WO2009117862A1 - 一种用于汽油脱硫脱臭的催化剂、其制备方法及其应用 - Google Patents
一种用于汽油脱硫脱臭的催化剂、其制备方法及其应用 Download PDFInfo
- Publication number
- WO2009117862A1 WO2009117862A1 PCT/CN2008/001893 CN2008001893W WO2009117862A1 WO 2009117862 A1 WO2009117862 A1 WO 2009117862A1 CN 2008001893 W CN2008001893 W CN 2008001893W WO 2009117862 A1 WO2009117862 A1 WO 2009117862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- gasoline
- potassium
- sodium
- salt
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/003—Specific sorbent material, not covered by C10G25/02 or C10G25/03
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G27/00—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
- C10G27/04—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
- C10G27/12—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/62—Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0239—Quaternary ammonium compounds
Definitions
- the present invention relates to gasoline deodorization, and more particularly to a catalyst for gasoline desulfurization and deodorization, a preparation method thereof and use thereof. Background technique
- Deodorization of gasoline is one of the indispensable processes in petrochemical industry. Its purpose is to remove or convert the organic sulphur in the oil into an odorless substance. With the exploitation of oil, the oil reserves on the planet are getting less and less. In recent years, the heavyness and inferiority of crude oil, as well as the deepening of crude oil processing, the high content of mercaptans and thioethers in light oil products in refineries, and the molecular structure is more complicated, which makes the deodorization of oil products more difficult. To this end, refineries at home and abroad actively explore new technologies to improve the deodorization effect.
- Mercaptan has the greatest impact on the quality of gasoline, among which FCC gasoline (catalyzed cracked gasoline), thermal cracking gasoline, coking gasoline and mercaptan in straight-run gasoline cause malodor of gasoline products, because mercaptan is a free radical initiator, making oil The quality and stability of the product are reduced; and the mercaptan itself is corrosive, causing corrosion of the engine components. Therefore, in order to meet the production needs and environmental protection requirements, it is imperative to deodorize gasoline.
- FCC gasoline catalyzed cracked gasoline
- thermal cracking gasoline thermal cracking gasoline
- coking gasoline and mercaptan in straight-run gasoline cause malodor of gasoline products, because mercaptan is a free radical initiator, making oil
- the quality and stability of the product are reduced; and the mercaptan itself is corrosive, causing corrosion of the engine components. Therefore, in order to meet the production needs and environmental protection requirements, it is imperative to deodorize gasoline.
- the deodorization technology currently widely used in the industry is an alkali-free deodorization technology.
- the method is characterized in that the raw material oil and the activator solution are thoroughly mixed by the mixer, and then reacted with the air through the catalyst bed to remove the mercaptan, the mercaptan removal efficiency is high, and the amount of sodium hydroxide is greatly reduced.
- Chinese patent CN1248609A discloses a preparation method of a fixed bed catalyst impregnation liquid, which comprises: adding a cobalt phthalocyanine compound to an aqueous solution of 0.5-2% alkali metal oxide (alkali metal means potassium, sodium). . Since the solution is strongly alkaline, the cobalt phthalocyanine compound is converted to the inactive component, so that the concentration of the active cobalt phthalocyanine compound in the impregnation liquid is lowered.
- alkali metal oxide alkali metal means potassium, sodium
- U.S. Patent No. 4,913,802 discloses a process for the preparation of an immersion liquid comprising: adding a cobalt phthalocyanine compound to a mixture of 2% aqueous ammonia and 1% quaternary ammonium base, although the compound of the cobalt phthalocyanine compound can be slowed down
- the inactive component is converted, but the bed catalyst prepared by using the impregnation liquid is easily lost in the process of deodorization, on the one hand, it is unfriendly to the environment, and it is easy to form pollution, on the other hand, the life of the bed is short.
- Chinese patent CN101063042A discloses an oxidative deodorization and desulfurization method, which comprises: Acid and heteropolyacid salts are used as homogeneous catalysts in high-efficiency mass transfer reactors with enhanced turbulent internals to obtain low-sulfur, odorless, high-quality oils.
- Acid and heteropolyacid salts are used as homogeneous catalysts in high-efficiency mass transfer reactors with enhanced turbulent internals to obtain low-sulfur, odorless, high-quality oils.
- the disadvantage of this method is that homogeneous catalysts are difficult to recycle. use. Summary of the invention
- Still another object of the present invention is to provide the use of the catalyst in the desulfurization and deodorization of gasoline.
- Another object of the present invention is to provide a process for desulfurization and deodorization of gasoline using the catalyst.
- Q represents a quaternary ammonium salt cation having a composition of 1 ⁇ , wherein R!, R 2 , and each independently represent a Cr o saturated fluorenyl group, provided that at least one of R, R 2 , and represents C 4 to C 2 ( ) a saturated alkyl group; B represents a metal cation Na + or / and K +;
- H represents a hydrogen atom
- A represents a central atom B, P, As, Si or Al;
- M represents a coordinating atom W or Mo
- O represents an oxygen atom
- m, n, y, and z are integers.
- a sodium salt, a potassium salt or an ammonium salt of A oxyacid is mixed with a sodium salt, a potassium salt or an ammonium salt of M oxyacid in water under acidic or basic conditions to obtain a mixed solution;
- An aqueous solution of a quaternary ammonium salt containing Q is added to the mixed solution.
- the sodium, potassium or ammonium salt of the A oxyacid is selected from the group consisting of sodium borate, potassium borate, ammonium borate, sodium phosphate, potassium phosphate, ammonium phosphate, Sodium arsenate, potassium arsenate, ammonium arsenate, sodium silicate, potassium silicate, ammonium silicate, sodium aluminate, potassium aluminate or ammonium aluminate.
- the sodium, potassium or ammonium salt of the M oxyacid is selected from the group consisting of: sodium tungstate, potassium tungstate, ammonium tungstate, sodium molybdate, molybdic acid Potassium or ammonium molybdate.
- a method for desulfurizing and deodorizing gasoline using the catalyst according to any one of (1) to (3) above which comprises the steps of: mixing a catalyst and an aqueous hydrogen peroxide solution, and then adding gasoline, at 25 Under the condition of ⁇ 90 ° C and 0.1 ⁇ lMPa, the reaction was stirred for 10 ⁇ 180 min.
- the invention also provides a method for preparing odorless gasoline using the above catalyst, the method comprising the following main steps: 10 mg ⁇ 4g 3 ⁇ 40 2 6 ⁇ 50mmol mass concentration is 1% ⁇ 50%. After mixing hydrogen peroxide, add 100ml of gasoline. Stir the reaction for 10 ⁇ 180min at 25 ⁇ 90°C and 0.1 ⁇ lMPa to stop the reaction and separate the oil layer and catalyst. Separation means standing, filtering or centrifuging.
- the present invention has the following advantages over known techniques:
- This method has a very fast deodorization rate for gasoline and is extremely efficient. '
- the agent is not only easy to prepare, high in yield, but also recyclable, which not only reduces the production cost, but also prevents the quality of the oil from being affected by the residual oil in the catalyst.
- Figure 1 is an infrared spectrum of Catalyst A.
- Figure 3 is an infrared spectrum of Catalyst B.
- FIG. 4 is a 31 P solid nuclear magnetic spectrum of Catalyst 0. detailed description
- the catalyst is called Catalyst A and characterized by infrared and nuclear magnetic properties.
- the molecular formula of the catalyst is [C! 8 H 37 N(CH 3 ) 3 ] 4 H 2 Na[PW 1Q 0 36 ], and its infrared and nuclear magnetic properties are respectively attached. Figures 1 and 2.
- Example 2
- Example 3 The same procedure as in Example 1 was carried out except that 1.6 g of octyltrimethyl quaternary ammonium salt was used instead of 2.6 g of octadecyltrimethylammonium chloride in Example 1, to obtain 8.5 g of a white powder solid catalyst.
- Catalyst B the molecular formula is [C 8 H 17 N(CH 3 ) 3 ] 4 HNa 2 [PWi 0 O 36 ], and its infrared characterization is shown in Figure 3.
- Example 2 The same procedure as in Example 1 was carried out except that 2.0 g of dodecyltrimethyl quaternary ammonium salt was used instead of 2.6 g of octadecyltrimethylammonium chloride in Example 1, to obtain 9.0 g of a white powder solid catalyst. , called catalyst C, the molecular formula is
- Example 2 The same procedure as in Example 1 was carried out except that 2.4 g of cetyltrimethyl quaternary ammonium salt was used instead of 2.6 g of octadecyltrimethylammonium chloride in Example 1, to obtain 9.3 g of a white powder solid catalyst.
- Catalyst D has the formula [C I6 H 33 N(CH 3 ) 3 ] 4 Na 3 [PW I0 O 36 ].
- Example 2 In place of the quaternary ammonium salt [(C 18 H 37 ) (75%) + (C 16 H 33 ) (25%)] 2 N + (CH 3 ) 2 C1 4.3 g instead of the 2.6 g octadecane in Example 1. Except for the trimethylammonium chloride, the same procedure as in Example 1 was carried out to obtain llg of a white powder solid catalyst, referred to as Catalyst E, having the formula [(C 18 H 37 ) 2 N(CH 3 ) 2 ] 3 [( C 16 H 33 ) 2 N(CH 3 ) 2 ]Na 3 [PW 1() 03 6 ].
- the sulfur content in the FCC gasoline before and after the reaction measured by the microcoulometric titrator was 793 ⁇ 3 ⁇ 4/ ⁇ 1 and .
- Example 6 Except for the use of Catalyst B, which was added in an amount of 10 mg and the reaction pressure was IMPa, the rest of the operating conditions were the same as in Example 6. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by microcoulometric titrator was 793 ⁇ 3 ⁇ 4/ ⁇ 1 and 623ng / l.
- Example 6 Except for the selection of Catalyst C, which was added in an amount of lg and a reaction temperature of 25 ° C, the other operating conditions were the same as in Example 6. The results of application were the same as in Example 6. The obtained gasoline had no odor, and no thiol or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in the FCC gasoline before and after the reaction measured by the microcoulometric titrator was 793 ng/W and 631 ng/cm, respectively.
- Example 6 In addition to the use of Catalyst D, and the addition amount was lg, the reaction temperature was 90 ° C, and the reaction time was 10 min. The other operating conditions were the same as in Example 6. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by a microcoulometric titrator was 793 ⁇ ⁇ / ⁇ 1 and 617 ng/ ⁇ l, respectively.
- Example 6 Except for the selection of catalyst E and the reaction pressure of O.lMPa, the rest of the operating conditions were the same as in Example 6. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in the FCC gasoline before and after the reaction measured by the microcoulometric titrator was 793 ⁇ ⁇ / ⁇ 1 and Example 11 respectively.
- Example 6 The operating conditions were the same as in Example 6 except that Catalyst D and 1% hydrogen peroxide were used. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in the FCC gasoline before and after the reaction measured by the microcoulometric titrator was 793 ⁇ 3 ⁇ 4/ ⁇ 1 and Example 12, respectively.
- Example 6 Except for the selection of catalyst D and 10% hydrogen peroxide 16 ml, the rest of the operating conditions were the same as in Example 6. Application Results As in Example 6, the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD, and complete deodorization was achieved.
- the sulfur content in FCC gasoline before and after the reaction measured by microcoulometric titrator was 793 ⁇ / ⁇ 1 and 628 / ⁇ 1.
- Example 6 The remaining operating conditions were the same as in Example 6 except that Catalyst D and 20% hydrogen peroxide were used. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content of FCC gasoline before and after the reaction is determined by the micro-coulometric titrator respectively 793 ⁇ ⁇ / ⁇ 1 and 626ng / l.
- catalyst F has the formula [C 18 H 37 N(CH 3 ) 3 ]5 Na[PW 9 034].
- Catalyst K having the formula [C 18 3 ⁇ 4 7 N(CH 3 ) 3 ] 6 3 ⁇ 4Na[BW 1Q 03 6 ].
- Example 20 Except that 0.34 g of NaAsO 2 was used instead of sodium phosphate, the other preparation conditions were the same as in Example 1 to obtain 8.4 g of a solid catalyst called Catalyst L having the formula [C IS H 37 N(CH 3 ) 3 ] 7 [AsW )Q 0 36 ].
- catalyst N having the formula [C 18 H 37 N(CH 3 ) 3 ] 2 H 4 Na[PW 1( )03 6 ].
- Catalyst F was chosen, except for the use of FCC 40 ⁇ 9 (TC fraction (where the total sulfur content is 306 ⁇ 3 ⁇ 4/ ⁇ 1, the sulfur content of thiol and thioethers is 88!3 ⁇ 4 ⁇ 1) and 30% hydrogen peroxide 2 1 ⁇ , the rest
- the operating conditions were the same as in Example 6.
- the application results were the same as in Example 6, and the obtained gasoline had no odor, and no thiol or thioether was detected in the GC-FPD to achieve complete deodorization.
- FCC before and after the reaction measured by a microcoulometric titrator
- the sulfur content in gasoline is 306 ng/ ⁇ and 210 ⁇ / ⁇ 1, respectively.
- Catalyst G was selected, except for the use of FCC below 6 (TC fraction (wherein sulfur content is 194 ⁇ 3 ⁇ 4/ ⁇ 1, sulfur content of thiol and thioethers is 72 33 ⁇ 4/ ⁇ 1) and 30% hydrogen peroxide 1 ml)
- FCC TC fraction (wherein sulfur content is 194 ⁇ 3 ⁇ 4/ ⁇ 1, sulfur content of thiol and thioethers is 72 33 ⁇ 4/ ⁇ 1) and 30% hydrogen peroxide 1 ml)
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no thiol or thioether was detected in the GC-FPD, and complete deodorization was achieved.
- the FCC gasoline was measured before and after the reaction by a microcoulometric titrator.
- the sulfur content was 194 ng/ ⁇ and Example 27
- Catalyst H is used, except that 1% of 50% hydrogen peroxide is used and the petrochemical FCC of Dalian Petrochemical is used. 160 ⁇ ⁇ / ⁇
- the thiol and thioethers have a sulfur content of 38 ⁇ 3 ⁇ 4/ ⁇ 1), and the rest of the operating conditions are the same as in Example 6.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete desorption.
- the sulfur content in FCC gasoline before and after the reaction measured by a microcoulometric titrator was 160 ⁇ 3 ⁇ 4/ ⁇ 1 and 117 ng/ ⁇ , respectively.
- Catalyst I was selected in the same manner as in Example 6 except that 30% of hydrogen peroxide was used. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by microcoulometric titrator was 793 ⁇ 3 ⁇ 4/ ⁇ 1 and 633 ng ⁇ L, respectively.
- Catalyst J was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by microcoulometric titrator was 306 ⁇ ⁇ / ⁇ 1 and 205 ng ⁇ l, respectively.
- Catalyst K was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by a microcoulometric titrator was 306 ⁇ 3 ⁇ 4/ ⁇ 1 and 20 ⁇ / ⁇ 1, respectively.
- Catalyst L was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by a microcoulometric titrator was 306 ⁇ 3 ⁇ 4/ ⁇ 1 and 21 1 ng Vi, respectively.
- Catalyst M was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in the FCC gasoline before and after the reaction measured by a microcoulometric titrator was 306 ⁇ 3 ⁇ 4/ ⁇ 1 and 198 ng/ ⁇ , respectively.
- Catalyst N was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in the FCC gasoline before and after the reaction measured by the microcoulometric titrator was 306 ⁇ 3 ⁇ 4/ ⁇ 1 and 208 ⁇ 3 ⁇ 4/ ⁇ 1, respectively.
- Catalyst 0 was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by a microcoulometric titrator was 306 ⁇ ⁇ / ⁇ 1 and 203 ng il, respectively.
- Catalyst P was selected, and the rest of the operating conditions were the same as in Example 25.
- the application results were the same as in Example 6.
- the obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in FCC gasoline before and after the reaction measured by microcoulometric titrator was 306 ⁇ 3 ⁇ 4/ ⁇ 1 and 214ng ⁇ L, respectively.
- Example 6 Except for the catalyst recovered in Example 6, the remaining operating conditions were the same as in Example 6. The application results were the same as in Example 6. The obtained gasoline had no odor, and no mercaptan or thioether was detected in the GC-FPD to achieve complete deodorization.
- the sulfur content in the FCC gasoline before and after the reaction measured by the microcoulometric titrator was 793 ng ⁇ l and
- the process can significantly deodorize gasoline.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
一种用于汽油脱硫脱臭的催化剂、 其制备方法及其应用 技术领域
本发明涉及汽油脱臭, 具体地说是一种用于汽油脱硫脱臭的催化剂、 其制备方法 及其应用。 背景技术
汽油的脱臭是石油化工中必不可少的工艺过程之一, 其目的是把油品中具有恶臭 味的有机硫化物脱除或转化为无味的物质。 随着石油的开采, 地球上石油储量越来越 少。 近年来, 原油的重质化、 劣质化, 以及原油加工深度的提高, 炼厂中的轻质油品 中的硫醇、 硫醚含量偏高, 而且分子结构更加复杂, 使油品的脱臭更加困难。 为此, 国内外各炼厂积极探索提高脱臭效果的新技术。
硫醇对汽油质量的影响最大, 其中 FCC汽油 (催化裂化汽油)、 热裂化汽油、 焦化 汽油以及直馏汽油中的硫醇造成汽油产品恶臭, 因为硫醇是一种自由基引发剂, 使油 品的质量和安定性下降; 并且硫醇本身还具有腐蚀性, 使发动机部件产生锈蚀。 因此, 为满足生产需要及环保要求, 对汽油进行脱臭势在必行。
目前工业上普遍采用的脱臭技术是无碱脱臭技术。 其特点是原料油品与活化剂溶 液经混合器充分混合后, 与空气一起通过催化剂床层时反应以脱除硫醇, 脱除硫醇效 率高, 而且氢氧化钠用量大大降低。
中国专利 CN1248609A公开了一种固定床催化剂浸渍液的制备方法,该方法包括: 将酞菁钴类的化合物家加入 0.5-2%的碱金属氧化物 (碱金属是指钾、 钠)的水溶液中。 由于溶液呈强碱性, 酞菁钴类的化合物会向非活性组分转化, 使得浸渍液中活性的酞 菁钴类的化合物浓度降低。
美国专利 US4913802公开了一种浸渍液的制备方法, 该方法包括: 在 2%的氨水 和 1%的季铵碱混合液中加入酞菁钴类的化合物,尽管可减缓酞菁钴类的化合物向非活 性组分转化, 但用此浸渍液制备的床层催化剂在脱臭的过程中容易流失, 一方面对环 境不友好, 易形成污染, 另一方面会导致床层使用寿命较短。
中国专利 CN101063042A公开了一种氧化脱臭、 脱硫方法, 该方法包括: 以杂多
酸及杂多酸盐作为均相催化剂, 在带有强化湍流内构件的高效传质反应器中反应, 得 到低硫、 无臭的优质油品, 但这种方法的缺点是均相催化剂难于回收使用。 发明内容
本发明的一个目的在于提供一种效率高、 易于回收的用于汽油脱硫脱臭催化剂。 本发明的另一个目的在于提供一种制备效率高、 易于回收的用于汽油脱硫脱臭催 化剂的方法。
本发明的再一个目的在于提供所述的催化剂在汽油脱硫脱臭中的应用。
本发明的另一个目的在于提供一种使用所述的催化剂对汽油进行脱硫脱臭的方 法。
为实现上述目的, 本发明釆用的技术方案如下各项- (1) 一种用于汽油脱硫脱臭的催化剂, 该催化剂的表达式为:
Q, BmHn [AxMyOz](1+ m + n )- 式中:
Q代表季铵盐阳离子, 其组成为 1^, 其中 R!、 R2、 和 分别独立地表 示 Cr o饱和垸基, 条件是 R,、 R2、 和 中至少有一个表示 C4~C2()饱和烷基; B代表金属阳离子 Na+或 /和 K+;
H代表氢原子;
A代表中心原子 B、 P、 As、 Si或 Al;
M代表配位原子 W或 Mo;
O代表氧原子;
1<1<10,
0≤m≤3,
0<n<3 ,
l+ m+n<14,
x= l或 2,
9<y<18,
34<z<62, 且
1、 m、 n、 y和 z为整数。
(2) 根据上面 (1)所述的催化剂,其特征在于: 所述季铵盐阳离子 Q为以下季铵盐阳
离子中的一种或多种:
(C4H9)4N+^ (C8H17)4 +, (CsHI7)3CH3N+、 (C8H17)2(CH3)2N+、 (C8H17)(CH3)3N+、 (C12H25)4N+、 (C12H25)3CH3N+、 (C12H25)2(CH3)2N+, (C12H25)(CH3)3N+ (C16H33)4N+、 (C16H33)3(CH3)N+、 (C16H33)2(CH3)2N+ 、 (。16¾3)(0¾)3 、 (7T-C5H5N+C16H33) 、 [(C1SH37)(75%)+(C16H33)(25%)]2N+(CH3)2、(C18H37)2N+(C¾)2或 (C1S¾7)N+(CH3)3。
(3)根据上面 (1)所述的催化剂, 其中所述的催化剂是下列催化剂中的一种或多种: [C18H37N(CH3)3]4H2Na[PW10O36], [C8H17N(CH3)3]4HNa2 [PW10O36]、
[C12H25N(C¾)3]4¾[PW】0O36]、 [C!6H33N(CH3)3]4Na3 [PW10O36]、
[(C18H37)2N(CH3)2 ]3[(C16H33)2N(CH3)2]Na3 [PW10O36]、 [C18H37N(C¾)3]5 Na[PW9034]、 [C18H37N(CH3)3]10H a[H2P2W12O48]、 [C18H37N(CH3)3〗7H3Na2[P2W15056]、
[Cl sH37N(CH3)3]7H2Na[P2W17061] [ClsH37N(CH3)3]4H3Na2[SiW10O36]、
[C18H37N(CH3)3]6H2Na[BW10O36]、 [C18H37N(CH3)3]7[AsW10O36]、
[C18H37N(CH3)3]4H2Na[PMo10O36], [CISH37N(CH3)3]2¾Na[PW1()036]、
[Ci 8H37N(CH3)3]5HNa3[PW9034]或 [C18H37N(CH3)3]4HNa2 [PWu039]。
(4) 一种用于制备上面 (1)至 (3)中任何一项所述催化剂的方法, 该方法包括以下步 骤:
A含氧酸的钠盐、 钾盐或铵盐在酸性或碱性条件下与 M含氧酸的钠盐、 钾盐或铵 盐在水中混合, 得到混合溶液; 和
将含有 Q的季铵盐的水溶液加入到所述的混合溶液中。
(5)根据上面 (4)所述的方法,其中所述 A含氧酸的钠盐、钾盐或铵盐选自:硼酸钠、 硼酸钾、 硼酸铵、 磷酸钠、 磷酸钾、 磷酸铵、 砷酸钠、 砷酸钾、 砷酸铵、 硅酸钠、 硅 酸钾、 硅酸铵、 铝酸钠、 铝酸钾或铝酸铵。
(6)根据上面 (4)所述的方法, 其中所述 M含氧酸的钠盐、 钾盐或铵盐选自: 钨酸 钠、 钨酸钾、 钨酸铵、 钼酸钠、 钼酸钾或钼酸铵。
(7)上面 (1)至 (3)中任何一项所述催化剂在汽油脱硫脱臭中的应用。
(8)—种使用上面 (1)至 (3)中任何一项所述催化剂对汽油进行脱硫脱臭的方法,该方 法包括以下步骤- 将催化剂和过氧化氢水溶液混合, 然后加入汽油, 于 25~90°C、 0.1〜lMPa条件下, 搅拌反应 10~180min。
(9) 根据上面 (8)所述的方法, 其中相对于 100ml的所述汽油, 催化剂的量为 10
mg〜4g, 并且过氧化氢为 6~50mmol, 所述过氧化氢水溶液中的过氧化氢的质量浓度 为 1ο/ο~50%。
本发明还提供一种用上述催化剂制备无臭汽油的方法,该方法包括以下主要步骤: 将 10 mg〜4g
¾02 6~50mmol质量浓度为 1%〜50% 双氧水混合均匀后, 加入 lOOml汽油, 于 25~90°C、 0.1~lMPa条件下, 搅拌反应 10~180min, 停止反应, 分离回收油层及催化剂。 分离是指静置、 过滤或离心分离。 ' 与公知技术相比, 本发明具有以下优点:
1、 本方法对汽油脱臭速度极快, 效率极高。 '
2、 在汽油脱臭过程中使用过氧化氢为氧化剂, 无环境污染。
3、 因为是计量反应, 消耗的过氧化氢的量极少, 所以投资也少。。
4、 催^^剂不仅制备容易, 收率高, 而且可回收利用, 不仅降低了生产成本, 而且 还防止了因催化剂残留油中影响油品质量。
5、 应用本方法在脱臭过程中油品无损失。 附图说明
图 1是催化剂 A的红外光谱图。
图 2是催化剂 A的 31P固体核磁谱图。
图 3是催化剂 B的红外光谱图。
图 4是催化剂 0的 31P固体核磁谱图。 具体实施方式
为了进一步说明本发明, 列举以下实施例, 但它们并不限制各附加权利要求所定 义的发明范围。
实施例 1
分别称取 10g偏钨酸铵和 l.Og磷酸钠溶于 80ml水中, 25 °C水浴剧烈搅拌 30min; 加 入 40ml 1M的 HN03, 搅拌 30min, 得到混合溶液; 称取 2.6g十八烷基三甲基氯化铵溶 于 10ml水中, 于 80°C水浴中滴入到上述混合溶液中, 同时剧烈搅拌, 立即生成白色沉 淀, 滴加时间为 lh, 继续搅拌 3h; 最后经过滤, 去离子水洗涤, 真空千燥得到 9.8g白 色粉末固体催化剂。 该催化剂称为催化剂 A, 经红外及核磁表征, 该催化剂的分子式 为 [C! 8H37N(CH3)3]4H2Na[P W1Q036], 其红外及核磁表征分别见附图 1和 2。
实施例 2
除了使用辛基三甲基季铵盐 1.6g代替实施例 1中的 2.6g十八烷基三甲基氯化铵外, 进行与实施例 1相同的程序, 得到 8.5g白色粉末固体催化剂, 称为催化剂 B, 分子式为 [C8H17N(CH3)3]4HNa2 [PWi0O36], 其红外表征见附图 3。
实施例 3
实施例 4
除了使用十六烷基三甲基季铵盐 2.4g代替实施例 1中的 2.6g十八烷基三甲基氯 化铵外,进行与实施例 1相同的程序,得到 9.3 g白色粉末固体催化剂,称为催化剂 D, 分子式为 [CI6H33N(CH3)3]4Na3 [PWI0O36]。
实施例 5
除了使用季铵盐 [(C18H37)(75%)+(C16H33)(25%)]2N+(CH3)2C1 4.3g代替实施例 1中的 2.6g十八烷基三甲基氯化铵外, 进行与实施例 1相同的程序, 得到 llg白色粉末固体催 化剂, 称为催化剂 E, 分子式为 [(C18H37)2N(CH3)2 ]3[(C16H33)2N(CH3)2]Na3 [PW1()036]。
实施例 6
对抚顺石化提供的含硫醇、 硫醚具有刺鼻臭味的山东 FCC汽油的脱臭 (其中总硫含 量为 793ng^I, 硫醇、 硫醚类硫含量为 150ng/ l):
(1)取 100 ml FCC汽油于一个三角瓶中, 加入 0.4g催化剂 A, 再加入 30wt%双氧水
4ml, 于 60°C水浴, 0.75MPa下剧烈搅拌 3h; (2) 将上述处理汽油离心分离回收催化剂, 所得汽油没有臭味, 且在 GC-FPD(Agilent 6890N, 检测限技术指标为 20pg硫 /s (十二烷 硫醇: 中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ι¾/μ1 和 。
实施例 7 .
除了选用催化剂 B, 并且其加入量为 10mg, 反应压力为 IMPa外, 其余操作条件 同实施例 6。 应用结果与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不 到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ι¾/μ1 和
623ng/ l。
实施例 8
除了选用催化剂 C, 并且其加入量为 lg, 反应温度为 25°C外, 其余操作条件同实 施例 6。 应用结果与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫 醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ng/W 和 631ng/^。
实施例 9
除了选用催化剂 D,并且其加入量为 lg,反应温度为 90°C,反应时间为 lOmin外,. 其余操作条件同实施例 6。应用结果与实施例 6相同,所得汽油没有臭味,且在 GC-FPD 中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ηβ/μ1 和 617ng/^l。
实施例 10
除了选用催化剂 E, 且反应压力为 O.lMPa外, 其余操作条件同实施例 6。 应用结 果与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现 完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ηβ/μ1 和 实施例 11
除了选用催化剂 D和 1%双氧水 170ml外,其余操作条件同实施例 6。应用结果与 实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全 脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ι¾/μ1 和 实施例 12
除了选用催化剂 D和 10%双氧水 16ml外, 其余操作条件同实施例 6。 应用结果 与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完 全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ιψ/μ1 和
628 /μ1。
实施例 13
除了选用催化剂 D和 20%双氧水 8ml外, 其余操作条件同实施例 6。 应用结果与 实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全 脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793η§/μ1 和 626ng/ l。
实施例 14
分别称取 5.2g偏钨酸铵和 l.Og磷酸钠溶于 80ml水中, 使用 1M K2C03溶液代替 1M的 HN03溶液, 其余操作条件同实施例 1 , 得到 6.5g白色粉末固体催化剂, 称为催 化剂 F, 分子式为 [C18H37N(CH3)3〕5 Na[PW9034]。
实施例 15
使用 2M K2C03溶液代替 1M的 HN03溶液, 并在此之前加入 2M(HOC¾)3CNH2 溶液 10ml, 且其余操作条件同实施例 1。 称为催化剂 G, 分子式为
[C18H37N(CH3)3]ioHNa[H2P2W12048]。
实施例 16
分别称取 2.6g偏钨酸铵和 l.Og磷酸钠溶于 80ml水中, 其余操作条件同实施例 1 , 得到 4.8g白色粉末固体催化剂, 称为催化剂 H, 分子式为
[C18H37N(CH3)3]7H3Na2[P2WI5056]。
实施例 17
分别称取 6.5g偏钨酸铵和 l.Og磷酸钠溶于 80ml水中, 其余操作条件同实施例 1, 得到 8.0g白色粉末固体催化剂, 称为催化剂 I, 分子式为
[C18H37N(CH3)3〗7H2Na[P2W17061]。
实施例 18
除了使用 0.75gNa2SiO3,9H2O代替磷酸钠外, 其它制备条件同实施例 1, 得到 8.9g 白色粉末固体催化剂, 称为催化剂 J, 分子式为 [C18H37N(CH3)3]4¾Na2[SiW1()036]。
实施例 19
除了使用 0.36g NaBO24H2O代替磷酸钠外, 其它制备条件同实施例 1, 得到 8.3g 白色粉末固体催化剂, 称为催化剂 K, 分子式为 [C18¾7N(CH3)3]6¾Na[BW1Q036]。
实施例 20
除了使用 0.34gNaAsO2代替磷酸钠外, 其它制备条件同实施例 1, 得到 8.4g固体 催化剂, 称为催化剂 L, 分子式为 [CISH37N(CH3)3]7[AsW)Q036]。
实施例 21
除了使用 9.8g Na2MoC 2H20代替偏钨酸铵外, 其它制备条件同实施例 1 , 得到 9.9%白色粉末固体催化剂,称为催化剂 M,分子式为 [C18H37N(CH3)3]4H2Na[PMo10O36〗。
实施例 22
除了使用 0.15mI 85%H3P( 溶液代替憐酸钠外, 其它制备条件同实施例 1, 得到 9.4g白色粉末固体催化剂, 称为催化剂 N, 分子式为 [C18H37N(CH3)3]2H4Na[PW1()036]。
实施例 23 .
除了使用 0.09ml冰醋酸代替 1M的 HN03溶液外, 其它制备条件同实施例 1, 得 到 9.6g白色粉末固体催化剂,称为催化剂 0,分子式为 [C18H37N(CH3)3]5HNa3[PW9034], 其核磁表征见附图 4。
实施例 24
除了使用稀 10ml 体积比为 1 :2 HC1代替 1M的 HN03溶液外, 其它制备条件同实 施例 1,得到 9.7g白色粉末固体催化剂,称为催化剂 P,分子式为 [C18H37N(CH3)3]4HNa2 [PWn039]。
实施例 25
选用催化剂 F, 除了使用 FCC中 40〜9(TC的馏分 (其中总硫含量 306ι¾/μ1、 硫醇 和硫醚类的硫含量88!¾^1)和30%过氧化氢2 1^外, 其余操作条件同实施例 6。 应用 结果与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实 现完全脱臭。 用微库仑滴定仪测定的反应前后 FCC汽油中的硫含量分别是 306 ng/μΐ 禾卩 210 ^/μ1。
实施例 26
选用催化剂 G, 除使用 FCC中低于 6(TC的馏分 (其中硫含量为 194ι¾/μ1、 硫醇及 硫醚类的硫含量为 72ι¾/μ1)和 30%过氧化氢 1ml外,其余操作条件同实施例 6。应用结 果与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现 完全脱臭。 用微库仑滴定仪测定的反应前后 FCC汽油中的硫含量分别是 194 ng/μΐ和 实施例 27
选用催化剂 H, 除使用 50%过氧化氢 1 mL 及使用大连石化 FCC (其中硫含量为
160η§/μΚ 硫醇及硫醚类的硫含量为 38ι¾/μ1)外, 其余操作条件同实施例 6。 应用结果 与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完 全脱: 。用微库仑滴定仪测定的反应前后 FCC汽油中的硫含量分别是 160 ι¾/μ1和 117 ng/μΐ ο
实施例 28
选用催化剂 I, 除使用 30%过氧化氢 2 ml外, 其余操作条件同实施例 6。 应用结 果与实施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现 完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ι¾/μ1 和 633ng^L
实施例 29
选用催化剂 J, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306η§/μ1 和 205 ng^l。
实施例 30
选用催化剂 K, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306ι¾/μ1 和 20^/μ1。
实施例 31
选用催化剂 L, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306ι¾/μ1 和 21 1ngVi。
实施例 32
选用催化剂 M, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306ι¾/μ1 和 198ng/^。
实施例 33
选用催化剂 N, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306ι¾/μ1 和 208ι¾/μ1 ο
实施例 34
选用催化剂 0, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306ηβ/μ1 和 203ng il。
实施例 35
选用催化剂 P, 其余操作条件同实施例 25。 应用结果与实施例 6相同, 所得汽油 没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 306ι¾/μ1 和 214ng^L
实施例 36
除了选用实施例 6中回收的催化剂外, 其余操作条件同实施例 6。 应用结果与实 施例 6相同, 所得汽油没有臭味, 且在 GC-FPD中检测不到硫醇、 硫醚, 实现完全脱 臭。
用微库仑滴定仪测定的反应前后 FCC 汽油中的硫含量分别是 793ng^l 和
624ng/ l。
从以上所有实施例可以看出, 所有催化剂可以重复使用。
以上所有实施例可以看出, 该方法可以使汽油显著脱臭。
Claims
1. 一种用于汽油脱硫脱臭的催化剂, 该催化剂的表达式为:
Q,BmHn[AxMyOz](1+m+n)- 式中-
Q代表季铵盐阳离子, 其组成为 1^1213 1^, 其中 R!、 R2、 R3和 分别独立地表 示 C^ o饱和烷基, 条件是 、 R2、 R3和 中至少有一个表示 C4~C2Q饱和烷基;
B代表金属阳离子 Na+或 /和 K+ ;
Η代表氢原子;
Α代表中心原子 B、 P、 As、 Si或 Al;
M代表配位原子 W或 Mo;
O代表氧原子;
1<1<10,
0<m<3,
0<n<3,
l+m+n<14,
x=l或 2,
9<y<18,
34<z<62, 且
1、 m、 n、 y和 z为整数。
2. 根据权利要求 1所述的催化剂, 其特征在于: 所述季铵盐阳离子 Q为以下季铵盐 阳离子中的一种或多种:
(。4Η9)4Ν\ (C8H17)4N+、 ( H17)3CH3N+、 (C8H17)2(C¾)2N+、 (C8H17)(CH3)3N+、 (C12H25)4N+、 (C12H25)3CH3N+、(C12H25)2(CH3)2N+、(C12H25)(CH3)3N+ (C16H33)4N+、 (C16H33)3(CH3)N+s (CI6H33)2(CH3)2N+ 、 (CI6H33)(CH3)3N+ 、 (π- C5H5N+C16H33) 、
[(CI8H37)(75%)+(C16H33)(25%)]2N+(CH3)2、(C18H37)2N+(CH3)2或 (C18H37)N+(CH3)3。
3. 根据权利要求 1所述的催化剂, 其中所述的催化剂是下列催化剂中的一种或多 种:
[C18H37N(CH3)3]4¾Na[PW10O36]、 [C8H17N(CH3)3]4H a2 [PW10O36]、
[C12H25N(CH3)3]4H3[PW10O36]、 [C16H33N(CH3)3]4Na3 [PW10O36]、
[(C18H37)2N(CH3)2 ]3[(C16H33)2N(CH3)2]Na3 [PW10O36]、 [C18H37N(CH3)3]5K3Na[PW9034]、 [。18Η37Ν(Ο¾)3]10ΗΝ&[Η2Ρ2 ν12048]、 [C18H37N(CH3)3]7H3Na2[P2W15056]、
[C18H37N(CH3)3]7H2Na[P2W17061]、 [C!8H37N(CH3)3]4H3Na2[SiW10O36]^
[C】s¾7N(CH3)3]6H2Na[BW10O36]、 [C18H37N(CH3)3]7[AsW10O36〗、
[C18H37N(CH3)3]4H2Na[PMo10O36]、 [Cl sH37N(CH3)3]2H4Na[PW10O36]、
[C18H37N(CH3)3]5HNa3[PW9034]或 [C18H37N(CH3)3]4HNa2 [PWu039]。
4.一种用于制备权利要求 1至 3中任何一项所述催化剂的方法, 该方法包括以下 步骤:
(1) A含氧酸的钠盐、 钾盐或铵盐在酸性或碱性条件下与 M含氧酸的钠盐、 钾盐 或铵盐在水中混合, 得到混合溶液; 和
(2) 将含有 Q的季铵盐的水溶液加入到所述的混合溶液中。
5. 根据权利要求 4所述的方法, 其中所述 A含氧酸的钠盐、 钾盐或铵盐选自: 酸 钠、 硼酸钾、 硼酸铵、 磷酸钠、 磷酸钾、 磷酸铵、 砷酸钠、 砷酸钾、 砷酸铵、 硅酸钠、 硅酸钾、 硅酸铵、 铝酸钠、 铝酸钾或铝酸铵。
6. 根据权利要求 4所述的方法, 其中所述 M含氧酸的铀盐、钾盐或铵盐选自: 钨 酸钠、 钨酸钾、 钨酸铵、 钼酸钠、 钼酸钾或钼酸铵。
7. 权利要求 I至 3中任何一项所述催化剂在汽油脱硫脱臭中的应用。
8. 一种使用权利要求 1至 3中任何一项所述催化剂对汽油进行脱硫脱臭的方法, 该方法包括以下步骤:
将催化剂和过氧化氢水溶液混合, 然后加入汽油, 于 25~90°C、 0.1~lMPa条件下, 搅拌反应 10~180min。
9. 根据权利要求 8所述的方法, 其中相对于 100ml的所述汽油, 催化剂的量为 10 mg〜4g, 并且过氧化氢为 6~50mmol, 所述过氧化氢水溶液中的过氧化氢的质量浓度 为 1%~50%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/933,313 US8501657B2 (en) | 2008-03-28 | 2008-11-20 | Catalyst for desulfurization and deodorization of gasoline and method for preparation of the same and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810010788.9 | 2008-03-28 | ||
CN200810010788A CN101543789A (zh) | 2008-03-28 | 2008-03-28 | 一种用于汽油脱硫脱臭的催化剂及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009117862A1 true WO2009117862A1 (zh) | 2009-10-01 |
Family
ID=41112916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/001893 WO2009117862A1 (zh) | 2008-03-28 | 2008-11-20 | 一种用于汽油脱硫脱臭的催化剂、其制备方法及其应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8501657B2 (zh) |
CN (1) | CN101543789A (zh) |
WO (1) | WO2009117862A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052620B2 (en) | 2013-12-11 | 2018-08-21 | Evonik Degussa Gmbh | Catalyst for oxidation reactions, a method for its preparation and the use thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012102290A1 (de) * | 2012-03-19 | 2013-09-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Faserverbundbauteil eines Kraftfahrzeugs, Monatageteil für ein solches Faserverbundbauteil und Herstellverfahren |
CN109046318A (zh) * | 2018-09-07 | 2018-12-21 | 南京工业大学 | 一种钙促进钼铝复合氧化物催化氧化脱硫催化剂的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004075633A (ja) * | 2002-08-21 | 2004-03-11 | Asahi Kasei Chemicals Corp | ヘテロポリ酸塩の製造方法 |
US20050159307A1 (en) * | 2002-05-03 | 2005-07-21 | Nelya Okun | Materials for degrading contaminants |
CN1872958A (zh) * | 2005-05-31 | 2006-12-06 | 中国科学院大连化学物理研究所 | 一种用于轻质油氧化脱臭的催化剂及制备方法 |
CN101003744A (zh) * | 2006-01-19 | 2007-07-25 | 中国科学院大连化学物理研究所 | 一种脱硫柴油的制备方法 |
CN101007284A (zh) * | 2006-01-24 | 2007-08-01 | 中国科学院大连化学物理研究所 | 一种无臭溶剂油的制备方法 |
CN101011670A (zh) * | 2007-02-02 | 2007-08-08 | 郑州大学 | 载体支载含过渡金属的复合催化剂 |
CN101077982A (zh) * | 2006-05-25 | 2007-11-28 | 中国科学院大连化学物理研究所 | 一种超低硫汽油的制备方法 |
CN101081994A (zh) * | 2006-05-31 | 2007-12-05 | 中国科学院大连化学物理研究所 | 一种超低硫汽油的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1102638C (zh) | 1999-10-01 | 2003-03-05 | 中国石化集团长岭炼油化工有限责任公司 | 轻质油品脱臭固定床催化剂浸渍液的制备方法 |
CN100569917C (zh) | 2006-04-27 | 2009-12-16 | 中国石油化工股份有限公司 | 一种轻质油品氧化脱硫和脱臭的方法 |
-
2008
- 2008-03-28 CN CN200810010788A patent/CN101543789A/zh active Pending
- 2008-11-20 US US12/933,313 patent/US8501657B2/en not_active Expired - Fee Related
- 2008-11-20 WO PCT/CN2008/001893 patent/WO2009117862A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050159307A1 (en) * | 2002-05-03 | 2005-07-21 | Nelya Okun | Materials for degrading contaminants |
JP2004075633A (ja) * | 2002-08-21 | 2004-03-11 | Asahi Kasei Chemicals Corp | ヘテロポリ酸塩の製造方法 |
CN1872958A (zh) * | 2005-05-31 | 2006-12-06 | 中国科学院大连化学物理研究所 | 一种用于轻质油氧化脱臭的催化剂及制备方法 |
CN101003744A (zh) * | 2006-01-19 | 2007-07-25 | 中国科学院大连化学物理研究所 | 一种脱硫柴油的制备方法 |
CN101007284A (zh) * | 2006-01-24 | 2007-08-01 | 中国科学院大连化学物理研究所 | 一种无臭溶剂油的制备方法 |
CN101077982A (zh) * | 2006-05-25 | 2007-11-28 | 中国科学院大连化学物理研究所 | 一种超低硫汽油的制备方法 |
CN101081994A (zh) * | 2006-05-31 | 2007-12-05 | 中国科学院大连化学物理研究所 | 一种超低硫汽油的制备方法 |
CN101011670A (zh) * | 2007-02-02 | 2007-08-08 | 郑州大学 | 载体支载含过渡金属的复合催化剂 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052620B2 (en) | 2013-12-11 | 2018-08-21 | Evonik Degussa Gmbh | Catalyst for oxidation reactions, a method for its preparation and the use thereof |
Also Published As
Publication number | Publication date |
---|---|
US8501657B2 (en) | 2013-08-06 |
CN101543789A (zh) | 2009-09-30 |
US20110015060A1 (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107754820A (zh) | 一种重油悬浮床加氢裂化催化剂及制备方法 | |
CN103372416B (zh) | 一种用于烃油脱硫的吸附剂组合物及其制备方法 | |
CN102294222A (zh) | 一种烃油脱硫吸附剂及其制备方法和应用 | |
CN101433817A (zh) | 一种脱硫吸附剂 | |
AU2014239739B2 (en) | Method for manufacturing catalytic cracking catalyst for hydrocarbon oil | |
CN103012034A (zh) | 一种脱除芳烃中微量烯烃的方法 | |
CN106179414B (zh) | 一种硫化型加氢精制催化剂及其制备方法 | |
CN104907078A (zh) | 一种浆态床加氢催化剂及其制备、设计方法和用途 | |
CN103012036A (zh) | 一种芳烃精制方法 | |
WO2009117862A1 (zh) | 一种用于汽油脱硫脱臭的催化剂、其制备方法及其应用 | |
CN110157467A (zh) | 一种催化过氧化氢氧化燃料油深度脱硫的方法 | |
CN106635127A (zh) | 一种催化氧化脱除燃料油中有机硫化物的方法 | |
CN110280235A (zh) | 一种负载型催化剂及其制备方法和应用 | |
CN102294223A (zh) | 一种烃油脱硫吸附剂及其制备方法和应用 | |
CN112044425B (zh) | 盐酸酸化高岭土负载钒氧化脱硫催化剂及其制备和应用 | |
CN114029066B (zh) | 一种Mo基单原子高熵钙钛矿氧化物脱硫催化剂及其制备方法 | |
CN102294225A (zh) | 一种烃油脱硫吸附剂及其制备方法和应用 | |
CN112439421B (zh) | 一种焦炉煤气深度脱硫催化剂及其制备方法 | |
CN107519904A (zh) | 用钛硅纳米复合氧化物和多酸化合物构筑的催化剂及其制备方法及其应用 | |
CN111056612B (zh) | 一种含硫废水的处理方法和应用 | |
CN101063044B (zh) | 一种柴油氧化脱硫方法 | |
CN104525063B (zh) | 负载聚离子液体‑NaBH4‑NiCl2体系的石墨烯气凝胶及其制备方法 | |
CN101433821A (zh) | 一种降低烃油硫含量的吸附剂 | |
CN105728000A (zh) | 一种亲油型纳米二硫化钼制备方法及其应用 | |
CN108126751A (zh) | 多级孔分子筛担载杂多酸烷基化脱硫催化剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08873542 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12933313 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08873542 Country of ref document: EP Kind code of ref document: A1 |