WO2009116576A1 - 原子層成膜装置 - Google Patents

原子層成膜装置 Download PDF

Info

Publication number
WO2009116576A1
WO2009116576A1 PCT/JP2009/055297 JP2009055297W WO2009116576A1 WO 2009116576 A1 WO2009116576 A1 WO 2009116576A1 JP 2009055297 W JP2009055297 W JP 2009055297W WO 2009116576 A1 WO2009116576 A1 WO 2009116576A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
atomic layer
forming chamber
substrate
gas
Prior art date
Application number
PCT/JP2009/055297
Other languages
English (en)
French (fr)
Inventor
和俊 村田
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to US12/933,677 priority Critical patent/US20110017135A1/en
Priority to EP09723417A priority patent/EP2267183A4/en
Publication of WO2009116576A1 publication Critical patent/WO2009116576A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present invention relates to an atomic layer deposition apparatus capable of forming a thin film in units of atomic layers and molecular layers.
  • the atomic layer growth method is a technique for forming a thin film in units of atomic layers by alternately supplying a raw material of each element constituting a film to be formed to a substrate.
  • n is an integer of 2 or more
  • n is an integer of 2 or more
  • the atomic layer growth method has extremely excellent shape adaptability and film thickness controllability compared to general CVD, and can form a uniform thin film with a high reproducibility over a wider area at a lower temperature.
  • As a technology application to the production of large-screen flat panel displays is being studied.
  • a horizontal apparatus for supplying gas in parallel to the substrate As is well known, in a horizontal apparatus, gas is supplied in parallel to the substrate, the structure of the apparatus is simple, and the structure is easy to apply to an increase in the size of the substrate.
  • the atomic layer growth method has a self-stopping action of growth, and compared with other chemical vapor deposition methods, the state of the formed film has less influence on the distribution of the supplied gas. Not be. For this reason, even when the distance from the gas supply port is greatly different with the increase in size of the substrate, it can be expected to form a uniform film over the entire region of the substrate.
  • Japanese Patent Application Laid-Open No. 2007-157885 is configured to supply gas from a wider area on one side by increasing the number of gas supply ports. Techniques to try have been proposed.
  • the present invention has been made to solve such problems, and an object thereof is to improve the uniformity of gas when a plurality of gas supply ports are used.
  • An atomic layer deposition apparatus includes a deposition chamber in which a substrate to be deposited is disposed, and a gas containing a raw material for forming a thin film on the substrate from the first side of the deposition chamber.
  • the exhaust section for exhausting the interior, the film forming chamber state measuring section for measuring the state of the film forming chamber on the substrate disposed inside the film forming chamber, and the results measured by the film forming chamber state measuring section are also included.
  • a control unit for individually controlling at least one of the opening degree and the opening time of the plurality of valves.
  • the opening degree and the opening time of each valve is individually controlled based on the measurement result of the state in the film forming chamber on the substrate, a plurality of gas supply ports are provided. The uniformity of the gas when used can be improved.
  • FIG. 1 is a diagram showing a planar configuration of an atomic layer deposition apparatus in one embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the atomic layer deposition apparatus shown in FIG.
  • FIG. 3 is a diagram showing a cross-sectional configuration of an atomic layer deposition apparatus according to another embodiment of the present invention.
  • FIG. 1 is a diagram showing a planar configuration of an atomic layer deposition apparatus in one embodiment of the present invention.
  • the atomic layer deposition apparatus in this embodiment includes a deposition chamber 101 in which an oxidizing gas such as a source gas or ozone gas is introduced to form a thin film on a substrate W to be deposited, and a raw material for forming the thin film.
  • Gas supply pipes 121, 122, 123 for supplying gas from one side (first side) of the film formation chamber 101 to the region of the film formation chamber 101, and gas supply pipes 121, 122, 123 Are provided with valves 131, 132, 133 provided in each of the above.
  • the gas supply pipes 121 to 123 are connected to a gas supply mechanism including a vaporizer for vaporizing a liquid raw material, as is well known, and a raw material such as trimethylaluminum (TMA).
  • a vaporizer for vaporizing a liquid raw material as is well known, and a raw material such as trimethylaluminum (TMA).
  • TMA trimethylaluminum
  • gases, oxidizing gases such as ozone, and purge gases such as argon (Ar) can be supplied.
  • the atomic layer deposition apparatus also includes deposition chamber monitors (deposition chamber state measuring units) 141, 142, 143, 144, 145, 146, 147, 148, and 149 disposed inside the deposition chamber 101.
  • deposition chamber monitors deposition chamber state measuring units
  • the atomic layer deposition apparatus also includes exhaust pipes 151 and 152 for exhausting the inside of the film formation chamber 101 from the other side (second side) of the film formation chamber 101 and in the middle of the exhaust pipes 151 and 152.
  • Exhaust pipe monitors exhaust pipe state measuring units 161 and 162 are provided.
  • an exhaust mechanism such as a dry pump is connected to the exhaust pipes 151 and 152, thereby enabling the exhaust of the film forming chamber 101.
  • a series of gas supply sections 102 including gas supply pipes 121 to 123 and a series of exhaust sections 105 including exhaust pipes 151 and 152 are disposed to face each other in the film forming chamber 101.
  • the atomic layer deposition apparatus includes a control unit 107 that individually controls the opening or opening time of the valves 131 to 133 based on the results measured by the deposition chamber monitors 141 to 149 and the exhaust pipe monitors 161 and 162. Is provided.
  • the film forming chamber monitors 141 to 149 are arranged in a portion of the ceiling 101a on the substrate W in the film forming chamber 101 as shown in FIG.
  • the film formation chamber monitors 141, 142, and 143 are disposed on the gas supply unit 102 side in the film formation chamber 101.
  • the film formation chamber monitors 147, 148, 149 are arranged on the exhaust unit 105 side in the film formation chamber 101.
  • the film formation chamber monitors 144, 145, and 146 are arranged at intermediate positions between the gas supply side and the exhaust side in the film formation chamber.
  • the film formation chamber monitors 141, 144, 147 are arranged, for example, on the left side (left column) in the gas flow direction from the gas supply side to the exhaust side, and the film formation chamber monitors 142, 145, 148 are exhausted from the gas supply side.
  • the film forming chamber monitors 143, 146 and 149 are arranged on the right side (right column) of the gas flow direction from the gas supply side to the exhaust side. ing. Accordingly, in the film forming chamber 101, nine film forming chamber monitors 141 to 149 arranged in three rows and three columns are arranged on the ceiling, and the upper surface of the substrate W including the thin film formed on the substrate W is arranged. The internal state of the film forming chamber 101 can be monitored.
  • a crystal oscillation type monitor for example, a quartz oscillation type film thickness monitor CRTM-9000 manufactured by ULVAC, Inc.
  • a crystal oscillation type monitor for example, a quartz oscillation type film thickness monitor CRTM-9000 manufactured by ULVAC, Inc.
  • this monitor it is possible to measure the mass of the film deposited on the detection unit made of a crystal resonator in the same manner as on the substrate W, and the film thickness can be measured by the measured mass.
  • this monitor also indirectly measures the amount of gas flowing to the location of the monitor (on the substrate in the film formation chamber 101). Therefore, this monitor functions as a film thickness measurement unit and a gas amount measurement unit.
  • the atomic layer deposition apparatus provided with such deposition chamber monitors 141 to 149, a thin film similar to the thin film formed on the substrate W in the deposition chamber 101 is formed on the detection unit. Therefore, the film thickness of the thin film formed on the substrate W can be indirectly measured. Therefore, the film thickness distribution of the thin film formed on the substrate W is indirectly measured by the film forming chamber monitors 141 to 149. Further, the distribution of the amount of gas flowing on the substrate W is indirectly measured by the film forming chamber monitors 141 to 149.
  • the control unit 107 individually controls the opening degree or opening time of the valves 131 to 133 based on the results measured in this way. For example, when the film thickness measured by the film formation chamber monitors 141, 144, and 147 arranged in the left column is thicker than the film thickness measured by the film formation monitor in the other column, the control unit 107 controls the valve 131. The opening degree is reduced or the opening time is shortened, and the amount of gas supplied by the gas supply pipe 121 is reduced.
  • control unit 107 107 reduces the opening degree of the valve 131 or shortens the opening time, and decreases the amount of gas supplied by the gas supply pipe 121.
  • an ellipsometer can be used as the film formation chamber monitors 141 to 149.
  • the film thickness and refractive index of the thin film formed on the substrate W can be measured. Therefore, this ellipsometer functions as a film thickness measuring unit and a refractive index measuring unit.
  • the atomic layer deposition apparatus provided with such deposition chamber monitors 141 to 149, the thickness of the thin film formed on the substrate W in the deposition chamber 101 can be directly measured. Therefore, the film thickness distribution of the thin film formed on the substrate W is measured by the film forming chamber monitors 141 to 149.
  • the control unit 107 individually controls the opening degree or opening time of the valves 131 to 133 based on the results measured in this way. For example, when the film thickness measured by the film formation chamber monitors 141, 144, and 147 arranged in the left column is thicker than the film thickness measured by the film formation monitor in the other column, the control unit 107 controls the valve 131. The opening degree is reduced or the opening time is shortened, and the amount of gas supplied by the gas supply pipe 121 is reduced.
  • a particle monitor foreign matter measuring unit, for example, HACH Ultra Ultra Analytics
  • HACH Ultra Ultra Analytics HACH Ultra Ultra Analytics
  • the atomic layer deposition apparatus provided with such film deposition chamber monitors 141 to 149, it is possible to measure the state of particles (foreign matter, dust generation) generated in the upper portion of the substrate W in the film deposition chamber 101. it can.
  • the state of dust generation is affected by the amount of gas flowing on the substrate W. For example, in a region where gas is supplied more than necessary, particles are likely to be generated. Therefore, the distribution of the gas flowing on the substrate W is indirectly measured by the film forming chamber monitors 141 to 149.
  • the control unit 107 individually controls the opening degree or opening time of the valves 131 to 133 based on the results measured in this way. For example, when the amount of dust generation measured by the film formation chamber monitors 141, 144, and 147 arranged in the left column is larger than the amount of dust generation measured by the film formation monitors in the other columns, the control unit 107 sets the valve The opening degree of 131 is reduced or the opening time is shortened, and the amount of gas supplied by the gas supply pipe 121 is reduced.
  • the exhaust pipe monitor 161 measures the state in the exhaust pipe 151, and the exhaust pipe monitor 162 measures the state in the exhaust pipe 152.
  • the exhaust pipe monitors 161 and 162 crystal oscillation type monitors can be used. According to this monitor, as described above, it is possible to measure the mass of the film deposited on the detection unit made of the crystal resonator in the same manner as on the substrate W, and the film thickness can be measured by the measured mass.
  • the atomic layer deposition apparatus provided with such exhaust pipe monitors 161 and 162, a thin film similar to the thin film formed on the substrate W is formed in the detection unit by the gas flowing through the exhaust pipes 151 and 152. Become so. Accordingly, the amount of gas flowing through the exhaust pipes 151 and 152 is indirectly measured by the exhaust pipe monitors 161 and 162, and the exhaust pipe monitors 161 and 162 function as a gas amount measuring unit.
  • the control unit 107 individually controls the opening degree or opening time of the valves 131 to 133 based on the results measured in this way. For example, when the amount of gas measured by the exhaust pipe monitor 161 is larger than the amount measured by the exhaust pipe monitor 162, the control unit 107 reduces the opening degree of the valve 131 or shortens the opening time, thereby reducing the gas supply pipe. The amount of gas supplied by 121 is reduced.
  • the control unit 107 measures the state in the deposition chamber 101 on the substrate W by the deposition chamber monitors 141 to 149, and this measurement is performed. Based on the results, the opening degree or opening time of the valves 131 to 133 was individually controlled. For example, when the distribution result that the film thickness is formed on the left side in the width direction with respect to the flowing direction of the supplied gas is confirmed from the measurement results of the film forming chamber monitors 141 to 149, The opening degree or opening time of the valve 131 is reduced so that the gas flow rate decreases. Further, the opening degree of the valve 133 is increased or the opening time is extended so that the gas flow rate on the right side increases. As a result, it corresponds to the gas flow rate distribution in the film forming chamber 101 measured by the film forming chamber monitors 141 to 149 and the distribution of the film thickness formed on the substrate W, so that this distribution bias is eliminated. become.
  • the three gas supply pipes 121 to 123 are provided on one side (first side) of the film formation chamber 101.
  • the present invention is not limited to this, and two gas supply pipes may be provided, or four or more gas supply pipes may be provided.
  • three film forming chamber monitors are arranged in the left column, the center column, and the right column, respectively.
  • the present invention is not limited to this.
  • one film forming chamber monitor may be arranged in each row.
  • film formation chamber monitors may be provided at two locations, the left side and the right side.
  • a plurality of four or more rows parallel to the gas flow direction may be set, and a film formation chamber monitor may be arranged or arranged in each of these rows.
  • a plurality of gas supply pipes 122 a and 122 b are provided in the vertical direction of the film formation chamber 101 in the gas supply section on one side (first side) of the film formation chamber 101.
  • a gas supply pipe may be provided.
  • the oxidizing gas may be supplied from the gas supply pipe 122a and the source gas may be supplied from the gas supply pipe 122b.
  • the gas supply pipes 122a and 122b are provided with valves 132a and 132b, respectively.
  • a plurality of exhaust pipes such as exhaust pipes 152 a and 152 b are provided in the vertical direction of the film formation chamber 101 in the exhaust portion on the other side (second side) of the film formation chamber 101.
  • the exhaust gas 152 may be exhausted by the exhaust pipe 152a, and the source gas may be exhausted by the exhaust pipe 152b.
  • the same effect as described above can be obtained by controlling the exhaust amount individually by the exhaust pipes 151, 152, 152a, and 152b under the control of the control unit 107.
  • the control unit 107 individually controls each of the opening degrees or opening times of the valves 131 to 133 based on the results measured by the film formation chamber monitors 141 to 149 and the exhaust pipe monitors 161 and 162.
  • both the opening degree and the opening time of the valves 131 to 133 may be controlled. Further, it may be controlled based on the results measured by the film forming chamber monitors 141 to 149 or the exhaust pipe monitors 161 and 162.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 原子層成膜装置は、成膜室(101)に原料ガスを供給するための複数のガス供給配管(121~123)と、成膜室(101)の内部を排気するための排気部(105)とを備えている。ガス供給配管(121~123)の各々には、バルブ(131~133)が設けられている。成膜室(101)の内部には、成膜室(101)内の状態を測定する成膜室モニター(141~149)が配置されている。バルブ(131~133)の開度または開放時間が、成膜室モニター(141~149)の測定結果をもとに、制御部(107)により制御される。これにより、複数のガス供給口を用いた場合のガスの均一性を向上させることができる。

Description

原子層成膜装置
 本発明は、原子層および分子層単位で薄膜の形成が可能な原子層成膜装置に関する。
 近年、300℃以下の低温で良質な薄膜がより均質な状態で形成可能であるなどの種々の特徴を備える技術として、原子層および分子層単位で薄膜の形成が可能な原子層成長(Atomic Layer Deposition:ALD)法が注目されている。原子層成長法は、形成しようとする膜を構成する各元素の原料を基板に交互に供給することにより、原子層単位で薄膜を形成する技術である。原子層成長法では、各元素の原料を供給している間に1層あるいはn層(nは2以上の整数)だけを表面に吸着させ、余分な原料は成長に寄与させないようにしている。これを、成長の自己停止作用という。原子層成長法によれば、一般的なCVDに比較して極めて優れた形状適応性と膜厚制御性を併せ持っており、より低温でより広い面積に対して均一な薄膜を再現性よく形成できる技術として、大画面のフラットパネルディスプレイ製造への適用が検討されている。
 大型化に対応する原子層成長装置としては、1辺が数十cmを超える矩形の基板が対象となるため、基板に平行にガスを供給する横型の装置が提案されている。横型の装置では、よく知られているように、基板に平行にガスを供給しており、装置の構成が単純であり、基板の大型化に適用しやすい構成となっている。また、原子層成長法は、前述したように成長の自己停止作用を備えており、他の化学的気相成長法に比較し、形成される膜の状態が供給されるガスの分布にあまり影響をされない。このため、基板の大型化に伴い、ガスの供給口からの距離が大きく異なる状態となっていても、基板全域に対して均一な膜の形成を期待できる。
 ところが、横型の薄膜形成装置で原子層成長を行う場合であっても、基板のガスの流れる中心領域と、この領域より離れる基板端部の領域とで、膜の状態に分布が発生することなどのことが、発明者らにより確認されている。この分布は、基板の大型化でより顕著となってきている。これを解消するために、特開2007-157885に、ガスの供給口を増やして一方の側部のより広い領域からガスを供給する構成とし、ガスが均一に供給される状態として不均一を解消しようとする技術が提案されている。
 しかしながら、複数のガス供給口を用い、これらから均一にガスを供給(噴出)しても、均一性が確保されない場合が発生することが、発明者らにより確認された。このように、従来の技術では、複数のガス供給口を用いても、必ずしも均一性が確保できないという問題があった。
 本発明は、このような課題を解消するためになされたものであり、複数のガス供給口を用いた場合のガスの均一性を向上させることを目的とする。
 本発明に係る原子層成膜装置は、成膜対象の基板が配置される成膜室と、基板に薄膜を形成するための原料を含むガスを成膜室の第1側部の側より成膜室に供給する複数のガス供給配管と、複数のガス供給配管の各々に設けられた複数のバルブと、成膜室の第1側部に対向する第2側部の側より成膜室の内部を排気する排気部と、成膜室の内部に配置されて基板の上における成膜室内の状態を測定する成膜室状態測定部と、成膜室状態測定部により測定された結果をもとに複数のバルブの開度および開放時間の少なくとも一方を個別に制御する制御部とを備えるものである。
 本発明によれば、基板の上における成膜室内の状態の測定結果をもとに、各バルブの開度および開放時間の少なくとも一方を個別に制御するようにしたので、複数のガス供給口を用いた場合のガスの均一性を向上させることができる。
図1は、本発明の一実施例における原子層成膜装置の平面構成を示す図である。 図2は、図1に示した原子層成膜装置の断面構成を示す図である。 図3は、本発明の他の実施例における原子層成膜装置の断面構成を示す図である。
 以下、本発明の実施例について図を参照して説明する。図1は、本発明の一実施例における原子層成膜装置の平面構成を示す図である。
 本実施例における原子層成膜装置は、原料ガスやオゾンガスなどの酸化ガスが導入されて成膜対象の基板W上に薄膜形成を行う成膜室101と、薄膜を形成するための原料を含むガスを、成膜室101の一方の側部(第1側部)より成膜室101の領域に対して供給するためのガス供給配管121,122,123と、ガス供給配管121,122,123の各々に設けられたバルブ131,132,133とを備える。
 なお、図示していないが、ガス供給配管121~123には、よく知られているように、液体原料を気化する気化器などを含むガス供給機構が接続され、トリメチルアルミニウム(TMA)などの原料ガスやオゾンなどの酸化ガス、また、アルゴン(Ar)などのパージガスが供給可能とされている。
 原子層成膜装置はまた、成膜室101の内部に配置された成膜室モニター(成膜室状態測定部)141,142,143,144,145,146,147,148,149を備える。
 原子層成膜装置はまた、成膜室101の他方の側部(第2側部)より成膜室101の内部を排気するための排気配管151,152と、排気配管151,152の途中に各々設けられた排気配管モニター(排気配管内状態測定部)161,162とを備える。なお、図示していないが、よく知られているように、排気配管151,152には、ドライポンプなどの排気機構が接続され、これらにより成膜室101の内部の排気を可能としている。ここで、ガス供給配管121~123からなる一連のガス供給部102と、排気配管151,152からなる一連の排気部105は、成膜室101内で対向して配置されている。
 加えて、原子層成膜装置は、成膜室モニター141~149および排気配管モニター161,162により測定された結果により、バルブ131~133の開度または開放時間を各々個別に制御する制御部107を備える。
 ここで、成膜室モニター141~149は、例えば図2に示すように、成膜室101の内部において、基板Wの上の天井101aの部分に配置されている。
 成膜室モニター141,142,143は、成膜室101内のガス供給部102の側に配置されている。成膜室モニター147,148,149は、成膜室101内の排気部105の側に配置されている。成膜室モニター144,145,146は、成膜室内のガス供給側と排気側との中間位置に配置されている。
 成膜室モニター141,144,147は、ガス供給側から排気側へのガスの流れ方向の例えば左側(左列)に配列され、成膜室モニター142,145,148は、ガス供給側から排気側へのガスの流れ方向の中央部(中央列)に配列され、成膜室モニター143,146,149は、ガス供給側から排気側へのガスの流れ方向の右側(右列)に配列されている。
 従って、成膜室101の内部では、その天井に、3行3列に配列された9個の成膜室モニター141~149が配置され、基板Wに形成される薄膜を含めて基板Wの上における成膜室101の内部の状態をモニター可能としている。
 成膜室モニター141~149としては、水晶発振式のモニター(例えば、株式会社アルバック製水晶発振式膜厚モニターCRTM-9000)を用いることができる。このモニターによれば、水晶振動子からなる検出部に基板Wの上と同様に堆積する膜の質量を測定可能であり、測定した質量により膜厚が測定可能である。なお、このモニターは、モニターの配置場所(成膜室101内の基板の上)に流れるガスの量が間接的に測定されることにもなる。従って、このモニターは、膜厚測定部およびガス量測定部として機能する。
 このような成膜室モニター141~149を備えた原子層成膜装置によれば、成膜室101において基板Wの上に形成される薄膜と同様の薄膜が検出部に形成されるようになるため、基板Wの上に形成される薄膜の膜厚を間接的に測定することができる。従って、成膜室モニター141~149により、基板Wの上に形成される薄膜の膜厚の分布が間接的に測定されることになる。また、成膜室モニター141~149により、基板Wの上に流れるガスの量の分布が間接的に測定されることになる。
 このようにして測定された結果により、制御部107は、バルブ131~133の開度または開放時間を個別に制御する。例えば、左列に配列された成膜室モニター141,144,147により測定される膜厚が、他の列の成膜モニターにより測定される膜厚より厚い場合、制御部107は、バルブ131の開度を小さくしまたは開放時間を短くし、ガス供給配管121により供給されるガスの量を減少させる。
 また、制御部107は、例えば、左列に配列された成膜室モニター141,144,147により測定されるガス量が、他の列の成膜モニターにより測定される結果より多い場合、制御部107は、バルブ131の開度を小さくしまたは開放時間を短くし、ガス供給配管121により供給されるガスの量を減少させる。
 また、成膜室モニター141~149として、エリプソメータを用いることもできる。エリプソメータによれば、基板Wの上に形成される薄膜の膜厚および屈折率が測定可能である。従って、このエリプソメーターは、膜厚測定部および屈折率測定部として機能する。このような成膜室モニター141~149を備えた原子層成膜装置によれば、成膜室101において基板Wの上に形成される薄膜の膜厚を直接測定することができる。従って、成膜室モニター141~149により、基板Wの上に形成される薄膜の膜厚の分布が測定されることになる。
 このようにして測定された結果により、制御部107は、バルブ131~133の開度または開放時間を個別に制御する。例えば、左列に配列された成膜室モニター141,144,147により測定される膜厚が、他の列の成膜モニターにより測定される膜厚より厚い場合、制御部107は、バルブ131の開度を小さくしまたは開放時間を短くし、ガス供給配管121により供給されるガスの量を減少させる。
 また、成膜室モニター141~149として、基板Wの上部空間に発生する異物(発塵)の状態を測定するパーティクルモニター(異物測定部、例えばHACH Ultra Analytics社)を用いることもできる。このような成膜室モニター141~149を備えた原子層成膜装置によれば、成膜室101において基板Wの上部において発生しているパーティクル(異物、発塵)の状態を測定することができる。発塵の状態は、基板Wの上に流れるガスの量に影響され、例えば、必要以上にガスが供給されている領域においては、パーティクルが発生しやすい状態となる。従って、成膜室モニター141~149により、基板Wの上に流れているガスの分布が間接的に測定されることになる。
 このようにして測定された結果により、制御部107は、バルブ131~133の開度または開放時間を個別に制御する。例えば、左列に配列された成膜室モニター141,144,147により測定される発塵量が、他の列の成膜モニターにより測定される発塵量より多い場合、制御部107は、バルブ131の開度を小さくしまたは開放時間を短くし、ガス供給配管121により供給されるガスの量を減少させる。
 排気配管モニター161は、排気配管151内の状態を測定し、排気配管モニター162は、排気配管152内の状態を測定する。
 排気配管モニター161,162としては、水晶発振式のモニターを用いることができる。このモニターによれば、前述したように、水晶振動子からなる検出部に基板Wの上と同様に堆積する膜の質量を測定可能であり、測定した質量により膜厚が測定可能である。このような排気配管モニター161,162を備えた原子層成膜装置によれば、排気配管151,152に流れるガスにより、基板Wの上に形成される薄膜と同様の薄膜が検出部に形成されるようになる。従って、排気配管モニター161,162により、排気配管151,152に流れるガスの量が間接的に測定されることになり、排気配管モニター161,162はガス量測定部として機能する。
 このようにして測定された結果により、制御部107は、バルブ131~133の開度または開放時間を個別に制御する。例えば、排気配管モニター161により測定されるガス量が、排気配管モニター162により測定される量より多い場合、制御部107は、バルブ131の開度を小さくしまたは開放時間を短くし、ガス供給配管121により供給されるガスの量を減少させる。
 以上に説明したように、本実施例における原子層成膜装置では、制御部107が、成膜室モニター141~149により、基板Wの上における成膜室101内の状態を測定し、この測定結果をもとにバルブ131~133の開度または開放時間を個別に制御するようにした。例えば、成膜室モニター141~149の各々の測定結果より、供給されるガスの流れていく方向に対する幅方向の左側において、膜厚が厚く形成されるという分布が確認されると、この左側におけるガスの流量が減少するように、バルブ131の開度または開放時間を小さくする。また、右側におけるガスの流量が増加するように、バルブ133の開度を大きくしまたは開放時間を長くする。この結果、成膜室モニター141~149により測定された成膜室101内におけるガスの流量分布や基板Wの上に形成される膜厚の分布に対応し、この分布の偏りが解消されるようになる。
 なお、上述では、成膜室101の一方の側部(第1側部)に、3つのガス供給配管121~123を備えるようにした。しかし、これに限るものではなく、2つのガス供給配管を設けるようにしてもよく、また、4つ以上のガス供給配管を設けるようにしてもよい。
 また、上述では、左列,中央列,および右列に、各々3個の成膜室モニターを配置するようにした。しかし、これに限るものではなく、例えば、各列に1つの成膜室モニターを配置するようにしてもよい。また、左側と右側との2箇所に成膜室モニターを設けるようにしてもよい。また、ガスの流れる方向に平行な4つ以上の複数の列を設定し、これら各列に各々成膜室モニターを配置または配列させるようにしてもよい。
 また、図3に示すように、成膜室101の一方の側部(第1側部)のガス供給部において、成膜室101の上下方向に、ガス供給配管122a,122bを設けるなど、複数のガス供給配管を設けるようにしてもよい。例えば、ガス供給配管122aからは酸化ガスが供給され、ガス供給配管122bからは原料ガスが供給されるようにすればよい。なお、ガス供給配管122a,122bに、各々バルブ132a,132bを設ける。
 同様に、成膜室101の他方の側部(第2側部)の排気部において、成膜室101の上下方向に、排気配管152a,152bを設けるなど、複数の排気配管を設けるようにしてもよい。例えば、酸化ガスの排気は排気配管152aで行い、原料ガスの排気は排気配管152bで行うようにすればよい。
 また、制御部107の制御により、排気配管151,152,152a,152bによる排気量の制御を各々個別に行うようにしても、上述と同様の効果が得られる。
 また、以上では、制御部107は、成膜室モニター141~149および排気配管モニター161,162により測定された結果により、バルブ131~133の開度または開放時間の各々を個別に制御する例を示したが、バルブ131~133の開度と開放時間の両方を制御するようにしてもよい。また、成膜室モニター141~149または排気配管モニター161,162により測定された結果により制御するようにしてもよい。

Claims (4)

  1.  成膜対象の基板が配置される成膜室と、
     前記基板に薄膜を形成するための原料を含むガスを前記成膜室の第1側部の側より前記成膜室に供給する複数のガス供給配管と、
     前記複数のガス供給配管の各々に設けられた複数のバルブと、
     前記成膜室の前記第1側部に対向する第2側部の側より前記成膜室の内部を排気する排気部と、
     前記成膜室の内部に配置されて前記基板の上における前記成膜室内の状態を測定する成膜室状態測定部と、
     前記成膜室状態測定部により測定された結果をもとに前記複数のバルブの開度および開放時間の少なくとも一方を個別に制御する制御部と
     を備えることを特徴とする原子層成膜装置。
  2.  請求項1記載の原子層成膜装置において、
     前記排気部は、複数の排気配管を備え、
     前記原子層成膜装置は、前記複数の排気配管の各々に設けられて前記複数の排気配管内の状態を測定する複数の排気配管内状態測定部を備え、
     前記制御部は、前記成膜室状態測定部により測定された結果に加え、前記複数の排気配管内状態測定部により測定された結果をもとに制御するようになされている
     ことを特徴とする原子層成膜装置。
  3.  請求項1記載の原子層成膜装置において、
     前記成膜室状態測定部は、
     前記成膜室内の前記基板の上を流れるガスの量を測定するガス量測定部、前記薄膜の膜厚を測定する膜厚測定部、前記薄膜の屈折率を測定する屈折率測定部、および前記基板上に発生する異物の状態を測定する異物測定部の少なくとも1つを備える
     ことを特徴とする原子層成膜装置。
  4.  請求項1記載の原子層成膜装置において、
     前記排気配管内状態測定部は、前記排気配管に流れるガスの量を測定するガス量測定部を備える
     ことを特徴とする原子層成膜装置。
PCT/JP2009/055297 2008-03-21 2009-03-18 原子層成膜装置 WO2009116576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/933,677 US20110017135A1 (en) 2008-03-21 2009-03-18 Tomic layer film forming apparatus
EP09723417A EP2267183A4 (en) 2008-03-21 2009-03-18 ATOMIC LAYER FILM FORMING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-074544 2008-03-21
JP2008074544A JP4430718B2 (ja) 2008-03-21 2008-03-21 原子層成膜装置

Publications (1)

Publication Number Publication Date
WO2009116576A1 true WO2009116576A1 (ja) 2009-09-24

Family

ID=41090975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055297 WO2009116576A1 (ja) 2008-03-21 2009-03-18 原子層成膜装置

Country Status (6)

Country Link
US (1) US20110017135A1 (ja)
EP (1) EP2267183A4 (ja)
JP (1) JP4430718B2 (ja)
KR (1) KR20100119807A (ja)
TW (1) TW200951245A (ja)
WO (1) WO2009116576A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359913B2 (ja) * 2014-08-12 2018-07-18 東京エレクトロン株式会社 処理装置
US9695512B2 (en) * 2014-09-02 2017-07-04 Kabushiki Kaisha Toshiba Semiconductor manufacturing system and semiconductor manufacturing method
JP6391171B2 (ja) * 2015-09-07 2018-09-19 東芝メモリ株式会社 半導体製造システムおよびその運転方法
CN107460450B (zh) * 2015-11-11 2021-03-19 南通大学 用于制备组分渐变的铝镓酸铋薄膜的装置
KR20210016946A (ko) * 2019-08-06 2021-02-17 삼성전자주식회사 샤워헤드 및 이를 구비하는 기판 처리장치
TWI755979B (zh) * 2019-12-20 2022-02-21 台灣積體電路製造股份有限公司 薄膜沉積系統以及沉積薄膜方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281780A (ja) * 1990-03-30 1991-12-12 Hitachi Ltd Cvd装置
JPH0718441Y2 (ja) * 1988-04-27 1995-05-01 株式会社小松製作所 スクラップシュートの扉開閉装置
JPH09165684A (ja) * 1995-10-28 1997-06-24 Lg Semicon Co Ltd 化学気相蒸着装置
JP2003507880A (ja) * 1999-08-17 2003-02-25 東京エレクトロン株式会社 パルスプラズマ処理方法および装置
JP2004292852A (ja) * 2003-03-25 2004-10-21 Denso Corp 薄膜成膜装置および方法
JP2005048208A (ja) * 2003-07-30 2005-02-24 Hitachi Kokusai Electric Inc 基板処理装置
JP2007157885A (ja) 2005-12-02 2007-06-21 Mitsui Eng & Shipbuild Co Ltd 原料ガス供給装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362552B2 (ja) * 1995-03-10 2003-01-07 東京エレクトロン株式会社 成膜処理装置
US5665214A (en) * 1995-05-03 1997-09-09 Sony Corporation Automatic film deposition control method and system
JP3341619B2 (ja) * 1997-03-04 2002-11-05 東京エレクトロン株式会社 成膜装置
JP3830670B2 (ja) * 1998-09-03 2006-10-04 三菱電機株式会社 半導体製造装置
JP2000204478A (ja) * 1998-11-11 2000-07-25 Canon Inc 基板処理装置及び基板処理方法
US7515264B2 (en) * 1999-06-15 2009-04-07 Tokyo Electron Limited Particle-measuring system and particle-measuring method
US6730367B2 (en) * 2002-03-05 2004-05-04 Micron Technology, Inc. Atomic layer deposition method with point of use generated reactive gas species
US7153362B2 (en) * 2002-04-30 2006-12-26 Samsung Electronics Co., Ltd. System and method for real time deposition process control based on resulting product detection
US20040261703A1 (en) * 2003-06-27 2004-12-30 Jeffrey D. Chinn Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
TWI261313B (en) * 2005-07-29 2006-09-01 Ind Tech Res Inst A method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof
KR100690177B1 (ko) * 2005-12-14 2007-03-08 동부일렉트로닉스 주식회사 원자층 증착설비 및 이를 이용한 원자층 증착방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718441Y2 (ja) * 1988-04-27 1995-05-01 株式会社小松製作所 スクラップシュートの扉開閉装置
JPH03281780A (ja) * 1990-03-30 1991-12-12 Hitachi Ltd Cvd装置
JPH09165684A (ja) * 1995-10-28 1997-06-24 Lg Semicon Co Ltd 化学気相蒸着装置
JP2003507880A (ja) * 1999-08-17 2003-02-25 東京エレクトロン株式会社 パルスプラズマ処理方法および装置
JP2004292852A (ja) * 2003-03-25 2004-10-21 Denso Corp 薄膜成膜装置および方法
JP2005048208A (ja) * 2003-07-30 2005-02-24 Hitachi Kokusai Electric Inc 基板処理装置
JP2007157885A (ja) 2005-12-02 2007-06-21 Mitsui Eng & Shipbuild Co Ltd 原料ガス供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2267183A4 *

Also Published As

Publication number Publication date
JP2009228059A (ja) 2009-10-08
KR20100119807A (ko) 2010-11-10
EP2267183A4 (en) 2012-01-11
EP2267183A1 (en) 2010-12-29
TW200951245A (en) 2009-12-16
JP4430718B2 (ja) 2010-03-10
US20110017135A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2009116576A1 (ja) 原子層成膜装置
JP2019209322A (ja) ガス分配システムおよびそれを備える反応器システム
US20140209023A1 (en) Gas supply device, processing apparatus, processing method, and storage medium
US20160258063A1 (en) Atomic layer deposition apparatus and atomic layer deposition method
US20100092665A1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus and method for using evaporating apparatus
US10519545B2 (en) Systems and methods for a plasma enhanced deposition of material on a semiconductor substrate
TWI415963B (zh) 成膜用材料及成膜用材料的推定方法
KR101471973B1 (ko) 원자층 증착 설비 및 이의 제어 방법
TWI721940B (zh) 用於材料在基板上之靜態沉積的設備及方法
JP2012175055A (ja) 原子層堆積装置
WO2011114734A1 (ja) 薄膜形成装置
JP2014210946A (ja) 原子層堆積装置
JP2022544165A (ja) ガス流入装置及びこれを用いた基板処理装置
KR101087069B1 (ko) 소스가스 공급방법
KR101393463B1 (ko) 박막 증착장치
JP2008506617A5 (ja)
KR101573687B1 (ko) 원자층 증착장치
TW202301413A (zh) 處理基材之設備
JP4989589B2 (ja) ソースガス供給装置
KR101700273B1 (ko) 화학 기상 증착 장치
JP2023098683A (ja) ガス供給ユニットおよびガス供給ユニットを含む基材プロセッシング装置
KR20190096540A (ko) 원자층 증착 시스템
KR20210141384A (ko) 다중 전구체를 사용하여 실리콘 게르마늄 균일도를 제어하기 위한 방법
KR20040105195A (ko) 원자층 박막 증착 설비의 가스공급방법
JP2001308016A (ja) 化学的気相成長装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12933677

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107021219

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009723417

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE