WO2011114734A1 - 薄膜形成装置 - Google Patents

薄膜形成装置 Download PDF

Info

Publication number
WO2011114734A1
WO2011114734A1 PCT/JP2011/001569 JP2011001569W WO2011114734A1 WO 2011114734 A1 WO2011114734 A1 WO 2011114734A1 JP 2011001569 W JP2011001569 W JP 2011001569W WO 2011114734 A1 WO2011114734 A1 WO 2011114734A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
thin film
supply unit
gas supply
Prior art date
Application number
PCT/JP2011/001569
Other languages
English (en)
French (fr)
Inventor
望 服部
康成 森
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to KR1020127016616A priority Critical patent/KR20120127407A/ko
Priority to US13/635,725 priority patent/US20130008382A1/en
Priority to EP11755925A priority patent/EP2549524A1/en
Publication of WO2011114734A1 publication Critical patent/WO2011114734A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles

Definitions

  • the present invention relates to a thin film forming apparatus for forming a thin film on a substrate.
  • ALD method atomic layer growth
  • two types of gas mainly composed of elements constituting a film to be formed are alternately supplied onto a film formation target substrate, and a thin film is formed on the substrate in units of atomic layers repeatedly several times.
  • This is a technique for forming a film having a desired thickness.
  • a source gas made of TMA (Tri-Methyl Aluminum) and an oxidizing gas containing O are used.
  • a nitriding gas is used instead of the oxidizing gas.
  • the ALD method has a high step coverage and film thickness controllability compared to a general CVD (Chemical Vapor Deposition) method, and can be used to form capacitors for memory elements and insulating films called “high-k gates”. Practical use is expected.
  • an insulating film can be formed at a low temperature of about 300 ° C., application to formation of a gate insulating film of a thin film transistor of a display device using a glass substrate such as a liquid crystal display is expected.
  • the deposition gas when a deposition gas such as a source gas or a reaction gas is supplied to the deposition space, the deposition gas is supplied so that the deposition gas flows from the direction parallel to the surface of the substrate toward the substrate. To do.
  • the deposition gas is supplied so that the deposition gas flows from a shower head provided vertically above the substrate toward the substrate.
  • Patent Document 1 A method of flowing a deposition gas in a direction parallel to the surface of the substrate is described in Patent Document 1 below.
  • a method using a shower head is described in Patent Document 2 below, for example.
  • Such an ALD method makes it possible to embed a thin film with high step coverage even in a minute recess.
  • a shower head that matches the size of the substrate on which the thin film is to be formed is required. As the size of the substrate increases, the gas in the shower head is less likely to escape, and as a result, a gas phase reaction that produces a reaction product is likely to occur.
  • a film forming gas is flowed in a direction parallel to the surface of the substrate, nonuniformity of films with different film thickness and film quality may occur on the gas supply side and gas exhaust side on the substrate. is there.
  • FIG. 6 shows an example of a thin film forming apparatus 100 that forms a thin film by ALD.
  • the thin film forming apparatus 100 includes a film forming container 102, a source gas supply unit 104, a reaction gas supply unit 106, a substrate stage 108, a heater 110, an elevating mechanism 112, and an exhaust unit 114.116.
  • the TMA gas component supplied from the source gas supply unit 104 is adsorbed to the substrate placed on the substrate stage 108 and heated by the heater 110 in the film formation space of the film formation container 102.
  • the film formation space of the film formation container 102 is decompressed by the exhaust parts 114 and 116.
  • an oxidizing gas which is a reactive gas
  • the oxidizing gas is heated near the substrate heated by the heater 110, a part of which becomes active oxygen, reacts with the TMA component adsorbed on the substrate, and an aluminum oxide thin film is formed.
  • Excess TMA gas and oxidizing gas or oxygen radicals that do not contribute to the formation of the aluminum oxide thin film are exhausted from the exhaust section 116 through the exhaust pipe.
  • the thickness of the thin film formed on the substrate becomes thicker on the source gas supply side, and the film quality on the source gas supply side may be different on the exhaust unit 116 side.
  • an object of the present invention is to provide a thin film forming apparatus that can form a thin film more uniformly than a conventional thin film forming apparatus when forming a thin film.
  • One aspect of the present invention is a thin film forming apparatus for forming a thin film on a substrate, Forming a reduced-pressure film formation space for forming a thin film on the substrate, and a film formation container in which the source gas and the reaction gas are alternately supplied to the film formation space at different timings;
  • a gas supply unit for supplying a source gas and a reaction gas to the film formation container, The gas supply unit is provided with at least one partition plate that bends a gas flow path that flows from the inlet of the source gas and the reactive gas toward the film formation space.
  • the partition plate is provided so that the wall surface of the partition plate is located in front of the gas supply unit in the flow direction of the raw material gas and the reaction gas at the inlet.
  • the gas supply unit includes a heater that keeps the partition plate at a constant temperature. In this case, it is preferable that the partition plate is heated to a temperature at which the source gas is not condensed.
  • the thin film forming apparatus has a substrate stage on which the substrate is placed,
  • the gas supply unit flows a source gas and a reaction gas in a direction parallel to a mounting surface on which the substrate of the substrate stage is placed,
  • the gas supply unit includes a plurality of partition plates.
  • the partition plate closest to the film formation space has a plurality of slit holes extending in a direction perpendicular to the mounting surface of the substrate stage. And it is preferable that the arrangement direction of the plurality of slit holes is parallel to the mounting surface.
  • the thin film forming apparatus has a substrate stage on which the substrate is placed,
  • the gas supply unit flows a source gas and a reaction gas in a direction parallel to a mounting surface on which the substrate of the substrate stage is placed,
  • the gas discharge port of the gas supply unit facing the film formation space is a slit-like opening extending in a direction parallel to the placement surface.
  • the gas supply unit has a substrate stage on which a substrate is placed, and the gas supply unit has a plurality of slit holes extending in a direction perpendicular to the placement surface on which the substrate is placed in a direction parallel to the placement surface. It is equally preferred.
  • the gas supply unit includes a plurality of partition plates, Preferably, the source gas and the reaction gas are introduced into different spaces separated by one of the plurality of partition plates, and then flow through the gap between the partition plates and through the same flow path.
  • the above-described thin film forming apparatus it is possible to form a thin film more uniformly than the conventional thin film forming apparatus.
  • the backflow of gas from the film formation container to the control valve or the like provided on the source gas supply side can be prevented, and the formation and deposition of a film on the control valve can be suppressed.
  • FIG. (A) And (b) is a figure explaining the source gas supply unit provided in the ALD apparatus shown in FIG. (A)-(c) is a figure explaining the partition plate of the source gas supply unit shown in FIG. (A) is a figure explaining the form of the thin film by the conventional thin film formation apparatus, (b) is a figure explaining the measurement position of a thin film, (c) is a figure which shows the measurement result of the thickness of a thin film. It is a figure explaining. It is a figure explaining the structure of the raw material gas supply unit of embodiment different from embodiment shown in FIG. It is a figure explaining the conventional thin film forming apparatus.
  • FIG. 1 is a diagram illustrating a schematic configuration of an ALD apparatus according to the present embodiment.
  • the ALD apparatus 10 shown in FIG. 1 alternately supplies two types of film forming gases (raw material gas and reaction gas) mainly composed of elements constituting a film to be formed onto a substrate 11 to be formed.
  • an oxide film of a source gas is formed on the substrate 11 in units of atomic layers using a heated reaction gas in order to enhance the reaction activity.
  • a thin film having a desired thickness is formed by repeating the above process for a plurality of cycles, for example, about 100 cycles.
  • As the reaction gas an oxidizing gas such as an oxidizing gas or ozone gas or a nitriding gas such as a nitrogen gas is used.
  • the ALD apparatus 10 mainly includes a film forming container 12, a source gas supply source 14, a reaction gas supply source 16, exhaust units 18 and 20, a substrate stage 22, lift pins 24, and an elevating mechanism 26.
  • a film forming container 12 mainly includes a source gas supply source 14, a reaction gas supply source 16, exhaust units 18 and 20, a substrate stage 22, lift pins 24, and an elevating mechanism 26.
  • a substrate stage 22 and a heater 32 are provided in the film formation space 30 in the film formation container 12.
  • the substrate stage 22 is provided below the film formation space 30, and the heater 32 is provided below the substrate stage 22.
  • the substrate 11 is supported by lift pins 24 penetrating the substrate stage 22 from the outside of the film forming container 12.
  • the substrate 11 being deposited is placed on the substrate stage 22.
  • the lift pins 24 can be moved up and down by an elevating mechanism 26 for exchanging the substrate 11.
  • the ALD apparatus 10 is a so-called thermal ALD apparatus that forms a thin film while the substrate 11 is heated to about 250 ° C. by the heater 32.
  • a source gas supply source 14 and a reaction gas supply source 16 for supplying source gas and reaction gas into the film formation space 30 are provided on the left side wall in FIG.
  • the source gas supply source 14 supplies the TMA gas, which is a source gas, to the film formation space 30 via the supply pipe 14a.
  • the supply of the source gas is controlled by the control valve 14b.
  • the reactive gas supply source 16 supplies an oxidizing gas, which is a reactive gas, to the film formation space 30 via the supply pipe 16a.
  • the supply of the oxidizing gas is controlled by the control valve 16b.
  • the supply of the oxidizing gas is performed when the supply of the TMA gas is stopped.
  • the TMA gas and the oxidizing gas are alternately supplied to the film formation space 30.
  • the oxidizing gas becomes a high temperature in the vicinity of the substrate 11 in the film formation space 30, a part of the oxidizing gas becomes active oxygen, and this active oxygen reacts with the component of TMA adsorbed on the substrate 11 to form a metal oxide film. A thin film is formed.
  • an inert gas such as nitrogen gas as a purge gas from a purge gas supply unit (not shown) is provided as a purge gas in a gap where the supply of the TMA source gas and the reactive gas as the oxidizing gas is alternately performed. To be supplied. Thereby, replacement
  • the supply of the source gas to the film formation space 30 and the supply of the reaction gas to the film formation space 30 are both performed via the gas supply unit 34.
  • the gas supply unit 34 will be described later.
  • the adsorption of TMA onto the substrate 11 and the reaction of TMA with active oxygen are performed in an extremely short time.
  • the reaction between TMA and active oxygen is performed in, for example, several milliseconds.
  • an oxidizing gas is allowed to flow over the substrate 11 for about 1 second so that this reaction is performed uniformly throughout the substrate 11.
  • the film formation space 30 is evacuated with a predetermined degree of vacuum (for example, 10 Pa to 100 Pa, or several Pa to several Pa, by exhausting TMA gas, oxidizing gas, purge gas, etc. by the exhaust parts 18 and 20. It is always maintained at a vacuum degree of about 100 Pa).
  • the exhaust unit 18 includes an exhaust pipe and a pump extending from an exhaust port provided on the floor surface below the substrate stage 22 in the film forming container 12. The exhaust pipe is connected to the lower space in the film forming container 12.
  • the exhaust unit 20 includes an exhaust pipe and a pump extending from an exhaust port provided on the right side in the drawing inside the film forming container 12. The exhaust pipe is connected to the film formation space 30.
  • FIGS. 2A and 2B are diagrams illustrating a gas supply unit 34 that supplies a TMA gas and an oxidizing gas to the film formation space 30.
  • the gas supply unit 34 forms a box-shaped container having an internal space 36, and a pipe 34a protruding from the reaction gas introduction port of the gas supply unit 34 is connected to the supply pipe 16a via a joint member 34b.
  • the pipe protruding from the gas supply unit 34 is connected to the supply pipe 14a via a joint member on the back side of the gas supply unit 34 as well.
  • the main part of the gas supply unit 34 has an inner space surrounded by walls on all sides, and is partitioned by a plurality of partition plates so that the flow path of the TMA gas as the source gas and the oxidizing gas as the reaction gas is bent. It is configured.
  • the gas supply unit 34 is provided with a heater 37 for keeping a metal partition plate 38 described later at a constant temperature. The reason why the partition plate 38 is heated to a certain temperature, for example, 75 ° C. or more, is to prevent the TMA gas as the raw material gas from being cooled and condensed when it hits the partition plate 38.
  • FIG. 2B is an exploded perspective view showing the internal structure of the gas supply unit 34.
  • a plurality of partition plates 38 are provided, and a plurality of rooms are formed.
  • the plurality of partition plates 38 stand from the wall surface of the gas supply unit 34 or from another partition plate 38 so as to bend the gas flow path that flows from the source gas and reaction gas inlets toward the film formation space 30. Has been established.
  • partition plates 38a to 38d are provided on a partition plate 38e described later in order from the TMA gas and oxidizing gas inlet.
  • FIG. 2B shows an inlet 35 for an oxidizing gas that is a reactive gas.
  • the screen plates 38a and 38b are provided below from the lower surface of the screen plate 38e, and the screen plates 38c and 38d are provided above from the upper surface of the screen plate 38e. None of the ends of the partition plates 38a to 38d are in contact with the inner wall surfaces (ceiling surface and floor surface) of the gas supply unit 34, and there is a gap between the tips of the partition plates 38a to 38d and the inner wall surface of the gas supply unit 34. Is done. This gap is a part of the flow path through which the TMA gas and the oxidizing gas supplied from the introduction port bend and flow.
  • the partition plate 38e is provided in a direction perpendicular to the partition plates 38f, 38g, and 38h described later. Since the partition plates 38f, 38g, and 38h are erected perpendicularly to the inner wall surface of the gas supply unit 34, the partition plate 38e is provided in parallel to the inner wall surface of the gas supply unit 34, and the partition plate 38e. Divides the internal space on the inlet side divided by the partition plates 38f, 38g, 38h in the vertical direction. The reason why the partition plate 38e divides the internal space in the vertical direction in this way is to separate the oxidizing gas introduced from above and the TMA gas introduced from below at the time of introduction.
  • a partition plate 38e is provided in front of the gas supply unit 34 in the direction in which the raw material gas and the reaction gas flow through the inlet, so that the wall surface of the partition plate 38e is located. The reason why the partition plate 38e is arranged in this manner is to stop the flow of the raw material gas and the oxidizing gas introduced from the introduction port once.
  • the screen plates 38f, 38g, and 38h are erected vertically from the inner wall surface of the gas supply unit 34.
  • the partition plates 38f, 38g, and 38h are arranged in a line in one direction, and a gap is provided between the partition plate 38f and the partition plate 38g, and between the partition plate 38g and the partition plate 38h.
  • a hole is formed.
  • the pores serve as a flow path for the gas supplied to the two internal spaces partitioned in the vertical direction by the partition plate 38e, and the interior between the partition plates 38f, 38g, and 38h and a partition plate 38i described later. Create a space. This internal space is shared as a flow path for TMA gas and oxidizing gas.
  • the source gas and the reaction gas are introduced into different spaces separated by the partition plate 38e, and then flow through the gaps between the partition plates 38f, 38g, and 38h, and then flow through the same space.
  • the TMA gas and the oxidizing gas can be shared as the TMA gas because the portion to be condensed in the reduced-pressure atmosphere has already been condensed, so that the TMA liquid adheres to the partition plate 38i. Because there is nothing.
  • the partition plate 38 i is erected vertically from the inner wall surface (floor surface) of the gas supply unit 34.
  • the tip of the partition plate 38 i does not contact the inner wall surface (ceiling surface) of the gas supply unit 34, and a gap is formed between the tip of the partition plate 38 i and the inner wall surface (ceiling surface) of the gas supply unit 34.
  • This gap is shared as a TMA gas and oxidizing gas flow path. In this way, the TMA gas and the oxidizing gas can be shared as the TMA gas because the portion to be condensed in the reduced-pressure atmosphere has already been condensed, so that the TMA liquid adheres to the partition plate 38i. Because there is nothing.
  • the partition plate 38j is provided vertically downward from the inner wall surface (ceiling surface) of the gas supply unit 34.
  • the tip of the partition plate 38j does not contact the inner wall surface (floor surface) of the gas supply unit 34, and a gap is formed between the tip of the partition plate 38j and the inner wall surface (floor surface) of the gas supply unit 34.
  • This gap is a flow path for TMA gas and oxidizing gas, and is also used as a discharge port to the film formation space 30.
  • the TMA gas and the oxidizing gas flow path can be shared because the TMA gas that has already been condensed in the reduced pressure atmosphere is condensed, so that the TMA liquid adheres to the partition plate 38j. Because there is nothing.
  • the partition plates 38f, 38g, and 38h are viewed as one partition plate, the plurality of slit holes extend in the direction perpendicular to the mounting surface of the substrate stage 22, and the array of the plurality of slit holes is arranged.
  • the direction is parallel to the placement surface.
  • the gas flowing from the slit hole between the partition plates 38f, 38g, and 38h can be made to flow to the full width of the film formation space 30.
  • the discharge port formed by the partition plate 38 i is a slit-like opening extending in a direction parallel to the mounting surface of the substrate stage 22, the gas can flow substantially uniformly over the full width of the substrate 11. .
  • FIG. 3A shows the state of the partition plates 38a to 38h when the film forming space 30 side is viewed from the inlet side, and the slit-like pores (white region in the figure) to be formed.
  • the flow of oxidizing gas, which is a reactive gas, and TMA gas, which is a raw material gas, that is introduced from the bottom in the figure are shown by arrows.
  • FIG. 3 (b) shows a slit-shaped fine formed by the partition plate 38i when the internal space between the partition plates 38f, 38g, 38h and the partition plate 38i is viewed from the film formation space 30 side. A hole (white area in the figure) is shown.
  • FIG. 3C shows a slit-like pore formed by the partition plate 38j when the internal space between the partition plate 38i and the partition plate 38j is viewed on the film formation space 30 side (in the drawing). White area).
  • the gas supply unit 34 is provided with a plurality of partition plates, so that the TMA gas and reaction gas flow paths are bent. In this way, the flow path is bent by suppressing the flow rate of the TMA gas and the oxidizing gas as much as possible so that it flows at a speed close to the diffusion of the gas. This is because it is preferable in terms of improvement.
  • the thin film formed using the gas supply unit 34 of the present invention has a nearly uniform distribution of film thickness compared to the case where gas is supplied using a conventional showerhead. I understand.
  • FIG. 4A shows an example (conventional example) in which a conventional showerhead is used to form a thin film on a substrate using TMA gas as a source gas and ozone gas as a reaction gas.
  • the shower head is arranged so that gas flows in a direction parallel to the substrate mounting surface of the substrate stage.
  • an aluminum oxide film was formed on a circular silicon substrate (6 inch wafer) in both the examples and the conventional examples.
  • FIG. 4B shows three places where the film thickness formed on the silicon substrate is measured.
  • the point 1 is located on the upstream side (gas supply side) of the gas flow, and the point 3 is located on the downstream side (exhaust side) of the gas flow.
  • FIG. 4C shows the film thickness distribution of the thin film, which is a measurement result in the above example and the conventional example.
  • the film on the upstream side is thicker and the film on the downstream side is thinner, whereas in the example, a thin film having a substantially uniform thickness is formed. From this, the effect of this invention is clear.
  • a partition plate 38 can be arranged like a gas supply unit 34 ′ shown in FIG.
  • FIG. 5 is a top view showing the arrangement of the partition plate 38 in a diagram.
  • the partition plates 38 are all erected from the inner wall surface (floor surface) of the gas supply unit 34 ′, and a gas passage is bent by providing a gap in the partition plate 38.
  • the partition plate 38 is provided so that the wall surface of the partition plate 38 is positioned in front of the gas supply unit 34 ′ in the flow direction of the raw material gas and the reaction gas at the inlet.
  • the thin film forming apparatus of the present invention has been described in detail above.
  • the thin film forming apparatus and the thin film forming method of the present invention are not limited to the above embodiment, and various improvements and modifications can be made without departing from the spirit of the present invention. Of course.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 薄膜形成装置は、原料ガスおよび反応ガスが別々のタイミングで交互に供給されて、基板に薄膜を形成するための減圧した成膜空間を形成する成膜容器と、原料ガスおよび反応ガスを前記成膜容器に供給するガス供給ユニットと、を有する。ガス供給ユニットは、原料ガスおよび反応ガスの導入口から前記成膜空間に向けて流れるガス流路を屈曲させる少なくとも1つの衝立板が設けられている。

Description

薄膜形成装置
 本発明は、基板に薄膜を形成する薄膜形成装置に関する。
 最近、基板上に原子層単位で薄膜を形成する原子層成長(Atomic Layer
Deposition)法(以下、省略してALD法という)が薄膜形成方法として注目されている。ALD法は、形成しようとする膜を構成する元素を主成分とする2種類のガスを成膜対象基板上に交互に供給し、基板上に原子層単位で薄膜を形成することを複数回繰り返して所望厚さの膜を形成する技術である。例えば、基板上にAl23膜を形成する場合、TMA(Tri-Methyl Aluminum)からなる原料ガスとOを含む酸化ガスが用いられる。また、基板上に窒化膜を形成する場合、酸化ガスの代わりに窒化ガスが用いられる。
 ALD法は、原料ガスを供給している間に1層あるいは数層の原料ガス成分だけが基板表面に吸着され、余分な原料ガスは成長に寄与しない、いわゆる成長の自己停止作用(セルフリミット機能)を利用する。
 ALD法は、一般的なCVD(Chemical Vapor Deposition)法と比較して高い段差被覆性と膜厚制御性を併せ持ち、メモリ素子のキャパシタや、「high-kゲート」と呼ばれる絶縁膜の形成への実用化が期待されている。また、300℃程度の低温で絶縁膜が形成可能であるため、液晶ディスプレイなどのように、ガラス基板を用いる表示装置の薄膜トランジスタのゲート絶縁膜の形成への適用なども期待されている。
 このALD法において、例えば、原料ガスあるいは反応ガス等の成膜ガスを成膜空間に供給するとき、成膜ガスが基板の面に平行な方向から基板に向けて流れるように成膜ガスを供給する。あるいは、成膜ガスが基板の垂直上方に設けたシャワーヘッドから基板に向けて流れるように成膜ガスを供給する。
 成膜ガスを基板の面に平行な方向に流す方式は、下記特許文献1に記載されている。シャワーヘッドを用いる方式は、例えば、下記特許文献2に記載されている。
特開2009-206312号公報 特開2009-191311号公報
 このようなALD法により、微細な凹部でも、高いステップカバレッジで薄膜を埋め込むことが可能となる。
 しかし、上記シャワーヘッドを用いてガスを供給する方式の場合、薄膜を形成しようとする基板のサイズに合わせたシャワーヘッドが必要になる。基板のサイズが大きくなるにつれて、シャワーヘッド内にあるガスは抜け難くなり、この結果、反応生成物が得られる気相反応が起き易くなる。
 一方、基板の面に平行な方向に成膜ガスを流す方式の場合、基板上のガス供給側とガス排気側とでは、形成される膜厚および膜質が異なる膜の不均一性が起きる場合がある。
 図6には、ALDにより薄膜を形成する薄膜形成装置100の一例が示されている。
 薄膜形成装置100は、成膜容器102と、原料ガス供給部104、反応ガス供給部106と、基板ステージ108と、加熱ヒータ110と、昇降機構112と、排気部114.116と、を有する。
 原料ガス供給部104から供給されたTMAのガスの成分が、成膜容器102の成膜空間内で、基板ステージ108に載置され加熱ヒータ110で加熱された基板に吸着される。成膜容器102の成膜空間は、排気部114,116により減圧状態になっている。
 また、反応ガス供給部104から成膜容器102内に反応ガスである酸化ガスが基板の面に平行な方向に向けて供給される。酸化ガスは、加熱ヒータ110で加熱された基板の近くで加熱され、その一部は活性酸素となり、基板に吸着されているTMAの成分と反応して、酸化アルミニウムの薄膜が形成される。
 酸化アルミニウムの薄膜の形成に寄与しない余分なTMAのガスおよび酸化ガスあるいは酸素ラジカルは、排気管を介して排気部116から排出される。
 しかし、基板に形成される薄膜の厚さは、原料ガス供給側程厚くなり、原料ガス供給側における膜質も、排気部116側とで異なる場合がある。
 そこで、本発明は、薄膜を形成する際、従来の薄膜形成装置に比べて、薄膜を均一に形成することができる薄膜形成装置を提供することを目的とする。
 本発明の一態様は、基板に薄膜を形成する薄膜形成装置であって、
 基板に薄膜を形成するための減圧した成膜空間を形成し、前記成膜空間に原料ガスおよび反応ガスが別々のタイミングで交互に供給される成膜容器と、
 原料ガスおよび反応ガスを前記成膜容器に供給するガス供給ユニットと、を有し、
 前記ガス供給ユニットは、原料ガスおよび反応ガスの導入口から前記成膜空間に向けて流れるガス流路を屈曲させる少なくとも1つの衝立板が設けられている、ことを特徴とする。
 前記ガス供給ユニットにおける前記導入口の原料ガスおよび反応ガスの流れる方向前方には、前記衝立板の壁面が位置するように、前記衝立板が設けられている、ことが好ましい。
 前記ガス供給ユニットは、前記衝立板を一定の温度に保つヒータを備える、ことが好ましい。この場合、前記衝立板は原料ガスが凝縮しない温度に加熱される、ことが好ましい。
 さらに、薄膜形成装置は、基板を載置する基板ステージを有し、
 前記ガス供給ユニットは、前記基板ステージの基板を載せる載置面に平行な方向に原料ガスおよび反応ガスを流し、
 前記ガス供給ユニットは複数の衝立板を備え、複数の衝立板のうち前記成膜空間に最も近い衝立板は、複数のスリット孔が、前記基板ステージの前記載置面に対して垂直方向に延び、かつ、前記複数のスリット孔の配列方向は、前記載置面に平行である、ことが好ましい。
 さらに、薄膜形成装置は、基板を載置する基板ステージを有し、
 前記ガス供給ユニットは、前記基板ステージの基板を載せる載置面に平行な方向に原料ガスおよび反応ガスを流し、
 前記成膜空間に面する前記ガス供給ユニットのガス吐出口は、前記載置面に平行な方向に延びるスリット状の開口部である、ことも同様に好ましい。
 また、基板を載置する基板ステージを有し、前記ガス供給ユニットには、前記基板ステージの基板を載せる載置面に垂直方向に延びる複数のスリット孔が前記載置面に平行な方向に形成される、ことも同様に好ましい。
 また、前記ガス供給ユニットは複数の衝立板を備え、
 原料ガスと反応ガスは、前記複数の衝立板の1つで区切られた互いに異なる空間に導入された後、前記衝立板の隙間を流れて、同じ流路を流れる、ことが好ましい。
 上述の薄膜形成装置によれば、従来の薄膜形成装置に比べて、薄膜を均一に形成することができる。
 また、成膜容器から原料ガスの供給側に設けられる制御バルブ等へのガスの逆流を防止し、制御バルブへの膜の形成および堆積を抑えることができる。
本発明の薄膜形成装置の一実施形態であるALD装置の構成を説明する図である。 (a)及び(b)は、図1に示すALD装置に設けられる原料ガス供給ユニットを説明する図である。 (a)~(c)は、図2に示す原料ガス供給ユニットの衝立板を説明する図である。 (a)は、従来の薄膜形成装置による薄膜の形勢を説明する図であり、(b)は、薄膜の測定位置を説明する図であり、(c)は、薄膜の厚さの測定結果を説明する図である。 図1に示す実施形態と異なる実施形態の原料ガス供給ユニットの構成を説明する図である。 従来の薄膜形成装置を説明する図である。
 以下、本発明の薄膜形成装置および薄膜形成方法について詳細に説明する。
 図1は、本実施形態のALD装置の概略の構成を示す図である。
 図1に示すALD装置10は、形成しようとする膜を構成する元素を主成分とする2種類の成膜ガス(原料ガスおよび反応ガス)を成膜対象の基板11上に交互に供給する。その時、反応活性を高めるために加熱された反応ガスを用いて基板11上に原子層単位で原料ガスの酸化膜を形成する。上記処理を1サイクルとして、処理を複数サイクル、例えば100サイクル程度繰り返すことにより所望厚さの薄膜が形成される。なお、反応ガスとして、酸化ガスやオゾンガス等の酸化ガスや、窒素ガス等の窒化ガスが用いられる。
 ALD装置10は、成膜容器12と、原料ガス供給源14と、反応ガス供給源16と、排気部18,20と、基板ステージ22と、リフトピン24と、昇降機構26と、を主に有する。以下、TMAを原料ガスとし、酸化ガスを反応ガスとして、基板11上にアルミニウムの金属酸化膜を形成する場合を例に挙げて説明するが、窒化膜の場合も同様である。
 成膜容器12内の成膜空間30には、基板ステージ22と、加熱ヒータ32と、が設けられている。基板ステージ22は、成膜空間30の下方に設けられ、加熱ヒータ32は、基板ステージ22の下方に設けられている。
 基板11は、基板ステージ22を貫通して成膜容器12の外側から立設するリフトピン24にて支持される。また、成膜中の基板11は基板ステージ22に載置される。リフトピン24は、基板11の交換のために昇降機構26によって上下方向に昇降可能になっている。
 ALD装置10は、加熱ヒータ32により基板11を250℃程度に加熱した状態で、薄膜を形成する、いわゆる熱ALD装置である。
 成膜容器12の図1中の左側側壁には、原料ガス、反応ガスを成膜空間30内に供給する、原料ガス供給源14と反応ガス供給源16とが設けられている。
 原料ガス供給源14は、原料ガスであるTMAのガスを、供給管14aを介して、成膜空間30に供給する。原料ガスの供給は、制御バルブ14bにより制御される。原料ガスの成膜空間30への供給により、基板11上にTMAの成分が吸着される。
 反応ガス供給源16は、反応ガスである酸化ガスを、供給管16aを介して、成膜空間30に供給する。酸化ガスの供給は、制御バルブ16bにより制御される。酸化ガスの供給は、TMAのガスの供給が停止されているときに行われる。すなわち、TMAのガスと酸化ガスは、交互に成膜空間30に供給される。酸化ガスは、成膜空間30の基板11近傍で高温状態になり、酸化ガスの一部分が活性酸素となり、この活性酸素が基板11に吸着されているTMAの成分と反応を起こして、金属酸化膜からなる薄膜を形成する。
 また、成膜空間30には、TMAの原料ガスと酸化ガスである反応ガスの供給が交互に行われる間隙に、図示されないパージガス供給部から窒素ガス等の不活性ガスがパージガスとして成膜空間30に供給される。これにより、TMAのガスと酸化ガスとの入れ替えが効率よく行われる。
 原料ガスの成膜空間30への供給と、反応ガスの成膜空間30への供給は、いずれも、ガス供給ユニット34を介して行われる。ガス供給ユニット34については後述する。
 薄膜の形成は、原子層単位で行われるので、TMAの基板11上への吸着およびTMAの活性酸素との反応は極めて短時間に行われる。例えば、TMAと活性酸素との反応は、例えば数m秒で行われる。その際、この反応が基板11全体でまんべんなく行われるように、例えば1秒程度、酸化ガスが基板11上に流される。TMAのガスと酸化ガスの供給を交互に100回程度行うことにより、数nm~数10nm等の薄膜を形成することができる。
 このような成膜容器12は、排気部18,20によるTMAのガス、酸化ガス、パージガス等の排気により、成膜空間30は、所定の真空度(例えば、10Pa~100Pa、あるいは数Pa~数100Pa)程度の真空度に常時維持される。排気部18は、成膜容器12内の、基板ステージ22の下方の床面に設けられた排気口から延びる排気管とポンプを有する。排気管は、成膜容器12内の下部空間と接続されている。
 排気部20は、成膜容器12内の図中右側面に設けられた排気口から延びる排気管とポンプを有する。排気管は、成膜空間30と接続されている。
 図2(a),(b)は、TMAのガスおよび酸化ガスを成膜空間30に供給するガス供給ユニット34を説明する図である。図2(b)では、内部構造がわかるように、側壁を除去して示している。
 ガス供給ユニット34は、内部空間36を有するようにボックス形状の容器を成し、ガス供給ユニット34の反応ガスの導入口から突出した管34aは、継手部材34bを介して、供給管16aと接続されている。図示されないが、ガス供給ユニット34の裏面側でも、ガス供給ユニット34から突出した管は、継手部材を介して、供給管14aと接続されている。
 ガス供給ユニット34の本体部分は、四方が壁面で囲まれた内部空間が複数の衝立板で仕切られて、原料ガスであるTMAのガスおよび反応ガスである酸化ガスの流路が屈曲するように構成されている。
 ガス供給ユニット34には、後述する金属製の衝立板38を一定の温度に保つための加熱ヒータ37が設けられている。衝立板38を一定の温度、例えば75℃以上に加熱されるのは、原料ガスであるTMAのガスが衝立板38にぶつかったとき、冷やされて凝縮されないようにするためである。
 図2(b)は、ガス供給ユニット34の内部構造を示す分解斜視図である。
 ガス供給ユニット34の内部空間36には、複数の衝立板38が設けられ、複数の部屋が形成されている。複数の衝立板38は、原料ガスおよび反応ガスの導入口から成膜空間30に向けて流れるガス流路を屈曲させるように、ガス供給ユニット34の壁面から、あるいは、他の衝立板38から立設している。
 具体的には、TMAのガスおよび酸化ガスの導入口から順に、衝立板38a~38dが後述する衝立板38e上に設けられている。図2(b)では、反応ガスである酸化ガスの導入口35が示されている。衝立板38a,38bは、衝立板38eの下面から下方に設けられ、衝立板38c,38dは、衝立板38eの上面から上方に設けられる。衝立板38a~38dの先端は、いずれもガス供給ユニット34の内壁面(天井面及び床面)と接触せず、衝立板38a~38dの先端とガス供給ユニット34の内壁面との間に空隙ができている。この空隙は、導入口から供給されたTMAのガスおよび酸化ガスが屈曲して流れる流路の一部となっている。
 衝立板38eは、後述する衝立板38f、38g,38hに対して垂直方向に設けられている。衝立板38f,38g,38hは、ガス供給ユニット34の内壁面に対して垂直に立設しているので、衝立板38eは、ガス供給ユニット34の内壁面に平行に設けられ、、衝立板38eは、衝立板38f,38g,38hで区切られる導入口側の内部空間を上下方向に2分している。このように、衝立板38eが内部空間を上下方向で2分するのは、上方から導入される酸化ガスと下方から導入されるTMAのガスを導入時に分離するためである。酸化ガスとTMAのガスの流路をガス導入時に分離することにより、TMAガスが凝縮して液体が壁面に付着しても、酸化ガスと反応する機会は殆どないため、反応生成物は生成されない。
 なお、ガス供給ユニット34における導入口を通る原料ガスおよび反応ガスの流れる方向前方には、衝立板38eの壁面が位置するように、衝立板38eが設けられている。このように衝立板38eを配置するのは、導入口から導入された原料ガスおよび酸化ガスの流れを一度停留させるためである。
 衝立板38f,38g,38hは、ガス供給ユニット34の内壁面から垂直に立設している。衝立板38f,38g,38hは、一方向に一列に配列されており、衝立板38fと衝立板38gの間、および衝立板38gと衝立板38hとの間に隙間が設けられ、スリット状の細孔が形成されている。この細孔は、衝立板38eで上下方向に区切られた2つの内部空間に供給されるガスの流路となって、衝立板38f,38g,38hと、後述する衝立板38iとの間の内部空間を作る。この内部空間は、TMAのガスおよび酸化ガスの流路として共用される。すなわち、原料ガスと反応ガスは、衝立板38eで区切られた互いに異なる空間に導入された後、衝立板38f,38g,38hの隙間を流れて、同じ空間の流路を流れる。このように、TMAのガスおよび酸化ガスの流路として共用できるのは、すでにTMAガスのうち減圧雰囲気内で凝縮されるべき分は凝縮されているので、衝立板38iにTMAの液が付着することはないからである。
 衝立板38iは、ガス供給ユニット34の内壁面(床面)から垂直に立設している。衝立板38iの先端は、ガス供給ユニット34の内壁面(天井面)と接触せず、衝立板38iの先端とガス供給ユニット34の内壁面(天井面)との間に隙間が形成される。この隙間は、TMAのガスおよび酸化ガスの流路として共用される。このように、TMAのガスおよび酸化ガスの流路として共用できるのは、すでにTMAガスのうち減圧雰囲気内で凝縮されるべき分は凝縮されているので、衝立板38iにTMAの液が付着することはないからである。
 衝立板38jは、ガス供給ユニット34の内壁面(天井面)から下方に向かって垂直に設けられている。衝立板38jの先端は、ガス供給ユニット34の内壁面(床面)と接触せず、衝立板38jの先端とガス供給ユニット34の内壁面(床面)との間に隙間が形成される。この隙間は、TMAのガスおよび酸化ガスの流路であり、成膜空間30への吐出口として共用される。このように、TMAのガスおよび酸化ガスの流路として共用できるのは、すでにTMAガスのうち減圧雰囲気内で凝縮されるべき分は凝縮されているので、衝立板38jにTMAの液が付着することはないからである。
 このように、衝立板38f,38g,38hを1つの衝立板としてみたとき、複数のスリット孔が、基板ステージ22の載置面に対して垂直方向に延び、かつ、この複数のスリット孔の配列方向は、載置面に平行である。これにより、衝立板38f,38g,38hの間のスリット孔から流れるガスを、成膜空間30の幅一杯に流すことができる。
 また、衝立板38iにより形成される吐出口は、基板ステージ22の載置面に平行な方向に延びるスリット状の開口部であるので、基板11の幅一杯に略均一にガスを流すことができる。
 図3(a)は、導入口の側から成膜空間30側を見たときの衝立板38a~38hの様子と、形成されるスリット状の細孔(図中の白色領域)を示す。図中上方から導入される、反応ガスである酸化ガス、および図中下方から導入される原料ガスであるTMAガスの流れが矢印で示されている。
 また、図3(b)は、衝立板38f,38g,38hと衝立板38iとの間の内部空間を、成膜空間30側に見たときの、衝立板38iにより形成されるスリット状の細孔(図中の白色領域)を示す。
 また、図3(c)は、衝立板38iと衝立板38jとの間の内部空間を、成膜空間30側に見たときの、衝立板38jにより形成されるスリット状の細孔(図中の白色領域)を示す。
 以上のように、ガス供給ユニット34は、複数の衝立板を設けることにより、TMAのガスおよび反応ガスの流路は屈曲している。このように、流路を屈曲させるのは、TMAのガスおよび酸化ガスの流速を可能な限り抑制して、ガスの拡散に近い速度で流れるようにすることが、形成される薄膜の均一性を向上する点で好ましいからである。後述するように、本発明のガス供給ユニット34を用いて形成される薄膜は、従来のシャワーヘッドを用いてガスが供給される場合に比べて、形成される膜厚の分布は均一に近いことがわかる。
〔実施例〕
 本発明の薄膜形成装置の効果を確かめるために、基板に薄膜を形成した(実施例)。
 図4(a)は、従来のシャワーヘッドを用いて、原料ガスであるTMAのガスおよび反応ガスであるオゾンガスを用いて、基板に薄膜を形成する例(従来例)を示す。この例では、シャワーヘッドを、基板ステージの基板の載置面に平行な方向にガスが流れるように配置した。
 基板は、実施例および従来例ともに円形状のシリコン基板(6インチウェハ)にアルミ酸化膜を形成した。
 基板温度は250℃とし、1回のTMAのガスの供給量を0.5mgとし、TMAのガスの供給、TMAのガスの排気、オゾンガスの供給、オゾンガスの排気の1回の処理時間を8.5秒として、100回繰り返した。
 図4(b)は、シリコン基板に形成された膜厚を測定する3箇所を示す。地点1は、ガスの流れの上流側(ガス供給側)に位置し、地点3は、ガスの流れの下流側(排気側)に位置する。
 図4(c)は、上記実施例と従来例における測定結果である、薄膜の膜厚分布を示している。図からわかるように、従来例では、上流側程膜は厚く、下流側程膜は薄いのに対して、実施例では、略均一な厚さの薄膜が形成されていることがわかる。
 これより、本発明の効果は明らかである。
 なお、本実施形態は、複数の衝立板を図2(b)に示すように配置したが、この配置に限定されるわけではない。衝立板により、原料ガスおよび反応ガスの流路が屈曲するように衝立板を配置すれば、どのような配置であってもよい。例えば、図5に示すガス供給ユニット34’のように、衝立板38を配置することができる。図5は、衝立板38の配置を線図で表した上面図である。衝立板38は、いずれもガス供給ユニット34’の内壁面(床面)から立設し、衝立板38に隙間が設けられることにより、ガスの流路が屈曲している。
 このような流路においても、ガス供給ユニット34’における導入口の原料ガスおよび反応ガスの流れる方向前方には、衝立板38の壁面が位置するように、衝立板38が設けられている。
 以上、本発明の薄膜形成装置について詳細に説明したが、本発明の薄膜形成装置および薄膜形成方法は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 ALD装置
11 基板
12 成膜容器
14 原料ガス供給源
16 反応ガス供給源
18,20 排気部
22 基板ステージ
24 リフトピン
26 昇降機構
30 成膜空間
32,37 加熱ヒータ
34 ガス供給ユニット
34a 管
34b 継手部材
35 導入口
36 内部空間
38,38a~38j 衝立板
 

Claims (8)

  1.  基板に薄膜を形成する薄膜形成装置であって、
     基板に薄膜を形成するための減圧した成膜空間を形成し、前記成膜空間に原料ガスおよび反応ガスが別々のタイミングで交互に供給される成膜容器と、
     原料ガスおよび反応ガスを前記成膜容器に供給するガス供給ユニットと、を有し、
     前記ガス供給ユニットは、原料ガスおよび反応ガスの導入口から前記成膜空間に向けて流れるガス流路を屈曲させる少なくとも1つの衝立板が設けられている、ことを特徴とする薄膜形成装置。
  2.  前記ガス供給ユニットにおける前記導入口の原料ガスおよび反応ガスの流れる方向前方には、前記衝立板の壁面が位置するように、前記衝立板が設けられている、請求項1に記載の薄膜形成装置。
  3.  前記ガス供給ユニットは、前記衝立板を一定の温度に保つヒータを備える、請求項1または2に記載の薄膜形成装置。
  4.  前記衝立板は原料ガスが凝縮しない温度に加熱される、請求項3に記載の薄膜形成装置。
  5.  基板を載置する基板ステージを有し、
     前記ガス供給ユニットは、前記基板ステージの基板を載せる載置面に平行な方向に原料ガスおよび反応ガスを流し、
     前記成膜空間に面する前記ガス供給ユニットのガス吐出口は、前記載置面に平行な方向に延びるスリット状の開口部である、請求項1~4のいずれか1項に記載の薄膜形成装置。
  6.  基板を載置する基板ステージを有し、
     前記ガス供給ユニットには、前記基板ステージの基板を載せる載置面に垂直方向に延びる複数のスリット孔が前記載置面に平行な方向に形成される、請求項1~5のいずれか1項に記載の薄膜形成装置。
  7.  前記ガス供給ユニットは複数の衝立板を備え、
     原料ガスと反応ガスは、前記複数の衝立板の1つで区切られた互いに異なる空間に導入された後、前記衝立板の隙間を流れて、同じ流路を流れる、請求項1~5のいずれか1項に記載の薄膜形成装置。
  8.  基板を載置する基板ステージを有し、
     前記ガス供給ユニットは、前記基板ステージの基板を載せる載置面に平行な方向に原料ガスおよび反応ガスを流し、
     前記ガス供給ユニットは複数の衝立板を備え、前記複数の衝立板のうち前記成膜空間に最も近い衝立板は、複数のスリット孔が、前記基板ステージの前記載置面に対して垂直方向に延び、かつ、前記複数のスリット孔の配列方向は、前記載置面に平行である、請求項1~5のいずれか1項に記載の薄膜形成装置。
PCT/JP2011/001569 2009-11-30 2011-03-17 薄膜形成装置 WO2011114734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127016616A KR20120127407A (ko) 2009-11-30 2011-03-17 박막 형성 장치
US13/635,725 US20130008382A1 (en) 2010-03-18 2011-03-17 Thin-film forming device
EP11755925A EP2549524A1 (en) 2010-03-18 2011-03-17 Thin-film forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010062208A JP4854794B2 (ja) 2010-03-18 2010-03-18 薄膜形成装置
JP2010-062208 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114734A1 true WO2011114734A1 (ja) 2011-09-22

Family

ID=44648846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001569 WO2011114734A1 (ja) 2009-11-30 2011-03-17 薄膜形成装置

Country Status (5)

Country Link
US (1) US20130008382A1 (ja)
EP (1) EP2549524A1 (ja)
JP (1) JP4854794B2 (ja)
TW (1) TWI526568B (ja)
WO (1) WO2011114734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111295A1 (ja) * 2011-02-14 2012-08-23 三井造船株式会社 原子層堆積装置及び原子層堆積方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203098B1 (ko) * 2013-07-25 2021-01-15 삼성디스플레이 주식회사 기상 증착 장치
SG11201908711VA (en) * 2017-05-02 2019-10-30 Picosun Oy Ald apparatus, method and valve
US11139149B2 (en) * 2017-11-29 2021-10-05 Taiwan Semiconductor Manufacturing Co., Ltd. Gas injector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051327A (ja) * 2005-08-18 2007-03-01 Kobe Steel Ltd 成膜方法
WO2008108754A1 (en) * 2007-03-06 2008-09-12 Varian Semiconductor Equipment Associates, Inc. Technique for atomic layer deposition
JP2009516906A (ja) * 2005-06-21 2009-04-23 アプライド マテリアルズ インコーポレイテッド 光励起堆積プロセス中にシリコン含有材料を形成する方法
JP2009191311A (ja) 2008-02-14 2009-08-27 Mitsui Eng & Shipbuild Co Ltd 原子層成長装置
JP2009206312A (ja) 2008-02-28 2009-09-10 Mitsui Eng & Shipbuild Co Ltd 成膜方法および成膜装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225577A (ja) * 1988-07-15 1990-01-29 Mitsubishi Electric Corp 薄膜形成装置
JPH1154504A (ja) * 1997-08-04 1999-02-26 Sony Corp 積層絶縁体膜の形成方法およびこれを用いた半導体装置
JP4008644B2 (ja) * 2000-06-14 2007-11-14 株式会社日立国際電気 半導体製造装置
US7976634B2 (en) * 2006-11-21 2011-07-12 Applied Materials, Inc. Independent radiant gas preheating for precursor disassociation control and gas reaction kinetics in low temperature CVD systems
US8298338B2 (en) * 2007-12-26 2012-10-30 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
KR101004822B1 (ko) * 2008-04-18 2010-12-28 삼성엘이디 주식회사 화학 기상 증착 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516906A (ja) * 2005-06-21 2009-04-23 アプライド マテリアルズ インコーポレイテッド 光励起堆積プロセス中にシリコン含有材料を形成する方法
JP2007051327A (ja) * 2005-08-18 2007-03-01 Kobe Steel Ltd 成膜方法
WO2008108754A1 (en) * 2007-03-06 2008-09-12 Varian Semiconductor Equipment Associates, Inc. Technique for atomic layer deposition
JP2009191311A (ja) 2008-02-14 2009-08-27 Mitsui Eng & Shipbuild Co Ltd 原子層成長装置
JP2009206312A (ja) 2008-02-28 2009-09-10 Mitsui Eng & Shipbuild Co Ltd 成膜方法および成膜装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111295A1 (ja) * 2011-02-14 2012-08-23 三井造船株式会社 原子層堆積装置及び原子層堆積方法
JP2012167317A (ja) * 2011-02-14 2012-09-06 Mitsui Eng & Shipbuild Co Ltd 原子層堆積装置

Also Published As

Publication number Publication date
TW201207151A (en) 2012-02-16
US20130008382A1 (en) 2013-01-10
EP2549524A1 (en) 2013-01-23
TWI526568B (zh) 2016-03-21
JP4854794B2 (ja) 2012-01-18
JP2011198897A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
US10475641B2 (en) Substrate processing apparatus
KR20120127407A (ko) 박막 형성 장치
JP5233734B2 (ja) ガス供給装置、成膜装置及び成膜方法
JP5287592B2 (ja) 成膜装置
US7825039B2 (en) Vertical plasma processing method for forming silicon containing film
JP5392069B2 (ja) 成膜装置
JP5327147B2 (ja) プラズマ処理装置
WO2014178160A1 (ja) 成膜装置
US20120199067A1 (en) Film-forming apparatus
JP6700165B2 (ja) 成膜装置および成膜方法
JPWO2003104524A1 (ja) 処理装置及び処理方法
US20070240644A1 (en) Vertical plasma processing apparatus for semiconductor process
JP5093078B2 (ja) 成膜装置
JP2011171566A (ja) Ald成膜装置、および半導体装置の製造方法
WO2007102333A1 (ja) ルテニウム膜の成膜方法およびコンピュータ読取可能な記憶媒体
JP2011135004A (ja) 成膜装置
JP2007067119A (ja) 半導体製造装置
JP2016058676A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2016063670A1 (ja) 成膜装置及び成膜方法
WO2011114734A1 (ja) 薄膜形成装置
KR100927912B1 (ko) 기판 처리 방법
JP2012175055A (ja) 原子層堆積装置
JP2013197291A (ja) 成膜装置及び成膜方法
JP6441050B2 (ja) 成膜方法
JP2011192768A (ja) 原子層堆積装置及び原子層堆積方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016616

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13635725

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011755925

Country of ref document: EP