FIG. 1, FIG. 2 and FIG.
  • the first outer cylinder 60A is fitted with an annular space with respect to the first vacuum cylinder shaft 10A.
  • the second outer cylinder 60B is also formed in an approximately symmetrical shape with the first outer cylinder 60A while providing an annular space for fitting with the second vacuum cylinder shaft 10B.
  • a vacuum suction pipe 33A is provided at the large-diameter cylindrical end portion 60A of the first outer cylinder 60A so as to evacuate the periphery of the first mechanical seal device 32 and thereby perform vacuum insulation.
  • the annular space around the outer periphery of the vacuum cylinder 10 is also vacuum insulated.
  • This vacuum drawing pipe 33A is provided with a plurality of through holes that are equally or non-uniformly distributed along the peripheral surface of the large-diameter cylindrical end portion 60A. And the vacuum drawing pipe 33A is connected to this through hole.
  • the other of the vacuum drawing pipes 33A communicates with a vacuum suction device (also called a vacuum pump) Va through the first vacuum chamber V1 and the second vacuum chamber V2.
  • the first outer cylinder 60 ⁇ / b> A is made of a material such as stainless steel or a nickel-based alloy, like the vacuum cylinder 10.
  • the second outer cylinder 60B shown in FIG. 1 or FIG. 2 and FIG. 5 is provided with a through-hole connected to the joint of the vacuum drawing pipe in the large-diameter cylindrical end 60B at one end in the same manner as the first outer cylinder 60A.
  • a plurality of through-holes connected to the vacuum piping are provided in a uniform or non-uniform manner along the peripheral surface of the large-diameter cylindrical end portion 60B. Then, the annular space on the outer periphery of the second vacuum cylinder shaft 10B is vacuum-sucked to thermally insulate the second vacuum cylinder shaft 10B.
  • the other end of the vacuum suction pipe communicates with the pipe provided in the second main body 65 and is vacuumed by the vacuum suction device Va, similarly to the vacuum suction pipe 33A shown in FIG.
  • the cylindrical first main body 60 having the first vacuum chamber V ⁇ b> 1 inside is vacuum insulated by the first vacuum chamber V ⁇ b> 1 surrounding the outer peripheral side of the vacuum cylinder shaft 10 and the outer periphery of the second mechanical seal device 1.
  • the side is also vacuum insulated.
  • the second mechanical seal device 1, the first fluid passage 20 ⁇ / b> A, the first and second spacing fluid passages 20 ⁇ / b> B, the second fluid passage 20 ⁇ / b> C, and the connection fluid passage 20 ⁇ / b> D are disposed in the second vacuum chamber V ⁇ b> 2 in the second body 65. Double insulation by vacuum.
  • the second assembly B is provided on the superconducting motor 100 side of the vacuum cylinder 10 with respect to the first assembly A in FIG.
  • This second assembly B is shown enlarged in FIG.
  • One of the first bearing portions 60D1 that rotatably supports the vacuum cylinder shaft 10 has an outer peripheral surface fitted on the inner peripheral surface of the first bearing box 30A.
  • the first bearing portion 60D1 is attached by fitting the inner peripheral surface to the outer peripheral surface of the sleeve 31. Further, the sleeve 31 is fitted to the outer peripheral surface of the vacuum cylinder shaft 10. Further, the first bearing box 30A is attached and fixed to the case of the superconducting motor 100 via a holding portion indicated by a virtual line.
  • a holding plate 30B that holds the first mechanical seal device 32 and supports the first bearing portion 60D1 in the axial direction is provided on the opening side surface of the first bearing box 30A.
  • a fluid Q3 such as air or a fluid Q3 such as a lubricant is supplied to the fluid space 30H through the supply passage 33 provided in the holding plate 30B to the first bearing portion 60D1.
  • the fluid Q3 flows into the fluid space 30H from the supply passage 33, and acts as a Bach fluid on the first mechanical seal device 32.
  • a lubricating liquid may be supplied to the bearing portion 60D1 to cause a lubricating action.
  • Rotating seal ring (symbol is omitted) of the first mechanical seal device 32 is fitted to a stainless steel sleeve 31 via an accessory. Further, the stationary seal ring that rotates relative to the rotary seal ring is held in the stepped hole of the holding plate 30B via an accessory. Then, the first mechanical seal device 32 blocks the fluid space 30H on the first bearing portion 60D1 side and the annular space in the first outer cylinder 60A. The large-diameter cylindrical end portion 60A on the holding plate 30B side of the first outer cylinder 60A is fitted to the inner peripheral surface of the first main body 60, and the flange portion at the other end is the seal cover 2B3 as described above. The second main body 65 is continuously coupled via
  • the third assembly C is provided on the opposite side to the second assembly B of the vacuum cylinder shaft 10.
  • a large-diameter cylindrical end portion 60B of the second outer cylinder 60B fitted to the inner peripheral surface of the first main body 60 is provided with a second bearing portion 60D2 in an inner peripheral stepped hole to support the other.
  • the large-diameter cylindrical end portion 60B is supported by a plurality of supports 61.
  • the inner peripheral surface of the second bearing portion 60D2 is fitted to the outer peripheral surface of the second vacuum cylinder shaft 10B (see FIG. 1).
  • the vacuum cylinder shaft 10 is rotatably supported by the first bearing portion 60D1 and the second bearing portion 60D2.
  • the supply passage is communicated with the space 62 on the side surface of the second bearing portion 60D2 as in FIG.
  • a non-magnetic ferrofluid sealing cover 41 made of stainless steel or the like is coupled to the end of the second outer cylinder 60B by a bolt with a symbol omitted.
  • a magnetic fluid seal device 40 as shown in FIG. 6 is mounted between the inner peripheral surface of the magnetic fluid seal cover 41 and the outer peripheral surface of the second vacuum cylinder shaft 10B.
  • High-precision bearings 40D and 40D are provided on both sides of the magnetic fluid sealing device 40 on the inner peripheral surface of the magnetic fluid sealing cover 41, respectively.
  • the bearings 40D and 40D have inner peripheral surfaces fitted on the magnetic shaft cover 40A and outer peripheral surfaces fitted on the inner peripheral surface of the magnetic fluid seal cover 41. Furthermore, the shaft cover 40A is fitted to the outer peripheral surface of the second vacuum cylinder shaft 10B via cold-resistant sealing O-rings 80B and 80B arranged in parallel.
  • seal projection groups spaced in the axial direction are provided on the outer peripheral surface of the shaft cover 40A made of a magnetic material.
  • This seal projection group is provided with a set number of projections 40A1 each having a plurality of ring-shaped cross sections with a predetermined axial width. Preferably, 8 to 15 are provided for each.
  • Magnetic material pole blocks 40B and 40B are fitted to the inner peripheral surface of the magnetic fluid seal cover 41 via the sealing O-ring 80A at positions corresponding to the two rows of seal projection groups.
  • the inner peripheral surface of the pole blocks 40B, 40B are formed with a small distance of 0.05 mm or less so as not to contact (adjacent to the inner peripheral surface at a non-contact interval). ). This interval is made possible by two high-precision bearings 40D and 40D on both sides.
  • a permanent magnet 40M is fitted between the two pole blocks 40B and 40B. Further, a highly accurate magnetic fluid 40F is interposed between the seal projection group 40A140A1... And the inner peripheral surfaces of the pole blocks 40B and 40B. Further, a magnetic flux is formed by the permanent magnet 40M in a loop circuit in which the permanent magnet 40M, the two pole blocks 40B and 40B, and the two seal projection groups 40A1,.
  • the magnetic fluid 40F collects between the projection 40A1 of each seal projection group and the inner peripheral surfaces of the pole blocks 40B and 40B, and blocks both axial sides of the gap adjacent to the suction force of the vacuum suction V.
  • the suction space 45 is maintained in a high vacuum state without causing sliding resistance.
  • a fluid supply passage 40H is provided in a penetrating state on the outer surface of a permanent magnet (not limited to a permanent magnet if it is a magnet) 40M of the magnetic fluid seal cover 41. Then, the permanent magnet 40M is kept warm by the N 2 gas supply fluid Q4 or the air supply fluid Q4. Alternatively, the magnetic fluid 40M can be supplied from the fluid supply passage 40H as the supply fluid F into the inner peripheral surfaces of the pole blocks 40B and 40B.
  • the permanent magnet 40M may be sandwiched between the pole blocks 40B and 40B as a ring, or may be arranged in a column shape between the pole blocks 40B and 40B.
  • the cross-sectional shape of the outer peripheral surface of the protrusion 40A1 may be a sharp mountain shape or M shape.
  • the magnetic fluid sealing device 40 is configured so that the vacuum passage 10H in the vacuum cylinder 10 can be blocked from the outside and maintained at a high vacuum level or higher.
  • the pole blocks 40B and 40B and the magnet 40M may be mounted on the outer peripheral surface of the vacuum cylinder shaft 10, and the shaft cover 40A may be mounted on the inner peripheral surface of the magnetic fluid seal cover 41.
  • a high-precision magnetic fluid 40F is interposed between the seal projection group 40A140A1... And the inner peripheral surfaces of the pole blocks 40B and 40B.
  • the configuration of the magnetic fluid seal device 40 is configured by reversing the inside and outside of the first embodiment, with the inner peripheral part disposed on the outer peripheral side and the outer peripheral part disposed on the inner peripheral side.
  • the number of seal projection groups and pole blocks arranged in parallel can be one pair as long as a magnetic circuit can be formed between both parts.
  • a connecting cover 42 that faces the opening 10D of the second vacuum cylinder shaft 10B is the end face of the magnetic fluid seal cover 41 (the part surrounding the vacuum cylinder part).
  • a suction port 42 ⁇ / b> A is provided at a position facing the opening 10 ⁇ / b> D of the connection cover 42.
  • the suction port 42A communicates with the vacuum suction device (vacuum pump) Va shown in FIG.
  • the branch pipe 44A branched from the suction pipe 44 is connected to a pipe penetrating into the first main body 60 to suck the inside of the first vacuum chamber V1 and to bring the inside of the first vacuum chamber V1 into a high vacuum state.
  • the high vacuum state in the first vacuum chamber V1 of the first main body 60 provides vacuum insulation by doubling the second vacuum chamber V2 of the second main body 65 that insulates the first fluid passages 20A, 20A, 20A. .
  • the inside of the inner peripheral surface 10A2 of the vacuum cylinder shaft 10 is sucked from the suction port 42A, and the inside of the vacuum passage 10H is brought into a high vacuum state.
  • the high vacuum in the vacuum passage 10H is completely sealed in the inner peripheral surface 10A2 (vacuum passage 10H) of the vacuum cylinder shaft 10 by the high-performance magnetic fluid seal 40.
  • a high vacuum (10 ⁇ 3 Torr to 10 ⁇ 7 Torr) or an ultra vacuum (10 ⁇ 7 Torr or less) can be used.
  • the inside of the vacuum passage 10H on the outer peripheral side of the first pipe 20E or the second pipe 20E through which the supply refrigerant Q1 passes is 10 ⁇ 3 Torr or less.
  • a vacuum state preferably a vacuum state of 10 ⁇ 5 Torr or less
  • the ferrofluid sealing device 40 of the present invention can prevent this high vacuum state by effectively blocking the inside of the vacuum passage 10H from the outside. enable.
  • the state of high vacuum and ultra high vacuum in the inner peripheral surface 10A2 of the vacuum cylinder shaft 10 highly blocks the temperature of the outside air with respect to the first pipe 20E and the second pipe 20B.
  • the supply refrigerant Q1 such as liquid helium, nitrogen, neon, etc., which is supplied from the refrigerant supply device, is kept at an extremely low temperature in the inner peripheral surface 10A2 of the vacuum cylinder shaft 10, and this supply is performed.
  • the refrigerant Q1 is supplied from the first pipe 20E and the second pipe 20E to the cooling unit 105 of the superconducting motor 100 to cool the cooling unit 105.
  • first and second pipes 20E, 20E, and 20E are disposed in the inner peripheral surface 10A2 of the vacuum cylinder shaft 10, the outer peripheral surfaces of the first and second pipes 20E, 20E, and 20E are PTFE, It can be covered (covered) with a heat insulating material such as quartz. For this reason, the heat insulation effect of the 1st piping 20E and 20E and the 2nd piping 20E can be exhibited, and the sealing capability of the 2nd mechanical seal device 1 can be maintained.
  • first and second interval fluid passages 20B and 20B arranged in parallel in the second mechanical seal device 1 since the refrigerant of the same pressure flows in the interval fluid passages 20B and 20B, the seal surface 1A1 and Both sides of the opposed seal surface 2A1 in the close radial direction have substantially the same pressure, and even if the discharged refrigerant Q2 is vaporized, the vacuum cylinder shaft 10 is rotating, so that it is linear due to the centrifugal force. To the refrigerant supply device through the first fluid passage 20A. Therefore, even if the discharged refrigerant Q2 is vaporized, it can be effectively prevented from entering the supplied refrigerant Q1 through the sliding surface between the seal surface 1A1 and the opposing seal surface 2A1.
  • the cooling section (superconducting field coil) 105 of the superconducting motor 100 is cooled to the extremely low temperature by the supplied refrigerant Q1 at the extremely low temperature, and the electric resistance is zero ( 0).
  • the superconducting field coil is excited, a strong magnetic field having no excitation loss is generated in the superconducting field coil whose electric resistance is zero (0).
  • FIG. 7 is a front view of the connecting portion 10A1 side corresponding to the XX arrow in FIG. 1 according to the second embodiment.
  • the connecting portion 10A1 is formed in a cylindrical shape shorter than the connecting portion 10A1 shown in FIG. 2, and a circular vacuum passage 10H is formed in the inner peripheral surface. 7 is formed at four or more locations (four locations in FIG. 7) in the radial direction of the connection portion 10A1, similarly to the connection fluid passage 20D shown in the connection portion 10A1 of FIG. Of these, the first pipes 20E are sealed and fitted into the connection holes 20D1 of the three connection fluid passages 20D, 20D, and 20D, respectively.
  • the supply refrigerant Q1 flows through the first pipe 20E.
  • connection fluid passages 20D, 20D, and 20D for the three supply refrigerants Q1 are formed at different positions in the circumferential direction although the positions in the axial direction are substantially the same in the connection portion 10A1 (second fluid in FIG. 8). (Refer to the arrangement of the passage 20C).
  • connection fluid passage 20D for the discharged refrigerant Q2 communicates with the second interval fluid passage 20B so that the three connection fluid passages 20D, 20D, and 20D for the supply refrigerant Q1 are axially connected to each other at the connection portion 10A1. Change position. Accordingly, since the connecting portion 10A1 can be formed in a cylindrical shape that is short in the axial direction, the length of the vacuum passage 10H in the axial direction can also be shortened.
  • the effect of vacuum heat insulation can be improved by forming the inner diameter of the connecting portion 10A1 in various shapes.
  • the front shape of the vacuum passage 10H in the connecting portion 10A1 is not limited to a circular shape, but may be a rectangular inner peripheral surface, a star-shaped or gear-shaped inner peripheral surface, an elliptical inner peripheral surface, or the like. It can be devised so that a large number of first pipes 20E and second pipes can be connected to the side surfaces. Note that only one second mechanical seal is required for the connection fluid passages 20D, 20D, and 20D for the three supply refrigerants Q1.
  • coolant Q1 is supplied to the superconducting field coil of the superconducting motor 100 by many 1st piping 20E, and an electrical resistance is made into zero (0) by cooling a conduction field coil to extremely low temperature. be able to. Moreover, it is comprised similarly to the connection fluid channel
  • coolant Q2 can be made into a plurality, and the discharge
  • FIG. 8 is a front view of the rotary seal ring 1A fitted to the vacuum cylinder shaft 10 as seen from the axial direction.
  • This rotary seal ring 1A is Example 3.
  • a rotary seal ring 1A shown in FIG. 8 is an example in which second fluid passages 20C penetrating through four locations along the peripheral surface are provided.
  • the inner peripheral surface 1A3 of the rotary seal ring 1A is fitted to the outer peripheral surface of the connection portion 10A1 so that the four second fluid passages 20C and the four connection fluid passages 20D communicate with each other.
  • the supply refrigerant Q1 supplied from one first fluid passage 20A flows into the four second fluid passages 20C.
  • seal surfaces 1A1 and 1A1 are formed on both end surfaces of the rotary seal ring 1A.
  • a seal mounting groove 1A4 to which a seal ring 83B shown in FIG. 3 can be attached is formed on the inner peripheral side of both seal surfaces 1A1 of the rotary seal ring 1A.
  • the second fluid passage 20C of the rotary seal ring 1A and the connection fluid passage 20D of the connection component 10A1 have been described, but the second fluid passage 20C is connected to the second fluid passage 20C according to the number of the cooling parts 105.
  • the fluid passage 20D and the second pipe 20E can be provided in a large number of five or six. By doing in this way, it becomes possible to supply supply refrigerant
  • the configuration in which the supply refrigerant Q1 can be supplied to a large number of cooling units 105 by the single second mechanical seal device 1 is made possible by a combination of the configuration of the second mechanical seal device 1 of the present invention and the connecting component 10A1.
  • the second mechanical seal device 1 may be composed of one second mechanical seal. In this case, although not shown, the second pipe is provided in another fluid passage so that the discharged refrigerant is returned to the cooling supply device.
  • the main body is a fixed part such as the first main body 60, the second main body 65, the first outer cylinder 60 ⁇ / b> A, the second outer cylinder 65 ⁇ / b> A with respect to the rotating vacuum cylinder shaft 10.
  • the present invention maintains the temperature of a cryogenic refrigerant such as liquid nitrogen or liquid helium, supplies the supplied refrigerant from the refrigerant supply device on the stationary part side to the cooling part of the rotating superconducting device, and collects the used refrigerant It can be a useful rotary joint.
  • a cryogenic refrigerant such as liquid nitrogen or liquid helium

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Joints Allowing Movement (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Thermal Insulation (AREA)

Abstract

 本発明は、流体通路を流れる供給冷媒の極低温度を真空断熱によって維持して冷却部を確実に冷却できるようにしたロータリジョイントを提供する。また、供給冷媒のランニングコストを最小にする。本発明のロータリジョイントは、本体の内周面に回転可能に支持されて真空通路を有する真空用筒軸(10)、真空用筒軸の外周面に間隔を置いて嵌着するとともに両端面にシール面を有する回転密封環(1A)、各回転密封環の両側に配置されてシール面と密接する対向シール面を有する固定密封環(2A)、固定密封環の端部周面に接合して固定密封環をシール面側へ押圧する弾性ベローズ(2B)、供給冷媒を供給する第1流体通路と連通して供給冷媒を通過させる各弾性ベローズの間に形成された間隔流体通路(20B)、間隔流体通路に連通する回転密封環に設けられた第2流体通路(20C)、第2流体通路に連通する接続流体通路(20D)、接続流体通路と連通するとともに真空用筒軸内で真空断熱される供給冷媒を冷却部側へ供給する第1配管(20E)、真空用筒軸内を真空引きする吸引口を有する連結カバー(42)、及び真空引きの圧力に対応する軸方向へ多段に構成された突起を有する磁性流体シール40)を具備するものである。

Description

ロータリジョイント
 本発明は、冷媒により超伝導モータの超伝導界磁コイルなどの冷却部を冷却するために、冷媒用流体通路の途中に設けたメカニカルシール装置付のロータリジョイントに関する。さらに詳しくは、固定された冷凍機から回転側の冷却部へ相対回転部を通して供給冷媒を極低温状態で導入できるようにしたメカニカルシール装置付のロータリジョイントに関する。
 超電導モータなどの超電導装置は、超伝導界磁コイルの超電導状態を維持させるために、液体窒素や液体ヘリウムなどの極低温の冷媒を、超伝導界磁コイルなどの冷却部へ供給しなければならない。また、この冷却部で使用した後の冷媒(排出冷媒という)を冷凍機へ回収しなければならない。このとき、供給する冷媒(供給冷媒という)の温度を極低温度の状態に維持するとともに、高価な供給冷媒の使用量を低減する必要がある。例えば、固定側の冷凍機から回転する超電導モータへ供給冷媒を供給するためには、相対回転する固定部から回転部へロータリジョイントを用いて供給冷媒を通過させなければならない。このロータリジョイントにおいて、固定部の流体通路と回転部の流体通路との相対回転する連通路の流体通路をシールするシール装置は、極低温度の供給冷媒又は排出冷媒をシールするために、冷媒をシールする能力が温度に伴って問題となる。また、供給冷媒の温度が上がると、供給冷媒の供給量を増加してやらなければ、所定の温度に冷却できないので、超伝導の機能が発揮できない。このため、冷却部への供給冷媒の使用量が増加する問題がある。
 さらに、供給冷媒の供給時の断熱には、真空断熱が優れていることは知られている。しかし、真空断熱するためには、流体通路を取り巻く外周側の空間の真空度を上げなければ、供給冷媒を極低温度に維持することは困難である。この真空断熱のために高真空度を維持するためには、外気と遮断する真空シール装置が必要である。この真空シール装置において、真空をシールするときに、真空によりシール面の潤滑がなくなるので、シール面を摩耗させることになる。その結果、断熱すべき真空度を低下させることになる。このシール装置のシール能力が問題となって、極低温度に維持した供給冷媒を冷却部へ供給できない問題が存する。このような状況では、冷却部を極低温度に維持するために、供給冷媒を冷却部へ多量に供給しなければならないから、高価な供給冷媒のランニングコストが増加して問題となっている。このため、優れたロータリジョイントが求められている。
 日本国特許出願公開2003-65477号公報(特許文献1)の図9(この図9の図示は省略するが、特許文献1の図面の符号は部品名の後に示す)には、「超伝導コイルを備えたロータへの極低温度の気体移送継手を有する同期機械」として、同期発電機械へ極低温流体を供給する極低温剤移送継手(26)の断面図が示されている。この極低温剤移送継手26では、固定側の差し込みチューブ154は、先端部158を入口チューブ156の内周面に非接触状態に嵌合して非接触シールに構成している。しかし、この非接触シールは、差し込みチューブ154が入口チューブ156の内周面に非接触状態で単に嵌合しているのみである。従って、極低温冷却器90から供給される入口極低温気体157が差し込みチューブ154内を流れて入口チューブ156内に流入するときに、入口極低温気体157の一部が差し込みチューブ154と入口チューブ156の非接触に嵌合している間隙から円筒状ハウジング186内に流入する恐れがある。円筒状ハウジング186内は真空状態に保持されているが、入口極低温気体157が円筒状ハウジング186内に流入すると、円筒状ハウジング186内の真空度は低下するから、真空による断熱効果が低下する。
 また、極低温剤移送継手26は、入口極低温気体157が流れる冷却入口チューブ156の外周と冷却出口チューブ166との間の環状空間を高温冷却ガス164が流れる構成であるため、冷却入口チューブ156内を流れる入口極低温気体157は高温冷却ガス164によって温度が上昇する恐れがある。
 また、筒状ケーシング168内に配置された運動間隙シール162は、内周側を入口極低温気体157が流れるとともに、外周側を高温冷却ガス164が流れる構成のために、極低温によって材質が劣化してシール能力を低下する恐れがある。特に、外部との断熱効果が低い極低温剤移送継手26の構成では、多量の入口極低温気体157をSCコイル巻き線へ供給しなければならないから、運動間隙シール162は、早期に劣化する恐れがある。
 さらに、筒状ハウジング196内に装着された磁性流体シール176は、戻りガス164の漏れを防ぐと記載されているが〔段落番号0046を参照〕、その構成は不明である。現在知られた磁性流体シール176では、円筒状ハウジング186内を真空にすると、磁性流体が円筒状ハウジング186内に吸い込まれて磁性流体シール176のシール能力が低下する。このため、外部の空気流177は磁性流体シール176を通って円筒状ハウジング186内に浸入するので、円筒状ハウジング186内の真空度が低下する。この円筒状ハウジング186内の真空度が低下すると、入口極低温気体157の断熱効果が得られない。通常の磁性流体シールでは、この高真空度を維持することは困難である。
 従来の磁性流体シール装置を含めたシール手段では、摺動面が真空引きされて摺動面の潤滑液が吸い取られるので、シール面が摩耗する。その結果、シール面間を介して空気流177や、さらには、戻りガスが円筒状ハウジング186内に徐々に浸入して冷却流体を極低温の30°K以下に保持することが困難になる。この入口極低温気体157を30°K以下に維持することができないと、超伝導コイル(コイル巻線34)の超伝導の効果は発揮できなくなる。このために、必要以上の入口極低温気体157の流量を超伝導コイル側へ供給しなければならない。この現状では、ヘリウム等の冷却流体が高価であるために、同期発電機械等のランニングコストが上昇する。
 さらに、日本国特許第3306452号公報(特許文献2)の図1又は図3(図示は省略するが、特許文献2の図面の符号は部品名の後の括弧内に示す)には、特許文献1と同様にして、真空層(2)で覆われた張り出し部(10)の内周面に液体ヘリウム注入パイプ(1)を挿入した断面図が示されている。この挿入した張り出し部(10)の内周面は液体ヘリウム注入パイプ(1)の外周面との間に間隙を形成している。この間隙に連通する外周側の間隙を遮断するシール(4)によって液体ヘリウムが外部に漏洩するのをシールする構成である。しかし、この特許文献2も特許文献1と同様に、極低温度の液体ヘリウムを従来のシール(4)でシールすることは、液体ヘリウムが極低温であるために困難である。単なるシール装置の構成では液体ヘリウムのシールは種々の問題点をシール面に惹起する。また、真空層(2)はパイプの外側の空間室に封入した構造であるが、封入した構造では時間とともに真空度が低下するから、長期に渡って液体ヘリウムへの断熱効果は発揮できない。
 また、特許文献1は、入口チューブ156を固定差し込みチューブ154へ嵌合する構成では、また、特許文献2では、回転子先端の張り出し部(10)へ液体ヘリウム注入パイプ(1)を回転子の孔中心(19)(導入孔)へ向かって軸方向へ嵌合させる構成では、回転子側の入口チューブ156又は回転子先端の張り出し部(10)の固定が困難になり、入口チューブ156又は回転子先端の張り出し部(10)が相対面と接触すると固定差し込みチューブ154又は液体ヘリウム注入パイプ(1)と摺動して摩耗粉が発生する恐れがある。また、この構造では真空度を維持することは困難である。さらに、超伝導界磁コイルの本数に応じて液体ヘリウム注入パイプ(1)を複数本にする必要がある場合、その本数に応じて回転子も複雑にしなければならず、シール装置の構造を複雑にする。
日本国特許出願公開2003-65477号公報 日本国特許第3306452号公報
 本発明は、上述のような問題点に鑑み成されたものであって、その課題は、供給冷媒が流れる流体通路を高真空状態に断熱して極低温の供給冷媒を冷却部へ供給することにある。さらに、この高真空の断熱によって、固定側の流体通路から回転側の流体通路へ連通させる第2メカニカルシール装置のシール能力が供給冷媒によって低下するのを防止することにある。また、冷凍機に接続する固定側の流体通路と相対回転する側の接続流体通路との連通する流体通路の構成を効率良くすることにある。さらに、供給冷媒を流通させるロータリジョイントの耐久能力を向上することにある。また、接続流体通路の構造によって配管の組み立てを容易にして流体通路の製作を容易にすることにある。また、冷媒の冷却効果を向上させて冷媒のランニングコストを低減することにある。
 本願発明のロータリジョイントは、固定側の冷媒供給装置と回転側の冷却部との流体通路間を接続する冷媒用のロータリジョイントであって、本体に回転可能に支持されるとともに軸方向に貫通する真空通路を有し、且つ前記真空通路の一端に前記冷却部の連通路と連通可能にする連結部と、前記真空通路の他端に真空引用の開口部と、前記連結部と前記開口部の中間に接続部とを有する真空用筒軸、前記真空用筒軸の前記接続部に密封に嵌着するとともに両端面に各シール面を有する回転密封環、前記回転密封環の軸方向両側に配置されて対向する前記シール面と密接する対向シール面を有する両固定密封環、前記各固定密封環の対向シール面と反対の周面に一端の結合部が密封に連結するとともに他端の固定部が前記真空用筒軸を囲んで前記本体に密封に固着して前記固定密封環を前記シール面へ弾性に押圧する弾性ベローズ、前記回転密封環を挟んだ両側の前記弾性ベローズの間に形成されて供給冷媒を導入する第1流体通路と連通可能な第1間隔流体通路、前記回転密封環を径方向へ貫通するとともに前記第1間隔流体通路と連通する第2流体通路、前記接続部の内部に設けられて一端が前記第2流体通路に連通するとともに他端に接続孔を設けた接続流体通路、前記接続孔に一端が接続して前記接続流体通路と連通するとともに、他端が前記冷却部側の流通路と連通可能な流体通路を有し、且つ前記真空用筒軸の真空通路に配置された第1配管、前記真空用筒軸の開口部から前記真空通路内を真空吸引する吸引口を有する連結カバー、及び前記連結カバーと密封に結合して前記真空用筒軸を囲む磁性流体シール用カバーと、前記磁性流体シール用カバーの内周面と前記真空用筒軸の外周面との間の一方の周面に密封に嵌着するとともに並列に配列された磁石用のポールブロックと、前記ポールブロックの並列する間に配置された磁石と、前記各ポールブロックの周面に近接して対向する環状の突起が複数個に配列されて突起群を成すとともに他方の周面に密封に嵌着する軸カバーと、前記突起と前記ポールブロックの間に介在する磁性流体とを有し、前記真空吸引する力に対して磁力を受けた前記磁性流体が前記突起と前記ポールブロックとの間を遮断する磁性流体シール装置を具備するものである。
 このような構成のロータリジョイントによれば、真空吸引に対して確実にシールできる磁性流体シール装置によって、真空用筒軸の内周面内は高真空状態にして断熱効果が発揮できる。しかも、磁性流体シール装置は、摺動する摺動面が無いから、摺動面が早期に摩耗するのを効果的に防止して耐久能力を発揮することができる。このため、真空用筒軸の内周面内は長期に渡り高真空(10-5Torr以下)状態が維持できる(なお、従来のシール装置のシール面は、優れたシール能力を有しても、真空状態により摺動するシール面の潤滑液が吸い取られるから早期に摩耗する)。さらに、真空用筒軸の連結部が冷却部の接続部と連結して冷却部の機内とも連通するから、この真空吸引によって、冷却部の機内も真空断熱することができる。従って、真空用筒軸の内周面内中に配置されている各第1配管及び第2配管と接続部は、外気から効果的に真空断熱できるので、供給冷媒は極低温度の状態に維持できる。さらに、この真空用筒軸の内周面内の真空断熱は、間隔流体通路を流れる供給冷媒を極低温度に維持して供給冷媒を液体状態に維持できる。
 その結果、この液体の冷媒によって、シール面と対向シール面とが摺動するときに、両シール面間に潤滑液として介在して摺動が発熱するのを防止する。また、両シール面が摩耗するのを防止する(従来技術では、優れたシール装置でも、冷媒は極低温であるがために、シール材質を変質させるので、冷媒をシールすることが困難であった)。さらに、両シール面の摺動時の摩耗が防止されて供給冷媒に対するシール能力を発揮する。また、固定密封環と一体の弾性ベローズの構成は、固定密封環の摺動する嵌合面間をシールするOリングを不要とするから、極低温度によるOリングの材質変化に伴って冷媒が漏洩するのを防止できる。さらに、弾性ベローズの構成は、極低温の状態でも、固定密封環の対向シール面をシール面に対して弾発に押圧し、この弾発するための移動は摺動する面が無いので、対向シール面のシール能力が発揮できる。さらに、各第1配管及び第2配管は、真空用筒軸となる部材をキリ等で加工した孔の流体通路ではなく、配管から構成されているから、断熱効果に優れた管材料を選択することができる。また、各第1配管及び第2配管は、配管であるから、第1配管及び第2配管の加工・組み立てが容易になるとともに、配管作業も容易になり、流体通路としての加工コストと、組み立てコストを低減できる。
 好適には、本願発明のロータリジョイントは、一対を成す前記回転密封環と両側の固定密封環とは少なくとも軸方向に2組が配列されているとともに、前記一方の組の前記固定密封環と隣接する前記他方の組の前記固定密封環との対向間に第2間隔流体通路を有し、前記第2間隔流体通路は前記真空用筒軸の前記真空通路に配置された第2配管と連通し、前記冷却部を冷却した排出冷媒が前記第2配管と前記第2間隔流体通路を通って戻されるものである。
 このような構成のロータリジョイントによれば、第2配管は真空用筒軸の内周面内に配置されて真空断熱されているので、排出冷媒は、極低温度を保持することができる。そして、この排出冷媒が第2間隔流体通路を流れるときは、両ベローズと固定密封環により両側が遮断された間を流れるので、第2メカニカルシールのシール能力が低下するのを防止できる。たとえ、シール面と対向シール面との摺動する面間側に排出冷媒が流れても、排出冷媒はこのシール面間の内周側に作用するから、シール面間が無潤滑状態になるのを防止できる。そして、第2メカニカルシールの耐久能力を長期に渡り発揮できる。
 また好適には、本願発明のロータリジョイントは、前記接続部が内周面を円形面又は楕円形面又は周方向に沿って凹凸面又は歯車状面に形成されて前記第1配管側の端部に前記接続孔が形成されているものである。
 このような構成の本願発明のロータリジョイントによれば、真空用筒軸のメカニカルシール装置内に設けた接続部の内周面を円形、楕円形、凹凸形状等の種々の形状は、各第1及び第2配管を内径側に張り出した側面に設けて個数を増やすことができる。また、この構成は第1配管と第2配管の取り付けを容易にする。しかも、接続部の内周面の形状は、真空吸引を容易にし、真空通路の真空断熱の効果を発揮させることができる。同時に、第1配管と第2配管の本数に応じて接続部の接続孔の配置を容易にすることができる。そして、第1配管及び第2配管を断熱材により被覆する場合でも、第1配管及び第2配管の間隔が自由になる。そして、この被覆の厚さを設計通りにすることができるので、断熱効果が発揮できる。
 また好適には、本願発明のロータリジョイントは、前記回転密封環は周方向に沿って配列された複数の前記第2流体通路を有するとともに、前記接続部にも周方向に沿って前記各第2流体通路と連通する前記接続流体通路を有し、各前記第1配管の流体通路が各対応する前記接続流体通路に連通しているものである。
 このような構成のロータリジョイントによれば、回転密封環に多数の第2流体通路を設けることができるので、1個所の第1流体通路から流れた供給冷媒が第1間隔流体通路を通って複数の第2流体通路へ流入することができる。そして、複数の第2流体通路に連通する複数の接続流体通路に各第1配管の流体通路が連通しているから、各冷却部の必要な個所へ必要なだけ供給冷媒を供給することが可能になる。また、両固定密封環と回転密封環よりなる一対の第2メカニカルシールを配列する個数は、少なくできる。同時に、接続部の軸方向の長さも短くできる。その結果、第2メカニカルシール装置と接続部品との製作コスト及び組み立てコストを大きく低減できる。また、ロータリジョイントも小型にすることができる。
図1は、本発明の実施例1のロータリジョイントの片側の断面図である。 図2は、図1のメカニカルシール装置と配管の付近を示す第1組立体の拡大断面図である。 図3は、図2の各第2メカニカルシール装置付近の構成を示す拡大断面図である。 図4は、図1の第2組立体の片側の断面図である。 図5は、図1の第3組立体の片側の断面図である。 図6は、図5に示す磁性流体シールの片側の拡大断面図である。 図7は、本発明に係わる実施例2の接続部の軸方向正面図である。 図8は、本発明に係わる実施例3の回転密封環の軸方向正面図である。 図9は、本発明に係わるロータリジョイントを取り付けた超伝導モータの概略断面図である。
 以下、本発明に係わる実施の形態のロータリジョイントを図面に基づいて説明する。なお、以下に説明する各図面は、設計図を基に作成した正確な図面である。図1は、本発明の実施例1のロータリジョイントRの片側の断面図である。なお、図1では、断面にハッチングを入れると、図が不明になるので、ハッチングは省略してある。また、図2は、図1のメカニカルシール装置1と配管の付近を示すものであって、第1組立体Aの片側の拡大断面図である。さらに、図3は、図2の第2メカニカルシール装置1付近の構成を示すさらなる拡大断面図である。図4は、第1軸受部60D1側の第2組立体Bの片側の拡大断面図である。図5は、磁性流体シール40側の第3組立体Cの片側の拡大断面図である。図6は図5に示す磁性流体シール40の拡大断面図である。
 以下に、図1から図6を参照して本発明のロータリジョイントRを説明する。ロータリジョイントRのフランジ付の連結部10Cは、界磁コイルを有する同期回転機戒、例えば、回転発電機、リニアモータなどの流体通路付の回転軸及び図9に示す超伝導モータ100の流体通路付の回転軸115に連結する。
 最初に、図1のロータリジョイントRと連結する図9の超伝導モータ100について説明する。ただし、本発明ではない超伝導モータ100については、簡単に説明する。
 図9に示す超伝導モータ100は、概略図である。筒状で内周面115Aを設けた回転軸115の外周面には、3個の回転子110を嵌着する(符号は1個所のみ)。回転子110の両側には、合計4個のステータ106(符号は1個所のみ)を軸方向に配列する。そして、各回転子110には、超伝導(SC)コイル103の内周側に空間がある冷却部105を設ける。この冷却部105にロータリジョイントRの各第1配管20Eと連通して冷媒を供給できる各第1管101,101,101を設ける。この各第1管101,101,101により冷媒をそれぞれの冷却部105,105,105へ供給して各超伝導コイル103,103,103(符号は1個所のみ)を冷却する。また、各超伝導コイル103,103,103を冷却した後の冷媒は、排出流体通路用のそれぞれの第2管102,102,102と連通する第2配管20Eを通して図示省略の冷媒供給装置(冷凍機とも言う)へ逆流させる。なお、回転軸115の両側には、軸受116,116を設ける。今、便宜上、回転子110が3個の場合について説明したが、3個とは限らず、1個、2個、又は3個以上の場合もある。また、この例示した回転子110の構造とは、異なる構造も存する。しかし、いずれにせよ、同期回転機戒において超伝導コイルの電気抵抗を零(0)に近づけるには、超伝導コイルを極低温の温度状態に冷却しなければならない。本発明はこの問題を解決する。
 これらの高温の超伝導コイルは、超伝導を達成し、且つ、この超伝導を維持するために、例えば、高温超伝導コイルを臨界温度(超伝導遷移温度、例えば、27K)又はそれ以下の温度まで冷却しなければならない。本発明のロータリジョイントRは、固定側から回転側の各接続流体通路20D,20Dを通して各冷却部105へ直接に極低温の供給冷媒Q1を供給できるように構成している。そして、供給冷媒Q1又は排出冷媒Q2が高真空(高真空とは10-3Torrから10-7Torrの範囲である)状態の真空通路10Hに配置される第1配管20E及び第2配管20E内の流体通路を通過するので、外気と真空断熱されて供給冷媒Q1を臨界温度以下の極低温度に維持することができる。そして、第1配管20Eと第2配管20Eは高真空の状態に維持されて、外気の温度が第1配管20Eと第2配管20Eへ伝熱するのを遮断する。
 図1及び図9において、真空用筒軸10の連結部10Cは、超伝導モータ100の回転軸115の一端の取付部と連結して共に回動できるように形成する。同時に、第1配管20Eは、第1管101と連結して第1配管20Eからの供給冷媒Q1を第1管101内へ供給可能にする供給流体通路を設けている。さらに、第2配管20Eも第2管102と連結して超伝導コイル等を冷却した使用済みの排出冷媒Q2を第2管101から第2配管20Eへ排出可能にする排出流体通路である。なお、この第1配管20Eは供給冷媒Q1の供給流体通路に限定するものではなく、また、第2配管20Eは、排出冷媒Q2の排出流体通路に限定するものではない。第1配管20Eを排出流体通路に用いることもできる。また、第2配管20Eを供給流体通路に選定することもできる。しかし、使用後の排出冷媒Q2を冷却供給装置へ戻すときは、図1の第2メカニカルシール装置1の実施例では第2配管20Eを利用することが好ましい。
 この真空用筒軸10は、全体がステンレス鋼製の第1真空用筒軸10Aの接続部(接続部品とも言う。しかし、接続部品は真空用筒軸と別部品という意味ではない)10A1と第2真空用筒軸10Bの継手部(符号10B)とを接合し、符号が省略された図示するボルトを軸方向へ螺合して連結する。第1真空用筒軸10Aは、筒軸の端部と接続部10A1の段付面とを嵌合するとともに、この嵌合部の周面を溶接して一体に形成する。また、第2真空用筒軸10Bは、筒軸の端部と継手部10Bの段付面とを嵌合して嵌合面間を溶接する。この溶接した継手部10Bと接続部10A1とを嵌め合わせるとともにボルトにより締結して筒状に形成する。この第1真空用筒軸10Aと第2真空用筒軸10Bとの連結は、第2メカニカルシール装置1を取り付け可能にするためにボルトで締結する。しかし、他の例として、図示省略の長いスリーブにメカニカルシール装置1を嵌合し、このスリーブを真空用筒軸10の外周に嵌着して固定すれば、第1真空用筒軸10Aと第2真空用筒軸10Bは、分割して組み立てること無く、一体にすることができる。この実施例の場合は、第1真空用筒軸10Aの内周面に接続部10A1を一体に嵌着する。又は、第1真空用筒軸10Aを加工して接続部10A1に形成しても良い。なお、第2メカニカルシールとは、回転密封環1Aと、この回転密封環1Aの両側に各々固定密封環2A,2Aを配置して一対に組み合わせたものを言う。そして、第2メカニカルシールを複数に組み合わせた全体をメカニカルシール装置1と言う。
 また、接続部10A1は、図3に示すように内部に断面が径方向と軸方向を成すL形の接続流体通路20Dを軸方向に位置を変えながら周方向に沿って設定通りの個数に配置する。この各接続流体通路20D,20Dの軸方向の端部側の開口は、接続孔20D1に形成するとともに、各接続孔20D1に第1配管20Eと第2配管20Eの端部をそれぞれ密封に嵌着する(嵌合した周面間を溶接又は接着して封止する)。この供給又は排出流体通路を有する第1配管20Eと第2配管20Eとは、第1真空用筒軸10Aの内周面10A2内に配置して極低温度の冷媒Q1,Q2を流通可能にする。同時に、第1真空用筒軸10Aの内周面10A2内に配置された第1配管20Eと第2配管20Eは、真空吸引(真空引き)された高真空内に配置されて外部と真空断熱される。なお、第1配管20Eと第2配管20Eの材質は、ステンレス鋼管、銅管、アルミニウム管、窒化ボロン、石英管、強化ガラス管、低温用樹脂(PTFEなど)管などを用いている。また、第1配管20Eと第2配管20Eの外周面を断熱材で被覆しても良い。例えば、ステンレス鋼管の外周をPTFE、ガラス、石英等の材質を用いて断熱できる厚さに被覆する。これらの断熱効果は、第1配管20Eと第2配管20Eが真空用筒軸10内に真空断熱の状態で配管することにより可能になる。従来のように、メカニカルシール装置を取り付けたハウジング本体にキリ孔で冷媒用の流体通路を形成した構成では、これらの効果が期待できない。
 図2及び図3は、図1に示す第1組立体Aの拡大図である。図2及び図3に示すように、真空用筒軸10における接続部10A1の外周面に回転密封環1Aの内周面1A3を軸方向に隔てて2列に配列して嵌着する。この回転密封環1Aの組み立ては、並列に配置した両回転密封環1A,1Aの間に筒状のスペーサ12を挟持するとともに、両回転密封環1A,1Aの軸方向の外側端を接続部10A1の段付面と第2真空用筒軸10Bの継手部10Bの端面とにより支持した状態で固定する。各回転密封環1A,1Aは軸方向両端面に各シール面1A1,1A1,・・を設けるとともに、各回転密封環1A,1Aの両シール面1A1,1A1の中間に内外に貫通した第2流体通路20Cを設ける。この第2流体通路20Cは、内方の接続流体通路20Dと連通する。この各回転密封環1Aと後述する各固定密封環2Aは、炭化珪素、カーボン、硬質合金、複合樹脂等の摩耗しない硬質であって、且つ冷媒Q1,Q2に耐える耐寒材質である。
 回転密封環1Aの軸方向の両側には、一対の両固定密封環2A,2Aを設ける。固定密封環2Aは端面にシール面1A1と密接する対向シール面2A1を設ける。同時に、対向シール面2A1と反対側面(背面)には真空用筒軸10を環状に囲む弾性ベローズ2Bの一端となる結合部2B1を溶接等により密封に結合する。この弾性ベローズ2Bは、ステンレス鋼、ニッケル基合金(インコネル718など)等の金属製であって、固定密封環2Aに一体に形成された付属部品である。また、弾性ベローズ2Bの他端の環状を成す固定部2B2は、シールカバー2B3の内周の段付部に溶接等で密封に接着する。そして、弾性ベローズ2Bは固定密封環2Aの対向シール面2A1をシール面1A1と密接させる方向へ弾発に押圧する。
 さらに、回転密封環1Aの外周面1A2と、回転密封環1Aの両側の固定密封環2A,2Aとの間の空間(両弾性ベローズ2B,2Bの間)は、第1間隔流体通路20Bに形成する。この第1間隔流体通路20Bは、配管継手部20A1を設けた第1流体通路20Aと連通する。なお、第1流体通路20Aは冷却供給装置から供給冷媒Q1が導入される流体通路である。また、両回転密封環1A,1Aの間の両弾性ベローズ2B,2Bの固定部2B2,2B2の対向間と、スペーサ12の外周面と、配管継手部20A1(図3で符号を省略)の内周面との間に形成された環状空間が第2間隔流体通路20Bである。この第2間隔流体通路20Bは、回転密封環1Aに設けた第2流体通路20C通らないため接続流体通路20Dと直接に連通する。つまり、第2間隔流体通路20Bと接続流体通路20Dとの間には、回転密封環1Aの第2流体通路20Cと連通する第1間隔流体通路20Bと、第2流体通路20Cを通さない第2間隔流体通路20Bとを設けている。
 リング状の各シールカバー2B3,2B3,2B3,2B3とリング状の配管継手部20A1,20A1,20A1の接合間には断面がC形又はU形の各シールリング83Aを取り付けて各接合間をシールする(図3では軸方向へ8個を設けている)。このシールリング83Aは、PTFE製のU形状の溝内に金属(インコネル718などの材質)製の弾性中空Oリングを設けた形状、又はC形金属リングの形状に構成し、冷媒Q1,Q2に耐える耐寒性にする。そして、各シールカバー2B3と各配管継手部20A1とは、第1外筒60Aの端部に溶接したフランジ部と、第2外筒60Bの端部に溶接したフランジ部との間に挟持して軸方向に貫通するボルト用孔に挿入したボルト79(図1又は図2を参照)により締め付けて第2メカニカルシール装置1の外周側を覆う形のカバーに形成する。また、各配管継手部20A1の第1流体通路20Aと連通する各配管は、樹脂管、鋼管(ステンレス鋼管など)に形成して第2本体65の第2真空室V2内を通り図示省略の冷却供給装置と連通する。この各配管は図5に示す分岐配管44Aと連結して真空吸引しても良い。
 そして、各回転密封環1Aに設けた各第2流体通路20Cを通って冷却部105へ供給される供給冷媒Q1は、極低温度の液体ヘリウム、液体窒素等である。また、第2間隔流体通路20Bを通って冷却供給装置へ戻される排出冷媒Q2は、冷却部105を冷却した後の冷媒(冷媒が気化する場合もある)である。なお、供給冷媒Q1の種類は、液体ヘリウム(-273°C以下)、液体窒素(-196°C以下)、液体ネオン、液体アルゴン等がある。これらの供給冷媒Q1は、超伝導コイルなどを冷却して超伝導状態にできる極低温に冷却される。この第2本体65の第2真空室V2内は高真空の状態であって、各第1流体通路20Aを真空断熱することができる。この第2真空室V2は分岐配管44Aを介して真空吸引Vする。また、分岐配管44Aや第1流体通路20Aの配管の周りをPTFEなど、繊維強化樹脂の断熱材で覆って供給冷媒Q1の温度が上昇するのを防止できる。さらに、真空用筒軸10に対して径方向を成す筒状の第2本体65は、取付部が第1外筒60Aのフランジ部に設けた取付板と第2外筒60Bのフランジ部に設けた取付板に、図2に示すように、ボルトを利用して密封に結合する。そして、第2本体65は第1本体60内に径方向を成す筒形に形成しているが、第1流体通路20Aの本数が多い場合は、真空用筒軸10の軸芯の廻りを囲む密閉した筒状体に形成することもできる。
 第1外筒60Aの内周面の内径は、図1又は図2及び図4に示すように、第1真空用筒軸10Aの外周面の外径より大径に形成されている。そして、第1外筒60Aは、第1真空用筒軸10Aに対して環状空間を設けて嵌合する。また、第2外筒60Bも、第2真空用筒軸10Bに対して環状空間を設けて嵌合するとともに、第1外筒60Aとほぼ対称な形状に形成されている。次に、第1外筒60Aの大径円筒状の端部60Aには、図4に示すように、真空引配管33Aを設けて第1メカニカルシール装置32の周囲を真空引きして真空断熱するとともに、真空用筒軸10の外周の環状空間も真空断熱する。この真空引配管33Aは大径円筒状の端部60Aの周面に沿って等配又は不等配に複数本の貫通孔を設ける。そして、この貫通孔に真空引配管33Aを連結する。この真空引配管33Aの他方は、第1真空室V1と第2真空室V2内を通って真空吸引装置(真空ポンプとも言う)Vaに連通する。なお、第1外筒60Aは、真空用筒軸10と同様に、ステンレス鋼、ニッケル基合金等の材製である。
 図1又は図2及び図5に示す第2外筒60Bは、一端の大径円筒状の端部60Bに第1外筒60Aと同様に、真空引配管の継手と接続する貫通孔を設ける。この真空引配管と接続する貫通孔は大径円筒状の端部60Bの周面に沿って等配又は不等配に複数本を設ける。そして、第2真空用筒軸10Bの外周の環状空間を真空吸引して第2真空用筒軸10Bを真空断熱する。そして、真空引配管の他端部は、図4に示す真空引配管33Aと同様に、第2本体65内に配管された配管と連通して真空吸引装置Vaにより真空吸引Vされる。
 さらに、内部に第1真空室V1を有する円筒状の第1本体60は、真空用筒軸10の外周側を囲んだ第1真空室V1によって真空断熱するとともに、第2メカニカルシール装置1の外周側も真空断熱する。また、第2メカニカルシール装置1、及び第1流体通路20A、第1及び第2間隔流体通路20B、第2流体通路20C、接続流体通路20Dは、第2本体65内で第2真空室V2内により二重に真空断熱される。また、ロータリジョイントRが耐用年数に達して第2メカニカルシール装置1等を通る第1間隔流体通路20Bから供給冷媒Q1が外部に漏洩するようなことがあっても、第2真空室V2によって供給冷媒Q1が吸引されるから、外部へ漏洩する供給冷媒Q1によって公害問題になるのが防止できる。
 次に、第2組立体Bは、図1において第1組立体Aに対して真空用筒軸10の超伝導モータ100側に設ける。この第2組立体Bを図4に拡大して示す。真空用筒軸10を回転可能に支持する一方の第1軸受部60D1は、外周面を第1軸受ボックス30Aの内周面に嵌着する。また、この第1軸受部60D1は、内周面をスリーブ31の外周面に嵌着して取付ける。さらに、このスリーブ31は真空用筒軸10の外周面に嵌着する。また、第1軸受ボックス30Aは、仮想線で示す保持部を介して超伝導モータ100のケースに取り付けて固定する。さらにまた、第1軸受ボックス30Aの開口側面には、第1メカニカルシール装置32を保持すると共に、第1軸受部60D1を軸方向に支持する保持板30Bを設ける。この保持板30Bに設けた供給通路33により第1軸受部60D1側に空気などの流体Q3又は潤滑液などの流体Q3を流体空間30Hへ供給する。この流体Q3は、供給通路33から流体空間30Hへ流入し、第1メカニカルシール装置32に対してバッハ流体としての作用をする。又は、軸受部60D1に潤滑液を供給して潤滑作用をさせることもできる。
 第1メカニカルシール装置32の回転密封環(符号は省略)は、付属部品を介してステンレス鋼製のスリーブ31に嵌着する。また、この回転密封環と相対回転する固定密封環は、保持板30Bの段付孔に付属部品を介して保持する。そして、第1メカニカルシール装置32により第1軸受部60D1側の流体空間30Hと第1外筒60A内の環状空間とを遮断する。第1外筒60Aにおける保持板30B側の大径円筒状の端部60Aは、第1本体60の内周面に嵌着するとともに、他端のフランジ部は、前述したように、シールカバー2B3を介して第2本体65に連結合する。
 第3組立体Cは、図1に示すように、真空用筒軸10の第2組立体Bに対して反対側に設ける。第1本体60の内周面に嵌着した第2外筒60Bの大径円筒状の端部60Bには、内周の段付孔に第2軸受部60D2を設けて他方を支持する。なお、大径円筒状の端部60Bは、複数のサポート61により支持されている。第2軸受部60D2の内周面は、第2真空用筒軸10Bの外周面に嵌着する(図1を参照)。そして、真空用筒軸10を第1軸受部60D1と第2軸受部60D2により回転自在に支持する。第2軸受部60D2の側面の空間62には、図示は省略するが、図4と同様に供給通路を連通させる。第2外筒60Bの端部には、ステンレス鋼などの非磁性体の磁性流体シール用カバー41を符号省略のボルトにより結合する。磁性流体シール用カバー41の内周面と第2真空用筒軸10Bの外周面との間には、図6に示すような、磁性流体シール装置40を装着する。磁性流体シール用カバー41の内周面における磁性流体シール装置40の両側には、各々高精度のベアリング40D、40Dを設ける。この両ベアリング40D、40Dは内周面が磁性体の軸カバー40Aに嵌着するとともに、外周面が磁性流体シール用カバー41の内周面に嵌着する。さらに、軸カバー40Aは、並列に配列した耐寒性のシール用Oリング80B,80Bを介して第2真空用筒軸10Bの外周面に嵌着する。
 そして、磁性材料の軸カバー40Aの外周面には、軸方向へ間隔を設けた2列のシール突起群を設ける。このシール突起群は所定の軸方向の幅に複数のリング状の断面が山形の突起40A1を各々6個から20個のうちの設定数を設ける。好ましくは、各々8個から15個を設けると良い。この2列のシール突起群に対応した位置には、磁性材料のポールブロック40B,40Bがシール用のOリング80Aを介して磁性流体シール用カバー41の内周面に嵌着する。この各8個の突起40A1・・・の外周面とポールブロック40B,40Bの内周面との間は0.05mm以下で接触しない微少間隔に形成する(接触しない間隔に内周面と近接する)。この間隔は両側の高精度の2個のベアリング40D、40Dにより可能になる。そして、2個のポールブロック40B,40Bの間には、永久磁石40Mが嵌着して配置されている。また、シール突起群40A140A1・・とポールブロック40B,40Bの内周面との間には高精度の磁性流体40Fを介在する。また、永久磁石40Mと2個のポールブロック40B,40Bと2個のシール突起群40A1・・とを環状に形成されるループ回路には、永久磁石40Mによって、磁束が形成される。そして、各シール突起群の突起40A1とポールブロック40B,40Bの内周面との間には磁性流体40Fが集結して真空吸引Vの吸引力に対して近接した間隙の軸方向両側を遮断し、摺動抵抗を惹起すること無く、吸引空間45の高真空の状態を維持する。
 磁性流体シール用カバー41の永久磁石(磁石であれば、永久磁石とは限らない)40Mの外面には、流体供給通路40Hを貫通状態に設ける。そして、Nガスの供給流体Q4又は空気の供給流体Q4により永久磁石40Mを保温する。又は、流体供給通路40Hから供給流体Fとして磁性流体40Mをポールブロック40B,40Bの内周面内へ供給できるようにする。永久磁石40Mはポールブロック40B,40Bの間にリングにして挟持する場合、又は円柱にしてポールブロック40B,40Bの間に多数個を配列する場合がある。さらに、突起40A1の外周面の断面形状は尖った山形、M形にすると良い。この磁性流体シール装置40は真空用筒軸10内の真空通路10Hを外部に対し遮断して高真空度以上の状態に維持できるように構成されている。なお、ポールブロック40B,40Bと磁石40Mを真空用筒軸10の外周面に装着し、軸カバー40Aを磁性流体シール用カバー41の内周面に装着した構成にしても良い。そして、シール突起群40A140A1・・とポールブロック40B,40Bの内周面との間には高精度の磁性流体40Fを介在する。つまり、上述の実施例1とは内外を逆にした構成で、内周側の部品を外周側に配置し、外周側の部品を内周側に配置した磁性流体シール装置40の構成である。なお、シール突起群とポールブロックの並列される数は、両部品間に磁気回路が形成できれば一対でも可能になる。
 磁性流体シール用カバー41の軸方向の端面には、第2真空用筒軸10Bの開口部10Dに対向する連結カバー42が磁性流体シール用カバー41の端面(真空用筒部を囲む部分であれば良い)に密封に取り付ける。この連結カバー42の開口部10Dと対向する位置には、吸引口42Aを設ける。この吸引口42Aは、吸引配管44により図1に示す真空吸引装置(真空ポンプ)Vaに連通する。また、吸引配管44から分岐した分岐配管44Aは、第1本体60の内部に貫通する配管に連結して第1真空室V1内を吸引し、第1真空室V1内を高真空の状態にする。この第1本体60の第1真空室V1内の高真空の状態は、第1流体通路20A,20A,20Aを真空断熱する第2本体65の第2真空室V2を二重にして真空断熱する。
 一方、吸引口42Aから真空用筒軸10の内周面10A2内を吸引し、真空通路10H中を高真空の状態にする。この真空通路10H中の高真空は、高性能の磁性流体シール40により真空用筒軸10の内周面10A2内(真空通路10H)が完全にシールされるので、この内周面10A2内は、前述したように、高真空(10-3Torrから10-7Torr)又は超真空(10-7Torr以下 )にすることができる。なお、超伝導界磁コイルの電気抵抗を零(0)にするためには、供給冷媒Q1を通す第1配管20E又は第2配管20Eの外周側の真空通路10H中を10-3Torr以下の真空状態、好ましくは10-5Torr以下の真空状態にしなければならないが、本発明の磁性流体シール装置40は真空通路10H中と外部とを効果的に遮断することによって、この高真空な状態を可能にする。この真空用筒軸10の内周面10A2内の高真空及び超高真空の状態は、第1配管20E及び第2配管20Bに対して外気の温度を高度に遮断する。そして、冷媒供給装置から供給された極低温度の液状のヘリウム、窒素、ネオン等の供給冷媒Q1を真空用筒軸10の内周面10A2内で極低温度の状態に維持しながら、この供給冷媒Q1を第1配管20E及び第2配管20Eから超伝導モータ100の冷却部105へ供給して冷却部105を冷却する。
 また、第1及び第2配管20E,20E,20Eは、真空用筒軸10の内周面10A2内に配置されているから、第1及び第2配管20E,20E,20Eの外周面をPTFE、石英等の断熱材で覆う(被覆する)ことができる。このため、第1配管20E,20E及び第2配管20Eの断熱効果を発揮して第2メカニカルシール装置1のシール能力を維持することができる。
 また、第2メカニカルシール装置1における並列に配置された第1及び第2間隔流体通路20B,20B内は、同圧の冷媒が各間隔流体通路20B,20B内を流れるために、シール面1A1と対向シール面2A1の密接する径方向の両側は、ほぼ同圧であり、排出冷媒Q2が、例え気化したとしても、真空用筒軸10は回転しているから、その遠心力の作用で直線的に第1流体通路20Aを通って冷媒供給装置へ戻すことができる。従って、排出冷媒Q2が、例え気化したとしても、シール面1A1と対向シール面2A1との摺動面を通って、供給冷媒Q1に混入するのは効果的に防止できる。このため、従来のように気化した排出冷媒が途中で供給冷媒に混合して供給冷媒の温度を上昇させるのが防止できる。そして、第2メカニカルシール装置1のシール能力がさらに発揮する。また、超伝導モータ100の冷却部(超伝導界磁コイル)105は、供給された極低温度の供給冷媒Q1により冷却部105の液溜め部が極低温度まで冷却されて電気抵抗が零(0)の状態にできる。その結果、超伝導界磁コイルが励磁されると、電気抵抗が零(0)となっている超伝導界磁コイルには、励磁損失の無い強力な磁界が発生する。
 図7は、実施例2であって、図1におけるX-X矢視に相当する接続部10A1側の正面図である。この接続部10A1は、図2に示す接続部10A1よりも短い筒状に形成するとともに、内周面内に円形の真空通路10Hを形成する。そして、図7には、図2の接続部10A1に示す接続流体通路20Dと同様に、接続部10A1の径方向へ4個所又はそれ以上の個所(図7では4個所)に形成する。このうち3個所の接続流体通路20D,20D,20Dの接続孔20D1には、各第1配管20Eを密封に各々嵌着する。そして、この第1配管20Eを供給冷媒Q1が流通する。また、残りの1個所又は2個所の接続孔20D1(符号は図2を参照)には、排出冷媒Q2用の第2配管20Eを密封に嵌合する。この3個所の供給冷媒Q1用の接続流体通路20D,20D,20Dは、接続部10A1において軸方向の位置はほぼ同一であるが、周方向に位置を変えて形成する(図8の第2流体通路20Cの配列の構成を参照)。また、排出冷媒Q2用の接続流体通路20Dは、第2間隔流体通路20Bと連通するように、3個所の供給冷媒Q1用の接続流体通路20D,20D,20Dとは接続部10A1において軸方向の位置を変える。従って、この接続部10A1は軸方向に短い筒状に形成できるから、真空通路10Hの軸方向の長さも短くできる。
 また、この接続部10A1の内径を種々の形に形成することにより、真空断熱の効果を向上させることもできる。例えば、この接続部10A1における真空通路10Hの正面形状は、円形とは限らず、四角形状の内周面、星形状又は歯車状の凹凸面にした内周面、楕円形の内周面等に形成して多数の第1配管20Eよび第2配管を側面に連結できるように工夫することができる。なお、この3個所の供給冷媒Q1用の接続流体通路20D,20D,20Dに対応する第2メカニカルシールは、1個で済む。そして、多数の第1配管20Eによって、供給冷媒Q1を超伝導モータ100の超伝導界磁コイルに供給し、伝導界磁コイルを極低温度に冷却することによって電気抵抗を零(0)にすることができる。また、上述の供給冷媒Q1用の接続流体通路20D,20D,20Dと同様に構成して排出冷媒Q2の第2配管を複数個にして排出冷媒Q2を冷却供給措置へ効率的に戻すことができる。
 図8は、真空用筒軸10に嵌着する回転密封環1Aの軸方向から見た正面図である。この回転密封環1Aは実施例3である。図8に示す回転密封環1Aは、周面に沿って4個所に貫通する第2流体通路20Cを設けた例である。回転密封環1Aの内周面1A3は、接続部10A1の外周面に嵌着して4個所の第2流体通路20Cと4個所の接続流体通路20Dとを各々連通させる。そして、この4個所の第2流体通路20Cは1個所の第1流体通路20Aから供給された供給冷媒Q1が流入する。また、回転密封環1Aの両端面には、各シール面1A1,1A1を形成する。さらに、回転密封環1Aの両シール面1A1の内周側には、図3に示すシールリング83Bが装着できるシール取付溝1A4を形成する。
 図8において、この回転密封環1Aの第2流体通路20Cと接続部品10A1の接続流体通路20Dについては4個の例を説明したが、冷却部105の個数に応じて第2流体通路20Cと接続流体通路20Dと第2配管20Eとは、5個、6個と多数個に設けることもできる。このようにすることによって、第2メカニカルシールの数を増加させること無く、多数個の冷却部105へ供給冷媒Q1を供給することが可能になる。この1つの第2メカニカルシール装置1により多数個の冷却部105へ供給冷媒Q1を供給可能にする構成は、本発明の第2メカニカルシール装置1の構成と接続部品10A1との組み合わせによって可能になる。なお、他の実施例として、第2メカニカルシール装置1は、1個の第2メカニカルシールからなる場合もある。この場合は、図示省略するが、第2配管を他の流体通路に設けて排出冷媒を冷却供給装置へ戻すようにする。
 本発明の比較例として、図1において、磁性流体シール装置40を従来の磁性流体シール装置に置き換えると、高真空に応じて磁性流体シール装置の磁性流体が真空側へ吸引されるから、磁性流体が無くなる。従って、真空通路内の真空状態を維持することが困難になる。このため、真空通路中の真空による断熱効果も低下する。その結果、各流体通路や第1配管を大径にして多量の供給冷媒を流さなければ、冷却部105を冷却することが困難になる。そして、超伝導モータに使用する高価な供給冷媒のランニングコストは上昇する。また、多量の供給冷媒を供給する構成では、ロータリジョイントが大型になるので、製作コストが上昇する。また、ロータリジョイントの取付場所も大きくなるので、取付場所によっては取り付けが困難になる。なお、本体とは、回転する真空用筒軸10に対し、第1本体60、第2本体65、第1外筒60A、第2外筒65A等の固定された部品である。
産業上の利用分野
 本発明は、液体窒素や液体ヘリウムなどの極低温の冷媒の温度を維持して固定部側の冷媒供給装置から回転する超電導装置の冷却部へ供給冷媒を供給するとともに、使用後の冷媒を回収できる有用なロータリジョイントである。

Claims (4)

  1.  固定側の冷媒供給装置と回転側の冷却部との流体通路間を接続する冷媒用のロータリジョイントであって、
     本体に回転可能に支持されるとともに軸方向に貫通する真空通路を有し、且つ前記真空通路の一端に前記冷却部の連通路と連通可能にする連結部と、前記真空通路の他端に真空引用の開口部と、前記連結部と前記開口部の中間に接続部とを有する真空用筒軸、
     前記真空用筒軸の前記接続部に密封に嵌着するとともに両端面に各シール面を有する回転密封環、
     前記回転密封環の軸方向両側に配置されて対向する前記シール面と密接する対向シール面を有する両固定密封環、
     前記各固定密封環の対向シール面と反対の周面に一端の結合部が密封に連結するとともに他端の固定部が前記真空用筒軸を囲んで前記本体に密封に固着して前記固定密封環を前記シール面へ弾性に押圧する弾性ベローズ、
     前記回転密封環を挟んだ両側の前記弾性ベローズの間に形成されて供給冷媒を導入する第1流体通路と連通可能な第1間隔流体通路、
     前記回転密封環を径方向へ貫通するとともに前記第1間隔流体通路と連通する第2流体通路、
     前記接続部の内部に設けられて一端が前記第2流体通路に連通するとともに他端に接続孔を設けた接続流体通路、
     前記接続孔に一端が接続して前記接続流体通路と連通するとともに、他端が前記冷却部側の流通路と連通可能な流体通路を有し、且つ前記真空用筒軸の真空通路に配置された第1配管、
     前記真空用筒軸の開口部から前記真空通路内を真空吸引する吸引口を有する連結カバー、
     及び前記連結カバーと密封に結合して前記真空用筒軸を囲む磁性流体シール用カバーと、前記磁性流体シール用カバーの内周面と前記真空用筒軸の外周面との間の一方の周面に密封に嵌着するとともに並列に配列された磁石用のポールブロックと、前記ポールブロックの並列する間に配置された磁石と、前記各ポールブロックの周面に近接して対向する環状の突起が複数個に配列されて突起群を成すとともに他方の周面に密封に嵌着する軸カバーと、前記突起と前記ポールブロックの間に介在する磁性流体とを有し、前記真空吸引する力に対して磁力を受けた前記磁性流体が前記突起と前記ポールブロックとの間を遮断する磁性流体シール装置を具備することを特徴とするロータリジョイント。
  2.  一対を成す前記回転密封環と両側の固定密封環とは少なくとも軸方向に2組が配列されているとともに、前記一方の組の前記固定密封環と隣接する前記他方の組の前記固定密封環との対向間に第2間隔流体通路を有し、前記第2間隔流体通路は前記真空用筒軸の前記真空通路に配置された第2配管と連通し、前記冷却部を冷却した排出冷媒が前記第2配管と前記第2間隔流体通路を通って戻されることを特徴とする請求項1に記載のロータリジョイント。
  3.  前記接続部は内周面を円形面又は楕円形面又は周方向に沿って凹凸面又は歯車状面に形成されて前記第1配管側の端部に接続孔が形成されていることを特徴とする請求項1又は請求項2に記載のロータリジョイント。
  4.  前記回転密封環は周方向に沿って配列された複数の前記第2流体通路を有するとともに、前記接続部にも周方向に沿って前記各第2流体通路と連通する前記接続流体通路を有し、各前記第1配管の前記流体通路が各対応する前記接続流体通路に連通していることを特徴とする請求項1又は請求項2又は請求項3に記載のロータリジョイント。
PCT/JP2009/052392 2008-03-28 2009-02-13 ロータリジョイント WO2009119176A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09725041.9A EP2258970B1 (en) 2008-03-28 2009-02-13 Rotary joint
CN200980111936.9A CN101981360B (zh) 2008-03-28 2009-02-13 旋转接头
US12/934,663 US9695942B2 (en) 2008-03-28 2009-02-13 Rotary joint
JP2010505438A JP5325878B2 (ja) 2008-03-28 2009-02-13 ロータリジョイント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-087509 2008-03-28
JP2008087509 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119176A1 true WO2009119176A1 (ja) 2009-10-01

Family

ID=41113384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052392 WO2009119176A1 (ja) 2008-03-28 2009-02-13 ロータリジョイント

Country Status (6)

Country Link
US (1) US9695942B2 (ja)
EP (1) EP2258970B1 (ja)
JP (1) JP5325878B2 (ja)
CN (1) CN101981360B (ja)
TW (1) TWI426687B (ja)
WO (1) WO2009119176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737497A (zh) * 2010-02-11 2010-06-16 北京交通大学 一种磁性液体与三斜口填料环组合式往复轴密封装置
WO2013099385A1 (ja) * 2011-12-27 2013-07-04 イーグル工業株式会社 回転継手
US11047430B2 (en) * 2017-07-10 2021-06-29 Zte Corporation Rotating shaft connection apparatus and multi-screen mobile terminal device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122782A1 (ja) * 2008-04-03 2009-10-08 イーグル工業株式会社 ロータリジョイント
CN105318129A (zh) * 2014-05-30 2016-02-10 盛美半导体设备(上海)有限公司 带通气槽旋转轴
CN104197024B (zh) * 2014-08-06 2015-06-10 北京交通大学 蠕动泵送循环冷却式磁性液体密封装置
CN104455463B (zh) * 2014-08-06 2015-09-30 北京交通大学 嵌入导热片的冷却液式磁性液体密封装置
US10571058B2 (en) * 2016-02-01 2020-02-25 Deublin Company Rotary union with integral sensor array
CN108975260B (zh) * 2016-11-15 2019-11-12 浙江海洋大学 Lng加注管接头
WO2020012820A1 (ja) * 2018-07-10 2020-01-16 株式会社水道技術開発機構 筐体装置及び筐体装置の装着方法
CN110762307B (zh) * 2019-12-03 2024-04-12 中国工程物理研究院总体工程研究所 磁流体密封旋转接头
CN110939739B (zh) * 2019-12-16 2020-08-21 清华大学 磁粉、磁性液体联合的密封装置
CN112228655B (zh) * 2020-09-09 2022-04-22 北京航天万鸿高科技有限公司 一种转台制冷温箱旋转接头磁性液体密封装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322523A (ja) * 1996-06-03 1997-12-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の連続真空排気装置
JPH1194095A (ja) * 1997-09-24 1999-04-09 Nok Corp 磁性流体を利用した密封装置
JP3306452B2 (ja) 1990-04-06 2002-07-24 株式会社日立製作所 冷媒供給装置
JP2003065477A (ja) 2001-05-15 2003-03-05 General Electric Co <Ge> 超伝導コイルを備えたロータへの極低温気体移送継手を有する同期機械
WO2006080280A1 (ja) * 2005-01-26 2006-08-03 Eagle Industry Co., Ltd. 極低温流体供給排出用装置および超電導装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991588A (en) * 1975-04-30 1976-11-16 General Electric Company Cryogenic fluid transfer joint employing a stepped bayonet relative-motion gap
JPS6194558A (ja) * 1984-10-16 1986-05-13 Toshiba Corp 超電導回転電機
US5288253A (en) * 1992-08-07 1994-02-22 Nortrans Shipping And Trading Far East Pte Ltd. Single point mooring system employing a submerged buoy and a vessel mounted fluid swivel
JPH0851767A (ja) * 1994-08-10 1996-02-20 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の回転子及びこれを用いた冷媒給排装置
JPH11194095A (ja) 1998-01-05 1999-07-21 Kurita Water Ind Ltd 分析試薬

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306452B2 (ja) 1990-04-06 2002-07-24 株式会社日立製作所 冷媒供給装置
JPH09322523A (ja) * 1996-06-03 1997-12-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の連続真空排気装置
JPH1194095A (ja) * 1997-09-24 1999-04-09 Nok Corp 磁性流体を利用した密封装置
JP2003065477A (ja) 2001-05-15 2003-03-05 General Electric Co <Ge> 超伝導コイルを備えたロータへの極低温気体移送継手を有する同期機械
WO2006080280A1 (ja) * 2005-01-26 2006-08-03 Eagle Industry Co., Ltd. 極低温流体供給排出用装置および超電導装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737497A (zh) * 2010-02-11 2010-06-16 北京交通大学 一种磁性液体与三斜口填料环组合式往复轴密封装置
WO2013099385A1 (ja) * 2011-12-27 2013-07-04 イーグル工業株式会社 回転継手
JPWO2013099385A1 (ja) * 2011-12-27 2015-04-30 イーグル工業株式会社 回転継手
KR101527313B1 (ko) * 2011-12-27 2015-06-09 이글 고오교 가부시키가이샤 회전 이음매
US11047430B2 (en) * 2017-07-10 2021-06-29 Zte Corporation Rotating shaft connection apparatus and multi-screen mobile terminal device

Also Published As

Publication number Publication date
TWI426687B (zh) 2014-02-11
CN101981360A (zh) 2011-02-23
JP5325878B2 (ja) 2013-10-23
TW200952311A (en) 2009-12-16
EP2258970A4 (en) 2016-07-13
EP2258970A1 (en) 2010-12-08
EP2258970B1 (en) 2018-06-13
US20110018255A1 (en) 2011-01-27
CN101981360B (zh) 2015-06-17
JPWO2009119176A1 (ja) 2011-07-21
US9695942B2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP5325878B2 (ja) ロータリジョイント
JP5250852B2 (ja) ロータリジョイント
JP4602397B2 (ja) 極低温流体供給排出用装置および超電導装置
US6762522B2 (en) Magnetic bearing for suspending a rotating shaft using high Tc superconducting material
CN100338859C (zh) 位于同步电机的转子和低温冷却流体源之间的冷却流体连接器
US7312544B2 (en) Fluid transfer device and method for conveying fluid to a rotating member
US6657333B2 (en) Vacuum coupling of rotating superconducting rotor
EP2439438B1 (en) Rotary joint for low-temperature application
JP2013207864A (ja) 圧縮機
JP4704869B2 (ja) 超電導回転電機の冷媒給排装置
US10738783B2 (en) Cryogenic installation comprising a circulator
US20230048319A1 (en) Rotating device and vacuum pump
JP2016220411A (ja) 回転機の冷媒給排装置
JP2021507174A (ja) 真空ポンプのための磁気シールド
JPS63294253A (ja) 超電導回転電機回転子の窒素給排装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111936.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505438

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934663

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009725041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE