WO2009122782A1 - ロータリジョイント - Google Patents

ロータリジョイント Download PDF

Info

Publication number
WO2009122782A1
WO2009122782A1 PCT/JP2009/052418 JP2009052418W WO2009122782A1 WO 2009122782 A1 WO2009122782 A1 WO 2009122782A1 JP 2009052418 W JP2009052418 W JP 2009052418W WO 2009122782 A1 WO2009122782 A1 WO 2009122782A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
passage
seal
refrigerant
fluid passage
Prior art date
Application number
PCT/JP2009/052418
Other languages
English (en)
French (fr)
Inventor
高橋 秀和
内山 真己
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2010505439A priority Critical patent/JP5250852B2/ja
Priority to CN2009801124047A priority patent/CN101983299B/zh
Priority to US12/935,956 priority patent/US8336921B2/en
Priority to EP09726971.6A priority patent/EP2267350B1/en
Publication of WO2009122782A1 publication Critical patent/WO2009122782A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals
    • F16J15/3484Tandem seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/04Joints or fittings for double-walled or multi-channel pipes or pipe assemblies allowing adjustment or movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/185Adjustable joints, joints allowing movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a rotary joint with a mechanical seal device provided in the middle of a refrigerant fluid passage in order to cool a cooling part such as a superconducting field coil of a superconducting motor with a refrigerant. More specifically, a mechanical seal that improves the relative rotation part provided in the fluid passage that communicates the fixed cooling supply device (refrigerator) and the cooling part on the rotation side so that the supplied refrigerant can be introduced in a cryogenic state.
  • the present invention relates to a rotary joint with a device.
  • a superconducting device such as a superconducting motor is used to maintain a superconducting state of a superconducting field coil by supplying a cryogenic refrigerant (supplied refrigerant) such as liquid nitrogen or liquid helium to a cooling unit such as a superconducting field coil.
  • a cryogenic refrigerant supplied refrigerant
  • the refrigerant referred to as exhaust refrigerant
  • the supplied refrigerant in order to supply the supplied refrigerant from the stationary-side refrigerator to the rotating superconducting motor, the supplied refrigerant must be passed through a rotary joint that connects the fluid passage of the stationary portion and the fluid passage of the rotating portion that rotate relative to each other. Don't be.
  • the sealing device that seals the fluid passage of the communication passage that rotates relative to the fluid passage of the fixed portion and the fluid passage of the rotating portion is extremely low in order to seal the supply refrigerant or the discharge refrigerant of extremely low temperature. The ability to seal temperature refrigerant becomes problematic with lower temperatures.
  • FIG. 9 of Japanese Patent Application Publication No. 2003-65477 Patent Document 1 [The illustration of FIG. 9 is omitted, but the reference numeral of the drawing of Patent Document 1 is shown after the part name]
  • a "synchronous machine with a cryogenic gas transfer joint to a rotor with coils” a cross-sectional view of a cryogenic agent transfer joint 26 that supplies cryogenic fluid to the synchronous generator is shown.
  • the distal end portion 158 of the insertion tube 154 on the fixed side is fitted into the inner peripheral surface of the inlet tube 156 in a non-contact state to constitute a non-contact seal.
  • the insertion tube 154 is simply fitted to the inner peripheral surface of the inlet tube 156 in a non-contact state. Accordingly, when the inlet cryogenic gas 157 supplied from the cryogenic cooler 90 flows through the insertion tube 154 and flows into the inlet tube 156, a part of the inlet cryogenic gas 157 is inserted into the insertion tube 154 and the inlet tube 156. There is a risk of flowing into the cylindrical housing 186 from a gap fitted in a non-contact manner.
  • the inside of the cylindrical housing 186 is kept in a vacuum state, when the inlet cryogenic gas 157 flows into the cylindrical housing 186, the degree of vacuum in the cylindrical housing 186 is reduced, so that the heat insulating effect by the vacuum is reduced. . Accordingly, a large amount of the inlet cryogenic gas 157 must be supplied to the cooling unit, which increases the running cost. Further, supplying a large amount of the inlet cryogenic gas 157 to the cooling unit makes it extremely difficult to recover.
  • the cryogenic agent transfer joint 26 has a configuration in which the high temperature cooling gas 164 flows through the annular space between the outer periphery of the cooling inlet tube 156 through which the inlet cryogenic gas 157 flows and the cooling outlet tube 166.
  • the temperature of the inlet cryogenic gas 157 flowing through the inside may increase due to the high temperature cooling gas 164.
  • the motion gap seal 162 disposed in the cylindrical casing 168 is deteriorated in material due to the cryogenic temperature because the inlet cryogenic gas 157 flows on the inner peripheral side and the high temperature cooling gas 164 flows on the outer peripheral side. As a result, the sealing ability may be reduced.
  • the magnetic fluid seal 176 mounted in the cylindrical housing 196 is described as preventing leakage of the return gas 164 (see paragraph number 0046), its configuration is unknown.
  • the magnetic fluid seal 176 when the inside of the cylindrical housing 186 is evacuated, the magnetic fluid is sucked into the cylindrical housing 186 and the sealing performance of the magnetic fluid seal 176 is reduced. For this reason, since the external air flow 177 may enter the cylindrical housing 186 through the magnetic fluid seal 176, the degree of vacuum in the cylindrical housing 186 decreases. When the degree of vacuum in the cylindrical housing 186 decreases, the heat insulating effect of the inlet cryogenic gas 157 cannot be obtained. It is difficult to maintain this high vacuum with a normal magnetic fluid seal.
  • the sliding surface is evacuated and the lubricating liquid on the sliding surface is sucked, so that the sealing surface is worn.
  • the air flow 177 or even the return gas gradually enters the cylindrical housing 186 through the seal surfaces, making it difficult to maintain the cooling fluid at a cryogenic temperature of 30 ° K or lower.
  • the inlet cryogenic gas 157 cannot be maintained below 30 ° K, the superconducting effect of the superconducting coil (coil winding 34) cannot be exhibited.
  • the flow rate of the inlet cryogenic gas 157 more than necessary must be supplied to the superconducting coil side. In this current situation, since the cooling fluid such as helium is expensive, the running cost of the synchronous generator is increased.
  • FIG. 1 or FIG. 3 of Japanese Patent No. 3306452 (Patent Document 2) [The illustration is omitted, but the reference numeral of the drawing of Patent Document 2 is shown in parentheses after the part name].
  • 1 is a sectional view in which the liquid helium injection pipe (1) is inserted into the inner peripheral surface of the overhanging portion (10) covered with the vacuum layer (2). A gap is formed between the inner peripheral surface of the inserted overhanging portion (10) and the outer peripheral surface of the liquid helium injection pipe (1). This is a configuration in which liquid helium is leaked to the outside by a seal (4) that blocks the outer peripheral gap communicating with the gap.
  • the inlet tube 156 is fitted to the fixed insertion tube 154.
  • the liquid helium injection pipe (1) is connected to the projecting portion (10) at the rotor tip.
  • the protruding portion (10) at the tip of the child comes into contact with the relative surface, it may slide with the fixed insertion tube 154 or the liquid helium injection pipe (1) to generate wear powder.
  • the rotor must be configured in a complicated manner according to the number of the liquid helium injection pipes (1). Make it complicated.
  • the present invention has been made in view of the above-described problems, and its problem is to insulate the fluid passage through which the supplied refrigerant flows into a high vacuum by combining the sealing device and evacuation.
  • the purpose is to supply a low-temperature supply refrigerant to the cooling unit.
  • the high vacuum insulation prevents the sealing ability of the second mechanical seal device communicating from the stationary fluid passage to the rotating fluid passage from being lowered by the supplied refrigerant.
  • Another object of the present invention is to improve the sealing performance of the mechanical seal by improving the configuration of the fluid passage communicating with the stationary fluid passage connected to the cooling supply device and the connecting fluid passage on the relatively rotating side. Furthermore, it is to improve the sealing ability of the sealing surface of the mechanical seal that seals the supplied refrigerant. Another object is to improve the cooling effect of the refrigerant and reduce the running cost of the refrigerant.
  • the rotary joint of the present invention is a rotary joint that connects between the refrigerant fluid passages of the fixed-side refrigerant supply device and the rotating-side cooling unit, and is rotatably supported by the main body and penetrates in the axial direction.
  • a connecting portion having a vacuum passage and capable of communicating with one end of the vacuum passage and the communication passage of the cooling portion; an opening of a vacuum reference at the other end of the vacuum passage; and an intermediate portion between the connecting portion and the opening.
  • a vacuum cylindrical shaft having a connection portion, a rotary sealing ring that is hermetically fitted to the connection portion of the vacuum cylindrical shaft and has sealing surfaces on both end faces, and is disposed on both axial sides of the rotary sealing ring.
  • Both fixed sealing rings having opposing sealing surfaces that are in close contact with the opposing sealing surfaces, and a joint at one end joined to the end opposite to the opposing sealing surface of each stationary sealing ring, and a fixing at the other end
  • the book surrounding the vacuum cylinder shaft A second elastic bellows which is fixed to the seal and elastically presses the fixed sealing ring against the sealing surface, and a first fluid passage formed between the two elastic bellows and capable of communicating with the first fluid passage.
  • a mechanical seal device comprising a mechanical seal having a one-interval fluid passage and a second fluid passage communicating with the first inter-space fluid passage in a radial direction through the rotary seal ring, and one axial end of the mechanical seal device
  • a first outer cylinder that is fitted and sealed to the outer peripheral surface of the vacuum cylinder shaft, and is coupled to the other axial end of the mechanical seal device in a sealed manner.
  • a second outer cylinder that forms and fits a second vacuum passage between the outer peripheral surface of the vacuum cylinder shaft, and one end communicates with the second fluid passage and is provided inside the connection portion; Make connection holes in The connecting fluid passage has one end connected to the connecting hole and communicates with the connecting fluid passage, and the other end has a fluid passage capable of communicating with the cooling portion side, and the vacuum of the vacuum cylinder shaft
  • a first cover disposed in the passage; a connection cover having a suction port for evacuating the vacuum passage so as to face the opening of the vacuum cylinder shaft; and the connection cover and the vacuum cylinder shaft
  • a ferrofluid sealing device that allows relative rotation between them and is connected in a sealed manner to shut off the vacuum passage of the vacuum cylinder shaft and the outer peripheral side of the connection cover, the first vacuum passage being the mechanical seal device Communicating with the first gap vacuum passage leading to the inner periphery of the opposed seal surface of the fixed seal ring between the inner peripheral surface of the fixed seal ring on one end side and the vacuum cylinder shaft, The fixed seal
  • the first outer cylinder and the second outer cylinder effectively insulate the inside of the inner surface of the vacuum cylinder shaft, so that the supply refrigerant flowing in the interval fluid passage is poled.
  • the supply refrigerant can be maintained in a liquid state while maintaining a low temperature.
  • the liquid supply refrigerant is vacuum sucked from the inner peripheral side between the seal surfaces, whereby the liquid can be interposed between the seal surface and the opposed seal surface to lubricate the sliding surface.
  • the sliding surface is prevented from generating heat.
  • the configuration of the elastic bellows integrated with the fixed seal ring eliminates the need for an O-ring that seals between the sliding surfaces of the fixed seal ring, so that the refrigerant is changed as the O-ring material changes due to extremely low temperatures. Leakage can be prevented.
  • the structure of the elastic bellows is that the opposing sealing surface of the fixed sealing ring is elastically pressed against the sealing surface even at a very low temperature, and there is no sliding surface for the movement at the time of the elastic deformation. The sealing ability can be demonstrated.
  • the mechanical seal device has two sets of the mechanical seals arranged in parallel, a second interval fluid passage is provided between the two mechanical seals, and the mechanical seal device is disposed in the vacuum passage.
  • the exhaust refrigerant flows through the second interval fluid passage in communication with the second piping for the exhaust refrigerant.
  • the supply refrigerant flowing while being further thermally insulated from the inner peripheral surface of the vacuum cylinder shaft surrounded by the first outer cylinder and the second outer cylinder in a vacuum state is kept at a very low temperature. Vacuum insulation is possible. Then, the discharged refrigerant that remains in a low temperature state due to this vacuum insulation flows through the second interval fluid passage while the both sides are blocked by the fixing portion of the elastic bellows without a sliding surface. For this reason, since the exhaust refrigerant does not directly affect the sealing surface of the second mechanical seal or the like, it is possible to prevent the sealing performance of the sealing surface from being lowered.
  • the exhaust refrigerant acts on the inner peripheral side between the seal surfaces. It is possible to prevent the gap between the seal faces from entering the non-lubricated state by entering between the seal faces (in addition, the seal liquid on both ends of the mechanical seal device is lubricated by the lubricating liquid acting by the evacuation. ) In addition, the durability of the second mechanical seal can be demonstrated over a long period of time. In addition, since the width of the second interval fluid passage can be set when two mechanical seals are arranged, a large capacity can be flowed, and the number of fluid passages of the discharged refrigerant can be reduced.
  • the rotary joint of the present invention is provided with a cylindrical first main body that surrounds the first outer cylinder, the second outer cylinder, and the mechanical seal device by forming a first vacuum chamber,
  • the first vacuum chamber is evacuated.
  • the first outer cylinder, the second outer cylinder, and the mechanical seal device are further provided with the cylindrical first main body that surrounds the first vacuum chamber. Excellent effect. Then, the supply refrigerant and the discharge refrigerant are kept at a very low temperature, and the mechanical seal device is vacuum-insulated to prevent an increase in the temperature of the supply refrigerant passing through the mechanical seal device.
  • the rotary sealing ring has a plurality of the second fluid passages along a peripheral surface, and the connection portion has a plurality of connections communicating with the second fluid passages.
  • the supply refrigerant is caused to flow from the first fluid passage to the opening of each second fluid passage provided on the peripheral surface of the rotary seal ring.
  • the rotary seal ring can be provided with a plurality of second fluid passages which are formed in an annular shape and open on the peripheral surface thereof. Refrigerant can flow from the first spaced fluid passage around the rotating seal ring to the plurality of second fluid passages. Since the fluid passages of the first pipes communicate with the plurality of connection fluid passages communicating with the plurality of second fluid passages, it is possible to supply as much supply refrigerant as necessary to the required portions of the respective cooling units. become. For this reason, even if there are many fluid passages, the number of arrangement
  • the axial length of the connecting portion can be shortened, so that the manufacturing cost and assembly of the second mechanical seal device and the connecting portion can be reduced. Cost can be greatly reduced. Also, the rotary joint can be made small.
  • FIG. 1 is a cross-sectional view of one side of a rotary joint according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the first assembly showing the vicinity of the mechanical seal device and piping of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing a configuration in the vicinity of the second mechanical seal device of FIG. 4 is a cross-sectional view of one side of the second assembly of FIG.
  • FIG. 5 is a cross-sectional view of one side of the third assembly of FIG.
  • FIG. 6 is an enlarged cross-sectional view of one side of the magnetic fluid seal shown in FIG.
  • FIG. 7 is a front view in the axial direction on the connection component side of Embodiment 2 according to the present invention.
  • FIG. 8 is an axial front view of the rotary seal ring according to the third embodiment of the present invention.
  • FIG. 9 is a schematic sectional view of a superconducting motor to which a rotary joint according to the present invention is
  • FIG. 1 is a cross-sectional view of one side of a rotary joint R according to a first embodiment of the present invention.
  • the hatching is omitted because the figure becomes unclear when hatching is added to the cross section.
  • FIG. 2 is an enlarged cross-sectional view of one side of the first assembly A, showing the mechanical seal device 1 of FIG.
  • FIG. 3 is a further enlarged sectional view showing a configuration in the vicinity of each second mechanical seal device 1 of FIG.
  • FIG. 4 is an enlarged cross-sectional view of one side of the second assembly B on the first bearing portion 60D1 side.
  • FIG. 5 is an enlarged cross-sectional view of one side of the third assembly C on the magnetic fluid seal 40 side.
  • FIG. 6 is an enlarged cross-sectional view of the magnetic fluid seal 40 shown in FIG.
  • the joint portion 10C with the flange of the rotary joint R has a synchronous rotating machine having a field coil, for example, a rotating shaft provided with a fluid passage such as a rotary generator or a linear motor, and the fluid of the superconducting motor 100 shown in FIG. It connects with the rotating shaft 115 which provided the channel
  • a synchronous rotating machine having a field coil for example, a rotating shaft provided with a fluid passage such as a rotary generator or a linear motor
  • Three rotors 110 are fitted on the outer peripheral surface of the rotating shaft 115 which is cylindrical and provided with the inner peripheral surface 115A (the reference numeral is only one place). On both sides of the rotor 110, a total of four stators 106 (only one symbol is arranged) are arranged in the axial direction. Each rotor 110 is provided with a cooling unit 105 having a space on the inner peripheral side of the superconducting (SC) coil 103.
  • SC superconducting
  • the cooling pipe 105 is provided with first pipes 101, 101, 101 that can communicate with the first pipes 20E of the rotary joint R and supply refrigerant.
  • the refrigerant is supplied to the respective cooling units 105, 105, 105 through the first tubes 101, 101, 101 to cool the superconducting coils 103, 103, 103 (only one symbol is provided).
  • the refrigerant after cooling each superconducting coil 103, 103, 103 passes through a second pipe 20 ⁇ / b> E communicating with the respective second pipes 102, 102, 102 for discharge fluid passages, and a refrigerant supply device (refrigeration not shown) is provided.
  • Machine Bearings 116 and 116 are provided on both sides of the rotating shaft 115.
  • the number of rotors 110 is not limited to three, and there may be one, two, or three or more. Further, there is a structure different from the illustrated structure of the rotor 110. However, in any case, in order to bring the electric resistance of the superconducting coil close to zero (0) in the synchronous rotating mechanism, the superconducting coil must be cooled to a cryogenic temperature state.
  • the rotary joint R of the present invention is configured so that the cryogenic supply refrigerant Q1 can be directly supplied to or discharged from the cooling unit 105 through the connection fluid passages 20D, 20D, 20D on the rotation side from the fixed side. ing.
  • the supply refrigerant Q1 or the discharge refrigerant Q2 is disposed in the vacuum passage 10H in a high vacuum state (high vacuum is in the range of 10 ⁇ 3 Torr to 10 ⁇ 7 Torr). Therefore, the supply refrigerant Q1 can be maintained at an extremely low temperature equal to or lower than the critical temperature by being thermally insulated from the outside air by vacuum. And the 1st piping 20E and the 2nd piping 20E are maintained in the state of a high vacuum, and it blocks
  • the connecting portion 10 ⁇ / b> C of the vacuum cylinder shaft 10 is formed so as to be connected to the end attaching portion of the rotating shaft 115 of the superconducting motor 100 so as to be rotated together.
  • the first pipe 20 ⁇ / b> E is connected to the first pipe 101 and is provided with a supply fluid passage that allows the supply refrigerant Q ⁇ b> 1 from the first pipe 20 ⁇ / b> E to be supplied into the first pipe 101.
  • the second pipe 20E is also a discharge fluid passage that is connected to the second pipe 102 to allow the used exhaust refrigerant Q2 that has cooled the superconducting coil and the like to be discharged from the second pipe 101 to the second pipe 20E.
  • the first pipe 20E is not limited to the supply fluid passage for the supply refrigerant Q1, and the second pipe 20E is not limited to the discharge fluid path for the discharge refrigerant Q2.
  • the first pipe 20E can also be used for the exhaust fluid passage.
  • the second pipe 20E can be selected as a supply fluid passage.
  • This vacuum cylinder shaft 10 joins the connecting portion 10B of the first vacuum cylinder shaft 10A, which is entirely made of stainless steel (hereinafter referred to as connection component) 10A1, and the joint portion 10B of the second vacuum cylinder shaft 10B, A bolt, not shown, is screwed in the axial direction and fastened.
  • the first vacuum cylinder shaft 10A is integrally formed by fitting the end portion of the cylinder shaft and the stepped surface of the connecting component 10A1 and welding the peripheral surface of the fitting portion. Further, the second vacuum cylinder shaft 10B is welded between the fitting surfaces by fitting the end portion of the cylinder shaft and the stepped surface of the joint portion 10B.
  • the welded joint portion 10B and the connecting component 10A1 are joined and fastened by a bolt to form the vacuum cylinder shaft 10 in a cylindrical shape.
  • the connection between the first vacuum cylinder shaft 10A and the second vacuum cylinder shaft 10B is fastened with a bolt so that the second mechanical seal device 1 can be attached.
  • the mechanical seal device 1 is fitted to a long sleeve (not shown) and the inner circumferential surface of the sleeve is fitted and fixed to the outer circumference of the vacuum cylinder shaft 10, the first vacuum cylinder
  • the shaft 10A and the second vacuum cylinder shaft 10B can be integrated without being assembled using bolts.
  • connection component 10A1 may be fitted to the inner peripheral surface of the first vacuum cylinder shaft 10A.
  • the second mechanical seal is a combination of a pair of rotary seal rings 1A and fixed seal rings 2A and 2A arranged on both sides of the rotary seal ring 1A. And the whole which arranged the 2nd mechanical seal in plurality is called mechanical seal device 1.
  • the connecting component 10A1 has an L-shaped connecting fluid passage 20D having a cross section radially and axially arranged along the circumferential direction while changing the position in the axial direction.
  • the end openings in the axial direction of the connection fluid passages 20D and 20D are respectively formed in the connection holes 20D1, and the end portions of the first pipe 20E and the second pipe 20E are fitted into the connection holes 20D1 in a sealed manner.
  • the sealed peripheral surfaces are sealed by welding or bonding).
  • the first pipe 20E and the second pipe 20E having the fluid passage are arranged in the inner peripheral surface 10A2 (vacuum passage) of the first vacuum cylinder shaft 10A so as to allow extremely low temperature refrigerant to flow.
  • first pipe 20E and the second pipe 20E arranged in the inner peripheral surface 10A2 of the first vacuum cylinder 10A are vacuum-insulated from the outside due to a high vacuum state that is evacuated (also referred to as vacuum suction).
  • the first pipe 20E and the second pipe 20E are made of stainless steel pipe, copper pipe, aluminum pipe, boron nitride, quartz pipe, tempered glass pipe, low-temperature resin (PTFE or the like) pipe, or the like.
  • the outer periphery of the stainless steel tube is covered with a material that can be insulated by using a material such as PTFE, glass, quartz, or the like.
  • a material such as PTFE, glass, quartz, or the like.
  • FIGS. 2 and 3 are enlarged views of the first assembly A shown in FIG.
  • the inner peripheral surface 1A3 of the rotary seal ring 1A is fitted in two rows on the outer peripheral surface of the connection part 10A1 in the vacuum cylinder shaft 10 with an axial direction therebetween.
  • the rotary seal ring 1A is assembled by sandwiching the cylindrical spacers 12 between the two rotary seal rings 1A and 1A, and the outer ends of the rotary seal rings 1A and 1A are connected to the stepped surface of the connecting part 10A1. And the end face of the joint portion 10B of the second vacuum cylinder shaft 10B.
  • Each rotary seal ring 1A, 1A is provided with seal surfaces 1A1, 1A1 at both axial end faces, and a second fluid passage 20C is provided between the seal surfaces 1A1, 1A1 of each rotary seal ring 1A, 1A.
  • the second fluid passage 20C communicates with the connecting fluid passage 20D in the inner diameter direction.
  • Each rotary seal ring 1A and each fixed seal ring 2A described later are hard and wear-resistant materials such as silicon carbide, carbon, hard alloy, composite resin and the like, and are resistant to refrigerant.
  • a pair of both fixed sealing rings 2A and 2A are provided on both axial sides of the rotary sealing ring 1A.
  • the fixed seal ring 2A is provided with an opposing seal surface 2A1 in close contact with the seal surface 1A1 on the end surface.
  • an annular coupling portion 2B1 which is one end portion of an elastic bellows 2B surrounding the vacuum cylinder shaft 10 in an annular shape, is hermetically coupled to the side surface (back surface) opposite to the opposing seal surface 2A1 by welding or the like.
  • the elastic bellows 2B is made of a metal such as stainless steel or a nickel-based alloy (such as Inconel 718), and is an accessory part integrally formed with the fixed sealing ring 2A.
  • the annular fixing portion 2B2 which is the other end of the elastic bellows 2B, is hermetically bonded and connected to the inner peripheral stepped portion of the seal cover 2B3. Then, the elastic bellows 2B pushes the fixed sealing ring 2A resiliently in the direction of the seal surface 1A1.
  • the mechanical seal device 1 there is a gap between the inner peripheral surface of the elastic bellows 2B on the second assembly B side and the outer peripheral surface of the first vacuum cylinder shaft 10A. This gap reaches the inner periphery of the opposing seal surface 2A1. That is, this gap is a first gap vacuum passage and a portion of the first vacuum passage 50A1 (see the enlarged view of FIG. 3).
  • the mechanical seal device 1 there is also a gap between the inner peripheral surface of the elastic bellows 2B on the third assembly C side and the outer peripheral surface of the second vacuum cylinder shaft 10B.
  • the gap reaches the inner periphery of the opposing seal surface 2A1.
  • This gap is a second gap vacuum passage and a portion of the first vacuum passage 50B1 (see the enlarged view of FIG. 3).
  • a space between both elastic bellows 2B and 2B) between the outer peripheral surface 1A2 of the rotary seal ring 1A and the fixed seal rings 2A and 2A on both sides of the rotary seal ring 1A is formed in the first interval fluid passage 20B.
  • the first interval fluid passage 20B communicates with the first fluid passage 20A provided in the pipe joint portion 20A1.
  • the first fluid passage 20A is a flow passage through which the supply refrigerant Q1 is sent from the cooling supply device.
  • An annular space formed between the fixed portions 2B2 and 2B2 of both elastic bellows 2B and 2B, the outer peripheral surface of the spacer 12, and the inner peripheral surface of the pipe joint portion 20A1 (see FIG. 3) is the first.
  • This is a two-interval fluid passage 20B.
  • the second interval fluid passage 20B communicates directly with the connection fluid passage 20D because there is no second fluid passage 20C communicating next.
  • the second interval fluid passage 20B communicating with the second fluid passage 20C of the rotary seal ring 1A and the second fluid passage 20C are not passed between the second interval fluid passage 20B and the connection fluid passage 20D.
  • An interval fluid passage 20B is provided (see FIG. 3 because the first interval fluid passage 20B and the second interval fluid passage 20B have the same reference numeral 20B).
  • a seal ring 83A having a C-shaped or U-shaped cross section is attached to seal between the joints. (8 pieces are provided in the axial direction in FIG. 3).
  • This seal ring 83A is formed in a shape in which an elastic hollow O-ring made of metal (material such as Inconel 718) is provided in a U-shaped groove made of PTFE or a shape of a C-shaped metal ring, and is cold resistant to withstand refrigerant.
  • Each seal cover 2B3 and each pipe joint portion 20A1 are sandwiched between a flange portion welded to the end portion of the first outer cylinder 60A and a flange portion welded to the end portion of the second outer cylinder 60B.
  • the cover is formed on a cover that covers the second mechanical seal device 1 by tightening with a bolt 79 (see FIG. 1 or 2) inserted into a bolt hole penetrating in the axial direction.
  • Each pipe provided with the first fluid passage 20A communicating with the first fluid passage 20A of each pipe joint portion 20A1 is formed in a resin pipe, a steel pipe (stainless steel pipe or the like), and is formed in the second vacuum chamber of the second main body 65.
  • V2 communicates with a cooling supply device (not shown). Each of these pipes may be connected to a branch pipe 44A shown in FIG.
  • the supplied refrigerant Q1 supplied to the cooling unit 105 through each second fluid passage 20C provided in each rotary seal ring 1A is extremely low temperature liquid helium, liquid nitrogen, or the like.
  • the discharged refrigerant Q2 returned to the cooling supply device through the second interval fluid passage 20B is a refrigerant after the cooling unit 105 is cooled (the refrigerant may be vaporized).
  • the supply refrigerant Q1 include liquid helium ( ⁇ 273 ° C. or lower), liquid nitrogen ( ⁇ 196 ° C. or lower), liquid neon, liquid argon, and the like. These supply refrigerants Q1 are cooled to a cryogenic temperature that can cool the superconducting coil or the like to a superconducting state.
  • the second vacuum chamber V2 of the second main body 65 is in a high vacuum state, and each first fluid passage 20A can be thermally insulated by vacuum.
  • the second vacuum chamber V2 is evacuated V via the branch pipe 44A. Further, it is possible to prevent the temperature of the supply refrigerant Q1 from rising by covering the branch pipe 44A and the pipe of the first fluid passage 20A with a heat insulating material of fiber reinforced resin such as PTFE.
  • the cylindrical second main body 65 which is in the radial direction with respect to the vacuum cylinder shaft 10, has a mounting portion provided on the flange portion of the first outer cylinder 60A and the second outer body. As shown in FIG.
  • the mounting plate provided on the flange portion of the cylinder 60 ⁇ / b> B is coupled to the seal using bolts.
  • the second main body 65 is formed in a cylindrical shape in the radial direction in the first main body 60. If the number of the first fluid passages 20A is large, the second main body 65 is hermetically sealed around the axis of the vacuum cylinder shaft 10. It can also be formed into a cylindrical body.
  • the inner diameter of the inner peripheral surface of the first outer cylinder 60A is formed larger than the outer diameter of the outer peripheral surface of the first vacuum cylinder shaft 10A. Then, the first outer cylinder 60A is fitted with the first vacuum passage 50A1 in the annular space with respect to the first vacuum cylinder shaft 10A. Further, the second outer cylinder 60B is also symmetric with the first outer cylinder 60A with respect to the second vacuum cylinder shaft 10B, and is formed in substantially the same shape. The second outer cylinder 60A is also fitted with an annular space second vacuum passage 50B1 on the outer peripheral surface of the second vacuum cylinder shaft 10B. Next, in FIG.
  • the first vacuum passage 50A1 in the first outer cylinder 60A is composed of an inner peripheral surface of the elastic bellows 2B on the second assembly B side in the second mechanical seal device 1 and an outer peripheral surface of the connection component 10A1.
  • a first gap vacuum passage also referred to as a first gap passage.
  • the first gap vacuum passage reaches the inner peripheral side where the seal surface 1A1 of the rotary seal ring 1A slides with the opposing seal surface 2A1 of the fixed seal ring 2A.
  • the second vacuum passage 50B1 is a second gap vacuum passage (second gap) between the inner peripheral surface of the elastic bellows 2B on the third assembly C side in the second mechanical seal device 1 and the outer peripheral surface of the connecting component 10A1. 2 communication passage).
  • This second gap passage reaches the inner peripheral side where the seal surface 1A1 of the rotary seal ring 1A slides with the opposing seal surface 2A1 of the fixed seal ring 2A.
  • the supplied refrigerant Q1 flows from the first fluid passages 20A and 20A through the first interval fluid passages 20B and 20B to the second fluid passages 20C and 20C.
  • the rotary seal ring 1A since the rotary seal ring 1A is rotating, it becomes difficult for the supplied refrigerant Q1 to enter as a lubricating film between each seal surface 1A1 and the opposing seal surface 2A1. That is, it tends to be in a non-lubricated state (in the prior art).
  • the sliding surface is in a non-lubricated state as in this prior art, the following problems arise. That is, both the sealing surfaces 1A1 and 2A1 wear due to sliding heat generation.
  • This sliding heat generation raises the temperature of the supplied refrigerant Q1, and therefore becomes a problem as a cooling refrigerant. Further, when both the seal surfaces 1A1 and 2A1 are worn, the fine powder due to wear is mixed with the supplied refrigerant Q1 and flows to the cooling unit 105, causing a problem to the cooling unit 105 and the like. Further, since the refrigerant supply device dislikes the powder in the refrigerant, if the discharged refrigerant containing the powder after cooling the cooling unit 105 returns to the refrigerant supply device, a problem is caused in the refrigerant supply device.
  • the first and second gap vacuum passages (each vacuum on the inner peripheral side where the seal surface 1A1 of the rotary seal ring 1A and the opposing seal surface 2A1 of the fixed seal ring 2A contact each other are in contact.
  • the passage 50A1 is evacuated V3
  • the supply refrigerant Q1 on the first and second interval fluid passages 20B, 20B side is drawn between the sliding surfaces of the seal surface 1A1 and the opposing seal surface 2A1, and both the seal surfaces 1A1.
  • 2A1 is interposed as a liquid coolant lubricant.
  • the supply refrigerant Q1 that has been thermally insulated is in a liquid state, it lubricates the sliding surface between the sealing surface 1A1 and the opposing sealing surface 2A1, and generates sliding heat between the sealing surfaces 1A1, 2A1. It can be effectively prevented. Therefore, the present invention effectively solves the problems caused by the non-lubricated state as described above.
  • the elastic bellows 2B has a bellows shape, and since there is no sliding surface, it can be prevented from being worn. Moreover, since the elastic bellows 2B can be made of stainless steel or a cold-resistant resin material, the elastic bellows 2B exhibits an excellent ability to the refrigerant.
  • the second interval fluid passage 20B is formed between the fixed portions 2B2 and 2B2 in the fixed sealing rings 2A and 2A, unlike the conventional second fluid passage 20C having a hole shape, the flow rate is reduced.
  • An interval as a fluid passage for enlarging can be set to an arbitrary size. For this reason, depending on the fast speed and the magnitude of the flow rate of the discharged refrigerant Q2 flowing through the second interval fluid passage 20B, it is possible to prevent impurities from entering both the seal surfaces 1A1 and 2A1 and prevent gas from entering.
  • a first vacuum passage 50A1 is formed in the large-diameter cylindrical end portion 60A of the first outer cylinder 60A to be connected to the joint of the vacuum passage pipe 33A and evacuate V3.
  • the first vacuum passage 50A1 is provided with a plurality of (pieces) through holes that are equally or non-uniformly distributed along the peripheral surface of the large-diameter cylindrical end portion 60A, thereby enabling strong vacuuming V3. Since this evacuation V3 can be strongly sucked by a large number of through-holes, the first vacuum passage 50A1 in the first outer cylinder 60A can be brought into an ultrahigh vacuum (10-7 Torr or more) state. For this reason, since supply refrigerant Q1 in each piping 20E ..
  • the first vacuum passage 50A1 in the first outer cylinder 60A communicates with the first vacuum passage 50A1 in the vacuum passage piping 33A (all passages are vacuum passages). It arrange
  • the first vacuum passage 50A1 in the vacuum passage pipe 33A causes the first gap vacuum passage 50A1 in the second mechanical seal device 1 and the first vacuum passage 50A1 in the first outer cylinder 60A to be evacuated to a high vacuum state V3.
  • the first outer cylinder 60 ⁇ / b> A is made of a material such as stainless steel or a nickel-based alloy, like the vacuum cylinder 10.
  • the second outer cylinder 60B shown in FIG. 5 is formed in a similar shape almost symmetrically with the first outer cylinder 60A. Similarly to the first outer cylinder 60A described above, the large-diameter cylindrical end 60B of the second outer cylinder 60B is connected to the end of the second vacuum pipe 50B shown in FIG. A second vacuum passage 50B1 (see FIG. 2) is formed.
  • the second vacuum passage 50B1 is provided with a plurality of through holes that are equally or non-uniformly distributed along the peripheral surface of the large-diameter cylindrical end portion 60B as in the case of the first outer cylinder 60B. Enable V3.
  • the second gap vacuum passage 50B1 by the second vacuum passage 50B1 in the second outer cylinder 60B is evacuated V3, and as described above, the lubrication effect at the time of sliding of both the seal surfaces 1A1, 2A1 is exhibited. .
  • the extremely low temperature of the supplied refrigerant Q1 is maintained by double vacuum insulation of the first vacuum passage 50A1 and the vacuum passage 10H.
  • the cylindrical first main body 60 that forms the first vacuum chamber V1 in the interior surrounds the outer peripheral side of the vacuum cylinder shaft 10 in triplicate by the first vacuum chamber V1 and performs vacuum insulation, and also includes a second mechanical seal.
  • the outer peripheral side of the apparatus 1 is also vacuum insulated.
  • the second mechanical seal device 1, the first fluid passage 20 ⁇ / b> A, the first and second interval fluid passages 20 ⁇ / b> B, the second fluid passage 20 ⁇ / b> C, and the connection fluid passage 20 ⁇ / b> D are formed in the second body 65 by the second vacuum chamber V ⁇ b> 2. It is surely vacuum insulated.
  • the second assembly B is provided on the superconducting motor 100 side of the vacuum cylinder 10 with respect to the first assembly A in FIG. This second assembly B is shown enlarged in FIG.
  • the first bearing portion 60D1 that rotatably supports the vacuum cylinder shaft 10 has an outer peripheral surface fitted on the inner peripheral surface of the first bearing box 30A.
  • the first bearing portion 60D1 is attached by fitting the inner peripheral surface to the outer peripheral surface of the sleeve 31. Further, the sleeve 31 is fitted to the outer peripheral surface of the vacuum cylinder shaft 10. Further, the first bearing box 30A is attached and fixed to the case of the superconducting motor 100 via a holding portion indicated by a virtual line.
  • a holding plate 30B that holds the first mechanical seal device 32 and supports the first bearing portion 60D1 in the axial direction is provided on the opening side surface of the first bearing box 30A.
  • a fluid Q3 such as air or a fluid Q3 such as a lubricant is supplied to the fluid space 30H through the supply passage 33 provided in the holding plate 30B to the first bearing portion 60D1.
  • the fluid Q3 flows into the fluid space 30H from the supply passage 33 and acts as a Bach fluid on the first mechanical seal device 32. Or it can also supply to bearing part 60D1 and make it lubricate.
  • the rotary seal ring (the reference numeral is omitted) of the first mechanical seal device 32 is fitted to the stainless steel sleeve 31 via an accessory.
  • the stationary seal ring that rotates relative to the rotary seal ring is held in the stepped hole of the holding plate 30B via an accessory.
  • the first mechanical seal device 32 blocks the fluid space 30H on the first bearing portion 60D1 side and the first vacuum passage 50A1 in the first outer cylinder 60A.
  • the large-diameter cylindrical end portion 60A on the holding plate 30B side of the first outer cylinder 60A is fitted to the inner peripheral surface of the first main body 60, and the flange portion on the second mechanical seal device 1 side is as described above.
  • the second main body 65 is continuously coupled via the seal cover 2B3.
  • the third assembly C is provided on the opposite side to the second assembly B in the vacuum cylinder shaft 10 having the overall configuration shown in FIG.
  • the second bearing portion 60D2 is fitted to the inner circumferential stepped surface of the large diameter cylindrical end portion 60B of the second outer cylinder 60B fitted to the inner circumferential surface of the first main body 60. Wear and provide.
  • the large-diameter cylindrical end portion 60B is supported by a plurality of supports 61.
  • the inner peripheral surface of the second bearing portion 60D2 is fitted to the outer peripheral surface of the second vacuum cylinder shaft 10B (see FIG. 1).
  • the vacuum cylinder shaft 10 is rotatably supported by the first bearing portion 60D1 and the second bearing portion 60D2. Similarly to FIG.
  • a supply passage (not shown) is communicated with the space 62 on the side surface of the second bearing portion 60D2.
  • a non-magnetic ferrofluid sealing cover 41 made of stainless steel or the like is coupled to the end of the second outer cylinder 60B by a bolt with a symbol omitted.
  • a magnetic fluid sealing device 40 as shown in FIG. 6 is mounted on the inner peripheral surface of the magnetic fluid sealing cover 41.
  • high-precision bearings 40D and 40D are arranged on both sides of the magnetic fluid seal device 40, respectively. Both bearings 40D and 40D have inner peripheral surfaces fitted on the shaft cover 40A and outer peripheral surfaces fitted on the inner peripheral surface of the magnetic fluid seal cover 41.
  • the shaft cover 40A is fitted to the outer peripheral surface of the second vacuum cylinder shaft 10B via cold-resistant sealing O-rings 80B and 80B arranged in parallel.
  • seal projection groups 40A1, 40A1,... are provided on the outer peripheral surface of the shaft cover 40A made of a magnetic material and spaced in the axial direction.
  • the seal projection groups 40A1, 40A1,... are provided with a preferred number in which a plurality of ring-shaped projections 40A1 are set to a predetermined axial width from at least six. Preferably, as shown in FIG. 6, it is good to provide 8-16 each.
  • Magnetic material pole blocks 40B and 40B are disposed on the inner peripheral surface of the magnetic fluid seal cover 41 via seal O-rings 80A and 80A. Fit.
  • the inner peripheral surface of the pole blocks 40B, 40B are formed with a very small space of 0.05 mm or less (close to a non-contacting space). . This spacing is made possible by both high precision bearings 40D, 40D.
  • a permanent magnet 40M is fitted between the two pole blocks 40B and 40B on the inner peripheral surface of the magnetic fluid seal cover 41. Further, a highly accurate magnetic fluid 40F is interposed between the ring-shaped protrusion groups 40A1, 40A1,... And the inner peripheral surfaces of the pole blocks 40B, 40B. Further, a magnetic flux is formed by the permanent magnet 40M in the magnetic loop circuit in which the permanent magnet 40M, the two pole blocks 40B, 40B, and the two rows of protrusion groups 40A1, 40A1,.
  • the magnetic fluid 40F is concentrated between the projections 40A1 of the projection groups 40A1, 40A1,... And the inner peripheral surfaces of the pole blocks 40B, 40B, strongly blocking both sides in the axial direction, and causing no sliding resistance.
  • the high vacuum state of the suction space 45 is maintained.
  • the number of the protrusion groups 40A1, 40A1,... is set to a number that can withstand the suction force for vacuuming V from the suction port 42A, like a labyrinth seal.
  • a fluid supply passage 40H is provided in a penetrating state on the outer surface of the permanent magnet 40M of the magnetic fluid seal cover 41. Then, incubated permanent magnet 40M feed to the outer surface of the permanent magnet 40M of the feed fluid Q4 of N 2 gas or air from the fluid supply passage 40H.
  • the magnetic fluid 40M is introduced F from the fluid supply passage 40H and supplied between the inner peripheral surfaces of the pole blocks 40B and 40B and the projection groups 40A1, 40A1,.
  • a plurality of permanent magnets 40M can be arranged in the circumferential direction between the pole blocks 40B and 40B, or in the form of a cylinder between the pole blocks 40B and 40B.
  • the cross-sectional shape of the outer peripheral surface of the protrusion 40A1 may be a sharp mountain shape or M shape.
  • the magnetic fluid seal device 40 is configured so that the vacuum passage 10H in the vacuum cylinder 10 can be blocked from the outside and maintained in a high vacuum state or higher.
  • the vacuum force of V acts on one side of the magnetic fluid seal device 40, and the vacuum force of V3 acts on the other side.
  • the suction force is not completely balanced, but the vacuum force is balanced with the magnetic fluid seal device 40 as a boundary. It is possible to prevent inhaling gas from Accordingly, the magnetic fluid 40F has durability and can completely block the vacuum state.
  • a connection cover 42 facing the opening 10D of the second vacuum cylinder shaft 10B is hermetically attached to the end face of the magnetic fluid seal cover 41.
  • a suction port 42 ⁇ / b> A is provided at a position facing the opening 10 ⁇ / b> D of the connection cover 42.
  • the suction port 42A communicates with the vacuuming device (vacuum pump) Va shown in FIG.
  • the branch pipe 44A branched from the suction pipe 44 communicates with a pipe penetrating the inside of the first main body 60 to suck the inside of the first vacuum chamber V1 and bring the inside of the first vacuum chamber V1 into a high vacuum state.
  • the high vacuum state in the first vacuum chamber V1 of the first main body 60 doubles the outer peripheral side of the second vacuum chamber V2 that insulates the first fluid passages 20A, 20A, and 20A by vacuum insulation.
  • the inside of the inner peripheral surface 10A2 of the vacuum cylinder shaft 10 is sucked from the suction port 42A, and the inside of the vacuum passage 10H is brought into a high vacuum state.
  • the high vacuum in the vacuum passage 10H completely seals the inner peripheral surface 10A2 (see FIG. 2) of the vacuum cylinder shaft 10 by the high-performance magnetic fluid seal 40.
  • a high vacuum (10 ⁇ 3 Torr to 10 ⁇ 7 Torr) or an ultra-vacuum (10 ⁇ 7 Torr or less) can be used.
  • the inside of the vacuum passage 10H on the outer peripheral side of the first pipe 20E or the second pipe 20E through which the supplied refrigerant Q1 passes is 10 ⁇ 3 Torr or less.
  • the vacuum state must be 10 ⁇ 5 Torr or less, but the ferrofluid sealing device 40 of the present invention enables this high vacuum state by blocking the inside and outside of the vacuum passage 10H.
  • the state of high vacuum and ultra high vacuum in the inner peripheral surface 10A2 of the vacuum cylinder shaft 10 highly blocks the temperature of the outside air with respect to the first pipe 20E and the second pipe 20B.
  • the supply refrigerant Q1 supplied from the refrigerant supply device such as liquid helium, nitrogen, neon, etc. at a very low temperature is maintained at a very low temperature in the vacuum passage 10H, and the supplied refrigerant Q1 is supplied to the first pipe 20E.
  • the cooling unit 105 is cooled by supplying the cooling unit 105 of the superconducting motor 100 from the second pipe 20E. That is, when the extremely low temperature liquid supply refrigerant Q1 supplied from the refrigerant supply device is supplied from the first fluid passage 20A on the fixed side to the vacuum passage 10H on the rotation side around the rotary joint R, it is extremely low.
  • the supply refrigerant Q1 having a high temperature can flow into the connection fluid passage 20D through the first interval fluid passage 20B and the second fluid passage 20C or the second interval fluid passage 20B in a high vacuum state.
  • the sliding surface between the seal surface 1A1 of the rotary seal ring 1A of the second mechanical seal device 1 and the opposing seal surface 2A1 of the fixed seal ring 2A is supplied with the supplied refrigerant Q1 by the effect of the cryogenic heat and the cryogenic temperature. Can be maintained in the state. Therefore, the seal surfaces 1A1 and 2A1 lubricated by the liquid can be prevented from being worn. And the sealing capability of the sliding surface of the sealing surface 1A1 of the rotary sealing ring 1A and the opposing sealing surface 2A1 of the fixed sealing ring 2A is improved.
  • the magnetic fluid sealing device 40 having pressure resistance capability maintains the supply refrigerant Q1 as a liquid at an extremely low temperature, and the coolant supply Q1 flowing through the second mechanical seal device 1 causes the sliding surfaces 1A1, 2A1 to slide.
  • the lubrication action is effective and the sealing ability can be improved. And wear and seizure of both the sealing surfaces 1A1 and 2A1 and squealing phenomenon can be effectively prevented.
  • first and second pipes 20E, 20E, and 20E are disposed in the inner peripheral surface 10A2 of the vacuum cylinder shaft 10, the outer peripheral surfaces of the first and second pipes 20E, 20E, and 20E are PTFE, It can be covered (covered) with a heat insulating material such as quartz. For this reason, the heat insulation effect of the 1st piping 20E and 20E and the 2nd piping 20E is exhibited, and there exists an effect which maintains the sealing capability of the 2nd mechanical seal device 1.
  • the housing is complicatedly drilled to form the fluid passage, it is difficult to cover the outer peripheral surface of the fluid passage with a heat insulating material.
  • refrigerants Q1 and Q2 having substantially the same pressure flow in the first and second interval fluid passages 20B and 20B arranged in parallel in the second mechanical seal device 1. For this reason, both sides in the close radial direction of the seal surface 1A1 and the opposed seal surface 2A1 have substantially the same pressure, and the discharged refrigerant Q2 vaporized from between the sliding surfaces 1A1 and 2A1 that slide is leaked to the supply refrigerant Q1. It can be effectively prevented. And the sealing capability of the 2nd mechanical seal apparatus 1 improves further. For this reason, it is possible to prevent the exhausted refrigerant Q2 vaporized as in the past from mixing with the supplied refrigerant Q1 and raising the temperature of the supplied refrigerant Q1.
  • the cooling section (superconducting field coil) 105 of the superconducting motor 100 is cooled to the extremely low temperature by the supplied refrigerant Q1 at the extremely low temperature, and the electric resistance is zero ( 0).
  • the superconducting field coil is excited, a strong magnetic field having no excitation loss is generated in the superconducting field coil whose electric resistance is zero (0).
  • FIG. 7 is a front view of the connecting component 10A1 side corresponding to the XX arrow in FIG. 1 according to the second embodiment.
  • This connection component 10A1 is formed in a cylindrical shape shorter in length than the connection component 10A1 shown in FIG. 2, and forms a vacuum passage 10H in the inner peripheral surface 10A2.
  • the connecting part 10A1 is formed in four, five, and six places (four in FIG. 7) in the radial direction. To do. Of these, the portions of the fluid passages that face the radial direction of the connecting fluid passages 20D at the three places, the four places, and the five places are at substantially the same position in the axial direction.
  • each 1st piping 20E is each fitted by sealing in the connection hole 20D1 of the connection fluid channel
  • the supply refrigerant Q1 is circulated through the first pipe 20E.
  • the second pipe 20E is hermetically fitted and connected to the remaining one connection hole 20D1 (see FIG. 2 for the symbol).
  • the 2nd piping 20E distribute
  • the effect of vacuum insulation can be improved by forming the inner diameter of the connecting component 10A1 in various shapes.
  • the front shape of the vacuum passage 10H in the connection part 10A1 is not limited to a circle, but is formed on a rectangular inner peripheral surface, a star-shaped or gear-shaped uneven inner surface, an elliptical inner peripheral surface, or the like.
  • the second mechanical seal device 1 corresponding to the connection fluid passage 20D at the same position in the axial direction of the three places, four places, and five places can be made one by using the rotary seal ring 1A of FIG. it can.
  • the first refrigerant 20E is connected to the connecting component 10A1 provided with a large number of connecting fluid passages 20D, so that the supplied refrigerant Q1 can be supplied to a large number of superconducting motors 100. Supplying to the conduction field coil, the conduction field coil can be cooled to a very low temperature.
  • FIG. 8 is a front view of the rotary seal ring 1A fitted to the vacuum cylinder shaft 10 as seen from the axial direction.
  • This rotary seal ring 1A is Example 3.
  • the rotary seal ring 1A of FIG. 8 is an example in which second fluid passages 20C that penetrate through four locations along the peripheral surface are provided.
  • the inner peripheral surface 1A3 of the rotary seal ring 1A is fitted to the outer peripheral surface of the connection component 10A1 so that the four second fluid passages 20C and the four connection fluid passages 20D communicate with each other.
  • the supply refrigerant Q1 supplied from one first fluid passage 20A flows into the four second fluid passages 20C.
  • seal surfaces 1A1 and 1A1 are formed on both end surfaces of the rotary seal ring 1A.
  • a seal attachment groove 1A4 to which a seal ring 83B shown in FIG. 3 can be attached is formed on the inner peripheral side of both seal surfaces 1A1 and 1A1 of the rotary seal ring 1A.
  • a seal attachment groove 1A4 to which a seal ring 83B shown in FIG. 3 can be attached is formed on the inner peripheral side of both seal surfaces 1A1 and 1A1 of the rotary seal ring 1A.
  • the configuration in which the supply refrigerant Q1 can be supplied to a large number of cooling units 105 by the single second mechanical seal device 1 is made possible by a combination of the configuration of the second mechanical seal device 1 of the present invention and the connecting component 10A1.
  • the second mechanical seal device 1 may be composed of one second mechanical seal.
  • the second pipe is provided in another fluid passage so that the discharged refrigerant is returned to the cooling supply device.
  • the present invention maintains the temperature of a cryogenic refrigerant such as liquid nitrogen or liquid helium and supplies the supplied refrigerant to the cooling unit of the superconducting device that rotates from the refrigerant supply device on the stationary part side, and the discharged refrigerant after use.
  • a cryogenic refrigerant such as liquid nitrogen or liquid helium

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Joints Allowing Movement (AREA)
  • Mechanical Sealing (AREA)

Abstract

 本発明のロータリジョイントは、供給冷媒の極低温度を維持し、且つシール面の供給冷媒による潤滑を可能にする。真空用筒軸(10)の外周面に間隔を置いて密封に嵌着するとともに両端面にシール面(1A1)を有する回転密封環(1A)と、回転密封環の両側に配置されてシール面と密接する対向シール面(2A1)を有する固定密封環(2A)と、固定密封環の端部周面に接合して固定密封環をシール面側へ押圧する弾性ベローズ(2B)を有するメカニカルシール装置(1)において、第1真空通路(50A1)はメカニカルシール装置の一端側の固定密封環の内周面と真空用筒軸との間の固定密封環の対向シール面の内周に通じる第1間隙真空通路に連通し、第2真空通路(50B1)はメカニカルシール装置の他端側の固定密封環の内周面と真空用筒軸との間の固定密封環の対向シール面の内周に通じる第2間隙真空通路に連通し、両真空通路を真空引きして一端側及び他端側の固定密封環の対向シール面の内周側を吸引するようにする。

Description

ロータリジョイント
 本発明は、冷媒により超伝導モータの超伝導界磁コイルなどの冷却部を冷却するために、冷媒用流体通路の途中に設けたメカニカルシール装置付のロータリジョイントに関する。さらに詳しくは、固定された冷却供給装置(冷凍機)と回転側の冷却部とを連通する流体通路に設けた相対回転部を改良して供給冷媒を極低温状態で導入できるようにしたメカニカルシール装置付のロータリジョイントに関する。
 超電導モータなどの超電導装置は、超伝導界磁コイルの超電導状態を維持させるために、液体窒素や液体ヘリウムなどの極低温の冷媒(供給冷媒という)を、超伝導界磁コイルなどの冷却部へ供給しなければならない。また、この冷却部で使用した後の冷媒(排出冷媒という)を冷凍機へ回収しなければならない。このとき、供給冷媒の温度を極低温度の状態に維持するとともに、高価な供給冷媒の使用量を低減する必要がある。例えば、固定側の冷凍機から回転する超電導モータへ供給冷媒を供給するためには、相対回転する固定部の流体通路と回転部の流体通路とを連結するロータリジョイントによって供給冷媒を通過させなければならない。
 このロータリジョイントにおいて、固定部の流体通路と回転部の流体通路との相対回転する連通路の流体通路をシールするシール装置は、極低温度の供給冷媒又は排出冷媒をシールするために、極低温度の冷媒をシールする能力が低温度に伴って問題となる。また、供給冷媒の温度が上がると、供給冷媒の供給量を増加してやらなければ、所定の温度に冷却できないので、超伝導の機能が発揮できない。このため、冷却部への供給冷媒の使用量が増加する問題がある。この供給冷媒の供給量が大きくなると、シール装置のシール能力にも問題が発生する。
 さらに、供給冷媒の供給時の断熱には、真空断熱が優れていることは知られている。しかし、真空断熱するためには、流体通路を取り巻く外周側の空間の真空度を上げなければ、供給冷媒を極低温度に維持することは困難である。この真空断熱のために高真空度を維持するには、外気と遮断する真空シール装置が必要である。この真空シール装置において、真空をシールするときに、真空によりシール面の潤滑がなくなるので、シール面を摩耗させることになる。その結果、真空断熱すべき真空度を低下させることになる。このシール装置のシール能力が問題となって、極低温度に維持した供給冷媒を冷却部へ供給できない問題が存する。このような状況では、冷却部を極低温度に維持するために、供給冷媒を冷却部へ多量に供給しなければならないから、高価な供給冷媒のランニングコストが増加して問題となっている。このため、優れたロータリジョイントが求められている。
 日本国特許出願公開第2003-65477号公報(特許文献1)の図9〔この図9の図示は省略するが、特許文献1の図面の符号は部品名の後に示す〕には、「超伝導コイルを備えたロータへの極低温度の気体移送継ぎ手を有する同期機械」として、同期発電機械へ極低温流体を供給する極低温剤移送継ぎ手26の断面図が示されている。この極低温剤移送継ぎ手26では、固定側の差し込みチューブ154の先端部158を入口チューブ156の内周面に非接触状態に嵌合して非接触シールに構成している。しかし、この非接触シールは、差し込みチューブ154が入口チューブ156の内周面に非接触状態で単に嵌合しているのみである。従って、極低温冷却器90から供給される入口極低温気体157が差し込みチューブ154内を流れて入口チューブ156内に流入するときに、入口極低温気体157の一部が差し込みチューブ154と入口チューブ156の非接触に嵌合している間隙から円筒状ハウジング186内に流入する恐れがある。
 円筒状ハウジング186内は真空状態に保持されているが、入口極低温気体157が円筒状ハウジング186内に流入すると、円筒状ハウジング186内の真空度は低下するので、真空による断熱効果が低下する。従って、入口極低温気体157は大量に冷却部へ供給しなければならないから、ランニングコストが上昇する。また、入口極低温気体157を大量に冷却部へ供給することは、その回収がきわめて困難な構造になる。
 また、極低温剤移送継ぎ手26は、入口極低温気体157が流れる冷却入口チューブ156の外周と冷却出口チューブ166との間の環状空間を高温冷却ガス164が流れる構成であるため、冷却入口チューブ156内を流れる入口極低温気体157は高温冷却ガス164によって温度が上昇する恐れがある。
 また、筒状ケーシング168内に配置された運動間隙シール162は、内周側を入口極低温気体157が流れるとともに、外周側を高温冷却ガス164が流れる構成のために、極低温によって材質が劣化してシール能力を低下する恐れがある。特に、外部との断熱効果が低い極低温剤移送継ぎ手26の構成では、多量の入口極低温気体157をSCコイル巻き線へ供給しなければならないから、運動間隙シール162は、早期に劣化する恐れがある。
 さらに、筒状ハウジング196内に装着された磁性流体シール176は、戻りガス164の漏れを防ぐと記載されているが〔段落番号0046を参照〕、その構成は不明である。現在知られた磁性流体シール176では、円筒状ハウジング186内を真空にすると、磁性流体が円筒状ハウジング186内に吸い込まれて磁性流体シール176のシール能力が低下する。このため、外部の空気流177は磁性流体シール176を通って円筒状ハウジング186内に浸入する恐れがあるので、円筒状ハウジング186内の真空度が低下する。この円筒状ハウジング186内の真空度が低下すると、入口極低温気体157の断熱効果が得られない。通常の磁性流体シールでは、この高真空度を維持することは困難である。
 従来の磁性流体シール装置を含めたシール手段では、摺動面が真空引きされて摺動面の潤滑液が吸い取られるので、シール面が摩耗する。その結果、シール面間を介して空気流177や、さらには、戻りガスが円筒状ハウジング186内に徐々に浸入して冷却流体を極低温の30°K以下に保持することが困難になる。この入口極低温気体157を30°K以下に維持することができないと、超伝導コイル(コイル巻線34)の超伝導の効果は発揮できなくなる。このために、必要以上の入口極低温気体157の流量を超伝導コイル側へ供給しなければならない。この現状では、ヘリウム等の冷却流体が高価であるために、同期発電機械等のランニングコストが上昇する。
 さらに、日本国特許第3306452号公報(特許文献2)の図1又は図3〔図示は省略するが、特許文献2の図面の符号は部品名の後の括弧内に示す〕には、特許文献1と同様にして、真空層(2)で覆われた張り出し部(10)の内周面に液体ヘリウム注入パイプ(1)を挿入した断面図が示されている。この挿入した張り出し部(10)の内周面は液体ヘリウム注入パイプ(1)の外周面との間に間隙を形成している。この間隙に連通する外周側の間隙を遮断するシール(4)によって液体ヘリウムが外部に漏洩するのをシールする構成である。しかし、この特許文献2も特許文献1と同様に、極低温度の液体ヘリウムを従来のシール(4)でシールすることは、液体ヘリウムが極低温であるために困難である。単なるシール装置の構成では液体ヘリウムのシールは種々の問題点をシール面に惹起する。また、真空層(2)はパイプの外側の空間室に封入した構造であるが、封入した構造では時間とともに真空度が低下するから、長期に渡って液体ヘリウムへの断熱効果は発揮できない。
 また、特許文献1は、入口チューブ156を固定差し込みチューブ154へ嵌合する構成では、また、特許文献2では、回転子先端の張り出し部(10)へ液体ヘリウム注入パイプ(1)を回転子の孔中心(19)(導入孔)へ向かって軸方向へ嵌合させる構成では、回転子側の入口チューブ156又は回転子先端の張り出し部(10)の固定が困難になり、入口チューブ156又は回転子先端の張り出し部(10)が相対面と接触すると固定差し込みチューブ154又は液体ヘリウム注入パイプ(1)と摺動して摩耗粉が発生する恐れがある。また、この構造では真空度を維持することは困難である。さらに、超伝導界磁コイルの本数に応じて液体ヘリウム注入パイプ(1)を複数本にする必要がある場合、その本数に応じて回転子も複雑に構成しなければならず、シール装置の構造を複雑にする。
日本国特許出願公開第2003-65477号公報 日本国特許第3306452号公報
 本発明は、上述のような問題点に鑑み成されたものであって、その課題は、供給冷媒が流れる流体通路をシール装置と真空引きとの組み合わせによって流体通路を高真空に断熱して極低温の供給冷媒を冷却部へ供給することにある。さらに、この高真空断熱によって、固定側の流体通路から回転側の流体通路へ連通させる第2メカニカルシール装置のシール能力が供給冷媒によって低下するのを防止することにある。また、冷却供給装置に接続する固定側の流体通路と相対回転する側の接続流体通路との連通する流体通路の構成を改善してメカニカルシールのシール能力を向上することにある。さらに、供給冷媒をシールするメカニカルシールのシール面のシール能力を向上することにある。また、冷媒の冷却効果を向上させて冷媒のランニングコストを低減することにある。
 本発明のロータリジョイントは、固定側の冷媒供給装置と回転側の冷却部との冷媒用の流体通路間を接続するロータリジョイントであって、本体に回転可能に支持されるとともに軸方向に貫通する真空通路を有し、且つ前記真空通路の一端に冷却部の連通路と連通可能な連結部と、前記真空通路の他端に真空引用の開口部と、前記連結部と前記開口部の中間に接続部とを有する真空用筒軸、前記真空用筒軸の前記接続部に密封に嵌着するとともに両端面にシール面を有する回転密封環と、前記回転密封環の軸方向両側に配置されて対向する前記シール面と密接する対向シール面を有する両固定密封環と、前記各固定密封環の対向シール面と反対の端部に一端の結合部が密封に接合するとともに他端の固定部が前記真空用筒軸を囲んで前記本体に密封に固着して前記固定密封環を前記シール面へ弾性に押圧する環状の両弾性ベローズと、前記両弾性ベローズの間に形成されて供給冷媒を導入する第1流体通路と連通可能な第1間隔流体通路と、前記回転密封環に径方向へ貫通するとともに前記第1間隔流体通路と連通する第2流体通路とを有するメカニカルシールを備えたメカニカルシール装置、前記メカニカルシール装置の軸方向一端に密封に結合するとともに前記真空用筒軸の外周面との間に第1真空通路を形成して嵌合する第1外筒、前記メカニカルシール装置の軸方向他端側に密封に結合するとともに前記真空用筒軸の外周面との間に第2真空通路を形成して嵌合する第2外筒、前記接続部の内部に設けられて一端が前記第2流体通路に連通するとともに他端に接続孔を設けた接続流体通路、前記接続孔に一端部が接続して前記接続流体通路と連通するとともに、他端部が前記冷却部側と連通可能な流体通路を有し、且つ前記真空用筒軸の真空通路中に配置された第1配管、及び前記真空用筒軸の前記開口部と対向して前記真空通路内を真空引きする吸引口を有する連結カバー、前記連結カバーと前記真空用筒軸との間を相対回転可能にして且つ密封に連結して前記真空用筒軸の前記真空通路と前記連結カバーの外周側とを遮断する磁性流体シール装置を具備し、第1真空通路は前記メカニカルシール装置の一端側の前記固定密封環の内周面と前記真空用筒軸との間の前記固定密封環の前記対向シール面の内周に通じる第1間隙真空通路に連通し、第2真空通路は前記メカニカルシール装置の他端側の前記固定密封環の内周面と前記真空用筒軸との間の前記固定密封環の前記対向シール面の内周に通じる第2間隙真空通路に連通し、前記第1真空通路と前記第2真空通路とを真空引きして前記一端側の固定密封環の対向シール面の内周側と前記他端側の固定密封環の対向シール面の内周側を吸引するようにしたものである。
 このような構成のロータリジョイントによれば、第1外筒及び第2外筒により真空用筒軸の内周面内を効果的に真空断熱しているので、間隔流体通路を流れる供給冷媒を極低温度に維持し、供給冷媒を液体状態に維持できる。その結果、この液体の供給冷媒をシール面間の内周側から真空吸引することにより、シール面と対向シール面との間に液体を介在させて摺動面を潤滑させることができる。同時に、両シール面間に低温の潤滑液が介在するので摺動面が発熱するのを防止する。摺動面が無潤滑状態になると、鳴き現象やかじりが発生するが、摺動面を液体により潤滑するので、この鳴き現象やかじりが効果的に防止できる。そして、両シール面が摩耗するのを防止する(従来技術では、優れたシール装置でも、シール面の潤滑が不足して、冷媒をシールすることが困難であった。またシール面が摩耗すると、摩耗粉が供給冷媒に浸入して冷却部や冷却供給装置に問題を惹起していた)。そして、両シール面の摺動時の摩耗が防止されて供給冷媒に対するシール能力を発揮するとともに、摩耗粉が供給冷媒に混入するのを効果的に防止できる。さらに、固定密封環と一体の弾性ベローズの構成は、固定密封環の摺動する嵌合面間をシールするOリングを不要とするから、極低温度によるOリングの材質変化に伴って冷媒が漏洩するのを防止できる。さらに、弾性ベローズの構成は、極低温の状態でも、固定密封環の対向シール面をシール面に対して弾発に押圧し、この弾発時の移動は摺動する面が無いので、シール面のシール能力が発揮できる。
 好適には、本発明のロータリジョイントは、前記メカニカルシール装置は前記メカニカルシールを並列に2組配列するとともに、前記両メカニカルシール間に第2間隔流体通路を設け、且つ前記真空通路に配置された排出冷媒用の第2配管と連通して第2間隔流体通路を排出冷媒が流れる構成にしたものである。
 このような構成のロータリジョイントによれば、第1外筒と第2外筒に真空状態で囲まれた真空用筒軸の内周面内をさらに真空断熱されて流れる供給冷媒は、極低温に真空断熱できる。そして、この真空断熱により低温状態のままの排出冷媒は、第2間隔流体通路を流れるときに、摺動面の無い弾性ベローズの固定部により両側が遮断された間を流れる。このため、排出冷媒が第2メカニカルシールのシール面等に直接悪影響を与えることも無いので、シール面のシール能力が低下するのを防止できる。また、各密封環のシール面と対向シール面との摺動する面間側へ排出冷媒が浸入すると、排出冷媒はこのシール面間の内周側に作用するから、内周側から摺動時にシール面間に浸入して、シール面間が無潤滑状態になるのを防止できる(なお、メカニカルシール装置の両端側のシール面間は真空引きにより冷媒液の潤滑液が作用して潤滑されている)。そして、第2メカニカルシールの耐久能力を長期に渡り発揮できる。また、第2間隔流体通路の幅は、2個のメカニカルシールを配列するときに設定できるから、大容量を流すことができ、排出冷媒の流体通路の本数を少なくすることができる。
 また好適には、本発明のロータリジョイントは、前記第1外筒と前記第2外筒とメカニカルシール装置との外周側に第1真空室を形成して囲む筒状の第1本体を設け、前記第1真空室内を真空引きするものである。
 このような構成のロータリジョイントによれば、第一外筒と第2外筒とメカニカルシール装置とをさらに第1真空室を形成して囲む筒状の第1本体が設けられているので、断熱効果に優れる。そして、供給冷媒と排出冷媒を極低温に保持すると共に、メカニカルシール装置を真空断熱してメカニカルシール装置を通過する供給冷媒の温度上昇を防止する。
 また好適には、本発明のロータリジョイントは、前記回転密封環には周面に沿って複数の前記第2流体通路を有するとともに前記接続部には各前記第2流体通路に連通する複数の接続流体通路を有し且つ前記第1流体通路から回転密封環の周面に設けた各第2流体通路の開口へ供給冷媒を流入させるものである。
 このような構成のロータリジョイントによれば、回転密封環は環状を成してその周面に開口する多数の第2流体通路を設けることができるので、一本の第1流体通路から流出した供給冷媒を回転密封環の周りの第1間隔流体通路から複数の第2流体通路へ流すことができる。そして、複数の第2流体通路に連通する複数の接続流体通路に各第1配管の流体通路が連通しているから、各冷却部の必要な個所へ必要なだけ供給冷媒を供給することが可能になる。このため、流体通路の数が多くともメカニカルシールの配列個数を少なくすることができ、メカニカルシール装置のコストを低減できる効果がある。また、固定密封環と回転密封環よりなる第2メカニカルシールを配列する個数が少なくできることは、接続部の軸方向の長さも短くできるので、第2メカニカルシール装置と接続部との製作コストと組み立てコストとを大きく低減できる。また、ロータリジョイントも小型にすることができる。
図1は、本発明の実施例1のロータリジョイントの片側の断面図である。 図2は、図1のメカニカルシール装置と配管の付近を示す第1組立体の拡大断面図である。 図3は、図2の第2メカニカルシール装置付近の構成を示す拡大断面図である。 図4は、図1の第2組立体の片側の断面図である。 図5は、図1の第3組立体の片側の断面図である。 図6は、図5に示す磁性流体シールの片側の拡大断面図である。 図7は、本発明に係わる実施例2の接続部品側の軸方向正面図である。 図8は、本発明に係わる実施例3の回転密封環の軸方向正面図である。 図9は、本発明に係わるロータリジョイントを取り付けた超伝導モータの概略断面図である。
 以下、本発明に係わる実施の形態のロータリジョイントを図面に基づいて説明する。なお、以下に説明する各図面は、設計図を基に作成した正確な図面である。図1は、本発明の実施例1のロータリジョイントRの片側の断面図である。なお、図1では、断面にハッチングを入れると、図が不明になるので、ハッチングは省略してある。また、図2は、図1のメカニカルシール装置1と配管の付近を示すものであって、第1組立体Aの片側の拡大断面図である。さらに、図3は、図2の各第2メカニカルシール装置1付近の構成を示すさらなる拡大断面図である。図4は、第1軸受部60D1側の第2組立体Bの片側の拡大断面図である。図5は、磁性流体シール40側の第3組立体Cの片側の拡大断面図である。図6は図5に示す磁性流体シール40の拡大断面図である。
 以下に、図1から図6を参照して本発明のロータリジョイントRを説明する。ロータリジョイントRのフランジ付の連結部10Cは、界磁コイルを有する同期回転機戒、例えば、回転発電機、リニアモータなどの流体通路を設けた回転軸及び図9に示す超伝導モータ100の流体通路を設けた回転軸115に連結する。最初に、図1のロータリジョイントRと連結する図9の超伝導モータ100について説明する。ただし、本発明ではない超伝導モータ100については、簡単に説明する。図9に示す超伝導モータ100は、概略図である。筒状で内周面115Aを設けた回転軸115の外周面には、3個の回転子110を嵌着する(符号は1個所のみ)。回転子110の両側には、合計4個のステータ106(符号は1個所のみ)を軸方向に配列する。そして、各回転子110には、超伝導(SC)コイル103の内周側に空間がある冷却部105を設ける。
 この冷却部105にロータリジョイントRの各第1配管20Eと連通して冷媒を供給できる各第1管101,101,101を設ける。この各第1管101,101,101により冷媒をそれぞれの冷却部105,105,105へ供給して各超伝導コイル103,103,103(符号は1個所のみ)を冷却する。また、各超伝導コイル103,103,103を冷却した後の冷媒は、排出流体通路用のそれぞれの第2管102,102,102と連通する第2配管20Eを通して図示省略の冷媒供給装置(冷凍機)へ還元させる。なお、回転軸115の両側には、軸受116,116を設ける。今、便宜上、回転子110が3個の場合について説明したが、3個とは限らず、1個、2個、又は3個以上の場合もある。また、この例示した回転子110の構造とは、異なる構造も存する。しかし、いずれにせよ、同期回転機戒において超伝導コイルの電気抵抗を零(0)に近づけるには、超伝導コイルを極低温の温度状態に冷却しなければならない。
 これらの高温の超伝導コイルは、超伝導を達成し、且つ、この超伝導を維持するために、例えば、高温超伝導コイルを臨界温度(超伝導遷移温度、例えば、27K)又はそれ以下の温度まで冷却しなければならない。本発明のロータリジョイントRは、固定側から回転側の各接続流体通路20D,20D,20Dを通して各冷却部105へ直接に極低温の供給冷媒Q1を供給できるように、又は排出できるように構成している。そして、供給冷媒Q1又は排出冷媒Q2が高真空(高真空とは10-3Torrから10-7Torrの範囲である)の状態の真空通路10Hに配置する第1配管20E及び第2配管20E内の流体通路を通過するので、外気と真空断熱されて供給冷媒Q1を臨界温度以下の極低温度に維持することができる。そして、第1配管20Eと第2配管20Eは高真空の状態に維持されて、外気の温度が第1配管20Eと第2配管20Eへ伝熱するのを遮断する。
 図1及び図9において、真空用筒軸10の連結部10Cは、超伝導モータ100の回転軸115における端部の取り付け部と連結して共に回動できるように形成する。同時に、第1配管20Eは、第1管101と連結して第1配管20Eからの供給冷媒Q1を第1管101内へ供給可能にする供給流体通路を設けている。さらに、第2配管20Eも第2管102と連結して超伝導コイル等を冷却した使用済みの排出冷媒Q2を第2管101から第2配管20Eへ排出可能にする排出流体通路である。なお、この第1配管20Eは供給冷媒Q1の供給流体通路に限定するものではなく、また、第2配管20Eは、排出冷媒Q2の排出流体通路に限定するものではない。第1配管20Eを排出流体通路に用いることもできる。また、第2配管20Eを供給流体通路に選択することもできる。しかし、使用後の排出冷媒Q2を冷却供給装置(冷凍機)へ戻すときは、図1の第2メカニカルシール装置1の実施例では第2配管20Eを利用することが好ましい。
 この真空用筒軸10は、全体がステンレス鋼製の第1真空用筒軸10Aの接続部(以下、接続部品と言う)10A1と第2真空用筒軸10Bの継ぎ手部10Bとを接合し、符号が省略された図示するボルトを軸方向へ螺合して締結する。第1真空用筒軸10Aは、筒軸の端部と接続部品10A1の段付面とを嵌合するとともに、この嵌合部の周面を溶接して一体に形成する。また、第2真空用筒軸10Bは、筒軸の端部と継ぎ手部10Bの段付面とを嵌合して嵌合面間を溶接する。溶接した継ぎ手部10Bと接続部品10A1とを接合するとともにボルトによれ締結して真空用筒軸10を筒状に形成する。この第1真空用筒軸10Aと第2真空用筒軸10Bとの連結は、第2メカニカルシール装置1を取り付け可能にするためにボルトで締結する。しかし、他の例として、図示省略の長いスリーブにメカニカルシール装置1を嵌着し、このスリーブの内周面を真空用筒軸10の外周に嵌着して固定すれば、第1真空用筒軸10Aと第2真空用筒軸10Bは、ボルトを用いた組み立てにしなくとも、一体にすることができる。上述の構成では、第1真空用筒軸10Aの内周面に接続部品10A1を嵌着しても良い。なお、第2メカニカルシールとは、回転密封環1Aと、この回転密封環1Aの両側に各々固定密封環2A,2Aとを配置して一対に組み合わせたものを言う。そして、第2メカニカルシールを複数に配列した全体をメカニカルシール装置1と言う。
 また、接続部品10A1は、図3に示すように内部に断面が径方向と軸方向を成すL形の接続流体通路20Dを軸方向に位置を変えながら周方向に沿って配置する。この各接続流体通路20D、20Dの軸方向の端部開口は、それぞれ接続孔20D1に形成するとともに、各接続孔20D1に第1配管20Eと第2配管20Eの端部をそれぞれ密封に嵌着する(嵌合した周面間を溶接又は接着して封止する)。この流体通路を有する第1配管20Eと第2配管20Eとは、第1真空用筒軸10Aの内周面10A2内(真空通路)に配置して極低温度の冷媒を流通可能にする。同時に、第1真空用筒軸10Aの内周面10A2内に配置された第1配管20Eと第2配管20Eは、真空引き(真空吸引とも言う)された高真空の状態により外部と真空断熱される。なお、第1配管20Eと第2配管20Eの材質は、ステンレス鋼管、銅管、アルミニウム管、窒化ボロン、石英管、強化ガラス管、低温用樹脂(PTFEなど)管などを用いている。また、第1配管20Eと第2配管20Eの外周面を断熱材で被覆しても良い。例えば、ステンレス鋼管の外周をPTFE,ガラス、石英等の材質を用いて断熱できる厚さに被覆する。これらの断熱効果は、第1配管20Eと第2配管20Eが真空用筒軸10内に真空断熱の状態で配管することにより可能になる(なお、従来のように、メカニカルシール装置を取り付けたハウジング本体にキリ孔で冷媒用の流体通路を形成した構成では、これらの効果は期待できない)。
 図2及び図3は、図1に示す第1組立体Aの拡大図である。図2及び図3に示すように、真空用筒軸10における接続部品10A1の外周面に回転密封環1Aの内周面1A3を軸方向に隔てて2列に嵌着する。この回転密封環1Aの組み立ては、筒状のスペーサ12を並列にした両回転密封環1A、1Aの間に挟持するとともに、両回転密封環1A、1Aの外端を接続部品10A1の段付面と第2真空用筒軸10Bの継ぎ手部10Bの端面とにより押さえた状態で固定する。各回転密封環1A、1Aは軸方向両端面に各シール面1A1,1A1を設けるとともに、各回転密封環1A,1Aの両シール面1A1,1A1の中間に第2流体通路20Cを設ける。この第2流体通路20Cは、内径方向の接続流体通路20Dと連通する。この各回転密封環1Aと後述する各固定密封環2Aは、炭化珪素、カーボン、硬質合金、複合樹脂等の摩耗しない硬質であって、且つ冷媒に耐える耐寒材質である。
 回転密封環1Aの軸方向の両側には、一対の両固定密封環2A,2Aを設ける。固定密封環2Aは端面にシール面1A1と密接する対向シール面2A1を設ける。同時に、対向シール面2A1と反対側面(背面)には真空用筒軸10を環状に囲む弾性ベローズ2Bの一端部である環状の結合部2B1を溶接等により密封に結合する。この弾性ベローズ2Bは、ステンレス鋼、ニッケル基合金(インコネル718など)等の金属製であって、固定密封環2Aに一体に形成された付属部品である。また、弾性ベローズ2Bの他端部である環状の固定部2B2は、シールカバー2B3の内周段付部に溶接等で密封に接着して連結する。そして、弾性ベローズ2Bは固定密封環2Aをシール面1A1の方向へ弾発に押圧する。なお、メカニカルシール装置1において、第2組立体B側の弾性ベローズ2Bの内周面と第1真空用筒軸10Aの外周面の間は間隙となっている。この間隙は対向シール面2A1の内周まで達している。つまり、この間隙は第1間隙真空通路であって第1真空通路50A1の一部の通路である(図3の拡大図を参照)。
 また、メカニカルシール装置1において、第3組立体C側の弾性ベローズ2Bの内周面と第2真空用筒軸10Bの外周面の間も間隙となっている。そして、この間隙は対向シール面2A1の内周までとどいている。この間隙は第2間隙真空通路であって第1真空通路50B1の一部の通路である(図3の拡大図を参照)。さらに、回転密封環1Aの外周面1A2と、回転密封環1Aの両側の固定密封環2A、2Aとの間の空間(両弾性ベローズ2B,2Bの間)は、第1間隔流体通路20Bに形成する。この第1間隔流体通路20Bは、配管継ぎ手部20A1に設けた第1流体通路20Aと連通する。なお、第1流体通路20Aは冷却供給装置から供給冷媒Q1が送られる流通路である。また、両弾性ベローズ2B,2Bの固定部2B2,2B2の間と、スペーサ12の外周面と、配管継ぎ手部20A1(図3を参照)の内周面との間に形成された環状空間が第2間隔流体通路20Bである。この第2間隔流体通路20Bは、次に連通する第2流体通路20Cが無いため接続流体通路20Dと直接に連通する。つまり、第2間隔流体通路20Bと接続流体通路20Dとの間には、回転密封環1Aの第2流体通路20Cと連通する第1間隔流体通路20Bと、第2流体通路20Cを通さない第2間隔流体通路20Bとを設けている(第1間隔流体通路20Bと第2間隔流体通路20Bとは、符号20Bが同じであるので図3を参照)。
 リング状の各シールカバー2B3,2B3,2B3,2B3とリング状の配管継ぎ手部20A1、20A1,20A1の接合間には断面がC形又はU形の各シールリング83Aを取り付けて各接合間をシールする(図3では軸方向へ8個を設けている)。このシールリング83Aは、PTFE製のU形状の溝内に金属(インコネル718などの材質)製の弾性中空Oリングを設けた形状、又はC形金属リングの形状に構成し、冷媒に耐える耐寒性にする。そして、各シールカバー2B3と各配管継ぎ手部20A1とは、第1外筒60Aの端部に溶接したフランジ部と、第2外筒60Bの端部に溶接したフランジ部との間に挟持して軸方向に貫通するボルト用孔に挿入したボルト79(図1又は図2を参照)により締め付けて第2メカニカルシール装置1を覆うカバーに形成する。また、各配管継ぎ手部20A1の第1流体通路20Aと連通する第1流体通路20Aを設けた各配管は、樹脂管、鋼管(ステンレス鋼管など)に形成して第2本体65の第2真空室V2内を通り図示省略の冷却供給装置と連通する。この各配管は図5に示す分岐配管44Aと連結して真空引きしても良い。
 そして、各回転密封環1Aに設けた各第2流体通路20Cを通って冷却部105へ供給される供給冷媒Q1は、極低温度の液体ヘリウム、液体窒素等である。また、第2間隔流体通路20Bを通って冷却供給装置へ戻される排出冷媒Q2は、冷却部105を冷却した後の冷媒(冷媒が気化する場合もある)である。この供給冷媒Q1の種類は、液体ヘリウム(-273°C以下)、液体窒素(-196°C以下)、液体ネオン、液体アルゴン等がある。これらの供給冷媒Q1は、超伝導コイルなどを冷却して超伝導状態にできる極低温に冷却される。次に、第2本体65の第2真空室V2内は高真空の状態であって、各第1流体通路20Aを真空断熱することができる。この第2真空室V2は分岐配管44Aを介して真空引きVする。また、分岐配管44Aや第1流体通路20Aの配管の周りをPTFEなど、繊維強化樹脂の断熱材で覆って供給冷媒Q1の温度が上昇するのを防止できる。さらに、図2に示すように、真空用筒軸10に対して径方向を成す筒状の第2本体65は、取り付け部が第1外筒60Aのフランジ部に設けた取り付け板と第2外筒60Bのフランジ部に設けた取り付け板に、図2に示すように、ボルトを利用して密封に結合する。そして、第2本体65は第1本体60内に径方向へ筒形に形成しているが、第1流体通路20Aの本数が多い場合は、真空用筒軸10の軸芯の廻りを囲む密閉した筒状体に形成することもできる。
 第1外筒60Aの内周面の内径は、第1真空用筒軸10Aの外周面の外径より大径に形成する。そして、第1外筒60Aは、第1真空用筒軸10Aに対して環状空間の第1真空通路50A1を設けて嵌合する。また、第2外筒60Bも、第2真空用筒軸10Bに対して第1外筒60Aと対称を成してほぼ同様な形状に形成されている。そして、第2外筒60Aも、第2真空用筒軸10Bの外周面に対して環状空間の第2真空通路50B1を設けて嵌合する。次に、この第1外筒60A内の第1真空通路50A1は、図3では、第2メカニカルシール装置1における第2組立体B側の弾性ベローズ2Bの内周面と接続部品10A1の外周面との間の第1間隙真空通路(第1間隙通路とも言う)に連通する。そして、この第1間隙真空通路は回転密封環1Aのシール面1A1と固定密封環2Aの対向シール面2A1との摺動する内周側に達する。また、第2真空通路50B1は、図3では、第2メカニカルシール装置1における第3組立体C側の弾性ベローズ2Bの内周面と接続部品10A1の外周面との第2間隙真空通路(第2間隙通路とも言う)に連通する。この第2間隙通路は回転密封環1Aのシール面1A1と固定密封環2Aの対向シール面2A1との摺動する内周側に達する。
 そして、供給冷媒Q1は、各第1流体通路20A,20Aからそれぞれの第1間隔流体通路20B,20Bを通って、それぞれの第2流体通路20C,20Cへ流入する。このとき、回転密封環1Aは回転しているので、各シール面1A1と対向シール面2A1との間に供給冷媒Q1が潤滑膜として浸入することが困難になる。つまり、無潤滑状態になりやすい(従来技術では)。この従来技術のように、摺動面が無潤滑状態になると、次のような問題が惹起する。すなわち、両シール面1A1,2A1は、摺動発熱して摩耗する。この摺動発熱は、供給冷媒Q1の温度を上昇させるので冷却する冷媒として問題となる。また、両シール面1A1,2A1が摩耗すると、摩耗による微粉末は供給冷媒Q1に混合して冷却部105へ流れ、冷却部105等に対して不具合を惹起する。また、冷媒供給装置は冷媒中の粉末を嫌うので、冷却部105を冷却した後の粉末を含んだ排出冷媒が冷媒供給装置へ戻ると冷媒供給装置に問題を惹起する。
 しかし、この問題点を解決する本発明は、回転密封環1Aのシール面1A1と固定密封環2Aの対向シール面2A1との接触する内周側の各第1及び第2間隙真空通路(各真空通路50A1)を真空引きV3すると各第1及び第2間隔流体通路20B,20B側の供給冷媒Q1は、シール面1A1と対向シール面2A1との摺動面間に引き寄せられ、この両シール面1A1,2A1間に液状冷媒の潤滑液として介在する。つまり、真空断熱された供給冷媒Q1は、液体の状態であるから、シール面1A1と対向シール面2A1との摺動面間を潤滑するとともに、この両シール面1A1,2A1間の摺動発熱を効果的に防止することができる。従って、本発明は、上述したような無潤滑状態により惹起する問題点を効果的に解決する。
 また、両シール面1A1,2A1が無潤滑状態では、焼き付きや鳴き現象が惹起しやすくなるが、シール面1A1と対向シール面2A1との摺動面間に供給冷媒Q1を介在させることにより、これらの問題も効果的に防止できる。なお、第2間隔流体通路20Bを経て冷媒供給装置へ戻る排出冷媒Q2は、液状の場合はシール面1A1と対向シール面2A1との摺動面間の内周側に介在するので、摺動時の外径方向への引き込み力によりシール面1A1と対向シール面2A1との間に浸入して無潤滑状態になるのを効果的に防止する(例え、排出冷媒Q2の一部が気化しても、気体は軽いので第1流体通路20Aを通って冷媒供給装置側へ直通する)。また、この弾性ベローズ2Bは蛇腹状の形状であって、摺動面が無いから摩耗するのが防止できる。また、弾性ベローズ2Bは、ステンレス鋼、耐寒性樹脂材製にできるから、冷媒に対して優れた能力を発揮する。さらに、第2間隔流体通路20Bは、各固定密封環2A,2Aにおける固定部2B2,2B2の対向間に形成されるので、従来のように孔状の第2流体通路20Cとは異なり、流量を大きくするための流体通路としての間隔を任意の大きさに設定することができる。このため、第2間隔流体通路20Bを流れる排出冷媒Q2の速い速度や流量の大きさによって、両シール面1A1,2A1へ不純物が介在しないように、また気体が浸入しないようにすることもできる。
 次に、第1外筒60Aの大径円筒状の端部60Aには、図4に示すように、真空通路配管33Aの継ぎ手と接続して真空引きV3する第1真空通路50A1を形成する。この第1真空通路50A1は大径円筒状の端部60Aの周面に沿って等配、又は不等配に複数本(個)の貫通孔を設けて強力に真空引きV3を可能にする。この真空引きV3は、多数本の貫通孔により強力に吸引できるから、第1外筒60A内の第1真空通路50A1を超高真空(10-7Torr以上)状態にできる。このため、各配管20E・・中の供給冷媒Q1を外部に対して二重の真空層により覆うので、真空断熱の効果が飛躍的に向上する。また、第1外筒60A内の第1真空通路50A1は、真空通路配管33A内の第1真空通路50A1と連通し(全通路が真空通路である。)、この真空通路配管33Aは、第1真空室V1内に配置されて真空断熱され、さらに、第2真空室V2内に配置されて真空断熱されるとともに、第2真空室V2内の第1真空配管50Aと接続する。そして、第1真空配管50Aの他端部は冷媒供給装置と接続する。この真空通路配管33A内の第1真空通路50A1により第2メカニカルシール装置1内の第1間隙真空通路50A1と第1外筒60Aの第1真空通路50A1は、高真空の状態に真空引きV3されて供給冷媒Q1の極低温度を効果的に保持するとともに、各シール面1A1,2A1の潤滑を可能にする。なお、第1外筒60Aは、真空用筒軸10と同様に、ステンレス鋼、ニッケル基合金等の材製である。
 図5に示す第2外筒60Bは、ほぼ第1外筒60Aと対称にして同様な形に形成する。そして、上述した第1外筒60Aと同様に、第2外筒60Bの大径円筒状の端部60Bには、図1に示す第2真空配管50Bの端部と接続して真空引きV3する第2真空通路50B1(図2を参照)を形成する。この第2真空通路50B1は、第1外筒60Bと同様に大径円筒状の端部60Bの周面に沿って等配又は不等配にした複数本の貫通孔を設けて強力な真空引きV3を可能にする。その結果、第2外筒60B内の第2真空通路50B1による第2間隙真空通路50B1を真空引きV3して、上述のように、両シール面1A1,2A1の摺動時の潤滑効果を発揮させる。同時に、第1真空通路50A1と真空通路10Hの二重の真空断熱による供給冷媒Q1の極低温度を保持する。
 次に、内部に第1真空室V1を形成する円筒状の第1本体60は、第1真空室V1によって真空用筒軸10の外周側を三重に囲んで真空断熱するとともに、第2メカニカルシール装置1の外周側も真空断熱する。また、第2メカニカルシール装置1、及び第1流体通路20A、第1及び第2間隔流体通路20B、第2流体通路20C、接続流体通路20Dは、第2本体65内で第2真空室V2により確実に真空断熱される。また、ロータリジョイントRが耐用年数に達して第2メカニカルシール装置1等を通る第1間隔流体通路20Bから供給冷媒Q1が外部に漏洩するようなことがあっても、第2真空室V2によって供給冷媒Q1が吸引されるから、外部へ漏洩する供給冷媒Q1によって公害になる問題も効果的に防止できる。
 第2組立体Bは、図1において第1組立体Aに対して真空用筒軸10の超伝導モータ100側に設ける。この第2組立体Bを図4に拡大して示す。真空用筒軸10を回転可能に支持する第1軸受部60D1は、外周面を第1軸受ボックス30Aの内周面に嵌着する。また、この第1軸受部60D1は、内周面をスリーブ31の外周面に嵌着して取り付ける。さらに、このスリーブ31は真空用筒軸10の外周面に嵌着する。また、第1軸受ボックス30Aは、仮想線で示す保持部を介して超伝導モータ100のケースに取り付けて固定する。さらにまた、第1軸受ボックス30Aの開口側面には、第1メカニカルシール装置32を保持すると共に、第1軸受部60D1を軸方向に支持する保持板30Bを設ける。この保持板30Bに設けた供給通路33により第1軸受部60D1側に空気などの流体Q3又は潤滑液などの流体Q3を流体空間30Hへ供給する。この流体Q3は、供給通路33から流体空間30Hへ流入して第1メカニカルシール装置32に対してバッハ流体としての作用をする。又は、軸受部60D1に供給して潤滑作用をさせることもできる。第1メカニカルシール装置32の回転密封環(符号は省略)は、付属部品を介してステンレス鋼製のスリーブ31に嵌着する。また、この回転密封環と相対回転する固定密封環は、保持板30Bの段付孔に付属部品を介して保持する。そして、第1メカニカルシール装置32により第1軸受部60D1側の流体空間30Hと第1外筒60A内の第1真空通路50A1とを遮断する。第1外筒60Aにおける保持板30B側の大径円筒状の端部60Aは、第1本体60の内周面に嵌着するとともに、第2メカニカルシール装置1側のフランジ部は、前述したように、シールカバー2B3を介して第2本体65に連結合する。
 第3組立体Cは、図1に示す全体構成の真空用筒軸10において、第2組立体Bとは反対側に設ける。図5に示すように、第1本体60の内周面に嵌着した第2外筒60Bの大径円筒状の端部60Bには、内周の段付面に第2軸受部60D2を嵌着して設ける。なお、大径円筒状の端部60Bは、複数のサポート61により支持されている。第2軸受部60D2の内周面は第2真空用筒軸10Bの外周面に嵌着する(図1を参照)。そして、真空用筒軸10を第1軸受部60D1と第2軸受部60D2により回転自在に支持する。第2軸受部60D2の側面の空間62には、図4と同様に、図示省略した供給通路を連通させる。第2外筒60Bの端部には、ステンレス鋼などの非磁性体の磁性流体シール用カバー41を符号省略のボルトにより結合する。磁性流体シール用カバー41の内周面には、図6に示すような、磁性流体シール装置40を装着する。磁性流体シール用カバー41の内周面には、磁性流体シール装置40を挟んで、両側に各々高精度のベアリング40D、40Dを配置する。この両ベアリング40D、40Dは内周面が軸カバー40Aに嵌着するとともに、外周面が磁性流体シール用カバー41の内周面に嵌着する。さらに、軸カバー40Aは、並列に配列した耐寒性のシール用Oリング80B,80Bを介して第2真空用筒軸10Bの外周面に嵌着する。
 そして、磁性材料の軸カバー40Aの外周面には、軸方向へ間隔を設けた2列のシール突起群40A1,40A1・・を設ける。このシール突起群40A1,40A1・・は所定の軸方向の幅に複数のリング状の突起40A1を各々少なくとも6個以上から設定された好ましい個数を設ける。好ましくは、図6に示すように、各々8個から16個を設けると良い。この2列のシール突起群40A1,40A1・・に対応した位置には、磁性材料のポールブロック40B,40Bがシール用のOリング80A、80Aを介して磁性流体シール用カバー41の内周面に嵌着する。この各8個の突起群40A1,40A1・・・の外周面とポールブロック40B,40Bの内周面との間は0.05mm以下で近接する微少間隔に形成する(接触しない間隔に近接する)。この間隔は高精度の両ベアリング40D、40Dにより可能にする。そして、2個のポールブロック40B,40Bの間には、磁性流体シール用カバー41の内周面に永久磁石40Mが嵌着して配置されている。また、リング状の突起群40A1,40A1・・とポールブロック40B,40Bの内周面との間には高精度の磁性流体40Fを介在する。また、永久磁石40Mと2個のポールブロック40B,40Bと2列の突起群40A1,40A1・・とを環状に形成する磁気ループ回路には、永久磁石40Mによって、磁束が形成される。そして、突起群40A1,40A1・・の突起40A1とポールブロック40B,40Bの内周面との間には磁性流体40Fが集結し軸方向両側を強力に遮断し、摺動抵抗を惹起すること無く、吸引空間45の高真空の状態を維持する。
 この突起群40A1,40A1・・の個数は、ラビリンスシールのごとく、吸引口42Aからの真空引きVする吸引力に耐える個数にする。磁性流体シール用カバー41の永久磁石40Mの外面には、流体供給通路40Hを貫通状態に設ける。そして、この流体供給通路40HからNガス又は空気の供給流体Q4の永久磁石40Mの外面へ送り永久磁石40Mを保温する。又は、流体供給通路40Hから磁性流体40Mを導入Fしてポールブロック40B,40Bの内周面内と突起群40A1,40A1・・との間へ供給する。永久磁石40Mはポールブロック40B,40Bの間にリングにして挟持する場合、又は円柱にしてポールブロック40B,40Bの間に、周方向へ多数個を配列することもできる。さらに、突起40A1の外周面の断面形状は尖った山形、M形にすると良い。この磁性流体シール装置40は真空用筒軸10内の真空通路10Hを外部に対し遮断して高真空以上の状態に維持できるように構成されている。なお、磁性流体シール装置40の片方側にはVの真空力が作用し、他方側にはV3の真空力が作用する構成である。これらの間には、Oリングや第2軸受部60D2があるので、吸引力の完全な釣り合いではないが、磁性流体シール装置40を境にして真空力が釣り合う構成であるから、この構成によって外部から気体を吸い込むのは防止できる。従って、磁性流体40Fは耐久力を有して真空状態を完全に遮断することができる。
 磁性流体シール用カバー41の軸方向の端面には、第2真空用筒軸10Bの開口部10Dに対向する連結カバー42を磁性流体シール用カバー41の端面に密封に取り付ける。この連結カバー42の開口部10Dに対向する位置には、吸引口42Aを設ける。この吸引口42Aは、吸引配管44により図1に示す真空引き装置(真空ポンプ)Vaに連通する。また、吸引配管44から分岐した分岐配管44Aは、第1本体60の内部に貫通する配管に連通して第1真空室V1内を吸引し、第1真空室V1内を高真空の状態にする。この第1本体60の第1真空室V1内の高真空の状態は、第1流体通路20A,20A,20Aを真空断熱する第2真空室V2の外周側を二重に真空断熱する。
 一方、吸引口42Aから真空用筒軸10の内周面10A2内を吸引し、真空通路10H中を高真空の状態にする。この真空通路10H中の高真空は、高性能な磁性流体シール40により真空用筒軸10の内周面10A2内(図2を参照)が完全にシールされるから、この内周面10A2内は、前述したように、高真空(10-3Torrから10-7Torr)又は超真空(10-7Torr以下)にすることができる。なお、超伝導界磁コイルの電気抵抗を零(0)にするためには、供給冷媒Q1を通す第1配管20E又は第2配管20Eの外周側の真空通路10H内を10-3Torr以下の真空状態にしなければならない。さらに好ましくは10-5Torr以下の真空状態にしなければならないが、本発明の磁性流体シール装置40は真空通路10H内と外部とを遮断することによって、この高真空な状態を可能にする。この真空用筒軸10の内周面10A2内の高真空及び超高真空の状態は、第1配管20E及び第2配管20Bに対して外気の温度を高度に遮断する。そして、冷媒供給装置から供給された極低温度の液状のヘリウム、窒素、ネオン等の供給冷媒Q1を真空通路10H内で極低温度の状態に維持しながら、この供給冷媒Q1を第1配管20E及び第2配管20Eから超伝導モータ100の冷却部105へ供給して冷却部105を冷却する。つまり、冷媒供給装置から供給された極低温度の液状の供給冷媒Q1は、ロータリジョイントRを中心にして固定側の第1流体通路20Aから回転側の真空通路10Hへ供給するときに、極低温度の供給冷媒Q1が高真空の状態で第1間隔流体通路20Bと第2流体通路20C又は第2間隔流体通路20Bを通り接続流体通路20Dへ流入することができる。
 このとき、第2メカニカルシール装置1の回転密封環1Aのシール面1A1と固定密封環2Aの対向シール面2A1との摺動面は、この真空断熱された極低温の効果により供給冷媒Q1を液体の状態に保持できる。このため、この液体によって潤滑される各シール面1A1,2A1は、摩耗するが防止できる。そして、回転密封環1Aのシール面1A1と固定密封環2Aの対向シール面2A1との摺動面のシール能力が向上する。すなわち、耐圧能力を有する磁性流体シール装置40は、供給冷媒Q1を極低温度の液体に維持して第2メカニカルシール装置1を流通する冷媒供給Q1によって、摺動する両シール面1A1,2A1の潤滑作用を奏功させるとともに、シール能力を向上できる。そして、両シール面1A1,2A1の摩耗や焼き付き、鳴き現象を効果的に防止できる。
 また、第1及び第2配管20E,20E,20Eは、真空用筒軸10の内周面10A2内に配置されているから、第1及び第2配管20E,20E,20Eの外周面をPTFE,石英等の断熱材で覆う(被覆する)ことができる。このため、第1配管20E,20E及び第2配管20Eの断熱効果を発揮して第2メカニカルシール装置1のシール能力を維持する効果を奏する。なお、従来のロータリジョイントでは、ハウジングに複雑な孔加工をして流体通路に形成していたので、流体通路の外周面を断熱材で被覆することは困難であった。
 また、第2メカニカルシール装置1における並列に配置された第1及び第2間隔流体通路20B、20B内は、ほぼ同圧の冷媒Q1,Q2が流れる。このため、シール面1A1と対向シール面2A1の密接する径方向の両側は、ほぼ同圧となり、摺動する両シール面1A1,2A1間から気化した排出冷媒Q2が供給冷媒Q1へ漏洩するのを効果的に防止できる。そして、第2メカニカルシール装置1のシール能力がさらなる向上をする。このため、従来のように気化した排出冷媒Q2が途中で供給冷媒Q1に混合して供給冷媒Q1の温度を上昇させるのは防止できる。また、超伝導モータ100の冷却部(超伝導界磁コイル)105は、供給された極低温度の供給冷媒Q1により冷却部105の液溜め部が極低温度まで冷却されて電気抵抗が零(0)の状態にできる。その結果、超伝導界磁コイルが励磁されると、電気抵抗が零(0)となっている超伝導界磁コイルには、励磁損失の無い強力な磁界が発生する。
 図7は、実施例2であって、図1におけるX-X矢視に相当する接続部品10A1側の正面図である。この接続部品10A1は、図2に示す接続部品10A1より長さが短い筒状に形成されて内周面10A2内に真空通路10Hを形成する。そして、図7には、図2の接続部品10A1に示す接続流体通路20Dと同様に、接続部品10A1の径方向へ4個所、5個所、6個所(図7では4個所)と多数個に形成する。このうち3個所、4個所、5個所の接続流体通路20Dの径方向を向く流体通路の部分は軸方向にほぼ同一の位置にする。残りの1個所は軸方向に2個のメカニカルシールの間の位置に形成する。そして、3個所、4個所、5個所の接続流体通路20Dの接続孔20D1には、各第1配管20Eの継ぎ手部を密封に各々嵌着する。なお、この第1配管20Eには供給冷媒Q1を流通させる。また、残りの1個所の接続孔20D1(符号は図2を参照)には、第2配管20Eを密封に嵌着して接続する。第2配管20Eは排出冷媒Q2を流通させる。この接続部品10A1は軸方向に短い筒状に形成されているから、真空通路10Hの軸方向の長さも短くできる。
 また、この接続部品10A1の内径を種々の形に形成することにより、真空断熱の効果を向上させることもできる。例えば、この接続部品10A1における真空通路10Hの正面形状は、円形とは限らず、四角形の内周面、星形状又は歯車状の凹凸面にした内周面、楕円形の内周面等に形成して多数の第1配管20Eよび第2配管を接続部品10A1の側面に配列できるように工夫することができる。なお、この3個所、4個所、5個所の軸方向に同じ位置の接続流体通路20Dに対応する第2メカニカルシール装置1は、図8の回転密封環1Aを用いることにより1個にすることができる。そして、メカニカルシールが1個や2個の配列でも、多数の接続流体通路20Dを設けた接続部品10A1に第1配管20Eをそれぞれ接続することによって、供給冷媒Q1を超伝導モータ100の多数の超伝導界磁コイルへ供給し、伝導界磁コイルを極低温度に冷却することができる。
 図8は、真空用筒軸10に嵌着する回転密封環1Aの軸方向から見た正面図である。この回転密封環1Aは実施例3である。図8の回転密封環1Aは、周面に沿って4個所に貫通する第2流体通路20Cを設けた例である。回転密封環1Aの内周面1A3は、接続部品10A1の外周面に嵌着して4個所の第2流体通路20Cと4個所の接続流体通路20Dとを各々連通させる。そして、この4個所の第2流体通路20Cは1個所の第1流体通路20Aから供給された供給冷媒Q1が流入する。また、回転密封環1Aの両端面には、各シール面1A1,1A1を形成する。さらに、回転密封環1Aの両シール面1A1,1A1の内周側には、図3に示すシールリング83Bが装着できるシール取り付け溝1A4を形成する。この回転密封環1Aの第2流体通路20Cと接続部品10A1の接続流体通路20Dについては4個の例を説明したが、冷却部105の個数に応じて第2流体通路20Cと接続流体通路20Dと第2配管20Eとは、5個、6個と多数個に設けることもできる。
 このようにすることによって、第2メカニカルシールの数を増加させること無く、多数個の冷却部105へ供給冷媒Q1を供給することが可能になる。この1つの第2メカニカルシール装置1により多数個の冷却部105へ供給冷媒Q1を供給可能にする構成は、本発明の第2メカニカルシール装置1の構成と接続部品10A1との組み合わせによって可能になる。なお、他の実施例として、第2メカニカルシール装置1は、1個の第2メカニカルシールからなる場合もある。この場合は、図示省略するが、第2配管を他の流体通路に設けて排出冷媒を冷却供給装置へ戻すようにする。なお、図3に示す2個のメカニカルシールの構成の場合は好ましい配列である。
 本発明の比較例として、図1において、磁性流体シール装置40を従来の磁性流体シール装置に置き換えると、高真空に応じて磁性流体シール装置の磁性流体が真空側へ吸引されるから、突起群から磁性流体が移動して無くなり、真空通路内の真空状態を維持することが困難になる。このため、真空通路中の真空による断熱効果も低下する。従って、第1配管を大径にして多量の供給冷媒を流さなければ、冷却部105を冷却することが困難になる。その結果、超伝導モータに使用する高価な供給冷媒のランニングコストは上昇する。また、多量の供給冷媒を供給する構成では、ロータリジョイントが大型になるので、製作コストが上昇する。また、ロータリジョイントの取り付け場所も大きくなるので、取り付けが困難になる。
産業上の利用分野
 本発明は、液体窒素や液体ヘリウムなどの極低温の冷媒の温度を維持して固定部側の冷媒供給装置から回転する超電導装置の冷却部へ供給冷媒を供給するとともに、使用後の排出冷媒を戻すことができる有用なロータリジョイントである。

Claims (4)

  1.  固定側の冷媒供給装置と回転側の冷却部との冷媒用の流体通路間を接続するロータリジョイントであって、
     本体に回転可能に支持されるとともに軸方向に貫通する真空通路を有し、且つ前記真空通路の一端に冷却部の連通路と連通可能な連結部と、前記真空通路の他端に真空引用の開口部と、前記連結部と前記開口部の中間に接続部とを有する真空用筒軸、
     前記真空用筒軸の前記接続部に密封に嵌着するとともに両端面にシール面を有する回転密封環と、前記回転密封環の軸方向両側に配置されて対向する前記シール面と密接する対向シール面を有する両固定密封環と、前記各固定密封環の対向シール面と反対の端部に一端の結合部が密封に接合するとともに他端の固定部が前記真空用筒軸を囲んで前記本体に密封に固着して前記固定密封環を前記シール面へ弾性に押圧する環状の両弾性ベローズと、前記両弾性ベローズの間に形成されて供給冷媒を導入する第1流体通路と連通可能な第1間隔流体通路と、前記回転密封環に径方向へ貫通するとともに前記第1間隔流体通路と連通する第2流体通路とを有するメカニカルシールを備えたメカニカルシール装置、
     前記メカニカルシール装置の軸方向一端に密封に結合するとともに前記真空用筒軸の外周面との間に第1真空通路を形成して嵌合する第1外筒、
     前記メカニカルシール装置の軸方向他端側に密封に結合するとともに前記真空用筒軸の外周面との間に第2真空通路を形成して嵌合する第2外筒、
     前記接続部の内部に設けられて一端が前記第2流体通路に連通するとともに他端に接続孔を設けた接続流体通路、
     前記接続孔に一端部が接続して前記接続流体通路と連通するとともに、他端部が前記冷却部側と連通可能な流体通路を有し、且つ前記真空用筒軸の真空通路中に配置された第1配管、
     前記真空用筒軸の前記開口部と対向して前記真空通路内を真空引きする吸引口を有する連結カバー、及び、
     前記連結カバーと前記真空用筒軸との間を相対回転可能にして且つ密封に連結して前記真空用筒軸の前記真空通路と前記連結カバーの外周側とを遮断する磁性流体シール装置を具備し、
     第1真空通路は前記メカニカルシール装置の一端側の前記固定密封環の内周面と前記真空用筒軸との間の前記固定密封環の前記対向シール面の内周に通じる第1間隙真空通路に連通し、
     第2真空通路は前記メカニカルシール装置の他端側の前記固定密封環の内周面と前記真空用筒軸との間の前記固定密封環の前記対向シール面の内周に通じる第2間隙真空通路に連通し、
     前記第1真空通路と前記第2真空通路とを真空引きして前記一端側の固定密封環の対向シール面の内周側と前記他端側の固定密封環の対向シール面の内周側を吸引するようにしたことを特徴とするロータリジョイント。
  2.  前記メカニカルシール装置は前記メカニカルシールを並列に2組配列するとともに、前記両メカニカルシール間に第2間隔流体通路を設け、且つ前記真空通路に配置された排出冷媒用の第2配管と連通して第2間隔流体通路を排出冷媒が流れる構成にしたことを特徴とする請求項1に記載のロータリジョイント。
  3.  前記第1外筒と前記第2外筒の外周側に第1真空室を形成して囲む筒状の第1本体を設け、前記第1真空室内を真空引きすることを特徴とする請求項1又は請求項2に記載のロータリジョイント。
  4.  前記回転密封環には周面に沿って複数の前記第2流体通路を有するとともに前記接続部には各前記第2流体通路に連通する複数の接続流体通路を有し且つ前記第1流体通路から回転密封環の周面に設けた各第2流体通路の開口へ供給冷媒を流入させることを特徴とする請求項1又は請求項2又は請求項3に記載のロータリジョイント。
PCT/JP2009/052418 2008-04-03 2009-02-13 ロータリジョイント WO2009122782A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010505439A JP5250852B2 (ja) 2008-04-03 2009-02-13 ロータリジョイント
CN2009801124047A CN101983299B (zh) 2008-04-03 2009-02-13 旋转接头
US12/935,956 US8336921B2 (en) 2008-04-03 2009-02-13 Rotary joint
EP09726971.6A EP2267350B1 (en) 2008-04-03 2009-02-13 Rotary joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008097403 2008-04-03
JP2008-097403 2008-04-03

Publications (1)

Publication Number Publication Date
WO2009122782A1 true WO2009122782A1 (ja) 2009-10-08

Family

ID=41135181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052418 WO2009122782A1 (ja) 2008-04-03 2009-02-13 ロータリジョイント

Country Status (6)

Country Link
US (1) US8336921B2 (ja)
EP (1) EP2267350B1 (ja)
JP (1) JP5250852B2 (ja)
CN (1) CN101983299B (ja)
TW (1) TWI449858B (ja)
WO (1) WO2009122782A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099385A1 (ja) * 2011-12-27 2013-07-04 イーグル工業株式会社 回転継手

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505660B2 (ja) * 2009-06-02 2014-05-28 国立大学法人東京海洋大学 低温用ロータリージョイント
JP5622258B2 (ja) * 2009-12-21 2014-11-12 日本ピラー工業株式会社 多流路形ロータリジョイント
JP5789118B2 (ja) * 2011-04-15 2015-10-07 津田駒工業株式会社 ロータリージョイント装置およびロータリージョイント装置の加工方法ならびにロータリージョイント装置を備えた工作機械用の主軸駆動装置
CN102352943B (zh) * 2011-09-28 2013-02-06 中联重科股份有限公司 旋转接头
US9234647B2 (en) 2012-05-03 2016-01-12 Abl Ip Holding Llc Light engine
WO2016167745A1 (en) 2015-04-14 2016-10-20 Hewlett Packard Enterprise Development Lp Magnetic fluid connector
SG11201803227QA (en) * 2015-10-23 2018-05-30 Single Buoy Moorings Swivel stack
CN207780654U (zh) * 2017-07-10 2018-08-28 中兴通讯股份有限公司 转轴连接装置和多屏移动终端设备
CN107956945B (zh) * 2017-09-14 2019-10-15 华工法利莱切焊系统工程有限公司 一种中空气电滑环
US10221981B1 (en) 2018-03-15 2019-03-05 Joshua Zulu Universal high-speed rotary union
CN113366175A (zh) * 2019-01-22 2021-09-07 奥布拉马提克股份公司 装配连接件
CN110005956B (zh) * 2019-04-30 2023-12-22 鞍山市昱虎流体设备有限公司 壳体拆分式防冰冻低温流体旋转接头
JP7229096B2 (ja) * 2019-05-17 2023-02-27 日本ピラー工業株式会社 ロータリジョイント
CN110518376B (zh) * 2019-08-30 2021-05-28 天津大学 一种高温超导电力电缆多通接头
CN110469737A (zh) * 2019-09-16 2019-11-19 深圳市集银科技有限公司 一种真空气路360度旋转机构
CN111306390A (zh) * 2020-04-16 2020-06-19 北京特思迪设备制造有限公司 一种机械式密封的旋转接头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851767A (ja) * 1994-08-10 1996-02-20 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の回転子及びこれを用いた冷媒給排装置
JP3306452B2 (ja) 1990-04-06 2002-07-24 株式会社日立製作所 冷媒供給装置
JP2003065477A (ja) 2001-05-15 2003-03-05 General Electric Co <Ge> 超伝導コイルを備えたロータへの極低温気体移送継手を有する同期機械
WO2006080280A1 (ja) * 2005-01-26 2006-08-03 Eagle Industry Co., Ltd. 極低温流体供給排出用装置および超電導装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991587A (en) * 1975-04-30 1976-11-16 General Electric Company Method of supplying cryogenic fluid through a transfer joint employing a stepped bayonet relative-motion gap
US4289985A (en) * 1978-12-22 1981-09-15 Popov Jury S Electrical machine with cryogenic cooling
JPH09322523A (ja) * 1996-06-03 1997-12-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の連続真空排気装置
JPH1194095A (ja) * 1997-09-24 1999-04-09 Nok Corp 磁性流体を利用した密封装置
US6605885B2 (en) * 2001-05-15 2003-08-12 General Electric Company Super-conducting rotor coil support with tension rods and bolts
US6605886B2 (en) * 2001-07-31 2003-08-12 General Electric Company High temperature superconductor synchronous rotor coil support insulator
US6857635B1 (en) * 2001-10-18 2005-02-22 Ferrotec (Usa) Corporation Ultra high vacuum ferrofluidic seals and method of manufacture
JP2006179613A (ja) * 2004-12-21 2006-07-06 Rigaku Corp 半導体ウエハ縦型熱処理装置用磁性流体シールユニット
CN100360839C (zh) * 2006-08-01 2008-01-09 中国兵器工业第五二研究所 一种磁性液体密封装置
US9695942B2 (en) * 2008-03-28 2017-07-04 Eagle Industry Co., Ltd Rotary joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306452B2 (ja) 1990-04-06 2002-07-24 株式会社日立製作所 冷媒供給装置
JPH0851767A (ja) * 1994-08-10 1996-02-20 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の回転子及びこれを用いた冷媒給排装置
JP2003065477A (ja) 2001-05-15 2003-03-05 General Electric Co <Ge> 超伝導コイルを備えたロータへの極低温気体移送継手を有する同期機械
WO2006080280A1 (ja) * 2005-01-26 2006-08-03 Eagle Industry Co., Ltd. 極低温流体供給排出用装置および超電導装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2267350A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099385A1 (ja) * 2011-12-27 2013-07-04 イーグル工業株式会社 回転継手
JPWO2013099385A1 (ja) * 2011-12-27 2015-04-30 イーグル工業株式会社 回転継手
KR101527313B1 (ko) * 2011-12-27 2015-06-09 이글 고오교 가부시키가이샤 회전 이음매

Also Published As

Publication number Publication date
CN101983299B (zh) 2013-03-20
EP2267350B1 (en) 2016-01-06
CN101983299A (zh) 2011-03-02
JPWO2009122782A1 (ja) 2011-07-28
TW201002972A (en) 2010-01-16
US8336921B2 (en) 2012-12-25
US20110031744A1 (en) 2011-02-10
TWI449858B (zh) 2014-08-21
EP2267350A1 (en) 2010-12-29
EP2267350A4 (en) 2013-05-22
JP5250852B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5250852B2 (ja) ロータリジョイント
JP5325878B2 (ja) ロータリジョイント
JP4602397B2 (ja) 極低温流体供給排出用装置および超電導装置
US6762522B2 (en) Magnetic bearing for suspending a rotating shaft using high Tc superconducting material
US8384255B2 (en) Superconducting rotating electrical machine
MXPA02004840A (es) Maquina sincronica que tiene acoplamiento de transferencia de gas criogenico al rotor con bobinas super conductoras.
EP2439438B1 (en) Rotary joint for low-temperature application
JP5631350B2 (ja) 圧縮機
US4309632A (en) Electric machine with a rotor with a superconducting field winding
US6657333B2 (en) Vacuum coupling of rotating superconducting rotor
JPH06185483A (ja) ドライメカニカルブースタポンプ
CN212726737U (zh) 一种电机散热结构
US10738783B2 (en) Cryogenic installation comprising a circulator
CN114905327B (zh) 一种电主轴结构及加工设备
KR20240106716A (ko) 극저온 초전도 회전기의 커플링 구조

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112404.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12935956

Country of ref document: US

Ref document number: 2010505439

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009726971

Country of ref document: EP