WO2009118824A1 - 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器 - Google Patents

低歪み増幅器および低歪み増幅器を用いたドハティ増幅器 Download PDF

Info

Publication number
WO2009118824A1
WO2009118824A1 PCT/JP2008/055526 JP2008055526W WO2009118824A1 WO 2009118824 A1 WO2009118824 A1 WO 2009118824A1 JP 2008055526 W JP2008055526 W JP 2008055526W WO 2009118824 A1 WO2009118824 A1 WO 2009118824A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
amplifier
low distortion
low
frequency
Prior art date
Application number
PCT/JP2008/055526
Other languages
English (en)
French (fr)
Inventor
山内 和久
一二三 能登
井上 晃
倫一 濱田
正敏 中山
堀口 健一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2008/055526 priority Critical patent/WO2009118824A1/ja
Priority to EP08738821.1A priority patent/EP2273672B1/en
Priority to US12/933,509 priority patent/US8149060B2/en
Priority to KR1020107023693A priority patent/KR101151560B1/ko
Priority to JP2010505065A priority patent/JP5063779B2/ja
Priority to CN2008801281823A priority patent/CN101978597B/zh
Publication of WO2009118824A1 publication Critical patent/WO2009118824A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/601Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a low distortion amplifier used for amplifying a broadband digital modulated wave without distortion, and a Doherty amplifier using the low distortion amplifier.
  • the distortion generated in the amplifier is roughly divided into a harmonic component of the carrier frequency and a component appearing in the vicinity of the amplification frequency.
  • a component that appears in the vicinity of the carrier frequency can be removed by an external circuit such as a filter because the frequency is greatly separated.
  • a very narrow band filter is required, which is generally difficult to realize.
  • the distortion that appears in the vicinity of the carrier frequency is generated when the high-frequency signal to be amplified is modulated and the envelope changes with time depending on the modulation frequency.
  • this distortion is classified into two types, non-linear distortion due to amplifier non-linearity, and memory effect distortion that memorizes the past state of the amplifier like a hysteresis characteristic and affects the current state. There is.
  • Non-linear distortion occurs due to the non-linearity of the AM / AM characteristics and AM / PM characteristics of the amplifier at the carrier frequency.
  • Memory effect distortion occurs when distortion occurring at a frequency other than the carrier frequency is intermodulated with the carrier signal, or when distortion occurs differently depending on how the waveform changes over time. Memory effect distortion is considered to be caused by the influence of heat, amplifier frequency characteristics, intermodulation with harmonic components, intermodulation with distortion of baseband frequency components generated in a bias circuit, and the like.
  • FIG. 11 is an explanatory diagram showing a mechanism in which memory effect distortion occurs in an amplifier due to distortion of baseband frequency components.
  • the communication amplifier is usually set to a bias point of class AB to class C in order to reduce power consumption in a region where back-off is taken. Therefore, the instantaneous value of the drain current flowing through the transistor changes according to the instantaneous input power of the input modulated wave signal, and the drain current changes at the baseband frequency of the input modulated wave signal.
  • the amount of voltage change at the drain terminal is represented by the product of the drain current and the impedance at the baseband frequency of the bias circuit. Therefore, the drain terminal voltage VdFET varies with the baseband frequency according to the impedance of the bias circuit. As a result, the carrier signal is modulated, and memory effect distortion occurs. According to the above mechanism, it is considered that memory effect distortion can be suppressed by bringing the impedance at the baseband frequency of the bias circuit close to 0 ⁇ .
  • FIG. 12 is a block diagram of a conventional low distortion amplifier.
  • two short stubs Two way bias network
  • the impedance at the baseband frequency of the bias circuit is reduced, and the memory
  • the effect distortion is suppressed (for example, refer nonpatent literature 1).
  • Non-Patent Document 1 by increasing the number of short stubs that were conventionally connected only to one near the drain terminal of a transistor, the impedance of the bias circuit at the baseband frequency is reduced. Theoretically, by arranging a large number of short stubs shown in Non-Patent Document 1, a further reduction in impedance can be realized. However, in reality, there is a problem that only about two short stubs can be arranged due to space restrictions in the vicinity of the transistor.
  • the present invention has been made in order to solve the above-described problems.
  • a low distortion amplifier that can ensure both an installation space in the vicinity of a transistor and a low impedance, and a Doherty amplifier using the low distortion amplifier are provided. The purpose is to obtain.
  • a low distortion amplifier according to the present invention is a low distortion amplifier including a short stub whose tip is short-circuited by a high-frequency short-circuiting element and a low-frequency short-circuiting element, and the short stub is at least a gate terminal or a drain terminal of a transistor. It is connected to one vicinity and is composed of a plurality of branched lines, and the ends of the branched lines are short-circuited by a high-frequency short-circuit element and a low-frequency short-circuit element.
  • the Doherty amplifier according to the present invention is obtained by applying the low distortion amplifier of the present invention to at least one of a carrier amplifier and a peak amplifier.
  • the lines constituting the short stub are aggregated into one, and a plurality of lines are directed toward the tip short-circuited by the high-frequency short-circuiting element and the low-frequency short-circuiting element.
  • a short stub is composed of a plurality of lines, thereby obtaining a low distortion amplifier capable of ensuring both an installation space in the vicinity of the transistor and a low impedance, and a Doherty amplifier using the low distortion amplifier. be able to.
  • Embodiment 1 of this invention It is a block diagram of the low distortion amplifier in Embodiment 1 of this invention.
  • the trial manufacture pattern of the short stub 2 in Embodiment 1 of this invention is shown. It is a measurement result of the impedance characteristic with respect to the baseband frequency in Embodiment 1 of this invention. It is an illustration figure at the time of increasing the number of branches of the short stub 2 in Embodiment 1 of this invention. In Embodiment 1 of this invention, it is explanatory drawing which feeds the bias voltage applied to a transistor from a short stub. It is an illustration figure of the output matching circuit which consists of a short stub of 2 + 2 branch in Embodiment 1 of this invention.
  • Embodiment 4 of this invention It is a block diagram of the low distortion amplifier in Embodiment 4 of this invention. It is a block diagram of the low distortion amplifier in Embodiment 5 of this invention. It is a block diagram of the low distortion amplifier in Embodiment 6 of this invention. It is a block diagram of the Doherty amplifier using the low distortion amplifier in Embodiment 7 of this invention. It is explanatory drawing which shows the mechanism in which memory effect distortion generate
  • FIG. 1 is a configuration diagram of a low distortion amplifier according to Embodiment 1 of the present invention. More specifically, an output circuit of a transistor of a low distortion amplifier is shown.
  • the low distortion amplifier in FIG. 1 includes a transistor drain terminal 1, a short stub 2, a high frequency short circuit capacitor 3, a low frequency short circuit capacitor 4, an output matching circuit 5, an output terminal 6, and a microstrip line 7.
  • a black rectangle with C written means a high-frequency short-circuit capacitor 3
  • a white rectangle with C marked low means a low-frequency short-circuit capacitor 4.
  • the high frequency short circuit capacitor 3 corresponds to a high frequency short circuit element
  • the low frequency short circuit capacitor 4 corresponds to a low frequency short circuit element. This also applies to the following embodiments and drawings.
  • the short stub 2 is characterized in that the lines constituting it are branched into a plurality of parts, and the respective ends are short-circuited by a high-frequency short-circuit capacitor 3 and a low-frequency short-circuit capacitor 4.
  • the high frequency short circuit capacitor 3 and the low frequency short circuit capacitor 4 used in the short stub 2 or the output matching circuit 5 are short-circuited to the ground through a through hole.
  • the capacitors shown in FIG. 1 and subsequent figures are short-circuited to the ground through a through hole.
  • the instantaneous value of the drain current flowing through the transistor changes according to the instantaneous input power of the modulated wave signal input to the transistor.
  • the short stub 2 is short-circuited by a high-frequency short-circuit capacitor 3 and a low-frequency short-circuit capacitor 4 so that the impedance of the capacitor is reduced.
  • the line constituting the short stub 2 is branched into a plurality of lines, so that the inductance of the line is reduced. As a result, the impedance of the short stub 2 is reduced.
  • the memory effect distortion occurs when the drain terminal voltage varies according to the impedance of the short stub 2 at the baseband frequency. Therefore, memory effect distortion can be reduced by reducing the impedance of the short stub 2.
  • FIG. 2 shows a trial pattern of the short stub 2 in Embodiment 1 of the present invention.
  • FIG. 2A shows a case where one short stub 2 is added.
  • FIG. 2B shows a case where two short stubs 2 are added.
  • FIG.2 (c) has shown the case where two short stubs 2 are added and each is branched into two.
  • FIG. 2 Three types of short stubs 2 as shown in FIG. 2 were prototyped, and the impedance with respect to the baseband frequency was measured for each short stub.
  • FIG. 3 shows measurement results of impedance characteristics with respect to the baseband frequency in the first embodiment of the present invention. It can be confirmed that the number of short stubs 2 is increased from one to two to reduce the impedance.
  • the impedance is further reduced by branching the short stub 2 increased by two. Also from this result, the effectiveness of the short stub of the present invention can be confirmed.
  • FIG. 2 (c) shows an output matching circuit formed by branching two short stubs increased by two, but the number of branches may be further increased.
  • FIG. 4 is an exemplary diagram when the number of branches of the short stub 2 in Embodiment 1 of the present invention is increased.
  • FIG. 4A shows a case where the number of short stubs 2 is increased by two and each of them is branched into three.
  • FIG. 4B shows a case where the number of short stubs 2 is increased by two and each of them is branched into four. In this way, by further increasing the number of branches, it is possible to further reduce the impedance.
  • FIG. 5 is an explanatory diagram for supplying a bias voltage applied to the transistor from the short stub in the first embodiment of the present invention. In this way, by supplying the bias voltage from the short stub, it is possible to share the low impedance function and the bias power supply function at the baseband frequency.
  • the short stub is composed of a plurality of lines, the line width of the effective bias feed line can be widened, and the DC resistance of the short stub can be reduced even if power is supplied from one side. . Thereby, the loss in the bias circuit can be reduced, and the efficiency of the amplifier can be increased.
  • FIG. 6 is an exemplary diagram of an output matching circuit composed of two +2 branch short stubs in Embodiment 1 of the present invention, and shows four patterns (a) to (d).
  • the short stubs do not necessarily have to be arranged in the same direction, and need not be symmetrical with respect to the main line.
  • the short stub may be branched again after being branched once.
  • the tip of the short stub may be directly connected to the ground without using a capacitor.
  • FIG. 1 illustrates the case where the short stub is connected to the output side of the transistor, it may be connected to the input side of the transistor.
  • the short stub when the short stub is connected to the input side, the baseband frequency signal leaked from the output side or the baseband frequency signal generated due to the nonlinearity of the gate capacitance on the input side of the transistor, etc.
  • impedance can be reduced and voltage fluctuation at the gate end of the transistor can be reduced.
  • the signal at this baseband frequency is intermodulated with the carrier by the transistor and becomes a memory effect distortion. Therefore, lowering the baseband frequency impedance on the input side has the advantage of reducing memory effect distortion of the amplifier.
  • the line constituting the short stub may be configured using at least one of a lumped constant inductor, a strip line, a wire, a triplate line, or a coplanar line. By using these, it is possible to reduce the size, which is particularly effective when the frequency is low.
  • the lines constituting the short stub are concentrated into one and short-circuited by the high-frequency short-circuiting element and the low-frequency short-circuiting element.
  • the track is branched into a plurality of lines toward the tip.
  • the short stub is not limited to such a configuration.
  • the short stub can be formed inside the transistor package, or can be formed integrally with the transistor on the semiconductor. With such a configuration, it is possible to reduce the impedance at the baseband frequency in the immediate vicinity of the intrinsic transistor. As a result, a low distortion amplifier with further reduced memory effect distortion can be obtained.
  • Embodiment 2 FIG. In this Embodiment 2, the case where a low frequency short circuit point is provided in the immediate vicinity of the high frequency short circuit point of a short stub is demonstrated using previous FIG.
  • the high-frequency short-circuit capacitor 3 corresponds to a high-frequency short-circuit point
  • the low-frequency short-circuit capacitor 4 corresponds to a low-frequency short-circuit point.
  • the basic operation is the same as in the first embodiment.
  • the low-frequency short-circuit point low-frequency short-circuit capacitor 4
  • the high-frequency short-circuit point high-frequency short-circuit capacitor 3
  • the impedance of the line constituting the short stub can be minimized.
  • the reduction in impedance of the short stub it is possible to realize a low distortion amplifier with a small memory effect distortion.
  • the low-frequency short-circuit point is provided in the immediate vicinity of the high-frequency short-circuit point of the short stub.
  • Embodiment 3 FIG. In this Embodiment 3, the case where a high frequency short circuit point is provided in the position where electric length is equal from the connection point with a main track
  • the high-frequency short-circuit capacitor 3 corresponds to a high-frequency short-circuit point
  • the low-frequency short-circuit capacitor 4 corresponds to a low-frequency short-circuit point.
  • two high-frequency short-circuit points (high-frequency short-circuit capacitors 3) provided in the short stub 2 shown on the upper side and two high-frequency signals provided in the short stub 2 shown on the lower side.
  • Both short-circuit points (high-frequency short-circuit capacitors 3) are provided at positions where the electrical length is equal from the connection point with the main line.
  • the basic operation is the same as in the first embodiment.
  • the short stub impedance is most affected by the short stub having the shortest electrical length from the connection point with the main line, and the electrical characteristics of the stub generally determine the overall stub characteristics. Therefore, the total sum of the impedances of the lines constituting the short stub can be minimized by aligning the electrical lengths of the individual stubs constituting the short stub.
  • each short stub by providing a high-frequency short-circuit point at a position where the electrical length is equal from the connection point with the main line, the impedance of the entire short stub can be reduced. As a result, a low distortion amplifier with a small memory effect distortion can be realized.
  • the high frequency short circuit point is provided at a position where the electrical length is equal from the connection point of each short stub with the main line.
  • the impedance of the entire short stub can be reduced, and a low distortion amplifier with a small memory effect distortion can be realized.
  • FIG. 7 is a configuration diagram of a low distortion amplifier according to the fourth embodiment of the present invention.
  • two short stubs are connected in the vicinity of the gate terminal and the drain terminal of the transistor.
  • the basic operation is the same as in the first embodiment.
  • a plurality of short stubs are connected to the gate terminal and the drain terminal of the transistor.
  • FIG. FIG. 8 is a configuration diagram of the low distortion amplifier according to the fifth embodiment of the present invention.
  • the line width of the short stub is different before and after branching.
  • the basic operation is the same as in the first embodiment.
  • the line width of the short stub after branching is narrower than the line width of the short stub before branching, there is an advantage that the lines can be arranged with high density and the number of branches can be increased.
  • the line width of the short stub after branching is made larger than the line width of the short stub before branching, there is an advantage that the impedance of the line can be reduced.
  • the impedance of the short stub can be reduced.
  • a thick line and a thin line may be mixed in the short stub.
  • the line width of the short stub is different before and after branching. Therefore, the impedance of the short stub can be reduced, and a low distortion amplifier with reduced memory effect distortion can be realized.
  • FIG. 9 is a configuration diagram of the low distortion amplifier according to the sixth embodiment of the present invention.
  • a thick line is formed by bundling all or part of a plurality of branched lines constituting the short stub. Further, immediately before the bundled line is short-circuited by the high-frequency short-circuiting element and the low-frequency short-circuiting element, it is branched again into a plurality of lines, and the tips of the respective branch destinations are short-circuited.
  • the basic operation is the same as in the first embodiment.
  • a conductor By bundling all or part of a plurality of branched lines constituting the short stub, a conductor can be arranged between the plurality of branched lines, and the impedance of the line can be reduced.
  • the bundled line is branched again into a plurality of lines immediately before being short-circuited by the high-frequency short-circuiting element and the low-frequency short-circuiting element, and the tips of the respective branch destinations are short-circuited.
  • good short-circuit characteristics can be obtained. Therefore, there is an advantage that the impedance of the short stub can be reduced, and the memory effect distortion of the low distortion amplifier can be reduced.
  • the lines branched into a plurality of short stubs are bundled and then branched again.
  • the impedance of the short stub can be reduced, and a low distortion amplifier with reduced memory effect distortion can be realized.
  • FIG. 10 is a configuration diagram of a Doherty amplifier using the low distortion amplifier according to the seventh embodiment of the present invention. More specifically, the low distortion amplifier described in the first to sixth embodiments is applied to a carrier amplifier and a peak amplifier that are components of the Doherty amplifier.
  • the basic operation of the unit amplifier (ie, carrier amplifier and peak amplifier) shown in FIG. 7 in the seventh embodiment is the same as that of the first embodiment.
  • the Doherty amplifier is composed of a carrier amplifier and a peak amplifier. In the small output region, only class AB carrier amplifiers operate. On the other hand, in the high output region, both the class AB operation carrier amplifier and the class C operation peak amplifier operate. By such an operation, high efficiency is realized from the low output region to the high output region.
  • the peak amplifier operates in class C. For this reason, the instantaneous change amount of the drain current is large, and a large memory effect distortion occurs. Therefore, the memory effect distortion can be reduced by applying the low distortion amplifier of the present invention to the peak amplifier.
  • the memory effect distortion of the carrier amplifier and the peak amplifier can be reduced by applying the low distortion amplifier of the present invention to the carrier amplifier and the peak amplifier.
  • the amount of distortion compensation can be improved.
  • the low distortion amplifier of the present invention is applied to the carrier amplifier and the peak amplifier, which are constituent elements of the Doherty amplifier. Thereby, the memory effect distortion of the carrier amplifier and the peak amplifier can be reduced, and the distortion compensation amount can be improved.

Abstract

 トランジスタ近傍の設置スペースの確保と低インピーダンス化とを両立することのできる低歪み増幅器を得る。先端が高周波短絡用要素および低周波短絡用要素で短絡されたショートスタブを備えた低歪み増幅器であって、ショートスタブは、トランジスタのゲート端子またはドレイン端子の少なくとも一方の近傍に接続されるとともに、複数に分岐された線路で構成され、分岐されたそれぞれの線路の先端が高周波短絡用要素および低周波短絡用要素で短絡されている。

Description

低歪み増幅器および低歪み増幅器を用いたドハティ増幅器
 本発明は、広帯域なデジタル変調波を歪みなく増幅するために用いられる低歪み増幅器、および低歪み増幅器を用いたドハティ増幅器に関する。
 近年における移動体無線通信、マルチメディア無線通信の急速な発達により、大容量、高速なデータ通信が求められており、通信用送信増幅器には、広帯域なデジタル変調波を歪みなく増幅する低歪みな特性が要求されている。
 増幅器で発生する歪みには、大きく分けると、キャリア周波数の高調波成分と、増幅周波数の近傍に現われる成分とがある。一般に、通信において問題となるものは、キャリア周波数の近傍に現われる成分である。高調波成分は、周波数が大きく離れているために、フィルタなどの外部回路で除去できる。しかしながら、キャリア周波数の近傍に現われる成分を除去するためには、非常に狭帯域なフィルタが要求され、一般に、実現が困難である。
 キャリア周波数の近傍に現われる歪みは、増幅される高周波信号が変調され、変調の周波数によって時間的にエンベローブが変化することによって発生する。さらに、この歪みは、2つに分類され、増幅器の非線形性に起因する非線形歪み、およびヒステリシス特性のように増幅器の過去の状態が記憶(メモリ)され、現在の状態に影響を及ぼすメモリ効果歪みがある。
 非線形歪みは、キャリア周波数での増幅器のAM/AM特性、AM/PM特性の非線形性により発生する。メモリ効果歪みは、キャリア周波数以外で発生した歪みがキャリア信号と混変調される場合や、波形の時間的変化の仕方で歪みの発生が異なる場合に発生する。メモリ効果歪みは、熱の影響、増幅器の周波数特性、高調波成分との混変調、バイアス回路で発生するベースバンド周波数成分の歪みとの混変調等が原因と考えられている。
 メモリ効果歪みを低減する手法の1つとして、バイアス回路のベースバンド周波数におけるインピーダンスを低減し、ベースバンド周波数成分の歪みとキャリア信号との混変調歪みを低減する手法が提案されている。
 図11は、ベースバンド周波数成分の歪みによってメモリ効果歪みが増幅器で発生するメカニズムを示す説明図である。通信用増幅器は、バックオフを取った領域で低消費電力化を図るため、通常、AB級~C級のバイアス点に設定される。そのため、入力変調波信号の瞬時入力電力に応じてトランジスタに流れるドレイン電流の瞬時値が変化し、入力変調波信号のベースバンド周波数でドレイン電流が変化する。
 ドレイン端子での電圧変化量は、ドレイン電流とバイアス回路のベースバンド周波数でのインピーダンスとの積であらわされる。このため、バイアス回路のインピーダンスに応じて、ドレイン端子電圧VdFETは、ベースバンド周波数で変動する。これにより、キャリア信号が変調され、メモリ効果歪みが発生する。以上のメカニズムによると、バイアス回路のベースバンド周波数でのインピーダンスを0Ωに近づけることで、メモリ効果歪みを抑圧できると考えられる。
 図12は、従来の低歪み増幅器の構成図である。先端を高周波短絡用要素および低周波短絡用要素で短絡されたショートスタブ2本(Two way bias network)をFETのドレイン端子近傍に設けることで、バイアス回路のベースバンド周波数におけるインピーダンスを低減し、メモリ効果歪みを抑圧している(例えば、非特許文献1参照)。
Akio Wakejima, Kohji Matsunaga, Yasuhiro Okamoto, Kazuki Ota, Yuji Ando, Tatsuo Nakayama, and Hironobu Miyamoto, "370-W Output Power GaN-FET Amplifier with Low Distortion for W-CDMA Base Stations", pp. 1360-1363、 IEEE IMS2006
 非特許文献1では、トランジスタのドレイン端子近傍に、従来は1本しか接続されていなかったショートスタブを2本に増やすことで、ベースバンド周波数でのバイアス回路の低インピーダンス化を図っている。理論的には、この非特許文献1で示したショートスタブを多数配置することで、一層の低インピーダンス化を実現できる。しかしながら、現実には、トランジスタ近傍のスペース的な制約から、ショートスタブの本数は、2本程度しか配置できないという問題がある。
 本発明は上述のような課題を解決するためになされたもので、トランジスタ近傍の設置スペースの確保と低インピーダンス化とを両立することのできる低歪み増幅器、および低歪み増幅器を用いたドハティ増幅器を得ることを目的とする。
 本発明に係る低歪み増幅器は、先端が高周波短絡用要素および低周波短絡用要素で短絡されたショートスタブを備えた低歪み増幅器であって、ショートスタブは、トランジスタのゲート端子またはドレイン端子の少なくとも一方の近傍に接続されるとともに、複数に分岐された線路で構成され、分岐されたそれぞれの線路の先端が高周波短絡用要素および低周波短絡用要素で短絡されたものである。
 また、本発明に係るドハティ増幅器は、本発明の低歪み増幅器をキャリアアンプまたはピークアンプの少なくとも一方に適用したものである。
 本発明によれば、スペース的制約の強いトランジスタ近傍では、ショートスタブを構成する線路を1本に集約させ、高周波短絡用要素および低周波短絡用要素で短絡されている先端に向かって線路を複数に分岐させることで、ショートスタブを複数線路で構成することにより、トランジスタ近傍の設置スペースの確保と低インピーダンス化とを両立することのできる低歪み増幅器、および低歪み増幅器を用いたドハティ増幅器を得ることができる。
本発明の実施の形態1における低歪み増幅器の構成図である。 本発明の実施の形態1におけるショートスタブ2の試作パターンを示している。 本発明の実施の形態1におけるベースバンド周波数に対するインピーダンス特性の測定結果である。 本発明の実施の形態1におけるショートスタブ2の分岐数を増やした場合の例示図である。 本発明の実施の形態1において、ショートスタブからトランジスタに印加するバイアス電圧を給電する説明図である。 本発明の実施の形態1における2本+2分岐のショートスタブからなる出力整合回路の例示図である。 本発明の実施の形態4における低歪み増幅器の構成図である。 本発明の実施の形態5における低歪み増幅器の構成図である。 本発明の実施の形態6における低歪み増幅器の構成図である。 本発明の実施の形態7における低歪み増幅器を用いたドハティ増幅器の構成図である。 ベースバンド周波数成分の歪みによってメモリ効果歪みが増幅器で発生するメカニズムを示す説明図である。 従来の低歪み増幅器の構成図である。
 以下、本発明の低歪み増幅器の好適な実施の形態につき図面を用いて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1における低歪み増幅器の構成図である。より具体的には、低歪み増幅器のトランジスタの出力回路を示したものである。図1における低歪み増幅器は、トランジスタのドレイン端子1、ショートスタブ2、高周波短絡用コンデンサ3、低周波短絡用コンデンサ4、出力整合回路5、出力端子6、およびマイクロストリップ線路7を含んで構成される。
 なお、図中において、黒塗りした長方形にCが記載されたものは、高周波短絡用コンデンサ3を意味し、白塗りした長方形にCが記載されたものは、低周波短絡用コンデンサ4を意味している。また、高周波短絡用コンデンサ3は、高周波短絡用要素に相当し、低周波短絡用コンデンサ4は、低周波短絡用要素に相当する。この点は、以下の実施の形態および図面においても、同様である。
 ここで、ショートスタブ2は、構成する線路が複数に分岐し、それぞれの先端が高周波短絡用コンデンサ3および低周波短絡用コンデンサ4で短絡されていることを特徴としている。また、ショートスタブ2あるいは出力整合回路5で使用されている高周波短絡用コンデンサ3および低周波短絡用コンデンサ4は、スルーホールでグランドに短絡されている。図1以降の図に示すコンデンサも同様に、スルーホールでグランドに短絡される。
 次に、本実施の形態1における低歪み増幅器の動作について説明する。トランジスタに入力された変調波信号の瞬時入力電力に応じて、トランジスタに流れるドレイン電流の瞬時値が変化する。ショートスタブ2は、その先端が高周波短絡用コンデンサ3および低周波短絡用コンデンサ4で短絡されることで、コンデンサ分のインピーダンス低減がなされている。
 また、ショートスタブ2を構成する線路が複数に分岐されることで、線路分のインダクタンス低減が図られている。これらにより、ショートスタブ2のインピーダンスが低減される。メモリ効果歪みは、ショートスタブ2のベースバンド周波数でのインピーダンスに応じて、ドレイン端子電圧が変動することで発生する。従って、ショートスタブ2のインピーダンス低減を図ることにより、メモリ効果歪みを低減することができる。
 次に、ショートスタブ2により、ベースバンド周波数におけるインピーダンスが低減されることを、詳細に説明する。図2は、本発明の実施の形態1におけるショートスタブ2の試作パターンを示している。図2(a)は、ショートスタブ2を1本増やした場合を示している。また、図2(b)は、ショートスタブ2を2本増やした場合を示している。さらに、図2(c)は、ショートスタブ2を2本増やすとともに、それぞれを2分岐した場合を示している。
 図2に示したような3種類のショートスタブ2を試作し、ベースバンド周波数に対するインピーダンスを、それぞれのショートスタブについて測定した。図3は、本発明の実施の形態1におけるベースバンド周波数に対するインピーダンス特性の測定結果である。ショートスタブ2を増やす本数を1本から2本にすることで、低インピーダンス化が図られていることが確認できる。
 さらに、2本増やしたショートスタブ2を2分岐させることで、さらなる低インピーダンス化が図られていることがわかる。この結果からも、本発明のショートスタブの有効性が確認できる。
 図2(c)では、2本増やしたショートスタブを2分岐してなる出力整合回路を示したが、さらに分岐数を増やしてもよい。図4は、本発明の実施の形態1におけるショートスタブ2の分岐数を増やした場合の例示図である。図4(a)は、ショートスタブ2を2本増やすとともに、それぞれを3分岐した場合を示している。また、図4(b)は、ショートスタブ2を2本増やすとともに、それぞれを4分岐した場合を示している。このように、分岐数を増やすことで、一層の低インピーダンス化を実現できる。
 また、このようなショートスタブからは、トランジスタに印加するバイアス電圧を給電してもよい。図5は、本発明の実施の形態1において、ショートスタブからトランジスタに印加するバイアス電圧を給電する説明図である。このように、ショートスタブからバイアス電圧を給電することで、ベースバンド周波数における低インピーダンス機能とバイアス給電機能の共用化を図ることができる。
 本発明においては、複数の線路からショートスタブが構成されるので、実効的なバイアス給電線路の線路幅を広くすることができ、片側から給電してもショートスタブの直流抵抗を低下させることができる。これにより、バイアス回路での損失を低減でき、増幅器の高効率化を図ることができる。
 また、ショートスタブからトランジスタに印加するバイアス電圧を給電しなくてもよい。この場合には、直流抵抗による影響がないため、細い線路を用いることができる。この結果、分岐後の線路の面積を小さくすることで分岐数を増やすことができ、ベースバンド周波数におけるインピーダンスを一層低減することができる。また、ショートスタブの配置には自由度があるため、基板レイアウトに応じてさまざまな配置を取ることが可能となる。
 図6は、本発明の実施の形態1における2本+2分岐のショートスタブからなる出力整合回路の例示図であり、(a)~(d)の4通りを示している。この図6(a)~(d)に示したように、ショートスタブの配置方向は、必ずしも同じ方向にそろえて配置する必要はなく、主線路に対して対称形状である必要もない。また、ショートスタブは、一度分岐した後に再度分岐してもよい。
 さらに、トランジスタとショートスタブの間で直流が阻止されている場合には、コンデンサを用いることなく、ショートスタブ先端を直接グランドに接続してもよい。これにより、良好な短絡特性を実現することができる。
 また、先の図1では、ショートスタブがトランジスタの出力側に接続されている場合を例示しているが、トランジスタの入力側に接続してもよい。このように、ショートスタブを入力側に接続した場合には、出力側から漏れこんできたベースバンド周波数の信号、あるいはトランジスタの入力側におけるゲート容量の非線形性等より発生したベースバンド周波数の信号に対して、インピーダンスを低減し、トランジスタのゲート端での電圧変動を小さくすることができる。
 このベースバンド周波数での信号は、トランジスタでキャリアと混変調されメモリ効果歪みとなる。従って、入力側でのベースバンド周波数の低インピーダンス化は、増幅器のメモリ効果歪みを低減する利点がある。
 また、先の図1では、ショートスタブを構成する線路にマイクロストリップ線路を用いた場合を例示している。しかしながら、ショートスタブを構成する線路としては、集中定数のインダクタ、ストリップ線路、ワイヤ、トリプレート線路、またはコプレーナ線路のうちの少なくとも1つを用いて構成してもよい。これらを用いることで、小型化を図ることができ、特に、周波数が低い場合に有効である。
 以上のように、実施の形態1によれば、スペース的制約の強いトランジスタ近傍では、ショートスタブを構成する線路を1本に集約させ、高周波短絡用要素および低周波短絡用要素で短絡されている先端に向かって線路を複数に分岐させている。このように、ショートスタブを複数線路で構成することにより、トランジスタ近傍の設置スペースの確保と低インピーダンス化とを両立することのできる低歪み増幅器を得ることができる。
 なお、上述した実施の形態1では、トランジスタパッケージの外部にショートスタブが設けられている場合について説明した。しかしながら、本発明の低歪み増幅器は、このような構成に限定されるものではない。ショートスタブは、トランジスタのパッケージ内部に構成する、あるいは、半導体上にトランジスタと一体形成することもできる。このような構成とすることで、真性トランジスタ直近でベースバンド周波数におけるインピーダンスを低下させることができる。この結果、メモリ効果歪みを一層低減した低歪み増幅器を得ることができる。
 実施の形態2.
 本実施の形態2では、ショートスタブの高周波短絡点の直近に低周波短絡点を設ける場合について、先の図1を用いて説明する。図1の構成においては、高周波短絡用コンデンサ3が高周波短絡点に相当し、低周波短絡用コンデンサ4が低周波短絡点に相当する。
 基本的動作は、先の実施の形態1と同じである。高周波短絡点(高周波短絡用コンデンサ3)の直近に低周波短絡点(低周波短絡用コンデンサ4)を設けることで、低周波短絡点をトランジスタに最も近づけることができる。これにより、ショートスタブを構成する線路のインピーダンスを最小にすることができる。さらに、ショートスタブの低インピーダンス化に伴って、メモリ効果歪みの小さい低歪み増幅器を実現できる。
 以上のように、実施の形態2によれば、ショートスタブの高周波短絡点の直近に低周波短絡点を設けた構成としている。これにより、ショートスタブを構成する線路のインピーダンスを最小にすることができ、メモリ効果歪みの小さい低歪み増幅器を実現できる。
 実施の形態3.
 本実施の形態3では、ショートスタブの、主線路との接続点から電気長が等しい位置に高周波短絡点を設ける場合について、先の図1を用いて説明する。図1の構成においては、高周波短絡用コンデンサ3が高周波短絡点に相当し、低周波短絡用コンデンサ4が低周波短絡点に相当する。
 さらに、図1において、上側に示されたショートスタブ2内に設けられた2つの高周波短絡点(高周波短絡用コンデンサ3)と、下側に示されたショートスタブ2内に設けられた2つの高周波短絡点(高周波短絡用コンデンサ3)は、ともに主線路との接続点から電気長が等しい位置に設けられている。
 基本的動作は、先の実施の形態1と同じである。ショートスタブのインピーダンスは、主線路との接続点から電気長が最も短いショートスタブの影響が最も大きく、このスタブの電気的特性で全体のスタブの特性がおおむね決定される。そのため、ショートスタブを構成する個々のスタブの電気長をそろえることで、ショートスタブを構成する線路のインピーダンスの総和を最小にすることができる。
 従って、それぞれのショートスタブにおいて、主線路との接続点から電気長が等しい位置に高周波短絡点を設けることで、ショートスタブ全体での低インピーダンス化を達成できる。この結果、メモリ効果歪みの小さい低歪み増幅器を実現できる。
 以上のように、実施の形態3によれば、それぞれのショートスタブの主線路との接続点から電気長が等しい位置に高周波短絡点を設けた構成としている。これにより、ショートスタブ全体での低インピーダンス化を達成でき、メモリ効果歪みの小さい低歪み増幅器を実現できる。
 実施の形態4.
 図7は、本発明の実施の形態4における低歪み増幅器の構成図である。図7における低歪み増幅器は、トランジスタのゲート端子およびドレイン端子の近傍にショートスタブがそれぞれ2本接続されている。
 基本的動作は、先の実施の形態1と同じである。複数本のショートスタブをトランジスタのゲート端子およびドレイン端子に接続することで、ベースバンド周波数でのインピーダンスを一層低減できる利点がある。これにより、メモリ効果歪みを一層低減できる。
 以上のように、実施の形態4によれば、複数本のショートスタブをトランジスタのゲート端子およびドレイン端子に接続する構成としている。これにより、ベースバンド周波数でのインピーダンスを一層低減することができ、メモリ効果歪みを一層低減させた低歪み増幅器を実現できる。
 実施の形態5.
 図8は、本発明の実施の形態5における低歪み増幅器の構成図である。本実施の形態5における低歪み増幅器は、ショートスタブの線路幅が分岐前後で異なっている。
 基本的動作は、先の実施の形態1と同じである。分岐後のショートスタブの線路幅を、分岐前のショートスタブの線路幅よりも細くした場合には、高密度に線路を配置することができ、分岐数を増加できる利点がある。一方、分岐後のショートスタブの線路幅を、分岐前のショートスタブの線路幅よりも太くした場合には、線路のインピーダンスを低減できる利点がある。
 これらの利点により、ショートスタブのインピーダンスを低減することができる。なお、ショートスタブ内で太い線路と細い線路が混在してもよい。このような構成を備えることにより、増幅器のメモリ効果歪みを低減できる。
 以上のように、実施の形態5によれば、ショートスタブの線路幅が分岐前後で異なる構成としている。これにより、ショートスタブのインピーダンスを低減することができ、メモリ効果歪みを低減させた低歪み増幅器を実現できる。
 実施の形態6.
 図9は、本発明の実施の形態6における低歪み増幅器の構成図である。ショートスタブを構成する複数本の分岐した線路のすべてまたは一部を束ね、幅の太い線路を構成している。さらに、その束ねられた線路を、高周波短絡用要素および低周波短絡用要素で短絡される直前に、複数の線路に再度分岐し、それぞれの分岐先の先端を短絡している。
 基本的動作は、先の実施の形態1と同じである。ショートスタブを構成する複数本の分岐した線路のすべてまたは一部を束ねることで、分岐した複数本の線路間にも導体を配置でき、線路のインピーダンスを低減できる。
 また、その束ねられた線路は、高周波短絡用要素および低周波短絡用要素で短絡される直前に複数の線路に再度分岐され、それぞれの分岐先の先端が短絡される。この結果、良好な短絡特性を得ることができる。従って、ショートスタブを低インピーダンス化できる利点があり、低歪み増幅器のメモリ効果歪みを低減できる。
 以上のように、実施の形態6によれば、ショートスタブの複数本に分岐した線路を束ねた後に再度分岐する構成としている。これにより、ショートスタブのインピーダンスを低減することができ、メモリ効果歪みを低減させた低歪み増幅器を実現できる。
 実施の形態7.
 本実施の形態7では、上述した実施の形態1~6に示した低歪み増幅器を、ドハティ増幅器に適用する場合について説明する。図10は、本発明の実施の形態7における低歪み増幅器を用いたドハティ増幅器の構成図である。より具体的には、先の実施の形態1~6で説明した低歪み増幅器を、ドハティ増幅器の構成要素であるキャリアアンプおよびピークアンプに適用している。
 本実施の形態7における図7に示したユニットアンプ(すなわち、キャリアアンプおよびピークアンプ)の基本的動作は、先の実施の形態1と同じである。ドハティ増幅器は、キャリアアンプとピークアンプで構成される。そして、小出力領域では、AB級動作のキャリアアンプのみが動作する。一方、大出力領域では、AB級動作のキャリアアンプおよびC級動作のピークアンプの両方が動作する。このような動作により、低出力領域から高出力領域まで高い効率を実現している。
 ピークアンプは、C級で動作する。このため、ドレイン電流の瞬時的な変化量が大きく、大きなメモリ効果歪みが発生する。そこで、本発明の低歪み増幅器をピークアンプに適用することで、メモリ効果歪みを低減することができる。
 また、ドハティ増幅器では、キャリアアンプおよびピークアンプで動作級が異なるために、異なるメモリ効果歪みが発生している。そのため、合成後のメモリ効果歪みは、非常に複雑な歪みとなる。この結果、デジタルプリディストータで歪み補償をおこなう場合には、歪み補償量が大幅に低下する問題が発生する。
 そこで、本発明の低歪み増幅器をキャリアアンプおよびピークアンプに適用することで、キャリアアンプおよびピークアンプのメモリ効果歪みを低減できる。この結果、歪み補償量を改善できる利点がある。
 以上のように、実施の形態7によれば、ドハティ増幅器の構成要素であるキャリアアンプおよびピークアンプに本発明の低歪み増幅器を適用している。これにより、キャリアアンプおよびピークアンプのメモリ効果歪みを低減することができ、歪み補償量を改善することができる。

Claims (8)

  1.  先端が高周波短絡用要素および低周波短絡用要素で短絡されたショートスタブを備えた低歪み増幅器であって、
     前記ショートスタブは、トランジスタのゲート端子またはドレイン端子の少なくとも一方の近傍に接続されるとともに、複数に分岐された線路で構成され、分岐されたそれぞれの線路の先端が高周波短絡用要素および低周波短絡用要素で短絡された低歪み増幅器。
  2.  請求項1に記載の低歪み増幅器において、
     前記ショートスタブは、分岐されたそれぞれの線路における前記高周波短絡用要素の直近に前記低周波短絡用要素が設けられた低歪み増幅器。
  3.  請求項1に記載の低歪み増幅器において、
     前記ショートスタブは、分岐されたそれぞれの線路における主線路との接続点から高周波短絡用要素までの線路長がともに等しい低歪み増幅器。
  4.  請求項1に記載の低歪み増幅器において、
     前記ショートスタブは、トランジスタのゲート端子またはドレイン端子の少なくとも一方の近傍に複数本接続された低歪み増幅器。
  5.  請求項1に記載の低歪み増幅器において、
     前記ショートスタブは、分岐後の線路幅が分岐前の線路幅と異なる線路を含む低歪み増幅器。
  6.  請求項1に記載の低歪み増幅器において、
     前記ショートスタブは、分岐された線路において、分岐されたすべての線路または一部の線路を束ね、線路幅の太い部分を構成するとともに、短絡される直前に複数の線路に再度分岐し、それぞれの分岐先の先端が前記高周波短絡用要素および前記低周波短絡用要素で短絡された低歪み増幅器。
  7.  請求項1に記載の低歪み増幅器において、
     前記ショートスタブは、トランジスタのパッケージ内部に構成される、あるいは前記トランジスタと同一半導体上に一体形成される低歪み増幅器。
  8.  請求項1ないし7に記載の低歪み増幅器をキャリアアンプまたはピークアンプの少なくとも一方に適用した、低歪み増幅器を用いたドハティ増幅器。
PCT/JP2008/055526 2008-03-25 2008-03-25 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器 WO2009118824A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2008/055526 WO2009118824A1 (ja) 2008-03-25 2008-03-25 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器
EP08738821.1A EP2273672B1 (en) 2008-03-25 2008-03-25 Low distortion amplifier and doherty amplifier using low distortion amplifier
US12/933,509 US8149060B2 (en) 2008-03-25 2008-03-25 Low distortion amplifier and Doherty amplifier using low distortion amplifier
KR1020107023693A KR101151560B1 (ko) 2008-03-25 2008-03-25 저왜곡 증폭기 및 저왜곡 증폭기를 이용한 도허티 증폭기
JP2010505065A JP5063779B2 (ja) 2008-03-25 2008-03-25 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器
CN2008801281823A CN101978597B (zh) 2008-03-25 2008-03-25 低失真放大器以及使用低失真放大器的多尔蒂放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055526 WO2009118824A1 (ja) 2008-03-25 2008-03-25 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器

Publications (1)

Publication Number Publication Date
WO2009118824A1 true WO2009118824A1 (ja) 2009-10-01

Family

ID=41113065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055526 WO2009118824A1 (ja) 2008-03-25 2008-03-25 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器

Country Status (6)

Country Link
US (1) US8149060B2 (ja)
EP (1) EP2273672B1 (ja)
JP (1) JP5063779B2 (ja)
KR (1) KR101151560B1 (ja)
CN (1) CN101978597B (ja)
WO (1) WO2009118824A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127565A (ja) * 2015-01-08 2016-07-11 富士通株式会社 増幅装置及び無線通信装置
EP3461000B1 (en) * 2016-05-18 2022-05-04 Mitsubishi Electric Corporation Doherty amplifier
US10211785B2 (en) * 2016-12-29 2019-02-19 Nxp Usa, Inc. Doherty amplifiers with passive phase compensation circuits
KR101934933B1 (ko) * 2017-08-23 2019-01-04 순천향대학교 산학협력단 도허티 결합기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145808A (ja) * 1989-11-01 1991-06-21 Maspro Denkoh Corp マイクロ波用発振器
JPH08330873A (ja) * 1995-05-25 1996-12-13 Motorola Inc 高効率多重搬送波性能のための線形電力増幅器
JPH10233638A (ja) * 1997-02-21 1998-09-02 Nec Corp マイクロ波増幅器
JP2005516444A (ja) * 2002-01-24 2005-06-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 補償されたrf増幅器デバイス
JP2008022499A (ja) * 2006-07-14 2008-01-31 Nec Corp 増幅器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176909A (ja) * 1983-03-25 1984-10-06 Matsushita Electric Ind Co Ltd マイクロ波ミキサ回路
US4697160A (en) * 1985-12-19 1987-09-29 Hughes Aircraft Company Hybrid power combiner and amplitude controller
JP3145808B2 (ja) 1992-10-19 2001-03-12 日清製粉株式会社 養魚用飼料
KR0164410B1 (ko) * 1995-07-21 1999-03-20 김광호 스위칭 기능을 갖는 스트립라인 필터
US5808527A (en) * 1996-12-21 1998-09-15 Hughes Electronics Corporation Tunable microwave network using microelectromechanical switches
JP3939649B2 (ja) * 2000-06-14 2007-07-04 三菱電機株式会社 インピーダンス整合回路及びアンテナ装置
JP2002204133A (ja) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd 高周波増幅器
US7034620B2 (en) * 2002-04-24 2006-04-25 Powerwave Technologies, Inc. RF power amplifier employing bias circuit topologies for minimization of RF amplifier memory effects
AU2003252313A1 (en) * 2002-08-01 2004-02-23 Matsushita Electric Industrial Co., Ltd. Transmission line and semiconductor integrated circuit device
GB2395076A (en) * 2002-11-01 2004-05-12 Roke Manor Research Linear high power RF amplifiers
US7161422B2 (en) * 2003-01-03 2007-01-09 Junghyun Kim Multiple power mode amplifier with bias modulation option and without bypass switches
JP4520204B2 (ja) * 2004-04-14 2010-08-04 三菱電機株式会社 高周波電力増幅器
US8294538B2 (en) * 2007-03-05 2012-10-23 National University Corporation Kyoto Institute Of Technology Transmission line microwave apparatus including at least one non-reciprocal transmission line part between two parts
WO2010077978A2 (en) * 2008-12-16 2010-07-08 Rayspan Corporation Multiple pole multiple throw switch device based on composite right and left handed metamaterial structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145808A (ja) * 1989-11-01 1991-06-21 Maspro Denkoh Corp マイクロ波用発振器
JPH08330873A (ja) * 1995-05-25 1996-12-13 Motorola Inc 高効率多重搬送波性能のための線形電力増幅器
JPH10233638A (ja) * 1997-02-21 1998-09-02 Nec Corp マイクロ波増幅器
JP2005516444A (ja) * 2002-01-24 2005-06-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 補償されたrf増幅器デバイス
JP2008022499A (ja) * 2006-07-14 2008-01-31 Nec Corp 増幅器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIO WAKEJIMA; KOHJI MATSUNAGA; YASUHIRO OKAMOTO; KAZUKI OTA; YUJI ANDO; TATSUO NAKAYAMA; HIRONOBU MIYAMOTO: "370-W Output Power GaN-FET Amplifier with Low Distortion for W-CDMA Base Stations", IEEE IMS, 2006, pages 1360 - 1363, XP031018732

Also Published As

Publication number Publication date
CN101978597B (zh) 2013-07-31
CN101978597A (zh) 2011-02-16
JPWO2009118824A1 (ja) 2011-07-21
EP2273672B1 (en) 2018-12-19
US8149060B2 (en) 2012-04-03
JP5063779B2 (ja) 2012-10-31
KR101151560B1 (ko) 2012-05-30
KR20100127847A (ko) 2010-12-06
EP2273672A1 (en) 2011-01-12
US20110012681A1 (en) 2011-01-20
EP2273672A4 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
CN108259008B (zh) 具有无源相位补偿电路的多尔蒂放大器
JP6316506B2 (ja) 電力増幅器及び無線送信器
US8717099B2 (en) Wideband doherty amplifier circuit with peaking impedance absorption
US8581665B2 (en) Doherty amplifier
Rubio et al. A 0.6–3.8 GHz GaN power amplifier designed through a simple strategy
US20210152140A1 (en) Radio frequency power amplifier with harmonic control circuit as well as method for manufacturing the same
JP5246257B2 (ja) 増幅器
JPWO2016113905A1 (ja) ドハティ方式増幅器および電力増幅器
Jundi et al. An 85-W multi-octave push–pull GaN HEMT power amplifier for high-efficiency communication applications at microwave frequencies
JP2009182635A (ja) ドハティ増幅器
JP5063779B2 (ja) 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器
Kang et al. 1.6–2.1 GHz broadband Doherty power amplifiers for LTE handset applications
Sakata et al. A fully-integrated GaN Doherty power amplifier module with a compact frequency-dependent compensation circuit for 5G massive MIMO base stations
CN106664062A (zh) 集成3路Doherty放大器
WO2018151020A1 (ja) 高周波増幅器
JPH10190379A (ja) 複数周波数帯域高効率線形電力増幅器
WO2020202674A1 (ja) 高周波増幅器
CN114978045A (zh) 一种双频Doherty功率放大器及射频分立器件
JPH11150431A (ja) マイクロ波増幅器用バイアス回路
Shariatifar et al. A methodology for designing class-F− 1/J (J− 1) high efficiency concurrent dual-band power amplifier
KR100735418B1 (ko) 도허티 앰프
US20140210555A1 (en) Radio frequency signal amplifier and amplifying system
KR102620285B1 (ko) 병렬 스텁을 이용한 고조파 트랩 회로 및 이를 포함하는 f급 전력 증폭기
US20220060156A1 (en) Power amplifier
Sharma et al. A Novel and Compact Wideband Doherty Power Amplifier Architecture for 5G Cellular Infrastructure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128182.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505065

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12933509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008738821

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107023693

Country of ref document: KR

Kind code of ref document: A