WO2009116505A1 - 溶融樹脂供給方法、溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法 - Google Patents

溶融樹脂供給方法、溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法 Download PDF

Info

Publication number
WO2009116505A1
WO2009116505A1 PCT/JP2009/055089 JP2009055089W WO2009116505A1 WO 2009116505 A1 WO2009116505 A1 WO 2009116505A1 JP 2009055089 W JP2009055089 W JP 2009055089W WO 2009116505 A1 WO2009116505 A1 WO 2009116505A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten resin
compression molding
extrusion port
cut
mold
Prior art date
Application number
PCT/JP2009/055089
Other languages
English (en)
French (fr)
Inventor
敦志 米田
裕次 岩切
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to EP09721350.8A priority Critical patent/EP2263848B8/en
Priority to US12/736,088 priority patent/US8168100B2/en
Priority to CN2009801091448A priority patent/CN101970202B/zh
Priority to ES09721350.8T priority patent/ES2636845T3/es
Publication of WO2009116505A1 publication Critical patent/WO2009116505A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/12Compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/048Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds the material being severed at the dispensing head exit, e.g. as ring, drop or gob, and transported immediately into the mould, e.g. by gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3411Feeding the material to the mould or the compression means using carrying means mounted onto arms, e.g. grippers, fingers, clamping frame, suction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3466Feeding the material to the mould or the compression means using rotating supports, e.g. turntables or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/10Feeding of the material to be moulded, e.g. into a mould cavity of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages

Definitions

  • the present invention relates to a molten resin supply method for cutting a molten resin extruded from an extruder into a predetermined length and supplying the molten resin to a compression mold, and a molten resin supply for suitably carrying out such a molten resin supply method.
  • Apparatus, molten resin supply method, molten resin supply method, a molten resin compression molding method for compressing a molten resin supplied to a compression mold into a predetermined shape, and such a molten resin compression molding method The present invention relates to a molten resin compression molding apparatus, a molten resin compression molding method, and a synthetic resin container manufacturing method for manufacturing a synthetic resin container suitably using the molten resin compression molding apparatus.
  • Patent Document 1 As a technique for mass-producing a synthetic resin molded product having a predetermined shape by compression molding, the present applicant previously described in Patent Document 1 a plurality of compression molding dies circulating around a synthetic resin supply area, a compression molding / cooling area, and an extraction area. Furthermore, a compression molding system has been proposed in which synthetic resin extruded from an extrusion device is cut from an extrusion port and sequentially supplied to continuously mold a synthetic resin molded product. JP 2007-216531 A
  • Patent Document 1 a plurality of support bases are fixed on a rotary base connected to a rotational drive source, and a load is applied to each of these support bases together with a female mold and a male mold during compression molding.
  • An example in which a plurality of compression molds circulate around each of the above-mentioned areas by mounting a mold means having a pressurizing mechanism (cylinder mechanism) has been shown. As a result of repeated improvements, the following findings were obtained.
  • all of the mold means that individually perform compression molding are configured to move as the rotation base rotates. For this reason, if a higher load is required for compression molding, and the increase in weight of the mold means is unavoidable in order to improve the capacity of the pressurization mechanism and ensure the strength associated therewith, the rotating base A mechanism for rotating the mold must also be ensured to have a suitable strength so that it can withstand the weight increase of the mold means.
  • the whole apparatus becomes large or the construction cost of the apparatus increases.
  • the compression molding system exemplified in Patent Document 1 mainly targets a preform (pre-molded body) used for molding a synthetic resin container such as a so-called PET bottle by stretch blow molding or the like. It is designed with manufacturing in mind. Since such a preform is relatively thick and the load required for compression molding is relatively small, the above-described problems are not so problematic.
  • the present invention has been made on the basis of the above-described knowledge.
  • the molten resin extruded from the extruder is cut and supplied to the compression molding die. It can be used favorably for the production of synthetic resin moldings that require higher loads, and it is possible to supply molten resin with sufficient accuracy to the compression mold, as well as compression.
  • the molten resin supply method according to the present invention extrudes the molten resin from the extrusion port of the extruder almost vertically downward, and is extruded from the extrusion port by a plurality of conveying means arranged around the extrusion port. This is a method of conveying the molten resin to the supply position set for each of the conveying means while alternately cutting the molten resin every predetermined length.
  • the molten resin supply device includes an extruder provided with an extrusion port so as to extrude the molten resin substantially vertically downward, and a cutting unit that cuts the molten resin extruded from the extrusion port. And a plurality of transport means for transporting the molten resin cut by the cutting section to a supply position set for each, and each of the transport means is disposed around the extrusion port, and the extrusion port It is set as the structure which reciprocates alternately between the downward position and the said supply position.
  • the molten resin compression molding method according to the present invention extrudes the molten resin from the extrusion port of the extruder almost vertically downward and includes a plurality of conveying means arranged around the extrusion port to push the resin. While alternately cutting the molten resin extruded from the outlet every predetermined length, it is supplied to each of a plurality of compression molding machines installed in pairs with the conveying means, and by the compression molding machine, This is a method of compression-molding the cut molten resin into a predetermined shape.
  • the molten resin compression molding apparatus includes an extruder provided with an extrusion port so as to extrude a molten resin substantially vertically downward, and a cutting unit that cuts the molten resin extruded from the extrusion port.
  • a plurality of transport means for transporting the molten resin cut by the cutting section to a set supply position, respectively, and the supply position set for each of the transport means in pairs with the transport means And a plurality of compression molding dies that compress and mold the cut molten resin into a predetermined shape, and each of the conveying means is disposed around the extrusion port, and a position below the extrusion port and the By alternately reciprocating between the supply positions, the cut molten resin is sequentially supplied to the compression mold.
  • the method for producing a synthetic resin container according to the present invention extrudes the resin in a molten state from the extrusion port of the extruder substantially vertically downward, and by a plurality of conveying means arranged around the extrusion port, While alternately cutting the molten tree resin extruded from the extrusion port every predetermined length, it is supplied to each of a plurality of compression molding machines installed in pairs with the conveying means, by the compression molding machine, This is a method of compression-molding the cut molten resin into a predetermined container shape.
  • the compression mold is installed at the supply position set for each conveying means, and a mechanism for moving the compression mold is not required. For this reason, even when a higher load is required at the time of compression molding, and it is necessary to improve the capacity of the pressurizing mechanism for clamping and to ensure the strength associated therewith, parts other than the compression mold Will not be affected. For this reason, it is possible to respond to the production of synthetic resin molded products that require higher loads without causing problems such as the overall size of the device increasing or the cost of building the device increasing. It is. Furthermore, in addition to being able to supply the molten resin with sufficient accuracy to the compression mold, it is possible to prevent the positional accuracy of the supplied molten resin from being impaired even after being supplied to the compression mold. It is.
  • FIG. 1 is a plan view schematically showing an embodiment of a molten resin compression molding apparatus according to the present invention
  • FIG. 2 is an enlarged view of a main part thereof.
  • FIG. 3 is a side view of the main part when the main part shown in FIG. 2 is viewed from the direction of the arrow X in FIG.
  • the molding apparatus 10 shown in these drawings includes an extruder 20 that melts, kneads and extrudes a thermoplastic resin from an extrusion port 22, a plurality of conveying means 30 that are arranged around the extrusion port 22 of the extruder 20, A plurality of compression molding dies 40 installed in pairs with the conveying means 30 are provided.
  • 2 and 3 show the main part of the molding apparatus 10 by focusing on one of the plurality of conveying means 30 arranged around the extrusion port 22 of the extruder 20.
  • molding apparatus 10 shown in figure corresponds to embodiment of the molten resin supply apparatus which concerns on this invention, These melt resin supply methods and molten resin compression molding methods which concern on this invention are these. This apparatus can be suitably used.
  • the extruder 20 should just be provided so that the extrusion port 22 opened to the die head 21 may extrude the resin in a molten state substantially downward along the vertical direction.
  • the extruder 20 itself can be arbitrarily selected from known extruders such as a single-screw extruder, a multi-screw extruder, and a gear pump assist extruder.
  • any resin can be used as long as compression molding is possible.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyolefin resins such as polypropylene and polyethylene
  • polycarbonate such as polycarbonate, polyarylate, polylactic acid, and copolymers thereof are used.
  • each of the conveying means 30 arranged around the extrusion port 22 through which the molten resin is extruded is attached to each of a plurality of drive mechanisms 300 arranged radially around the extrusion port 22.
  • the reciprocating movement is alternately performed between the position below the extrusion port 22 and the supply position set for each of the conveying means 30.
  • a compression molding die 40 that is paired with each of the conveying means 30 is installed at a supply position set for each conveying means 30.
  • the conveying means 30 is pushed out from the extrusion port 22 when passing through the position below the extrusion port 22 toward the compression molding die 40 installed at the supply position. It has the cutting part 31 cut
  • the cut portion 31 is formed along a peripheral edge located above the base portion 32, and the inner peripheral surface of the base portion 32 becomes the holding surface 33 on the side surface of the molten resin D cut by the cut portion 31. (See FIG. 5B).
  • FIG. 4 is an explanatory view showing an outline of the conveying means 30, FIG. 4 (a) is a plan view thereof, and FIG. 4 (b) is a cross-sectional view taken along line AA of FIG. 4 (a).
  • FIG. 5 is an explanatory view showing a state before and after the conveying means 30 passes through a position below the extrusion port 22 of the extruder 20.
  • a holding member 34 is attached to the base portion 32 of the conveying means 30 so as to be openable and closable facing the holding surface 33.
  • the holding member 34 can be opened and closed around the rotation shaft 35 by, for example, a rotary actuator (not shown).
  • a holding member 34 is in an open position when the conveying means 30 passes a position below the extrusion port 22 so as not to prevent cutting of the molten resin by the cutting portion 31 (FIGS. 5A and 5B). b)), and is closed after the molten resin is cut (see FIG. 5C).
  • FIG. 4 the state in which the holding member 34 is closed is indicated by a solid line, and the holding member 34 in the open position is indicated by a two-dot broken line.
  • the holding member 34 is not shown. Note that the opening / closing operation of the holding member 34 is not limited to a rotation operation around the rotation shaft 35. Although not specifically shown, the opening / closing operation may be performed by, for example, moving the holding member 34 in parallel.
  • the holding member 34 When the holding member 34 is closed, a cylindrical space is formed between the holding surface 33 and the holding member 34. In this space, the cut molten resin D is held. At this time, the cut molten resin D is applied to the holding surface 33 provided on the base 32 by using the inertial force when the transfer means 30 moves. It is preferable to hold and carry the sheet.
  • the inner diameter of the cylindrical space formed between the holding surface 33 and the holding member 34 is slightly larger than the outer diameter of the extrusion port 22, that is, the outer diameter of the molten resin extruded from the extrusion port 22. Set to be larger.
  • each conveying means 30 arranged around the extrusion port 22 of the extruder 20 cuts the molten resin extruded from the extrusion port 22 of the extruder 20 alternately while cutting the molten resin every predetermined length. It suffices that the resin D is transported to the supply position set for each, and can be sequentially supplied to each of the plurality of compression molds 40 installed in pairs.
  • each conveying means 30 is configured equally including the drive mechanism 300 so that the cutting of the molten resin extruded from the extrusion port 22 and the conveyance of the cut molten resin D are performed under the same conditions. preferable.
  • the feeding position set for each conveying means 20 so that the moving distances of the respective conveying means 30 are equalized and the timing for cutting the molten resin extruded from the extrusion port 22 can be easily adjusted that is, It is preferable that all of the compression molds 40 installed in pairs with each of the conveying means 30 are on the same circumference with the extrusion port 22 of the extruder 20 as the center.
  • the specific configuration of the drive mechanism 300 that is responsible for the movement of the conveying means 30 is arbitrary.
  • the drive mechanism 300 is composed of a combination of a horizontal drive actuator 301 that reciprocates the conveying means 30 in the horizontal direction and a vertical drive actuator 302 that raises and lowers these in the vertical direction. Can do.
  • the vertical drive actuator 302 Prior to cutting the molten resin extruded from the extrusion port 22, the vertical drive actuator 302 moves the horizontal drive actuator 301 over the extrusion port 22 while avoiding a collision with another conveying means 30 that moves at a time difference.
  • the conveying means 30 is moved to the upper side in the direction, the conveying means 30 is lifted and lowered together with the horizontal drive actuator 301. The specific operation will be described later.
  • the transport means 30 is moved back and forth between the position below the extrusion port 22 and the compression mold 40 (supply position) by the horizontal drive actuator 301.
  • the direction toward the compression mold 40 is the forward path
  • the direction away from the compression molding machine 40 is the return path
  • the extrusion port 22 side in the moving direction is the upper side
  • the compression mold 40 side is the lower side.
  • the compression molding die 40 has a male die 41 as a lower die and a female die 42 as an upper die, and a concave receiving portion 411 is formed on the upper surface of the male die 41.
  • the size and shape of the receiving portion 411 formed on the upper surface of the male mold 41 can be designed according to the size and shape of the supplied molten resin D in consideration of the shape of the product to be molded. In this way, when the molten resin D is dropped and supplied onto the male mold 41, the molten resin D is received by the receiving portion 411, so that the accuracy of the supply position can be increased.
  • the supplied molten resin D has a mold structure that is compression-molded into a thin cup-shaped container.
  • the specific mold structure of the compression mold 40 depends on the shape of the molded product. Needless to say, it can be changed as appropriate.
  • the compression molding die 40 is installed at the supply position set for each conveying means 30, and a mechanism for moving the compression molding die 40 is required. And not. For this reason, even when a higher load is required at the time of compression molding, and it is required to improve the capability of the pressurizing mechanism for clamping and to ensure the strength associated therewith, a component other than the compression molding die 40 is required. The part has no effect. Therefore, it is also suitable for manufacturing synthetic resin molded products that require higher loads without causing problems such as the overall size of the device increasing or the construction cost of the device increasing. can do.
  • the compression mold 40 is installed and fixed at a predetermined supply position. Even after the molten resin D is supplied to the compression mold 40, it is easy to prevent the positional accuracy of the molten resin D from being impaired. In particular, as described above, by fixing the male mold 41 that receives the supplied molten resin D, it is possible to prevent the displacement of the molten resin D more reliably.
  • FIG. 6 and 7 are process diagrams for explaining the operation of the molding apparatus 10. These drawings show an example in which two conveying means 30a, 30b and two compression molds 40a, 40b installed in pairs with each other are arranged around the extrusion port 22 of the extruder 20. ing.
  • FIG. 6 shows a process from when the conveying means 30a cuts the molten resin extruded from the extrusion port 22 of the extruder 20 and conveys it to the supply position where the compression molding die 40 is installed.
  • These show the steps from when the molten resin D is supplied to the compression mold 40 to when the conveying means 30a starts moving toward the standby position below the other conveying means 30b.
  • one conveying means 30a goes over the extrusion port 22 toward the upper side in the moving direction as shown in FIG. 6 (1). In position, it prepares for the cutting of the molten resin extruded from the extrusion port 22 of the extruder 20. At the same time, the other transport unit 30b stands by below the transport unit 30a.
  • the conveying means 30a When the molten resin extruded from the extrusion port 22 reaches a predetermined length, the conveying means 30a is moved in the direction of the arrow by the horizontal drive actuator 301. At this time, the conveying means 30a passing through the position below the extrusion port 22 cuts the molten resin extruded from the extrusion port 22, and uses the inertial force generated by the movement of the conveyance means 30a to cut the molten resin. D is held (see FIG. 6 (2)). As described above, when the molten resin is cut, the holding member 34 is closed and the cut molten resin D is held in the space formed between the holding surface 33. 6 and 7, the holding member 34 is not shown.
  • the conveyance means 30 stops at the supply position where the compression mold 40 is installed, the molten resin D held by the conveyance means 30a is dropped onto the male mold 41a of the compression mold 40a and the supply is completed (FIG. 6 (3)).
  • the other transport unit 30b is prepared for cutting the molten resin that is raised by the vertical drive actuator 302 and pushed out from the extrusion port 22.
  • the timing of raising the other conveying means 30b is arbitrary as long as collision with one conveying means 30a is avoided.
  • the conveying means 30b may be raised.
  • the conveying means 30a is retracted in the direction of the arrow in the figure by the horizontal drive actuator 301 and compressed.
  • the female die 42a of the molding die 40 moves downward (see FIG. 7 (5)).
  • the molten resin D is compression-molded into a synthetic resin container 50 having a predetermined container shape in a cavity formed by a pair of male and female molds 41a and 42a.
  • the conveying means 30a and the conveying means 30b are interchanged, and the conveying means 30b operates in the same manner as the conveying means 30a described above, thereby cutting the molten resin extruded from the extrusion port 22 and compression molding.
  • the mold 40b is supplied, and the compression molding of the synthetic resin container is alternately repeated between the compression molding mold 40a and the compression molding mold 40b.
  • the compression molding is performed by the molding apparatus 10 in which the two conveying units 30a and 30b and the two compression molding dies 40a and 40b installed in pairs are arranged around the extrusion port 22 of the extruder 20.
  • the synthetic resin container 50 manufactured in the present embodiment is preferably a thin cup-shaped container that requires a relatively high load during compression molding, and particularly a thin cup-shaped container having a multilayer structure. Suitable for manufacturing containers.
  • the internal structure of the die head 21 of the extruder 20 may be as shown in FIG.
  • a discharge flow path 220 that is continuous with the extrusion port 22 and a molten resin that is disposed concentrically with the extrusion port 22 flow into the discharge flow channel 220.
  • Four annular flow paths 22a, 22b, 22c, and 22d are formed.
  • the four annular channels 22a, 22b, 22c, 22d arranged concentrically with the extrusion port 22 are, for convenience, from the outer peripheral side, the first annular channel 22a, the second annular channel 22b, and the third annular channel. 22c and the fourth annular flow path 22d.
  • the first annular channel 22a and the second annular channel 22b intersect with the discharge channel 220 separately, and the molten resin sent to the second annular channel 22b is transferred to the first annular channel 22a. It flows into the discharge flow path 220 on the upstream side of the sent molten resin.
  • the third annular passage 22c intersects the fourth annular passage 22d on the way to the discharge passage 220, and the molten resin sent to the third annular passage 22c is transferred to the fourth annular passage 22c. Along with the molten resin that has been fed to the discharge channel 220, it flows into the discharge channel 220.
  • the inflow position at this time is upstream of the position where the molten resin sent to the second annular flow path 22 b flows into the discharge flow path 220.
  • the molten resin sent to the third annular channel 22c and the molten resin sent to the fourth annular channel 22 are opened and closed by opening and closing the valve body 23 as shown in the figure. It is supposed to flow intermittently.
  • FIG. 8A shows a state immediately before the molten resin extruded from the extrusion port 22 is cut, and the cut portion is indicated by a chain line in the figure.
  • the valve body 23 is open, and the molten resin sent to the third annular channel 22c and the molten resin sent to the fourth annular channel 22 are discharged from the discharge channel.
  • the molten resin sent to the second annular flow path 22b and the molten resin sent to the first annular flow path 22a are sequentially joined. To do.
  • the valve body 23 is closed, and the molten resin sent to the third annular channel 22 c and the discharge channel of the molten resin sent to the fourth annular channel 22 Block the flow into 220.
  • these resins that have previously flowed into the discharge flow path 220 are separated, and the shell body S is formed.
  • the shell body S flows down in the discharge flow path 220 while being flattened by the molten resin flowing into the discharge flow path 220 from the second annular flow path 22b (FIG. 8C). reference).
  • the interval at which the shell body S is formed, and the shell body included in the cut molten resin D The shape of S can be controlled by appropriately adjusting the timing at which the valve body 23 is opened and closed, the flow rate of the molten resin sent to each annular flow path 22a, 22b, 22c, and 22d.
  • a cup-shaped container 50 having a thin multilayer structure as shown in FIG. 9 can be formed. That is, the molten resin D supplied to the compression mold 40 is expanded in a cavity formed by a pair of male and female molds 41 and 42. At this time, the intermediate layer 50b and the inner layer 50c are formed by the shell body S. It is formed into a cup-shaped container 50 having a thin multilayer structure.
  • FIG. 9 shows an example of a cup-shaped container 50 having a thin multilayer structure formed in the present embodiment
  • FIG. 9B shows a cross section of a portion surrounded by a chain line in FIG. .
  • the molten resin D cannot be supplied to the compression mold 40 with sufficient accuracy, and the positional accuracy of the molten resin D may be impaired after the supply, the intermediate layer 50b and the inner layer
  • the shell S that forms 50c does not spread over the entire container in the process of compression molding or protrudes to the surface of the container, thereby hindering the formation of the intermediate layer 50b and the inner layer 50c.
  • the compression mold 40 not only can the molten resin D that has been cut be supplied to the compression mold 40 with sufficient accuracy, but the compression mold 40 is installed at a predetermined supply position. Therefore, even after the molten resin D is supplied to the compression mold 40, it is easy to prevent the positional accuracy of the molten resin D from being impaired.
  • the distribution of the formed intermediate layer 50b and inner layer 50c in the container can be made uniform. For this reason, the method of manufacturing a synthetic resin container in the present embodiment is particularly suitable for manufacturing a thin cup-shaped container having a multilayer structure.
  • the present invention can be suitably used for the production of a synthetic resin molded product by compression molding, in particular, a thin synthetic resin container having a multilayer structure.

Abstract

 押出機(20)の押出口(22)を中心に配置された各搬送手段(30)が、押出機(20)の押出口(22)から押し出された溶融樹脂を、所定の長さごとに交互に切断しつつ、切断された溶融樹脂(D)を、それぞれに設定された供給位置まで搬送し、それぞれと対になって設置された複数の圧縮成形型(40)のそれぞれに順次供給して圧縮成形する。これにより、押出機から押し出される溶融樹脂を切断して圧縮成形型に供給し、圧縮成形によって所定形状の合成樹脂成形品を製造するにあたり、より高荷重の負荷が必要とされる合成樹脂成形品の製造にも好適に利用することができ、また、圧縮成形型に十分な精度をもって溶融樹脂を供給することができるのはもとより、圧縮成形型に供給された後においても、供給された溶融樹脂の位置精度が損なわれないようにすることができる。

Description

溶融樹脂供給方法、溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法
 本発明は、押出機から押し出される溶融樹脂を所定の長さに切断して圧縮成形型に供給するための溶融樹脂供給方法、そのような溶融樹脂供給方法を好適に実施するための溶融樹脂供給装置、これらの溶融樹脂供給方法、溶融樹脂供給装置を好適に利用して圧縮成形型に供給された溶融樹脂を所定形状に圧縮成形する溶融樹脂圧縮成形方法、そのような溶融樹脂圧縮成形方法を好適に実施するための溶融樹脂圧縮成形装置、これらの溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置を好適に利用して合成樹脂製容器を製造する合成樹脂製容器の製造方法に関する。
 所定形状の合成樹脂成形品を圧縮成形により量産する技術として、本出願人は、先に、特許文献1において、合成樹脂供給域、圧縮成形・冷却域及び取出域を周回する複数の圧縮成形型に、押出装置から押し出される合成樹脂を押出口から切り離して順次供給し、合成樹脂成形品を連続成形する圧縮成形システムを提案した。
特開2007-216531号公報
 ところで、特許文献1では、回転駆動源に接続された回転基盤上に複数の支持台を固定し、これらの支持台の各々に、雌型や雄型とともに、圧縮成形に際して荷重を負荷するための加圧機構(シリンダー機構)を備えた成形型手段を装着することによって、複数の圧縮成形型が前記各領域を周回するようにした例を示したが、その後、本発明者らが、かかる例について改善を重ねていったところ、次のような知見を得るに至った。
 例えば、上記した例にあっては、それぞれが単独で圧縮成形を行う成形型手段の全てが、回転基盤の回転に伴って移動するように構成されている。
 このため、圧縮成形に際してより高荷重の負荷が必要とされ、加圧機構の能力向上や、これに伴う強度確保などのために、成形型手段の重量増加が避けられない場合には、回転基盤を回転させるための機構も相応の強度を確保して、成形型手段の重量増加に耐えられるように対処しなければならない。ところが、このようにして対処しようとすると、装置全体が大型化してしまったり、装置の建造コストが増大したりするというような不具合が考えられる。
 ここで、特許文献1で例示した圧縮成形システムは、主として、いわゆるPETボトルの如き合成樹脂製容器を延伸ブロー成形などによって成形するために用いるプリフォーム(前成形体)を対象とし、これを圧縮成形によって製造することを念頭において設計したものである。このようなプリフォームは比較的厚肉であり、圧縮成形に必要とされる荷重も相対的に小さいため、上記の不具合はそれほど問題にはならない。
 これに対して、例えば、供給された合成樹脂をそのまま圧縮成形によって、薄肉カップ状の合成樹脂製容器に成形しようとする場合には、必要とされる荷重は、上記の如きプリフォームを成形するときの数十倍にも及ぶことがある。このため、特許文献1で例示した圧縮成形システムを、より高荷重の負荷が必要とされる圧縮成形品の製造に適用しようとしても、実際には、上記した不具合が許容できる範囲内にある場合に限られてしまうことになる。
 また、特許文献1で例示した圧縮成形システムによれば、雄型の成形キャビティ内の所要位置に十分精密に合成樹脂を供給することができるが、キャビティ内に供給された合成樹脂には、回転基盤の回転に伴って成形型手段が移動する際に、その回転によって遠心力が作用することになる。
 このため、キャビティ内の所要位置に十分精密に合成樹脂を供給することができても、合成樹脂を供給してから型締めがなされるまでの間に、キャビティ内に供給された合成樹脂が、遠心力によって傾いてしまったりするなどして、キャビティ内での位置にずれが生じてしまうことが懸念される。特に、多層構成とされた薄肉の合成樹脂製容器を圧縮成形によって製造する場合(詳細については後述する)には、圧縮成形時における供給された合成樹脂のキャビティ内での位置や姿勢に格段の精度が要求されるため、キャビティ内に供給された合成樹脂には、遠心力などの外力が作用しないようにすることが望まれる。
 本発明は、上記のような知見に基づいてなされたものであり、押出機から押し出される溶融樹脂を切断して圧縮成形型に供給し、圧縮成形によって所定形状の合成樹脂成形品を製造するにあたり、より高荷重の負荷が必要とされる合成樹脂成形品の製造にも好適に利用することができ、また、圧縮成形型に十分な精度をもって溶融樹脂を供給することができるのはもとより、圧縮成形型に供給された後においても、供給された溶融樹脂の位置精度が損なわれないようにするのに好適な溶融樹脂供給方法、そのような溶融樹脂供給方法を好適に実施するための溶融樹脂供給装置、これらの溶融樹脂供給方法、溶融樹脂供給装置を好適に利用する溶融樹脂圧縮成形方法、そのような溶融樹脂圧縮成形方法を好適に実施するための溶融樹脂圧縮成形装置、これらの溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置を好適に利用する合成樹脂製容器の製造方法の提供を目的とする。
 本発明に係る溶融樹脂の供給方法は、押出機の押出口から溶融状態にある樹脂をほぼ鉛直下方に押し出すとともに、前記押出口を中心に配置された複数の搬送手段によって、前記押出口から押し出されてくる溶融樹脂を所定長さごとに交互に切断しつつ、前記搬送手段のそれぞれに設定された供給位置まで搬送する方法としてある。
 また、本発明に係る溶融樹脂供給装置は、溶融状態にある樹脂をほぼ鉛直下方に押し出すように押出口を設けた押出機と、前記押出口から押し出されてくる溶融樹脂を切断する切断部を有し、前記切断部によって切断された溶融樹脂をそれぞれに設定された供給位置まで搬送する複数の搬送手段とを備え、前記各搬送手段が、前記押出口を中心に配置されて、前記押出口の下方位置と前記供給位置との間を交互に往復移動する構成としてある。
 また、本発明に係る溶融樹脂の圧縮成形方法は、押出機の押出口から溶融状態にある樹脂をほぼ鉛直下方に押し出すとともに、前記押出口を中心に配置された複数の搬送手段によって、前記押出口から押し出されてくる融樹樹脂を所定長さごとに交互に切断しつつ、前記搬送手段と対になって設置された複数の圧縮成形機のそれぞれに供給し、前記圧縮成形機によって、前記切断された溶融樹脂を所定形状に圧縮成形する方法としてある。
 また、本発明に係る溶融樹脂圧縮成形装置は、溶融状態にある樹脂をほぼ鉛直下方に押し出すように押出口を設けた押出機と、前記押出口から押し出されてくる溶融樹脂を切断する切断部を有し、前記切断部によって切断された溶融樹脂をそれぞれに設定された供給位置まで搬送する複数の搬送手段と、前記搬送手段と対になって前記搬送手段ごとに設定された前記供給位置に設置されて、前記切断された溶融樹脂を所定形状に圧縮成形する複数の圧縮成形型とを備え、前記各搬送手段が、前記押出口を中心に配置されて、前記押出口の下方位置と前記供給位置との間を交互に往復移動することによって、前記切断された溶融樹脂を前記圧縮成形型に順次供給する構成としてある。
 また、本発明に係る合成樹脂製容器の製造方法は、押出機の押出口から溶融状態にある樹脂をほぼ鉛直下方に押し出すとともに、前記押出口を中心に配置された複数の搬送手段によって、前記押出口から押し出されてくる融樹樹脂を所定長さごとに交互に切断しつつ、前記搬送手段と対になって設置された複数の圧縮成形機のそれぞれに供給し、前記圧縮成形機によって、前記切断された溶融樹脂を所定の容器形状に圧縮成形する方法としてある。
 以上のような本発明にあっては、搬送手段ごとに設定された供給位置に、圧縮成形型が設置されるようにしてあり、圧縮成形型を移動するための機構を必要としない。このため、圧縮成形に際してより高荷重の負荷が必要とされ、型締めのための加圧機構の能力向上や、これに伴う強度確保が要求される場合であっても、圧縮成形型以外の部分には、その影響が及ばない。このため、装置全体が大型化してしまったり、装置の建造コストが増大したりするというような不具合を伴うことなく、より高荷重の負荷が必要とされる合成樹脂成形品の製造にも対応可能である。さらに、圧縮成形型に十分な精度をもって溶融樹脂を供給することができることに加え、圧縮成形型に供給された後においても、供給された溶融樹脂の位置精度が損なわれないようにすることも可能である。
本発明に係る溶融樹脂圧縮成形装置の実施形態を示す概略平面図である。 本発明に係る溶融樹脂圧縮成形装置の実施形態を示す要部拡大図である。 本発明に係る溶融樹脂圧縮成形装置の実施形態を示す要部側面図である。 搬送手段の概略を示す説明図である。 搬送手段が押出口の下方位置を通過する前後の状態を示す説明図である。 本発明に係る溶融樹脂圧縮成形装置の実施形態の動作を説明する工程図である。 本発明に係る溶融樹脂圧縮成形装置の実施形態の動作を説明する工程図である。 合成樹脂製容器を多層構造とするダイヘッドの一例を示す説明図である。 合成樹脂製容器の一例を示す説明図である。
符号の説明
 10    成形装置
 20    押出機
 22    押出口
 30    搬送手段
 31    切断部
 33    保持面
 34    保持部材
 300   駆動機構
 301   水平駆動用アクチュエーター
 302   鉛直駆動用アクチュエーター
 40    圧縮成形型
 41    雄型(下型)
 411   受け部
 42    雌型(上型)
 50    合成樹脂製容器
 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
[溶融樹脂圧縮成形装置]
 まず、本発明に係る溶融樹脂圧縮成形装置の実施形態について説明する。
 図1は、本発明に係る溶融樹脂圧縮成形装置の実施形態について、その概略を示す平面図であり、図2は、その要部拡大図である。また、図3は、図2に示す要部を図2中矢印X方向からみた要部側面図である。
 これらの図に示す成形装置10は、熱可塑性樹脂を溶融、混練して押出口22から押し出す押出機20と、押出機20の押出口22を中心に配置された複数の搬送手段30と、各搬送手段30と対になって設置された複数の圧縮成形型40とを備えている。
 なお、図2及び図3は、押出機20の押出口22を中心に配置された複数の搬送手段30のうち、その一つに着目して成形装置10の要部を示すものである。また、図示する成形装置10から圧縮成形型40を除いたものが、本発明に係る溶融樹脂供給装置の実施形態に相当し、本発明に係る溶融樹脂供給方法及び溶融樹脂圧縮成形方法は、これらの装置を好適に利用して実施することができる。
 押出機20は、そのダイヘッド21に開口する押出口22が、溶融状態にある樹脂を鉛直方向に沿ってほぼ下向きに押し出すように設けられていればよい。押出機20そのものは、単軸スクリュー型押出機、多軸スクリュー型押出機、ギヤポンプアシスト型押出機などの公知の押出機の中から任意に選択することができる。
 また、押出機20によって溶融、混練して、押出口22から押し出される熱可塑性樹脂としては、圧縮成形が可能であれば、任意の樹脂を用いることができる。具体的には、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレート等のポリエステル系樹脂,ポリプロピレン,ポリエチレン等のポリオレフィン系樹脂,ポリカーボネート,ポリアリレート,ポリ乳酸,又はこれらの共重合体などが用いられる。
 図示する例において、溶融樹脂が押し出されてくる押出口22を中心に配置される搬送手段30のそれぞれは、押出口22を中心に放射状に設置された複数の駆動機構300のそれぞれに取り付けられて、押出口22の下方位置と、搬送手段30のそれぞれに設定された供給位置との間を交互に往復移動するようになっている。そして、搬送手段30ごとに設定された供給位置には、搬送手段30のそれぞれと対になる圧縮成形型40が設置されている。
 また、図4及び図5に一例を示すように、搬送手段30は、供給位置に設置された圧縮成形型40に向かって押出口22の下方位置を通過する際に、押出口22から押し出されてくる溶融樹脂を削ぎ取るようにして切断する切断部31を有している。この切断部31は、基部32の上方に位置する周端縁に沿って形成されており、切断部31によって切断された溶融樹脂Dの側面に、基部32の内周面が保持面33となって当接するようにしてある(図5(b)参照)。
 ここで、図4は、搬送手段30の概略を示す説明図であり、図4(a)は、その平面図、図4(b)は、図4(a)のA-A断面図である。また、図5は、搬送手段30が、押出機20の押出口22の下方位置を通過する前後の状態を示す説明図である。
 また、搬送手段30の基部32には、その保持面33に対向して開閉可能となるように、保持部材34が取り付けられている。保持部材34は、例えば、図示しないロータリーアクチュエータなどによって、回転軸35を中心に、その開閉動作がなされるようにすることができる。このような保持部材34は、切断部31による溶融樹脂の切断を妨げないように、搬送手段30が押出口22の下方位置を通過する際には開放位置にあり(図5(a),(b)参照)、溶融樹脂の切断がなされた後に閉じるようになっている(図5(c)参照)。
 ここで、図4では、保持部材34が閉じた状態を実線で示し、開放位置にある保持部材34を二点破線で示してある。また、図5(a),(b)では、保持部材34の図示を省略している。
 なお、保持部材34の開閉動作は、回転軸35を中心とする回動によるものには限定されない。特に図示しないが、例えば、保持部材34を平行移動などさせることによって、その開閉動作がなされるようにしてもよい。
 保持部材34が閉じると、保持面33と保持部材34との間には円柱状の空間が形成される。この空間内に、切断された溶融樹脂Dが保持されるが、このとき、移送手段30の移動時の慣性力を利用して、切断された溶融樹脂Dを基部32に設けた保持面33に保持して搬送するようにするのが好ましい。この場合、保持面33と保持部材34との間に形成される円柱状の空間の内径は、押出口22の外径、すなわち、押出口22から押し出されてくる溶融樹脂の外径よりも若干大きくなるように設定する。
 このようにすることで、切断された溶融樹脂Dに対して過度の負荷がかからないようにして、その変形などを有効に回避することができるともに、搬送手段30が供給位置で停止したときに溶融樹脂Dが自重で落下し、これによって成形型40への溶融樹脂Dの供給がなされるようにすることができる。
 以上、搬送手段30について、その一例を示して説明したが、搬送手段30の具体的な構成は上記した例には限定されない。押出機20の押出口22を中心に配置された各搬送手段30が、押出機20の押出口22から押し出された溶融樹脂を、所定の長さごとに交互に切断しつつ、切断された溶融樹脂Dを、それぞれに設定された供給位置まで搬送し、それぞれと対になって設置された複数の圧縮成形型40のそれぞれに順次供給できるようになっていればよい。
 ここで、押出口22から押し出される溶融樹脂を切断する長さは、押出機20の押出速度や、各搬送手段30によって溶融樹脂を交互に切断するタイミングなどを調整することで、成形に必要な樹脂量に応じて任意に設定することができる。また、各搬送手段30は、押出口22から押し出される溶融樹脂の切断と、切断された溶融樹脂Dの搬送が同一の条件下でなされるように、駆動機構300も含めて等しく構成するのが好ましい。特に、それぞれの搬送手段30の移動距離を等しくして、押出口22から押し出されてくる溶融樹脂を切断するタイミングの調整が容易となるように、搬送手段20ごとに設定された供給位置、すなわち、搬送手段30のそれぞれと対になって設置される圧縮成形型40の全てが、押出機20の押出口22を中心とする同一円周上にあるようにするのが好ましい。
 また、搬送手段30による溶融樹脂の切断と、切断された溶融樹脂Dの搬送に支障を来たすものでない限り、搬送手段30の移動を担う駆動機構300の具体的な構成は任意である。
 例えば、駆動機構300は、図示するように、搬送手段30を水平方向に往復移動させる水平駆動用アクチュエーター301と、これらを鉛直方向に昇降させる鉛直駆動用アクチュエーター302との組み合わせからなるものとすることができる。鉛直駆動用アクチュエーター302は、押出口22から押し出される溶融樹脂を切断するに先だって、時間差で移動する他の搬送手段30との衝突を避けつつ、押出口22を越えて水平駆動用アクチュエーター301の移動方向の上手側に搬送手段30を回り込ませる際に、水平駆動用アクチュエーター301とともに搬送手段30を昇降させるが、その具体的な動作については後述する。
 なお、搬送手段30は、水平駆動用アクチュエーター301によって押出口22の下方位置と、圧縮成形型40(供給位置)との間を往復移動するところ、便宜上、圧縮成形型40に向かう方向を往路、圧縮成形機40から離れる方向を復路とし、その移動方向の押出口22側を上手側、圧縮成形型40側を下手側とする。
 また、図示する例において、圧縮成形型40は、下型としての雄型41と、上型としての雌型42とを有しており、雄型41の上面には凹状の受け部411が形成されている。雄型41の上面に形成する受け部411の大きさや形状は、成形しようとする製品の形状を考慮しつつ、供給される溶融樹脂Dの大きさや形状に応じて設計することができる。
 このようにすることで、雄型41上に溶融樹脂Dを落下、供給するに際して、溶融樹脂Dを受け部411で受けることにより、その供給位置の精度を高めることができる。さらに、雄型41を固定して、雄型41に対して雌型42が上下動することで型開きと型締めがなされるようにすることで、雌型42が下動して型締めがなされるまでの間に、雄型41上に供給された溶融樹脂Dの位置ずれが生じてしまうのをより確実に防止することができる。
 ここで、図示する例では、供給された溶融樹脂Dが、薄肉カップ状の容器に圧縮成形される型構造としてあるが、圧縮成形型40の具体的な型構造は、成形品の形状などに応じて適宜変更できるのはいうまでもない。
 以上のように、本実施形態にあっては、搬送手段30ごとに設定された供給位置に、圧縮成形型40が設置されるようにしてあり、圧縮成形型40を移動するための機構を必要としない。このため、圧縮成形に際してより高荷重の負荷が必要とされ、型締めのための加圧機構の能力向上や、これに伴う強度確保が要求される場合であっても、圧縮成形型40以外の部分には、その影響が及ばない。したがって、装置全体が大型化してしまったり、装置の建造コストが増大したりするというような不具合を伴うことなく、より高荷重の負荷が必要とされる合成樹脂成形品の製造にも好適に利用することができる。
 さらに、切断された溶融樹脂Dを十分な精度をもって圧縮成形型40に供給することができるのはもとより、圧縮成形型40は、定められた供給位置に設置して固定されるものであるから、圧縮成形型40に溶融樹脂Dが供給された後においても、溶融樹脂Dの位置精度が損なわれないようにすることも容易である。特に、前述したように、供給される溶融樹脂Dを受ける雄型41を固定することで、溶融樹脂Dの位置ずれをより確実に防止することができる。
[合成樹脂製容器の製造方法]
 次に、本発明に係る合成樹脂製容器の製造方法の実施形態について説明する。
 本発明に係る合成樹脂製容器の製造方法は、上記したような成形装置10を好適に利用して実施することができ、成形装置10の動作を以下に説明することによって、本発明に係る合成樹脂製容器の製造方法の実施形態を説明する。
 図6及び図7は、成形装置10の動作を説明する工程図である。これらの図には、押出機20の押出口22を中心に、二つの搬送手段30a,30bと、それぞれと対になって設置された二つの圧縮成形型40a,40bとを配置した例を示している。また、図6は、搬送手段30aが、押出機20の押出口22から押し出された溶融樹脂を切断して、圧縮成形型40が設置された供給位置に搬送するまでの工程を示し、図7は、圧縮成形型40に溶融樹脂Dが供給されてから、搬送手段30aが、他方の搬送手段30bの下方の待機位置に向かって移動を開始するまでの工程を示している。
 成形装置10を利用して合成樹脂製容器を製造するにあたり、一方の搬送手段30aは、図6(1)に示すように、押出口22を越えて、その移動方向の上手側に回り込んだ位置で、押出機20の押出口22から押し出されてくる溶融樹脂の切断に備える。これとともに、他方の搬送手段30bは、搬送手段30aの下方で待機する。
 押出口22から押し出されてくる溶融樹脂が所定の長さに達すると、水平駆動用アクチュエーター301によって、搬送手段30aを図中矢印方向に移動させる。このとき、押出口22の下方位置を通過する搬送手段30aが、押出口22から押し出されてくる溶融樹脂を切断するとともに、搬送手段30aの移動による慣性力を利用して、切断された溶融樹脂Dを保持する(図6(2)参照)。
 なお、溶融樹脂の切断がなされると保持部材34が閉じて、保持面33との間に形成される空間内に、切断された溶融樹脂Dが保持されるのは前述した通りであるが、図6及び図7では、保持部材34の図示は省略してある。
 搬送手段30aに保持された溶融樹脂Dは、圧縮成形型40が設置された供給位置で搬送手段30が停止すると、圧縮成形型40aの雄型41a上に落下され、その供給が完了する(図6(3)参照)。これとともに、他方の搬送手段30bは、鉛直駆動用アクチュエーター302によって上昇し、押出口22から押し出されてくる溶融樹脂の切断に備える。
 このとき、他方の搬送手段30bを上昇させるタイミングは、一方の搬送手段30aとの衝突が避けられる限り任意である。搬送手段30aが押出口22の下方位置を通過した直後に、搬送手段30bが上昇するようにしてもよい。
 溶融樹脂Dが圧縮成形型40aの雄型41a上に供給されると、図7(4)に示すように、水平駆動用アクチュエーター301によって、搬送手段30aが図中矢印方向に退避するとともに、圧縮成形型40の雌型42aが下動する(図7(5)参照)。これにより、雌雄一対の型41a,42aによって形成されるキャビティ内で、溶融樹脂Dが所定の容器形状の合成樹脂製容器50に圧縮成形される。
 図7(6)に示すように、圧縮成形を終えると圧縮成形型40aの雌型42aが上動し、成形された合成樹脂製容器50の取り出しを行う。その一方で、下動してくる雌型42aと接触しないように退避した搬送手段30aは、退避後又は退避すると同時に、鉛直駆動用アクチュエーター302によって下降する。次いで、搬送手段30aは、水平駆動用アクチュエーター301によって図中矢印方向に移動して、その移動方向の上手側に押出口22を越えて回り込み、他方の搬送手段30bの下方で待機する。
 この後は、搬送手段30aと搬送手段30bとが入れ替わって、搬送手段30bが、上記した搬送手段30aと同様に動作することにより、押出口22から押し出されてくる溶融樹脂を切断して圧縮成形型40bに供給し、圧縮成形型40aと圧縮成形型40bとで合成樹脂製容器の圧縮成形を交互に繰り返す。
 このようにすることで、本実施形態によれば、合成樹脂製容器50を安定に連続して量産することができる。
 以上、押出機20の押出口22を中心に、二つの搬送手段30a,30bと、それぞれと対になって設置された二つの圧縮成形型40a,40bとを配置した成形装置10によって、圧縮成形を交互に繰り返す例を挙げて説明したが、搬送手段30と、これと対となる圧縮成形型40を三つ以上に増やして設置した場合であっても同様である。すなわち、搬送手段30と、これと対となる圧縮成形型40が三つ以上に増えても、全ての搬送手段30について、上記した搬送手段30aと同様の動作を時間差でさせることで、それぞれの圧縮成形型40において、圧縮成形を交互に繰り返すことができる。
 本実施形態において製造される合成樹脂製容器50としては、圧縮成形に際して比較的高荷重の負荷が必要とされる薄肉カップ状の容器が好適であり、特に、多層構造とされた薄肉カップ状の容器を製造するのに適している。合成樹脂製容器50を多層構造とするには、例えば、押出機20のダイヘッド21の内部構造を図8に示すようなものとすればよい。
 図8に示す例において、ダイヘッド21内には、押出口22に連なる吐出流路220と、押出口22と同心状に配置されて、それぞれに送られてきた溶融樹脂を吐出流路220に流入させる四つの環状流路22a,22b,22c,22dが形成されている。押出口22と同心状に配置される四つの環状流路22a,22b,22c,22dは、便宜上、その外周側から、第一環状流路22a、第二環状流路22b、第三環状流路22c、第四環状流路22dというものとする。
 第一環状流路22aと第二環状流路22bは、吐出流路220に対して別々に交わっており、第二環状流路22bに送られてきた溶融樹脂が、第一環状流路22aに送られてきた溶融樹脂よりも上流側で、吐出流路220に流入するようになっている。
 一方、第三環状流路22cは、吐出流路220に至る途中で第四環状流路22dに交わっており、第三環状流路22cに送られてきた溶融樹脂が、第四環状流路22に送られてきた溶融樹脂とともに、吐出流路220に流入するようになっている。このときの流入位置は、第二環状流路22bに送られてきた溶融樹脂が吐出流路220に流入する位置よりも上流側にある。そして、第三環状流路22cに送られてきた溶融樹脂と、第四環状流路22に送られてきた溶融樹脂とは、図示するような弁体23を開閉することによって、吐出流路220に間欠的に流入するようになっている。
 ここで、図8(a)は、押出口22から押し出されてきた溶融樹脂を切断する直前の状態を示しており、その切断される部位を図中鎖線で示す。このとき、図示する例では、弁体23が開いており、第三環状流路22cに送られてきた溶融樹脂と、第四環状流路22に送られてきた溶融樹脂とが、吐出流路220に流入し、吐出流路220内を流下していく過程で、第二環状流路22bに送られてきた溶融樹脂と、第一環状流路22aに送られてきた溶融樹脂とに順次合流する。
 次いで、図8(b)に示すように弁体23を閉じて、第三環状流路22cに送られてきた溶融樹脂と、第四環状流路22に送られてきた溶融樹脂の吐出流路220への流入を遮断する。これにより、先に吐出流路220に流入したこれらの樹脂が切り離されて、シェル体Sが形成される。そして、シェル体Sは、第二環状流路22bから吐出流路220に流入してくる溶融樹脂に押されて扁平になりながら、吐出流路220内を流下していく(図8(c)参照)。
 なお、上記のようにして、押出口22から押し出されてくる溶融樹脂内にシェル体Sを形成するにあたり、シェル体Sが形成される間隔や、切断された溶融樹脂D中に含まれるシェル体Sの形状は、弁体23を開閉するタイミングや、各環状流路22a,22b,22c,22dに送られてくる溶融樹脂の流速などを適宜調整することによって制御することができる。
 以上のようにして、押出口22から押し出されてくる溶融樹脂内にシェル体Sを形成し、そのような溶融樹脂を切断して圧縮成形型40に供給して圧縮成形することにより、例えば、図9に示すような薄肉多層構造のカップ状容器50を成形することができる。すなわち、圧縮成形型40に供給された溶融樹脂Dは、雌雄一対の型41,42によって形成されるキャビティ内で押し拡げられていくが、このとき、シェル体Sにより中間層50b及び内層50cが形成されて、薄肉多層構造のカップ状容器50に成形される。
 ここで、図9は、本実施形態において成形される薄肉多層構造のカップ状容器50の一例を示し、図9(b)に、図9(a)中鎖線で囲む部分の断面を示している。ダイヘッド21の内部構造を前述したようなものとして、このような薄肉多層構造のカップ状容器50を成形するにあたり、第一環状流路22aに送られてきた溶融樹脂と、第二環状流路22bに送られてきた溶融樹脂には、通常、同種の樹脂が用いられ、これらの樹脂によって外層50aが形成される。そして、シェル体Sを形成する第三環状流路22cに送られてきた溶融樹脂と、第四環状流路22に送られてきた溶融樹脂とによって、それぞれ中間層50bと、内層50cとが形成される。
 このとき、圧縮成形型40に十分な精度をもって溶融樹脂Dを供給することができず、また、供給後に溶融樹脂Dの位置精度が損なわれてしまうようなことがあると、中間層50b及び内層50cを形成するシェル体Sが、圧縮成形の過程で容器全体に行き渡らなかったり、容器表面にはみ出してしまったりするなどして、中間層50b及び内層50cの形成に支障を来してしまうことになる。
 これに対して、本実施形態によれば、切断された溶融樹脂Dを十分な精度をもって圧縮成形型40に供給することができるのはもとより、圧縮成形型40は、定められた供給位置に設置して固定されるものであるから、圧縮成形型40に溶融樹脂Dが供給された後においても、溶融樹脂Dの位置精度が損なわれないようにすることも容易であるため、シェル体Sによって形成される中間層50b及び内層50cの容器内における分布を均一にすることができる。本実施形態における合成樹脂容器の製造方法が、特に、多層構造とされた薄肉カップ状の容器を製造するのに適しているのは、このような理由による。
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上述した実施形態にのみ限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更実施が可能である。
 本発明は、圧縮成形による合成樹脂成形品、特に、多層構造とされた薄肉の合成樹脂容器の製造に好適に利用することができる。

Claims (12)

  1.  押出機の押出口から溶融状態にある樹脂をほぼ鉛直下方に押し出すとともに、
     前記押出口を中心に配置された複数の搬送手段によって、前記押出口から押し出されてくる溶融樹脂を所定長さごとに交互に切断しつつ、前記搬送手段のそれぞれに設定された供給位置まで搬送することを特徴とする溶融樹脂の供給方法。
  2.  溶融状態にある樹脂をほぼ鉛直下方に押し出すように押出口を設けた押出機と、
     前記押出口から押し出されてくる溶融樹脂を切断する切断部を有し、前記切断部によって切断された溶融樹脂をそれぞれに設定された供給位置まで搬送する複数の搬送手段と
    を備え、
     前記各搬送手段が、前記押出口を中心に配置されて、前記押出口の下方位置と前記供給位置との間を交互に往復移動することを特徴とする溶融樹脂供給装置。
  3.  前記搬送手段ごとに設定された前記供給位置の全てが、前記押出口を中心とする同一円周上にある請求項2に記載の溶融樹脂供給装置。
  4.  前記搬送手段が、前記切断された溶融樹脂の側面に当接し、前記搬送手段の移動時の慣性力を利用して前記切断された溶融樹脂を保持する保持面と、前記保持面に対向して開閉可能に取り付けられた保持部材とを有し、
     前記保持面の上方に前記切断部が形成された請求項2又は3のいずれか1項に記載の溶融樹脂供給装置。
  5.  前記各搬送手段が、前記押出口を中心に放射状に設置された複数の駆動機構のそれぞれに取り付けられて、前記押出口の下方位置と前記供給位置との間を交互に往復移動する請求項2~4のいずれか1項に記載の溶融樹脂供給装置。
  6.  前記駆動機構が、前記搬送手段を水平方向に往復移動させる水平駆動用アクチュエーターと、前記各搬送手段を鉛直方向に昇降させる鉛直駆動用アクチュエーターとを有する請求項5に記載の溶融樹脂供給装置。
  7.  押出機の押出口から溶融状態にある樹脂をほぼ鉛直下方に押し出すとともに、
     前記押出口を中心に配置された複数の搬送手段によって、前記押出口から押し出されてくる融樹樹脂を所定長さごとに交互に切断しつつ、前記搬送手段と対になって設置された複数の圧縮成形機のそれぞれに供給し、
     前記圧縮成形機によって、前記切断された溶融樹脂を所定形状に圧縮成形することを特徴とする溶融樹脂の圧縮成形方法。
  8.  溶融状態にある樹脂をほぼ鉛直下方に押し出すように押出口を設けた押出機と、
     前記押出口から押し出されてくる溶融樹脂を切断する切断部を有し、前記切断部によって切断された溶融樹脂をそれぞれに設定された供給位置まで搬送する複数の搬送手段と、
     前記搬送手段と対になって前記搬送手段ごとに設定された前記供給位置に設置されて、前記切断された溶融樹脂を所定形状に圧縮成形する複数の圧縮成形型と
    を備え、
     前記各搬送手段が、前記押出口を中心に配置されて、前記押出口の下方位置と前記供給位置との間を交互に往復移動することによって、前記切断された溶融樹脂を前記圧縮成形型に順次供給することを特徴とする溶融樹脂圧縮成形装置。
  9.  前記圧縮成形型の全てが、前記押出口を中心とする同一円周上に設置された請求項8に記載の溶融樹脂圧縮成形装置。
  10.  押出機の押出口から溶融状態にある樹脂をほぼ鉛直下方に押し出すとともに、
     前記押出口を中心に配置された複数の搬送手段によって、前記押出口から押し出されてくる融樹樹脂を所定長さごとに交互に切断しつつ、前記搬送手段と対になって設置された複数の圧縮成形機のそれぞれに供給し、
     前記圧縮成形機によって、前記切断された溶融樹脂を所定の容器形状に圧縮成形することを特徴とする合成樹脂製容器の製造方法。
  11.  前記圧縮成形型が、下型としての雄型及び上型としての雌型を有し、
     前記搬送手段によって、前記切断された溶融樹脂を前記圧縮成形型に供給する際に、前記雄型の上面に設けた凹状の受け部で前記切断された溶融樹脂を受ける請求項10に記載の合成樹脂製容器の製造方法。
  12.  多層構造とされた薄肉カップ状の容器を製造する請求項10又は11のいずれか1項に記載の合成樹脂製容器の製造方法。
PCT/JP2009/055089 2008-03-19 2009-03-17 溶融樹脂供給方法、溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法 WO2009116505A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09721350.8A EP2263848B8 (en) 2008-03-19 2009-03-17 Molten resin supply apparatus and method
US12/736,088 US8168100B2 (en) 2008-03-19 2009-03-17 Molten resin supply method, molten resin supply device, molten resin compression molding method, molten resin compression molding device, and synthetic resin container manufacturing method
CN2009801091448A CN101970202B (zh) 2008-03-19 2009-03-17 熔融树脂供给方法、熔融树脂供给装置、熔融树脂压缩成形方法、熔融树脂压缩成形装置及合成树脂制容器的制造方法
ES09721350.8T ES2636845T3 (es) 2008-03-19 2009-03-17 Aparato y procedimiento de suministro de resina fundida

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008071368A JP4670883B2 (ja) 2008-03-19 2008-03-19 溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法
JP2008-071368 2008-03-19

Publications (1)

Publication Number Publication Date
WO2009116505A1 true WO2009116505A1 (ja) 2009-09-24

Family

ID=41090906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055089 WO2009116505A1 (ja) 2008-03-19 2009-03-17 溶融樹脂供給方法、溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法

Country Status (6)

Country Link
US (1) US8168100B2 (ja)
EP (1) EP2263848B8 (ja)
JP (1) JP4670883B2 (ja)
CN (1) CN101970202B (ja)
ES (1) ES2636845T3 (ja)
WO (1) WO2009116505A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075009A (ja) 2009-09-30 2011-04-14 Daiwa Kasei Kogyo Kk クリップ
JP5967076B2 (ja) * 2011-03-10 2016-08-10 東洋製罐株式会社 溶融樹脂供給システムと溶融樹脂供給方法
JP6215785B2 (ja) 2014-06-30 2017-10-18 ファナック株式会社 ワーク搬送システム
IT201800009342A1 (it) * 2018-10-11 2020-04-11 Sacmi Cooperativa Mecc Imola Societa' Cooperativa Apparato per stampare a compressione oggetti concavi.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103428A (ja) * 2000-09-29 2002-04-09 Toyo Seikan Kaisha Ltd 多層プリフォームおよびこれを用いて製造した多層ボトル
JP2005343110A (ja) * 2004-06-07 2005-12-15 Toyo Seikan Kaisha Ltd 溶融合成樹脂供給装置
JP2007216531A (ja) 2006-02-17 2007-08-30 Toyo Seikan Kaisha Ltd 圧縮成形システム
WO2008032841A1 (fr) * 2006-09-12 2008-03-20 Toyo Seikan Kaisha, Ltd. Récipient de type coupe de polypropylène et procédé de moulage de celui-ci

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1593525A (en) * 1925-10-05 1926-07-20 Kurz Kasch Company Method of molding phenolic condensation products and the like
JPS60245517A (ja) * 1984-05-22 1985-12-05 Toyo Seikan Kaisha Ltd 圧縮成形装置
JPS6250107A (ja) * 1985-06-21 1987-03-04 Toyo Seikan Kaisha Ltd 樹脂供給装置
US5603964A (en) * 1994-10-07 1997-02-18 Owens-Illinois Closure Inc. Apparatus for cutting and delivering plastic gobs
EP0888867B1 (en) * 1996-07-09 2003-05-02 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a hollow resin container
US6349838B1 (en) * 1998-12-25 2002-02-26 Toyo Seikan Kaisha, Ltd. Plastic bottle and method of producing the same
ITRM20010723A1 (it) * 2001-12-07 2003-06-09 Sipa Spa Dispositivo e metodo di stampaggio per compressione di articoli in plastica.
ITBO20020226A1 (it) * 2002-04-23 2003-10-23 Sacmi Apparecchiatura per lo stampaggio a pressione di articoli in materiale plastico , come capsule per la chiusura di contenitore e simili
WO2005007378A1 (ja) 2003-07-14 2005-01-27 Toyo Seikan Kaisya, Ltd. 圧縮成形機にドロップを強制挿入する方法及び装置並びに成形金型追従式ドロップ供給方法及び装置
ITMO20030289A1 (it) * 2003-10-23 2005-04-24 Sacmi Apparati, metodo e articolo.
WO2005102647A2 (en) * 2004-04-16 2005-11-03 Advanced Plastics Technologies, Ltd Compression moulding multi-layered container-like articles
EP1755848A2 (en) * 2004-04-23 2007-02-28 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Apparatuses and method for transferring plastics material to a compression moulding machine
JP2006052307A (ja) 2004-08-11 2006-02-23 Toyo Seikan Kaisha Ltd 圧縮成形用ポリエステル樹脂、プリフォームの製造方法及びプリフォーム
US7331777B2 (en) * 2005-04-19 2008-02-19 Owens Illinois Closure Inc. Compression molding machine
US7407376B2 (en) * 2005-07-21 2008-08-05 Graham Packaging Company, L.P. Compression molding apparatus
KR101418610B1 (ko) * 2006-02-17 2014-07-14 도요세이칸 그룹 홀딩스 가부시키가이샤 용융 수지 덩어리의 공급 방법 및 장치와, 압축 성형 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103428A (ja) * 2000-09-29 2002-04-09 Toyo Seikan Kaisha Ltd 多層プリフォームおよびこれを用いて製造した多層ボトル
JP2005343110A (ja) * 2004-06-07 2005-12-15 Toyo Seikan Kaisha Ltd 溶融合成樹脂供給装置
JP2007216531A (ja) 2006-02-17 2007-08-30 Toyo Seikan Kaisha Ltd 圧縮成形システム
WO2008032841A1 (fr) * 2006-09-12 2008-03-20 Toyo Seikan Kaisha, Ltd. Récipient de type coupe de polypropylène et procédé de moulage de celui-ci

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2263848A4

Also Published As

Publication number Publication date
US8168100B2 (en) 2012-05-01
CN101970202A (zh) 2011-02-09
CN101970202B (zh) 2013-08-21
EP2263848B8 (en) 2017-07-19
ES2636845T3 (es) 2017-10-09
US20110001258A1 (en) 2011-01-06
JP2009226609A (ja) 2009-10-08
EP2263848A1 (en) 2010-12-22
JP4670883B2 (ja) 2011-04-13
EP2263848B1 (en) 2017-05-10
EP2263848A4 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US5433916A (en) Utilizing multi cavity mold in extrusion blow molding process
CN101466524B (zh) 通过挤吹成型及连续的喷嘴缝隙调节制造热塑性塑料空心体的方法
JP5178827B2 (ja) 熱可塑性プラスチック材料製中空体の製造方法と装置
CN87106128A (zh) 物品的制造
EP2206592B1 (en) Compression-molding apparatus
JP4670883B2 (ja) 溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法
MXPA06015140A (es) Procedimiento de produccion y maquina de extrusion y soplado para recipientes de plastico.
MX2007012845A (es) Aparato para transferir porciones y porcion.
EP2406057B1 (en) Rotary blow molding machine with moveable mold clamp assemblies and method
EP2830854B1 (en) Method and apparatus for making hollow bodies
CN101628471B (zh) 集注胚和吹瓶于一体的塑料制瓶机
CN1494477A (zh) 通过在由连续运动工具载送的裙套体上成型出头部体而制成塑料材质的柔性软管的机组
JPWO2009099129A1 (ja) 多層樹脂形成ダイヘッドとこれをそなえた押出成形機
US8419993B2 (en) Extrusion blow molding machine and method for the production of a hollow plastic body
RU2305033C2 (ru) Способ и устройство для изготовления полых изделий
CN211334650U (zh) 一种一体化多层共挤设备
JP2009226609A5 (ja)
US20210023761A1 (en) Vertically added processing for blow molding machine
EP3717199B1 (en) Blow molding apparatus
CN201552742U (zh) 集注胚和吹瓶于一体的塑料制瓶机
JP5023964B2 (ja) 圧縮成形装置
JP5303733B2 (ja) 圧縮成形装置及び圧縮成形方法
JPH0350690B2 (ja)
JP2001079932A (ja) 多層成形品の製造方法及び製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109144.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12736088

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009721350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009721350

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE