WO2009119145A1 - 導波路型半導体光変調器及びその製造方法 - Google Patents

導波路型半導体光変調器及びその製造方法 Download PDF

Info

Publication number
WO2009119145A1
WO2009119145A1 PCT/JP2009/050845 JP2009050845W WO2009119145A1 WO 2009119145 A1 WO2009119145 A1 WO 2009119145A1 JP 2009050845 W JP2009050845 W JP 2009050845W WO 2009119145 A1 WO2009119145 A1 WO 2009119145A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
waveguide
optical
optical modulator
type semiconductor
Prior art date
Application number
PCT/JP2009/050845
Other languages
English (en)
French (fr)
Inventor
友章 加藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US12/736,127 priority Critical patent/US8300991B2/en
Priority to JP2010505417A priority patent/JP5170236B2/ja
Publication of WO2009119145A1 publication Critical patent/WO2009119145A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • G02F1/0154Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index using electro-optic effects, e.g. linear electro optic [LEO], Pockels, quadratic electro optical [QEO] or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/127Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode travelling wave
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/06Materials and properties dopant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/101Ga×As and alloy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/102In×P and alloy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/108Materials and properties semiconductor quantum wells

Definitions

  • the present invention relates to a semiconductor light emitting device, and more particularly to a high output semiconductor light emitting device.
  • wavelength multiplexing technique for multiplexing and transmitting a plurality of signal lights having different wavelengths is widely used.
  • the key component in an optical transmitter for a wavelength division multiplexing optical fiber communication system is an external optical modulator.
  • the external optical modulator is capable of high-speed optical modulation, its signal light wavelength dependency is small, and unnecessary optical phase modulation (wavelength chirping) that causes deterioration of the received optical waveform during long-distance signal transmission Is desired to be small.
  • an MZ type optical intensity modulator in which an optical waveguide type optical phase modulator is incorporated in a Mach-Zehnder (MZ) optical interferometer is suitable.
  • LiN lithium niobate
  • An MZ optical interferometer is configured.
  • An electrode for applying an electric field to the waveguide type optical phase modulator is provided in the vicinity thereof.
  • Current LN-based MZ type optical intensity modulator is commercialized, its size (electrode length: about 5 cm, module length: about 15cm) to and drive voltage (about 5V p-p) problem is.
  • the size electrode length: about 5 cm, module length: about 15cm
  • drive voltage about 5V p-p
  • the propagation wavelength of the modulated RF signal is the optical phase in the LZ-based MZ type optical intensity modulator.
  • the length is shortened to a level that cannot be ignored with respect to the electrode length of the modulator region (interaction length between the modulated optical signal and the modulated RF signal). For this reason, the potential distribution of the electrode structure, which is a means for applying an electric field to the optical phase modulator, can no longer be considered uniform in the longitudinal axis direction.
  • the electrode structure In order to correctly estimate the light modulation characteristics, it is necessary to handle the electrode structure as a microwave transmission path and the modulated RF signal transmitted there as a traveling wave. In that case, the respective phase velocities v o and v m are made as close as possible to each other (phase velocity matching) so that the effective interaction length between the modulated optical signal propagating in the optical phase modulator region and the modulated RF signal can be obtained as much as possible. ) A so-called traveling wave electrode structure is required.
  • III-V group compound semiconductors such as gallium arsenide (GaAs) and indium phosphorus (InP) are used for the optical waveguide type optical phase modulator and MZ type optical intensity modulator.
  • GaAs gallium arsenide
  • InP indium phosphorus
  • a medium in which the (complex) refractive index varies with the electric field strength is defined as an undoped optical waveguide core layer.
  • a pin-type diode structure single mode optical waveguide is practical.
  • a p-type semiconductor having a conductivity lower than that of an n-type semiconductor is generally used as a cladding layer.
  • the (complex) characteristic impedance (absolute value) of the transmission line that affects the modulated RF signal is reduced to about 20 ⁇ .
  • This characteristic impedance (absolute value thereof) is 1 ⁇ 2 or less of the typical characteristic impedance (50 ⁇ ) of the microwave circuit. This causes deterioration of the modulation frequency band due to reflection due to impedance mismatch and an increase in power consumption of the drive circuit when the modulated RF signal output from the drive circuit is excited to the optical modulator as the transmission line.
  • the effective refractive index n m ( c 0 /
  • Such phase velocity mismatch between the modulated signal light and the modulated RF signal reduces the effective interaction length between the two, and as in the case of the impedance mismatch described above, the modulation frequency band and the drive voltage are reduced. Problems arise.
  • the p-type semiconductor has a larger light absorption coefficient than the n-type semiconductor. Therefore, when it is used as a cladding layer of a long optical waveguide element such as a traveling wave type optical modulator, it tends to cause an increase in insertion loss due to attenuation of the modulated optical signal.
  • the pin type diode structure is used to reduce the operating voltage and increase the bandwidth when the optical waveguide type optical phase modulator and the electroabsorption type optical intensity modulator are formed as traveling wave type electrode structures. I have a problem.
  • a bias voltage is applied as it is to the nn stacked structure, carriers are injected into the undoped layer all at once, so that an essential electric field cannot be applied to the undoped layer.
  • a semi-insulating (SI) semiconductor layer doped with an impurity having an electron capturing ability is sandwiched between an undoped optical waveguide core layer and an n-type cladding layer. It is necessary to have an SI-in type stacked structure.
  • Non-Patent Document 1 reports an InP-based semiconductor MZ light intensity modulator.
  • a pair of waveguide type optical phase modulator regions constituting the semiconductor MZ optical variable intensity modulator has an n-InP upper cladding layer, an SI-InP layer, and transition wavelengths between the first quantum orders of electron-heavy holes.
  • This waveguide is processed into a mesa stripe shape with a width of 2 ⁇ m using a dry etching technique, and both sides thereof are embedded with a SiN film and a low dielectric constant resin (benzocyclobutene: BCB).
  • BCB low dielectric constant resin
  • Patent Document 1 can be cited as a related technique of the present invention.
  • the carrier density of the undoped group III-V compound semiconductor used as the optical waveguide core layer is about 5 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 16 cm ⁇ 3 for n-type.
  • the SI semiconductor layer characterized by the electron capture ability behaves in the same manner as a p-type semiconductor having an impurity concentration equal to the electron capture density except for the difference in Fermi level. That is, it is considered that a phenomenon similar to that of the pn junction occurs near the interface where the undoped optical waveguide core layer and the SI semiconductor layer are stacked.
  • the average electron capture density of the SI semiconductor layer that can be actually produced is 5 ⁇ 10 16 cm ⁇ 3 to 2 ⁇ 10 in InP crystal-grown by a widely used metal organic vapor phase epitaxy (MOVPE) method. It is about 17 cm ⁇ 3 . That is, it is only about one digit larger than the carrier density of the undoped optical waveguide core layer.
  • MOVPE metal organic vapor phase epitaxy
  • the electric field strength in the undoped optical waveguide core layer contributing to actual optical modulation is reduced due to the manufacturing method. It tends to be lower than that of the in-layer structure. As a result, in order to obtain the same light modulation efficiency per unit length, it is necessary to increase the drive voltage. In addition, since no effective solution is known, a practical n-SI-in-type stacked semiconductor optical modulator has not been realized.
  • An object of the present invention is to provide a traveling wave type semiconductor optical phase modulator that can improve the n-SI-in type stacked structure and can be driven at high speed and low voltage.
  • a waveguide-type semiconductor optical modulator includes: A semiconductor substrate; First and second n-type cladding layers formed on the semiconductor substrate; An undoped optical waveguide core layer and an electron trap layer formed between the first and second n-type cladding layers; A hole supply layer is formed between the undoped optical waveguide core layer and the electron trap layer.
  • a traveling wave type semiconductor optical phase modulator capable of being driven at high speed and low voltage can be provided by improving the n-SI-in type stacked structure.
  • FIG. 1 is a diagram schematically showing the operation principle of the present invention.
  • 1A shows an energy band structure of a pin type stacked structure
  • FIG. 1B shows an energy band structure of an n-SI pin type stacked structure according to the present invention
  • FIG. (C) is a diagram showing an energy band structure of an n-SI-in type stacked structure.
  • the electric field strength of the undoped optical waveguide core layer was improved by suppressing the potential gradient inside the SI semiconductor layer as compared with FIG. 1C.
  • the undoped optical waveguide core layer (i layer) and the SI semiconductor layer (SI layer) has a higher electron trapping capacity between the undoped optical waveguide core layer (i layer) and the SI semiconductor layer (SI layer) than that of the SI semiconductor layer, thereby affecting the optical waveguide characteristics.
  • a hole supply layer that is thin enough to be ignored in practical use is formed.
  • This thin hole supply layer makes the potential gradient formed toward the inside of the SI semiconductor layer from the contact interface between the undoped optical waveguide core layer and the SI semiconductor layer more steep in the n-SI-in type stacked structure.
  • an effect equivalent to effectively reducing the thickness of the depletion layer extending into the SI semiconductor layer is brought about.
  • the carrier density of the hole supply layer must be larger than both the carrier density of the undoped optical waveguide core layer and the electron capture density of the SI semiconductor layer.
  • a p-type semiconductor layer doped with a p-type impurity is suitable as the hole supply layer.
  • this material also has the above-mentioned problem of impurity light absorption.
  • the layer thickness setting is also important. Therefore, it is considered that the impurity concentration of the hole supply layer is about 4 ⁇ 10 17 to 2 ⁇ 10 18 cm ⁇ 1 and the thickness is about 10 to 20 nm as a practical range.
  • a thin diffusion prevention layer between them. Specifically, it is effective to dope silicon (Si) and / or ruthenium (Ru), which are expected to have an effect of suppressing the solid-phase diffusion of p-type impurities in the group III-V semiconductor. It is also effective to use a hole supply layer doped with carbon (C) as a p-type impurity that is considered to have relatively small solid phase diffusion even in the MOVPE method. Further, beryllium (Be) may be used as a p-type impurity by molecular beam epitaxy (MBE), which is small enough that the solid phase diffusion of impurities is practically negligible.
  • MBE molecular beam epitaxy
  • n-SI-i-n layered structure of the modulated RF signal Even if an extremely thin hole supply layer is introduced, it is hardly damaged. Therefore, the realization of the phase velocity matching state is easy as in the case of the n-SI-in type stacked structure.
  • FIGS. 2A to 2C are a plan view and a cross-sectional view of the waveguide type semiconductor optical modulator according to the first embodiment of the present invention.
  • 2A is a plan view
  • FIG. 2B is a IIB-IIB sectional view of FIG. 2A
  • FIG. 2C is a IIC-IIC sectional view of FIG. 2A.
  • the striped optical waveguide 111 on the semi-insulating semiconductor substrate 101 is embedded with the embedded layer 112 and the embedded contact layer 113.
  • the striped optical waveguide 111 includes a buffer layer 102, a lower cladding layer 103, an undoped optical waveguide core layer 104, a diffusion prevention layer 105, a hole supply layer 106, an electron trapping layer 107, an upper cladding layer 108, and a contact layer 109. It has.
  • a buffer layer 102, a lower cladding layer 103, an undoped optical waveguide core layer 104, a diffusion prevention layer 105, a hole supply layer 106, an electron trapping layer are sequentially formed on the semi-insulating semiconductor substrate 101 from the bottom.
  • 107, the upper cladding layer 108, and the contact layer 109 are successively formed by the first crystal growth.
  • a stripe-shaped optical waveguide 111 is formed by providing a stripe-shaped etching stop film 110 on the surface and etching.
  • the stripe-shaped optical waveguide 111 is buried with the buried layer 112 and the buried contact layer 113 in the second crystal growth to form a so-called high resistance buried hetero (SI-BH) structure.
  • SI-BH high resistance buried hetero
  • an etching stop film 114 is formed on this surface, and the buried layer 112 and the buried contact layer 113 are etched to a desired width. Subsequently, an insulating film 116 is provided on the surface, an opening is provided in the vicinity of the contact layer 109, and then an electrode film is formed over the entire surface. Subsequently, the electrode film is separated into an upper electrode 117 and a lower electrode 118 by photolithography and etching.
  • the contact layer 109 and the buried contact layer 113 are partially removed in order to suppress the propagation of the modulated RF signal, and then the high resistance region 119 in which the conductivity is suppressed by ion implantation. It is said. Finally, both ends of the optical waveguide were cleaved, and the low reflection film 120 was applied to both end surfaces to form signal light incident / exit surfaces. As described above, the waveguide type semiconductor optical modulator shown in FIGS. 2A to 2C is obtained.
  • This waveguide type semiconductor optical modulator has a thickness, refractive index, and stripe width of each layer so that a single mode optical waveguide can be formed for an optical signal in the wavelength band to be used (single mode waveguide condition is satisfied). The relationship is properly designed in advance. Similarly, this waveguide type semiconductor optical modulator forms a transmission line for the modulated RF signal propagating here, so that the phase velocity difference between the modulated RF signal and the modulated optical signal is within about ⁇ 10%.
  • each layer is appropriately designed in advance within the range satisfying the above-mentioned single mode waveguide condition so that the difference between the characteristic impedance and the output impedance of the drive circuit is also within about ⁇ 10%. Has been.
  • a modulated optical signal (not shown) incident and coupled to the end face of the waveguide type semiconductor optical modulator using a lens or the like propagates along the longitudinal axis of the undoped optical waveguide core layer 104, and the opposite end face It is emitted from.
  • the complex index of refraction of the undoped optical waveguide core layer 104 that gives the difference is changed.
  • the rate of change depends on the energy difference between the band gap of the undoped optical waveguide core layer 104 and the optical signal.
  • the intensity and phase of the signal light change according to the applied electric field while passing through the waveguide type semiconductor optical modulator. Thereby, it becomes possible to operate as an optical intensity modulator or an optical phase modulator.
  • a hole supply layer 106 and a diffusion prevention layer 105 that suppresses impurity solid-phase diffusion from the hole supply layer 106 to the periphery thereof are provided.
  • the hole supply layer 106 suppresses the width of the depletion layer extending inside the electron trap layer 107 and realizes an effect that the drive voltage applied between the upper electrode 117 and the lower electrode 118 is efficiently applied to the undoped optical waveguide core layer 104. To do.
  • each layer thickness and impurity concentration are designed to be thin enough that the absorption of the modulated optical signal can be ignored in practical use. As a result, it is possible to operate as an ideal traveling wave type optical phase modulator that achieves both the above-described speed matching and impedance matching and is driven at a lower voltage.
  • Example 1 As shown in FIGS. 2A to 2C, an n-InP buffer layer 102, an n-InP lower clad layer 103 (thickness: 1.5 ⁇ m), in order from the bottom onto a semi-insulating semiconductor substrate 101 made of InP, Undoped AlGaInAs / AlGaInAs multiple quantum well structure undoped optical waveguide core layer 104 (well thickness 10 nm, well layer 12 layer, barrier layer thickness 10 nm, transition wavelength 1370 nm), Si + Ru co-doped InP diffusion prevention layer 105 (thickness 50 nm), C-doped InP hole supply layer 106 (thickness 50 nm), Ru-doped semi-insulating InP electron trap layer 107 (thickness 700 nm), n-InP upper cla
  • a striped optical waveguide 111 is formed by providing a 1.3 ⁇ m wide striped SiN etching stop film 110 on the surface and etching.
  • the striped optical waveguide 111 is buried with a ruthenium (Ru) doped semi-insulating InP buried layer 112 and an n-InGaAs buried contact layer 113, so-called high resistance buried heterostructure.
  • Ru ruthenium
  • a SiN etching stop film 114 is formed on this surface, and the Ru-doped semi-insulating InP buried hetero layer 112 and the n-InGaAs buried contact layer 113 are etched to a desired width.
  • a SiN insulating film 116 is provided on the surface, an opening is provided along the vicinity of the n-InGaAs contact layer 109, and then a Ti—Pd—Au electrode film is formed on the entire surface.
  • the Ti—Pd—Au electrode film is separated into a Ti—Pd—Au upper electrode 117 and a Ti—Pd—Au lower electrode 118 by photolithography and etching.
  • the n-InGaAs contact layer 109 and the n-InGaAs buried contact layer 113 are partially removed in order to suppress the propagation of the modulated RF signal, and then the conductivity is increased by Ti ion implantation.
  • the suppressed high resistance region 119 is used.
  • both ends of the optical waveguide were cleaved, and a low-reflection film 120 having a reflectance of 0.1% or less was applied to both end surfaces to form a signal light incident / exit surface.
  • the element has a length of 2 mm and an electrode length of 1.9 mm.
  • the insertion loss when a modulated optical signal having a wavelength of 1530 to 1570 nm is incident on the waveguide type optical phase modulator in the TE mode is about 3 dB, which is a practical value.
  • the characteristic impedance of the traveling wave electrode with respect to the modulated RF signal was about 50 ⁇ , the modulation frequency band was 45 GHz, and the reflection was ⁇ 13 dB or less over DC to 45 GHz.
  • the phase of the modulated optical signal changed by ⁇ radians over a wavelength range of 1530 to 1570 nm when a bias voltage of 2.5 V was applied.
  • the transition wavelength of the undoped optical waveguide core layer 104 is changed to around 1490 nm, and light absorption at the time of applying an electric field is more actively used, so that a waveguide for a modulated optical signal having a wavelength of 1550 nm is used. It is also possible to operate as a type light intensity modulator.
  • FIGS. 4A to 4C are a plan view and a sectional view of a waveguide type semiconductor optical modulator according to the second embodiment of the present invention.
  • 4A is a plan view
  • FIG. 4B is a sectional view taken along line IVB-IVB in FIG. 4A
  • FIG. 4B is a sectional view taken along line IVC-IVC in FIG. 4A.
  • the waveguide type semiconductor optical modulator according to the second embodiment is a Mach-Zehnder (MZ) type optical intensity modulator. As shown in FIGS.
  • MZ Mach-Zehnder
  • the stripe-shaped optical waveguide 211 on the semi-insulating semiconductor substrate 201 includes the buried layer 212 and the buried contact layer 213. It has a buried, so-called high resistance buried hetero (SI-BH) structure.
  • the striped optical waveguide 211 includes a buffer layer 202, a lower cladding layer 203, an undoped optical waveguide core layer 204, a diffusion prevention layer 205, a hole supply layer 206, an electron trapping layer 207, an upper cladding layer 208, and a contact layer 209. It has.
  • a buffer layer 202, a lower cladding layer 203, an undoped optical waveguide core layer 204, a diffusion prevention layer 205, a hole supply layer 206, and an electron trap layer are sequentially formed on the semi-insulating semiconductor substrate 201 from the bottom.
  • 207, the upper cladding layer 208, and the contact layer 209 are successively formed by the first crystal growth.
  • two stripe-shaped optical waveguides 211 are formed by providing and etching two stripe-shaped etching stopper films 210 on the surface.
  • the stripe-shaped optical waveguide 211 is buried with the buried layer 212 and the buried contact layer 213 in the second crystal growth to form a so-called high resistance buried hetero (SI-BH) structure.
  • SI-BH high resistance buried hetero
  • an etching stop film 214 is formed on this surface, and the buried layer 212 and the buried contact layer 213 are etched to a desired width. Subsequently, an insulating film 215 is provided on the surface, an opening is provided in the vicinity of the contact layer, and then an electrode film is formed on the entire surface. Subsequently, the electrode film is separated into an upper electrode 217 and a lower electrode 218 by photolithography and etching.
  • the contact layer 209 and the buried contact layer 213 are partially removed, and then the high resistance region 219 in which the conductivity is suppressed by ion implantation. It is said.
  • a pair of striped optical waveguides 211 are connected to a two-input output multimode interference optical multiplexer / demultiplexer 221 via a bent optical waveguide 222.
  • both ends of the optical waveguide were cleaved, and the signal light incident / exit surfaces were formed by applying low reflection films 220 to both end surfaces.
  • the waveguide type semiconductor optical modulator shown in FIGS. 4A to 4C is obtained.
  • the operation of the MZ type light intensity modulator shown in FIGS. 4A to 4C will be described. Relationship between thickness, refractive index, and stripe width of each layer so that a pair of optical phase modulator regions forms a single-mode optical waveguide for optical signals in the wavelength band to be used (single-mode waveguide conditions are satisfied) Is appropriately designed in advance. Similarly, the waveguide type semiconductor optical modulator forms a transmission line for the modulated RF signal propagating therethrough so that the phase velocity difference between the modulated RF signal and the modulated optical signal is within about ⁇ 10%.
  • each layer is appropriately set in advance within the range satisfying the above-mentioned single mode waveguide condition so that the difference between the characteristic impedance and the output impedance of the drive circuit is also within about ⁇ 10%. Designed.
  • a modulated optical signal (not shown) incident and coupled to the end face of the MZ-type optical intensity modulator using a lens or the like propagates along the longitudinal axis of the undoped optical waveguide core layer 204, and from the opposite end face. Emitted.
  • the complex index of refraction of the undoped optical waveguide core layer 204 that changes the above changes. The rate of change depends on the energy difference between the band gap of the undoped optical waveguide core layer 204 and the optical signal.
  • a hole supply layer 206 and a diffusion prevention layer 205 that suppresses impurity solid-phase diffusion from there to the periphery are provided between the undoped optical waveguide core layer 204 and the electron trap layer 207.
  • the hole supply layer 206 suppresses the depletion layer width extending inside the electron trap layer 207 and realizes an effect that the drive voltage applied between the upper electrode 217 and the lower electrode 218 is efficiently applied to the undoped optical waveguide core layer 204. To do.
  • each layer thickness and impurity concentration are designed to be thin enough that the absorption of the modulated optical signal can be ignored in practical use. As a result, it is possible to operate as an ideal traveling wave type optical phase modulator that achieves both the above-described speed matching and impedance matching and is driven at a lower voltage.
  • Example 2 the n-InP buffer layer 202, the n-InP lower cladding layer 203, the undoped AlGaInAs / AlGaInAs multiple quantum well core layer 204, the Ru + Si co-doped diffusion prevention layer 205, in order from the bottom onto the semi-insulating InP substrate 201, A C-doped hole supply layer 206, a Ru-doped semi-insulating InP electron trapping layer 207, an n-InP upper cladding layer 208, and an n-InGaAs contact layer 209 are successively formed by the first crystal growth, and then formed on the surface.
  • a stripe-shaped optical waveguide 211 forming an MZ interferometer is formed by etching by providing a stripe-shaped SiN etching stop film 210, and this stripe-shaped optical waveguide 211 is formed into a Ru-doped semi-insulating InP buried layer by the second crystal growth.
  • 212 and n-InGaAs buried contact layer 213 Embedded has a so-called high-resistance buried (SI-BH) structure.
  • SI-BH high-resistance buried
  • an SiN etching stop film 214 having a width of 8 ⁇ m is formed on this surface, and the Ru-doped semi-insulating InP buried layer 212 and the n-InGaAs buried contact layer 213 are etched. At this time, a separation groove 215 that insulates the pair of striped optical waveguides from each other is also formed. Subsequently, an SiN film 216 is provided on the surface, an opening is provided in the vicinity of the contact layer, and then a Ti—Pd—Au electrode film is formed on the entire surface.
  • the electrode film is separated into a Ti—Pd—Au upper electrode 217 and a Ti—Pd—Au lower electrode 218 by photolithography and etching.
  • the n-InGaAs contact layer 209 and the n-InGaAs buried contact layer 213 are partially removed and the conductivity is increased by Ti ion implantation in order to suppress the propagation of the modulated RF signal.
  • the suppressed high resistance region 219 is used.
  • the pair of striped optical waveguides are connected to a two-input output multimode interference optical multiplexer / demultiplexer 221 through a bent optical waveguide 222.
  • both ends of the optical waveguide were cleaved, and a signal light incident / exit surface was formed by applying a low reflection film 220 having a reflectance of 0.1% or less on both end surfaces.
  • the length of this element is 4.5 mm, and the interaction length between the signal light and the electrode is 1.9 mm.
  • the insertion loss with respect to modulated signal light having a wavelength of 1530 to 1570 nm incident in the TE mode of this element was about 7 dB.
  • the characteristic impedance of the traveling wave electrode was about 50 ⁇ , the modulation frequency band was 45 GHz, and the reflection was ⁇ 13 dB or less over DC to 45 GHz. Further, the modulated signal light having a wavelength of 1530 to 1570 nm was extinguished at a bias voltage of 2.5 V, and the extinction ratio was 15 dB.
  • the first effect of the present invention is inherently possessed by an n-SI-in type stacked structure, which is a doping profile that is expected to be ideal for high-speed, low-loss optical modulation as a traveling-wave semiconductor optical phase modulator. It can solve the problem of low electric field strength.
  • the reason is that a potential gradient inside the SI semiconductor layer is suppressed by newly inserting a hole supply layer having a higher electron capture capability than that of the SI semiconductor layer between the undoped optical waveguide core layer and the SI semiconductor layer. This is because an externally applied voltage is effectively applied to the undoped optical waveguide core layer.
  • the second effect of the present invention is that, in realizing the first effect, the ideal high-speed and low-loss optical modulation that was an advantage of the n-SI-in-type stacked structure is not impaired.
  • the reason is that the first effect can be realized with a structure that is thin enough to practically ignore the influence on the optical waveguide characteristics.
  • the third effect of the present invention is that it is highly practical because a special process facility or the like is not required for realizing the present invention.
  • the reason is that when the crystal structure of the laminated structure of the optical waveguide is grown, the structure is completely the same except that a very thin hole supply layer and diffusion prevention layer are newly added. Because there is no need.
  • the waveguide type semiconductor optical modulator according to the present invention has an increase in driving voltage, which has been a problem in realizing an ultrahigh-speed optical modulator and its integrated optical device particularly for a trunk optical fiber communication system.
  • the manufacturing process remains the same without using special parts or other components.
  • the present invention provides a structure that can be improved, and enables further miniaturization, higher speed, and lower power consumption of the next generation optical fiber communication system.
  • the semiconductor light-emitting device can be used particularly for a high-power semiconductor light-emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 n-SI-i-n型積層構造を改良し、高速・低電圧駆動可能な進行波型半導体光位相変調器を提供する。本発明に係る導波路型半導体光変調器は、半導体基板101と、半導体基板101上に形成された第1のn型クラッド層103及び第2のn型クラッド層108と、第1のn型クラッド層102及び第2のn型クラッド層108の間に形成されたアンドープ光導波路コア層104及び電子捕獲層107とを備え、アンドープ光導波路コア層104と電子捕獲層107との間に正孔供給層106が形成されていることを特徴とするものである。

Description

導波路型半導体光変調器及びその製造方法
 本発明は、半導体発光素子に関し、特に高出力半導体発光素子に関する。
 インターネットや映像配信等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴って、幹線系やメトロ系では、より長距離大容量かつ高信頼な高密度波長多重光ファイバ通信システムが導入されている。また、加入者系でも、光ファイバアクセスサービスが急速に普及している。光ファイバ通信システムでは、光伝送路である光ファイバの敷設コスト低減や光ファイバ1本当たりの伝送帯域利用効率を高めることが望まれている。そのため、複数の異なる波長の信号光を多重化して伝送する波長多重技術が広く用いられている。
 波長多重光ファイバ通信システム向け光送信機におけるキーコンポーネントは、外部光変調器である。外部光変調器には、高速光変調が可能であること、その信号光波長依存性が小さいこと、さらに、長距離信号伝送時の受信光波形劣化を招く不要な光位相変調(波長チャーピング)が小さいことが望まれる。こうした用途には、マッハ・ツェンダー(MZ:Mach-Zehnder)光干渉計に光導波路型の光位相変調器を組み込んだMZ型光強度変調器が適している。
 現在実用化されているMZ型光強度変調器では、一般的に、代表的な電気光学結晶であるニオブ酸リチウム(LN:LiNbO)基板上にチタン(Ti)拡散プレーナ光導波路構造の導波路型光位相変調器及び光合分波器がモノリシック光集積されている。これにより、MZ光干渉計が構成されている。また、導波路型光位相変調器に電場を印加するための電極が、その近傍に設けられている。現在商用化されているLNベースのMZ型光強度変調器は、その大きさ(電極長:約5cm、モジュール長: 約15cm)や駆動電圧(約5Vp-p)に課題はある。しかしながら、高速長距離光伝送特性の面でこれを凌ぐ実用的な外部光変調器がまだないため、様々な光通信システムの光送信機ユニット等で広く用いられている。
 こうした外部光変調器を用いて高速光変調を行う場合、とりわけ変調RF信号の周波数が1GHzを超えるような高周波領域では、変調RF信号の伝搬波長がLNベースのMZ型光強度変調器における光位相変調器領域の電極長(被変調光信号と変調RF信号の相互作用長)に対して無視できない程度にまで短くなる。このため、光位相変調器に電場を印加する手段である電極構造の電位分布は、もはや長手軸方向に均一とは見なせなくなる。光変調特性を正しく見積もるためには、この電極構造をマイクロ波伝送路として、ここを伝わる変調RF信号を進行波として、それぞれ取り扱う必要がある。その場合、光位相変調器領域を伝搬する被変調光信号と変調RF信号との実効的な相互作用長をできるだけ稼げるよう、それぞれの位相速度v、vを互いにできるだけ近づける(位相速度整合させる)工夫を施した、いわゆる進行波電極構造が必要となる。
 また、光導波路型の光位相変調器やMZ型光強度変調器には、ガリウム砒素(GaAs)やインジウム燐(InP)などのIII-V族化合物半導体が用いられる。ここで、(複素)屈折率が電場強度で変化する媒質をアンドープの光導波路コア層とする。この光導波路コア層をp型クラッド層とn型クラッド層とにより上下から挟み込むことにより、p-i-n型ダイオード構造の半導体光導波路が構成される。これに逆方向バイアス電圧を印加する。
 光ファイバ通信システムで主に用いられる1550nm近傍の波長帯では、p-i-n型ダイオード構造単一モード光導波路が実用的である。この光導波路へ設けられたストライプ状の電極を変調RF信号に対する伝送線路とした場合、クラッド層としてn型半導体に比べて一般的に導電率の低いp型半導体を用いる。この影響として、変調RF信号に影響を与える伝送線路の(複素)特性インピーダンス(の絶対値)は20Ω程度まで低下してしまう。この特性インピーダンス(の絶対値)は、マイクロ波回路の代表的な特性インピーダンス(50Ω)の1/2以下である。これは、駆動回路が出力する変調RF信号を伝送線路としての光変調器へ励振する際に、インピーダンス不整合に起因した反射等よる変調周波数帯域の劣化や、駆動回路の消費電力増加を招く。
 また、変調RF信号に影響を与える実効屈折率n(=c/|v|,c:自由空間中での光速)も同じ理由から平均して7前後と、被変調光信号の実効屈折率n(=c/|v|、InPの場合には約3.5)との間に約2倍もの開きが生じてしまう。こうした被変調信号光と変調RF信号との間の位相速度不整合は、両者間の実効的な相互作用長を減少させ、上述のインピーダンス不整合がある場合と同様に、変調周波数帯域や駆動電圧に問題が生じる。
 さらに、p型半導体はn型半導体に比べて光吸収係数が大きい。そのため、進行波型光変調器のように長尺な光導波路素子のクラッド層として用いる場合、被変調光信号の減衰による挿入損失増加を招きやすい。
 このように、p-i-n型ダイオード構造は、光導波路型の光位相変調器や電界吸収型光強度変調器を進行波型電極構造とする際、動作電圧低減や広帯域化を図る上で問題を抱えている。
 こうした課題の根源であるp型半導体クラッド層をより導電率の高いn型半導体クラッド層で置き換えたn-i-n型積層構造は、上述のインピーダンス不整合や速度不整合を本質的に小さく抑えることが可能である。これにより素子長尺化による駆動電圧振幅低減と広帯域化の両立が期待できる。また、不純物吸収が抑えられるため、挿入損失低減も期待できる。こうした特長は、電界吸収型光変調器や光位相変調器など、半導体光導波路素子ベースの光変調器の低電圧・高速変調動作を実現する上で有利な進行波電極構造に適している。
 ただし、n-i-n積層構造へそのままバイアス電圧を印加すると、アンドープ層へ一気にキャリアが注入されてしまうため、アンドープ層へ肝心な電場を印加することができない。このキャリア注入を阻止するため、電子捕獲能を有する不純物がドーピングされた半絶縁性(Semi-insulating、SI)半導体層をアンドープ光導波路コア層とn型クラッド層との間に挟み込んだ、n-SI-i-n型積層構造とする必要がある。
 このn-SI-i-n型積層構造を応用した例として、非特許文献1に、InP系半導体MZ光強度変調器が報告されている。その半導体MZ光変強度変調器を構成する一対の導波路型光位相変調器領域が、n-InP上部クラッド層、SI-InP層、電子-重い正孔の各第1量子順位間の遷移波長が1370nmで厚さ0.3μmのアンドープInGaAlAs/InAlAs多重量子井戸コア層、n-InP下部クラッド層からなるn-SI-i-n型積層構造を備えている。この導波路は、ドライエッチング技術を用いて幅2μmでメサストライプ状に加工され、その両脇がSiN膜と低誘電率樹脂(ベンゾシクロブテン:BCB)で埋め込まれている。いわゆるハイメサ=リッジ構造である。なお、本発明の関連技術として、特許文献1を挙げることができる。
特開2005-099387号公報 菊池順裕、外6名、「低電圧駆動40Gbits/s半導体マッハツェンダ変調器」、信学技報、電子情報通信学会、2005年11月、p.41-44
 光導波路コア層として用いるアンドープのIII-V族化合物半導体のキャリア密度は、n型で5×1015cm-3~1×1016cm-3程度である。一方、電子捕獲能を特徴とするSI半導体層は、フェルミ準位の違いを除けば、その電子捕獲密度に等しい不純物濃度のp型半導体と概ね同様に振舞うと考えることができる。つまり、アンドープ光導波路コア層とSI半導体層が積層された界面近傍では、pn接合と同様な現象が起きていると考えられる。
 ここで、実際に作製できるSI半導体層の平均的な電子捕獲密度は、広く用いられている有機金属気相エピタキシー(MOVPE)法で結晶成長したInPにおいて5×1016cm-3~2×1017cm-3程度である。すなわち、アンドープ光導波路コア層のキャリア密度と比べても1桁程度しか大きくない。このように、キャリア密度の低いアンドープ光導波路コア層と電子捕獲密度の低いSI半導体層が互いに接する界面の近傍では、界面からそれぞれの層の内部に向かってキャリアが枯渇した空乏層が幅広く拡がる。
 こうした積層構造に外部からバイアス電圧を印加すると、この界面からアンドープ光導波路コア層及びSI半導体層へ伸びたそれぞれの空乏層には、互いの空乏層厚にほぼ比例して変調電圧が配分される。つまり、現実的な結晶成長条件で実際にn-SI-i-n型積層構造の導波路型光変調器を作製した場合、光変調に寄与する肝心のアンドープ光導波路コア層へは、外部から印加した電圧のわずか半分程度の電位差しか印加されない恐れがある。これでは、n-SI-i-n型積層構造に期待される最大の利点、すなわち、位相速度整合と特性インピーダンス整合の両立による広帯域低電圧駆動が実現できない。さらには、駆動電圧振幅の増加すら招きかねない。
 このように、高速・低電圧駆動が期待されるn-SI-i-n型積層構造では、その製法上、実際の光変調に寄与するアンドープ光導波路コア層内の電場強度が上述のp-i-n積層構造のそれに比べてどうしても低くなり易い。その結果、単位長さ当りの光変調効率を同じだけ得るためには、駆動電圧を高くする必要がある。また、その有効な解決手段も知られていないため、実用的なn-SI-i-n型積層構造の半導体光変調器はまた実現されていないのが現状である。
 本発明は、n-SI-i-n型積層構造を改良し、高速・低電圧駆動可能な進行波型半導体光位相変調器を提供することを目的とする。
 本発明に係る導波路型半導体光変調器は、
 半導体基板と、
 前記半導体基板上に形成された第1及び第2のn型クラッド層と、
 前記第1及び第2のn型クラッド層間に形成されたアンドープ光導波路コア層及び電子捕獲層とを備え、
 前記アンドープ光導波路コア層と前記電子捕獲層との間に正孔供給層が形成されていることを特徴とするものである。
 本発明によれば、n-SI-i-n型積層構造を改良し、高速・低電圧駆動可能な進行波型半導体光位相変調器を提供することができる。
本発明の動作原理を模式的に示した図である。 第1の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。 第1の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。 第1の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。 第1の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第1の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第1の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第1の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第2の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。 第2の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。 第2の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。 第2の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第2の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第2の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。 第2の実施の形態に係る導波路型半導体光変調器の製造フローを示す断面図である。
符号の説明
101、201 半絶縁性半導体基板
102、202 バッファ層
103、203 下部クラッド層
104、204 アンドープ光導波路コア層
105、205 拡散防止層
106、206 正孔供給層
107、207 電子捕獲層
108、208 上部クラッド層
109、209 コンタクト層
110、114、210、214 エッチング阻止膜
111、211 ストライプ状光導波路
112、212 埋め込み層
113、213 埋め込みコンタクト層
116、216 絶縁膜
117、217 上部電極
118、218 下部電極
119、219 高抵抗化領域
120、220 低反射膜
215 分離溝
221 光合分波器
222 曲がり光導波路
 発明者は、n-SI-i-n型積層構造において、特にアンドープ光導波路コア層(i層)とSI半導体層(SI層)の界面近傍におけるエネルギーバンドに着目した。図1は、本発明の動作原理を模式的に示した図である。図1(a)はp-i-n型積層構造のエネルギーバンド構造を、図1(b)は本発明に係るn-SI-p-i-n型積層構造のエネルギーバンド構造を、図1(c)はn-SI-i-n型積層構造のエネルギーバンド構造を、それぞれ示す図である。ここで、図1(b)に示すように、図1(c)に比べ、SI半導体層内部でのポテンシャル勾配を抑制することにより、アンドープ光導波路コア層の電場強度を改善した。具体的には、アンドープ光導波路コア層(i層)とSI半導体層(SI層)との間に、電子捕獲能がSI半導体層のそれに比べてより高い層として、光導波特性への影響が実用上無視できる程度に薄い正孔供給層を形成する。
 この薄い正孔供給層は、n-SI-i-n型積層構造においてアンドープ光導波路コア層とSI半導体層の接触界面からSI半導体層内部に向かって形成されるポテンシャル勾配をより急峻にさせる。また、SI半導体層内に向かって伸びる空乏層厚を実効的に薄くするに等しい効果をもたらす。こうした作用を実現するためには、この正孔供給層のキャリア密度が、アンドープ光導波路コア層のキャリア密度及びSI半導体層の電子捕獲密度のいずれよりも大きくなければならない。また、正孔供給層としてはp型不純物がドーピングされたp型半導体層が適当である。
 一方、この材料には上述の不純物光吸収の課題もある。こうした不純物光吸収を実使用上許容できる範囲に抑えるためには、その層厚設定も重要である。このため、正孔供給層の不純物濃度としては4×1017~2×1018cm-1程度、またその厚さとしては10~20nm程度が実用的な範囲と考えられる。こうした正孔供給層の導入により、SI半導体層内に向かって伸びる空乏層厚を実効的に抑えることが可能となる。その結果、光変調に寄与する全電圧の大半がアンドープ光導波路コア層へ印加されるようになり、駆動電圧低減が期待できる。
 なお、こうした半導体光変調器をMOVPE法で形成する場合、正孔供給層として適用可能なp型半導体層からその周辺へ、代表的なp型不純物である亜鉛(Zn)原子が結晶成長中に固相拡散する。すなわち、その不純物濃度分布の制御性に課題がある。この固相拡散がアンドープ光導波路コア層に及ぶと、その電気的・光学的品質が劣化し、絶縁耐圧低下による光変調効率低減や信頼性低下、あるいは挿入損失増大を招く。
 こうしたp型不純物拡散を抑えるには、例えばこれらの間に薄い拡散防止層を挿入するのが実用的である。具体的には、III-V族半導体中でp型不純物の固相拡散を抑える効果があると期待されるシリコン(Si)及び/又はルテニウム(Ru)をドーピングするのが有効である。また、MOVPE法でも固相拡散が比較的小さいとされるp型不純物として炭素(C)をドーピングした正孔供給層を用いるのも有効である。さらに、分子線エピタキシー(MBE)法により、不純物固相拡散が実用上無視できる程度に小さいベリリウム(Be)をp型不純物として用いてもよい。
 なお、正孔供給層を導入してSI半導体層内部へ伸びる空乏層厚を抑えることは、この積層構造を変調RF信号にとっての伝送線路として捉えた場合、単位長さ当りの容量が増加することに等しい。これは、特性インピーダンスをp-i-n型ダイオード構造のそれと同程度まで低下させ、せっかくn-SI-i-n型積層構造で実現したインピーダンス整合状態を崩す方向にあると考えられる。
 しかしながら、この問題はアンドープ光導波路コア層厚を拡大することで容易に解決できる。電場強度はアンドープ光導波路コア層に比例して減少するが、光変調そのものに寄与するアンドープ光導波路コア層厚が増加している。そのため、単位長さ当りの光変調指数(概ね、層厚と電場強度の積で与えられる)はほぼ一定に保たれており、特性インピーダンスだけをほぼ独立に制御できるからである。また、p-i-n型積層構造と異なり、変調RF信号の位相速度が低下しにくい(変調RF信号の実効屈折率nが減少しやすい)n-SI-i-n型積層構造の特徴は極めて薄い正孔供給層を導入してもほとんど損なわれない。そのため、位相速度整合状態の実現はn-SI-i-n型積層構造の場合と同様に容易である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
実施の形態1
 次に、本発明の第1の実施の形態について図面を参照して詳細に説明する。図2A乃至Cは、本発明の第1の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。図2Aは平面図、図2Bは図2AのIIB-IIB断面図、図2Cは図2AのIIC-IIC断面図である。図2A乃至Cに示すように、第1の実施の形態に係る導波路型半導体光変調器は、半絶縁性半導体基板101上のストライプ状光導波路111が埋め込み層112及び埋め込みコンタクト層113で埋め込まれた、いわゆる高抵抗埋め込みヘテロ(SI-BH)構造を有する。ここで、ストライプ状光導波路111は、バッファ層102、下部クラッド層103、アンドープ光導波路コア層104、拡散防止層105、正孔供給層106、電子捕獲層107、上部クラッド層108、コンタクト層109を備えている。
 次に、図3A乃至Dを用いて、第1の実施の形態に係る導波路型半導体光変調器の製造方法について説明する。まず、図3Aに示すように、半絶縁性半導体基板101上へ下から順にバッファ層102、下部クラッド層103、アンドープ光導波路コア層104、拡散防止層105、正孔供給層106、電子捕獲層107、上部クラッド層108、コンタクト層109を第1の結晶成長によって連続して形成する。その後、図3Bに示すように、この表面にストライプ状のエッチング阻止膜110を設けてエッチングすることによりストライプ状光導波路111を形成する。次に、図3Cに示すように、第2の結晶成長でこのストライプ状光導波路111を埋め込み層112及び埋め込みコンタクト層113で埋め込み、いわゆる高抵抗埋め込みヘテロ(SI-BH)構造を形成する。
 次に、図3Dに示すように、この表面にエッチング阻止膜114を形成し、埋め込み層112及び埋め込みコンタクト層113を所望の幅にエッチングする。続いて、その表面に絶縁膜116を設け、コンタクト層109近傍に開口を設けた後、電極膜を全面に成膜する。続いて、この電極膜を、フォトリソグラフィ技術とエッチングによりこの電極膜を上部電極117、下部電極118に分離する。信号光入出射端面近傍は、ここを変調RF信号が伝搬することを抑えるため、コンタクト層109と埋め込みコンタクト層113を部分的に取り除いた後、イオン注入によって導電率を抑えた高抵抗化領域119としている。最後に、光導波路の両端を劈開し、両端面とも低反射膜120を施すことによって信号光入出射面とした。以上により、図2A乃至Cに示す導波路型半導体光変調器が得られる。
 次に、本導波路型半導体光変調器の動作について説明する。本導波路型半導体光変調器は、使用する波長帯の光信号に対して単一モード光導波路をなす(単一モード導波条件を満たす)よう、各層の厚さ・屈折率・ストライプ幅の関係が予め適切に設計されている。同様に、本導波路型半導体光変調器は、ここを伝搬する変調RF信号に対して伝送線路をなし、変調RF信号と被変調光信号の位相速度差が約±10%以内に収まるように、かつその特性インピーダンスと駆動回路の出力インピーダンスとの差も同じく約±10%以内に収まるように、各層の厚さと不純物濃度が上述の単一モード導波条件を満たす範囲内で予め適切に設計されている。
 レンズ等を用いて本導波路型半導体光変調器の端面に入射結合された被変調光信号(図示せず)は、アンドープ光導波路コア層104の長手軸に沿って伝搬し、反対側の端面から出射される。上部電極117、下部電極118を駆動回路に接続し、アンドープ光導波路コア層104へ電場を印加すると、電界吸収効果(フランツ=ケルディッシュ効果、又は量子閉じ込めシュタルク効果)によってこの被変調光信号に影響を与えるアンドープ光導波路コア層104の複素屈折率が変化する。なお、この変化の割合は、アンドープ光導波路コア層104のバンドギャップと光信号とのエネルギー差に依存する。これにより、信号光が本導波路型半導体光変調器を通過する間にその強度及び位相は印加された電場に応じて変化する。これにより、光強度変調器あるいは光位相変調器として動作させることが可能となる。
 本構造では、アンドープ光導波路コア層104と電子捕獲層107との間に、正孔供給層106及びここから周辺への不純物固相拡散を抑える拡散防止層105が設けている。正孔供給層106は電子捕獲層107の内部に伸びる空乏層幅を抑え、上部電極117と下部電極118の間に印加した駆動電圧が効率よくアンドープ光導波路コア層104へ印加される効果を実現するものである。また、それぞれの層厚及び不純物濃度は被変調光信号の吸収を実使用上無視できる程度に十分薄く設計されている。これらの結果、上述の速度整合及びインピーダンス整合をほぼ両立した、さらに低電圧駆動という、理想的な進行波型光位相変調器として動作させることが可能となる。
 次に、図2A乃至C及び図3A乃至Dを用いて、本発明の第1の実施の形態に係る導波路型半導体光変調器の具体的な実施例1について説明する。実施例1では、図2A乃至Cに示すように、InPからなる半絶縁性半導体基板101上へ下から順にn-InPバッファ層102、n-InP下部クラッド層103(厚さ1.5μm)、アンドープAlGaInAs/AlGaInAs多重量子井戸構造を有するアンドープ光導波路コア層104(井戸厚10nm、井戸層12層、障壁層厚10nm、遷移波長1370nm)、Si+Ru共ドープInP拡散防止層105(厚さ50nm)、CドープInP正孔供給層106(厚さ50nm)、Ruドープ半絶縁性InP電子捕獲層107(厚さ700nm)、n-InP上部クラッド層108(厚さ800nm)、n-InGaAsコンタクト層109(厚さ50nm)が積層されている。
 これら各層は、図3Aに示すように、MOVPE法を用いた第1回目の結晶成長によって連続して形成する。その後、図3Bに示すように、この表面に幅1.3μmのストライプ状のSiNエッチング阻止膜110を設けてエッチングすることによりストライプ状光導波路111を形成する。次に、図3Cに示すように、第2の結晶成長でこのストライプ状光導波路111をルテニウム(Ru)ドープ半絶縁InP埋め込み層112及びn-InGaAs埋め込みコンタクト層113で埋め込み、いわゆる高抵抗埋め込みヘテロ(SI-BH)構造を形成する。
 次に、図3Dに示すように、この表面にSiNエッチング阻止膜114を形成し、Ruドープ半絶縁InP埋め込みヘテロ層112及びn-InGaAs埋め込みコンタクト層113を所望の幅にエッチングする。続いて、その表面にSiN絶縁膜116を設け、n-InGaAsコンタクト層109近傍に沿って開口を設けた後、Ti-Pd-Au電極膜を全面に成膜する。続いて、フォトリソグラフィ技術とエッチングによりこのTi-Pd-Au電極膜をTi-Pd-Au上部電極117、Ti-Pd-Au下部電極118に分離する。信号光入出射端面近傍は、ここを変調RF信号が伝搬することを抑えるため、n-InGaAsコンタクト層109とn-InGaAs埋め込みコンタクト層113を部分的に取り除いた後、Tiイオン注入によって導電率を抑えた高抵抗化領域119としている。最後に、光導波路の両端を劈開し、両端面とも反射率0.1%以下の低反射膜120を施すことによって信号光入出射面とした。本素子の長さは2mm、電極長は1.9mmである。
 本導波路型光位相変調器へ波長1530~1570nmの被変調光信号をTEモードで入射させた際の挿入損失は約3dBと実用的な値であった。また、進行波電極の変調RF信号に対する特性インピーダンスは約50Ω、変調周波数帯域は45GHz、反射はDC~45GHzにわたって-13dB以下であった。また、バイアス電圧2.5V印加時に波長1530~1570nmにわたって被変調光信号の位相がπラジアン変化した。
 なお、本素子は、そのアンドープ光導波路コア層104の遷移波長を1490nm前後に変更して電場印加時の光吸収をより積極的に用いることにより、波長1550nmの被変調光信号に対して導波路型光強度変調器として動作させることも可能である。
実施の形態2
 次に、本発明の第2の実施の形態について図面を参照して詳細に説明する。図4A乃至Cは、本発明の第2の実施の形態に係る導波路型半導体光変調器の平面図及び断面図である。図4Aは平面図、図4Bは図4AのIVB-IVB断面図、図4Bは図4AのIVC-IVC断面図である。第2の実施の形態に係る導波路型半導体光変調器は、マッハ・ツェンダー(MZ)型光強度変調器である。また、図4A乃至Cに示すように、第2の実施の形態に係るMZ型光強度変調器は、半絶縁性半導体基板201上のストライプ状光導波路211が埋め込み層212及び埋め込みコンタクト層213で埋め込まれた、いわゆる高抵抗埋め込みヘテロ(SI-BH)構造を有する。ここで、ストライプ状光導波路211は、バッファ層202、下部クラッド層203、アンドープ光導波路コア層204、拡散防止層205、正孔供給層206、電子捕獲層207、上部クラッド層208、コンタクト層209を備えている。
 次に、図5A乃至Dを用いて、第2の実施の形態に係るMZ型光強度変調の製造方法について説明する。まず、図5Aに示すように、半絶縁性半導体基板201上へ下から順にバッファ層202、下部クラッド層203、アンドープ光導波路コア層204、拡散防止層205、正孔供給層206、電子捕獲層207、上部クラッド層208、コンタクト層209を第1の結晶成長によって連続して形成する。その後、図5Bに示すように、この表面に2本のストライプ状のエッチング阻止膜210を設けてエッチングすることにより、2本のストライプ状光導波路211を形成する。次に、図5Cに示すように、第2の結晶成長でこのストライプ状光導波路211を埋め込み層212及び埋め込みコンタクト層213で埋め込み、いわゆる高抵抗埋め込みヘテロ(SI-BH)構造を形成する。
 次に、図5Dに示すように、この表面にエッチング阻止膜214を形成し、埋め込み層212及び埋め込みコンタクト層213を所望の幅にエッチングする。続いて、その表面に絶縁膜215を設け、コンタクト層近傍に開口を設けた後、電極膜を全面に成膜する。続いて、この電極膜を、フォトリソグラフィ技術とエッチングによりこの電極膜を上部電極217、下部電極218に分離する。信号光入出射端面近傍は、ここを変調RF信号が伝搬することを抑えるため、コンタクト層209と埋め込みコンタクト層213を部分的に取り除いた後、イオン注入によって導電率を抑えた高抵抗化領域219としている。1対のストライプ状光導波路211は2入力出力多モード干渉型光合分波器221に曲がり光導波路222を介して接続されている。最後に、光導波路の両端を劈開し、両端面とも低反射膜220を施すことによって信号光入出射面とした。以上により、図4A乃至Cに示す導波路型半導体光変調器が得られる。
 次に、図4A乃至Cに示す本MZ型光強度変調器の動作について説明する。一対の光位相変調器領域が、使用する波長帯の光信号に対して単一モード光導波路を成す(単一モード導波条件を満たす)よう、各層の厚さ・屈折率・ストライプ幅の関係が予め適切に設計されている。同様に、本導波路型半導体光変調器は、ここを伝搬する変調RF信号に対して伝送線路を成し、変調RF信号と被変調光信号の位相速度差が約±10%以内に収まるように、かつその特性インピーダンスと駆動回路の出力インピーダンスとの差も同じく約±10%以内に収まるように、各層の厚さと不純物濃度が上述の単一モード導波条件を満たす範囲内で予め適切に設計されている。
 レンズ等を用いて本MZ型光強度変調器の端面に入射結合された被変調光信号(図示せず)は、アンドープ光導波路コア層204の長手軸に沿って伝搬し、反対側の端面から出射される。上部電極217、下部電極218を駆動回路に接続し、アンドープ光導波路コア層204へ電場を印加すると、電界吸収効果(フランツ=ケルディッシュ効果、又は量子閉じ込めシュタルク効果)によってこの被変調光信号に影響を与えるアンドープ光導波路コア層204の複素屈折率が変化する。なお、この変化の割合は、アンドープ光導波路コア層204のバンドギャップと光信号とのエネルギー差に依存する。これにより、信号光が本導波路型半導体光変調器を通過する間にその強度及び位相は印加された電場に応じて変化し、光強度変調器として動作させることが可能となる。
 本構造では、アンドープ光導波路コア層204と電子捕獲層207との間に、正孔供給層206及びここから周辺への不純物固相拡散を抑える拡散防止層205が設けている。正孔供給層206は電子捕獲層207の内部に伸びる空乏層幅を抑え、上部電極217と下部電極218の間に印加した駆動電圧が効率よくアンドープ光導波路コア層204へ印加される効果を実現するものである。また、それぞれの層厚及び不純物濃度は被変調光信号の吸収を実使用上無視できる程度に十分薄く設計されている。これらの結果、上述の速度整合及びインピーダンス整合をほぼ両立した、さらに低電圧駆動という、理想的な進行波型光位相変調器として動作させることが可能となる。
 次に、図4A乃至C及び図5A乃至Dを用いて、本発明の第2の実施の形態に係る導波路型半導体光変調器の具体的な実施例2について説明する。実施例2では、半絶縁性InP基板201上へ下から順にn-InPバッファ層202、n-InP下部クラッド層203、アンドープAlGaInAs/AlGaInAs多重量子井戸コア層204、Ru+Si共ドープ拡散防止層205、Cドープ正孔供給層206、Ruドープ半絶縁性InP電子捕獲層207、n-InP上部クラッド層208、n-InGaAsコンタクト層209を第1の結晶成長によって連続して形成した後、この表面にストライプ状のSiNエッチング阻止膜210を設けてエッチングすることによりMZ干渉計を成すストライプ状光導波路211を形成し、第2の結晶成長でこのストライプ状光導波路211をRuドープ半絶縁性InP埋め込み層212及びn-InGaAs埋め込みコンタクト層213で埋め込んだ、いわゆる高抵抗埋め込み(SI-BH)構造を有する。なお、一対のストライプ状光導波路の各中心軸間の間隔は50μmである。
 次に、この表面に幅8μmのSiNエッチング阻止膜214を形成し、Ruドープ半絶縁性InP埋め込み層212及びn-InGaAs埋め込みコンタクト層213をエッチングする。その際、一対のストライプ状光導波路を互いに絶縁する分離溝215も形成される。続いて、その表面にSiN膜216を設け、コンタクト層近傍に開口を設けた後、Ti-Pd-Au電極膜を全面に成膜する。続いて、この電極膜を、フォトリソグラフィ技術とエッチングによりTi-Pd-Au上部電極217、Ti-Pd-Au下部電極218に分離する。信号光入出射端面近傍は、ここを変調RF信号が伝搬することを抑えるため、n-InGaAsコンタクト層209とn-InGaAs埋め込みコンタクト層213を部分的に取り除いた後、Tiイオン注入によって導電率を抑えた高抵抗化領域219としている。1対のストライプ状光導波路は2入力出力多モード干渉型光合分波器221に曲がり光導波路222を介して接続されている。最後に、光導波路の両端を劈開し、両端面とも反射率0.1%以下の低反射膜220を施すことによって信号光入出射面とした。
 本素子の長さは4.5mm、信号光と電極との相互作用長は1.9mmである。本素子のTEモードで入射させた波長1530~1570nmの被変調信号光に対する挿入損は約7dBであった。また、進行波電極の特性インピーダンスは約50Ω、変調周波数帯域は45GHz、反射はDC~45GHzにわたって-13dB以下であった。また、バイアス電圧2.5Vにて波長1530~1570nmの被変調信号光が消光動作し、その消光比は15dBであった。
 本発明による第1の効果は、進行波型半導体光位相変調器として理想的な高速・低損失光変調が期待されるドーピングプロファイルであるn-SI-i-n型積層構造が本質的に抱えていた、低電場強度の課題を解決できることである。その理由は、アンドープ光導波路コア層とSI半導体層の間に電子捕獲能がSI半導体層のそれに比べてより高い正孔供給層を新たに挟むことにより、SI半導体層内部でのポテンシャル勾配が抑制され、外部から印加する電圧がアンドープ光導波路コア層に効果的に印加されるからである。
 本発明による第2の効果は、第1の効果を実現するにあたって、n-SI-i-n型積層構造の利点であった理想的な高速・低損失光変調を損なわないことである。その理由は、光導波特性への影響が実用上無視できる程度に薄い構造で、第1の効果を実現できるからである。
 本発明による第3の効果は、本発明の実現にあたって、新たに特別なプロセス設備等は必要ないため、実用性が高いことである。その理由は、光導波路の積層構造を結晶成長する際に、極薄い正孔供給層や拡散防止層などを新たに追加するだけそれ以外の構造は全く同一であるため、プロセス手順を一切変更する必要が無いからである。
 以上説明したように、本発明による導波路型半導体光変調器は、特に幹線系光ファイバ通信システム向けの超高速光変調器及びその集積光素子を実現するうえで問題であった駆動電圧上昇を、極薄い正孔供給層を挿入するという積層構造に必要最小限の工夫を単に施すことにより、別途特殊な部品や等を用いることなく製造プロセスも同じ工程のまま、これらの課題を効果的に改善できる構造を提供するものであり、次世代光ファイバ通信システムの一層の小型・高速化・低電力化を可能にするものである。
 この出願は、2008年03月28日に出願された日本出願特願2008-085600を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 半導体発光素子に関し、特に高出力半導体発光素子に利用することができる。

Claims (11)

  1.  半導体基板と、
     前記半導体基板上に形成された第1及び第2のn型クラッド層と、
     前記第1及び第2のn型クラッド層間に形成されたアンドープ光導波路コア層及び電子捕獲層とを備え、
     前記アンドープ光導波路コア層と前記電子捕獲層との間に正孔供給層が形成されていることを特徴とする導波路型半導体光変調器。
  2.  前記アンドープ光導波路コア層は、印加された電場強度に応じて信号光に対する複素屈折率が変化することを特徴とする請求項1に記載の導波路型半導体光変調器。
  3.  前記正孔供給層と前記アンドープ光導波路コア層との間に、不純物拡散防止層が形成されていることを特徴とする請求項1に記載の導波路型半導体光変調器。
  4.  前記不純物拡散防止層が、シリコン(Si)又はルテニウム(Ru)をドーピングされた半導体であることを特徴とする請求項3に記載の導波路型半導体光変調器。
  5.  前記正孔供給層が、p型不純物をドーピングされた半導体であることを特徴とする請求項1に記載の導波路型半導体光変調器。
  6.  前記正孔供給層が、電子捕獲能を発現する不純物及びp型不純物を共ドーピングされた半導体であることを特徴とする請求項5に記載の導波路型半導体光変調器。
  7.  前記電子捕獲層が、鉄(Fe)あるいはルテニウム(Ru)をドーピングされた半絶縁性半導体又はp型不純物をドーピングされたp型半導体であることを特徴とする請求項1に記載の導波路型半導体光変調器。
  8.  ストライプ状光導波路が、マッハ・ツェンダー型光変調器の光位相変調器領域を成すことを特徴とする請求項1に記載の導波路型半導体光変調器。
  9.  埋め込みヘテロ構造であることを特徴とする請求項1に記載の導波路型半導体光変調器。
  10.  前記半導体基板上に波長可変光源をさらに備えていることを特徴とする請求項1に記載の導波路型半導体光変調器。
  11.  半導体基板上に第1及び第2のn型クラッド層を形成し、
     前記第1及び第2のn型クラッド層間にアンドープ光導波路コア層及び電子捕獲層を形成し、
     前記アンドープ光導波路コア層と前記電子捕獲層との間に正孔供給層を形成する導波路型半導体光変調器の製造方法。
PCT/JP2009/050845 2008-03-28 2009-01-21 導波路型半導体光変調器及びその製造方法 WO2009119145A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/736,127 US8300991B2 (en) 2008-03-28 2009-01-21 Waveguide-type semiconductor optical modulator and method for manufacturing the same
JP2010505417A JP5170236B2 (ja) 2008-03-28 2009-01-21 導波路型半導体光変調器及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008085600 2008-03-28
JP2008-085600 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119145A1 true WO2009119145A1 (ja) 2009-10-01

Family

ID=41113355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050845 WO2009119145A1 (ja) 2008-03-28 2009-01-21 導波路型半導体光変調器及びその製造方法

Country Status (3)

Country Link
US (1) US8300991B2 (ja)
JP (1) JP5170236B2 (ja)
WO (1) WO2009119145A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085533A (ja) * 2012-10-24 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> 半導体光変調素子
JP2015212768A (ja) * 2014-05-02 2015-11-26 日本電信電話株式会社 電界吸収型変調器および集積化tw−ea−dfbレーザ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119145A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 導波路型半導体光変調器及びその製造方法
US20100284645A1 (en) * 2009-05-07 2010-11-11 Alcatel-Lucent Usa Inc. Semiconductor thermooptic phase shifter
JP5880145B2 (ja) * 2012-03-02 2016-03-08 住友電気工業株式会社 半導体光変調器
US8909002B2 (en) * 2012-04-05 2014-12-09 Panasonic Corporation Light modulator, optical pickup, and light modulation module
KR102163885B1 (ko) * 2015-01-14 2020-10-13 한국전자통신연구원 전계흡수 광변조 소자 및 그 제조 방법
US10062402B1 (en) * 2017-12-04 2018-08-28 Headway Technologies, Inc. Waveguide including first and second layers and manufacturing method thereof
US10962811B2 (en) * 2018-12-06 2021-03-30 Sifotonics Technologies Co., Ltd. Monolithic electro-optical modulator with comb-shaped transmission line
JP7434843B2 (ja) * 2019-11-28 2024-02-21 住友大阪セメント株式会社 光導波路素子、光変調器、光変調モジュール、及び光送信装置
US11256114B2 (en) * 2020-02-11 2022-02-22 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133367A (ja) * 1997-10-31 1999-05-21 Oki Electric Ind Co Ltd 半導体光変調装置およびその製造方法
JP2003177368A (ja) * 2001-12-11 2003-06-27 Fujitsu Ltd 半導体光変調器、マッハツェンダ型光変調器、及び光変調器一体型半導体レーザ
WO2006095776A1 (ja) * 2005-03-08 2006-09-14 Nippon Telegraph And Telephone Corporation 半導体光変調器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198853B1 (en) * 1997-10-31 2001-03-06 Oki Electric Industry Co., Ltd. Semiconductor optical functional element
JP2004109312A (ja) * 2002-09-17 2004-04-08 Mitsubishi Electric Corp 導波路型半導体光デバイスおよびその製造方法
JP4047785B2 (ja) 2003-09-24 2008-02-13 Nttエレクトロニクス株式会社 半導体光電子導波路
JP4357438B2 (ja) * 2005-03-08 2009-11-04 日本電信電話株式会社 半導体光変調器
JP5016261B2 (ja) * 2006-06-19 2012-09-05 日本オプネクスト株式会社 半導体光素子
JP2008047672A (ja) * 2006-08-14 2008-02-28 Sumitomo Electric Ind Ltd 半導体光素子
US7830580B2 (en) * 2007-03-09 2010-11-09 Nec Corporation Semiconductor optical modulator
WO2009119145A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 導波路型半導体光変調器及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133367A (ja) * 1997-10-31 1999-05-21 Oki Electric Ind Co Ltd 半導体光変調装置およびその製造方法
JP2003177368A (ja) * 2001-12-11 2003-06-27 Fujitsu Ltd 半導体光変調器、マッハツェンダ型光変調器、及び光変調器一体型半導体レーザ
WO2006095776A1 (ja) * 2005-03-08 2006-09-14 Nippon Telegraph And Telephone Corporation 半導体光変調器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUZUKI, K. ET AL.: "40 Gbit/s n-i-n InP Mach-Zehnder modulator with a n voltage of 2.2 V", ELECTRONICS LETTERS, vol. 39, no. 20, 2003, pages 1464 - 1466 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085533A (ja) * 2012-10-24 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> 半導体光変調素子
JP2015212768A (ja) * 2014-05-02 2015-11-26 日本電信電話株式会社 電界吸収型変調器および集積化tw−ea−dfbレーザ

Also Published As

Publication number Publication date
JP5170236B2 (ja) 2013-03-27
US20110002575A1 (en) 2011-01-06
JPWO2009119145A1 (ja) 2011-07-21
US8300991B2 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
JP5170236B2 (ja) 導波路型半導体光変調器及びその製造方法
JP4933653B2 (ja) 半導体光変調器
JP2809124B2 (ja) 光半導体集積素子およびその製造方法
US5165105A (en) Separate confinement electroabsorption modulator utilizing the Franz-Keldysh effect
EP0627798B1 (fr) Composant intégré monolithique laser-modulateur à structure multi-puits quantiques
US8412008B2 (en) Semiconductor optical device
JP5227351B2 (ja) 光変調器
US8412005B2 (en) Mach-Zehnder interferometer type optical modulator
JP5263718B2 (ja) 半導体光変調器
JPH0715093A (ja) 光半導体素子
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
JP2019008179A (ja) 半導体光素子
JP2019079993A (ja) 半導体光素子
JPH07230066A (ja) 半導体光変調器
US8498501B2 (en) Semiconductor optical modulator and semiconductor mach-zehnder optical modulator
JP2003114407A (ja) 電界吸収型光変調器
US20210184421A1 (en) Semiconductor Optical Element
US20240006844A1 (en) Semiconductor Optical Device
JP4961732B2 (ja) 光変調器集積光源
JP7402014B2 (ja) 光半導体素子、光半導体装置
US20230411931A1 (en) Semiconductor optical device with a buried heterostructure (bh) having reduced parasitic capacitance and reduced inter-diffusion
JP2917787B2 (ja) 埋め込み構造半導体光導波路素子およびその製造方法
Knodl et al. Integrated 1.3-µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure
KR100275488B1 (ko) 다중 양자우물 구조의 수동 광도파로가 집적된 초고속 광변조기및 그 제조 방법과 그를 이용한 광변조 방법
Kotaka et al. High‐speed (20 Gb/s), low‐drive voltage (2 Vp‐p) strained InGaAsP mqw modulator/DFB laser light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12736127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725085

Country of ref document: EP

Kind code of ref document: A1