WO2009116237A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2009116237A1
WO2009116237A1 PCT/JP2009/000975 JP2009000975W WO2009116237A1 WO 2009116237 A1 WO2009116237 A1 WO 2009116237A1 JP 2009000975 W JP2009000975 W JP 2009000975W WO 2009116237 A1 WO2009116237 A1 WO 2009116237A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compression mechanism
compressor
cylinder
pressure
Prior art date
Application number
PCT/JP2009/000975
Other languages
English (en)
French (fr)
Inventor
守本光希
柳沢雅典
古庄和宏
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2009801093176A priority Critical patent/CN101978226B/zh
Priority to BRPI0906182-7A priority patent/BRPI0906182B1/pt
Priority to EP09722530A priority patent/EP2261579A4/en
Priority to US12/921,545 priority patent/US20110023535A1/en
Publication of WO2009116237A1 publication Critical patent/WO2009116237A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1022C3HmFn
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus that uses a refrigerant composed of a compound represented by a molecular formula of C 3 H m F n .
  • Patent Document 1 discloses that a refrigerant composed of a compound represented by a molecular formula of C 3 H m F n is used as a refrigerant in a refrigerant circuit.
  • This refrigerant has excellent characteristics as a refrigerant for the refrigeration cycle, and is intended to improve the coefficient of performance (COP) of the refrigeration apparatus. Further, it is known that this refrigerant does not contain chlorine atoms, bromine atoms, or the like and has a small influence on the destruction of the ozone layer.
  • the refrigerant (C 3 H m F n ) disclosed in Patent Document 1 has characteristics that a theoretical COP is relatively high and a global warming potential (GWP) is low. Therefore, when this refrigerant is used in the refrigeration cycle, it is considered that it is possible to provide a refrigeration apparatus that has high operating efficiency and is friendly to the global environment.
  • this refrigerant is easily decomposed at high temperatures, it is desirable to use it under conditions that do not easily cause high temperatures.
  • a general single-stage one-cylinder compressor if the cylinder volume is increased or the compression ratio is increased, the discharge flow rate increases due to the excessive compression of the refrigerant. The temperature of the becomes easy to rise. For this reason, when the refrigerant and the single-stage one-cylinder compressor are used in combination, the refrigerant may be decomposed depending on conditions.
  • the present invention has been made in view of the foregoing, an object of the refrigeration apparatus using a refrigerant molecular formula consisting of compounds represented by the C 3 H m F n, the discharge temperature of the compressor is increased This is to prevent the refrigerant from being decomposed.
  • a refrigerating apparatus that is a single refrigerant composed of a refrigerant having one double bond in the molecular structure or a mixed refrigerant containing the refrigerant.
  • the compressor (10) that performs the refrigerant compression stroke is a compressor (10) having a first compression mechanism (20A) and a second compression mechanism (20B) in a casing (11). It is characterized by being.
  • a so-called two-cylinder compressor (10) or a two-stage compressor (10) can be used.
  • a two-cylinder compressor (10) a one-cylinder compressor is used. Since the discharge flow rate per cylinder can be lowered as compared with the compressor (10), the overcompression can be reduced. Therefore, the refrigerant is easily decomposed at a high temperature, while the temperature of the refrigerant can be suppressed from increasing.
  • the configuration of the compressor (10) in the first aspect is specified as a two-stage compressor.
  • the compression mechanism (20A) is a low-stage compression mechanism (20L)
  • the second compression mechanism (20B) is a high-stage compression mechanism (20H)
  • the refrigerant is two-staged by both compression mechanisms (20A, 20B). It is characterized by a two-stage compression mechanism (20L, 20H) that compresses.
  • the over-compression of the refrigerant on the higher stage becomes smaller than in the case of performing single-stage compression, and the discharge temperature. Can be lowered. Therefore, the temperature of the refrigerant can be prevented from increasing.
  • each of the compression mechanisms (20A, 20B) includes a cylinder (21A, 21B) having a cylinder chamber (25), and the cylinder (21A, 21B).
  • a swinging piston (28) that revolves along the peripheral surface.
  • the swinging piston (28) is formed with a blade (28b) protruding radially outward, and the blade (28b) is advanced and retracted.
  • the supporting member (29) that can be held is a swinging piston type compression mechanism that is rotatably held by the cylinder (21A, 21B).
  • the compression mechanism (20A, 20B) is a swinging piston type compression mechanism.
  • the rolling piston type compressor (10) has a cylinder having a cylinder chamber and a rolling piston that revolves along the inner peripheral surface of the cylinder, and one end (tip) of the cylinder is a rolling piston. A blade is held in pressure contact with the outer peripheral surface.
  • the outer periphery of the rolling piston and the tip of the blade slide to generate heat, so that the inside of the compression mechanism is likely to become high temperature, and if the above refrigerant is used, the refrigerant may be decomposed. was there.
  • the oscillating piston (28a) and the blade (28b) are slid because the oscillating piston compressor (10) is used while the refrigerant is easily decomposed at a high temperature. No heat is generated in that part. Therefore, the refrigerant is hardly affected by heat.
  • the refrigerant having one double bond in the molecular structure is 2,3,3,3-tetrafluoro-1-propene.
  • the fifth invention is characterized in that, in any one of the first to fourth inventions, the refrigerant of the refrigerant circuit (2) is a mixed refrigerant further containing difluoromethane.
  • the sixth invention is characterized in that, in any one of the first to fifth inventions, the refrigerant of the refrigerant circuit (2) is a mixed refrigerant further containing pentafluoroethane.
  • the refrigerant is easily decomposed at a high temperature, whereas the compressor (10) having two compression mechanisms (20A, 20B) is used. Therefore, the refrigerant is less affected by heat.
  • the first invention it is possible to use a so-called two-cylinder compressor (10) or a two-stage compressor (10).
  • the two-cylinder compressor (10) Since the discharge flow rate can be lowered by reducing the refrigerant over-compression per cylinder as compared to the one-cylinder compressor (10), it is possible to suppress the refrigerant temperature from rising and the refrigerant is decomposed. Can be prevented.
  • the discharge temperature can be lowered by compressing the refrigerant in two stages as compared with the single stage compression, it is possible to prevent the refrigerant from being decomposed as in the first aspect. .
  • the compression mechanism (20A, 20B) is an oscillating piston type compression mechanism, it is easy to prevent the refrigerant from reaching a high temperature, so the two compression mechanisms (20A, 20B) Combined with the use, it is possible to more effectively prevent the refrigerant from being decomposed.
  • the refrigerant is easily decomposed at a high temperature, whereas the compressor (10) having the two compression mechanisms (20A, 20B) is used. By suppressing the rise, it is possible to prevent the refrigerant from being decomposed.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the compressor.
  • FIG. 3 is a cross-sectional view of the compression mechanism.
  • FIG. 4 is a Mollier diagram showing changes in the characteristics of the refrigerant in the refrigerant circuit.
  • FIG. 5 is a longitudinal sectional view of the compressor according to the second embodiment.
  • Refrigeration system 2 Refrigerant circuit 10
  • Compressor 11 Casing 20A First compression mechanism 20B Second compression mechanism 21A Cylinder 21B Cylinder 20L Low stage compression mechanism 20H High stage compression mechanism 25 Cylinder chamber 28 Swing piston 28b Blade 29 Swing bush (Support member)
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • Embodiment 1 relates to an air conditioner.
  • the air conditioner (1) is a heat pump type air conditioner, and is configured to be switchable between a cooling operation and a heating operation.
  • the refrigerant circuit (2) of the air conditioner (1) includes a compressor (10) that performs a compression stroke of the refrigerant in the refrigeration cycle, and a four-way switching valve (3) that is a flow direction switching mechanism that switches the flow direction of the refrigerant.
  • the refrigerant circuit (2) of the present embodiment is filled with a single refrigerant made of HFO-1234yf (2,3,3,3-tetrafluoro-1-propene) as the refrigerant.
  • HFO-1234yf 2,3,3,3-tetrafluoro-1-propene
  • m and n are integers of 1 to 5
  • m + n 6
  • the discharge port of the compressor (10) is connected to the first port (P1) of the four-way selector valve (3), and the second port (P2) of the four-way selector valve (3) is connected to the outdoor heat exchanger (4).
  • the liquid side end of the outdoor heat exchanger (4) is the liquid side end of the indoor heat exchanger (7) through the first expansion valve (5A), the gas-liquid separator (6), and the second expansion valve (5B). It is connected to the.
  • the gas side end of the indoor heat exchanger (7) is connected to the third port (P3) of the four-way selector valve (3), and the fourth port (P4) of the four-way selector valve (3) is connected to the accumulator (8).
  • the four-way selector valve (3) is in a first state during cooling operation in which the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other ( 1 in the heating operation in which the first port (P1) and the third port (P3) communicate with each other and the second port (P2) and the fourth port (P4) communicate with each other (solid line state in FIG. 1). It is configured to switch to the state of the broken line in FIG.
  • the refrigerant circuit (2) is provided with an injection pipe (2A).
  • the injection pipe (2A) is an introduction pipe for injecting an intermediate-pressure gas refrigerant, which is an intermediate-pressure fluid, into the compressor (10), one end being a gas-liquid separator (6) and the other end being a compressor (10 ).
  • the gas-liquid separator (6) stores intermediate pressure refrigerant that is at an intermediate pressure between the condensation pressure of the refrigerant that is the high-pressure fluid and the evaporation pressure of the refrigerant that is the low-pressure fluid.
  • the injection pipe (2A) is for injecting a gas-phase intermediate-pressure gas refrigerant out of the intermediate-pressure refrigerant accumulated in the gas-liquid separator (6) into the compressor (10).
  • the first expansion valve (5A) and the second expansion valve (5B) are electrically operated valves with adjustable opening. Then, the intermediate pressure refrigerant decompressed by the first expansion valve (5A) or the second expansion valve (5B) is stored in the gas-liquid separator (6).
  • the compressor (10) is configured to control the operation capacity steplessly or in multiple stages.
  • an electric motor for driving the compression mechanism (20) is accommodated in the compressor (10).
  • the electric motor (30) is connected to a power source (35) via an inverter (rotational speed control mechanism) (34), and the rotational speed can be adjusted by changing the drive frequency.
  • the compressor (10) is a two-stage compressor, and, as shown in FIG. 2, a low-stage compression mechanism (20L) which is a first compression mechanism (20A) in a sealed casing (11). And a high-stage compression mechanism (20H) that is the second compression mechanism (20B) and an electric motor (30) that drives both compression mechanisms (20L, 20H).
  • the casing (11) is composed of a cylindrical body (12) having an open top and bottom, and end plates (13, 14) fixed to the upper and lower ends of the body (12) by welding, respectively. Yes.
  • the electric motor (30) includes a stator (31) fixed to the inner peripheral surface of the casing (11), and a rotor (32) disposed at the center of the stator (31).
  • a drive shaft (33) is coupled to the central portion of the rotor (32).
  • the drive shaft (33) extends downward from the rotor (32) and is connected to the low-stage compression mechanism (20L) and the high-stage compression mechanism (20H).
  • the bottom of the casing (11) is configured as an oil reservoir (17) for lubricating oil, and the lower end of the drive shaft (33) is immersed in the lubricating oil of the oil reservoir (17).
  • a centrifugal oil pump (36) is provided at the lower end portion of the drive shaft (33), and the lubricating oil passes through an oil supply passage (33c) in the drive shaft (33) and passes through the low-stage compression mechanism (20L ) And the sliding part and the bearing part of the high-stage compression mechanism (20H).
  • the low-stage compression mechanism (20L) and the high-stage compression mechanism (20H) are located below the electric motor (30) and are provided side by side.
  • the low-stage compression mechanism (20L) and the high-stage compression mechanism (20H) are both constituted by a so-called oscillating piston type compression mechanism.
  • the low-stage compression mechanism (20L) and the high-stage compression mechanism (20H) have substantially the same configuration, and the high-stage compression mechanism (20H) is disposed above the low-stage compression mechanism (20L). ing.
  • both compression mechanisms (20L, 20H) are configured such that a swing piston (28) is housed in a cylinder chamber (25) formed in a cylinder (21H, 21L).
  • a middle plate (22) is provided between the cylinders (21H, 21L) of the compression mechanisms (20L, 20H).
  • the lower surface of the lower cylinder (21L) is closed by a lower plate (rear head) (24), and the upper surface of the higher cylinder (21H) is provided by an upper plate (front head) (23). Being closed.
  • the swing piston (28) of each compression mechanism (20L, 20H) is formed in an annular shape as a whole, and the eccentric portion (33a, 33b) of the drive shaft (33) is rotatably fitted.
  • the eccentric portions (33a, 33b) are formed eccentric from the rotation center of the drive shaft (33).
  • Each cylinder (21H, 21L) is formed with a suction passage (21a, 21b), and one end of the suction passage (21a, 21b) opens into the cylinder chamber (25) to form a suction port.
  • the lower plate (24) is formed with a discharge passage (24a) for the low-stage compression mechanism (20L), while the upper plate (23) is formed with a discharge passage (23a for the high-stage compression mechanism (20H). ), And one end of each discharge passage (23a, 24a) opens into the cylinder chamber (25) to form a discharge port.
  • each of the discharge passages (23a, 24a) is provided with a discharge valve that opens a discharge port when a predetermined discharge pressure is reached.
  • the cylinder (21H, 21L) is formed with a bush hole (21c) which is cylindrical in the axial direction and located between the suction port and the discharge port and opens into the cylinder chamber (25).
  • the rocking piston (28) is integrally formed with an annular main body (28a) and a blade (28b) extending in a radial direction from the main body (28a). The tip end side of the blade (28b) is inserted into the bush hole (21c) via a swinging bush (29) which is a pair of support members.
  • the blade (28b) divides the cylinder chamber (25) into a low pressure chamber (25a) communicating with the suction passage (21a, 21b) and a high pressure chamber (25b) communicating with the discharge passage (23a, 24a).
  • the swing piston (28) is configured such that the main body (28a) revolves along the inner peripheral surface of the cylinder chamber (25) while the blade (28b) swings around the swing bush (29). It is configured to compress the refrigerant.
  • a suction pipe (15) for supplying a low-pressure gas refrigerant to the low-stage compression mechanism (20L) is connected to the suction passage (21a) of the low-stage compression mechanism (20L).
  • the suction pipe (15) is connected to a suction side refrigerant pipe (2B) (see FIG. 1) of the refrigerant circuit (2).
  • the lower plate (24) is provided with a lower muffler (26).
  • An intermediate passage (20M) is formed in the compression mechanism (20).
  • the intermediate passage (20M) passes through the lower plate (24) and the low-stage cylinder (21L), passes through the middle plate (22), and communicates with the suction passage (21b) of the high-stage compression mechanism (20H). Yes.
  • the injection pipe (2A) is connected to the middle plate (22), and the injection pipe (2A) communicates with the intermediate passage (20M). That is, the intermediate passage (20M) is configured to be in an intermediate pressure atmosphere when the intermediate pressure gas refrigerant is supplied. With this configuration, the intermediate pressure refrigerant is supplied to the high stage compression mechanism (20H).
  • the upper plate (23) is provided with an upper muffler (27) that covers the discharge passage (23a) of the high-stage compression mechanism (20H).
  • the discharge passage (23a) of the high-stage compression mechanism (20H) is configured to open into the casing (11) through the upper muffler (27), and the inside of the casing (11) is in a high-pressure atmosphere. ing.
  • a discharge pipe (16) for discharging high-pressure gas refrigerant to the refrigerant circuit (2) is fixed to the upper part of the casing (11).
  • a discharge side refrigerant pipe (2C) of the refrigerant circuit (2) is connected to the discharge pipe (16) (see FIG. 1).
  • the four-way selector valve (3) is switched to the solid line side in FIG.
  • the refrigerant discharged from the compressor (10) is condensed by exchanging heat with the outside air in the outdoor heat exchanger (4).
  • This liquid refrigerant is depressurized by the first expansion valve (5A), becomes an intermediate pressure refrigerant having a pressure intermediate between the condensation pressure and the evaporation pressure, and accumulates in the gas-liquid separator (6).
  • the intermediate-pressure refrigerant in the gas-liquid separator (6) is decompressed by the second expansion valve (5B) and then evaporated by exchanging heat with indoor air in the indoor heat exchanger (7). And cool the room air. Thereafter, the gas refrigerant returns to the compressor (10) through the accumulator (8), and performs this refrigerant circulation operation.
  • the four-way selector valve (3) is switched to the broken line side in FIG.
  • the refrigerant discharged from the compressor (10) exchanges heat with indoor air in the indoor heat exchanger (7), and condenses while heating the indoor air. Thereafter, the liquid refrigerant is decompressed by the second expansion valve (5B), becomes an intermediate pressure refrigerant, and accumulates in the gas-liquid separator (6).
  • the intermediate-pressure liquid refrigerant is depressurized by the first expansion valve (5A) and then evaporated by exchanging heat with the outside air in the outdoor heat exchanger (4). . Thereafter, the gas refrigerant returns to the compressor (10) through the accumulator (8), and performs this refrigerant circulation operation.
  • the refrigerant in the compressor (10) is compressed from a low pressure state at point A to a high pressure state at a condensation pressure at point B via intermediate pressure injection.
  • the high-pressure gas refrigerant is condensed in the outdoor heat exchanger (4) or the indoor heat exchanger (7), and becomes a high-pressure liquid refrigerant at the point C.
  • This high-pressure liquid refrigerant is depressurized to point D by the first expansion valve (5A) or the second expansion valve (5B) and becomes an intermediate-pressure refrigerant.
  • This intermediate-pressure refrigerant is stored in the gas-liquid separator (6) and separated into intermediate-pressure liquid refrigerant and intermediate-pressure gas refrigerant by the gas-liquid separator (6).
  • the separated intermediate-pressure gas refrigerant is at a lower temperature than the gas refrigerant discharged from the first compression mechanism (20L) to the compressor (10) via the injection pipe (2A). Both are mixed and compression at the second stage is started from point E), while the intermediate pressure liquid refrigerant is transferred from point F to the second expansion valve (5B) or the first expansion valve (5A). The pressure is reduced to a point to become a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant evaporates in the indoor heat exchanger (7) or the outdoor heat exchanger (4), changes to point A, and returns to the compressor (10).
  • the refrigerant flowing through the indoor heat exchanger (7) serving as the condenser is added with the intermediate pressure gas refrigerant, so that the refrigerant circulation amount is increased and the heating capacity is improved.
  • the low pressure two-phase refrigerant at the point G increases the enthalpy difference from the point D to the point F, so the amount of heat of the refrigerant evaporated in the indoor heat exchanger (7) increases, and the cooling capacity Will improve.
  • the refrigerant discharge temperature is lower than that of the single-stage compression refrigeration cycle indicated by the phantom line.
  • the drive shaft (33) is rotated by the drive of the electric motor (30), and the swing piston (28) of the low-stage compression mechanism (20L) and the high-stage compression mechanism (20H) is a fulcrum about the center of the bush hole (21c). Oscillate and revolve. Then, the low-pressure gas refrigerant returning from the accumulator (8) in the refrigerant circuit (2) flows into the cylinder chamber (25) from the suction passage (21a) of the low-stage compression mechanism (20L), and the swing piston (28 ).
  • the discharge valve of the low-stage compression mechanism (20L) serves as the refrigerant pressure in the cylinder chamber (25). Opens when the pressure reaches an intermediate pressure.
  • the refrigerant discharged from the low-stage compression mechanism (20L) passes from the discharge passage (24a) through the lower muffler (26), passes through the intermediate passage (20M), and enters the suction passage (21b) of the high-stage compression mechanism (20H). Flowing. Then, the intermediate pressure refrigerant in the injection pipe (2A) joins in this intermediate passage (20M) and flows into the cylinder chamber (25) of the high stage compression mechanism (20H).
  • the intermediate pressure refrigerant is compressed and the high pressure refrigerant is discharged into the casing (11).
  • the high-pressure refrigerant passes between the stator (31) and the rotor (32) of the electric motor (30) and is discharged to the refrigerant circuit (2).
  • This high-pressure refrigerant circulates in the refrigerant circuit (2) as described above.
  • the HFO-1234yf refrigerant When the molecular formula used refrigerant consisting of compounds represented by the C 3 H m F n as, there is a possibility that the refrigerant is decomposed. However, in this embodiment, since the refrigerant is easily decomposed at a high temperature, since the swinging piston type compressor is used, the piston and the blade do not slide, and no heat is generated in that portion. Therefore, the refrigerant is less susceptible to heat.
  • a single refrigerant composed of HFO-1234yf (2,3,3,3-tetrafluoro-1-propene) is used as the refrigerant in the refrigerant circuit (2).
  • HFO-1234yf has a characteristic that the theoretical COP is relatively high. Therefore, by using this refrigerant as a single refrigerant, a refrigeration cycle with excellent operating efficiency can be performed, and the operating efficiency of the refrigeration apparatus (1) can be improved.
  • HFO-1234yf has a characteristic that the global warming potential (GWP) is relatively small. Therefore, a refrigeration apparatus (1) that is friendly to the global environment can be provided by using this refrigerant as a single refrigerant.
  • GWP global warming potential
  • the refrigerant is compared with a single-stage one-cylinder compressor.
  • the discharge temperature can be lowered. Therefore, even if it is a HFO-1234yf refrigerant that is easily decomposed at a high temperature, the refrigerant can be prevented from being decomposed.
  • the oscillating piston type compressor (10) since the oscillating piston type compressor (10) is used, the sliding of the outer peripheral surface of the piston and the tip end surface of the blade that has occurred in the rolling piston type compressor does not occur. Therefore, no heat is generated due to the sliding of these members, so that the HFO-1234yf refrigerant, which is easily decomposed at high temperatures, does not decompose.
  • HFO-1234yf is a low-pressure refrigerant, and it is difficult to obtain a sufficient amount of circulation, so that it is difficult to obtain sufficient refrigeration capacity.
  • intermediate-pressure gas refrigerant is injected into the compressor (10). Like to do. Therefore, it is possible to increase the refrigerant circulation amount by increasing the apparent operation capacity, and to increase the refrigeration capacity even with HFO-1234yf, which is difficult to obtain sufficient refrigeration capacity.
  • the suction amount can be increased by increasing the rotation speed. Therefore, since the refrigerant circulation amount can be increased by increasing the operation capacity even with this configuration, it is possible to increase the refrigeration capacity even with HFO-1234yf, which is difficult to obtain a sufficient refrigeration capacity.
  • Embodiment 1 the system which injects intermediate pressure gas refrigerant
  • the low-pressure refrigerant gas is compressed to the intermediate pressure by the low-stage compression mechanism (20 L), and then the intermediate-pressure gas refrigerant is saturated. After cooling to near the steam temperature, it is further compressed by the high-stage compression mechanism (20H).
  • the gas injection method using the gas-liquid separator (6) is adopted as the intermediate cooler (intermediate cooling means) for cooling the intermediate pressure gas refrigerant.
  • Other systems such as a refrigerant heat exchanger that exchanges heat with a two-phase refrigerant whose pressure is reduced to an intermediate pressure may be used.
  • Embodiment 2 of the Invention Next, Embodiment 2 of the present invention will be described.
  • Embodiment 2 uses a two-cylinder compressor (10) instead of a two-stage compressor as a compressor for performing a compression stroke of a refrigeration cycle.
  • the first compression mechanism (20A) and the second compression mechanism (20B) are two compression mechanisms in which the low-stage side and the high-stage side are not in parallel but in a parallel relationship. It is configured.
  • Each of these compression mechanisms (20A, 20B) is provided with a suction passage (21a, 21b), and each suction passage (21a, 21b) is connected in parallel to the suction side refrigerant pipe (2B) of the refrigerant circuit (2).
  • the first compression mechanism (20A) and the second compression mechanism (20B) are connected to the low-stage side and the high-stage side so that both compression mechanisms (20A, 20B) are connected by the intermediate passage (20M).
  • the second embodiment does not employ such a configuration.
  • the lower muffler (26) fixed to the lower plate (24) opens into the internal space of the casing (11) and is discharged by the first compression mechanism (20A) and the second compression mechanism (20B). The refrigerant is discharged separately into the casing (11).
  • a single-stage two-cylinder compressor (10) is used.
  • This single-stage two-cylinder compressor can have a smaller volume per cylinder than a single-stage one-cylinder compressor. Therefore, since the overcompression per cylinder can be reduced, the discharge flow rate can be lowered. For this reason, since it can suppress that the temperature of a refrigerant
  • a compressor having a swinging piston type compression mechanism (20A, 20B) is used, but the compression mechanism is not limited to a swinging piston type, and a rolling piston type or scroll type compression mechanism is used. It may be used. Even in such a case, it is possible to prevent the refrigerant discharge temperature from rising by making the compression mechanism (20A, 20B) a two-cylinder type or a two-stage compression type, so that the HFO-1234yf that is the refrigerant is decomposed. Can be prevented.
  • a single refrigerant other than HFO-1234yf may be used among the refrigerants having one double bond.
  • 1,2,3,3,3-pentafluoro-1-propene referred to as “HFO-1225ye”
  • the chemical formula is represented by CF 3 —CF ⁇ CHF
  • 1,3,3 , 3-tetrafluoro-1-propene referred to as “HFO-1234ze”
  • the chemical formula is represented by CF 3 —CH ⁇ CHF
  • 1,2,3,3-tetrafluoro-1-propene (“HFO ⁇ 1234ye ”
  • the chemical formula is CHF 2 —CF ⁇ CHF
  • 3,3,3-trifluoro-1-propene HFO-1243zf
  • the chemical formula is CF 3 —CH ⁇ CH .. represented by 2)
  • the refrigerant represented by the molecular formula 1 and having one double bond in the molecular structure (1,2,3,3,3-pentafluoro-1-propene, 2,3,3, 3-tetrafluoro-1-propene, 1,3,3,3-tetrafluoro-1-propene, 1,2,3,3-tetrafluoro-1-propene, 3,3,3-trifluoro-1- Propene, 1,2,2-trifluoro-1-propene, 2-fluoro-1-propene), HFC-32 (difluoromethane), HFC-125 (pentafluoroethane), HFC-134 (1,1, 2,2-tetrafluoroethane), HFC-134a (1,1,1,2-tetrafluoroethane), HFC-143a (1,1,1-trifluoroethane), HFC-152a (1,1-difluoro) Ethane), HFC-161, HFC-227ea, HFC-236e
  • a mixed refrigerant composed of two components of HFO-1234yf and HFC-32 may be used.
  • a mixed refrigerant in which the ratio of HFO-1234yf is 78.2% by mass and the ratio of HFC-32 is 21.8% by mass can be used.
  • a mixed refrigerant in which the ratio of HFO-1234yf is 77.6 mass% and the ratio of HFC-32 is 22.4 mass% can be used.
  • the mixed refrigerant of HFO-1234yf and HFC-32 may have a ratio of HFO-1234yf of 70% by mass to 94% by mass and a ratio of HFC-32 of 6% by mass to 30% by mass, preferably
  • the ratio of HFO-1234yf may be 77% by mass or more and 87% by mass or less, and the ratio of HFC-32 may be 13% by mass or more and 23% by mass or less. More preferably, the ratio of HFO-1234yf is 77% by mass or more and 79% by mass. It is sufficient that the ratio of HFC-32 is 21% by mass or more and 23% by mass or less at a mass% or less.
  • a mixed refrigerant of HFO-1234yf and HFC-125 may be used.
  • the ratio of HFC-125 is preferably 10% by mass or more, and more preferably 10% by mass or more and 20% by mass or less.
  • a mixed refrigerant composed of three components of HFO-1234yf, HFC-32, and HFC-125 may be used.
  • a mixed refrigerant composed of 52% by mass of HFO-1234yf, 23% by mass of HFC-32, and 25% by mass of HFC-125 can be used.
  • the present invention is useful for a refrigeration apparatus using a refrigerant composed of a compound represented by a molecular formula of C 3 H m F n .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

 分子式がC(但し、m=1~5,n=1~5且つm+n=6)で表される化合物から成る冷媒を用いる冷凍装置(1)において、冷凍サイクルで冷媒の圧縮行程を行う圧縮機(10)の吐出温度が高くなることにより冷媒が分解してしまうのを防止するために、ケーシング(11)内に第1圧縮機構(20A)と第2圧縮機構(20B)とを有する圧縮機を用いる。

Description

冷凍装置
 本発明は、冷凍装置に関し、特に、Cの分子式で表される化合物から成る冷媒を用いる冷凍装置に関するものである。
 従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置は、空気調和装置等に広く適用されている。特許文献1には、冷媒回路の冷媒として、Cの分子式で表される化合物から成る冷媒を用いることが開示されている。この冷媒は、冷凍サイクルの冷媒として優れた特性を有しており、冷凍装置の成績係数(COP)の向上が図られている。また、この冷媒は、塩素原子や臭素原子等を含まず、オゾン層の破壊への影響が小さいことが知られている。
 上記特許文献1に開示されている冷媒(C)は、理論上のCOPが比較的高く、且つ地球温暖化係数(GWP)が低い特性を有している。従って、この冷媒を冷凍サイクルに用いると、運転効率が高く、且つ地球環境に優しい冷凍装置を提供することが可能になると考えられる。
特開平4-110388号公報
 しかし、この冷媒は、高温になると分解しやすいため、高温になりにくい状況で使用することが望ましい。例えば、一般的な単段1シリンダ型の圧縮機を用いる場合、シリンダ容積を大きくしたり圧縮比を大きくしたりすると、冷媒の過圧縮が大きくなることに起因して吐出流速が速くなって冷媒の温度が上がりやすくなる。そのため、上記冷媒と単段1シリンダ型の圧縮機とを組み合わせて用いると、条件によっては冷媒が分解してしまうおそれがあった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、分子式がCで表される化合物から成る冷媒を用いる冷凍装置において、圧縮機の吐出温度が高くなることにより冷媒が分解してしまうのを防止することである。
 第1の発明は、冷媒回路(2)の冷媒が、分子式:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は該冷媒を含む混合冷媒である冷凍装置を前提としている。
 そして、この冷凍装置は、冷媒の圧縮行程を行う圧縮機(10)が、ケーシング(11)内に第1圧縮機構(20A)と第2圧縮機構(20B)とを有する圧縮機(10)であることを特徴としている。
 この第1の発明では、いわゆる2シリンダ型圧縮機(10)や二段圧縮機(10)を用いることが可能であるが、2シリンダ型の圧縮機(10)の場合は、1シリンダ型の圧縮機(10)よりもシリンダ1つ当たりの吐出流速を下げることができるので、過圧縮を小さくすることができる。したがって、冷媒が高温で分解しやすいのに対して、冷媒の温度が高くなるのを抑えられる。
 第2の発明は、第1の発明において圧縮機(10)の構成を二段圧縮機に特定したものであり、具体的には、第1の発明において、上記圧縮機(10)の第1圧縮機構(20A)が低段側圧縮機構(20L)であり、第2圧縮機構(20B)が高段側圧縮機構(20H)であり、両圧縮機構(20A,20B)によって、冷媒を二段圧縮する二段圧縮機構(20L,20H)が構成されていることを特徴としている。
 この第2の発明では、図4のモリエル線図から分かるように、冷媒を二段圧縮することで、単段圧縮をする場合と比べて高段側の冷媒の過圧縮が小さくなって吐出温度を低くできる。したがって、冷媒の温度が高くなるのを抑えられる。
 第3の発明は、第1または第2の発明において、上記各圧縮機構(20A,20B)が、シリンダ室(25)を有するシリンダ(21A,21B)と、該シリンダ(21A,21B)の内周面に沿って公転する揺動ピストン(28)とを有し、揺動ピストン(28)には径方向外方へ突出するブレード(28b)が形成されるとともに、該ブレード(28b)を進退可能に保持する支持部材(29)が上記シリンダ(21A,21B)に回動可能に保持された揺動ピストン型の圧縮機構であることを特徴としている。
 この第3の発明では、圧縮機構(20A,20B)を揺動ピストン型の圧縮機構にしている。ここで、ローリングピストン型の圧縮機(10)は、シリンダ室を有するシリンダと、該シリンダの内周面に沿って公転するローリングピストンとを有し、シリンダには、一端(先端)がローリングピストンの外周面に圧接するブレードが保持されている。このローリングピストン型圧縮機の場合、ローリングピストンの外周とブレードの先端とが摺動して熱を発生するため、圧縮機構内が高温になりやすく、上記冷媒を用いると冷媒が分解してしまうおそれがあった。しかし、この第3の発明では、冷媒が高温で分解しやすいのに対して揺動ピストン型圧縮機(10)を用いているので、揺動ピストン(28a)とブレード(28b)とが摺動せず、その部分での発熱が生じない。したがって、冷媒が熱の影響を受けにくくなる。
 第4の発明は、第1から第3の発明の何れか1つにおいて、上記分子式:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒が、2,3,3,3-テトラフルオロ-1-プロペンであることを特徴としている。
 第5の発明は、第1から第4の発明の何れか1つにおいて、上記冷媒回路(2)の冷媒が、さらにジフルオロメタンを含む混合冷媒であることを特徴としている。
 第6の発明は、第1から第5の発明の何れか1つにおいて、上記冷媒回路(2)の冷媒が、さらにペンタフルオロエタンを含む混合冷媒であることを特徴としている。
 上記第4~第6の発明においても、第1の発明と同様、冷媒が高温で分解しやすいのに対して、2つの圧縮機構(20A,20B)を有する圧縮機(10)を用いているので、冷媒が熱の影響を受けにくくなる。
 上記第1の発明によれば、いわゆる2シリンダ型圧縮機(10)や二段圧縮機(10)を用いることが可能であるが、そのうちの2シリンダ型圧縮機(10)の場合には、1シリンダ型の圧縮機(10)よりもシリンダ1つ当たりの冷媒の過圧縮を小さくすることにより吐出流速を下げられるので、冷媒の温度が高くなるのを抑えることが可能となり、冷媒が分解してしまうのを防止できる。
 また、上記第2の発明によれば、冷媒を二段圧縮することにより、単段圧縮に比べて吐出温度を低くできるので、第1の発明と同様に冷媒が分解してしまうのを防止できる。
 上記第3の発明によれば、圧縮機構(20A,20B)を揺動ピストン型の圧縮機構にしたことにより冷媒が高温になるのを抑えやすくなるので、2つの圧縮機構(20A,20B)を用いることと相まって、冷媒が分解してしまうのをより効果的に防止できる。
 上記第4~第6の発明によれば、冷媒が高温で分解しやすいのに対して、2つの圧縮機構(20A,20B)を有する圧縮機(10)を用いているので、冷媒の温度が上がるのを抑えることにより、冷媒が分解してしまうのを防止できる。
図1は、本発明の実施形態1に係る冷凍装置の冷媒回路図である。 図2は、圧縮機の縦断面図である。 図3は、圧縮機構の横断面図である。 図4は、冷媒回路における冷媒の特性変化を示すモリエル線図である。 図5は、実施形態2に係る圧縮機の縦断面図である。
符号の説明
 1  冷凍装置
 2  冷媒回路
 10 圧縮機
 11 ケーシング
 20A 第1圧縮機構
 20B 第2圧縮機構
 21A シリンダ
 21B シリンダ
 20L 低段側圧縮機構
 20H 高段側圧縮機構
 25 シリンダ室
 28 揺動ピストン
 28b ブレード
 29 揺動ブッシュ(支持部材)
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 《発明の実施形態1》
 本発明の実施形態1について説明する。この実施形態1は空気調和装置に関するものである。
 図1に示すように、この空気調和装置(1)は、ヒートポンプ式の空気調和装置であって、冷房運転と暖房運転とに切り換え自在に構成されている。
 空気調和装置(1)の冷媒回路(2)は、冷凍サイクルにおける冷媒の圧縮行程を行う圧縮機(10)と、冷媒の流れ方向を切り換える流れ方向切換機構である四路切換弁(3)と、熱源側熱交換器である室外熱交換器(4)と、第1膨張機構である第1膨張弁(5A)と、気液分離器(6)と、第2膨張機構である第2膨張弁(5B)と、利用側熱交換器である室内熱交換器(7)と、アキュムレータ(8)とを備え、これらを配管接続することによって閉回路に構成されている。
 本実施形態の冷媒回路(2)には、冷媒としてHFO-1234yf(2,3,3,3-テトラフルオロ-1-プロペン)から成る単一冷媒が充填されている。なお、HFO-1234yfの化学式は、CF-CF=CHで表される。つまり、この冷媒は、分子式がC(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒の一種である。
 圧縮機(10)の吐出ポートは四路切換弁(3)の第1ポート(P1)に接続され、四路切換弁(3)の第2ポート(P2)は室外熱交換器(4)のガス側端に接続されている。室外熱交換器(4)の液側端は、第1膨張弁(5A),気液分離器(6)及び第2膨張弁(5B)を介して室内熱交換器(7)の液側端に接続されている。室内熱交換器(7)のガス側端は四路切換弁(3)の第3ポート(P3)に接続され、四路切換弁(3)の第4ポート(P4)はアキュムレータ(8)を介して圧縮機(10)の吸入ポートに接続されている。
 四路切換弁(3)は、第1ポート(P1)と第2ポート(P2)が連通して第3ポート(P3)と第4ポート(P4)が連通する冷房運転時の第1状態(図1の実線の状態)と、第1ポート(P1)と第3ポート(P3)が連通して第2ポート(P2)と第4ポート(P4)が連通する暖房運転時の第2状態(図1の破線の状態)とに切り換わるように構成されている。
 上記冷媒回路(2)には、インジェクション管(2A)が設けられている。該インジェクション管(2A)は、中間圧流体である中間圧ガス冷媒を圧縮機(10)にインジェクションする導入管であって、一端が気液分離器(6)に、他端が圧縮機(10)に連通している。上記気液分離器(6)には、高圧流体である冷媒の凝縮圧力と低圧流体である冷媒の蒸発圧力との中間圧力になっている中間圧冷媒が貯溜されるようになっている。該インジェクション管(2A)は、気液分離器(6)に溜まった中間圧冷媒のうち、ガス相の中間圧ガス冷媒を圧縮機(10)にインジェクションするものである。
 上記第1膨張弁(5A)と第2膨張弁(5B)は、開度調整自在な電動弁で構成されている。そして、上記第1膨張弁(5A)又は第2膨張弁(5B)で減圧された中間圧冷媒が気液分離器(6)に貯溜する。
 上記圧縮機(10)は、運転容量を無段階又は多段階に制御するように構成されている。このために、図2に示すように圧縮機(10)の内部には圧縮機構(20)を駆動する電動機が収納されている。この電動機(30)は、インバータ(回転速度制御機構)(34)を介して電源(35)と接続されており、駆動周波数を変えることにより回転速度を調整することができるようになっている。
 上記圧縮機(10)は、二段圧縮機であって、図2に示すように、密閉型のケーシング(11)内に、第1圧縮機構(20A)である低段側圧縮機構(20L)と、第2圧縮機構(20B)である高段側圧縮機構(20H)と、両圧縮機構(20L,20H)を駆動する電動機(30)とが収納されて構成されている。ケーシング(11)は、上下が開口した円筒状の胴部(12)と、この胴部(12)の上下の端部にそれぞれ溶接で固定される鏡板部(13,14)とによって構成されている。
 上記電動機(30)は、ケーシング(11)の内周面に固着されたステータ(31)と、ステータ(31)の中央部に配設されたロータ(32)とを備えている。該ロータ(32)の中央部には、駆動軸(33)が連結されている。該駆動軸(33)は、ロータ(32)から下方へ延長されて低段側圧縮機構(20L)及び高段側圧縮機構(20H)に連結されている。
 上記ケーシング(11)内の底部は潤滑油の油溜め部(17)として構成され、該油溜め部(17)の潤滑油には、上記駆動軸(33)の下端部が浸漬されている。上記駆動軸(33)の下端部には遠心式の油ポンプ(36)が設けられ、潤滑油が、駆動軸(33)内の給油路(33c)を通って、低段側圧縮機構(20L)及び高段側圧縮機構(20H)の摺動箇所や軸受け部分に供給されるようになっている。
 上記低段側圧縮機構(20L)及び高段側圧縮機構(20H)は、電動機(30)の下方に位置して上下に併設されている。該低段側圧縮機構(20L)及び高段側圧縮機構(20H)は、何れもいわゆる揺動ピストン型圧縮機構で構成されている。
 上記低段側圧縮機構(20L)及び高段側圧縮機構(20H)は、ほぼ同一の構成であって、低段側圧縮機構(20L)の上方に高段側圧縮機構(20H)が配置されている。両圧縮機構(20L,20H)は、図3に示すように、シリンダ(21H,21L)内に形成されたシリンダ室(25)に揺動ピストン(28)が収納されて構成されている。図2に示すように、上記両圧縮機構(20L,20H)のシリンダ(21H,21L)の間にはミドルプレート(22)が設けられている。また、上記低段側シリンダ(21L)の下面は下部プレート(リヤヘッド)(24)が設けられて閉鎖され、上記高段側シリンダ(21H)の上面は上部プレート(フロントヘッド)(23)が設けられて閉鎖されている。
 一方、上記各圧縮機構(20L,20H)の揺動ピストン(28)は全体として円環状に形成され、駆動軸(33)の偏心部(33a,33b)が回転自在に嵌め込まれている。上記偏心部(33a,33b)は、駆動軸(33)の回転中心から偏心して形成されている。
 上記各シリンダ(21H,21L)には吸入通路(21a,21b)が形成され、該吸入通路(21a,21b)の一端がシリンダ室(25)に開口して吸入口を構成している。また、上記下部プレート(24)には低段側圧縮機構(20L)の吐出通路(24a)が形成される一方、上部プレート(23)には高段側圧縮機構(20H)の吐出通路(23a)が形成され、該各吐出通路(23a,24a)の一端がシリンダ室(25)に開口して吐出口を構成している。尚、図示しないが、上記各吐出通路(23a,24a)には、所定の吐出圧力になると吐出口を開口する吐出弁が設けられている。
 上記シリンダ(21H,21L)には、軸方向へ円柱状で吸入口と吐出口との間に位置するブッシュ孔(21c)がシリンダ室(25)に開口して形成されている。上記揺動ピストン(28)には、環状の本体部(28a)と、この本体部(28a)から半径方向に突出して延びるブレード(28b)が一体的に形成されている。該ブレード(28b)の先端側は、ブッシュ孔(21c)内に一対の支持部材である揺動ブッシュ(29)を介して挿入されている。
 上記ブレード(28b)は、シリンダ室(25)を、吸入通路(21a,21b)に通じる低圧室(25a)と、吐出通路(23a,24a)に通じる高圧室(25b)とに区画している。上記揺動ピストン(28)は、ブレード(28b)が揺動ブッシュ(29)を支点に揺動しながら、本体部(28a)がシリンダ室(25)の内周面に沿って公転することにより冷媒を圧縮するように構成されている。
 上記低段側圧縮機構(20L)の吸入通路(21a)には、低段側圧縮機構(20L)に低圧ガス冷媒を供給する吸入管(15)が接続されている。この吸入管(15)には、冷媒回路(2)の吸入側冷媒配管(2B)(図1参照)が接続されている。
 上記下部プレート(24)には、下部マフラ(26)が設けられている。上記圧縮機構(20)には、中間通路(20M)が形成されている。中間通路(20M)は、下部プレート(24)と低段側シリンダ(21L)とを経て、ミドルプレート(22)を通り、高段側圧縮機構(20H)の吸入通路(21b)に連通している。
 上記インジェクション管(2A)は、ミドルプレート(22)に接続されて該インジェクション管(2A)が中間通路(20M)に連通している。つまり、上記中間通路(20M)は、中間圧ガス冷媒が供給されることにより中間圧雰囲気になるように構成されている。この構成により、中間圧冷媒が高段側圧縮機構(20H)に供給される。
 上記上部プレート(23)には、高段側圧縮機構(20H)の吐出通路(23a)を覆う上部マフラ(27)が設けられている。上記高段側圧縮機構(20H)の吐出通路(23a)は、上部マフラ(27)を介してケーシング(11)内に開口し、該ケーシング(11)の内部が高圧雰囲気になるように構成されている。
 上記ケーシング(11)の上部には、高圧ガス冷媒を冷媒回路(2)へ吐出する吐出管(16)が固定されている。この吐出管(16)には、冷媒回路(2)の吐出側冷媒配管(2C)が接続されている(図1参照)。
  -運転動作-
 次に、上述した空気調和装置(1)の空気調和動作について説明する。
 先ず、室内の冷房運転時には、四路切換弁(3)を図1の実線側に切り換える。圧縮機(10)から吐出した冷媒は、室外熱交換器(4)において外気と熱交換して凝縮する。この液冷媒は、第1膨張弁(5A)で減圧され、凝縮圧力と蒸発圧力との中間の圧力の中間圧冷媒となって気液分離器(6)に溜まる。
 上記気液分離器(6)の中間圧冷媒のうち、中間圧液冷媒は、第2膨張弁(5B)で減圧された後、室内熱交換器(7)において室内空気と熱交換して蒸発し、室内空気を冷却する。その後、このガス冷媒はアキュムレータ(8)を経て圧縮機(10)に戻り、この冷媒循環動作を行う。
 一方、暖房運転時には、四路切換弁(3)を図1の破線側に切り換える。圧縮機(10)から吐出した冷媒は、室内熱交換器(7)において室内空気と熱交換し、室内空気を加熱しながら凝縮する。その後、この液冷媒は、第2膨張弁(5B)で減圧され、中間圧冷媒となって気液分離器(6)に溜まる。
 上記気液分離器(6)の中間圧冷媒のうち、中間圧液冷媒は、第1膨張弁(5A)で減圧された後、室外熱交換器(4)において外気と熱交換して蒸発する。その後、このガス冷媒はアキュムレータ(8)を経て圧縮機(10)に戻り、この冷媒循環動作を行う。
 上述した空調運転時において、インジェクション管(2A)が設けられているので、気液分離器(6)の中間圧ガス冷媒が圧縮機(10)にインジェクションされる。
 そこで、上記冷媒回路(2)における冷媒の特性変化を図4に基づいて説明する。
 先ず、上記圧縮機(10)における冷媒は、A点の低圧状態から中間圧インジェクションを経てB点の凝縮圧力の高圧状態に圧縮される。この高圧ガス冷媒は、室外熱交換器(4)又は室内熱交換器(7)で凝縮し、C点で高圧液冷媒になる。この高圧液冷媒は、第1膨張弁(5A)又は第2膨張弁(5B)でD点まで減圧されて中間圧冷媒となる。この中間圧冷媒は、気液分離器(6)に貯溜し、該気液分離器(6)で中間圧液冷媒と中間圧ガス冷媒とに分離する。
 分離した後の中間圧ガス冷媒は、インジェクション管(2A)を介して圧縮機(10)にE点(D点の冷媒は第1圧縮機構(20L)から吐出されたガス冷媒より低温であり、両者が混合されてE点から二段目の圧縮が開始される)でインジェクションされる一方、中間圧液冷媒は、F点から第2膨張弁(5B)又は第1膨張弁(5A)でG点まで減圧され、低圧二相冷媒になる。この低圧二相冷媒は、室内熱交換器(7)又は室外熱交換器(4)で蒸発し、A点に変化して圧縮機(10)に戻る。
 この結果、暖房運転時にあっては、凝縮器となる室内熱交換器(7)を流れる冷媒は、中間圧ガス冷媒が加わることから、冷媒循環量が増大し、暖房能力が向上する。
 一方、冷房運転時にあっては、G点の低圧二相冷媒は、D点からF点までエンタルピ差が増大するので、室内熱交換器(7)で蒸発する冷媒の熱量が多くなり、冷房能力が向上する。
 また、図4のモリエル線図から分かるように、本実施形態では二段圧縮を採用しているので、仮想線で示す単段圧縮冷凍サイクルに比べて、冷媒の吐出温度が低くなる。
 次に、上記圧縮機(10)の圧縮動作について説明する。
 電動機(30)の駆動によって駆動軸(33)が回転し、低段側圧縮機構(20L)及び高段側圧縮機構(20H)の揺動ピストン(28)がブッシュ孔(21c)の中心を支点に揺動して公転する。そして、上記冷媒回路(2)におけるアキュムレータ(8)から戻る低圧ガス冷媒は、低段側圧縮機構(20L)の吸入通路(21a)からシリンダ室(25)に流入し、上記揺動ピストン(28)の揺動によって圧縮される。
 一方、中間通路(20M)には、気液分離器(6)から中間圧冷媒が供給されているので、低段側圧縮機構(20L)の吐出弁は、シリンダ室(25)内の冷媒圧力が中間圧になると開口する。低段側圧縮機構(20L)から吐出された冷媒は吐出通路(24a)から下部マフラ(26)を通り、中間通路(20M)を経て高段側圧縮機構(20H)の吸入通路(21b)に流れる。そして、この中間通路(20M)でインジェクション管(2A)の中間圧冷媒が合流し、高段側圧縮機構(20H)のシリンダ室(25)に流入する。
 上記高段側圧縮機構(20H)においては、中間圧冷媒を圧縮して高圧冷媒をケーシング(11)内に吐出する。この高圧冷媒は、電動機(30)のステータ(31)とロータ(32)との間を通り、冷媒回路(2)に吐出する。この高圧冷媒は、上述したように冷媒回路(2)を循環する。
 ここで、圧縮機にローリングピストン型の圧縮機を用いると、ローリングピストンの外周とブレードの先端とが摺動して熱を発生し、圧縮機構内が高温になりやすいため、HFO-1234yf冷媒のように分子式がCで表される化合物から成る冷媒を用いると、冷媒が分解してしまうおそれがあった。しかし、この実施形態では、冷媒が高温で分解しやすいのに対して揺動ピストン型圧縮機を用いているので、ピストンとブレードが摺動せず、その部分での発熱が生じない。したがって、冷媒が熱の影響を受けにくくなる。
  -実施形態1の効果-
 本実施形態では、冷媒回路(2)の冷媒として、HFO-1234yf(2,3,3,3-テトラフルオロ-1-プロペン)から成る単一冷媒を用いている。ここで、HFO-1234yfは、理論上のCOPが比較的高い特性を有する。従って、この冷媒を単一冷媒にすることで、運転効率の優れた冷凍サイクルを行うことができ、冷凍装置(1)の運転効率を向上できる。
 また、HFO-1234yfは、地球温暖化係数(GWP)が比較的小さい特性を有する。従って、この冷媒を単一冷媒とすることで、地球環境に優しい冷凍装置(1)を提供することができる。
 また、本実施形態では、低段側圧縮機構(20L)と高段側圧縮機構(20H)とを備えた二段圧縮機を用いているので、単段1シリンダ型の圧縮機と比べて冷媒の吐出温度を低くすることができる。したがって、高温で分解しやすいHFO-1234yf冷媒であっても、冷媒の分解が生じないようにすることができる。
 さらに、本実施形態では、揺動ピストン型圧縮機(10)を用いているので、ローリングピストン型圧縮機で生じていたピストンの外周面とブレードの先端面の摺動が生じない。そのため、これらの部材の摺動による熱が発生しないので、高温で分解しやすいHFO-1234yf冷媒であっても、冷媒の分解が生じない。
 また、HFO-1234yfは、低圧冷媒であって十分な循環量を稼ぎにくいため、十分な冷凍能力を得にくいのに対して、本実施形態では中間圧のガス冷媒を圧縮機(10)にインジェクションするようにしている。したがって、見かけ上の運転容量を増大させることで冷媒循環量を増やし、十分な冷凍能力を得にくいHFO-1234yfであっても、冷凍能力を高めることが可能となる。
 さらに、本実施形態ではインバータ制御をするようにしているので、回転速度を上げることで吸い込み量を増やすことができる。したがって、この構成によっても運転容量を増大させることで冷媒循環量を増やせるので、十分な冷凍能力を得にくいHFO-1234yfであっても、冷凍能力を高めることが可能となる。
  -実施形態1の変形例-
 上記実施形態1では、二段圧縮冷凍サイクルで圧縮機(10)に中間圧ガス冷媒をインジェクションする方式を採用している。
 ここで、二段圧縮冷凍サイクルは、図4のモリエル線図からも明らかなように、低圧の冷媒ガスを低段側圧縮機構(20L)で中間圧力まで圧縮した後、中間圧ガス冷媒を飽和蒸気温度近くまで冷却してから、高段側圧縮機構(20H)でさらに圧縮する方式である。上記実施形態1では中間圧ガス冷媒を冷却する中間冷却器(中間冷却手段)として気液分離器(6)を使ったガスインジェクション方式を採用しているが、中間冷却器は、高圧液冷媒とそれを中間圧に減圧した二相冷媒とを熱交換させる冷媒熱交換器など、他の方式のものを用いてもよい。
 《発明の実施形態2》
 次に、本発明の実施形態2について説明する。
 この実施形態2は、冷凍サイクルの圧縮行程を行う圧縮機として、二段圧縮機ではなく、2シリンダ型の圧縮機(10)を用いるようにしたものである。
 図5に示すように、この実施形態2の圧縮機では、第1圧縮機構(20A)と第2圧縮機構(20B)が低段側と高段側ではなく並列関係にある2つの圧縮機構として構成されている。これらの圧縮機構(20A,20B)にはそれぞれ吸入通路(21a,21b)が設けられ、各吸入通路(21a,21b)は、冷媒回路(2)の吸入側冷媒配管(2B)に並列に接続されている。上記実施形態1では第1圧縮機構(20A)と第2圧縮機構(20B)を低段側と高段側にして両圧縮機構(20A,20B)を中間通路(20M)で接続するようにしているが、この実施形態2ではそのような構成は採用していない。
 また、下部プレート(24)に固定されている下部マフラ(26)は、ケーシング(11)の内部空間に開口しており、第1圧縮機構(20A)と第2圧縮機構(20B)で吐出された冷媒が別々にケーシング(11)内へ吐出される。
 この実施形態では、中間圧のガス冷媒を圧縮機構へインジェクションする構成は採用していない。
 その他の構成については、実施形態1と同じであり、二段圧縮を行わない点を除いて運転動作も実施形態1と同じである。
  -実施形態2の効果-
 この実施形態2では単段2シリンダ型の圧縮機(10)を用いている。この単段2シリンダ型の圧縮機は、単段1シリンダ型の圧縮機よりもシリンダ1つ当たりの容積を小さくすることができる。したがって、シリンダ1つ当たりの過圧縮を小さくすることができるので、吐出流速を下げることができる。このため、冷媒の温度が高くなるのを抑えることができるため、冷媒が分解してしまうのを防止できる。
 その他の効果は実施形態1と同様である。
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
 例えば、上記実施形態では揺動ピストン型の圧縮機構(20A,20B)を備えた圧縮機を用いているが、圧縮機構は揺動ピストン型に限らず、ローリングピストン型やスクロール型の圧縮機構を用いてもよい。その場合でも、圧縮機構(20A,20B)を2シリンダ型や二段圧縮型にすることにより、冷媒の吐出温度が上昇するのを防止できるので、冷媒であるHFO-1234yfが分解してしまうのを防止できる。
 また、上記実施形態では、冷媒回路(10)の冷媒として、分子式:C(但し、m=1~5,n=1~5且つm+n=6)で表され且つ分子構造中に二重結合を1個有する冷媒のうちHFO-1234yf以外の冷媒の単一冷媒を用いてもよい。具体的には、1,2,3,3,3-ペンタフルオロ-1-プロペン(「HFO-1225ye」といい、化学式はCF-CF=CHFで表される。)、1,3,3,3-テトラフルオロ-1-プロペン(「HFO-1234ze」といい、化学式はCF-CH=CHFで表される。)、1,2,3,3-テトラフルオロ-1-プロペン(「HFO-1234ye」といい、化学式はCHF-CF=CHFで表される。)、3,3,3-トリフルオロ-1-プロペン(「HFO-1243zf」といい、化学式はCF-CH=CHで表される。)、1,2,2-トリフルオロ-1-プロペン(化学式はCH-CF=CFで表される。)、2-フルオロ-1-プロペン(化学式はCH-CF=CHで表される。)等を用いることができる。
 また、上記実施形態について、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒(1,2,3,3,3-ペンタフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン、1,3,3,3-テトラフルオロ-1-プロペン、1,2,3,3-テトラフルオロ-1-プロペン、3,3,3-トリフルオロ-1-プロペン、1,2,2-トリフルオロ-1-プロペン、2-フルオロ-1-プロペン)に、HFC-32(ジフルオロメタン)、HFC-125(ペンタフルオロエタン)、HFC-134(1,1,2,2―テトラフルオロエタン)、HFC-134a(1,1,1,2―テトラフルオロエタン)、HFC-143a(1,1,1-トリフルオロエタン)、HFC-152a(1,1-ジフルオロエタン)、HFC-161、HFC-227ea、HFC-236ea、HFC-236fa、HFC-365mfc、メタン、エタン、プロパン、プロペン、ブタン、イソブタン、ペンタン、2-メチルブタン、シクロペンタン、ジメチルエーテル、ビス-トリフルオロメチル-サルファイド、二酸化炭素、ヘリウムのうち少なくとも1つを加えた混合冷媒を用いてもよい。
 例えば、HFO-1234yfとHFC-32の2成分からなる混合冷媒を用いてもよい。この場合は、HFO-1234yfの割合が78.2質量%でHFC-32の割合が21.8質量%の混合冷媒を用いることができる。また、HFO-1234yfの割合が77.6質量%でHFC-32の割合が22.4質量%の混合冷媒を用いることができる。なお、HFO-1234yfとHFC-32の混合冷媒は、HFO-1234yfの割合が70質量%以上94質量%以下でHFC-32の割合が6質量%以上30質量%以下であればよく、好ましくは、HFO-1234yfの割合が77質量%以上87質量%以下でHFC-32の割合が13質量%以上23質量%以下であればよく、更に好ましくは、HFO-1234yfの割合が77質量%以上79質量%以下でHFC-32の割合が21質量%以上23質量%以下であればよい。
 また、HFO-1234yfとHFC-125の混合冷媒を用いてもよい。この場合は、HFC-125の割合が10質量%以上であるのが好ましく、さらに10質量%以上20質量%以下であるのが更に好ましい。
 また、HFO-1234yfとHFC-32とHFC-125の3成分からなる混合冷媒を用いてもよい。この場合は、52質量%のHFO-1234yfと、23質量%のHFC-32と、25質量%のHFC-125とからなる混合冷媒を用いることができる。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、Cの分子式で表される化合物から成る冷媒を用いる冷凍装置について有用である。

Claims (6)

  1.  冷媒回路(2)の冷媒が、分子式:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は該冷媒を含む混合冷媒である冷凍装置であって、
     冷媒の圧縮行程を行う圧縮機(10)が、ケーシング(11)内に第1圧縮機構(20A)と第2圧縮機構(20B)とを有する圧縮機(10)であることを特徴とする冷凍装置。
  2.  請求項1において、
     上記圧縮機(10)の第1圧縮機構(20A)が低段側圧縮機構(20L)であり、第2圧縮機構(20B)が高段側圧縮機構(20H)であり、
     両圧縮機構(20A,20B)によって、冷媒を二段圧縮する二段圧縮機構(20L,20H)が構成されていることを特徴とする冷凍装置。
  3.  請求項1において、
     上記各圧縮機構(20A,20B)は、シリンダ室(25)を有するシリンダ(21A,21B)と、該シリンダ(21A,21B)の内周面に沿って公転する揺動ピストン(28)とを有し、揺動ピストン(28)には径方向外方へ突出するブレード(28b)が形成されるとともに、該ブレード(28b)を進退可能に保持する支持部材(29)が上記シリンダ(21A,21B)に回動可能に保持された揺動ピストン型の圧縮機構であることを特徴とする冷凍装置。
  4.  請求項1において、
     上記分子式:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒は、2,3,3,3-テトラフルオロ-1-プロペンであることを特徴とする冷凍装置。
  5.  請求項1において、
     上記冷媒回路(2)の冷媒は、さらにジフルオロメタンを含む混合冷媒であることを特徴とする冷凍装置。
  6.  請求項1において、
     上記冷媒回路(2)の冷媒は、さらにペンタフルオロエタンを含む混合冷媒であることを特徴とする冷凍装置。
PCT/JP2009/000975 2008-03-18 2009-03-04 冷凍装置 WO2009116237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801093176A CN101978226B (zh) 2008-03-18 2009-03-04 制冷装置
BRPI0906182-7A BRPI0906182B1 (pt) 2008-03-18 2009-03-04 aparelho de refrigeração
EP09722530A EP2261579A4 (en) 2008-03-18 2009-03-04 FREEZING DEVICE
US12/921,545 US20110023535A1 (en) 2008-03-18 2009-03-04 Refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-069286 2008-03-18
JP2008069286A JP2009222329A (ja) 2008-03-18 2008-03-18 冷凍装置

Publications (1)

Publication Number Publication Date
WO2009116237A1 true WO2009116237A1 (ja) 2009-09-24

Family

ID=41090652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000975 WO2009116237A1 (ja) 2008-03-18 2009-03-04 冷凍装置

Country Status (6)

Country Link
US (1) US20110023535A1 (ja)
EP (1) EP2261579A4 (ja)
JP (1) JP2009222329A (ja)
CN (1) CN101978226B (ja)
BR (1) BRPI0906182B1 (ja)
WO (1) WO2009116237A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092881A3 (en) * 2010-02-01 2012-09-13 Panasonic Corporation Refrigeration apparatus
CN102691660A (zh) * 2011-12-15 2012-09-26 珠海凌达压缩机有限公司 一种高制冷性能的二级双缸压缩机
US8992793B2 (en) 2009-02-04 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
EP2578887A4 (en) * 2010-06-07 2016-01-27 Panasonic Corp COMPRESSOR

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040907B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 冷凍装置
ES2929349T3 (es) * 2009-05-08 2022-11-28 Honeywell Int Inc Uso de composición de transferencia de calor en sistemas de refrigeración de baja temperatura
JP2011094841A (ja) * 2009-10-28 2011-05-12 Daikin Industries Ltd 冷凍装置
KR101681585B1 (ko) * 2009-12-22 2016-12-01 엘지전자 주식회사 복식 로터리 압축기
JP5240332B2 (ja) 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
JP2013134040A (ja) * 2011-12-27 2013-07-08 Daikin Industries Ltd 冷凍装置
CN103075807B (zh) * 2013-01-15 2015-04-29 顺德职业技术学院 双级压缩式热泵热水机用的耦合中间冷却器
WO2014203354A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
JP6381890B2 (ja) 2013-10-25 2018-08-29 三菱重工サーマルシステムズ株式会社 冷媒循環装置、冷媒循環方法および異性化抑制方法
JP6138957B2 (ja) * 2013-10-25 2017-05-31 三菱重工業株式会社 冷媒循環装置、冷媒循環方法および酸抑制方法
JP6218922B2 (ja) * 2014-03-14 2017-10-25 三菱電機株式会社 冷凍サイクル装置
TWI649900B (zh) * 2015-02-04 2019-02-01 億光電子工業股份有限公司 Led封裝結構及其製造方法
WO2017010092A1 (ja) * 2015-07-15 2017-01-19 ダイキン工業株式会社 圧縮機
JP6408698B2 (ja) * 2015-08-24 2018-10-17 クワントン メイヂー コンプレッサー カンパニー リミテッド 回転式圧縮機及びこれを備える冷凍サイクル装置
CN105783309A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105783303B (zh) * 2016-04-29 2019-07-30 广东美的制冷设备有限公司 单冷型空调器及其控制方法
CN105783324B (zh) * 2016-04-29 2019-05-31 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105783305A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 单冷型空调器及其控制方法
CN105783304A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 单冷型空调器及其控制方法
CN105783310B (zh) * 2016-04-29 2019-07-30 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105910322A (zh) * 2016-04-29 2016-08-31 广东美的制冷设备有限公司 单冷型空调器的控制方法
CN105783323B (zh) * 2016-04-29 2019-07-30 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105890212A (zh) * 2016-04-29 2016-08-24 广东美的制冷设备有限公司 单冷型空调器的控制方法
CN105783325A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105758037A (zh) * 2016-04-29 2016-07-13 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN105890213B (zh) * 2016-04-29 2019-07-30 广东美的制冷设备有限公司 冷暖型空调器的控制方法
JP2018009534A (ja) * 2016-07-14 2018-01-18 株式会社富士通ゼネラル ロータリ圧縮機
US10487832B2 (en) * 2016-12-22 2019-11-26 Lennox Industries Inc. Method and apparatus for pressure equalization in rotary compressors
JP2018123974A (ja) * 2017-01-30 2018-08-09 ダイキン工業株式会社 冷凍装置
FR3064275B1 (fr) * 2017-03-21 2019-06-07 Arkema France Procede de chauffage et/ou climatisation d'un vehicule
US10801510B2 (en) 2017-04-24 2020-10-13 Lennox Industries Inc. Method and apparatus for pressure equalization in rotary compressors
JP6974769B2 (ja) * 2020-02-10 2021-12-01 ダイキン工業株式会社 圧縮機
CN115769030A (zh) 2020-07-03 2023-03-07 大金工业株式会社 在压缩机中作为制冷剂的用途、压缩机和制冷循环装置
JP7260804B2 (ja) * 2021-03-26 2023-04-19 ダイキン工業株式会社 冷媒導入管を有する圧縮機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110388A (ja) 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
WO2006069362A2 (en) * 2004-12-21 2006-06-29 Honeywell International Inc. Stabilized iodocarbon compositions
WO2006094303A2 (en) * 2005-03-04 2006-09-08 E.I. Dupont De Nemours And Company Compositions comprising a fluoroolefin
JP2007023993A (ja) * 2005-07-21 2007-02-01 Daikin Ind Ltd 二段圧縮機
WO2007086972A2 (en) * 2005-11-03 2007-08-02 Honeywell International Inc. Direct conversion of hcfc 225ca/cb mixture to hfc 245cb and hfc 1234yf
JP2007263109A (ja) * 2006-03-03 2007-10-11 Daikin Ind Ltd 回転式圧縮機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571157A (en) * 1981-10-02 1986-02-18 Karl Eickmann Propeller with an interior arrangement to variate the pitch
JP2513700B2 (ja) * 1987-06-30 1996-07-03 株式会社東芝 空気調和装置
JP2555464B2 (ja) * 1990-04-24 1996-11-20 株式会社東芝 冷凍サイクル装置
KR20010014817A (ko) * 1999-07-06 2001-02-26 다카노 야스아키 냉매압축기 및 이것을 이용한 냉동냉방장치
US7128540B2 (en) * 2001-09-27 2006-10-31 Sanyo Electric Co., Ltd. Refrigeration system having a rotary compressor
JP4385565B2 (ja) * 2002-03-18 2009-12-16 ダイキン工業株式会社 回転式圧縮機
JP2005002832A (ja) * 2003-06-10 2005-01-06 Daikin Ind Ltd ロータリー流体機械
JP3674625B2 (ja) * 2003-09-08 2005-07-20 ダイキン工業株式会社 ロータリ式膨張機及び流体機械
JP4552432B2 (ja) * 2003-12-11 2010-09-29 ダイキン工業株式会社 圧縮機
WO2005103496A1 (ja) * 2004-04-23 2005-11-03 Daikin Industries, Ltd. 回転式流体機械
JP3757977B2 (ja) * 2004-05-11 2006-03-22 ダイキン工業株式会社 回転式流体機械
JP4561225B2 (ja) * 2004-08-05 2010-10-13 ダイキン工業株式会社 容積型膨張機及び流体機械
EP2853746B1 (en) * 2006-03-03 2017-07-19 Daikin Industries, Ltd. Compressor and manufacturing method thereof
JP4797715B2 (ja) * 2006-03-09 2011-10-19 ダイキン工業株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110388A (ja) 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
WO2006069362A2 (en) * 2004-12-21 2006-06-29 Honeywell International Inc. Stabilized iodocarbon compositions
WO2006094303A2 (en) * 2005-03-04 2006-09-08 E.I. Dupont De Nemours And Company Compositions comprising a fluoroolefin
JP2007023993A (ja) * 2005-07-21 2007-02-01 Daikin Ind Ltd 二段圧縮機
WO2007086972A2 (en) * 2005-11-03 2007-08-02 Honeywell International Inc. Direct conversion of hcfc 225ca/cb mixture to hfc 245cb and hfc 1234yf
JP2007263109A (ja) * 2006-03-03 2007-10-11 Daikin Ind Ltd 回転式圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992793B2 (en) 2009-02-04 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
WO2011092881A3 (en) * 2010-02-01 2012-09-13 Panasonic Corporation Refrigeration apparatus
CN102741626A (zh) * 2010-02-01 2012-10-17 松下电器产业株式会社 制冷装置
EP2578887A4 (en) * 2010-06-07 2016-01-27 Panasonic Corp COMPRESSOR
CN102691660A (zh) * 2011-12-15 2012-09-26 珠海凌达压缩机有限公司 一种高制冷性能的二级双缸压缩机

Also Published As

Publication number Publication date
BRPI0906182B1 (pt) 2021-06-08
BRPI0906182A2 (pt) 2020-09-24
EP2261579A4 (en) 2011-05-25
US20110023535A1 (en) 2011-02-03
JP2009222329A (ja) 2009-10-01
EP2261579A1 (en) 2010-12-15
CN101978226B (zh) 2013-01-02
CN101978226A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2009116237A1 (ja) 冷凍装置
JP6922885B2 (ja) 圧縮機及び熱サイクルシステム
JP2009270797A (ja) 冷凍装置
JP2009228476A (ja) スクロール圧縮機
JP2011094841A (ja) 冷凍装置
JP2001241780A (ja) 冷凍空調装置
JP2016003645A (ja) スクロール圧縮機および空気調和機
JPWO2020049844A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
JP2009222006A (ja) 冷凍装置
US11143446B2 (en) Refrigeration device controlling a temperature of compressor-discharged refrigerant
JP2010024984A (ja) スクリュー圧縮機
WO2015114783A1 (ja) 圧縮機及び冷凍サイクル装置
JP2009228478A (ja) スクロール圧縮機
JP6899360B2 (ja) 冷凍サイクル装置
JP2009228471A (ja) スクロール圧縮機
JP5828075B2 (ja) 回転式圧縮機
JP5925136B2 (ja) 冷媒圧縮機及びヒートポンプ機器
WO2018139314A1 (ja) 冷凍装置
WO2018139316A1 (ja) 冷凍装置
JP2010024983A (ja) スクリュー圧縮機
WO2009113261A1 (ja) 膨張機
JP2009228470A (ja) スクロール圧縮機
JP2008115695A (ja) 流体機械
JP2009228473A (ja) スクロール圧縮機
JP2010024988A (ja) スクリュー圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109317.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921545

Country of ref document: US

Ref document number: 2009722530

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3808/KOLNP/2010

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0906182

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 018100034846 DE 17/09/2010 E, CASO NECESSARIO, COMPROVE QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS."

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0906182

Country of ref document: BR

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2008- 069286; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES,NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013 E ART. 2O DA RESOLUCAO 179/2017. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR O TITULAR DO PEDIDO PRIORITARIO NOS DOCUMENTOS JUNTADOS AO PROCESSO, TAMPOUCO NOS APRESENTADOS NA OMPI. TAL INFORMACAO E NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE.

ENP Entry into the national phase

Ref document number: PI0906182

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917